Sample records for elemental red selenium

  1. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. strain CA5

    USDA-ARS?s Scientific Manuscript database

    A Pseudomonas sp. that may be useful in bioremediation projects was isolated from soil. The strain is of potential value because it reduces selenite to elemental red selenium and is unusual in that it was resistant to high concentrations of both selenate and selenite. Cell of the strain removed 1....

  2. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices.

    PubMed

    Wang, Qi; Mejía Jaramillo, Alejandra; Pavon, Juan J; Webster, Thomas J

    2016-10-01

    Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016. © 2015 Wiley Periodicals, Inc.

  3. Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas palustris Strain N

    PubMed Central

    Li, Baozhen; Liu, Na; Li, Yongquan; Jing, Weixin; Fan, Jinhua; Li, Dan; Zhang, Longyan; Zhang, Xiaofeng; Zhang, Zhaoming; Wang, Lan

    2014-01-01

    The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO3 −2) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO3 −2 and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO3 −2 to red elemental selenium. The diameters of particles were 80–200 nm. The bacteria exhibited significant tolerance to SeO3 −2 up to 8.0 m mol/L concentration with an EC50 value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO3 2− up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO3 −2 was observed at 2.0, 4.0 and 8.0 m mol/L SeO3 2− concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO3 −2. The finding of this work will contribute to the application of selenium to human health. PMID:24759917

  4. Mercury, Lead, Cadmium, Arsenic, Chromium and Selenium in Feathers of Shorebirds during Migrating through Delaware Bay, New Jersey: Comparing the 1990s and 2011/2012

    PubMed Central

    Burger, Joanna; Tsipoura, Nellie; Niles, Lawrence J.; Gochfeld, Michael; Dey, Amanda; Mizrahi, David

    2015-01-01

    Understanding temporal changes in contaminant levels in coastal environments requires comparing levels of contaminants from the same species from different time periods, particularly if species are declining. Several species of shorebirds migrating through Delaware Bay have declined from the 1980s to the present. To evaluate some contaminants as cause for the declines, we examine levels of mercury, lead, cadmium, arsenic, chromium and selenium in feathers of red knot (Calidris canutus, N = 46 individuals), semipalmated sandpiper (Calidris pusilla, N = 70) and sanderling (Calidris alba, N = 32) migrating through Delaware Bay, New Jersey, USA, from 1991 to 1992 (N = 40), 1995 (N = 28), and 2011–2012 (N = 80) to determine if levels have changed. We found: (1) arsenic, chromium, and lead increased in red knot and decreased in semipalmated sandpiper; (2) cadmium decreased in semipalmated sandpipers; (3) mercury decreased in red knot and sanderlings; (4) selenium decreased in red knot and increased in semipalmated sandpipers. In 2011/2012 there were significant interspecific differences for arsenic, mercury and selenium. Except for selenium, the element levels were well below levels reported for feathers of other species. The levels in feathers in red knots, sanderling, and semipalmated sandpipers from Delaware Bay in 2011/2012 were well below levels in feathers that are associated with effect levels, except for selenium. Selenium levels ranged from 3.0 µg·g−1 dry weight to 5.8 µg·g−1 (semipalmated sandpiper), within the range known to cause adverse effects, suggesting the need for further examination of selenium levels in birds. The levels of all elements were well below those reported for other marine species, except for selenium, which was near levels suggesting possible toxic effects. PMID:29056651

  5. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  6. Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing.

    PubMed

    Juhász, Péter; Lengyel, Szvetlana; Udvari, Zsolt; Sándor, Alex Nagy; Stündl, László

    2017-09-01

    Selenium is an essential microelement for the normal functioning of life processes. Moreover, it is a component of enzymes with antioxidant effects. However, it has the smallest window of any micronutrient between requirement and toxicity. Selenium is a regularly used element in fish feeds; moreover, enriching zooplankton with selenium to rear larvae is also a well-known technology. It is accepted that the most common starter foods of fish larvae, natural rotifers contain the smallest dosage of selenium, but providing selenium enriched Artemia sp. instead could increase survival and growth rate of fish. However, no such references are available for the red drum (Sciaenops ocellatus) larvae. Therefore, in this study, Artemia sp. was enriched with nano-selenium of verified low toxicity and easy availability in 5 treatments (1, 5, 10, 50, 100 mg/l Se), and then, fish larvae were fed with four of these enriched Artemia stocks (1, 5, 10, 50 mg/l Se) and a control group. At the end of the 9-day-long experiment, survival rate (S) and growth parameters (SL, W, K-factor, SGR) of fish larvae were calculated as well as their selenium retention and glutathione peroxidase enzyme activity were analysed. It was revealed that a moderate level of selenium enrichment (~4 mg/kg dry matter) of Artemia sp. positively influences the rearing efficiency (i.e. survival and growth) of fish larvae, but higher dosages of selenium could cause adverse effects.

  7. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay.

    PubMed

    Dwivedi, Sourabh; Alkhedhairy, Abdulaziz A; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental selenium (Se(0)) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3(2-) to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3(2-) to elemental red Se(0), a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3(2-) bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point.

  8. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    PubMed Central

    2014-01-01

    Background Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic. Results A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction. PMID:25098921

  9. Biomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment: A Novel Se-Bioassay

    PubMed Central

    Dwivedi, Sourabh; AlKhedhairy, Abdulaziz A.; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3 2−) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3 2− to insoluble red elemental selenium (Se0) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3 2− to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3 2− to elemental red Se0, a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3 2− bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point. PMID:23483909

  10. Mobilization of Selenite by Ralstonia metallidurans CH34

    PubMed Central

    Roux, Murielle; Sarret, Géraldine; Pignot-Paintrand, Isabelle; Fontecave, Marc; Coves, Jacques

    2001-01-01

    Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites. PMID:11157242

  11. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide

    2004-05-28

    We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.

  12. Selenium in blood, semen, seminal plasma and spermatozoa of stallions and its relationship to sperm quality.

    PubMed

    Bertelsmann, H; Keppler, S; Höltershinken, M; Bollwein, H; Behne, D; Alber, D; Bukalis, G; Kyriakopoulos, A; Sieme, H

    2010-01-01

    The essential trace element selenium is indispensable for male fertility in mammals. Until now, little data existed regarding the relationship between selenium and sperm quality in the stallion. Selenium, or selenium-dependent glutathione peroxidase activity, was determined in red blood cells, semen, seminal plasma and spermatozoa, and the percentages of spermatozoa with progressive motility (PMS), intact membranes (PMI), altered (positive) acrosomal status (PAS) and detectable DNA damage, determined by the sperm chromatin structure assay, were evaluated in 41 healthy stallions (three samples each). The pregnancy rate per oestrus cycle (PRC) served as an estimation of fertility. An adverse effect on stallion fertility caused by low dietary selenium intake was excluded, as all stallions had sufficient selenium levels in their blood. Interestingly, no significant correlations (P > 0.05) between the selenium level in blood and the selenium level in seminal plasma or spermatozoa were found, suggesting that the selenium level in blood is no indicator of an adequate selenium supply for spermatogenesis. The selenium level in spermatozoa (nmol billion(-1)) was correlated with PMI, PMS and PAS (r = 0.40, r = 0.31 and r = -0.42, respectively; P

  13. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  14. Selenium

    USGS Publications Warehouse

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There, waters draining from agricultural fields created wetlands with high concentrations of dissolved selenium in the water. The selenium was taken up by aquatic wildlife and caused massive numbers of embryonic deformities and deaths.Regulatory agencies have since worked to safeguard ecological and human health by creating environmental exposure guidelines based upon selenium concentrations in water and in fish tissue. Any attempt to regulate selenium concentrations requires a delicate balance because selenium occurs naturally and is also a vital nutrient for the health of wildlife, domestic stock, and humans. Selenium is commonly added as a vitamin to animal feed, and in some regions of the United States and the world, it is added as an amendment to soils for uptake by agricultural crops.The important role of selenium in economic products, energy supply, agriculture, and health will continue for well into the future. The challenge to society is to balance the benefits of selenium use with the environmental consequences of its extraction. Increased understanding of the elemental cycle of selenium in the earth may lead to new (or unconventional) sources of selenium, the discovery of new methods of extraction, and new technologies for minimizing the transfer of selenium from rock to biota, so to protect environmental and human health.

  15. Role of Selenium from Different Sources in Prevention of Pulmonary Arterial Hypertension Syndrome in Broiler Chickens.

    PubMed

    Zamani Moghaddam, A K; Mehraei Hamzekolaei, M H; Khajali, F; Hassanpour, H

    2017-11-01

    Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.

  16. Accumulation of mercury and selenium in tissues of kittens fed commercial cat food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, C.I. Jr.; Andrews, E.J.; deLahunta, A.

    1978-07-01

    Six kittens, three males and three females, were fed exclusively for one hundred days a commercially canned red meat tuna found to contain elevated concentrations of Mercury (Hg) and Selenium (Se). A similarly sized control group was fed for the same period a dry commercial cat food comparatively low in the concentration of these elements. At the end of the feeding trial, concentrations of Hg and Se were markedly higher in blood, bone, brain, kidney, liver, muscle and spleen of the kittens fed the tuna diet as compared to the corresponding controls. No behavioral abnormalities or pathological lesions were detectedmore » in any of the kittens.« less

  17. 21 CFR 358.703 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...

  18. 21 CFR 358.703 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...

  19. 21 CFR 358.703 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...

  20. 21 CFR 358.703 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...

  1. 21 CFR 358.703 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...

  2. Statistical Analysis of Mineral Concentration for the Geographic Identification of Garlic Samples from Sicily (Italy), Tunisia and Spain

    PubMed Central

    Vadalà, Rossella; Mottese, Antonio F.; Bua, Giuseppe D.; Salvo, Andrea; Mallamace, Domenico; Corsaro, Carmelo; Vasi, Sebastiano; Giofrè, Salvatore V.; Alfa, Maria; Cicero, Nicola; Dugo, Giacomo

    2016-01-01

    We performed a statistical analysis of the concentration of mineral elements, by means of inductively coupled plasma mass spectrometry (ICP-MS), in different varieties of garlic from Spain, Tunisia, and Italy. Nubia Red Garlic (Sicily) is one of the most known Italian varieties that belongs to traditional Italian food products (P.A.T.) of the Ministry of Agriculture, Food, and Forestry. The obtained results suggest that the concentrations of the considered elements may serve as geographical indicators for the discrimination of the origin of the different samples. In particular, we found a relatively high content of Selenium in the garlic variety known as Nubia red garlic, and, indeed, it could be used as an anticarcinogenic agent. PMID:28231115

  3. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)--consequences to human health.

    PubMed

    Jarzyńska, Grażyna; Falandysz, Jerzy

    2011-07-01

    Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effect of hereditary haemochromatosis genotypes and iron overload on other trace elements.

    PubMed

    Beckett, Jeffrey M; Ball, Madeleine J

    2013-02-01

    Hereditary haemochromatosis is a common genetic disorder involving dysregulation of iron absorption. There is some evidence to suggest that abnormal iron absorption and metabolism may influence the status of other important trace elements. In this study, the effect of abnormal HFE genotypes and associated iron overload on the status of other trace elements was examined. Dietary data and blood samples were collected from 199 subjects (mean age = 55.4 years; range = 21-81 years). Dietary intakes, serum selenium, copper and zinc concentrations and related antioxidant enzymes (glutathione peroxidase and superoxide dismutase) in subjects with normal HFE genotype (n = 118) were compared to those with abnormal HFE genotype, with both normal iron status (n = 42) and iron overload (n = 39). For most dietary and biochemical variables measured, there were no significant differences between study groups. Red cell GPx was significantly higher in male subjects with normal genotypes and normal iron status compared to those with abnormal genotypes and normal iron status (P = 0.03) or iron overload (P = 0.001). Red cell GPx was also highest in normal women and significantly lower in the abnormal genotype and normal iron group (P = 0.016), but not in the iron overload group (P = 0.078). Although it may not be possible to exclude a small effect between the genotype groups on RBC GPx, overall, haemochromatosis genotypes or iron overload did not appear to have a significant effect on selenium, copper or zinc status.

  5. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2016-10-01

    A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles.

    PubMed

    Tugarova, Anna V; Vetchinkina, Elena P; Loshchinina, Ekaterina A; Burov, Andrei M; Nikitina, Valentina E; Kamnev, Alexander A

    2014-10-01

    The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.

  8. Biogenic selenium nanoparticles: current status and future prospects.

    PubMed

    Wadhwani, Sweety A; Shedbalkar, Utkarsha U; Singh, Richa; Chopade, Balu A

    2016-03-01

    Selenium nanoparticles (SeNPs) are gaining importance in the field of medicine owing to their antibacterial and anticancer properties. SeNPs are biocompatible and non-toxic compared to the counterparts, selenite (SeO3 (-2)) and selenate (SeO4 (-2)). They can be synthesized by physical, chemical, and biological methods and have distinct bright orange-red color. Biogenic SeNPs are stable and do not aggregate owing to natural coating of the biomolecules. Various hypotheses have been proposed to describe the mechanism of microbial synthesis of SeNPs. It is primarily a two-step reduction process from SeO4 (-2) to SeO3 (-2) to insoluble elemental selenium (Se(0)) catalyzed by selenate and selenite reductases. Phenazine-1-carboxylic acid and glutathione are involved in selenite reduction. Se factor A (SefA) and metalloid reductase Rar A present on the surface of SeNPs confer stability to the nanoparticles. SeNPs act as potent chemopreventive and chemotherapeutic agents. Conjugation with antibiotics enhances their anticancer efficacy. These also have applications in nanobiosensors and environmental remediation.

  9. Selenium metabolite levels in human urine after dosing selenium in different chemical forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasunuma, Ryoichi; Tsuda, Morizo; Ogawa, Tadao

    1993-11-01

    It has been well known that selenium in marine fish such as tuna and swordfish protects the toxicity of methylmercury in vivo. The protective potency might depend on the chemical forms of selenium in the meat of marine fish sebastes and sperm whale. Little has been revealed, however, on the chemical forms of selenium in the meat of these animals or the selenium metabolites in urine, because the amount of the element is very scarce. Urine is the major excretory route for selenium. The chemical forms of urinary selenium may reflect the metabolism of the element. We have developed methodologymore » for analysis of selenium-containing components in human urine. Using this method, we have observed the time courses of excretory levels of urinary selenium components after a single dose of selenium as selenious acid, selenomethionine, trimethylselenonium ion or tuna meat. 14 refs., 6 figs., 1 tab.« less

  10. [Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].

    PubMed

    Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu

    2004-03-01

    To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.

  11. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent biotechnological advances in the management of these selenium-laden wastewaters. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cathodic electrodeposition of amorphous elemental selenium from an air- and water-stable ionic liquid.

    PubMed

    Redman, Daniel W; Murugesan, Sankaran; Stevenson, Keith J

    2014-01-14

    Electrodeposition of selenium from 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide is reported. In situ UV-vis spectroelectrochemistry was used to investigate the reduction of diethyl selenite to form elemental selenium thin films from an ionic liquid-acetonitrile medium. Three reduction peaks of diethyl selenite were observed via cyclic voltammetry and are attributed to the stepwise reduction of the selenium precursor adsorbed on the electrode. The electrodeposition mechanism is influenced by both potential and time. Electrodeposition at -1.7 V vs Pt QRE resulted in the deposition of elemental selenium nanoparticles that with time coalesced to form a continuous film. At reduction potentials more negative than -1.7 V the morphology of the deposit changed significantly due to the reduction of elemental Se to Se(2-). In addition, p-type photoconductivity of the films was observed during the spectroelectrochemical measurements. X-ray diffraction and Raman spectroscopy confirmed that the deposited selenium films were amorphous. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy confirm the films consisted of pure selenium with minor residual contamination from the precursor and ionic liquid.

  13. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  14. [Erythremia: the activity of erythrocyte antioxidant enzymes and the association with iron deficiency].

    PubMed

    Petukhov, V I; Kumerova, A O; Letse, A G; Silova, A A; Shkesters, A P; Krishchuna, M A; Mironova, N A

    1997-01-01

    Concentration of malonic dialdehyde (MDA) and activity of antioxidant enzymes G-6-PD, glutation peroxidase (GP), glutation reductase, catalase, superoxide dismutase were measured in red cells of patients with polycythemia vera. Plasmic ions Fe3+ were estimated by means of electron-paramagnetic resonance. MDA concentration and antioxidant enzymes (except GP) in polycythemia red cells were found increased, while the activity of selenium-dependent GP was reduced, the inhibition being greatest in severe iron deficiency. It is suggested that GP activity in red cells depends on both selenium levels in the body and concentrations of non-hematic iron.

  15. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    PubMed Central

    Zhang, Jinsong; Taylor, Ethan W; Wan, Xiaochun; Peng, Dungeng

    2012-01-01

    Background Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods. PMID:22359458

  16. Effect of forms of selenium on the accumulation of selenium, sulfur, and forms of nitrogen and phosphorus in forage cowpea (Vigna sinensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Singh, N.

    1979-05-01

    The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less

  17. Fundamental Studies on Donor-acceptor Conjugated Polymers Containing 'Heavy' Group 14 and Group 16 Elements

    NASA Astrophysics Data System (ADS)

    Gibson, Gregory Laird

    One advantage of conjugated polymers as organic materials is that their properties may be readily tuned through covalent modifications. This thesis presents studies on the structure-property relationships resulting from single- and double-atom substitutions on an alternating donor-acceptor conjugated polymer. Specifically, single selenium and tellurium atoms have been incorporated into the acceptor monomer in place of sulfur; silicon and germanium atoms have been substituted in place of carbon at the donor monomer bridge position. The carbon-donor/ tellurium-acceptor polymer was synthesized by a post-polymerization reaction sequence and demonstrated the utility of heavy group 16 atoms to red shift a polymer absorption spectrum. Density functional theory calculations point to a new explanation for this result invoking the lower heavy atom ionization energy and reduced aromaticity of acceptor monomers containing selenium and tellurium compared to sulfur. Absorption and emission experiments demonstrate that both silicon and germanium substitutions in the donor slightly blue shift the polymer absorption spectrum. Polymers containing sulfur in the acceptor are the strongest light absorbers of all polymers studied here. Molecular weight and phenyl end capping studies show that molecular weight appears to affect polymer absorption to the greatest degree in a medium molecular weight regime and that these effects have a significant aggregation component. Solar cell devices containing either the silicon- or germanium-donor/selenium-acceptor polymer display improved red light harvesting or hole mobility relative to their structural analogues. Overall, these results clarify the effects of single atom substitution on donor-acceptor polymers and aid in the future design of polymers containing heavy atoms.

  18. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    PubMed

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  19. Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chandramohan, Subburaman; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2018-02-01

    Selenium is one of the essential elements involved in antioxidative and antiinflammatory effects in human body. By naturally, selenium ions are metabolised and converted into nano selenium. Now a days there is an increasing attention on applications of nanoparticles in therapeutic field. In the present study Bacillus subtilis was used to convert sodium selenite to SeNPs. The synthesized SeNPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X ray spectroscopy (EDX). The presence of SeNPs was confirmed by the formation of red colour. The bands were sharp with broad absorption peaks at 3562 cm-1 and 1678-1 cm in FTIR which showed that the bacterial proteins were responsible for the reduction of sodium selenite to SeNPs. The average size of the SeNPs was 334 nm and were spherical in shape with uniform distribution. The XRD data confirmed that SeNPs were of amorphous in nature. The zeta potential of SeNPs was negative in charge which indicated high stability. In the present study zebrafish embryos were used to study the toxicity of SeNPs and the results showed that the concentration beyond 10 μg ml-1 leads to toxic effects in embryos/hatchlings. The lesser concentration of SeNPs can be useful in various biomedical applications.

  20. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  1. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review.

    PubMed

    Gharipour, Mojgan; Sadeghi, Masoumeh; Behmanesh, Mehrdad; Salehi, Mansour; Nezafati, Pouya; Gharpour, Amin

    2017-10-23

      Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.

  2. Selenium biomineralization for biotechnological applications.

    PubMed

    Nancharaiah, Yarlagadda V; Lens, Piet N L

    2015-06-01

    Selenium (Se) is not only a strategic element in high-tech electronics and an essential trace element in living organisms, but also a potential toxin with low threshold concentrations. Environmental biotechnological applications using bacterial biomineralization have the potential not only to remove selenium from contaminated waters, but also to sequester it in a reusable form. Selenium biomineralization has been observed in phylogenetically diverse microorganisms isolated from pristine and contaminated environments, yet it is one of the most poorly understood biogeochemical processes. Microbial respiration of selenium is unique because the microbial cells are presented with both soluble (SeO(4)(2-) and SeO(3)(2-)) and insoluble (Se(0)) forms of selenium as terminal electron acceptor. Here, we highlight selenium biomineralization and the potential biotechnological uses for it in bioremediation and wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  4. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    USGS Publications Warehouse

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  5. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  6. Arsenic- and selenium-induced changes in spectral reflectance and morphology of soybean plants

    USGS Publications Warehouse

    Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S.

    1989-01-01

    Soybean (Glycine max) plants were grown in hydroponic solutions treated with high concentrations of either arsenic or selenium. Spectral reflectance changes in arsenic-dosed plants included a shift to shorter wavelengths in the long-wavelength edge of the chlorophyll absorption band centered at 680 nm (the red edge) and higher reflectance in the 550-650 nm region. These results are consistent with vegetation reflectance anomalies observed in previous greenhouse experiments and in airborne radiometer studies. The selenium-dosed plants contrast, exhibited a shift to longer wavelengths of the red edge and lower reflectance between 550 nm and 650 wh when compared with control plants. Morphological effects of arsenic uptake included lower overall biomass, stunted and discolored roots, and smaller leaves oriented more vertically than leaves of control plants. Selenium-dosed plants also displayed morphological changes, but root and leaf biomass were less affected than were those of arsenic-dosed plants when compared to control plants. ?? 1989.

  7. The facts and controversies about selenium.

    PubMed

    Dodig, Slavica; Cepelak, Ivana

    2004-12-01

    Selenium is a trace element, essential in small amounts, but it can be toxic in larger amounts. Levels in the body are mainly dependent on the amount of selenium in the diet, which is a function of the selenium content of the soil. Humans and animals require selenium for normal functioning of more than about 30 known selenoproteins, of which approximately 15 have been purified to allow characterisation of their biological functions. Selenoproteins are comprised of four glutathione peroxidases, three iodothyronine deiodinases, three thioredoxin reductases, selenoprotein P, selenoprotein W and selenophosphate synthetase. Selenium is essential for normal functioning of the immune system and thyroid gland, making selenium an essential element for normal development, growth, metabolism, and defense of the body. Supportive function of selenium in health and disease (male infertility, viral infections, including HIV, cancer, cardiovascular and autoimmune diseases) is documented in great number of clinical examinations. A great number of studies confirm that selenium supplementation plays a preventive and therapeutical role in different diseases. Definitive evidence regarding the preventive and therapeutical role of selenium as well as the exact mechanism of its action should be investigated in further studies. Investigations in Croatia indicate a possibility of inadequate selenium status of people in the area.

  8. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota

    PubMed Central

    Kasaikina, Marina V.; Kravtsova, Marina A.; Lee, Byung Cheon; Seravalli, Javier; Peterson, Daniel A.; Walter, Jens; Legge, Ryan; Benson, Andrew K.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Colonization of the gastrointestinal tract and composition of the microbiota may be influenced by components of the diet, including trace elements. To understand how selenium regulates the intestinal microflora, we used high-throughput sequencing to examine the composition of gut microbiota of mice maintained on selenium-deficient, selenium-sufficient, and selenium-enriched diets. The microbiota diversity increased as a result of selenium in the diet. Specific phylotypes showed differential effects of selenium, even within a genus, implying that selenium had unique effects across microbial taxa. Conventionalized germ-free mice subjected to selenium diets gave similar results and showed an increased diversity of the bacterial population in animals fed with higher levels of selenium. Germ-free mice fed selenium diets modified their selenoproteome expression similar to control mice but showed higher levels and activity of glutathione peroxidase 1 and methionine-R-sulfoxide reductase 1 in the liver, suggesting partial sequestration of selenium by the gut microorganisms, limiting its availability for the host. These changes in the selenium status were independent of the levels of other trace elements. The data show that dietary selenium affects both composition of the intestinal microflora and colonization of the gastrointestinal tract, which, in turn, influence the host selenium status and selenoproteome expression.—Kasaikina, M. V., Kravtsova, M. A., Lee, B. C., Seravalli, J., Peterson, D. A., Walter, J., Legge, R., Benson, A. K., Hatfield, D. L., Gladyshev, V. N. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. PMID:21493887

  9. Selenium: Element of Contrasts

    ERIC Educational Resources Information Center

    Goldsmith, Robert H.; And Others

    1978-01-01

    Reports on recent findings concerning the impact of selenium on human and animal health. In its various oxidation states, different concentrations of selenium may be helpful or detrimental to human health. (CP)

  10. Selenium and Human Health: Witnessing a Copernican Revolution?

    PubMed

    Jablonska, Ewa; Vinceti, Marco

    2015-01-01

    In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.

  11. RED MEAT, MICRONUTRIENTS AND ORAL SQUAMOUS CELL CARCINOMA OF ARGENTINE ADULT PATIENTS.

    PubMed

    Secchi, Dante Gustavo; Aballay, Laura Rosana; Galíndez, María Fernanda; Piccini, Daniel; Lanfranchi, Héctor; Brunotto, Mabel

    2015-09-01

    the identification of risk group of oral cancer allows reducing the typical morbidity and mortality rates of this pathology. it was analyzed the role of red meat, macronutrients and micronutrients on Oral Squamous Cell carcinoma (OSCC) in a case-control study carried out in Cordoba, Argentina. case-control study 3:1, both genders, aged 24-80 years. Dietary information was collected using a quali-quantitative food frequency questionnaire. The logistic regression was applied for assessing the association among case/control status and daily red meat/macronutrient/ micronutrients/energy intake. micronutrients and minerals in the diet that showed high significant median values of common consumption in cases relative to controls were iron, phosphorus, vitamins B1, B5, B6, E and K and selenium. The association measurement estimated by logistic regression was showed that a significant association between red meat, fat, daily energy, phosphorous, vitamin B5, vitamin E, and selenium intake and OSCC presence. a high intake of fats, phosphorus, vitamin B5, vitamin E, and selenium intake and red meat appears to be related to the presence OSCC in Cordoba, Argentina. In relation to red meat consumption and risk of OSCC, the future research should center of attention on reducing the complexity of diet and disease relationships and reducing variability in intake data by standardizing of criteria in order to implement simple strategies in public health for recognizing risk groups of OSCC. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. Reduced growth and survival of larval razorback sucker fed selenium-laden zooplankton

    USGS Publications Warehouse

    Hamilton, Steven J.; Buhl, Kevin J.; Bullard, Fern A.; McDonald, Susan

    2005-01-01

    Four groups of larval razorback sucker, an endangered fish, were exposed to selenium-laden zooplankton and survival, growth, and whole-body residues were measured. Studies were conducted with 5, 10, 24, and 28-day-old larvae fed zooplankton collected from six sites adjacent to the Green River, Utah. Water where zooplankton were collected had selenium concentrations ranging from <0.4 to 78 μg/L, and concentrations in zooplankton ranged from 2.3 to 91 μg/g dry weight. Static renewal tests were conducted for 20 to 25 days using reference water with selenium concentrations of <1.1 μg/L. In all studies, 80–100% mortality occurred in 15–20 days. In the 28-day-old larvae, fish weight was significantly reduced 25% in larvae fed zooplankton containing 12 μg/g selenium. Whole-body concentrations of selenium ranged from 3.7 to 14.3 μg/g in fish fed zooplankton from the reference site (Sheppard Bottom pond 1) up to 94 μg/g in fish fed zooplankton from North Roadside Pond. Limited information prior to the studies suggested that the Sheppard pond 1 site was relatively clean and suitable as a reference treatment; however, the nearly complete mortality of larvae and elevated concentrations of selenium in larvae and selenium and other elements in zooplankton indicated that this site was contaminated with selenium and other elements. Selenium concentrations in whole-body larvae and in zooplankton from all sites were close to or greater than toxic thresholds where adverse effects occur in fish. Delayed mortality occurred in larvae fed the two highest selenium concentrations in zooplankton and was thought due to an interaction with other elements.

  13. Selenium-Enriched Foods Are More Effective at Increasing Glutathione Peroxidase (GPx) Activity Compared with Selenomethionine: A Meta-Analysis

    PubMed Central

    Bermingham, Emma N.; Hesketh, John E.; Sinclair, Bruce R.; Koolaard, John P.; Roy, Nicole C.

    2014-01-01

    Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p < 0.001). There were differences between tissues on the effects of selenium supplementation on GPx activity (p < 0.001); however, there was no evidence in the data of differences between animal species (p = 0.95). The interactions between dose and tissue, animal species and form were significant (p < 0.001). Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity. PMID:25268836

  14. Toxicity of selenium and other elements in food organisms to razorback sucker larvae

    USGS Publications Warehouse

    Hamilton, Steven J.; Holley, Kathy M.; Buhl, Kevin J.; Bullard, Fern A.; Weston, L. Ken; McDonald, Susan F.

    2002-01-01

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4×4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 μg/l, in reference food (brine shrimp) was 3.2 μg/g, at Horsethief was 1.6 μg/l in water and 6.0 μg/g in zooplankton, at Adobe Creek was 3.4 μg/l in water and 32 μg/g in zooplankton, and at Walter Walker was 13 μg/l in water and 52 μg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of ≥4.6 μg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  15. Toxicity of selenium and other elements in food organisms to razorback sucker larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2002-09-24

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4 x 4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 microg/l, in reference food (brine shrimp) was 3.2 microg/g, at Horsethief was 1.6 microg/l in water and 6.0 microg/g in zooplankton, at Adobe Creek was 3.4 microg/l in water and 32 microg/g in zooplankton, and at Walter Walker was 13 microg/l in water and 52 microg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of >or=4.6 microg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  16. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  17. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  18. Inorganic Contaminants, Nutrient Reserves and Molt Intensity in Autumn Migrant Red-Necked Grebes (Podiceps grisegena) at Georgian Bay.

    PubMed

    Holman, Katie L; Schummer, Michael L; Petrie, Scott A; Chen, Yu-Wei; Belzile, Nelson

    2015-11-01

    Red-necked grebes (Podiceps grisegena) are piscivorous waterbirds that breed on freshwater lakes in northwestern Canada and stop-over at the Great Lakes during autumn migration to molt feathers and replenish lipid and protein reserves. The objectives of this study were to (1) describe concentrations of, and correlations among, inorganic contaminants in a sample of autumn migrant red-necked grebes from the Great Lakes, (2) compare concentrations of inorganic contaminants to those in autumn migrant common loons from Schummer et al. (Arch Environ Contam Toxicol 62:704, 2011a), (3) evaluate if the inorganic elements are negatively associated with lipid and protein reserves, and (4) determine if nutrient reserves and molt intensity were correlated. None of the 14 contaminants analyzed were above threshold levels known to cause acute health problems in piscivorous birds. Body masses of plucked birds were within the normal reported range. Lipid reserves varied positively with hepatic concentrations of arsenic, copper, iron, nickel, lead, and selenium and negatively with mercury and magnesium. Protein reserves variety negatively with hepatic concentrations of arsenic, calcium, nickel, lead, and zinc and positively with aluminum, cadmium, and iron. A negative correlation was observed between chest molt and lipid reserves but not between nutrient reserves and other feather tracts. The relationships between lipid reserves and both mercury and selenium were consistent with current research on other piscivorous waterbirds at the Great Lakes and justify continued work to determine interactions of these contaminants in waterbirds that breed, stage, and winter in the region.

  19. Microbial Transformations of Selenium

    PubMed Central

    Doran, J. W.; Alexander, M.

    1977-01-01

    Resting cell suspensions of a strain of Corynebacterium isolated from soil formed dimethyl selenide from selenate, selenite, elemental selenium, selenomethionine, selenocystine, and methaneseleninate. Extracts of the bacterium catalyzed the production of dimethyl selenide from selenite, elemental selenium, and methaneseleninate, and methylation of the inorganic Se compounds was enhanced by S-adenosylmethionine. Neither trimethylselenonium nor methaneselenonate was metabolized by the Corynebacterium. Resting cell suspensions of a methionine-utilizing pseudomonad converted selenomethionine to dimethyl diselenide. Six of 10 microorganisms able to grow on cystine used selenocystine as a sole source of carbon and formed elemental selenium, and one of the isolates, a pseudomonad, was found also to produce selenide. Soil enrichments converted trimethylselenonium to dimethyl selenide. Bacteria capable of utilizing trimethylselenonium, dimethyl selenide, and dimethyl diselenide as carbon sources were isolated from soil. PMID:16345188

  20. The role of selenium in thyroid gland pathophysiology.

    PubMed

    Stuss, Michał; Michalska-Kasiczak, Marta; Sewerynek, Ewa

    2017-01-01

    It is now assumed that proper functioning of the thyroid gland (TG), beside iodine, requires also a number of elements, including selenium, iron, zinc, copper, and calcium. In many cases, only an adequate supply of one of these microelements (e.g. iodine) may reveal symptoms resulting from deficits of other microelements (e.g. iron or selenium). Selenium is accounted to the trace elements of key importance for homeostasis of the human system, in particular, for the proper functioning of the immune system and the TG. Results of epidemiological studies have demonstrated that selenium deficit may affect as many as one billion people in many countries all over the world. A proper sequence of particular supplementations is also worth emphasising for the significant correlations among the supplemented microelements. For example, it has been demonstrated that an excessive supplementation of selenium may enhance the effects of iodine deficit in endemic regions, while proper supplementation of selenium in studied animals may alleviate the consequences of iodine excess, preventing destructive-inflammatory lesions in the TG. This paper is a summary of the current knowledge on the role of selenium in the functionality of the TG.

  1. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinouski, M.; Kehr, S.; Finney, L.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts ofmore » the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.« less

  2. Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Milliard, S.P.

    1988-01-01

    Samples of shallow groundwater that underlies much of the irrigated area in the western San Joaquin Valley, CA, were analyzed for various major ions and trace elements, including selenium. Concentrations of the major ions generally were similar for groundwater collected in the two primary geologic zones - the alluvial fan and basin trough. Selenium concentrations are significantly (α = 0.05) higher in the groundwater of the alluvial-fan zone than in that of the basin-trough zone. The concentrations of oxyanion trace elements were significantly correlated (α = 0.05) with groundwater salinity, but the correlations between selenium and salinity and between molybdenum and salinity were significantly different (α = 0.05) in the alluvial-fan geologic zone compared with those in the basin-trough geologic zone. The evidence suggests that the main factors affecting selenium concentrations in the shallow groundwater are the degree of groundwater salinity and the geologic source of the alluvial soil material.

  3. Selenium

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Selenium is a naturally occurring element that is present in some soils. Unlike mercury and lead, which also are natural environmental components, selenium is an essential nutrient in living systems. The amount of dietary selenium required by animals depends upon many factors, including the availability of certain other metals such as zinc and copper, as well as vitamin E and other nutrients. Muscle damage results if dietary selenium is deficient, but dietary excess can be toxic.

  4. Microbial transformation of elements: the case of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.; Basu, P.; Oremland, R.

    2002-01-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  5. Microbial transformation of elements: the case of arsenic and selenium.

    PubMed

    Stolz, J F; Basu, P; Oremland, R S

    2002-12-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  6. Recycling of high purity selenium from CIGS solar cell waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition tomore » the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.« less

  7. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    PubMed Central

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  8. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design.

    PubMed

    Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domínguez-Álvarez, Enrique; Kieć-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus

    2015-07-31

    Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.

  9. Geochemistry of soils and shallow ground water, with emphasis on arsenic and selenium, in part of the Garrison Diversion Unit, North Dakota, 1985-87

    USGS Publications Warehouse

    Goolsby, D.A.; Severson, R.C.; Wilson, S.A.; Webber, Kurt

    1989-01-01

    The Garrison Diversion Unit is being constructed to transfer water from the Missouri River (Lake Sakakawea) to areas in east-central and southeastern North Dakota for expanded irrigation of agricultural lands. During initial investigations of irrigation return flows in 1969-76, the potential effects of toxic elements were considered, and the U.S. Bureau of Reclamation concluded these elements would have no adverse effects on streams receiving return flows. After the development of problems associated with selenium in irrigation return flows in the western San Joaquin Valley, Calif., in 1985, the U.S. Bureau of Reclamation initiated additional studies, including an investigation conducted in cooperation with the U.S. Geological Survey, to assist in collecting and evaluating trace-element data. Also, in 1986, with the passage of the Garrison Diversion Unit Reformulation Act, Congress mandated that soil surveys be conducted to determine if there are "*** soil characteristics which might result in toxic or hazardous irrigation return flows."In order to address this issue, an investigation was conducted during 1995-87 by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation to determine the occurrence and distribution of arsenic, selenium, and other trace elements in the soils of six potential irrigation areas along the Garrison Diversion Unit route and in the James River basin. A total of 165 soil samples were collected and analyzed for total concentrations of as many as 42 elements, including arsenic and selenium. In addition, 81 of the samples were analyzed for water-extractable concentrations of 14 elements, including arsenic and selenium, to aid in determining the extent to which they might be mobilized by the irrigation water. In a detailed phase of the investigation, 376 water samples were collected in one of the six potential irrigation areas, the west Oakes irrigation area. Most of these samples were analyzed for arsenic, selenium, and as many as 28 other elements.Results of the investigation indicate that soils in the potential irrigation areas contain small concentrations of arsenic, selenium, and other trace elements. The geometric mean concentrations of total arsenic and selenium were 4.15 and 0.13 milligrams per kilogram, respectively, which are considerably smaller than those measured in the western San Joaquin Valley, Calif., and soils from other areas in the western United States. Water-extractable concentrations of arsenic and selenium, determined on 1:5 soil to water extractions, generally were less than 10 percent of the total concentrations. The geometric mean water-extractable concentrations for both elements were 0.02 milligram per kilogram or less.The median and maximum concentrations of all constituents and properties indicative of irrigation drainage were tens to hundreds of times smaller in the Oakes test area drains than in western San Joaquin Valley drains. The maximum arsenic concentration in ground-water samples was 44 micrograms per liter, and the median concentration was 4 micrograms per liter. The maximum concentration in drain samples was 11 micrograms per liter, and the median concentration was 3 micrograms per liter.Only 22 percent of the water samples collected from wells in the Oakes test area contained detectable concentrations (1 microgram per liter or more) of selenium. However, selenium was detected in 63 percent of the samples collected from sites on drains. The greater incidence of detection of selenium in the drain samples is interpreted as an effect of the more oxidizing environment of the drains, which are about 8 feet below land surface near the top of the water table. The median selenium concentration in the drain samples, however, was only 1 microgram per liter, and the maximum concentration in 63 drain samples was 4 micrograms per liter. For comparison, the median selenium concentrations reported for drains in the western San Joaquin Valley, Calif., ranged from 84 to 320 micrograms per liter. Mater from two observation wells had the largest selenium concentrations (8 and 9 micrograms per liter) measured during the investigation. These were the only two samples that exceeded any of the water-quality regulations, standards, or criteria for selenium. Mercury and boron were the only other trace elements that exceeded standards and criteria. The median concentration of mercury was less than 0.1 microgram per liter, and the maximum concentration was 0.8 microgram per liter. The chronic freshwater-aquatic-life criterion for mercury (0.012 microgram per liter) is about 10 times less than the laboratory detection limit and is derived from bioconcentration factors based on methylmercury. Two boron samples exceeded the irrigation criteria of 750 micrograms per liter. Comparisons with criteria and standards indicate that the concentrations of trace elements determined in samples from wells and drains in the Oakes test area during this investigation should not adversely affect human and aquatic life or irrigated crops. The data collected indicate that the soils and ground water in the Garrison Diversion Unit contain small concentrations of trace elements, including arsenic and selenium. Based on a detailed study of soils and ground water in the west Oakes irrigation area, however, there is no evidence that expanded irrigation will mobilize these elements in concentrations large enough to adversely affect aquatic life in the James River ecosystem, based on current regulations, standards, and criteria. Data are not currently available to make definitive statements about selenium concentrations in ground water in Garrison Diversion Unit irrigation areas other than the west Oakes Irrigation area. Data available on total and water-extractable selenium concentrations in soils t however, indicate that concentrations in ground water would be similar to those determined in the west Oakes irrigation area. Plans have been developed to sample ground water in the additional areas.

  10. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main streammore » cigarette smoke, obtained by destructive neutron activation analysis.« less

  11. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less

  12. [FEATURES OF THE CONTENT OF MOVABLE FORMS OF HEAVY METALS AND SELENIUM IN SOILS OF THE YAROSLAVL REGION].

    PubMed

    Bakaeva, E A; Eremeyshvili, A V

    2016-01-01

    With the use of the method of inversion voltammetry there was analyzed the content of movableforms of trace elements: (selenium, zinc, copper lead, cadmium) in soils in the Yaroslavl district of the Yaroslavl region, and also content of zinc, copper lead, cadmium in soils and snow cover in the city of Yaroslavl. According to values of concentrations of movable compounds in soils determined trace elements can be ranked into the following row: zinc > lead > copper > selenium > cadmium. There was revealed insufficient if compared with literature data concentrations, content of movable compounds of selenium, copper and zinc in examined explored soils. The maximal concentrations of lead are revealed in the close proximity to both the city of Yaroslavl and large highways of the city. It indicates to the anthropogenic pollution of soils by this element.

  13. [Selenium: the physiopathological and clinical implications].

    PubMed

    Tato Rocha, R E; Cárdenas Viedma, E; Herrero Huerta, E

    1994-09-01

    Selenium is an ultra-trace element widely distributed in the environment, although its consumption varies significantly depending on the region. Its daily requirements range between 50 and 200 micrograms/day (or a minimum of 1 microgram/kg/day), which are supplied by animal and vegetal foods. Its essentiality in human nutrition is derived from its antioxidative action, being a part of the glutation-peroxidase system (GPx). Thus, it is a protective agent against the harmful action of free radicals. Determination of the selenium-dependent GPx activity seems to be the best index for the assessment of nutritional status. A deficit of selenium will result in a decrease of the GPx activity and, therefore, in a increase of cell damage which cannot be counter-balanced by other antioxidative systems. Diet has a relevant role for the maintenance of selenium status. Deficiency conditions may appear in different population groups when the selenium content in the diet is inadequate. Toxicity states are rare, but some diseases are sensitive to this element, which is mainly involved in cancer prevention.

  14. Evaluation of selenium in dietary supplements using elemental speciation.

    PubMed

    Kubachka, Kevin M; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A; Falconer, Travis M; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2017-03-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. Published by Elsevier Ltd.

  15. Evaluation of selenium in dietary supplements using elemental speciation

    PubMed Central

    Kubachka, Kevin M.; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A.; Falconer, Travis M.; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2016-01-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common “seleno-amino acids” and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. PMID:27719915

  16. Selenium and selenocysteine: roles in cancer, health and development

    PubMed Central

    Hatfield, Dolph L.; Tsuji, Petra A.; Carlson, Bradley A.; Gladyshev, Vadim N.

    2014-01-01

    The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid 1990s, selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace elucidating its many roles in health, development, and cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions. PMID:24485058

  17. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    PubMed Central

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  19. Selenium exposure and depressive symptoms: the Coronary Artery Risk Development in Young Adults Trace Element Study

    PubMed Central

    Colangelo, Laura A; He, Ka; Whooley, Mary A; Daviglus, Martha L.; Morris, Steven; Liu, Kiang

    2014-01-01

    Selenium is an essential trace element important to neurotransmission, but toxic at high levels. Some studies suggest beneficial effects on mood. We assessed the association of selenium exposure with presence of depressive symptoms. Selenium exposure was measured in toenail samples collected in 1987 from 3,735 US participants (age 20–32 years) and depressive symptoms assessed in 1990, 1995, 2000, 2005, and 2010 using the Center for Epidemiologic Studies Depression Scale (CES-D). Binary and polytomous logistic regression models were used to assess the relation of log2(selenium) and selenium quintiles with presence of depressive symptoms (CES-D score ≥ 27 or on antidepressant medication). Relative to selenium quintile 1, the adjusted odds ratio (OR) for having depressive symptoms in 1990 for quintile 5 was 1.59 (95% CI: 1.01, 2.51) and a unit increase in log2(selenium), which represents a doubling of the selenium level, was associated with an OR=2.03 (95% CI: 1.12, 3.70). When examining 1, 2 or 3+ exams vs no exams with symptoms, the OR for quintile 5 was 1.73 (1.04, 2.89) for 3+ exams and for one exam and two exams, there were no associations. In a generalized estimating equations longitudinal model, a doubling of the selenium level was associated with a 56% higher odds of having depressive symptoms at an exam. Contrary to previously reported findings related to mood, higher level of selenium exposure was associated with presence of elevated depressive symptoms. More research is needed to elucidate the role of selenium in depressive disorders. PMID:24560993

  20. Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758).

    PubMed

    Hoo Fung, Leslie A; Antoine, Johann M R; Grant, Charles N; Buddo, Dayne St A

    2013-10-01

    Twenty-five samples of Pterois volitans caught in Jamaican waters were analyzed for 25 essential, non-essential and toxic elements using Graphite Furnace Atomic Absorption Spectrophotometry (GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Instrumental Neutron Activation Analysis (INAA). The mean values for calcium (355 mg/kg), copper (107 μg/kg), iron (0.81 mg/kg), potassium (3481 mg/kg), magnesium (322 mg/kg), manganese (0.04 mg/kg), selenium (0.47 mg/kg), sodium (700 mg/kg) and zinc (4.46 mg/kg) were used to estimate dietary intake. The percentage contribution to provisional tolerable weekly intake for a 70 kg male and a 65 kg female were also estimated for the toxic elements arsenic (1.28% M, 1.38% F), cadmium (0.26% M. 0.28% F), mercury (3.85% M, 4.15% F) and lead (0.17% M, 0.18% F). To further assess the risk of mercury toxicity and the role of mitigation provided by selenium, selenium-mercury molar ratios were calculated for all samples. All samples were shown to have a molar excess of selenium. In addition the suggested selenium health benefit value was calculated, and was positive for all samples. It was concluded that P. volitans appears to contribute modestly to mineral and trace element nutrition, while not being a significant contributor to dietary exposure of toxic elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles.

    PubMed

    Jain, Rohan; Jordan, Norbert; Weiss, Stephan; Foerstendorf, Harald; Heim, Karsten; Kacker, Rohit; Hübner, René; Kramer, Herman; van Hullebusch, Eric D; Farges, François; Lens, Piet N L

    2015-02-03

    The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  2. Content and distribution of arsenic, bismuth, lithium and selenium in mineral and synthetic fertilizers and their contribution to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senesi, N.; Polemio, M.; Lorusso, L.

    1979-01-01

    Concentrations of arsenic, bismuth, lithium and selenium were determined by atomic absorption spectrophotometry in 32 samples of commercial fertilizers from various manufacturers and distributors. Arsenic and lithium were detected in all investigated samples, bismuth in 50% of samples and selenium only in two samples. Arsenic content ranged from 2 to 321 ppM; lithium varied from 5 to 0.1 ppM; bismuth was always lower than 0.5 ppM; selenium was detectable at the levels of 10 and 13 ppM. Fertilizers made from rock phosphates contained trace element amounts generally higher than those derived from rock carbonates, synthetic nitrogen fertilizers and potassium sulphate.more » Additions of trace elements from fertilizers applied at common rates to cultivated soils are tabulated and discussed on the basis of the natural soil reserves and toxicity levels for plants. Whereas applications of bismuth resulted always very low to influence the usual soil content and plant uptakes and selenium was only rarely present in fertilizers, lithium and moreover arsenic additions by fertilizers could influence the trace element status in soil, overcoming occasionally the toxicity levels for more sensitive crops.« less

  3. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    PubMed

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  4. Biomagnification of mercury and its antagonistic interaction with selenium in yellowfin tuna Thunnus albacares in the trophic web of Baja California Sur, Mexico.

    PubMed

    Ordiano-Flores, Alfredo; Rosíles-Martínez, Rene; Galván-Magaña, Felipe

    2012-12-01

    Mercury and selenium concentrations were determined in muscle of 37 yellowfin tuna (Thunnus albacares) captured aboard of Mexican purse-seiners boats off western coast of Baja California Sur, between Punta Eugenia and Cabo Falso, from October to December 2006. Also, its prey (mainly, jumbo squid Dosidicus gigas and pelagic red crab Pleuroncodes planipes) were analyzed from the stomach contents. All the mercury values obtained were lower that mercury content recommended by standard legal limits for seafood adopted by Mexican norms (typically 0.5-1.0μg g(-1)). Mercury concentrations vary between 0.06 and 0.51μg g(-1) in yellowfin tuna, and from 0.01 to 0.20μg g(-1) in its prey, suggesting that mercury can accumulate in prey tissues and that of their predator. Biomagnification factors (BMF) between predator-prey associations were calculated. The BMFs were >1, indicating that mercury biomagnifies along the food web of yellowfin tuna. In all species studied there was a molar excess of selenium over mercury. The rank order of mean selenium/mercury molar ratios was for pufferfish (42.62)> diamond squid (15.09)>yellowfin tuna (10.29)>pelagic red crab (10.05)>panama lightfish (9.54)> jumbo squid (8.91). The selenium health benefit value (Se-HBV) was calculated to have an improved understanding of the health benefits and risk of fish consumption. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions.

    PubMed

    Staicu, L C; Ackerson, C J; Cornelis, P; Ye, L; Berendsen, R L; Hunter, W J; Noblitt, S D; Henry, C S; Cappa, J J; Montenieri, R L; Wong, A O; Musilova, L; Sura-de Jong, M; van Hullebusch, E D; Lens, P N L; Reynolds, R J B; Pilon-Smits, E A H

    2015-08-01

    To identify bacteria with high selenium tolerance and reduction capacity for bioremediation of wastewater and nanoselenium particle production. A bacterial endophyte was isolated from the selenium hyperaccumulator Stanleya pinnata (Brassicaceae) growing on seleniferous soils in Colorado, USA. Based on fatty acid methyl ester analysis and multi-locus sequence analysis (MLSA) using 16S rRNA, gyrB, rpoB and rpoD genes, the isolate was identified as a subspecies of Pseudomonas moraviensis (97.3% nucleotide identity) and named P. moraviensis stanleyae. The isolate exhibited extreme tolerance to SeO3(2-) (up to 120 mmol l(-1)) and SeO4(2-) (>150 mmol l(-1)). Selenium oxyanion removal from growth medium was measured by microchip capillary electrophoresis (detection limit 95 nmol l(-1) for SeO3(2-) and 13 nmol l(-1) for SeO4(2-)). Within 48 h, P. moraviensis stanleyae aerobically reduced SeO3(2-) to red Se(0) from 10 mmol l(-1) to below the detection limit (removal rate 0.27 mmol h(-1) at 30 °C); anaerobic SeO3(2-) removal was slower. No SeO4(2-) removal was observed. Pseudomonas moraviensis stanleyae stimulated the growth of crop species Brassica juncea by 70% with no significant effect on Se accumulation. Pseudomonas moraviensis stanleyae can tolerate extreme levels of selenate and selenite and can deplete high levels of selenite under aerobic and anaerobic conditions. Pseudomonas moraviensis subsp. stanleyae may be useful for stimulating plant growth and for the treatment of Se-laden wastewater. © 2015 The Society for Applied Microbiology.

  6. Overexpression of Endogenous Anti-Oxidants with Selenium Supplementation Protects Trophoblast Cells from Reactive Oxygen Species-Induced Apoptosis in a Bcl-2-Dependent Manner.

    PubMed

    Khera, Alisha; Vanderlelie, Jessica J; Holland, Olivia; Perkins, Anthony V

    2017-06-01

    The human placenta provides life support for the developing foetus, and a healthy placenta is a prerequisite to a healthy start to life. Placental tissue is subject to oxidative stress which can lead to pathological conditions of pregnancy such as preeclampsia, preterm labour and intrauterine growth restriction. Up-regulation of endogenous anti-oxidants may alleviate placental oxidative stress and provide a therapy for these complications of pregnancy. In this study, selenium supplementation, as inorganic sodium selenite (NaSel) or organic selenomethionine (SeMet), was used to increase the protein production and cellular activity of the important redox active proteins glutathione peroxidase (GPx) and thioredoxin reductase (Thx-Red). Placental trophoblast cell lines, BeWo, JEG-3 and Swan-71, were cultured in various concentrations of NaSel or SeMet for 24 h and cell extracts prepared for western blots and enzyme assays. Rotenone and antimycin were used to stimulate mitochondrial reactive oxygen species (ROS) production and induce apoptosis. Trophoblast cells supplemented with 100 nM NaSel and 500 nM SeMet exhibited significantly enhanced expression and activity of both GPx and Thx-Red. Antimycin and rotenone were found to generate ROS when measured by 2',7'-dichlorofluorescein diacetate (DCFDA) assay, and selenium supplementation was shown to reduce ROS production in a dose-dependent manner. Rotenone, 100 μM treatment for 4 h, caused trophoblast cell apoptosis as evidenced by increased Annexin V binding and decreased expression of Bcl-2. In both assays of apoptosis, selenium supplementation was able to prevent apoptosis, preserve Bcl-2 expression and protect trophoblast cells from mitochondrial oxidative stress. This data suggests that selenoproteins such as GPx and Thx-Red have an important role in protecting trophoblast cells from mitochondrial oxidative stress and that selenium supplementation may be important in treating some placental pathologies.

  7. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy.

    PubMed

    Yang, Soo In; George, Graham N; Lawrence, John R; Kaminskyj, Susan G W; Dynes, James J; Lai, Barry; Pickering, Ingrid J

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se 0 ). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se 0 using the Se L III edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se 0 nanoparticles. The intimate association of Se 0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  8. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Soo In; George, Graham N.; Lawrence, John R.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to themore » same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.« less

  9. Nano-selenium and its nanomedicine applications: a critical review.

    PubMed

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Peng, Qiuming; Baron, Mojmir; Melcova, Magdalena; Opatrilova, Radka; Zidkova, Jarmila; Bjørklund, Geir; Sochor, Jiri; Kizek, Rene

    2018-01-01

    Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.

  10. Associations of Spatial Disparities of Alzheimer's Disease Mortality Rates with Soil Selenium and Sulfur Concentrations and Four Common Risk Factors in the United States.

    PubMed

    Sun, Hongbing

    2017-01-01

    Associations between environmental factors and spatial disparity of mortality rates of Alzheimer's disease (AD) in the US are not well understood. To find associations between 41 trace elements, four common risk factors, and AD mortality rates in the48 contiguous states. Isopleth maps of AD mortality rates of the 48 states and associated factors were examined. Correlations between state average AD mortality rates and concentrations of 41 soil elements, wine consumption, percentage of current smokers, obesity, and diagnosed diabetes of the 48 states between 1999 and 2014 were analyzed. Among 41 elements, soil selenium concentrations have the most significant inverse correlations with AD mortality rates. Rate ratio (RR) of the 6 states with the lowest product of soil selenium and sulfur concentrations is 53% higher than the 6 states with the highest soil selenium sulfur product in the 48 states (RR = 1.53, CI95% 1.51-1.54). Soil tin concentrations have the most significant inverse correlation with AD mortality growth rates between 1999 and 2014, followed by soil sulfur concentrations. Percentages of obesity, diagnosed diabetes, smoking, and wine consumption per capita also correlate significantly with AD mortality growth rates. High soil selenium and sulfur concentrations and wine consumption are associated with low AD mortality rates. Given that average soil selenium and sulfur concentrations are indicators of their intakes from food, water, and air by people in a region, long-term exposure to high soil selenium and sulfur concentrations might be beneficial to AD mortality rate reduction in a region.

  11. Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts

    PubMed Central

    Ramos, Joseph F; Webster, Thomas J

    2012-01-01

    Background: Ventilator-associated pneumonia is a deadly nosocomial infection caused by contaminated endotracheal tubes. It has been shown that polyvinyl chloride (PVC, the endotracheal tube substrate) coated with elemental selenium nanoparticles reduces bacterial adherence and proliferation on PVC by over 99%. However, it is not known if selenium nanoparticles elicit a cytotoxic effect in vitro. The purpose of this study was to investigate the cytotoxic effects of PVC coated with selenium nanoparticles on fibroblasts, which are mammalian cells central to endotracheal tube intubation. Methods: Different concentrations of selenium nanoparticles were precipitated onto the PVC surface by reduction of selenium salts using glutathione. Characterization of PVC coated with selenium nanoparticles was done by scanning electron microscopy, energy dispersive x-ray, and contact angle measurements. For the cytotoxicity experiments, fibroblasts were seeded at a density of 5000 cm2 onto PVC coated with three different concentrations of selenium nanoparticles (high, medium, low) and incubated for 4 hours (adhesion) as well as for 24 hours and 72 hours (proliferation). The half-maximal inhibitory concentration (IC50) value was determined after 72 hours using an ultrahigh concentration. MTT assays were used to assess cell viability at the indicated time points. Results: The three concentrations of selenium nanoparticles did not elicit a cytotoxic effect after 72 hours (P < 0.01, n = 3). It was found that the IC50value was at the ultrahigh concentration of selenium nanoparticles. The nanoparticulate elemental selenium concentration previously shown to decrease the function of bacteria was shown not to cause a cytotoxic effect on fibroblasts in vitro. Conclusion: These findings demonstrate great selectivity between bacteria and healthy cells, and are a viable option for coating endotracheal tubes in order to prevent ventilator-associated pneumonia. PMID:22915842

  12. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  13. [The selenium content of food products and the blood of inhabitants of Norilsk].

    PubMed

    Golubkina, N A; Shagova, M V; Spirichev, V B; Khristenko, P P; Alftan, D; Laaksonen, P; Muratov, Iu M; Vachaeva, N N

    1992-01-01

    The intake of trace element selenium by Norilsk citizens was assessed by its levels in the serum, food and soil. It was found that soil and food made in the Norilsk region are rich in selenium, its serum concentration in the population is normal (102 micrograms/l). References to such values for the Moscow and Zaporoje (Ukraine) regions are made. Low selenium levels in the serum may be indicative of pulmonary diseases.

  14. Environmental implications of excessive selenium: a review.

    PubMed

    Lemly, A D

    1997-12-01

    Selenium is a naturally occurring trace element that is nutritionally required in small amounts but it can become toxic at concentrations only twice those required. The narrow margin between beneficial and harmful levels has important implications for human activities that increase the amount of selenium in the environment. Two of these activities, disposal of fossil fuel wastes and agricultural irrigation of arid, seleniferous soils, have poisoned fish and wildlife, and threatened public health at several locations in the United States. Research studies of these episodes have generated a data base that clearly illustrates the environmental hazard of excessive selenium. It is strongly bioaccumulated by aquatic organisms and even slight increases in waterborne concentrations can quickly result in toxic effects such as deformed embryos and reproductive failure in wildlife. The selenium data base has been very beneficial in developing hazard assessment procedures and establishing environmentally sound water quality criteria. The two faces of selenium, required nutrient and potent toxin, make it a particularly important trace element in the health of both animals and man. Because of this paradox, environmental selenium in relation to agriculture, fisheries, and wildlife will continue to raise important land and water management issues for decades to come. If these issues are dealt with using prudence and the available environmental selenium data base, adverse impacts to natural resources and public health can be avoided.

  15. Comparison of trace element concentrations in tissue of common carp and implications for monitoring

    USGS Publications Warehouse

    Goldstein, R.M.; DeWeese, L.R.

    1999-01-01

    Common carp (Cyprinus carpio) collected from four sites in the Red River of the North in 1994 were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), selenium (So), and zinc (Zn). Concentrations differed among liver, muscle, and whole body. Generally, trace element concentrations were the greatest in livers while concentrations in whole bodies were greater than those in muscle for Cd, Cu, Ni, Pb, and Zn, and concentrations in muscle were similar to whole body for As and Se. Concentrations of Cr were lower in liver than either muscle or whole body. Correlations between liver and whole body concentrations were stronger than those between liver and muscle concentrations, but the strongest correlations were between muscle and whole body concentrations. Examination of tissue concentrations by collection sites suggested that, for a general survey, the whole body may be the most effective matrix to analyze.

  16. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  17. Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork.

    PubMed

    Jiang, Jiang; Tang, Xinyue; Xue, Yan; Lin, Gang; Xiong, Youling L

    2017-09-01

    Cross-bred pigs were fed a control diet (with 0.3ppm sodium selenite and 1.5% soybean oil) or organic selenium diets (0.3ppm Se-Yeast with 1.5% soybean or linseed oil) to investigate nutrient supplement effects on meat quality and oxidative stability. The organic selenium diets increased muscular selenium content up to 54%, and linseed oil increased n-3 fatty acids two-fold while lowering the n-6/n-3 fatty acid ratio from 13.9 to 5.9 over the selenite control diet (P<0.05). Organic selenium yeast treatments with linseed oil reduced pork drip loss by 58-74% when compared with diets with soybean oil. Lightness of fresh pork was slightly less for organic selenium groups than inorganic (P<0.05), but redness was mostly similar. Lipid oxidation (TBARS) and protein oxidation (sulfhydryl) during meat storage (4°C up to 6days) showed no appreciable difference (P>0.05) between diets, in agreement with the lack of notable difference in endogenous antioxidant enzyme activity between these meat groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Selenium in edible mushrooms.

    PubMed

    Falandysz, Jerzy

    2008-01-01

    Selenium is vital to human health. This article is a compendium of virtually all the published data on total selenium concentrations, its distribution in fruitbody, bioconcentration factors, and chemical forms in wild-grown, cultivated, and selenium-enriched mushrooms worldwide. Of the 190 species reviewed (belonging to 21 families and 56 genera), most are considered edible, and a few selected data relate to inedible mushrooms. Most of edible mushroom species examined until now are selenium-poor (< 1 microg Se/g dry weight). The fruitbody of some species of wild-grown edible mushrooms is naturally rich in selenium; their occurrence data are reviewed, along with information on their suitability as a dietary source of selenium for humans, the impact of cooking and possible leaching out, the significance of traditional mushroom dishes, and the element's absorption rates and co-occurrence with some potentially problematic elements. The Goat's Foot (Albatrellus pes-caprae) with approximately 200 microg Se/g dw on average (maximum up to 370 microg/g dw) is the richest one in this element among the species surveyed. Several other representatives of the genus Albatrellus are also abundant in selenium. Of the most popular edible wild-grown mushrooms, the King Bolete (Boletus edulis) is considered abundant in selenium as well; on average, it contains approximately 20 microg Se/g dw (maximum up to 70 microg/g dw). Some species of the genus Boletus, such as B. pinicola, B. aereus, B. aestivalis, B. erythropus, and B. appendiculus, can also accumulate considerable amounts of selenium. Some other relatively rich sources of selenium include the European Pine Cone Lepidella (Amanita strobiliformis), which contains, on average, approximately 20 microg Se/g dw (up to 37 microg/g dw); the Macrolepiota spp., with an average range of approximately 5 to < 10 microg/g dw (an exception is M. rhacodes with < 10 microg/g dw); and the Lycoperdon spp., with an average of approximately 5 microg Se/g dw. For several wild-grown species of the genus Agaricus, the selenium content ( approximately 5 microg/g dw) is much greater than that from cultivated Champignon Mushroom; these include A. bisporus, A. bitorquis, A. campestris, A. cesarea, A. campestris, A. edulis, A. macrosporus, and A. silvaticus. A particularly rich source of selenium could be obtained from selenium-enriched mushrooms that are cultivated on a substrate fortified with selenium (as inorganic salt or selenized-yeast). The Se-enriched Champignon Mushroom could contain up to 30 or 110 microg Se/g dw, while the Varnished Polypore (Ganoderma lucidum) could contain up to 72 microg Se/g dw. An increasingly growing database on chemical forms of selenium of mushrooms indicates that the seleno-compounds identified in carpophore include selenocysteine, selenomethionine, Se-methylselenocysteine, selenite, and several unidentified seleno-compounds; their proportions vary widely. Some aspects of environmental selenium occurrence and human body pharmacokinetics and nutritional needs will also be briefly discussed in this review.

  19. The Effect of Helicobacter pylori Eradication on the Levels of Essential Trace Elements

    PubMed Central

    Wu, Meng-Chieh; Huang, Chun-Yi; Kuo, Fu-Chen; Hsu, Wen-Hung; Wang, Sophie S. W.; Shih, Hsiang-Yao; Liu, Chung-Jung; Chen, Yen-Hsu; Wu, Deng-Chyang; Huang, Yeou-Lih; Lu, Chien-Yu

    2014-01-01

    Objective. This study was designed to compare the effect of Helicobacter pylori (H. pylori) infection treatment on serum zinc, copper, and selenium levels. Patients and Methods. We measured the serum zinc, copper, and selenium levels in H. pylori-positive and H. pylori-negative patients. We also evaluated the serum levels of these trace elements after H. pylori eradication. These serum copper, zinc, and selenium levels were determined by inductively coupled plasma mass spectrometry. Results. Sixty-three H. pylori-positive patients and thirty H. pylori-negative patients were studied. Serum copper, zinc, and selenium levels had no significant difference between H. pylori-positive and H. pylori-negative groups. There were 49 patients with successful H. pylori eradication. The serum selenium levels were lower after successful H. pylori eradication, but not significantly (P = 0.06). There were 14 patients with failed H. pylori eradication. In this failed group, the serum selenium level after H. pylori eradication therapy was significantly lower than that before H. pylori eradication therapy (P < 0.05). The serum zinc and copper levels had no significant difference between before and after H. pylori eradication therapies. Conclusion. H pylori eradication regimen appears to influence the serum selenium concentration (IRB number: KMUH-IRB-20120327). PMID:25548772

  20. Distinctive Pattern of Serum Elements During the Progression of Alzheimer’s Disease

    PubMed Central

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer’s disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD. PMID:26957294

  1. Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease.

    PubMed

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-03-09

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer's disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD.

  2. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thavarajah, D.; Vandenberg, A.; George, G.N.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentilsmore » is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.« less

  3. Nano-selenium and its nanomedicine applications: a critical review

    PubMed Central

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Peng, Qiuming; Baron, Mojmir; Melcova, Magdalena; Opatrilova, Radka; Zidkova, Jarmila; Bjørklund, Geir; Sochor, Jiri; Kizek, Rene

    2018-01-01

    Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration. PMID:29692609

  4. Selenium as an essential micronutrient: roles in cell cycle and apoptosis.

    PubMed

    Zeng, Huawei

    2009-03-23

    Selenium is an essential trace element for humans and animals, and selenium deficiency is associated with several disease conditions such as immune impairment. In addition, selenium intakes that are greater than the recommended daily allowance (RDA) appear to protect against certain types of cancers. In humans and animals, cell proliferation and death must be regulated to maintain tissue homeostasis, and it has been well documented that numerous human diseases are directly related to the control of cell cycle progression and apoptosis. Thus, the elucidation of the mechanisms by which selenium regulates the cell cycle and apoptosis can lead to a better understanding of the nature of selenium's essentiality and its role in disease prevention. This article reviews the status of knowledge concerning the effect of selenium on cell cycle and apoptosis.

  5. Hazard assessment of selenium and other trace elements in wild larval razorback sucker from the Green River, Utah

    USGS Publications Warehouse

    Hamilton, S.J.; Muth, R.T.; Waddell, B.; May, T.W.

    2000-01-01

    Contaminant investigations of the Green River in northeastern Utah have documented selenium contamination at sites receiving irrigation drainage. The Green River provides critical habitat for four endangered fishes including the largest extant riverine population of endangered razorback sucker. Although 2175 larval razorback suckers were collected from the river between 1992 and 1996, very few juveniles have been captured within recent decades. Selenium concentrations were measured in larval razorback suckers collected from five sites in the Green River (Cliff Creek, Stewart Lake Drain, Sportsman's Drain, Greasewood Corral, and Old Charlie Wash) to assess the potential for adverse effects on recruitment of larvae to the juvenile stage and the adult population. Larvae from all sites contained mean selenium concentrations ranging from 4.3 to 5.8 ??g/g. These values were at or above the proposed toxic threshold of 4 ??g/g for adverse biological effects in fish, which was derived from several laboratory and field studies with a wide range of fish species. At two sites, Cliff Creek and Stewart Lake Drain, selenium concentrations in larvae increased over time as fish grew, whereas selenium concentrations decreased as fish grew at Sportsman's Drain. Evaluation of a 279-larvae composite analyzed for 61 elements demonstrated that selenium and, to a lesser extent, vanadium were elevated to concentrations reported to be toxic to a wide range of fish species. Elevated selenium concentrations in larval razorback suckers from the five sites suggest that selenium contamination may be widespread in the Green River, and that survival and recruitment of larvae to the juvenile stage may be limited due to adverse biological effects. Selenium contamination may be adversely affecting the reproductive success and recruitment of endangered razorback sucker.

  6. [Deficiency of selenium in pneumonia: an accident or regularity? Problem of nutriciology and gastroenterology].

    PubMed

    Orlov, A M; Bakulin, I G; Mazo, V K

    2013-01-01

    Study of features of community-acquired pneumonia in young adults with deficiency of trace element selenium and the development directions of optimization of treatment. The study of 114 patients with community-acquired pneumonia, were evaluated nutritional deficiencies, the level of selenium in the blood plasma and the efficiency of application selenium biologically active additives in treatment of community acquired pneumonia. The vast majority of the 114 patients with community-acquired pneumonia is marked by malnutrition and selenium varying degrees of symptoms. Application of selenium dietary supplement in patients with community-acquired pneumonia contributes to earlier periods of permission of pneumonia and increase outcomes from full resolution infiltrative pulmonary field changes according to the radiographic study in patients of this category.

  7. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.

    PubMed

    Soda, S; Hasegawa, A; Kuroda, M; Hanada, A; Yamashita, M; Ike, M

    2015-01-01

    A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.

  8. Clinical relevance of trace element measurement in patients on initiation of parenteral nutrition.

    PubMed

    Salota, Rashim; Omar, Sohail; Sherwood, Roy A; Raja, Kishor; Vincent, Royce P

    2016-11-01

    Background and Aims Serum zinc, copper and selenium are measured in patients prior to commencing on parenteral nutrition; however, their interpretation can be difficult due to acute phase reactions. We assessed (i) the relationship of raised C-reactive protein with trace elements and albumin (ii) benefits of measuring trace elements when C-reactive protein is raised in patients requiring short-term parenteral nutrition. Methods Samples were collected for zinc, copper, selenium and albumin at baseline and then every two weeks and correlated with C-reactive protein results in patients on parenteral nutrition. Results were categorized into four groups based on the C-reactive protein concentrations: (i) <20 mg/L, (ii) 20-39 mg/L, (iii) 40-79 mg/L and (iv) ≥80 mg/L. Results In 166 patients, zinc, selenium and albumin correlated (Spearman's) negatively with C-reactive protein; r = -0.26, P < 0.001 (95% CI -0.40 to -0.11), r = -0.44, P < 0.001 (-0.56 to -0.29) and r = -0.22 P = 0.005 (-0.36 to -0.07), respectively. Copper did not correlate with C-reactive protein (r = 0.09, P = 0.25 [-0.07 to 0.25]). Comparison of trace elements between the four groups showed no difference in zinc and copper (both P > 0.05), whereas selenium and albumin were lower in the group with C-reactive protein > 40 mg/L ( P < 0.05). Conclusion In patients on short-term parenteral nutrition, measurement of C-reactive protein is essential when interpreting zinc and selenium but not copper results. Routine measurement of trace elements prior to commencing parenteral nutrition has to be considered on an individual basis in patients with inflammation.

  9. Selenium and its supplementation in cardiovascular disease--what do we know?

    PubMed

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-04-27

    The trace element selenium is of high importance for many of the body's regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.

  10. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    PubMed Central

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-01-01

    The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery. PMID:25923656

  11. A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women

    PubMed Central

    Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-young; Lee, Soo-Youn

    2016-01-01

    This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4–40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29–0.53), copper: 165.0 μg/dL (IQR 144.0–187.0), zinc: 57.0 μg/dL (IQR 50.0–64.0), and selenium: 94.0 μg/L (IQR 87.0–101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower (p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters (p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper (p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia. PMID:27886083

  12. A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women.

    PubMed

    Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-Young; Lee, Soo-Youn

    2016-11-23

    This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4-40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29-0.53), copper: 165.0 μg/dL (IQR 144.0-187.0), zinc: 57.0 μg/dL (IQR 50.0-64.0), and selenium: 94.0 μg/L (IQR 87.0-101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower ( p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters ( p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper ( p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia.

  13. Environmental Implications of Excessive Selenium: A Review

    Treesearch

    A. Dennis Lemly

    1997-01-01

    Selenium is a trace element that is normally present in surface waters at concentrations of about 0.1 - 0.3 parts-per-billion; Lemly, 1985a. In slightly greater amounts, i. e., l-5 ppb, it can bioaccumulate in aquatic food chains and become a concentrated dietary source of selenium that is highly toxic to fish and wildlife (Lemly and Smith, 1987; Lemly, 1993a). Dietary...

  14. Therapeutic potential of selenium and tellurium compounds: opportunities yet unrealised.

    PubMed

    Tiekink, Edward R T

    2012-06-07

    Despite being disparaged for their malodorous and toxic demeanour, compounds of selenium, a bio-essential element, and tellurium, offer possibilities as therapeutic agents. Herein, their potential use as drugs, for example, as anti-viral, anti-microbial, anti-inflammatory agents, etc., will be surveyed along with a summary of the established biological functions of selenium. The natural biological functions of tellurium remain to be discovered.

  15. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    PubMed

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  16. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Trace elements and pesticides in Salton Sea area, California

    USGS Publications Warehouse

    Schroeder, Roy A.; Setmire, James G.; Wolfe, John C.

    1988-01-01

    Concentrations of numerous potentially toxic trace elements and pesticides were determined in water, sediment, and biota from the Salton Sea area in southestern California. Comparison of results with data from other studies in this area and from other areas, and with various water-quality standards or criteria, indicate that selenium probably is the principal contaminant of concern in the Salton Sea basin and that it probably is related to agricultural practices. Selenium is mobilized in the subsurface drainwater produced by agricultural irrigation and transported in ditches and rivers, some of which pass through or near the Salton Sea National Wildlife Refuge before entering the Salton Sea. Some selenium apparently is incorporated into the food chain. In response to the finding of elevated selenium residues in fish from the area by State agencies, the Imperial County Health Department has issued a health advisory restricting or prohibiting human consumption of fish from the Salton Sea and drains.

  18. Increased plasma selenium is associated with better outcomes in children with systemic inflammation.

    PubMed

    Leite, Heitor Pons; Nogueira, Paulo Cesar Koch; Iglesias, Simone Brasil de Oliveira; de Oliveira, Susyane Vieira; Sarni, Roseli Oselka Saccardo

    2015-03-01

    The aim of this study was to assess the effects of changes in plasma selenium on the outcome of critically ill children. Plasma selenium was prospectively measured in 99 children with acute systemic inflammation. The exposure variables were selenium level on admission and on day 5 of stay in the intensive care unit (ICU) and the difference in selenium concentrations between day 5 post-admission and the ICU admission (delta selenium). Selenium was given only as part of enteral diets. Age, malnutrition, red cell glutathione peroxidase-1 activity, serum C-reactive protein, Pediatric Index of Mortality 2, and Pediatric Logistic Organ Dysfunction scores were analyzed as covariates. The outcome variables were ventilator-free days, ICU-free days, and 28-d mortality. Plasma selenium concentrations increased from admission (median 23.4 μg/L, interquartile range 12.0-30.8) to day 5 (median 25.1 μg/L, interquartile range 16.0-39.0; P = 0.018). After adjustment for confounding factors, a delta selenium increase of 10 μg/L was associated with reductions in ventilator days (1.3 d; 95% confidence interval [CI], 0.2-2.3; P = 0.017) and ICU days (1.4 d; 95% CI, 0.5-2.3; P < 0.01). Delta selenium >0 was associated with decreased 28-d mortality on a univariate model (odds ratio, 0.67; 95% CI, 0.46-0.97; P = 0.036). The mean daily selenium intake (6.82 μg; range 0-48.66 μg) was correlated with the increase in selenium concentrations on day 5. An increase in plasma selenium is independently associated with shorter times of ventilation and ICU stay in children with systemic inflammation. These findings raise the hypothesis that selenium supplementation could be beneficial in children with critical illnesses. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  20. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2013-01-15

    A number of contaminants affect fish health, including mercury and selenium, and the selenium:mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) (n=40) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium:mercury molar ratios by tissues. Total mercury averaged 0.32±0.02 ppm wet weight in edible muscle and 0.09±0.01 ppm in brain. Selenium concentration averaged 0.37±0.03 in muscle and 0.36±0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium:mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium:mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Whey Protein

    MedlinePlus

    ... infections as taking a combination of zinc, selenium, glutamine, and metoclopramide. Muscular disease (mitochondrial myopathies). Early research ... or 42-84 grams per day in a glutamine-enriched formula. For red, scaly skin (plaque psoriasis): ...

  2. Selenium. Role of the Essential Metalloid in Health

    PubMed Central

    Kurokawa, Suguru; Berry, Marla J.

    2015-01-01

    Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health. PMID:24470102

  3. Trace elements in lesser scaup (Aythya affinis) from the Mississippi flyway

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Anteau, M.J.; Afton, A.D.; Wooten, D.E.

    2003-01-01

    Previous research reported that concentrations of selenium in the livers of 88a??95% of lesser scaup from locations in Lake Erie, Lake St. Clair, and Lake Michigan, USA were either elevated (10a??33 A?g/g dry weight [dw]) or in the potentially harmful range (>33 A?g/g dw). In order to determine the geographic extent of these high selenium concentrations, we collected lesser scaup in Louisiana, Arkansas, Illinois, Minnesota, Wisconsin, and Manitoba and analyzed the livers for 19 trace elements. We found that all trace element concentrations, except for selenium, generally were low. Arsenic, which usually is not detected in liver samples, was detected in Louisiana and may be related to past agricultural usages. Chromium, which also is not usually detected, was only present in lesser scaup from Arkansas and may be related to fertilizer applications. Cadmium and mercury concentrations did not differ among locations and concentrations were low. Selenium concentrations in Arkansas (geometric mean=4.2 A?g/g dw) were significantly lower than those in Louisiana (10.7 A?g/g dw), Illinois (10.5 A?g/g dw), and Minnesota (8.0 A?g/gdw); concentrations in Wisconsin and Manitoba were intermediate (6.6 and 6.5 A?g/g dw). About 25% of lesser scaup livers contained elevated selenium concentrations; however, none were in the harmful range. We concluded that selenium concentrations in lesser scaup in the Mississippi Flyway are elevated in some individuals, but not to the extent that has been documented in the industrial portions of the Great Lakes.

  4. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Dolores Project area, southwestern Colorado and southeastern Utah, 1990-91

    USGS Publications Warehouse

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Jensen, E.G.

    1995-01-01

    Water, bottom-sediment, and biota samples were collected in 1990-91 to identify water-quality problems associated with irrigation drainage in the Dolores Project area. Concentrations of cadmium, mercury, and selenium in some water samples exceeded aquatic-life criteria. Selenium was associated with irrigaton drainage from the Dolores Project, but other trace elements may be transported into the area in the irrigation water supply. Selenium concentrations exceeded the chronic aquatic-life criterion in water samples from lower McElmo Creek and Navajo Wash, which drain the Montezuma Valley, from newly irrigated areas, and from the Mancos River. The maximum selenium con- centration in water was 88 micrograms per liter from Navajo Wash. Concentrations of herbicides in water were less than concentrations harmful to aquatic life. Selenium concentrations in four bottom-sediment samples exceeded the baseline concentrations for soils in the Western United States. The largest selenium concentrations in biota were in samples from Navajo Wash, from newly irrigated areas north of the Montezuma Valley, and from the Mancos River basin. Selenium concentrations in aquatic-invertebrate samples from the newly irrigated areas exceeded a guideline for food items consumed by fish and wildlife. Selenium concen- trations in whole-body suckers were larger in the San Juan River downstream from the Dolores Project than upstream from the project at Four Corners. Selenium concentrations in fathead minnow samples from two sites were at adverse-effect levels. Mercury concentrations in warm-water game fish in reservoirs in the study area may be of concern to human health. Some concentrations of other trace elements exceeded background concentrations, but the concentrations were not toxicologically significant or the toxicologic significance is not known.

  5. Concentrations of metals and trace elements in blood of spectacled and king eiders in northern Alaska, USA

    USGS Publications Warehouse

    Wilson, Heather M.; Petersen, Margaret R.; Troy, Declan

    2004-01-01

    In 1996, we measured concentrations of arsenic, barium, cadmium, lead, mercury, and selenium in blood of adult king (Somateria spectabilis) and spectacled (Somateria fischeri) eiders and duckling spectacled eiders from northern Alaska, USA. Concentrations of selenium exceeded background levels in all adults sampled and 9 of 12 ducklings. Mercury was detected in all adult spectacled eiders and 5 of 12 ducklings. Lead concentrations were above the clinical toxicity threshold in one duckling (0.64 ppm) and two adult female spectacled eiders (0.54 and 4.30 ppm). Concentrations of cadmium and mercury varied between species; barium, cadmium, mercury, and selenium varied between sexes. In female spectacled eiders, mercury concentrations increased during the breeding season and barium and selenium levels decreased through the breeding season. Selenium declined at 2.3 ± 0.9% per day and levels were lower in spectacled eiders arriving to the breeding grounds in northern Alaska than in western Alaska. The variation in selenium levels between breeding areas may be explained by differences in timing and routes of spring migration. Most trace elements for which we tested were not at levels currently considered toxic to marine birds. However, the presence of mercury and elevated lead in ducklings and adult female spectacled eiders suggests these metals are available on the breeding grounds.

  6. Biomarkers of selenium status

    USDA-ARS?s Scientific Manuscript database

    The essential trace element selenium (Se) has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potentia...

  7. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum.

    PubMed

    Khoei, Nazanin Seyed; Lampis, Silvia; Zonaro, Emanuele; Yrjälä, Kim; Bernardi, Paolo; Vallini, Giovanni

    2017-01-25

    Microorganisms capable of transforming toxic selenium oxyanions into non-toxic elemental selenium (Se°) may be considered as biocatalysts for the production of selenium nanoparticles (SeNPs), eventually exploitable in different biotechnological applications. Two Burkholderia fungorum strains (B. fungorum DBT1 and B. fungorum 95) were monitored during their growth for both capacity and efficiency of selenite (SeO 3 2- ) reduction and elemental selenium formation. Both strains are environmental isolates in origin: B. fungorum DBT1 was previously isolated from an oil refinery drainage, while B. fungorum 95 has been enriched from inner tissues of hybrid poplars grown in a soil contaminated by polycyclic aromatic hydrocarbons. Our results showed that B. fungorum DBT1 is able to reduce 0.5mM SeO 3 2- to Se° when cultured aerobically in liquid medium at 27°C, while B. fungorum 95 can reduce more than 1mM SeO 3 2- to Se° within 96h under the same growth conditions, with the appearance of SeNPs in cultures of both bacterial strains. Biogenic SeNPs were spherical, with pH-dependent charge and an average hydrodynamic diameter of 170nm and 200nm depending on whether they were produced by B. fungorum 95 or B. fungorum DBT1, respectively. Electron microscopy analyses evidenced that Se nanoparticles occurred intracellularly and extracellularly. The mechanism of SeNPs formation can be tentatively attributed to cytoplasmic enzymatic activation mediated by electron donors. Biogenic nanoparticles were then probably released outside the bacterial cells as a consequence of a secretory process or cell lysis. Nevertheless, formation of elemental selenium nanoparticles under aerobic conditions by B. fungorum DBT1 and B. fungorum 95 is likely due to intracellular reduction mechanisms. Biomedical and other high tech sectors might exploit these biogenic nanoparticles in the near future, once fully characterized and tested for their multiple properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. RETROSPECTIVE STUDY OF METHYLMERCURY AND OTHER METAL(LOID)S IN MADAGASCAR UNPOLISHED RICE (Oryza sativa L.)

    PubMed Central

    Rothenberg, Sarah E.; Mgutshini, Noma L.; Bizimis, Michael; Johnson-Beebout, Sarah E.; Ramanantsoanirina, Alain

    2014-01-01

    The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n=51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p<0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n=20) and brown bran (n=31) (Wilcoxon rank sum, p=0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r=0.33, p<0.05) and total mercury (r=0.44, p<0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r<0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem. PMID:25463705

  9. Irrigation drainage studies of the Angostura Reclamation Unit and the Belle Fourche Reclamation Project, western South Dakota : results of 1994 sampling and comparisons with 1988 data

    USGS Publications Warehouse

    Sando, Steven K.; Williamson, Joyce E.; Dickerson, Kimberly K.; Wesolowski, Edwin A.

    2001-01-01

    The U.S. Department of the Interior started the National Irrigation Water Quality Program in 1985 to identify the nature and extent of irrigation-induced water-quality problems that might exist in the western U.S. The Angostura Reclamation Unit (ARU) and Belle Fourche Reclamation Project (BFRP) in western South Dakota were included as part of this program. The ARU and BFRP reconnaissance studies were initiated in 1988, during below-normal streamflow conditions in both study areas. Surface water, bottom sediment, and fish were resampled in 1994 at selected sites in both study areas during generally near-normal streamflow conditions to compare with 1988 study results. Concentrations of major ions in water for both the ARU and BFRP study areas are high relative to national baseline levels. Major-ion concentrations for both areas generally are lower for 1994 than for 1988, when low-flow conditions prevailed, but ionic proportions are similar between years. For ARU, dissolved-solids concentrations probably increase slightly downstream from Angostura Reservoir; however, the available data sets are insufficient to confidently discern effects of ARU operations on dissolved-solids loading. For BFRP, dissolved-solids concentrations are slightly higher at sites that are affected by irrigation drainage; again, however, the data are inconclusive to determine whether BFRP operations increase dissolved-solids loading. Most trace-element concentrations in water samples for both study areas are similar between 1988 and 1994, and do not show strong relations with discharge. ARU operations probably are not contributing discernible additional loads of trace elements to the Cheyenne River. For BFRP, concentrations of some trace elements are slightly higher at sites downstream from irrigation operations than at a site upstream from irrigation operations. BFRP operations might contribute to trace-element concentrations in the Belle Fourche River, but available data are insufficient to quantify increases. For both study areas, concentrations of several trace elements occasionally exceed National Irrigation Water Quality Program guidelines. Selenium routinely occurs in concentrations that could be problematic at sites upstream and downstream from both study areas. Elevated selenium concentrations at sites upstream from irrigation operations indicate that naturally occurring selenium concentrations are relatively high in and near the study areas. While ARU operations probably do not contribute discernible additional loads of selenium to the Cheyenne River, BFRP operations might contribute additional selenium loads to the Belle Fourche River. Concentrations of most trace elements in bottom sediment, except arsenic and selenium, are similar to typical concentrations for western U.S. soils for both study areas. Bottom-sediment arsenic and selenium (1988) concentrations in both study areas can reach levels that might be of concern; however, there is insufficient information to determine whether irrigation operations contribute to these elevated concentrations. Concentrations of most trace elements in fish in both study areas are less than values known to adversely affect fish or birds, although there are occasional exceedances of established criteria. However, selenium concentrations in fish samples routinely are within the National Irrigation Water Quality Program level of concern, and also commonly exceed the dietary guideline for avian consumers for both study areas. Selenium concentrations in fish samples generally are higher at sites downstream from irrigation operations. For BFRP, arsenic and mercury concentrations are elevated in fish samples from site B-18, which is influenced by mine tailings.

  10. Trace elements in patients on continuous renal replacement therapy.

    PubMed

    Broman, M; Bryland, A; Carlsson, O

    2017-07-01

    Intensive care patients with acute kidney injury (AKI), treated with continuous renal replacement therapy (CRRT) are at great risk for disturbances in plasma levels of trace elements due to the underlying illness, AKI, and dialysis. This study was performed to increase our knowledge regarding eight different trace elements during CRRT. Thirty one stable patients with AKI, treated with CRRT, were included in the study. Blood, plasma and effluent samples were taken at the start of the study and 36 ± 12 h later. A group of 48 healthy volunteers were included as controls and exposed to one fasting blood sample. Samples were analysed for trace elements (Cr, Cu, Mn, Co, Zn, Rb, Mo, Se) and standard blood chemistry. Blood and plasma levels of selenium and rubidium were significantly reduced while the levels of chromium, cobalt, and molybdenum were significantly increased in the study group vs. healthy volunteers. There was an uptake of chromium, manganese, and zinc. Molybdenum mass balance was around zero. For selenium, copper, and rubidium there were a marked loss. The low levels of selenium and rubidium in blood and plasma from CRRT patients, together with the loss via CRRT effluent, raises the possibility of the need for selenium supplementation in this group of patients, despite the unchanged levels during the short study period. Further investigations on the effect of additional administration of trace elements to CRRT patients would be of interest. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Production of Selenoprotein P (Sepp1) by Hepatocytes Is Central to Selenium Homeostasis*

    PubMed Central

    Hill, Kristina E.; Wu, Sen; Motley, Amy K.; Stevenson, Teri D.; Winfrey, Virginia P.; Capecchi, Mario R.; Atkins, John F.; Burk, Raymond F.

    2012-01-01

    Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions. PMID:23038251

  12. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    PubMed

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  13. Global advances in selenium research from theory to application

    USDA-ARS?s Scientific Manuscript database

    Selenium is without question one of the most influential natural-occurring trace elements for biological systems worldwide. The multi-faceted connections between the environment, food crops, human and animal health and selenium’s function through selenoprotein activity, have been well characterized....

  14. Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off Mexico.

    PubMed

    Escobar-Sánchez, Ofelia; Galván-Magaña, Felipe; Rosíles-Martínez, René

    2011-12-01

    The aim of this study was to determine the biomagnification of mercury through the principal prey of the blue shark, Prionace glauca, off the western coast of Baja California Sur, Mexico, as well as the relationship between mercury and selenium in blue sharks. High levels of mercury were found in shark muscle tissues (1.39 ± 1.58 μg/g wet weight); these values are above the allowed 1.0 μg/g for human consumption. The mercury to selenium molar ratio was 1:0.2. We found a low correlation between mercury bioaccumulation and shark size. Juveniles have lower concentrations of mercury than adults. Regarding the analyzed prey, the main prey of the blue shark, pelagic red crab, Pleuroncodes planipes, bioaccumulated 0.04 ± 0.01 μg/g Hg wet weight, but the prey with higher bioaccumulation was the bullet fish Auxis spp. (0.20 ± 0.02 μg/g wet weight). In terms of volume, the red crab P. planipes can be the prey that provides high levels of mercury to the blue shark.

  15. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  16. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  17. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    PubMed

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from <10 to 616 ppb; methylmercury concentrations in liver ranged from 25 to 236 ppb. Prey items had methylmercury concentrations below the limits of detection (<0.4 ppb). Hazard quotients and exposure rates indicate that leatherbacks of all life stages may be at risk for selenium toxicity. For endangered species like the leatherback, continued anthropogenic deposition of mercury and selenium into the environment is concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  20. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  1. Water quality of streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    USGS Publications Warehouse

    Tornes, Lan H.

    2005-01-01

    Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination.  For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less than 1,000 microsiemens per centimeter.  Concentrations of pesticides that were detected and that had regulatory limits were less than the cited water-quality guidelines, standards, and criteria. Concentrations of compounds that were detected generally were less than the sediment- quality standards and criteria. The data considered in this report generally provide a good baseline from which to evaluate changes in water-quality conditions. However, because many of the trace elements detected, including lead and mercury, may have been the result of sample contamination, additional data are needed to confirm that trace-element concentrations generally are low. Concentrations of major ions, including sulfate, and specific conductance may continue to approach drinking-water standards during periods of low flow because the streams, particularly those in the western part of the basin, are sustained mostly by ground-water discharge that generally has large dissolved-solids concentrations.

  2. Inorganic versus organic selenium supplementation: a review.

    PubMed

    Mahima; Verma, Amit Kumar; Kumar, Amit; Rahal, Anu; Kumar, Vinod; Roy, Debashis

    2012-05-01

    Selenium is an essential trace element in the diets which is required for maintenance of health, growth and biochemical-physiological functions. The area covered in this review has been rapidly unfolding in recent years and has already acquired a vast spread. This study presents a concise introductory overview of the effect of organic and inorganic selenium on growth performance, carcass traits, daily egg production, egg quality, Se uptake in various tissues and plasma and plasma glutathione peroxidase activity in animals.

  3. Determination of Selenium and Nickel in Asphaltite from Milli (Sirnak) Deposit in SE Anatolia of Turkey

    NASA Astrophysics Data System (ADS)

    Aydin, Isil; Fidan, Celal; Kavak, Orhan; Erek, Figen; Aydin, Firat

    2017-12-01

    Asphaltite is one of the naturally occurring black, solid bitumen’s, which are soluble at heating in carbon disulphide band fuse. Asphaltite is also a solidified hydro carbon compound derived from petroleum [1]. According to the World Energy Council, Turkish National Committee (1998), the total reserve of the asphaltic substances that are found in south eastern Turkey is about 82 million tons, with Silopi and Sirnak reserves to get her comprising the major part of the Asphaltite deposits. Selenium and Nickel are very important elements both environmental and health. Selenium plays an important role in the formation of the enzyme antioxidant effect in the cell. The need for Selenium increases in situations such as pregnancy, menopause, grow than development, air pollution. Nickel is used for preventing iron-poor blood, increasing iron absorption, and treating weak bones. In this study, asphaltites were taken from Milli vein from Sirnak deposit in SE Anatolia of Turkey. A total of 6.500.000 tons of Asphaltite reserves have been identified as asphaltites in Milli (Sirnak). The sample preparation method was developed in Asphaltite by spectroanalytical techniques, wet acid digestion. MW-AD followed by ICP-OES were used for the determination of Selenium and Nickel in Asphaltite. Proximate analysis of Asphaltite fly ash samples was made. It also, Selenium and Nickel element analysis in Asphaltite were made.

  4. The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study

    PubMed Central

    2010-01-01

    Background A community in northern Italy was previously reported to have an excess incidence of amyotrophic lateral sclerosis among residents exposed to high levels of inorganic selenium in their drinking water. Methods To assess the extent to which such association persisted in the decade following its initial observation, we conducted a population-based case-control study encompassing forty-one newly-diagnosed cases of amyotrophic lateral sclerosis and eighty-two age- and sex-matched controls. We measured long-term intake of inorganic selenium along with other potentially neurotoxic trace elements. Results We found that consumption of drinking water containing ≥ 1 μg/l of inorganic selenium was associated with a relative risk for amyotrophic lateral sclerosis of 5.4 (95% confidence interval 1.1-26) after adjustment for confounding factors. Greater amounts of cumulative inorganic selenium intake were associated with progressively increasing effects, with a relative risk of 2.1 (95% confidence interval 0.5-9.1) for intermediate levels of cumulative intake and 6.4 (95% confidence interval 1.3-31) for high intake. Conclusion Based on these results, coupled with other epidemiologic data and with findings from animal studies that show specific toxicity of the trace element on motor neurons, we hypothesize that dietary intake of inorganic selenium through drinking water increases the risk for amyotrophic lateral sclerosis. PMID:21134276

  5. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species—A Critical Review

    PubMed Central

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Malevu, Thembinkosi Donald; Sochor, Jiri; Baron, Mojmir; Melcova, Magdalena; Zidkova, Jarmila; Kizek, Rene

    2017-01-01

    Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar. PMID:29065468

  6. Glutathione peroxidase response in tissues of rats fed diets containing fish protein concentrate prepared from shark flesh of known mercury and selenium contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, S.J.; Andrewartha, K.A.

    1981-01-01

    Studies have been reported using experimental animals and synthetic diets containing selenium and mercury compounds to demonstrate detoxification of mercury by selenium. The mechanism of detoxification remains obscure. Most experiments have involved the use of high levels of both elements and relied on the observation of gross symptoms. The measurement of enzyme systems may be useful in detecting effects of mercury at a lower, subclinical level and in elucidating the biochemistry of mercury/selenium interactions. The activity of the selenoenzyme glutathione peroxidase (GSH-Px) in rats is dependent on dietary selenium and attempts have been made to use this enzyme as anmore » indicator of mercury/selenium interactions. The research described in this paper was designed to investigate the effect of mercury, in the form and amounts which occur naturally in seafood, on the availability of selenium at levels approximating the nutritional requirement. In anticipation of mercury lowering the GSH-Px response a range of selenium concentrations was used, from nutritional deficiency to three times the nutritional requirement.« less

  7. Trace elements in lake sediment, macrozoobenthos, and fish near a coal ash disposal basin

    USGS Publications Warehouse

    Hatcher, Charles O.; Ogawa, Roann E.; Poe, Thomas P.; French, John R. P.

    1992-01-01

    Of the 29 trace elements examined, arsenic and cobalt were significantly (p <0.05) more concentrated in sediment nearest the coal ash basin except in spring, when little or no difference was detected. Arsenic and bromine were significantly higher in oligochaetes, and selenium was significantly higher in both oligochaetes and chironomids taken from proximal stations than in those taken from reference stations. Selenium, bromine, cobalt, nickel, and chromium were higher in young-of-the-year brown bullheads taken nearer the disposal basin in fall 1983. Selenium was higher in adult spottail shiners taken at the proximal station in spring 1984, and bromine was higher in yearling white bass from the proximal station in fall 1983 and 1984. None of the trace elements was higher in adult yellow perch or adult brown bullheads at any time. Fewer spottail shiners and yearling white bass were caught close to the disposal basin than far away, which may indicate avoidance by these fish of increased concentrations of trace elements contained within the ash effluent.

  8. Arsenic and selenium in microbial metabolism

    USGS Publications Warehouse

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  9. [Assessment of efficiency of use of the developed supplement containing selenium on laboratory animals].

    PubMed

    Bazhenova, B A; Aslaliev, A D; Danilov, M B; Badmaeva, T M; Vtorushina, I A

    2015-01-01

    The article presents the results of a study of the effectiveness of wheat flour containing selenium in organic form. The organic form of trace element was achieved by transformation of selenium in selenium-methionine (Se-Met) at germination of wheat grains, moistened with a solution of sodium selenite. To determine the effectiveness of selenium- containing supplements experimental investigations were carried out on Long white rats with initial body weight 50 ± 2 g. The duration of the experiment was 30 days. The research model included four groups of animals: control group--animals were fed a complete vivarium diet; group 1--a model of selenium deficiency, which was achieved by feeding selenium-deficient food (grain growh in the Chita region of the Trans-Baikal Territory Zabaikalsky Krai); group 2--animals were administered selenium supplement in the form of enriched flour (0.025 µg Se per 50 g body weight of the animal) on the background of selenium-deficient diet; group 3--animals were treated with a high dose of selenium in the form of a solution of sodium selenite intragastrically through a tube (0.15 µg Se per 50 g body weight). Selenium-containing additive on the background of selenium-deficient diet had a positive impact on the appearance and behavior of animals, the body weight gain per head after 10 days in group 2 amounted to 47.9 g that was 4 fold larger than in rats of group 1. The study of selenium content showed that in the blood, liver, lungs and heart of rats treated with the additive on the background of selenium-deficient diet (group 2), selenium level did not differ from those in the control group and was within physiological norms. The experiment showed that selenium deficiency and rich in selenium rich diet has a significantly different effect on the studied parameters of oxidative-antioxidative status. The activity of blood glutathione peroxidase in animals of group 2 (did not differ from that in group 3) was almost 2 fold higher than in blood of control animals and was seven fold higher than that in blood of animals kept on selenium deficient diet (35.57 ± 3.36 µmol/g per 1 min) A similar dependence was established when studying the activity of glutathione reductase. It has been revealed thatthe oxidative-antioxidative status of animals from experimental groups 1 and 3 was lower than from control group and group 2. Thus, blood antioxidant activity in animals receiving diet with selenium deficiency and high dose of this trace element, was less than in the control group by 43.1 and 25.4%, respectively. Liver MDA level in animals kept on a diet with selenium deficiency exceeded the value of this indicator in the group 2 more than 1.5 fold (110.5 ± 10.70 vs. 72.5 ± 4.30 nmol/mg). When using selenium-containing supplement, this parameter decreased to the control level. In blood plasma of the animals of group 2 total antioxidant activity increased by about five times as compared with the indicators of animals kept on selenium-deficient diet, and was 25% higher than in control. Thus, the introduction of a selenium supplements in the deficient diet contributes to the development of endogenous antioxidants that suppress lipid oxidation. High biological effectiveness of supplements containing organic form of selenium has been proved.

  10. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  11. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century

    PubMed Central

    Winkel, Lenny H. E.; Trang, Pham Thi Kim; Lan, Vi Mai; Stengel, Caroline; Amini, Manouchehr; Ha, Nguyen Thi; Viet, Pham Hung; Berg, Michael

    2011-01-01

    Arsenic contamination of shallow groundwater is among the biggest health threats in the developing world. Targeting uncontaminated deep aquifers is a popular mitigation option although its long-term impact remains unknown. Here we present the alarming results of a large-scale groundwater survey covering the entire Red River Delta and a unique probability model based on three-dimensional Quaternary geology. Our unprecedented dataset reveals that ∼7 million delta inhabitants use groundwater contaminated with toxic elements, including manganese, selenium, and barium. Depth-resolved probabilities and arsenic concentrations indicate drawdown of arsenic-enriched waters from Holocene aquifers to naturally uncontaminated Pleistocene aquifers as a result of > 100 years of groundwater abstraction. Vertical arsenic migration induced by large-scale pumping from deep aquifers has been discussed to occur elsewhere, but has never been shown to occur at the scale seen here. The present situation in the Red River Delta is a warning for other As-affected regions where groundwater is extensively pumped from uncontaminated aquifers underlying high arsenic aquifers or zones. PMID:21245347

  12. Decreased reproductive rates in sheep fed a high selenium diet

    USDA-ARS?s Scientific Manuscript database

    High Se-containing forages grow on seleniferous soils in many parts of the United States and throughout the world. Selenium is an essential trace element that is required for many physiological processes but can also be either acutely or chronically toxic to livestock. Anecdotal reports of decrease...

  13. Selenium cycling across soil-plant atmosphere interfaces: a critical review

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass, and in the atmosphere. Low Se levels in certain terrestrial environments ha...

  14. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.

    2015-01-01

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789

  15. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  16. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  17. Study of the Accumulation of Toxic and Essential Ultra-Trace Elements in Fruits of Sorbus domestica L.

    PubMed Central

    Zeiner, Michaela; Juranović Cindrić, Iva; Majić, Boris; Stingeder, Gerhard

    2017-01-01

    In the present work, the accumulation of selected toxic and essential ultra-trace elements in fruits of service tree (Sorbus domestica L.) were determined depending on harvest time. Samples were collected from the same sampling area in two different years and within one year in September and October (maturity state). Harvesting the fruits in the same area excludes the influence of metals taken up via roots, thus the impact of airborne contamination by heavy metal translocation can be studied. All samples were dried and digested using an acidic microwave assisted digestion system prior to quantification by inductively coupled plasma—sector field mass spectrometry (ICP–SFMS). The elements chosen were Arsenic and Cadmium as well as Lithium, Molybdenum, and Selenium. The Arsenic content rose with maturity in mesocarp. Cadmium found in the mesocarp was unaffected by ripeness. For Selenium and Molybdenum, no statistically significant effect of ripeness could be found on their content in mesocarp. Lithium could not be detected in the majority of fruit samples. Differences between the metal concentrations based on the year of harvest were found for Arsenic, Molybdenum, and Selenium, depending on precipitation. The drier the season, the more Arsenic was accumulated. For Molybdenum and Selenium, the opposite effect was observed. PMID:28338629

  18. Study of the Accumulation of Toxic and Essential Ultra-Trace Elements in Fruits of Sorbus domestica L.

    PubMed

    Zeiner, Michaela; Juranović Cindrić, Iva; Majić, Boris; Stingeder, Gerhard

    2017-03-24

    In the present work, the accumulation of selected toxic and essential ultra-trace elements in fruits of service tree ( Sorbus domestica L.) were determined depending on harvest time. Samples were collected from the same sampling area in two different years and within one year in September and October (maturity state). Harvesting the fruits in the same area excludes the influence of metals taken up via roots, thus the impact of airborne contamination by heavy metal translocation can be studied. All samples were dried and digested using an acidic microwave assisted digestion system prior to quantification by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The elements chosen were Arsenic and Cadmium as well as Lithium, Molybdenum, and Selenium. The Arsenic content rose with maturity in mesocarp. Cadmium found in the mesocarp was unaffected by ripeness. For Selenium and Molybdenum, no statistically significant effect of ripeness could be found on their content in mesocarp. Lithium could not be detected in the majority of fruit samples. Differences between the metal concentrations based on the year of harvest were found for Arsenic, Molybdenum, and Selenium, depending on precipitation. The drier the season, the more Arsenic was accumulated. For Molybdenum and Selenium, the opposite effect was observed.

  19. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  20. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey.

    PubMed

    Emmanuelle, Barron; Virginie, Migeot; Fabienne, Séby; Isabelle, Ingrand; Martine, Potin-Gautier; Bernard, Legube; Sylvie, Rabouan

    2012-04-01

    Selenium is an essential element which can be toxic if ingested in excessive quantities. The main human exposure is food. In addition, intake may be boosted by consumption drinking water containing unusual high selenium concentration. We measured the individual selenium level of people exposed to selenium concentration in drinking water greater than the maximum recommended limit which is 10 μg/L. We carried out a prospective cohort study on 80 adults (40 exposed subjects i.e. living in the involved area and 40 non-exposed ones i.e. living elsewhere) in western France. We used three different approaches: (1) direct measurement of ingested selenium by the duplicate portion method, (2) dietary reconstitution with a food frequency questionnaire (FFQ) and (3) evaluation of the individual selenium status by measuring the selenium content in toenail clippings. Analyses were performed by inductively coupled plasma-mass spectrometry. The association between toenail selenium concentration and area of residence was analyzed using linear regression with repeated measurements. We estimated selenium intake from FFQ at 64±14 μg/day for exposed subjects as opposed to 52±14 μg/day for the non-exposed ones. On the basis of 305 duplicate diet samples, average intake was estimated at 64±26 μg/day for exposed subjects. Area of residence (p=0.0030) and smoking (p=0.0054) were independently associated with toenail selenium concentration. Whatever method used for estimating selenium intake, the selenium level in this studied area with high selenium concentrated drinking water is much lower than in seleniferous areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. [Is plasma selenium correlated to transthyretin levels in critically ill patients?

    PubMed

    Freitas, Renata G B O N; Nogueira, Roberto Jose Negrão; Cozzolino, Silvia Maria Franciscato; Vasques, Ana Carolina Junqueira; Ferreira, Matthew Thomas; Hessel, Gabriel

    2017-06-05

    Selenium is an essential trace element, but critically ill patients using total parenteral nutrition (PN) do not receive selenium because this mineral is not commonly offered. Threfore, the eval uation of plasma selenium levels is very important for treating or preventing this deficiency. Recent studies have shown that transthyretin may reflect the selenium intake and could be considered a biomarker. However, this issue is still little explored in the literature. This study aims to investigate the correlation of transthyretin with the plasma selenium of critically ill patients receiving PN. This was a prospective cohort study with 44 patients using PN without selenium. Blood samples were carried out in 3 stages: initial, 7th and 14th day of PN. In order to evaluate the clinical condition and the inflammatory process, albumin, C-reactive protein (CRP), transthyretin, creatinine and HDL cholesterol levels were observed. To assess the selenium status, plasma selenium and glutathione peroxidase (GPx) in whole blood were measured. Descriptive analyses were performed and the ANOVA, Mann-Whitney and Spearman's coefficient tests were conducted; we assumed a significance level of 5%. A positive correlation of selenium with the GPx levels (r = 0.46; p = 0.03) was identified. During two weeks, there was a positive correlation of transthyretin with plasma selenium (r = 0.71; p = 0.05) regardless of the CRP values. Transthyretin may have reflected plasma selenium, mainly because the correlation was verified after the acute phase.

  2. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levelsmore » to those in the pituitary gland of AD and control subjects.« less

  3. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review.

    PubMed

    Medeiros, Denis M

    2016-06-01

    Nutrients have been known to have a significant role in maintaining the health of the skeleton, both bone and cartilage. The nutrients that have received the majority of the attention are Vitamin D and calcium. However, limited attention has been directed toward three trace elements that may have mechanistic impact upon the skeletal tissues and could compromise skeletal health resulting from inadequate intakes of copper, iron, and selenium. The role of copper and selenium has been known, but the role of iron has only received recent attention. Copper deficiency is thought to impact bone health by a decrease in lysyl oxidase, a copper-containing enzyme, which facilitates collagen fibril crosslinking. Iron deficiency impact upon bone has only recently been discovered but the exact mechanism on how the deficient states enhance bone pathology is speculative. Selenium deficiency has an impact on cartilage thereby having an indirect impact on bone. However, several studies suggest that a mycotoxin when consumed by humans is the culprit in some cartilage disorders and the presence of selenium could attenuate the pathology. This review summarizes the current knowledge base with respect to skeletal integrity when each of these three trace elements are inadequate in diets of both animals and humans. © 2016 by the Society for Experimental Biology and Medicine.

  4. Selenium nanoparticles as a nutritional supplement.

    PubMed

    Skalickova, Sylvie; Milosavljevic, Vedran; Cihalova, Kristyna; Horky, Pavel; Richtera, Lukas; Adam, Vojtech

    2017-01-01

    Selenium is an essential trace element in the diet, required for maintenance of health and growth; however, its toxicity could cause serious damage depending on dose and chemical form. Selenium nanoparticles (SeNPs) represent what we believe to be a novel prospect for nutritional supplementation because of their lower toxicity and ability to gradually release selenium after ingestion. In this review, we discuss various forms and types of SeNPs, as well as the way they are synthesized. We also discuss absorption and bioavailability of nanoparticles within the organism. SeNPs demonstrate anticancer and antimicrobial properties that may contribute to human health, not only as dietary supplements, but also as therapeutic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  6. Mineral Commodity Profiles: Selenium

    USGS Publications Warehouse

    Butterman, W.C.; Brown, R.D.

    2004-01-01

    Overview -- Selenium, which is one of the chalcogen elements in group 16 (or 6A) of the periodic table, is a semiconductor that is chemically similar to sulfur for which it substitutes in many minerals and synthetic compounds. It is a byproduct of copper refining and, to a much lesser extent, lead refining. It is used in many applications, the major ones being a decolorizer for glass, a metallurgical additive to free-machining varieties of ferrous and nonferrous alloys, a constituent in cadmium sulfoselenide pigments, a photoreceptor in xerographic copiers, and a semiconductor in electrical rectifiers and photocells. Refined selenium amounting to more than 1,800 metric tons (t) was produced by 14 countries in 2000. Japan, Canada, the United States, and Belgium, which were the four largest producers, accounted for nearly 85 percent of world production. An estimated 250 t of the world total is secondary selenium, which is recovered from scrapped xerographic copier drums and selenium rectifiers; the selenium in nearly all other uses is dissipated (not recoverable as waste or scrap). The present selenium reserve bases for the United States and the world (including the United States), which are associated with copper deposits, are expected to be able to satisfy demand for selenium for several decades without difficulty.

  7. Manganese and selenium concentrations in cerebrospinal fluid of seriously ill children.

    PubMed

    Franěk, Tomáš; Kotaška, Karel; Průša, Richard

    2017-11-01

    The homeostasis of essential trace elements such as selenium and manganese may be altered in patients with severe diseases of various etiologies (trauma brain injuries, tumors, leukemias, lymphomas, neurological diseases). Concentration of manganese and selenium were determined in cerebrospinal fluid by electrothermal atomic absorption spectrometry in 50 hospitalized children with various clinical ethiologies including oncological, neurological, and brain related diseases. The concentrations of manganese in cerebrospinal fluid of children were 0.97±0.67 μg/L. The concentrations of selenium were 13.3±3.5 μg/L. The concentrations were similar as published in adults. The values did not correlated with the age, gender and severity of the disease. We evaluated values of selenium and manganese in cerebrospinal fluid of seriously diseased children. © 2017 Wiley Periodicals, Inc.

  8. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  9. Translational Redefinition of UGA Codons Is Regulated by Selenium Availability*

    PubMed Central

    Howard, Michael T.; Carlson, Bradley A.; Anderson, Christine B.; Hatfield, Dolph L.

    2013-01-01

    Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins. PMID:23696641

  10. Dietary incorporation of feedstuffs naturally high in organic selenium for racing pigeons (Columba livia): effects on plasma antioxidant markers after a standardised simulation of a flying effort.

    PubMed

    Schoonheere, N; Dotreppe, O; Pincemail, J; Istasse, L; Hornick, J L

    2009-06-01

    Selenium is a trace element of importance for animal health. It is essential for adequate functioning of many enzymes such as, the antioxidant enzyme, glutathione peroxidase, which protects the cell against free radicals. A muscular effort induces a rise in reactive oxygen species production which, in turn, can generate an oxidative stress. Two groups of eight racing pigeons were fed respectively with a diet containing 30.3 (control group) and 195.3 (selenium group) microg selenium/kg diet. The pigeons were submitted to a standardised simulation of a flying effort during 2 h. Blood was taken before and after the effort to measure antioxidant markers and blood parameters related to muscle metabolism. Plasma selenium concentration and glutathione peroxidase activity were significantly higher in the selenium group. There were no significant differences for the other measured parameters. As a consequence of the effort, the pigeons of the selenium group showed a higher increase of glutathione peroxidase activity and a smaller increase of plasma lactate concentration. Variations because of the effort in the other markers were not significantly different between the two groups. It is concluded that the selenium status was improved with the feeding of feedstuffs high in Selenium.

  11. Opposing impacts on healthspan and longevity by limiting dietary selenium in Telomere Dysfunctional mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential trace element essential for optimal health. We investigated the role of Se in longevity and healthspan in a mouse model of healthy aging in humans with short telomeres. Telomere shortening is associated with aging, mortality and aging-related diseases. We found that whi...

  12. Urinary excretion of platinum, arsenic and selenium of cancer patients from the Antofagasta region in Chile treated with platinum-based drugs

    PubMed Central

    2012-01-01

    Background Arsenic exposure increases the risk of non-cancerous and cancerous diseases. In the Antofagasta region in Chile, an established relationship exists between arsenic exposure and the risk of cancer of the bladder, lung and skin. Platinum-based drugs are first-line treatments, and many works recognise selenium as a cancer-fighting nutrient. We characterised the short-term urinary excretion amounts of arsenic, selenium and platinum in 24-h urine samples from patients with lung cancer and those with cancer other than lung treated with cisplatin or/and carboplatin. As - Se - Pt inter-element relationships were also investigated. Results The amounts of platinum excreted in urine were not significantly different between patients with lung cancer and those with other cancers treated with cisplatin, despite the significant variation in platinum amounts supplied from platinum-based drugs. In general, the analytical amounts of excreted selenium were greater than those for arsenic, which could imply that platinum favours the excretion of selenium. For other types of cancers treated with drugs without platinum, excretion of selenium was also greater than that of arsenic, suggesting an antagonist selenium-anti-cancer drug relationship. Conclusions Regards the baseline status of patients, the analytical amounts of excreted Se is greater than those for As, particularly, for cisplatin chemotherapy. This finding could imply that for over the As displacement Pt favours the excretion of Se. The analytical amounts of excreted Se were greater than those for As, either with and without Pt-containing drugs, suggesting an antagonist Se-anti-cancer drug relationship. However, it seemed that differences existed between As - Se - Pt inter-element associations in patients treated for lung cancer in comparison with those treated for cancer other than lung. Therefore, knowledge obtained in this work, can contribute to understanding the arsenic cancer mechanism and the As - Se - Pt inter-element association for lung cancer and other types of cancer, which in some cases respond at a linear mathematical model. PMID:22546077

  13. Producing selenium-enriched eggs and meat to improve the selenium status of the general population.

    PubMed

    Fisinin, Vladimir I; Papazyan, Tigran T; Surai, Peter F

    2009-01-01

    The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hens' diet at levels that provide 0.3-0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering approximately 50% (30-35 microg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.

  14. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    PubMed Central

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  15. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  16. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  17. Effects of selenium biofortification on crop nutritional quality.

    PubMed

    Malagoli, Mario; Schiavon, Michela; dall'Acqua, Stefano; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.

  18. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.

  19. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Vermejo Project area and the Maxwell National Wildlife Refuge, Colfax County, northeastern New Mexico, 1993

    USGS Publications Warehouse

    Bartolino, J.R.; Garrabrant, L.A.; Wilson, Mark; Lusk, J.D.

    1996-01-01

    Based on findings of limited studies during 1989-92, a reconnaissance investigation was conducted in 1993 to assess the effects of the Vermejo Irrigation Project on water quality in the area of the project, including the Maxwell National Wildlife Refuge. This project was part of a U.S. Department of the Interior National Irrigation Water-Quality Program to determine whether irrigation drainage has caused or has the potential to cause significant harmful effects on human health, fish, and wildlife and whether irrigation drainage may adversely affect the suitability of water for other beneficial uses. For this study, samples of water, sediment, and biota were collected from 16 sites in and around the Vermejo Irrigation Project prior to, during the latter part of, and after the 1993 irrigation season (April, August-September, and November, respectively). No inorganic constituents exceeded U.S. Environmental Protection Agency drinking-water standards. The State of New Mexico standard of 750 micrograms per liter for boron in irrigation water was exceeded at three sites (five samples), though none exceeded the livestock water standard of 5,000 micrograms per liter. Selenium concentrations exceeded the State of New Mexico chronic standard of 2 micrograms per liter for wildlife and fisheries water in at least eight samples from five sites. Bottom-sediment samples were collected and analyzed for trace elements and compared to concentrations of trace elements in soils of the Western United States. Concentrations of three trace elements at eight sites exceeded the upper values of the expected 95-percent ranges for Western U.S. soils. These included molybdenum at one site, selenium at seven sites, and uranium at four sites. Cadmium and copper concentrations exceeded the National Contaminant Biomonitoring Program 85th percentile in fish from six sites. Average concentrations of selenium in adult brine flies (33.7 mg/g dry weight) were elevated above concentrations in other invertebrates. Concentrations of other elements were below their respective toxicity levels. Plants, invertebrates, fish, and fish fillets were collected and analyzed. These analyses were compared to diagnostic criteria and to each other to determine the extent of bioaccumulation of trace elements. Plants contained larger dry weight concentrations of aluminum, arsenic, boron, chromium, iron, lead, magnesium, manganese, nickel, and vanadium than invertebrates and fish. Adult brine flies, gathered from playas, contained larger geometric mean dry weight concentrations of boron, magnesium, and selenium than other invertebrates. Of all samples collected, the largest mercury concentrations were found in fish fillets, although these concentrations were below levels of concern. Mercury and selenium bioaccumulation was evident in various habitats of the study area. Biological samples from Natural playa, an endemic wetland, and Half playa, a playa that receives additional water through seepage and irrigation delivery canals, generally had elevated concentrations of boron, iron, magnesium, and selenium than samples from reservoir and river sites. Selenium concentrations were lowest in biota from the two reservoir sites, although a wetland immediately downstream from the dam impounding Lake No. 13 (created by seepage from the reservoir) had elevated concentrations of selenium in biota. The geometric mean selenium concentration of whole-fish samples, except those from Lakes No. 13 and No. 14, exceeded the 5-mg/g dry weight selenium concentration that demarcates the approximate lower limit of the threshold range of concentrations that have been associated with adverse effects on piscine reproduction. Biota collected on and in the area around Maxwell National Wildlife Refuge contained concentrations of selenium that are in the low

  20. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Relationships between selenium and mercury in the fruiting bodies of some mushrooms growing in Poland

    NASA Astrophysics Data System (ADS)

    Falandysz, J.; Kubotal, R.; Kunito, T.; Bielawski, L.; Brzostowski, A.; Gucia, M.; Jedrusiak, A.; Lipka, K.; Tanabe, S.

    2003-05-01

    The relationships between concentrations of total selenium and mercury were investigated for the whole fruiting bodies, caps and/or stalks of King bolete (Boletus edulis), Brown birch scaber stalk (Leccinum scabrum), Parasol mushroom (Macrolepiota procera), Poison pax (Paxillus involutus) and Fly agaric (Amatiita niuscaria) collected from the various sites in Poland. The mushroom species examined varied largely due to the contents and proportions between the total selenium and mercury concentrations, what seems to indicate on species-dependent strategy of co-uptake and accumulation of these elements.

  2. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  3. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  4. Concentrations of Trace Elements in Hemodialysis Patients: A Prospective Cohort Study.

    PubMed

    Tonelli, Marcello; Wiebe, Natasha; Bello, Aminu; Field, Catherine J; Gill, John S; Hemmelgarn, Brenda R; Holmes, Daniel T; Jindal, Kailash; Klarenbach, Scott W; Manns, Braden J; Thadhani, Ravi; Kinniburgh, David

    2017-11-01

    Low concentrations and excessive concentrations of trace elements have been commonly reported in hemodialysis patients, but available studies have several important limitations. Random sample of patients drawn from a prospective cohort. 198 incident hemodialysis patients treated in 3 Canadian centers. We used mass spectrometry to measure plasma concentrations of the 25 elements at baseline, 6 months, 1 year, and 2 years following enrollment in the cohort. We focused on low concentrations of zinc, selenium, and manganese and excessive concentrations of lead, arsenic, and mercury; low and excessive concentrations of the other 19 trace elements were treated as exploratory analyses. Low and excessive concentrations were based on the 5th and 95th percentile plasma concentrations from healthy reference populations. At all 4 occasions, low zinc, selenium, and manganese concentrations were uncommon in study participants (≤5.1%, ≤1.8%, and ≤0.9% for zinc, selenium, and manganese, respectively) and a substantial proportion of participants had concentrations that exceeded the 95th percentile (≥65.2%, ≥74.2%, and ≥19.7%, respectively). Almost all participants had plasma lead concentrations above the 95th percentile at all time points. The proportion of participants with plasma arsenic concentrations exceeding the 95th percentile was relatively constant over time (9.1%-9.8%); the proportion with plasma mercury concentrations that exceeded the 95th percentile varied between 15.2% and 29.3%. Low arsenic, platinum, tungsten, and beryllium concentrations were common (>50%), as were excessive cobalt, manganese, zinc, vanadium, cadmium, selenium, barium, antimony, nickel, molybdenum, lead, and chromium concentrations. There was no evidence that low zinc, selenium, or manganese concentrations exist in most contemporary Canadian hemodialysis patients. Some patients have excessive plasma arsenic and mercury concentrations, and excessive lead concentrations were common. These findings require further investigation. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Selenium.

    PubMed

    Barceloux, D G

    1999-01-01

    The 4 natural oxidation states of selenium are elemental selenium (0), selenide (-2), selenite (+4), and selenate (+6). Inorganic selenate and selenite predominate in water whereas organic selenium compounds (selenomethionine, selenocysteine) are the major selenium species in cereal and in vegetables. The principal applications of selenium include the manufacture of ceramics, glass, photoelectric cells, pigments, rectifiers, semiconductors, and steel as well as use in photography, pharmaceutical production, and rubber vulcanizing. High concentrations of selenium in surface and in ground water usually occur in farm areas where irrigation water drains from soils with high selenium content (Kesterson Reservoir, California) or in lakes receiving condenser cooling water from coal-fired electric power plants (Belews Lake, North Carolina). For the general population, the primary pathway of exposure to selenium is food, followed by water and air. Both selenite and selenate possess substantial bioavailability. However, plants preferentially absorb selenates and convert them to organic compounds. Aquatic organisms (e.g., bivalves) can accumulate and magnify selenium in the food chain. Selenium is an essential component of glutathione peroxidase, which is an important enzyme for processes that protect lipids in polyunsaturated membranes from oxidative degradation. Inadequate concentrations of selenium in the Chinese diet account, at least in part, for the illness called Keshan disease. Selenium deficiency occurs in the geographic areas where Balkan nephropathy appears, but there is no direct evidence that selenium deficiency contributes to the development of this chronic, progressive kidney disease. Several lines of scientific inquiry suggest that an increased risk of cancer occurs as a result of low concentrations of selenium in the diet; however, insufficient evidence exists at the present time to recommend the use of selenium supplements for the prevention of cancer. The toxicity of most forms of selenium is low and the toxicity depends on the chemical form of selenium. The acute ingestion of selenious acid is almost invariably fatal, preceded by stupor, hypotension, and respiratory depression. Chronic selenium poisoning has been reported in China where changes in the hair and nails resulted from excessive environmental exposures to selenium. Garlic odor on the breath is an indication of excessive selenium exposure as a result of the expiration of dimethyl selenide. The US National Toxicology Program lists selenium sulfide as an animal carcinogen, but there is no evidence that other selenium compounds are carcinogens.

  6. [Selenium supplementation trials for cancer prevention and the subsequent risk of type 2 diabetes mellitus: selenium and vitamin E cancer prevention trial and after].

    PubMed

    Koyama, Hiroshi; Mutakin; Abdulah, Rizky; Yamazaki, Chiho; Kameo, Satomi

    2013-01-01

    The essential trace element selenium has long been considered to exhibit cancer-preventive, antidiabetic and insulin-mimetic properties. However, recent epidemiological studies have indicated that supranutritional selenium intake and high plasma selenium levels are not necessarily preventive against cancer, and are possible risk factors for developing type 2 diabetes mellitus. The results of the SELECT, Selenium and Vitamin E Cancer Prevention Trial, in which it is hypothesized that the supplementations with selenium and/or vitamin E decrease the prostate cancer incidence among healthy men in the U.S., showed that the supplementation did not prevent the development of prostate cancer and that the incidence of newly diagnosed type 2 diabetes mellitus increased among the selenium-supplemented participants. The Nutritional Prevention of Cancer (NPC) trial showed a decreased risk of prostate cancer among participants taking 200 μg of selenium daily for 7.7 years. However, the results of the NPC trial also showed an increased risk of type 2 diabetes mellitus in the participants with plasma selenium levels in the top tertile at the start of the study. Recently, the association of serum selenium with adipocytokines, such as TNF-α, VCAM-1, leptin, FABP-4, and MCP-1, has been observed. Selenoprotein P has been reported to associated with adiponectin, which suggests new roles of selenoprotein P in cellular energy metabolism, possibly leading to the increased risk of type 2 diabetes mellitus and also the development of cancer. Further studies are required to elucidate the relationship between selenium and adipocytokines and the role of selenoprotein P in the development of type 2 diabetes mellitus and cancer at high levels of selenium.

  7. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    PubMed

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  8. High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation.

    PubMed

    Barlow, Jacob; Gozzi, Kevin; Kelley, Chase P; Geilich, Benjamin M; Webster, Thomas J; Chai, Yunrong; Sridhar, Srinivas; van de Ven, Anne L

    2017-01-01

    Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(D,L-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.

  9. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of the Content of Antimony, Arsenic, Bismuth, Selenium, Tellurium and Their Inorganic Forms in Commercially Baby Foods.

    PubMed

    Ruiz-de-Cenzano, M; Rochina-Marco, A; Cervera, M L; de la Guardia, M

    2017-12-01

    Baby foods, from the Spanish market and prepared from meat, fish, vegetables, cereals, legumes, and fruits, were analyzed to obtain the concentration of antimony (Sb), arsenic (As), bismuth (Bi), and tellurium (Te) as toxic elements and selenium (Se) as essential element. An analytical procedure was employed based on atomic fluorescence spectroscopy which allowed to obtain accurate data at low levels of concentration. Values of 14 commercial samples, expressed in nanograms per gram fresh weight, ranged for Sb 0.66-6.9, As 4.5-242, Te 1.35-2.94, Bi 2.18-4.79, and Se 5.4-109. Additionally, speciation studies were performed based on data from a non-chromatographic screening method. It was concluded that tellurium and bismuth were mainly present as inorganic forms and selenium as organic form, and antimony and arsenic species depend on the ingredients of each baby food. Risk assessment considerations were made by comparing dietary intake of the aforementioned elements through the consumption of one baby food portion a day and recommended or tolerable guideline values.

  11. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Complex of vitamins and antioxidants protects low-density lipoproteins in blood plasma from free radical oxidation and activates antioxidants enzymes in erythrocytes from patients with coronary heart disease.

    PubMed

    Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V

    2003-08-01

    We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.

  13. Sequential extractions of selenium soils from Stewart Lake: total selenium and speciation measurements with ICP-MS detection.

    PubMed

    Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A

    2003-06-01

    Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.

  14. Analysis of Dissolved Selenium Loading for Selected Sites in the Lower Gunnison River Basin, Colorado, 1978-2005

    USGS Publications Warehouse

    Thomas, Judith C.; Leib, Kenneth J.; Mayo, John W.

    2008-01-01

    Elevated selenium concentrations in streams are a water-quality concern in western Colorado. The U.S. Geologic Survey, in cooperation with the Colorado Department of Public Health and Environment, summarized selenium loading in the Lower Gunnison River Basin to support the development of total maximum daily selenium loads at sites that represent the cumulative contribution to U.S. Environmental Protection Agency 303(d) list segments. Analysis of selenium loading included quantifying loads and determining the amount of load that would need to be reduced to bring the site into compliance, referred to as 'the load reduction,' with the State chronic aquatic-life standard for dissolved selenium [85th percentile selenium concentration not to exceed 4.6 ?g/L (micrograms per liter)], referred to as 'the water-quality standard.' Streamflow and selenium concentration data for 54 historical water-quality/water-quantity monitoring sites were compiled from U.S. Geological Survey and Colorado Department of Public Health and Environment data sources. Three methods were used for analysis of selenium concentration data to address the variable data density among sites. Mean annual selenium loads were determined for only 10 of the 54 sites due to data availability limitations. Twenty-two sites had 85th percentile selenium concentrations that exceeded the water-quality standard, 3 sites had 85th percentile selenium concentrations less than the State standard, and 29 sites could not be evaluated with respect to 85th percentile selenium concentration (sample count less than 5). To bring selenium concentrations into compliance with the water-quality standard, more than 80 percent of the mean annual selenium load would need to be reduced at Red Rock Canyon, Dry Cedar Creek, Cedar Creek, Loutzenhizer Arroyo, Sunflower Drain, and Whitewater Creek. More than 50 percent of the mean annual load would need to be reduced at Dry Creek to bring the site into compliance with the water-quality standard. The Uncompahgre River, Gunnison River at Delta, and Gunnison River near Grand Junction would require 69, 34 and 53 percent, respectively, of the mean annual load to be reduced for water years 2001 through 2005 to meet the water-quality standard. Mean annual load reductions can be further reduced by targeting the periods of time when selenium would be removed from streams by remediation. During a previous study of selenium loads in the Lower Gunnison River Basin, mean annual load reductions were estimated at the Gunnison River near Grand Junction for the 1997?2001 study period. Mean annual load reductions estimated for this study period were less than those estimated for the 2001?05 study period, emphasizing the importance of understanding that different study periods can result in different load reduction estimates.

  15. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children

    PubMed Central

    Chen, Zhu; Myers, Robert; Wei, Taiyin; Bind, Eric; Kassim, Prince; Wang, Guoying; Ji, Yuelong; Hong, Xiumei; Caruso, Deanna; Bartell, Tami; Gong, Yiwei; Strickland, Paul; Navas-Acien, Ana; Guallar, Eliseo; Wang, Xiaobin

    2015-01-01

    There is an emerging hypothesis that exposure to cadmium (Cd), mercury (Hg), lead (Pb), and selenium (Se) in utero and early childhood could have long-term health consequences. However, there are sparse data on early life exposures to these elements in US populations, particularly in urban minority samples. This study measured levels of Cd, Hg, Pb, and Se in 50 paired maternal, umbilical cord, and postnatal blood samples from the Boston Birth Cohort (BBC). Maternal exposure to Cd, Hg, Pb, and Se was 100% detectable in red blood cells (RBCs), and there was a high degree of maternal–fetal transfer of Hg, Pb, and Se. In particular, we found that Hg levels in cord RBCs were 1.5 times higher than those found in the mothers. This study also investigated changes in concentrations of Cd, Hg, Pb, and Se during the first few years of life. We found decreased levels of Hg and Se but elevated Pb levels in early childhood. Finally, this study investigated the association between metal burden and preterm birth and low birthweight. We found significantly higher levels of Hg in maternal and cord plasma and RBCs in preterm or low birthweight births, compared with term or normal birthweight births. In conclusion, this study showed that maternal exposure to these elements was widespread in the BBC, and maternal–fetal transfer was a major source of early life exposure to Hg, Pb, and Se. Our results also suggest that RBCs are better than plasma at reflecting the trans-placental transfer of Hg, Pb, and Se from the mother to the fetus. Our study findings remain to be confirmed in larger studies, and the implications for early screening and interventions of preconception and pregnant mothers and newborns warrant further investigation. PMID:24756102

  16. Microbial oxidation and solubilization of precipitated elemental selenium in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losi, M.E.; Frankenberger, W.T. Jr.

    1998-07-01

    Oxidation of elemental selenium (Se{sup 0}) leads to increased solubilization and enhanced bioavailability. In this work, laboratory microcosm experiments were conducted to study oxidation of Se{sup 0} in soil and liquid cultures. Major objectives were to examine the oxidation rates of four San Joaquin Valley, California soils, and to assess the contribution of biological vs. chemical processes. For these experiments, red, crystalline Se{sup 0} was prepared by both chemical and biological synthesis, and its presence was confirmed by synchrotron-based x-ray absorption spectroscopy. The amount of Se{sup 0} oxidized over 125 d was from 1 to 10% of Se{sup 0} inmore » soils spiked to 250 mg Se{sup 0} kg{sup {minus}1} and approximately half that in soils spiked to 100 mg Se{sup 0} kg{sup {minus}1}. First order rate constants for oxidation of Se{sup 0} were from 0.05 to 0.32 yr{sup {minus}1} and 0.04 to 0.39 yr{sup {minus}1} at 250 and 100 mg Se{sup 0} kg{sup {minus}1} soil, respectively. The amount of Se{sup 0} oxidized was generally correlated with prior exposure of the soil to Se. Products included either selenite (SeO{sub 3}{sup 2{minus}}), or both (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}). Biotic processes were shown to be of major importance. Both heterotrophic and autotrophic oxidation were observed, and an inorganic C source (NaHCO{sub 3}) was favored relative to glucose. This study demonstrates that Se{sup 0} oxidation in soils is largely biotic in nature, occurs at relatively slow rates and yields both SeO{sub 3}{sup 2{minus}} and SeO{sub 4}{sup 2{minus}}.« less

  17. Whole-body concentrations of elements in three fish species from offshore oil platforms and natural areas in the Southern California Bight, USA

    USGS Publications Warehouse

    Love, Milton S.; Saiki, Michael K.; May, Thomas W.; Yee, Julie L.

    2013-01-01

    elements. Forty-two elements were excluded from statistical comparisons as they (1) consisted of major cations that were unlikely to accumulate to potentially toxic concentrations; (2) were not detected by the analytical procedures; or (3) were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. However, the concentrations of copper, selenium, titanium, and vanadium in Pacific sanddab were unusual because small individuals exhibited either no differences between oil platforms and natural areas or significantly lower concentrations at oil platforms than at natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas.

  18. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion

    PubMed Central

    Jobeili, Lara; Rousselle, Patricia; Béal, David; Blouin, Eric; Roussel, Anne-Marie; Damour, Odile; Rachidi, Walid

    2017-01-01

    Skin is constantly exposed to environmental factors such as pollutants, chemicals and ultra violet radiation (UV), which can induce premature skin aging and increase the risk of skin cancer. One strategy to reduce the effect of oxidative stress produced by environmental exposure is the application of antioxidant molecules. Among the endogenous antioxidants, selenoproteins play a key role in antioxidant defense and in maintaining a reduced cellular environment. Selenium, essential for the activity of selenoproteins, is a trace element that is not synthesized by organisms and must be supplied by diet or supplementation. The aim of this study is to evaluate the effect of Selenium supplementation on skin aging, especially on keratinocytes, the main cells of the epidermis. Our results demonstrate for the first time to our knowledge, the major role of Selenium on the replicative life span of keratinocytes and on aging skin. Selenium protects keratinocyte stem cells (KSCs) against senescence via preservation of their stemness phenotype through adhesion to the basement membrane. Additionally, Selenium supplementation maintains the homeostasis of skin during chronological aging in our senescent skin equivalent model. Controlled supplementation with Selenium could be a new strategy to protect skin against aging. PMID:29176034

  19. Involvement of Superoxide Dismutases in the Response of Escherichia coli to Selenium Oxides

    PubMed Central

    Bébien, Magali; Lagniel, Gilles; Garin, Jérôme; Touati, Danièle; Verméglio, André; Labarre, Jean

    2002-01-01

    Selenium can provoke contrasting effects on living organisms. It is an essential trace element, and low concentrations have beneficial effects, such as the reduction of the incidence of cancer. However, higher concentrations of selenium salts can be toxic and mutagenic. The bases for both toxicity and protection are not clearly understood. To provide insights into these mechanisms, we analyzed the proteomic response of Escherichia coli cells to selenate and selenite treatment under aerobic conditions. We identified 23 proteins induced by both oxides and ca. 20 proteins specifically induced by each oxide. A striking result was the selenite induction of 8 enzymes with antioxidant properties, particularly the manganese and iron superoxide dismutases (SodA and SodB). The selenium inductions of sodA and sodB were controlled by the transcriptional regulators SoxRS and Fur, respectively. Strains with decreased superoxide dismutase activities were severely impaired in selenium oxide tolerance. Pretreatment with a sublethal selenite concentration triggered an adaptive response dependent upon SoxRS, conferring increased selenite tolerance. Altogether, our data indicate that superoxide dismutase activity is essential for the cellular defense against selenium salts, suggesting that superoxide production is a major mechanism of selenium toxicity under aerobic conditions. PMID:11872706

  20. Interplay between Selenium Levels, Selenoprotein Expression, and Replicative Senescence in WI-38 Human Fibroblasts*

    PubMed Central

    Legrain, Yona; Touat-Hamici, Zahia; Chavatte, Laurent

    2014-01-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence. PMID:24425862

  1. Operationally defined species characterization and bioaccessibility evaluation of cobalt, copper and selenium in Cape gooseberry (Physalis Peruviana L.) by SEC-ICP MS.

    PubMed

    Wojcieszek, Justyna; Ruzik, Lena

    2016-03-01

    Physalis peruviana could attract great interest because of its nutritional and industrial properties. It is an excellent source of vitamins, minerals, essential fatty acids and carotenoids. Physalis Peruviana is also known to have a positive impact on human health. Unfortunately, still little is known about trace elements present in Physalis Peruviana and their forms available for the human body. Thus, the aim of this study was to estimate bioaccessibility and characterization of species of cobalt, copper and selenium in Physalis Peruviana fruits. Total and extractable contents of elements were determined by mass spectrometer with inductively coupled plasma (ICP MS). In order to separate the different types of metal complexes Physalis peruviana fruits were treated with the following solvents: Tris-HCl (pH 7.4), sodium dodecyl sulfate (SDS) (pH 7.4) and ammonium acetate (pH 5.5). The best efficiency of extraction of: cobalt was obtained for ammonium acetate (56%) and Tris-HCl (60%); for copper was obtained for SDS (66%), for selenium the best extraction efficiency was obtained after extraction with SDS (48%). To obtain information about bioaccessibility of investigated elements, enzymatic extraction based on in vitro simulation of gastric (pepsin) and intestinal (pancreatin) digestion was performed. For copper and selenium the simulation of gastric digestion leads to the extraction yield above 90%, while both steps of digestion method were necessary to obtain satisfactory extraction yield in the case of cobalt. Size exclusion chromatography (SEC) coupled to on-line ICP MS detection was used to investigate collected metal species. The main fraction of metal compounds was found in the 17 kDa region. Cobalt and copper create complexes mostly with compounds extracted by means of ammonium acetate and SDS, respectively. Cobalt, copper and selenium were found to be highly bioaccessible from Physalis Peruviana. Investigation of available standards of cobalt and selenium allows confirming the presence of vitamin B12 and probably selenomethionine in the fraction bioaccessible by human body (obtained during enzymatic extraction). It should be noted that the presence of small seleno-compounds in Cape gooseberry was performed for the first time. The results show that the combination of SEC and ICP MS could provide a simple method for separating of soluble element species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (Danio rerio).

    PubMed

    Hauser-Davis, R A; Silva, J A N; Rocha, Rafael C C; Saint'Pierre, Tatiana; Ziolli, R L; Arruda, M A Z

    2016-01-01

    Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations. Little is known regarding Se effects on parameters such as oxidative stress biomarkers. The aim of the present study was to investigate the effects of acute selenium exposure on oxidative stress biomarkers in a model organism, zebrafish (Danio rerio). Fish were exposed to selenium selenite at 1mgL(-1). Reduced glutathione (GSH), and metallothionein (MT) concentrations were determined in liver, kidney and brain, with MT also being determined in bile. Essential metals and trace-elements were also determined by inductively coupled mass spectrometry (ICP-MS) in order to verify possible metal homeostasis alterations. GSH concentrations in liver, kidney and brain increased significantly (1.05±0.03μmolg(-1) ww, 1.42±0.03μmolg(-1) ww and 1.64±0.03μmolg(-1) ww, respectively) in the Se-exposed group when compared to the controls (0.88±0.05μmolg(-1) ww, 0.80±0.04μmolg(-1) ww and 0.89±0.03μmolg(-1) ww for liver, kidney and brain, respectively). MT levels in Se-exposed liver (0.52±0.03μmolg(-1) ww) decreased significantly in comparison to the control group (0.64±0.02μmolg(-1) ww), while levels in bile increased, albeit non-significantly. This is in accordance with previous studies that indicate efficient biliary MT action, leading to a rapid metabolism and elimination of contaminants from the body. Levels in the brain increased significantly after Se-exposure (0.57±0.01μmolg(-1) ww) when compared to the control group (0.35±0.03μmolg(-1) ww) since this organ does not present a detoxification route as quick as the liver-gallbladder route. Several metal and trace-elements were altered with Se-exposure, indicating that excess of selenium results in metal dyshomeostasis. This is the first report on metal dyshomeostasis due to Se-exposure, which may be the first step in the mechanism of action of selenium toxicity, as is postulated to occur in certain major human pathophysiologies. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies

    USDA-ARS?s Scientific Manuscript database

    Lentils (Lens culinaris L.) are an important protein and carbohydrate food, rich in essential dietary components and trace elements. Selenium (Se) is an essential micronutrient for human health. For adults, 55 µg of daily Se intake is recommended for better health and cancer prevention. Millions of ...

  4. Survival of the hermit crab, Clibanarius vittatus, exposed to selenium and other environmental factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Recent investigations of water quality criteria have frequently examined the effects of a pollutant; however, a more realistic investigation would consider effects of multiple environmental factors and their interactions with the pollutant. Awareness of selenium as a pollutant is increasing. The growing sulfur and petroleum industries are only two of the potential sources of the element on the Texas coast. This study examined the toxicity of selenium to hermit crab Clibanarius vittatus (Bosc) under twelve different combinations of temperature and salinity. Additionally, the impact of the organisms' original environment was considered as an environmental factor.

  5. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    PubMed

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  7. Analysis of Annual Changes in the Concentrations of Selected Macro- and Microelements, Thyroxine, and Testosterone in the Serum of Red Deer (Cervus elaphus) Stags.

    PubMed

    Kuba, J; Błaszczyk, B; Stankiewicz, T; Skuratko, A; Udała, J

    2015-12-01

    The aim of the study was to analyze seasonal changes in the concentrations of calcium, phosphorus, magnesium, and selenium as well as thyroxine and testosterone in adult red deer stags. The highest testosterone concentrations (mean 6.29±4.36 ng/ml) were observed from the end of August to November, confirming an increase in testicular secretory activity during the mating season. The changes in thyroxine concentration show circannual rhythms, most likely related to changes in the air temperature. The highest mean level of thyroxine was observed in spring (55.69±10.99 ng/ml). The concentration of selenium also reached the highest level during this season (0.107±0.027 μg/ml). In the case of the studied macroelements, the concentrations were stable from spring to summer but then decreased to the lowest mean values in autumn in both years of the experiment (Ca, 61.17±10.60; P, 47.08±9.59; Mg, 15.96±2.39 μg/ml). The dynamics of thyroxine secretion does not seem to affect directly the metabolism of calcium, phosphorus, and magnesium. In turn, sexual activity, manifested in the increase in secretion of testosterone, may affect changes in the concentration of calcium. Additionally, we cannot exclude a connection between changes in the concentrations of testosterone and selenium.

  8. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [Selenium deficiency in an organic extensive water buffalo farm].

    PubMed

    Große, Reinhard; Binici, Cagri; Pieper, Robert; Müller, Kerstin E

    2018-06-01

    This case report presents investigations of muscle problems in three male water buffaloes (1-2 years) kept extensively (loose housing, pasture). The bulls were presented because of listlessness and increased lying periods. They displayed difficulties to stand up, a stilted gait, and tremor in the legs. The determination of the selenium concentration by the measurement of glutathione peroxidase activity in whole blood samples (EDTA) demonstrated selenium deficiency in all three buffaloes. This confirmed the tentative diagnosis of nutritive myodystrophy due to selenium deficiency. Following a single injection of 1500 mg all-rac-alpha-tocopherol acetate and 11 mg sodium selenite, the bulls recovered clinically. The whole blood samples taken subsequently from seven adult water buffaloes on the farm showed selenium deficiency in all animals. Consequently, slow-release multi-trace element boluses were administered once orally - as far as possible - to all adult animals of the herd. After 1 year, a good to very good selenium supply was observed in all these buffaloes, except for one cow, in which bolus application had failed. Schattauer GmbH.

  10. Atomic-absorption spectrochemical analysis for ultratrace elements in geological materials by hydride-forming techniques: Selenium.

    PubMed

    Sighinolfi, G P; Gorgoni, C

    1981-03-01

    A method based on hydride generation for the AAS determination of selenium at nanogram levels in geological materials is described. The sample is decomposed by aqua regia attack in a sealed Teflon bomb. After treatment with hydrochloric acid, selenium is converted into hydrogen selenide by reaction with sodium borohydride and determined by AAS. Matrix interference effects have been investigated, but though they are rarely significant, the standard-additions method is recommended. The absolute sensitivity of the method is about 2.0 ng of Se (in 10 ml of solution). Detection limits of about 5-10 ng in a 1.0-g sample have been achieved with the use of "Suprapure" reagents. The selenium content of some USGS, CRPG and ANRT reference samples is reported.

  11. Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida.

    PubMed

    Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Poor, Savannah K; Buchweitz, John P; Walsh, Catherine J

    2017-12-01

    Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Trace element partitioning during the retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.H.; Dale, L.S.; Chapman, J.f.

    1987-05-01

    A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less

  13. Trace elements and their distribution in protein fractions of camel milk in comparison to other commonly consumed milks.

    PubMed

    Al-Awadi, F M; Srikumar, T S

    2001-08-01

    Studies on camels' milk, whether with respect to concentration or bioavailability of trace elements from this milk, are limited and warrant further investigation. The object of this study was to analyse the concentration and distribution of zinc, copper, selenium, manganese and iron in camel milk compared to those in human milk, cows' milk and infant formula under similar experimental conditions. Camels' milk and cows' milk were collected from local farms, human milk samples were obtained from healthy donors in Kuwait and infant formula was purchased locally. Milk fractionation was performed by ultra-centrifugation and gelcolumn chromatography. The concentration of trace elements was analysed by atomic absorption spectrometry and that of protein was determined spectrophotometrically. The concentration of manganese and iron in camels' milk was remarkably higher (7-20-fold and 4-10-fold, respectively) than in human milk, cows' milk and infant formula. The zinc content of camels' milk was higher than that of human milk but slightly lower than in cows' milk and infant formula. The concentration of copper in camels' milk was similar to that of cows' milk but lower than in human milk and infant formula. The selenium content of camels' milk was comparable to those of other types of milk, Approximately 50-80% of zinc, copper and manganese in camels' milk were associated with the casein fraction, similar to that of cows' milk, The majority of selenium and iron in camels' milk was in association with the low molecular weight fraction, It is recommended that camels' milk be considered as a potential source of manganese, selenium and iron, perhaps not only for infants, but also for other groups suspected of mild deficiency of these elements. Further investigations are required to confirm this proposal.

  14. DETECTION OF ELEMENTS AT ALL THREE r-PROCESS PEAKS IN THE METAL-POOR STAR HD 160617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E., E-mail: iur@obs.carnegiescience.edu, E-mail: jelawler@wisc.edu

    2012-05-01

    We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundancesmore » or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.« less

  15. Selenium modulates MMP2 expression through the TGFβ1/Smad signalling pathway in human umbilical vein endothelial cells and rabbits following lipid disturbance.

    PubMed

    Xu, Chenggui; Lu, Guihua; Li, Qinglang; Zhang, Juhong; Huang, Zhibin; Gao, Xiuren

    2017-07-01

    A high-fat diet is a major risk factor for coronary heart diseases. Matrix metalloprotease (MMP) expression is changed in many cardiovascular diseases. Selenium, which is an important trace element in animals, has a close relationship with cardiovascular diseases. The TGFβ1/Smad signalling pathway is ubiquitous in diverse tissues and cells, and it is also associated with the occurrence and development of cardiovascular diseases. Therefore, in this study, we aimed to determine selenium's effect on lipid metabolism, atherosclerotic plaque formation, and MMP2 expression, as well as the underlying functional mechanism. In vivo tests: 24 male New Zealand white rabbits were randomly divided into 4 groups: regular diet, high-fat diet, high-fat diet+selenium and regular diet+selenium groups. The high-fat diet induced the lipid disturbances of rabbits at week 12. Selenium supplementation lowered total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels (p<0.01). Selenium supplementation also suppressed MMP2 over-expression in thoracic aortas. In vitro tests: Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of selenium or ox-LDL. Ox-LDL promoted MMP2 expression by increasing TGFβ1, pSmad2, pSmad3 and Smad3 expression (p<0.01). Selenium attenuated MMP2 over-expression by regulating the TGFβ1/Smad signalling pathway. Selenium suppressed high-fat diet-induced MMP2 over-expression in vivo by improving lipid metabolism. In vitro, selenium attenuated MMP2 over-expression through the TGFβ1/Smad signalling pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Pine River Project area, Southern Ute Indian Reservation, southwestern Colorado and northwestern New Mexico, 1988-89

    USGS Publications Warehouse

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Thompson, A.L.; Formea, J.J.; Wickman, D.W.

    1993-01-01

    During 1988-89, water, bottom sediment, biota, soil, and plants were sampled for a reconnaissance investigation of the Pine River Project area in southwestern Colorado. Irrigation drainage does not seem to be a major source of dissolved solids in streams. Concentrations of manganese, mercury, and selenium exceeded drinking-water regulations in some streams. The maximum selenium concentration in a stream sample was 94 microg/L in Rock Creek. Irrigation drainage and natural groundwater are sources of some trace elements to streams. Water from a well in a nonirrigated area had 4,800 microg/L of selenium. Selenium concentrations in soil on the Oxford Tract were greater in areas previously or presently irrigated than in areas never irrigated. Some forage plants on the Oxford Tract had large selenium concentrations, including 180 mg/km in alfalfa. Most fish samples had selenium concentrations greater than the National Contaminant Biomonitoring Program 85th percentile. Selenium concentrations in aquatic plants, aquatic inverte- brates, and small mammals may be of concern to fish and wildlife because of possible food-chain bioconcentration. Selenium concentrations in bird samples indicate selenium contamination of biota on the Oxford Tract. Mallard breasts had selenium concentrations exceeding a guideline for human consumption. The maximum selenium concentration in biota was 50 microg/g dry weight in a bird liver from the Oxford Tract. In some fish samples, arsenic, cadmium, copper, and zinc exceeded background concentrations, but concentrations were not toxic. Mercury concentrations in 16 fish samples exceeded the background concentration. Ten mercury concentrations in fish exceeded a guideline for mercury in food for consumption by pregnant women.

  17. Roles and potential mechanisms of selenium in countering thyrotoxicity of DEHP.

    PubMed

    Zhang, Pei; Guan, Xie; Yang, Min; Zeng, Li; Liu, Changjiang

    2018-04-01

    Di-(2-ethylhexyl) phthalate (DEHP) as a ubiquitous environmental contaminant could disturb thyroid hormone (TH) homeostasis. Selenium as an essential trace element has protective effects on thyroids. To verify roles of selenium in countering thyrotoxicity of DEHP and elucidate potential mechanisms, Sprague-Dawley rats and Nthy-ori 3-1 cells were treated with DEHP or/and selenomethionine (SeMet). Results showed that selenium supplementation elevated plasma free thyroxine (FT4) that was decreased by DEHP, and free triiodothyronine (FT3) and thyroid stimulating hormone (TSH) levels were also partially recovered. DEHP-caused histopathologic changes were ameliorated after selenium supplementation, as indicated by recovered thyroid follicular epithelial cell numbers and cavity diameters. DEHP disrupted the redox equilibrium, causing depletions of SOD, GPx1, GPx3, and TxnRd, and accumulations of MDA. Nevertheless, selenium supplementation effectively improved the redox status. DEHP affected biosynthesis, biotransformation, biotransport, and metabolism of THs, as well as thyrotropin releasing hormone receptor (TRHr) levels. Plasma selenium, thyroid peroxidase (TPO), deiodinase 1 (Dio1), and transthyretin (TTR) were downregulated, while Dio3, Ugt1a1, Sult1e1, CYP2b1, CYP3a1, and TRHr were upregulated by DEHP. However, selenium supplementation led to elevations of selenium, Dio1 and TTR, and reductions of Ugt1a1, Sult1e1, CYP2b1, and TRHr. TPO, Dio3, and CYP3a1 were not significantly affected by selenium supplementation. Taken together, selenium could ameliorate DEHP-caused TH dyshomeostasis via modulations of the redox status, Dio1, TTR, TRHr, and hepatic enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. How Certain Trace Elements Behave.

    ERIC Educational Resources Information Center

    Zingaro, Ralph A.

    1979-01-01

    Fluorine, selenium, tin, and arsenic are among the trace elements occurring in the environment which are considered. Emphasis is given to developing a qualitative survey of the extent and kinds of metal transformations and their resultant effects. (CS)

  19. Analytical determination of selenium in medical samples, staple food and dietary supplements by means of total reflection X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Stosnach, Hagen

    2010-09-01

    Selenium is essential for many aspects of human health and, thus, the object of intensive medical research. This demands the use of analytical techniques capable of analysing selenium at low concentrations with high accuracy in widespread matrices and sometimes smallest sample amounts. In connection with the increasing importance of selenium, there is a need for rapid and simple on-site (or near-to-site) selenium analysis in food basics like wheat at processing and production sites, as well as for the analysis of this element in dietary supplements. Common analytical techniques like electrothermal atomic absorption spectroscopy (ETAAS) and inductively-coupled plasma mass spectrometry (ICP-MS) are capable of analysing selenium in medical samples with detection limits in the range from 0.02 to 0.7 μg/l. Since in many cases less complicated and expensive analytical techniques are required, TXRF has been tested regarding its suitability for selenium analysis in different medical, food basics and dietary supplement samples applying most simple sample preparation techniques. The reported results indicate that the accurate analysis of selenium in all sample types is possible. The detection limits of TXRF are in the range from 7 to 12 μg/l for medical samples and 0.1 to 0.2 mg/kg for food basics and dietary supplements. Although this sensitivity is low compared to established techniques, it is sufficient for the physiological concentrations of selenium in the investigated samples.

  20. GPX1 Pro198Leu polymorphism and GSTM1 deletion do not affect selenium and mercury status in mildly exposed Amazonian women in an urban population.

    PubMed

    Rocha, Ariana V; Rita Cardoso, Bárbara; Zavarize, Bruna; Almondes, Kaluce; Bordon, Isabella; Hare, Dominic J; Teixeira Favaro, Déborah Inês; Franciscato Cozzolino, Silvia Maria

    2016-11-15

    Mercury is potent toxicant element, but its toxicity can be reduced by forming a complex with selenium for safe excretion. Considering the impact of mercury exposure in the Amazon region and the possible interaction between these two elements, we aimed to assess the effects of Pro198Leu polymorphism to GPX1 and GSTM1 deletion, on mercury levels in a population from Porto Velho, an urban locality in the Brazilian Amazon region. Two hundred women from the capital city of Rondônia state were recruited for this study with 149 deemed suitable to participate. We assessed dietary intake using 24-hour recall. Selenium levels in plasma and erythrocytes were measured using hydride generation quartz tube atomic absorption spectroscopy and total hair mercury using cold vapor atomic absorption spectrometry. Oxidative stress parameters (GPx activity, oxygen radical absorbency capacity [ORAC] and malondialdehyde [MDA]) were also analyzed. All participants were genotyped for Pro198Leu polymorphism and GSTM1 deletion. We observed that this population presented high prevalence of selenium deficiency, and also low levels of mercury, likely due to food habits that did not include selenium-rich food sources or significant consumption of fish (mercury biomagnifiers) regularly. Univariate statistical analysis showed that Pro198Leu and GSTM1 genotypes did not affect selenium and mercury levels in this population. Pro198Leu polymorphism and GSTM1 deletion had no effect on mercury levels in mildly exposed people, suggesting these genetic variants impact mercury levels only in highly exposed populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    USGS Publications Warehouse

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  2. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    PubMed

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  3. Selenium in the environment, metabolism and involvement in body functions.

    PubMed

    Mehdi, Youcef; Hornick, Jean-Luc; Istasse, Louis; Dufrasne, Isabelle

    2013-03-13

    Selenium (Se³⁴₇₉) is a metalloid which is close to sulfur (S) in terms of properties. The Se concentration in soil varies with type, texture and organic matter content of the soil and with rainfall. Its assimilation by plants is influenced by the physico-chemical properties of the soil (redox status, pH and microbial activity). The presence of Se in the atmosphere is linked to natural and anthropogenic activities. Selenoproteins, in which selenium is present as selenocysteine, present an important role in many body functions, such as antioxidant defense and the formation of thyroid hormones. Some selenoprotein metabolites play a role in cancer prevention. In the immune system, selenium stimulates antibody formation and activity of helper T cells, cytotoxic T cells and Natural Killer (NK) cells. The mechanisms of intestinal absorption of selenium differ depending on the chemical form of the element. Selenium is mainly absorbed in the duodenum and caecum by active transport through a sodium pump. The recommended daily intake of selenium varies from 60 μg/day for women, to 70 μg/day for men. In growing ruminants the requirements are estimated at 100 μg/kg dry matter and 200 μg/Kg for pregnant or lactating females. A deficiency can cause reproductive disorders in humans and animals.

  4. Altered selenium status in Huntington's disease: neuroprotection by selenite in the N171-82Q mouse model.

    PubMed

    Lu, Zhen; Marks, Eileen; Chen, Jianfang; Moline, Jenna; Barrows, Lorraine; Raisbeck, Merl; Volitakis, Irene; Cherny, Robert A; Chopra, Vanita; Bush, Ashley I; Hersch, Steven; Fox, Jonathan H

    2014-11-01

    Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice.

    PubMed

    Zhang, Jinsong; Wang, Xufang; Xu, Tongwen

    2008-01-01

    Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.

  6. REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I.

    PubMed Central

    Woolfolk, C. A.; Whiteley, H. R.

    1962-01-01

    Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647–658. 1962.—Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of certain compounds of arsenic, bismuth, selenium, tellurium, lead, thallium, vanadium, manganese, iron, copper, molybdenum, tungsten, osmium, ruthenium, gold, silver, and uranium, as well as molecular oxygen. Chemical and manometric data indicate that the following reductions are essentially quantitative: arsenate to arsenite, pentavalent and trivalent bismuth to the free element, selenite via elemental selenium to selenide, tellurate and tellurite to tellurium, lead dioxide and manganese dioxide to the divalent state, ferric to ferrous iron, osmium tetroxide to osmate ion, osmium dioxide and trivalent osmium to the metal, uranyl uranium to the tetravalent state, vanadate to the level of vanadyl, and polymolybdate ions to molybdenum blues with an average valence for molybdenum of +5. The results of a study of certain other hydrogenase-containing bacteria with respect to their ability to carry out some of the same reactions are also presented. PMID:14001842

  7. Trace elements in oceanic pelagic communities in the western Indian Ocean.

    PubMed

    Bodin, Nathalie; Lesperance, Dora; Albert, Rona; Hollanda, Stephanie; Michaud, Philippe; Degroote, Maxime; Churlaud, Carine; Bustamante, Paco

    2017-05-01

    The mineral composition of target and non-target pelagic fish caught by purse-seiners and longliners in the western-central Indian Ocean was determined. From the 10 essential elements analysed, selenium and zinc showed the highest concentrations in swordfish and blue marlin while Indian mackerel appeared as a good source of copper, iron and chrome. All catch had levels of lead and cadmium, two toxic elements, below the maximum sanitary limits. Although some concerns were raised regarding mercury concentrations in the largest species (wahoo, swordfish and blue marlin), molar ratios of mercury and selenium indicate that all oceanic pelagic fish from the western-central Indian Ocean are safe for human consumption. This study also gives insights on the relationships between the levels of essential and toxic elements in fish muscle and the size, trophic position and diet sources of the studied pelagic species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Dietary reference intakes of trace elements for Japanese and problems in clinical fields].

    PubMed

    Inoue, Yoshifumi

    2016-07-01

    In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.

  9. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  10. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  11. [Nutritive value of daily food rations reproduced in several regions of Poland. Part VII. Evaluation of cobalt, chromium, nickel and selenium intakes].

    PubMed

    Marzec, Z; Buliński, R

    1992-01-01

    On the basis of the data of the Chief Census Bureau, concerning the consumption of more than 80 food products, we reproduced in years 1987 and 1988 in Lublin, Olsztyn, Poznań, Warszawa and Wrocław the food rations characteristic of manual workers' families and of other families with medium incomes. In samples of these diets, chromium, cobalt and nickel were determined by the ASA method, and selenium-spectrophotometrically. Daily intakes were: for cobalt 15-32 micrograms, chromium 65-187 micrograms, nickel 138-316 micrograms and selenium 93-233 micrograms. It was found that the investigated food rations cover the requirements of these elements, and create no risk of their excess in food. The present results indicate that the levels of the investigated elements are mainly related to the kind of food products and to their composition, whereas they depend to a lesser extent on the region in which the food ration has been reproduced.

  12. Celebrating Two Centuries of Research in Selenium Chemistry: State of the Art and New Prospective.

    PubMed

    Santi, Claudio; Bagnoli, Luana

    2017-12-02

    In 2017, the 200th anniversary of the discovery of selenium was celebrated. In 1817, the Swedish chemists, Berzelius and Gahn, on roasting 200 kg of sulfur from a pyrite from the Falun mine, obtained about 3 g of a precipitate that they first wrongly identified as tellurium. Berzelius doubted this result and repeated the analysis some months later realizing that a new element was in his hands and he named this element Selenium (Greek: Selene, moon) in consideration of its resemblance to Tellurium (Latin: Tellus, earth). Several events were organized in the year for this special celebration and this Special Issue would like to be an additional contribution to the success of a research that, especially during the last decades, rapidly grew in different fields: synthesis, medicinal chemistry, biology, material, and environment. These studies are strongly characterized by multi- and interdisciplinary connections, and, for this reason, we collected here contributions coming from different areas and disciplines, not exclusively synthetic organic chemistry.

  13. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.

    2008-08-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.

  14. Elements in whole blood of Northwestern Crows (Corvus caurinus) in Alaska: No evidence for an association with beak deformities

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.

    2016-01-01

    A recent outbreak of beak deformities among resident birds in Alaska has raised concern about environmental contamination as a possible underlying factor. We measured whole blood concentrations of 30 essential and nonessential elements to determine whether any were associated with beak deformities in Northwestern Crows (Corvus caurinus). We tested for differences between 1) adults with versus those without beak deformities and 2) unaffected adults versus juveniles. Crows with beak deformities had slightly higher levels of barium, molybdenum, and vanadium (all P<0.05), but concentrations were generally low and within the range of values reported from other apparently healthy wild birds. Concentrations of several elements, including selenium, were higher in birds without versus birds with beak deformities (all P<0.05), a difference that may be explained in part by compromised foraging ability associated with the deformities. Adult crows had higher concentrations of cadmium, silicon, and zinc than juveniles (all P<0.05), although differences were relatively small and values were similar to those from other wild birds. Our results suggest that neither selenium nor other tested elements are likely to be causing beak deformities in Alaskan crows. We also provide the first data on elemental concentrations in Northwestern Crows. Levels of selenium far exceeded those typically found in passerine birds and were similar to those in marine-associated waterfowl, suggesting that background levels should be interpreted relative to a species's environment.

  15. Chemical Data for Detailed Studies of Irrigation Drainage in the Salton Sea Area, California, 1995?2001

    USGS Publications Warehouse

    Schroeder, Roy A.

    2004-01-01

    The primary purpose of this report is to present all chemical data from the Salton Sea area collected by the U.S. Geological Survey between 1995 and 2001. The data were collected primarily for the Department of the Interior's National Irrigation Water Quality Program (NIWQP). The report also contains a brief summary and citation to investigations done for the NIWQP between 1992 and 1995. The NIWQP began studies in the Salton Sea area in 1986 to evaluate effects on the environment from potential toxins, especially selenium, in irrigation-induced drainage. This data report is a companion to several reports published from the earlier studies and to interpretive publications that make use of historical and recent data from this area. Data reported herein are from five collection studies. Water, bottom material, and suspended sediment collected in 1995-96 from the New River, the lower Colorado River, and the All-American Canal were analyzed for elements, semi-volatile (extractable) organic compounds, and organochlorine compounds. Sufficient suspended sediment for chemical analyses was obtained by tangential-flow filtration. A grab sample of surficial bottom sediment collected from near the deepest part of the Salton Sea in 1996 was analyzed for 44 elements and organic and inorganic carbon. High selenium concentration confirmed the effective transfer (sequestration) of selenium into the bottom sediment. Similar grab samples were collected 2 years later (1998) from 11 locations in the Salton Sea and analyzed for elements, as before, and also for nutrients, organochlorine compounds, and polycyclic aromatic hydrocarbons. Nutrients were measured in bottom water, and water-column profiles were obtained for pH, conductance, temperature, and dissolved oxygen. Element and nutrient concentrations were obtained in 1999 from cores at 2 of the above 11 sites, in the north subbasin of the Salton Sea. The most-recent study reported herein was done in 2001 and contains element data on suspended material isolated by continuous-flow centrifugation on samples collected in transects extending out from the Whitewater, the Alamo, and the New Rivers into the Salton Sea. Chemical data on suspended sediment and bottom material from tributory rivers and the Salton Sea itself show that many insoluble constituents, including selenium and DDE, are concentrated in the fine-grained, organic- and carbonate-rich bottom sediment from deep areas near the center of the Salton Sea. Data also show that selenium and arsenic are markedly enriched in seston (plankton, partially-degraded algal detritus, and mineral matter that compose suspended particulates in the lake) collected just below the water surface in the Salton Sea. This result indicates that bio-concentration in primary producers in the water column provides an important pathway whereby high selenium residues accumulate in fish and fish-eating birds at the Salton Sea.

  16. Coal fly ash basins as an attractive nuisance to birds: parental provisioning exposes nestlings to harmful trace elements.

    PubMed

    Bryan, A L; Hopkins, W A; Parikh, J H; Jackson, B P; Unrine, J M

    2012-02-01

    Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: a randomized controlled trial123

    PubMed Central

    Burk, Raymond F; Hill, Kristina E; Motley, Amy K; Byrne, Daniel W; Norsworthy, Brooke K

    2015-01-01

    Background: Selenomethionine, which is the principal dietary form of selenium, is metabolized by the liver to selenide, which is the form of the element required for the synthesis of selenoproteins. The liver synthesizes selenium-rich selenoprotein P (SEPP1) and secretes it into the plasma to supply extrahepatic tissues with selenium. Objectives: We conducted a randomized controlled trial to determine whether cirrhosis is associated with functional selenium deficiency (the lack of selenium for the process of selenoprotein synthesis even though selenium intake is not limited) and, if it is, whether the deficiency is associated with impairment of selenomethionine metabolism. Design: Patients with Child-Pugh (C-P) classes A, B, and C (mild, moderate, and severe, respectively) cirrhosis were supplemented with a placebo or supranutritional amounts of selenium as selenate (200 or 400 μg/d) or as selenomethionine (200 μg/d) for 4 wk. Plasma SEPP1 concentration and glutathione peroxidase (GPX) activity, the latter due largely to the selenoprotein GPX3 secreted by the kidneys, were measured before and after supplementation. Results: GPX activity was increased more by both doses of selenate than by the placebo in C-P class B patients. The activity was not increased more by selenomethionine supplementation than by the placebo in C-P class B patients. Plasma selenium was increased more by 400 μg Se as selenate than by the placebo in C-P class C patients. Within the groups who responded to selenate, there was a considerable variation in responses. Conclusion: These results indicate that severe cirrhosis causes mild functional selenium deficiency in some patients that is associated with impaired metabolism of selenomethionine. This trial was registered at clinicaltrials.gov as NCT00271245. PMID:26468123

  18. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis.

    PubMed

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    PubMed Central

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  20. [Trend of the selenium supply of cattle in Germany, Austria, Switzerland, and Denmark. Retrospective analysis of serum samples of the years 2006-2015].

    PubMed

    Müller, A; Freude, B

    2016-01-01

    An optimal selenium supply of cattle is essential, because an insufficiency can lead to health disorders and reduced performance. The aim of the study was to retrospectively evaluate the selenium supply of cattle in Germany, Austria, Switzerland, and Denmark. Serum samples from 45  068 cattle with unknown clinical status originating from countries all across Europe, which had been sent by veterinarians to the IDEXX Laboratory Ludwigsburg, Germany, between January 1st, 2006 and June 30th, 2015, were routinely analyzed for the selenium concentration by means of Inductively Coupled Plasma Mass Spectrometry. A total of 40  949 samples (30  462 from Germany, 4004 from Austria, 3232 from Switzerland, 3251 from Denmark) were included in the evaluation. Results were categorized as follows: 50-150 µg/l: sufficient supply, < 50 µg/l: supply too low, > 150 µg/l: supply too high. During the observation period, a generalized trend towards a decreasing selenium supply was clear. Denmark showed the best selenium supply (77.4% of samples indicating a sufficient supply); however, even in this country a tendency towards a deterioration was seen. A very poor situation with a strongly decreasing selenium supply was observed in Austria, followed by Germany (38% and 30% of samples, respectively, indicating an undersupply). For Switzerland, a constantly poor selenium supply was found (49% of samples indicating an undersupply). Due to the ongoing trend of a selenium undersupply in cattle herds, it is recommended to control the serum selenium concentration annually and supplement this trace element via mineral food when necessary.

  1. Survey of Manual Methods of Measurements of Asbestos, Beryllium, Lead, Cadmium, Selenium, and Mercury in Stationary Source Emissions. Environmental Monitoring Series.

    ERIC Educational Resources Information Center

    Coulson, Dale M.; And Others

    The purpose of this study is to evaluate existing manual methods for analyzing asbestos, beryllium, lead, cadmium, selenium, and mercury, and from this evaluation to provide the best and most practical set of analytical methods for measuring emissions of these elements from stationary sources. The work in this study was divided into two phases.…

  2. Technical issues affecting the implementation of US environmental protection agency's proposed fish tissue-based aquatic criterion for selenium

    Treesearch

    A. Dennis Lemly; Joseph P. Skorupa

    2007-01-01

    The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the ‘‘what, where, and...

  3. Production of selenium nanoparticles in Pseudomonas putida KT2440.

    PubMed

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I; Chavarría, Max

    2016-11-15

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L -1 h -1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.

  4. Production of selenium nanoparticles in Pseudomonas putida KT2440

    PubMed Central

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I.; Chavarría, Max

    2016-01-01

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L−1 h−1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles. PMID:27845437

  5. Human placenta processed for encapsulation contains modest concentrations of 14 trace minerals and elements.

    PubMed

    Young, Sharon M; Gryder, Laura K; David, Winnie B; Teng, Yuanxin; Gerstenberger, Shawn; Benyshek, Daniel C

    2016-08-01

    Maternal placentophagy has recently emerged as a rare but increasingly popular practice among women in industrialized countries who often ingest the placenta as a processed, encapsulated supplement, seeking its many purported postpartum health benefits. Little scientific research, however, has evaluated these claims, and concentrations of trace micronutrients/elements in encapsulated placenta have never been examined. Because the placenta retains beneficial micronutrients and potentially harmful toxic elements at parturition, we hypothesized that dehydrated placenta would contain detectable concentrations of these elements. To address this hypothesis, we analyzed 28 placenta samples processed for encapsulation to evaluate the concentration of 14 trace minerals/elements using inductively coupled plasma mass spectrometry. Analysis revealed detectable concentrations of arsenic, cadmium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, rubidium, selenium, strontium, uranium, and zinc. Based on one recommended daily intake of placenta capsules (3300 mg/d), a daily dose of placenta supplements contains approximately 0.018 ± 0.004 mg copper, 2.19 ± 0.533 mg iron, 0.005 ± 0.000 mg selenium, and 0.180 ± 0.018 mg zinc. Based on the recommended dietary allowance (RDA) for lactating women, the recommended daily intake of placenta capsules would provide, on average, 24% RDA for iron, 7.1% RDA for selenium, 1.5% RDA for zinc, and 1.4% RDA for copper. The mean concentrations of potentially harmful elements (arsenic, cadmium, lead, mercury, uranium) were well below established toxicity thresholds. These results indicate that the recommended daily intake of encapsulated placenta may provide only a modest source of some trace micronutrients and a minimal source of toxic elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence.

    PubMed

    Fleming, David E B; Nader, Michel N; Foran, Kelly A; Groskopf, Craig; Reno, Michael C; Ware, Chris S; Tehrani, Mina; Guimarães, Diana; Parsons, Patrick J

    2017-02-01

    The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic K α , selenium K α , arsenic K β , selenium K β , and bromine K α characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the K α peak only, ranged from 0.210±0.002µg/g selenium under one condition of analysis to 0.777±0.009µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    USGS Publications Warehouse

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.

  8. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  9. Selenium and other elements in juvenile striped bass from the San Joaquin Valley and San Francisco Estuary, California

    USGS Publications Warehouse

    Saiki, Michael K.; Palawski, Donald U.

    1990-01-01

    Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.

  10. Can selenium be a modifier of cancer risk in CHEK2 mutation carriers?

    PubMed

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Lubinski, Jan; Jakubowska, Anna

    2013-11-01

    Selenium is an essential trace element for humans, playing an important role in various major metabolic pathways. Selenium helps to protect the body from the poisonous effects of heavy metals and other harmful substances. Medical studies have provided evidence of selenium supplementation in preventing certain cancers. Low and too high selenium (Se) status correlates with increased risk of e.g. lung, larynx, colorectal and prostate cancers. A higher level of selenium and supplementation with selenium has been shown to be associated with substantially reduced cancer mortality. Selenium exerts its biological roles through selenoproteins, which are involved in oxidoreductions, redox signalling, antioxidant defence, thyroid hormone metabolism and immune responses. Checkpoint kinase 2 (CHEK2) is an important signal transducer of cellular responses to DNA damage and acts as a tumour suppressor gene. Mutations in the CHEK2 gene have been shown to be associated with increased risks of several cancers. Four common mutations in CHEK2 gene (1100delC, IVS2+1G>A, del5395 and I157T) have been identified in the Polish population. Studies have provided evidence that CHEK2-truncating and/or missense mutations are associated with increased risk of breast, prostate, thyroid, colon and kidney cancers. The variability in penetrance and cancer expression in CHEK2 mutation carriers can probably be explained by the influence of other genetic or environmental factors. One of the possible candidates is Se, which together with genetic variations in selenoprotein genes may influence susceptibility to cancer risk.

  11. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  12. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  13. Mercury, Lead, Cadmium, Cobalt, Arsenic and Selenium in the Blood of Semipalmated Sandpipers (Calidris pusilla) from Suriname, South America: Age-related Differences in Wintering Site and Comparisons with a Stopover Site in New Jersey, USA.

    PubMed

    Burger, Joanna; Mizrahi, David; Tsipoura, Nellie; Jeitner, Christian; Gochfeld, Michael

    2018-05-09

    It is essential to understand contaminant exposure and to compare levels of contaminants in organisms at different ages to determine if there is bioaccumulation, and to compare levels encountered in different geographical areas. In this paper, we report levels of mercury, lead, cadmium, cobalt, arsenic and selenium in the blood of semipalmated sandpipers ( Calidris pusilla ) wintering in Suriname as a function of age, and compare them to blood levels in northbound migrants at a stopover in Delaware Bay, New Jersey. We found (1) young birds had higher levels of cadmium, cobalt, and lead than adults (after second year birds); (2) there were no age-related differences for arsenic, mercury and selenium; (3) only four of the possible 16 inter-metal correlations were significant, at the 0.05 level; (4) the highest correlation was between cadmium and lead (Kendall tau = 0.37); and (5) the adult sandpipers had significantly higher levels of cadmium, mercury and selenium in Suriname than in New Jersey, while the New Jersey birds had significantly higher levels of arsenic. Suriname samples were obtained in April, after both age classes had spent the winter in Suriname, which suggests that sandpipers are accumulating higher levels of trace elements in Suriname than in Delaware Bay. The levels of selenium may be within a range of concern for adverse effects, but little is known about adverse effect levels of trace elements in the blood of wild birds.

  14. Use of Elemental Sulfur or Selenium in a Novel One-Pot Copper-Catalyzed Tandem Cyclization of Functionalized Ynamides Leading to Benzosultams.

    PubMed

    Siva Reddy, Alla; Kumara Swamy, K C

    2015-06-19

    A novel and efficient [Cu]-catalyzed one-pot regio- and stereospecific synthesis of benzo[1,4,2]dithiazine 1,1-dioxides and benzo[1,4,2]thiaselenazine 1,1-dioxides by cyclization of functionalized ynamides with elemental sulfur/selenium has been developed. Its generality is elegantly illustrated by extension to benzodithiazepines and benzothiaselenazepines. Involvement of water in the reaction is demonstrated by the incorporation of (2)D at the olefinic site by using D2O in place of water. Selective oxidation at sulfur in benzo[1,4,2]dithiazine 1,1-dioxide by using mCPBA as the oxidizing agent is also described.

  15. Selenium biochemistry and its role for human health.

    PubMed

    Roman, Marco; Jitaru, Petru; Barbante, Carlo

    2014-01-01

    Despite its very low level in humans, selenium plays an important and unique role among the (semi)metal trace essential elements because it is the only one for which incorporation into proteins is genetically encoded, as the constitutive part of the 21st amino acid, selenocysteine. Twenty-five selenoproteins have been identified so far in the human proteome. The biological functions of some of them are still unknown, whereas for others there is evidence for a role in antioxidant defence, redox state regulation and a wide variety of specific metabolic pathways. In relation to these functions, the selenoproteins emerged in recent years as possible biomarkers of several diseases such as diabetes and several forms of cancer. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important requisite to elucidate its preventing/therapeutic effect for human diseases. This review summarizes the most recent findings on the biochemistry of active selenium species in humans, and addresses the latest evidence on the link between selenium intake, selenoproteins functionality and beneficial health effects. Primary emphasis is given to the interpretation of biochemical mechanisms rather than epidemiological/observational data. In this context, the review includes the following sections: (1) brief introduction; (2) general nutritional aspects of selenium; (3) global view of selenium metabolic routes; (4) detailed characterization of all human selenoproteins; (5) detailed discussion of the relation between selenoproteins and a variety of human diseases.

  16. Toenail selenium, genetic variation in selenoenzymes and risk and outcome in glioma.

    PubMed

    Peeri, Noah C; Creed, Jordan H; Anic, Gabriella M; Thompson, Reid C; Olson, Jeffrey J; LaRocca, Renato V; Chowdhary, Sajeel A; Brockman, John D; Gerke, Travis A; Nabors, L Burton; Egan, Kathleen M

    2018-05-16

    Selenium is an essential trace element obtained through diet that plays a critical role in DNA synthesis and protection from oxidative damage. Selenium intake and polymorphisms in selenoproteins have been linked to the risk of certain cancers though data for glioma are sparse. In a case-control study of glioma, we examined the associations of selenium in toenails and genetic variants in the selenoenzyme pathway with the risk of glioma and patient survival. A total of 423 genetic variants in 29 candidate genes in the selenoenzyme pathway were studied in 1547 glioma cases and 1014 healthy controls. Genetic associations were also examined in the UK Biobank cohort comprised of 313,868 persons with 322 incident glioma cases. Toenail selenium was measured in a subcohort of 300 glioma cases and 300 age-matched controls from the case-control study. None of the 423 variants studied were consistently associated with glioma risk in the case-control and cohort studies. Moreover, toenail selenium in the case-control study had no significant association with glioma risk (p trend = 0.70) or patient survival among 254 patients with high grade tumors (p trend = 0.70). The present study offers no support for the hypothesis that selenium plays a role in the onset of glioma or patient outcome. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Sohn, Mary; Anquandah, George A K; Pettine, Maurizio; Zboril, Radek

    2017-12-01

    This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Selenium effect on ischemia-reperfusion injury of gastrocnemius muscle in adult rats.

    PubMed

    Gholami, Mohammadreza; Zendedel, Abolfazl; Khanipour khayat, Zahra; Ghanad, Kourosh; Nazari, Afshin; Pirhadi, Atieh

    2015-04-01

    Selenium is a trace element that has antioxidant and neuroprotective effects. The aim of this study is to investigate the effects of selenium in reducing ischemia-reperfusion injury of the gastrocnemius muscle. In this experimental study, 80 adult male Wistar rats weighing 250-300 g were divided into ten groups (N = 8 per group). Group 1 is control group (without ischemia-reperfusion). Group 2 received 0.2 mg/kg selenium. Group 3 received ischemia + 3 d reperfusion + 0.2 mg/kg selenium, group 4 received ischemia + 3 d reperfusion + 0.2 mg/kg placebo, group 5 received ischemia + 7 d reperfusion + 0.2 mg/kg selenium, group 6 received ischemia + 7 d reperfusion + 0.2 mg/kg placebo, group 7 received ischemia + 14 d reperfusion + 0.2 mg/kg selenium, group 8 received ischemia + 14 d reperfusion + 0.2 mg/kg placebo, group 9 received ischemia + 28 d reperfusion + 0.2 mg/kg selenium and group 10 received ischemia + 3 d reperfusion + 0.2 mg/kg placebo. External iliac artery blocked for 3 h. After reperfusion, rats killed and gastrocnemius muscle removed, fixed, and tissue processing performed. Samples stained with hematoxylin-eosin for edema evaluation, toluidine blue for mast cell infiltration evaluation and immunohistochemistry for detection TNF-alpha and NF-kappa B proteins. Comparison of mast cell infiltration, edema of the interstitial fluid on the tissue, expression of TNF-alpha protein, and expression of NF-kappa B protein in the groups that received selenium with corresponding placebo group showed that selenium can reduce edema, mast cell infiltration, and TNF-alpha expression and inactivated NF-kappa B. The use of selenium simultaneously with creating ischemia can reduce ischemia-reperfusion injury of the gastrocnemius muscle.

  19. The Effect of Ketogenic Diet on Serum Selenium Levels in Patients with Intractable Epilepsy.

    PubMed

    Arslan, Nur; Kose, Engin; Guzel, Orkide

    2017-07-01

    The aim of the present study was to evaluate serum selenium levels in children receiving olive oil-based ketogenic diet (KD) for intractable seizures for at least 1 year. Out of 320 patients who were initiated on KD, patients who continued receiving KD for at least 12 months were enrolled. Sixteen patients who had selenium deficiency at the time of starting KD were excluded. Finally, a total of 110 patients (mean age 7.3 ± 4.2 years) were included. Serum selenium levels were measured at baseline and at 3, 6, and 12 months after treatment initiation by using atomic absorption spectroscopy. Selenium deficiency was defined as a serum selenium level <48 μg/L at each visit. Repeated measure ANOVA with post hoc Bonferroni correction was used for data analysis. Mean duration of KD was 15.3 ± 4.3 months. Mean serum selenium levels were significantly lower at 6 and 12 months of KD treatment (66.2 ± 23.3 and 57.2 ± 16.2 μg/L, respectively) compared to pre-treatment levels (79.3 ± 25.7 μg/L) (p = 0.001). On the other hand, selenium levels did not show any significant difference at 3 months of KD treatment (70.0 ± 21.2 μg/L) compared to baseline levels (p = 0.076). A total of 54 patients (49.1%) were diagnosed with selenium deficiency, and oral selenium medication was initiated for these patients. No relevant clinical findings were detected, and echocardiographic findings were normal in all patients. The decline of the serum selenium concentrations after 6 and 12 months of ketogenic diet suggests that patients on this highly prescriptive dietary treatment need close monitoring of this trace element.

  20. Evaluation of flushing of a high-selenium backwater channel in the Colorado River.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2004-02-01

    Concern has been raised that selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine if operation of a water control structure (opened in December 1996) that allowed the Colorado River to flow through a channel area at Walter Walker State Wildlife Area (WWSWA) would reduce selenium and other inorganic elements in water, sediment, aquatic invertebrates, and forage fish. Endangered Colorado pikeminnow were collected and muscle plug samples taken for selenium analysis. Selenium concentrations in filtered water were 21.0 microg/L in 1995, 23.5 microg/L in 1996, 2.1 microg/L in 1997, and 2.1 microg/L in 1998. Selenium concentrations in sediment cores and sediment traps were 8.5 microg/g in 1995, 8.2 microg/g in 1996, 4.8 microg/g in 1997, and 1.1 microg/g in 1998. Selenium concentrations in aquatic invertebrates were 27.4 microg/g in 1996, 15.5 microg/g in 1997, and 4.9 microg/g in 1998. Selenium concentrations in forage fish were 27.2 microg/g in 1996, 20.2 microg/g in 1997, and 8.6 microg/g in 1998. Selenium concentrations in muscle plugs of Colorado pikeminnow were 9.8 microg/g in 1995, 9.5 microg/g in 1996, 9.0 microg/g in 1997, and 10.3 microg/g in 1998. Although selenium concentrations in water, sediment, aquatic invertebrates, and forage fish decreased substantially after operation of the water control structure, a corresponding change in Colorado pikeminnow did not seem to occur. Selenium concentrations in muscle plugs decreased with increasing fish total length and weight, did not change between repeat sampling in the same year or recapture in subsequent years, and seemed to be most closely associated with the mean monthly river flow for the March-July period. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 51-81, 2004.

  1. Selenium, fluorine, and arsenic in surficial materials of the conterminous United States

    USGS Publications Warehouse

    Shacklette, Hansford T.; Boerngen, Josephine G.; Keith, John R.

    1974-01-01

    Concentrations of selenium, fluorine, and arsenic in 912, 911, and 910 samples, respectively, of soils and other regoliths from sites approximately 50 miles (80 km) apart throughout the United States are represented on maps by symbols showing five ranges of values. Histograms of the concentrations of these elements are also given. The geometric-mean concentrations (ppm) in the samples, grouped by area, are as follows: Selenium-- Entire United States, 0.31; Western United States, 0.25; and Eastern United States, 0.39. Fluorine-- Entire United States, 180; Western United States, 250; and Eastern United States, 115. Arsenic-- Entire United States, 5.8; Western United States, 6.1; and Eastern United States, 5.4.

  2. Nationwide residues of mercury, lead, cadmium, arsenic, and selenium in starlings, 1973

    USGS Publications Warehouse

    White, D.H.; Bean, J.R.; Longcore, J.R.

    1977-01-01

    Starlings (Sturnus vulgaris) collected in 1973 at 51 sites throughout the continental United States were analyzed for mercury, lead, cadmium, arsenic, and selenium. All samples contained detectable levels of these elements. In general, residues were low: mercury residues ranged from <0.01 to 0.20 ppm: lead, from <0.10 10 3.20 ppm: cadmium, from <0.05 to 0.20 ppm: arsenic, from <0.05 to 1.40 ppm: and selenium, from 0.10 to 1.10 ppm. There was a significant overall decline in mercury and lead residues in starlings since 1971, and a significant increase in arsenic residues. Lead residues were significantly higher in starlings from urban areas than from rural areas.

  3. Task 1: Whole-body concentrations of elements in kelp bass (Paralabrax clathratus), kelp rockfish (Sebastes atrovirens), and Pacific sanddab (Citharichthys sordidus) from offshore oil platforms and natural areas in the Southern California Bight

    USGS Publications Warehouse

    Love, Milton S.

    2009-01-01

    Resource managers are concerned that offshore oil platforms in the Southern California Bight may be contributing to environmental contaminants accumulated by marine fishes. To examine this possibility, 18 kelp bass (Paralabrax clathratus), 80 kelp rockfish (Sebastes atrovirens), and 98 Pacific sanddab (Citharichthys sordidus) were collected from five offshore oil platforms and 10 natural areas during 2005-2006 for whole-body analysis of 63 elements. The natural areas, which served as reference sites, were assumed to be relatively uninfluenced by contaminants originating from platforms. Forty-two elements were excluded from statistical comparisons for one of three reasons: they consisted of major cations that were unlikely to accumulate to potentially toxic concentrations under ambient exposure conditions; they were not detected by the analytical procedures; or they were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these 21 elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. Eight comparisons yielded significant interaction effects between total length (TL) of the fish and the two habitat types (oil platforms and natural areas). This indicated that relations between certain elemental concentrations (i.e., copper, rubidium, selenium, tin, titanium, and vanadium) and habitat type varied by TL of affected fish species. To better understand these interactions, we examined elemental concentrations in very small and very large individuals of affected species. Although significant interactions were detected for rubidium, tin, and selenium in kelp rockfish, the concentrations of these elements did not differ significantly between oil platforms and natural areas over the TL range of sampled fish. However, for selenium, titanium, and vanadium in Pacific sanddab, small individuals (average TL, 13.0 cm) exhibited significantly lower concentrations at oil platforms than at natural areas, whereas large individuals (average TL, 27.5 cm) exhibited higher concentrations at oil platforms than at natural areas. For copper in Pacific sanddab, small individuals did not exhibit differences between oil platforms and natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas. On the other hand, for tin in Pacific sanddab, small individuals did not exhibit differences between oil platforms and natural areas, whereas large individuals exhibited significantly lower concentrations at oil platforms than at natural areas. Although concentrations of arsenic, cadmium, chromium, lead, mercury, and selenium in fishes from some platforms and natural areas equaled or exceeded literature-based toxicity thresholds for fish and fish-eating wildlife, studies are still needed to document evidence of toxicity from these elements. When estimates of elemental concentrations in skinless fillets were compared to risk-based consumption limits for humans, the concentrations of arsenic, cadmium, mercury, and tin in fish from a mix of oil platforms and natural areas were sufficiently elevated to suggest a need for further study of inorganic arsenic, cadmium, mercury, and tributyltin.

  4. A new separation and preconcentration method for selenium in some foods using modified silica gel with 2,6-diamino-4-phenil-1,3,5-triazine.

    PubMed

    Mendil, Durali; Demirci, Zafer; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2017-04-15

    A novel and simple solid phase extraction method was improved and recommended for selenium. Silica gel was modified with 2,6-diamino-4-phenil-1,3,5-triazine and characterized by FTIR, SEM and elemental analysis and used adsorbent for column solid phase extraction of selenium ions. The experimental parameters (pH, flow rates, amounts of the modified silica gel, concentration and type of eluent, volume of sample, etc.) on the recoveries of selenium were optimized. Standard reference materials were analyzed for validation of method. The present method was successfully applied to the detection of total selenium in water and microwave digested some food samples with quantitative recoveries (> 95%). The relative standard deviations were<8%. Matrix influences were not observed. The adsorption capacity of modified silica gel was 5.90mgg -1 . The LOD was 0.015μgL -1 . Enrichment factor was obtained as 50 for the introduced method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Arsenic and selenium in soils and shallow ground water in the Turtle Lake, New Rockford, Harvey Pumping, Lincoln Valley, and LaMoure irrigation areas of the Garrison Diversion Unit, North Dakota

    USGS Publications Warehouse

    Berkas, W.R.; Komor, S.C.

    1996-01-01

    The Garrison Diversion Unit project was authorized as part of the Pick-Sloan Missouri River Basin program to divert water from Lake Sakakawea to irrigation areas in North Dakota. A special Garrison Commission was created to evaluate an environmental concern that return flow from the irrigation areas might contain metals in toxic concentrations. This report summarizes the results of detailed investigations of the Turtle Lake, New Rockford, Harvey Pumping, Lincoln Valley, and LaMoure irrigation areas. A total of 223 soil samples were collected from the irrigation areas and analyzed for elemental composition. Water extractions were done on 40 of the 223 soil samples using a 1:5 soil-to-water extraction method, and the solution from the extraction was analyzed for elemental composition. A total of 52 ground-water samples were collected and analyzed for inorganic constituents and organic carbon.Average arsenic concentrations in the entire soil column ranged from 1.0 milligram per kilogram in the Harvey Pumping irrigation area to 70 milligrams per kilogram in the New Rockford irrigation area. Average selenium concentrations ranged from less than 0.1 milligram per kilogram in the Turtle Lake, New Rockford, Harvey Pumping, and Lincoln Valley irrigation areas to 6.0 milligrams per kilogram in the Turtle Lake irrigation area. In the Turtle Lake irrigation area, average arsenic and selenium concentrations generally increased with depth through the topsoil, oxidized soil, and transition soil but decreased in the reduced soil at the bottom of the sampled horizons. Average arsenic concentrations in the New Rockford irrigation area follow the same pattern as in the Turtle Lake irrigation area, but selenium concentrations do not show a clear pattern of variation with depth. In the Harvey Pumping and Lincoln Valley irrigation areas, arsenic and selenium concentrations do not appear to vary systematically with depth. No correlation is shown between the concentrations in soils and soil extracts, indicating that, based on conditions of laboratory soil-water extraction experiments, trace-element concentrations in soils are not good predictors of trace-element concentrations in irrigation return flow. Arsenic concentrations in the aquifers ranged from less than 1 microgram per liter to 27 micrograms per liter. Arsenic concentrations generally were larger in the deep part of the aquifers underlying the Turtle Lake and New Rockford irrigation areas than in the shallow part of the aquifers. In the shallow part of the aquifers, where oxidizing conditions prevail, arsenic is strongly adsorbed to soil particles. In the deep part of the aquifers, where reducing conditions prevail, arsenic is more mobile.Selenium concentrations in the aquifers ranged from less than 1 microgram per liter to 4 micrograms per liter. Little difference existed between the selenium concentrations in the shallow part of the aquifers underlying the irrigation areas and the concentrations in the deep part of the aquifers.

  6. DNA damage and oxidative stress response to selenium yeast in the non-smoking individuals: a short-term supplementation trial with respect to GPX1 and SEPP1 polymorphism.

    PubMed

    Jablonska, E; Raimondi, S; Gromadzinska, J; Reszka, E; Wieczorek, E; Krol, M B; Smok-Pieniazek, A; Nocun, M; Stepnik, M; Socha, K; Borawska, M H; Wasowicz, W

    2016-12-01

    Selenium, both essential and toxic element, is considered to protect against cancer, though human supplementation trials have generated many inconsistent data. Genetic background may partially explain a great variability of the studies related to selenium and human health. The aim of this study was to assess whether functional polymorphisms within two selenoprotein-encoding genes modify the response to selenium at the level of oxidative stress, DNA damage, and mRNA expression, especially in the individuals with a relatively low selenium status. The trial involved 95 non-smoking individuals, stratified according to GPX1 rs1050450 and SEPP1 rs3877899 genotypes, and supplemented with selenium yeast (200 µg) for 6 weeks. Blood was collected at four time points, including 4 weeks of washout. After genotype stratification, the effect of GPX1 rs1050450 on lower GPx1 activity responsiveness was confirmed; however, in terms of DNA damage, we failed to indicate that individuals homozygous for variant allele may especially benefit from the increased selenium intake. Surprisingly, considering gene and time interaction, GPX1 polymorphism was observed to modify the level of DNA strand breaks during washout, showing a significant increase in GPX1 wild-type homozygotes. Regardless of the genotype, selenium supplementation was associated with a selectively suppressed selenoprotein mRNA expression and inconsistent changes in oxidative stress response, indicating for overlapped, antioxidant, and prooxidant effects. Intriguingly, DNA damage was not influenced by supplementation, but it was significantly increased during washout. These results point to an unclear relationship between selenium, genotype, and DNA damage.

  7. Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2012-04-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium's protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single "protective" ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium-mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens.

    PubMed

    Fellowes, J W; Pattrick, R A D; Green, D I; Dent, A; Lloyd, J R; Pearce, C I

    2011-05-30

    Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl(2) and its transformation to Hg(v)(0) represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼ 1.7 μg m(-3)) are below advised safe levels (<25 μg m(-3)) but up to 90 μg m(-3) mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM-EDS and XANES suggest the presence of residual HgCl(2) as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the Hg(v)(0) was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se(0) can be used to reduce Hg(v)(0) in long term, slow release environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Selenium and arsenic in biology: their chemical forms and biological functions.

    PubMed

    Shibata, Y; Morita, M; Fuwa, K

    1992-01-01

    Based on the recent development of analytical methods, sensitive systems for the analysis and speciation of selenium and arsenic have been established. A palladium addition technique was developed for the accurate determination of selenium in biological samples using graphite furnace atomic absorption analysis. For the speciation of the elements, combined methods of HPLC either with ICP-AES or with ICP-MS were found to work well. These systems were applied to the elucidation of the chemical form of the elements in natural samples. Some chemical properties of the selenium-mercury complex in dolphin liver were elucidated: i.e., it was a cationic, water-soluble, low molecular weight compound containing selenium and mercury in a 1:1 molar ratio, and was shown to be different from a known selenium-mercury complex, bis(methylmercuric)selenide. The major selenium compound excreted in human urine was revealed to be other than any of those previously identified (TMSe, selenate, and selenite). TMSe, a suspected major metabolite in urine, was found, if at all, in low levels. The major water-soluble, and lipid-soluble arsenic compounds in a brown seaweed, U. pinnatifida (WAKAME), were rigorously identified, and the results were compared with other data on marine algae and animals. The major organic arsenic compounds (termed "arseno-sugars") in marine algae commonly contain 5-deoxy-5-dimethylarsinyl-ribofuranoside moiety. There are various kinds of arseno-sugar derivatives containing different side-chains attached to the anomeric position of the sugar, and the distribution of each arsenic species seems to be related to algal species. The arseno-sugar (A-XI) is present in every alga so far examined, is metabolized to lipids, and possibly may play some specific role in the algal cells. On the other hand, the major arsenic compound in fish, crustacea and molluscs has been identified as arsenobetaine, which is an arseno-analog of glycinebetaine, a very common osmo-regulator in living organisms. Arsenobetaine is not detected in marine algae while arseno-sugars are not present in marine animals except for some molluscs which contain both compounds in considerable amounts. Arsenobetaine is present in the urine of human beings who have eaten foods derived from marine animals.

  10. Potential effects of brevetoxins and toxic elements on various health variables in Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles after a red tide bloom event.

    PubMed

    Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Mott, Cody R; Hirsch, Sarah; Gorham, Jonathan C; Buchweitz, John P; Bresette, Michael J; Walsh, Catherine J

    2017-12-15

    Natural biotoxins and anthropogenic toxicants pose a significant risk to sea turtle health. Documented effects of contaminants include potential disease progression and adverse impacts on development, immune function, and survival in these imperiled species. The shallow seagrass habitats of Florida's northwest coast (Big Bend) serve as an important developmental habitat for Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles; however, few studies have been conducted in this area. Our objectives were (1) to evaluate plasma analytes (mass, minimum straight carapace length, body condition index [BCI], fibropapilloma tumor score, lysozyme, superoxide dismutase, reactive oxygen/nitrogen species, plasma protein electrophoresis, cholesterol, and total solids) in Kemp's ridleys and green turtles and their correlation to brevetoxins that were released from a red tide bloom event from July-October 2014 in the Gulf of Mexico near Florida's Big Bend, and (2) to analyze red blood cells in Kemp's ridleys and green turtles for toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) with correlation to the measured plasma analytes. Positive correlations were observed between brevetoxins and α 2 -globulins in Kemp's ridleys and α 2 - and γ-globulins in green turtles, indicating potential immunostimulation. Arsenic, cadmium, and lead positively correlated with superoxide dismutase in Kemp's ridleys, suggesting oxidative stress. Lead and mercury in green turtles negatively correlated with BCI, while mercury positively correlated with total tumor score of green turtles afflicted with fibropapillomatosis, suggesting a possible association with mercury and increased tumor growth. The total tumor score of green turtles positively correlated with total protein, total globulins, α 2 -globulins, and γ-globulins, further suggesting inflammation and immunomodulation as a result of fibropapillomatosis. Lastly, brevetoxin concentrations were positively related to tumor score, indicating potential tumor promotion by brevetoxin. These results signify that brevetoxins and toxic elements elicit various negative effects on sea turtle health, including immune function, oxidative stress, and possibly disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    USGS Publications Warehouse

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi

  12. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  13. XAS Studies of Se Speciation in Selenite-Fed Rats

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.

    2014-01-01

    The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824

  14. Competition between the Brain and Testes under Selenium-Compromised Conditions: Insight into Sex Differences in Selenium Metabolism and Risk of Neurodevelopmental Disease.

    PubMed

    Pitts, Matthew W; Kremer, Penny M; Hashimoto, Ann C; Torres, Daniel J; Byrns, China N; Williams, Christopher S; Berry, Marla J

    2015-11-18

    Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1(-/-) and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy. Copyright © 2015 the authors 0270-6474/15/3515326-13$15.00/0.

  15. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    PubMed

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.

    PubMed

    Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G

    2016-07-01

    Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific.

  17. Selenocysteine in thiol/disulfide-like exchange reactions.

    PubMed

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  18. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  19. Selenium protects reproductive system and foetus development in a rat model of gestational lead exposure.

    PubMed

    Shen, W; Chen, J; Yin, J; Wang, S-L

    2016-01-01

    Lead is a common environmental contaminant. Lead accumulation in the body is especially dangerous for pregnant women and newborns. Selenium is a trace element which may rectify the damaging effects of lead. Here we tested potential protective effects of selenium against gestational lead exposure. Pregnant SD rats were exposed to 200 mg/L of lead acetate (given with water), with or without sodium selenite supplementation (2-8 mg/kg/day via intragastric administration). Pregnant rats not exposed to lead or selenium served as control animals. The outcomes in pregnant rats were serum lead and selenium levels, reproductive hormone (follicle-stimulating hormone, luteinizing hormone, prolactin, oestradiol, progesterone) levels, and uterine and ovarian morphological changes. The outcomes in the offspring were sex differentiation, survival rates (day 21 after birth), weight (days 0-35 after birth), weight of reproductive organs, and puberty onset (foreskin separation or vaginal opening). Selenium supplementation dose-dependently decreased serum lead levels, rectified reproductive hormone levels, and attenuated reproductive morphological changes caused by lead exposure. Lead exposure did not affect sex differentiation, but significantly (p < 0.05 vs. control animals) decreased the offspring weight on days 0-28 and the weight of their reproductive organs. Furthermore, lead exposure delayed the onset of puberty. These pathological changes were dose-dependently rectified or attenuated by selenium supplementation. Gestational lead exposure causes damages to the reproductive system of pregnant rats, and negatively modulates growth and reproductive system development of the offspring. These adverse effects are rectified or attenuated by selenium supplementation.

  20. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer's dementia in persons with mild cognitive impairment.

    PubMed

    Vinceti, Marco; Chiari, Annalisa; Eichmüller, Marcel; Rothman, Kenneth J; Filippini, Tommaso; Malagoli, Carlotta; Weuve, Jennifer; Tondelli, Manuela; Zamboni, Giovanna; Nichelli, Paolo F; Michalke, Bernhard

    2017-12-19

    Little is known about factors influencing progression from mild cognitive impairment to Alzheimer's dementia. A potential role of environmental chemicals and specifically of selenium, a trace element of nutritional and toxicological relevance, has been suggested. Epidemiologic studies of selenium are lacking, however, with the exception of a recent randomized trial based on an organic selenium form. We determined concentrations of selenium species in cerebrospinal fluid sampled at diagnosis in 56 participants with mild cognitive impairment of nonvascular origin. We then investigated the relation of these concentrations to subsequent conversion from mild cognitive impairment to Alzheimer's dementia. Twenty-one out of the 56 subjects developed Alzheimer's dementia during a median follow-up of 42 months; four subjects developed frontotemporal dementia and two patients Lewy body dementia. In a Cox proportional hazards model adjusting for age, sex, duration of sample storage, and education, an inorganic selenium form, selenate, showed a strong association with Alzheimer's dementia risk, with an adjusted hazard ratio of 3.1 (95% confidence interval 1.0-9.5) in subjects having a cerebrospinal fluid content above the median level, compared with those with lower concentration. The hazard ratio of Alzheimer's dementia showed little departure from unity for all other inorganic and organic selenium species. These associations were similar in analyses that measured exposure on a continuous scale, and also after excluding individuals who converted to Alzheimer's dementia at the beginning of the follow-up. These results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer's dementia.

  1. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.

    PubMed

    Saiki, Michael K; Martin, Barbara A; May, Thomas W

    2012-09-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  2. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2012-01-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  3. Ore Deposits Mined for Critical Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verplanck, Philip; Kelley, Karen

    Summary of deposit types containing critical elements, including, cobalt, gallium, germanium, indium, niobium, PGE, REE, rhenium, selenium, and tellurium. Includes information about ore deposit type, mineralogy, geologic setting, example deposits and districts, concentration ranges per reported resource, grade, and additional deposit notes. References are also included.

  4. Selenium for preventing cancer

    PubMed Central

    Dennert, Gabriele; Zwahlen, Marcel; Brinkman, Maree; Vinceti, Marco; Zeegers, Maurice P A; Horneber, Markus

    2013-01-01

    Background Selenium is a trace element essential to humans. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. Objectives Two research questions were addressed in this review: What is the evidence for an aetiological relationship between selenium exposure and cancer risk in women and men? the efficacy of selenium supplementation for cancer prevention in women and men? Search strategy We searched electronic databases and bibliographies of reviews and included publications. Selection criteria We included prospective observational studies to answer research question (a) and randomised controlled trials (RCTs) to answer research question (b). Data collection and analysis We conducted random effects meta-analyses of epidemiological data when five or more studies were retrieved for a specific outcome. We made a narrative summary of data from RCTs. Main results We included 49 prospective observational studies and six RCTs. In epidemiologic data, we found a reduced cancer incidence (summary odds ratio (OR) 0.69 (95% confidence interval (CI) 0.53 to 0.91) and mortality (OR 0.55, 95% CI 0.36 to 0.83) with higher selenium exposure. Cancer risk was more pronouncedly reduced in men (incidence: OR 0.66, 95% CI 0.42 to 1.05) than in women (incidence: OR 0.90, 95% CI 0.45 to 1.77). These findings have potential limitations due to study design, quality and heterogeneity of the data, which complicated the interpretation of the summary statistics. The RCTs found no protective efficacy of selenium yeast supplementation against non-melanoma skin cancer or L-selenomethionine supplementation against prostate cancer. Study results for the prevention of liver cancer with selenium supplements were inconsistent and studies had an unclear risk of bias. The results of the Nutritional Prevention of Cancer Trial (NPCT) and SELECT raised concerns about possible harmful effects of selenium supplements. Authors’ conclusions No reliable conclusions can be drawn regarding a causal relationship between low selenium exposure and an increased risk of cancer. Despite evidence for an inverse association between selenium exposure and the risk of some types of cancer, these results should be interpreted with care due to the potential limiting factors of heterogeneity and influences of unknown biases, confounding and effect modification. The effect of selenium supplementation from RCTs yielded inconsistent results. To date, there is no convincing evidence that selenium supplements can prevent cancer in men, women or children. PMID:21563143

  5. Selenium accumulation and metabolism in algae.

    PubMed

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Pyridine-2,6-Bis(Thiocarboxylic Acid) Produced by Pseudomonas stutzeri KC Reduces and Precipitates Selenium and Tellurium Oxyanions

    PubMed Central

    Zawadzka, Anna M.; Crawford, Ronald L.; Paszczynski, Andrzej J.

    2006-01-01

    The siderophore of Pseudomonas stutzeri KC, pyridine-2,6-bis(thiocarboxylic acid) (pdtc), is shown to detoxify selenium and tellurium oxyanions in bacterial cultures. A mechanism for pdtc's detoxification of tellurite and selenite is proposed. The mechanism is based upon determination using mass spectrometry and energy-dispersive X-ray spectrometry of the chemical structures of compounds formed during initial reactions of tellurite and selenite with pdtc. Selenite and tellurite are reduced by pdtc or its hydrolysis product H2S, forming zero-valent pdtc selenides and pdtc tellurides that precipitate from solution. These insoluble compounds then hydrolyze, releasing nanometer-sized particles of elemental selenium or tellurium. Electron microscopy studies showed both extracellular precipitation and internal deposition of these metalloids by bacterial cells. The precipitates formed with synthetic pdtc were similar to those formed in pdtc-producing cultures of P. stutzeri KC. Culture filtrates of P. stutzeri KC containing pdtc were also active in removing selenite and precipitating elemental selenium and tellurium. The pdtc-producing wild-type strain KC conferred higher tolerance against selenite and tellurite toxicity than a pdtc-negative mutant strain, CTN1. These observations support the hypothesis that pdtc not only functions as a siderophore but also is involved in an initial line of defense against toxicity from various metals and metalloids. PMID:16672449

  7. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    PubMed

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    PubMed

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues.

    PubMed

    Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N

    2014-09-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles. © 2014 SETAC.

  10. Polonium-210 and selenium in tissues and tissue extracts of the mussel Mytilus galloprovincialis (Gulf of Trieste).

    PubMed

    Kristan, Urška; Planinšek, Petra; Benedik, Ljudmila; Falnoga, Ingrid; Stibilj, Vekoslava

    2015-01-01

    Marine organisms such as mussels and fish take up polonium (Po) and selenium (Se), and distribute them into different cellular components and compartments. Due to its high radiotoxicity and possible biomagnification across the marine food chain Po-210 is potentially hazardous, while selenium is an essential trace element for humans and animals. The aim of this study was to investigate and compare the presence and extractability of the elements in the mussels Mytilus galloprovincialis collected in the Gulf of Trieste. The levels of Po-210 in the samples ranged from 220 to 400 Bq kg(-1) and of Se from 2.6 to 8.2 mg kg(-1), both on a dry matter basis. Using various extraction types and conditions in water, buffer or enzymatic media, the best extractability was obtained with enzymatic extraction (Protease XIV, 1h shaking at 40 °C) and the worst by water extraction (24 h shaking at 37 °C). 90% of Po-210 and 70% of Se was extractable in the first case versus less than 10% of Po-210 and less than 40% of Se in the second. Such evident differences in extractability between the investigated elements point to different metabolic pathways of the two elements. In enzymatic extracts Se speciation revealed three Se compounds (SeCys2, SeMet, one undefined), while Po-210 levels were too low to allow any conclusions about speciation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  12. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    NASA Astrophysics Data System (ADS)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    The comparative evaluation of the levels of biologically active chemical elements and their migration in the soil-plant complex of two Urov endemic locations in East Transbaikalia (Zolinsky and Uryumkansky) and background areas (Western Baikal region and the western area of the Trans-Baikal region) was conducted. The predominant soil-forming rocks in East Transbaikalia are weathering products of Proterozoic carbonated granitoids PR2. The surface rocks consist from granite, granodiorite, diorite quartz diorite, gabbro, norite, gabbro-norite and other. Soils - mountain and cryogenic meadow forests, mountain permafrost taiga podzolised, meadow alluvial, peaty meadow [2]. The paludification of narrow valleys and thermokarst phenomena are typical in Urov endemic localities. It reflects on the spotted of soil and differentiation of chemical composition of soils and plants. Most of the chemical elements in soils were determined by means of X-ray fluorescence, and trace elements in soils and plants - by atomic absorption spectrometry. The selenium content was measured by spectrofluorimetric method [3]. The research processed by methods of variation statistics. It was found that the soils of two locations of the Urov subregion of the biosphere were more enriched with iron, barium, calcium, uranium, thorium, phosphorus, and to a lesser extent strontium compared to background soils. The ratio of Ca: P was significantly higher in the soil of background areas, and Ca: Sr, on the contrary, in endemic soils. In assessing the migration of trace elements in soil-plant complex by means of the total content of trace elements and biological absorption coefficient found a marked accumulation by plants manganese, chromium, arsenic and weak plants accumulation of cobalt and nickel. Soil landscape is not much different in content of selenium, but its migration in plants was reduced in places of spread of Urov disease [1]. The concentrators of cadmium (leaves of different species of willow - Salicaceae) and selenium (needles of larch - Larix sibirica L.) were found among the plants. References 1. Ermakov V., Jovanovic L. Characteristics of selenium migration in soil-plant system of East Meshchera and Transbaikalia// J. Geochem. Explor., 2010. Vol. 107, 200-205. 2. Ermakov Vadim, Jovanovic Larisa, Berezkin Victor, Tyutikov Sergey, Danilogorskaya Anastasiya, Danilova Valentina, Krechetova Elena, Degtyarev Alexander, Khushvakhtova Sabsbakhor. Chemical assessment of soil and water of Urov biogeochemical provinces of Eastern Transbaikalia// Ecologica, 2012. Vol. 19, 69, 5-9. 3. Ermakov V.V., Tuytikov S.F. Khushvakhtova S.D., Danilova V.N. Boev V.A., Barabanschikova R.N., Chudinova E.A. Peculiarities of quantitative determination of selenium in biological materials// Bulletin of the Tyumen State University Press, 2010, 3, 206-214. Supported by the Russian Foundation for Basic Research, grant number 12-05-00141a.

  13. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  14. Selenium deficiency risk predicted to increase under future climate change

    PubMed Central

    Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.

    2017-01-01

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487

  15. Selenium deficiency risk predicted to increase under future climate change.

    PubMed

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  16. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways

    USGS Publications Warehouse

    Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.

    1992-01-01

    Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.

  17. Relationship between serum selenium, sociodemographic variables, other trace elements and lipid profile in an adult Spanish population.

    PubMed

    González-Estecha, Montserrat; Palazón-Bru, Irene; Bodas-Pinedo, Andrés; Trasobares, Elena; Palazón-Bru, Antonio; Fuentes, Manuel; Cuadrado-Cenzual, M Ángeles; Calvo-Manuel, Elpidio

    2017-09-01

    Several studies have shown an inverse relationship between selenium status and cardiovascular health, although epidemiologic evidence yielded by the randomized trials did not find a beneficial effect of selenium administration. The aim of this study was to analyze the association between serum selenium levels and lipid profile adjusted by age, sex and other associated factors among a general adult population in Spain. We recruited 372 hospital employee volunteers (60 men and 312 women) with a mean age of 47 (SD: 10.9), whom were given a standardized questionnaire. Serum selenium concentration was measured by electrothermal atomization atomic absorption spectrometry. Serum copper and zinc concentrations were measured using flame atomic absorption spectrometry. The mean of serum selenium was 79.5μg/L (SD: 11.7) with no sex-dependent differences. In the multivariate linear regression analysis, the associated factors with the mean levels of selenium were: age (β=0.223; CI 95%: 0.101-0.345), p<0.001; widowhood (β=-9.668; CI 95%: -17.234 to -2.102), p=0.012; calcium supplements (β=3.949; CI 95%: 0.059-7.838), p=0.047; zinc (β=0.126; CI 95%: 0.013-0.238), p=0.028 and glucose (β=0.172; CI 95%: 0.062- 0.281), p=0.002; Participants with serum selenium≥79.5μg/L were 1.98 (OR=1.98; CI 95% 1.17-3.35; p=0.011) and 2.04 times (OR=2.04; CI 95% 1.06-3.97; p=0.034) more likely to have cholesterol ≥200mg/dL and LDL-c ≥100mg/dL respectively than those with serum selenium <79.5μg/L. Higher selenium was positively associated with increased total and LDL cholesterol but not with HDL-c and triglycerides. More studies are needed in order to confirm the lower serum selenium findings in widows. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Selenium, selected inorganic elements, and organochlorine pesticides in bottom material and biota from the Colorado River delta

    USGS Publications Warehouse

    Garcia-Hernandez, J.; King, K.A.; Velasco, A.L.; Shumilin, E.; Mora, M.A.; Glenn, E.P.

    2001-01-01

    Concentrations of selenium (Se) in bottom material ranged from 0.6 to 5.0 μg g−1, and from 0.5 to 18.3 μg g−1in biota; 23% of samples exceeded the toxic threshold. Concentrations of DDE in biota exceeded the toxic threshold in 30% of the samples. Greater concentrations of selenium in biota were found at sites with strongly reducing conditions, no output, alternating periods of drying and flooding or dredging activities, and at sites that received water directly from the Colorado River. The smallest Se concentrations in biota were found at sites where an outflow and exposure or physical disturbance of the bottom material were uncommon.

  19. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention?

    PubMed Central

    Diamond, Alan M.

    2013-01-01

    The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium’s impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies. PMID:23204505

  20. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  1. The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth

    PubMed Central

    Hassan, Christopher E; Webster, Thomas J

    2016-01-01

    Given their low toxicity and natural presence in the human diet, selenium nanoparticles have been established as potential candidates for the treatment of numerous cancers. Red-allotrope selenium nanoparticles (rSeNPs) were synthesized and characterized in this study. Head and neck squamous cell carcinoma (HNSCC) and human dermal fibroblast (HDF) cells were cultured and exposed to rSeNPs at concentrations ranging from 0.01 to 100 μg rSeNP/mL media for 1–3 days. The toxicity of rSeNP toward HNSCC and HDFs was analyzed. Results indicated that the particles were approximately four times as cytotoxic toward HNSCC compared to HDFs, with their respective IC50 values at 19.22 and 59.61 μg rSeNP/mL media. Using statistical analysis, an effective dosage range for killing HNSCC cells while simultaneously minimizing damage to HDFs over a 3-day incubation period was established at 20–55 μg rSeNP/mL media. Observations showed that doses of rSeNP <5 μg rSeNP/mL media resulted in cell proliferation. Transmission electron microscopy images of HNSCC and HDF cells, both treated with rSeNPs, revealed that the rSeNPs became localized in the cytoplasm near the lysosomes and mitochondria. Analysis of cell morphology showed that the rSeNPs primarily induced HNSCC apoptosis. Collectively, these results indicated that rSeNPs are a promising option for treating HNSCC without adversely affecting healthy cells and without resorting to the use of harmful chemotherapeutics. PMID:27536104

  2. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  3. Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...

  4. Speciation, Characterization, And Mobility Of As, Se, and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile elements, such as arsenic (As), selenium (Se) and mercury (Hg), which could lead to serious environmental health risks. The capture of these toxic elements in the scrubber with a flue gas desulphurization (FGD...

  5. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.

  6. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    PubMed

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2017-06-01

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  7. Maternal hair selenium levels as a possible long-term nutritional indicator of recurrent pregnancy loss

    PubMed Central

    2013-01-01

    Background Approximately 1% of all couples trying to conceive will suffer from recurrent pregnancy loss (RPL). Nutritional deficiencies have been postulated as a possible cause of RPL and in particular, selenium deficiency has been associated with reproductive failure in animal studies and more recently, in some human studies. This study was undertaken to assess the maternal hair selenium levels in women with RPL without an identified cause and to compare these results with those of women with successful reproductive histories. Methods Twenty four patients with RPL and twenty four control subjects with at least one successful pregnancy and no pregnancy failures, who were matched for age and ethnicity, were recruited. A questionnaire was completed, which included demographic and social information and a dietary history. Hair samples were collected and analyzed for selenium content by inductively coupled plasma mass spectrometry. Results The control subjects had a higher mean income and had completed more years of education compared with the RPL patients. There was no significant difference in the intake of selenium rich foods between the 2 groups. The patients, however, consumed significantly more fruit, cheese, potatoes and chocolate than the controls. The median (range) selenium content was 0.80 ppm (0.19-4.15) and 0.68 ppm (0.43-3.76) in patients and controls respectively (Mann Whitney U test 209.5 p = 0.74). Conclusions While there were significant differences in the 2 groups with regard to resources, education and diet our results show that hair selenium concentrations and dietary selenium intake, were similar in the two groups. Both groups had low levels of this important element. PMID:24148900

  8. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  9. Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research.

    PubMed

    Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette

    2013-10-01

    Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China.

    PubMed

    Du, Yajun; Luo, Kunli; Ni, Runxiang; Hussain, Rahib

    2018-03-01

    The natural selenium poisoning due to toxic Se levels in food chain had been observed in humans and animals in Lower Cambrian outcrop areas in Southern Shaanxi, China. To find out the distribution pattern of selenium and other hazardous elements in the plant, soil and water of Lower Cambrian in Southern Shaanxi, China, and their possible potential health risk, a total of 30 elements were analyzed and the health risk assessment of 18 elements was calculated. Results showed that the soil, plant and natural water of Lower Cambrian all had relatively high Se levels. In Lower Cambrian, the soil was enriched with Se, As, Ba, Cu, Mo, Ni, Zn, Ga, Cd and Cr (1.68 < I geo  < 4.48, I geo ; geo-accumulation index). In same plants, the contents of Se, Cd and Zn (except Cd in corn and rice, Zn in potato and corn) of Lower Cambrian were higher than that of the other strata. Ba and Ga in natural water were higher than that of the other strata, while K and Cs were opposite. The health risk assessment results showed that the people living in outcrop areas of Lower Cambrian had both high total non-carcinogenic risk of 18 elements (HI = 16.12, acceptable range: < 1) and carcinogenic risk of As (3.98E-04, acceptable range: 10 -6 -10 -4 ). High contents of Se, As, Mo and Tl of Lower Cambrian may pose a health risk to local people, and food intake was the major pathway. For minimizing potential health risk, the local inhabitants should use the mix-imported food with local growing foods.

  11. A simple and sensitive vortex-assisted ionic liquid-dispersive microextraction and spectrophotometric determination of selenium in food samples.

    PubMed

    Bağda, Esra; Tüzen, Mustafa

    2017-10-01

    In the present study, a novel and eco-friendly vortex-assisted ionic liquid-based microextraction method was developed for the determination of selenium in food. The microextraction method is based on the liberation of iodine in the presence of selenium; the liberated iodine reacts with I - to form I 3 - . Anionic I 3 - reacts with cationic crystal violet dye, and the product is extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate phase in the presence of Triton X-114. The proposed method is linear in the range of 2.0-70µgL -1 and has a detection limit of 9.8×10 -2 µgL -1 . Relative standard deviations were 3.67% and 2.89% for the five replicate measurements of 14 and 35µgL -1 Se(IV), respectively. The proposed method was successfully applied to different food samples (NIST SRM 2976 mussel tissue, pepper, ginger, wheat flour, red lentil, traditional soup, cornflour, cornstarch, and garlic) after microwave digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    D'Amato, Roberto; Petrelli, Maurizio; Proietti, Primo; Onofri, Andrea; Regni, Luca; Perugini, Diego; Businelli, Daniela

    2018-03-25

    Biofortification of food crops has been used to increase the intake of Se in the human diet, even though this may change the concentration of other elements and modify the nutritional properties of the enriched food. Selenium biofortification programs should include routine assessment of the overall mineral composition of enriched plants. Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was used for the assessment of mineral composition of table olives. Olive trees were fertilized with sodium selenate before flowering. At harvest, the edible parts of drupes proved to be significantly enriched in Se, delivering 6.1 μg g -1 (39% of the RDA for five olives). Such enrichment was followed by significant changes in the concentrations of B, Mg, K, Cr, Mn, Fe and Cu in edible parts, which are discussed for their impact on food quality. The biofortification of olive plants has allowed the enrichment of fruits with selenium. Enrichment with selenium has caused an increase in the concentration of other elements, which can change the nutritional quality of the drupes. The analytical technique used well as a valuable tool for routinely determining the chemical composition of all fruit parts. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. 2014 annual summary of the lower Gunnison River Basin Selenium Management Program water-quality monitoring, Colorado

    USGS Publications Warehouse

    Henneberg, Mark F.

    2016-08-10

    Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2014. The instantaneous 85th percentiles for samples for WY 2014 ranged from 1.1 µg/L at Uncompahgre River at Colona to 125 µg/L at Loutzenhizer Arroyo at North River Road.A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 8,000 lb from WY 1986 to WY 2014, a 34.8 percent reduction during the time period, and an additional 6.2 percent reduction from a reported 28.6 percent reduction during WYs 1986–2008. The trend analysis for WY 1992 to WY 2014 indicates a decrease of 5,800 lb per year, or 27.9 percent.

  14. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    PubMed

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry.

    PubMed

    Liang, Jing; Wang, Qiuquan; Huang, Benli

    2005-01-01

    An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV-UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 microL dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO2 PCRD-KBH4-acid interface. The detection limits obtained for seleno-DL: -cystine (SeCys), selenite (Se(IV)), seleno-DL: -methionine (SeMet), and selenate (Se(VI)) were 2.1, 2.9, 4.3, and 3.5 ng mL(-1), respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO2 PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.

  16. Selenocysteine in Thiol/Disulfide-Like Exchange Reactions

    PubMed Central

    Marino, Stefano M.

    2013-01-01

    Abstract Significance: Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. Recent Advances: The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. Critical Issues: We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. Future Directions: It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec. Antioxid. Redox Signal. 18, 1675–1689. PMID:23121622

  17. Se(VI) Reduction and the Precipitation of Se(0) Precipitation by the Facultative Bacterium Enterobacter Cloacae SLD1a-1 is Regulated by FNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee,N.; Ma, J.; Dalia, A.

    2007-01-01

    The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07more » x 10{sup -2} h{sup -1} and k = 3.36 x 10{sup -2} h{sup -1}, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.« less

  18. Trace Element Levels in Congenital Hypogonadotrophic Hypogonadism.

    PubMed

    Aydogdu, A; Haymana, C; Soykut, B; Erdem, O; Basaran, Y; Baskoy, K; Dinc, M; Taslipinar, A; Sonmez, A; Bolu, E; Azal, O

    2016-05-01

    Cardiometabolic diseases are prevalent in hypogonadism. The pathophysiologic mechanism of increased cardiometabolic risk in hypogonadal patients is not clear. Recently, trace elements have been linked to the development of chronic disease especially cardiovascular disease. We investigated the trace element levels in an unconfounded population of congenital hypogonadotrophic hypogonadism (CHH) and also searched for the relationship with metabolic risk factors. A total of 89 patients with CHH (mean age 21.8 ± 2.0 years) and 80 healthy control subjects (mean age 21.3 ± 1.1 years) were enrolled. The demographic parameters, homeostatic model assessment of insulin resistance (HOMA-IR) levels and plasma zinc, copper, and selenium levels, were measured in patients and healthy controls. The patients had higher waist circumferences (p = 0.014), triglyceride (p = 0.04), insulin (p = 0.004), HOMA-IR levels (p = 0.001), and lower selenium (p = 0.049), zinc (p = 0.004), and copper (p = 0.012) levels when compared to the healthy controls. There was a significant relationship between zinc levels and HOMA-IR levels (p = 0.015). In the regression analysis, zinc levels were independently associated with the calculated HOMA-IR levels (p = 0.015). The results of the present study show that plasma selenium, zinc, and copper levels are decreased in patients with CHH. Also, plasma zinc levels are independently associated with insulin resistance in patients with hypogonadism. Long-term follow-up studies are warranted to investigate the effect of trace elements on the increased cardiometabolic risk in hypogonadism.

  19. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    USGS Publications Warehouse

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  20. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    NASA Astrophysics Data System (ADS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  1. Hepatic metabolite profiles in mice with a suboptimal selenium status.

    PubMed

    Geillinger, Kerstin E; Rathmann, Daniel; Köhrle, Josef; Fiamoncini, Jarlei; Daniel, Hannelore; Kipp, Anna P

    2014-09-01

    Selenium is an essential trace element and mediates its functions via various selenoproteins such as glutathione peroxidases or thioredoxin reductases. A suboptimal selenium supply causes metabolic disturbances and is associated with an increased risk to develop different disorders, including cancer or cardiovascular diseases. This study aimed to assess the impact of a suboptimal selenium status on the hepatic metabolome of male mice analyzed by a targeted liquid chromatography/tandem mass spectrometry and a method based on non-targeted gas chromatography hyphenated with mass spectrometry. Feeding animals a diet with about half of the recommended selenium content supplied as selenomethionine caused liver glutathione peroxidase and thioredoxin reductase activities to decline and lipid peroxidation to increase. Serum T3 thyroid hormone concentration also declined via a reduced hepatic deiodinase activity. Metabolite profiling revealed predominantly changes in cysteine and carbon-1 metabolism as well as in selected lipid subclasses. In particular the concentrations of palmitoylcarnitines and oleoylcarnitines (C18:1 and C16:1) and various phosphatidylcholine species containing saturated fatty acids were elevated. Increased taurine levels suggested an enhanced cysteine flux through the salvage pathway whereas increased homocysteine levels appeared to be a consequence of a massive down-regulation of cystathionine β lyase (cystathionine β synthase) and a reduced flux through the transsulfuration pathway. The findings demonstrate that a suboptimal selenium status causes alterations in lipid and carbon-1 metabolism in mouse liver. These changes may contribute to the development of diseases associated with a suboptimal selenium status. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Association between Selenium and Other Micronutrients and Thyroid Cancer Incidence in the NIH-AARP Diet and Health Study

    PubMed Central

    O’Grady, Thomas J.; Kitahara, Cari M.; DiRienzo, A. Gregory; Gates, Margaret A.

    2014-01-01

    Background Selenium is an essential trace element that is important for thyroid hormone metabolism and has antioxidant properties which protect the thyroid gland from oxidative stress. The association of selenium, as well as intake of other micronutrients, with thyroid cancer is unclear. Methods We evaluated associations of dietary selenium, beta-carotene, calcium, vitamin D, vitamin C, vitamin E, folate, magnesium, and zinc intake with thyroid cancer risk in the National Institutes of Health – American Association of Retired Persons Diet and Health Study, a large prospective cohort of 566,398 men and women aged 50–71 years in 1995–1996. Multivariable-adjusted Cox proportional hazards regression was used to examine associations between dietary intake of micronutrients, assessed using a food frequency questionnaire, and thyroid cancer cases, ascertained by linkage to state cancer registries and the National Death Index. Results With the exception of vitamin C, which was associated with an increased risk of thyroid cancer (HRQ5 vs Q1, 1.34; 95% CI, 1.02–1.76; Ptrend, <0.01), we observed no evidence of an association between quintile of selenium (HRQ5 vs Q1, 1.23; 95% CI, 0.92–1.65; Ptrend, 0.26) or other micronutrient intake and thyroid cancer. Conclusion Our study does not suggest strong evidence for an association between dietary intake of selenium or other micronutrients and thyroid cancer risk. More studies are needed to clarify the role of selenium and other micronutrients in thyroid carcinogenesis. PMID:25329812

  3. [Spectral Analysis of CdZnSe Ternary Quantum Dots Sensitized TiO2 Tubes and Its Application in Visible-Light Photocatalysis].

    PubMed

    Han, Zhi-zhong; Ren, Li-li; Pan, Hai-bo; Li, Chun-yan; Chen, Jing-hua; Chen, Jian-zhong

    2015-11-01

    In this work, cadmium nitrate hexahydrate [Cd(NO₃)₂ · 6H₂O] is as a source of cadmium, zinc nitrate [Zn(NO₃)₂] as a source of zinc source, and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH₄). Then water-soluble Cd₁₋xZnxSe ternary quantum dots with different component were prepared by colloid chemistry. The as-prepared Cd₁₋xZnx Se ternary quantum dots exhibit stable fluorescent property in aqueous solution, and can still maintain good dispersivity at room temperature for four months. Powder X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd₁₋xZnxSe. It is found that the as-prepared ternary quantum dots are cubic phase, show as sphere, and the average of particle size is approximate 4 nm. The spectral properties and energy band structure of the as-prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd. Compared with binary quantum dots CdSe and ZnSe, the ultraviolet-visible (UV-Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red-shift. The composites (Cd₀.₅ Zn₀.₅ Se@TNTs) of Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes (TNTs) were prepared by directly immerging TNTs into quantum dots dispersive solution for 5 hours. TEM image shows that the Cd₀.₅ Zn₀.₅ Se ternary quantum dots were closely combined to nanotube surface. The infrared spectra show that the Ti-Se bond was formed between Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes, which improve the stability of the composite. Compared to pristine TNTs, UV-Visible absorption spectrum of the composites is significantly enhanced in the visible region of light. And the absorption band edge of Cd₀.₅Zn₀.₅ Se@TNTs red-shift from 400 to 700 nm. The recombination of the photogenerated electron-hole pairs was restrained with the as-prepared ternary quantum dots. Therefore, the visible-light photocatalytic efficiency was greatly improved. After visible-light irradiation for 60 min, the degradation of Cd₀.₅ Zn₀.₅ Se@TNTs photocatalysts for RhB is nearly 100%, which is about 3. 3 times of that of pristine TNTs and 2. 5 times of that of pure Cd₀.₅ Zn₀.₅ Se ternary quantum dots, respectively.

  4. Chemical poisoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binns, W.

    1956-01-01

    The toxicity of a number of chemicals are discussed in relation to their effects on farm animals. Arsenic has been a common cause of accidental poisoning of animals because it often is used to kill insects, parasites, weeds and rodents. It may be acute or chronic, depending on the amount consumed. The common symptoms are loss of flesh; a bright-red coloration of the mucous membranes; digestive disturbance, irregular pulse, and depression. Livestock may be affected by excess amounts of fluorides. An excessive amount of F interferes with the normal calcification of the bones and teeth. Animals may get lead poisoningmore » by chewing or licking lead-painted objects, lead storage batteries, and discarded painting materials. Orchard sprays also contain lead compounds. Symptoms include inflammation of the mucous membranes, loss of appetite, diarrhea, grinding of teeth, and salivation. Lead may also affect the nervous system causing animals to walk in circles and run into objects because of blindness. Molybdenum poisoning may occur in animals that graze on forage plants containing excessive amounts of the element. Some of the symptoms of chronic molybdenum poisoning are profuse diarrhea, and general weakness. Nitrate poisoning may be produced by a number of plants and fertilizer. The symptoms include staggering gait, tremors, rapid breathing and marked dilation of pupils. Salt poisoning may occur from the excessive consumption of sodium chloride. Symptoms include hypersensitivity to touch, loss of appetite and loss of coordination. Selenium poisoning is caused by the ingestion of plants that have absorbed selenium from the soils. Symptoms include loss of hair and rough horns, long and deformed hoofs, and sloughing of hoofs.« less

  5. Rhizobium selenitireducens proteins involved in the reduction of selenite to elemental selenium

    USDA-ARS?s Scientific Manuscript database

    Microbial based bioremediation barriers can remove the metalloid selenite (SeO3–2) from flowing groundwater. The organisms associated with the process include microorganisms from within the bacterial and archaeal domains that can reduce soluble SeO3–2 to the insoluble and reddish-colored elemental ...

  6. Potentially-toxic and essential elements profile of AH1N1 patients in Mexico City

    PubMed Central

    Moya, Mireya; Bautista, Edgar G.; Velázquez-González, Antonio; Vázquez-Gutiérrez, Felipe; Tzintzun, Guadalupe; García-Arreola, María Elena; Castillejos, Manuel; Hernández, Andrés

    2013-01-01

    During spring of 2009, a new influenza virus AH1N1 spread in the world causing acute respiratory illness and death, resulting in the first influenza pandemic since 1968. Blood levels of potentially-toxic and essential elements of 40 pneumonia and confirmed AH1N1 were evaluated against two different groups of controls, both not infected with the pandemic strain. Significant concentrations of potentially-toxic elements (lead, mercury, cadmium, chromium, arsenic) along with deficiency of selenium or increased Zn/Cu ratios characterized AH1N1 cases under study when evaluated versus controlled cases. Deficiency of selenium is progressively observed from controls I (influenza like illness) through controls II (pneumonia) and finally pneumonia -AH1N1 infected patients. Cases with blood Se levels greater than the recommended for an optimal cut-off to activate glutathione peroxidase (12.5 μg/dL) recovered from illness and survived. Evaluation of this essential element in critical pneumonia patients at the National Institutes is under evaluation as a clinical trial. PMID:23422930

  7. Reconnaissance for determining effects of land use and surficial geology on concentrations of selected elements on streambed materials from the coal-mining region, southwestern Indiana, October 1979 to March 1980

    USGS Publications Warehouse

    Wilber, W.G.; Boje, Rita R.

    1982-01-01

    Streambed materials were collected in October 1979 from 69 watersheds in Southwest Indiana having predominantly forested, agricultural, reclaimed, and unreclaimed mined land use to determine whether concentrations of sorbed and acid-soluble metals and trace elements were affected by land use and surficial geology. Analysis of variance indicated that 10% or more of the total variation in aluminum, arsenic, cobalt, iron, nickel, selenium, and zinc concentrations on streambed materials was accounted for by differences in land use. Concentrations of aluminum, cobalt, iron, nickel, selenium, and zinc on streambed materials smaller than 0.062-millimeter from mined watersheds were significantly greater than the concentrations of these elements on streambed materials from agricultural and forested watersheds. The greater concentrations of these elements on streambed materials are due to (1) their concentrations in mine drainage and their subsequent absorption and (or) copecipitation with the oxides and hydroxides of aluminum and iron and (2) their concentrations in coal and pyritic material in streambed materials. (USGS)

  8. In Vitro and in Vivo Mechanism of Bone Tumor Inhibition by Selenium-Doped Bone Mineral Nanoparticles.

    PubMed

    Wang, Yifan; Wang, Jianglin; Hao, Hang; Cai, Mingle; Wang, Shiyao; Ma, Jun; Li, Yan; Mao, Chuanbin; Zhang, Shengmin

    2016-11-22

    Biocompatible tissue-borne crystalline nanoparticles releasing anticancer therapeutic inorganic elements are intriguing therapeutics holding the promise for both tissue repair and cancer therapy. However, how the therapeutic inorganic elements released from the lattice of such nanoparticles induce tumor inhibition remains unclear. Here we use selenium-doped hydroxyapatite nanoparticles (Se-HANs), which could potentially fill the bone defect generated from bone tumor removal while killing residual tumor cells, as an example to study the mechanism by which selenium released from the lattice of Se-HANs induces apoptosis of bone cancer cells in vitro and inhibits the growth of bone tumors in vivo. We found that Se-HANs induced apoptosis of tumor cells by an inherent caspase-dependent apoptosis pathway synergistically orchestrated with the generation of reactive oxygen species. Such mechanism was further validated by in vivo animal evaluation in which Se-HANs tremendously induced tumor apoptosis to inhibit tumor growth while reducing systemic toxicity. Our work proposes a feasible paradigm toward the design of tissue-repairing inorganic nanoparticles that bear therapeutic ions in the lattice and can release them in vivo for inhibiting tumor formation.

  9. Mercury and selenium binding biomolecules in terrestrial mammals (Cervus elaphus and Sus scrofa) from a mercury exposed area.

    PubMed

    Ropero, M J Patiño; Fariñas, N Rodríguez; Krupp, E; Mateo, R; Nevado, J J Berzas; Martín-Doimeadios, R C Rodríguez

    2016-06-01

    Mercury (Hg) is likely bound to large biomolecules (e.g. proteins) in living organisms, and in order to assess Hg metabolic pathways and possible toxicological effects, it is essential to study these Hg containing biomolecules. However, the exact nature of most metal binding biomolecules is unknown. Such studies are still in their infancy and information on this topic is scarce because the analysis is challenging, mainly due to their lability upon digestion or extraction from the tissue. New analytical methods that allow complex Hg-biomolecules to be analysed intact are needed and only few very recent studies deal with this approach. Therefore, as an initial step towards the characterization of Hg containing biomolecules, an analytical procedure has been optimised using size-exclusion chromatography (SEC) with inductively coupled plasma mass spectrometry (ICP-MS) detection. We applied this technique to elucidate the distribution and elution profile of Hg and Se, and some physiological important elements such as Fe, Ni, Zn and Cu, to assess metal binding profiles in liver and kidney samples of red deer (Cervus elaphus) and wild boar (Sus scrofa) who roam freely within the largest Hg mining district on Earth, Almadén in Spain. Elemental fractionation profiles of the extracts from different tissues were obtained using two different SEC columns (BioSep-SEC-S2000 GL 300-1kDa and Superdex 75 10/300 GL 70-3kDa). Similar profiles of Hg were observed in red deer and wild boar; however, significant differences were evident for liver and kidney. Moreover, the profiles of Se showed a single peak at high-medium molecular weight in all investigated tissues, while co-elution of Hg with Fe, Ni, Zn and Cu was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lead poisoning and trace elements in common eiders Somateria mollissima from Finland

    USGS Publications Warehouse

    Hollmén, Tuula E.; Franson, J.C.; Poppenga, R.H.; Hario, Martti; Kilpi, Mikael

    1998-01-01

    We collected carcasses of 52 common eider Somateria mollissima adults and ducklings and blood samples from 11 nesting eider hens in the Gulf of Finland near Helsinki in 1994, 1995 and 1996. Samples of liver tissue were analysed for arsenic, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, selenium and zinc. Blood was analysed for lead, mercury and selenium. Most of the 21 adults examined at necropsy were emaciated with empty gizzards, and no ingested shotgun pellets or other metal were found in any of the birds. Three adult females had a combination of lesions and tissue lead residues characteristic of lead poisoning. Two of these birds had acid-fast intranuclear inclusion bodies in renal epithelial cells and high concentrations of lead (73.4 and 73.3 ppm; all liver residues reported on dry weight basis) in their livers. The third was emaciated with a liver lead concentration of 47.9 ppm. An adult male had a liver lead concentration of 81.7 ppm, which is consistent with severe clinical poisoning. Two other adults, one male and one female, had liver lead concentrations of 14.2 and 8.03 ppm, respectively. Lead concentrations in the blood of hens ranged from 0.11 to 0.63 ppm wet weight. Selenium residues of A?60 ppm were found in the livers of five adult males. Selenium concentrations in the blood of hens ranged from 1.18 to 3.39 ppm wet weight. Arsenic concentrations of 27.5-38.5 ppm were detected in the livers of four adult females. Detectable concentrations of selenium, mercury and molybdenum were found more frequently in the livers of adult males arriving on the breeding grounds than in incubating females, while the reverse was true for arsenic, lead and chromium. Mean concentrations of selenium, copper and molybdenum were higher in the livers of arriving males than in the livers of incubating hens, but hens had greater concentrations of iron and magnesium. Concentrations of trace elements were lower in the livers of ducklings than in the livers of adults.

  11. Selenium supplementation and lung cancer incidence: an update of the nutritional prevention of cancer trial.

    PubMed

    Reid, Mary E; Duffield-Lillico, Anna J; Garland, Linda; Turnbull, Bruce W; Clark, Larry C; Marshall, James R

    2002-11-01

    Interest in the chemopreventive effects of the trace element selenium has spanned the past three decades. Of >100 studies that have investigated the effects of selenium in carcinogen-exposed animals, two-thirds have observed a reduction in tumor incidence and/or preneoplastic endpoints (G. F. Combs and S. B. Combs, The Role of Selenium in Nutrition Chapter 10, pp. 413-462. San Diego, CA: Academic Press, 1986, and B. H. Patterson and O. A. Levander, Cancer Epidemiol. Biomark. Prev., 6: 63-69, 1997). The Nutritional Prevention of Cancer Trial, a randomized clinical trial reported by Clark et al. (L. C. Clark et al., JAMA, 276: 1957-1963, 1996), showed as a secondary end point, a statistically significant decrease in lung cancer incidence with selenium supplementation. The adjusted hazard ratio (HR) was 0.56 [95% confidence interval (CI), 0.31-1.01; P = 0.05]. These results were based on active follow-up of 1312 participants. This reanalysis used an extended Nutritional Prevention of Cancer Trial participant follow-up through the end of the blinded clinical trial on February 1, 1996. The additional 3 years added 8 cases to the selenium-treated group and 4 cases to the placebo group, and increased follow-up to 7.9 years. The relative risk of 0.70 (95% CI, 0.40-1.21; P = 0.18) is not statistically significant. Whereas the overall adjusted HR is not significant (HR = 0.74; 95% CI, 0.44-1.24; P = 0.26), and the HR for current and former smokers was not significant, the trend is toward a reduction in risk of incident lung cancer with selenium supplementation. In a subgroup analysis there was a nominally significant HR among subjects with baseline plasma selenium in the lowest tertile (HR = 0.42; 95% CI, 0.18-0.96; P = 0.04). The analysis for the middle and highest tertiles of baseline showed HRs of 0.91 and 1.25. The current reanalysis indicates that selenium supplementation did not significantly decrease lung cancer incidence in the full population, but a significant decrease among individuals with low baseline selenium concentrations was observed.

  12. Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game.

    PubMed

    Birgisdottir, B E; Knutsen, H K; Haugen, M; Gjelstad, I M; Jenssen, M T S; Ellingsen, D G; Thomassen, Y; Alexander, J; Meltzer, H M; Brantsæter, A L

    2013-10-01

    The first aim of the study was to evaluate calculated dietary intake and concentrations measured in blood or urine of essential and toxic elements in relation to nutritional and toxicological reference values. The second aim was to identify patterns of the element concentrations in blood and urine and to identify possible dietary determinants of the concentrations of these elements. Adults with a known high consumption of environmental contaminants (n=111), and a random sample of controls (n=76) answered a validated food frequency questionnaire (FFQ). Complete data on biological measures were available for 179 individuals. Blood and urine samples were analyzed for selenium, iodine, arsenic, mercury, cadmium and lead. Principal component analysis was used to identify underlying patterns of correlated blood and urine concentrations. The calculated intakes of selenium, iodine, inorganic arsenic and mercury were within guideline levels. For cadmium 24% of the high consumer group and 8% of the control group had intakes above the tolerable weekly intake. Concentrations of lead in blood exceeded the bench-mark dose lower confidence limits for some participants. However, overall, the examined exposures did not give rise to nutritional or toxicological concerns. Game consumption was associated with lead in blood (B(ln) 0.021; 95%CI:0.010, 0.031) and wine consumption. Seafood consumption was associated with urinary cadmium in non-smokers (B(ln) 0.009; 95%CI:0.003, 0.015). A novel finding was a distinct pattern of positively associated biological markers, comprising iodine, selenium, arsenic and mercury (eigenvalue 3.8), reflecting seafood intake (B 0.007; 95%CI:0.004, 0.010). The study clearly demonstrates the significance of seafood as a source of both essential nutrients and toxic elements simultaneously and shows that exposure to various essential and toxic elements can be intertwined. © 2013 Elsevier B.V. All rights reserved.

  13. Determination of trace selenium by solid substrate-room temperature phosphorescence enhancing method based on potassium chlorate oxidizing phenyl hydrazine-1,2-dihydroxynaphthalene-3,6-disulfonic acid system.

    PubMed

    Liu, Jia-Ming; Cui, Xiao-Jie; Li, Lai-Ming; Fu, Geng-Min; Lin, Shao-Xian; Yang, Min-Lan; Xu, Mei-Ying; Wu, Zhi-Qun

    2007-04-01

    A new method for the determination of trace selenium based on solid substrate-room temperature phosphorimetry (SS-RTP) has been established. This method was based on the fact that in HCl-KCl buffer solution, potassium chlorate could oxidize phenyl hydrazine to form chloridize diazo-ion after being heated at 100 degrees C for 20 min, and then the diazo-ion reacted with 1,2-dihydroxynaphthalene-3,6-disulfonic acid to form red azo-compound which could emit strong room temperature phosphorescence (RTP) signal on filter paper. Selenium could catalyze potassium chlorate oxidizing the reaction between phenyl hydrazine and 1,2-dihydroxynaphthalene-3,6-disulfonic acid, which caused the sharp enhancement of SS-RTP. Under the optimum condition, the relationship between the phosphorescence emission intensity (DeltaIp) and the content of selenium obeyed Beer's law when the concentration of selenium is within the range of 1.60-320 fg spot-1 (or 0.0040-0.80 ng ml-1 with a sample volume of 0.4 microl). The regression equation of working curve can be expressed as DeltaIp=13.12+0.4839CSe(IV) (fg spot-1) (n=6), with correlation coefficient r=0.9991 and a detection limit of 0.28 fg spot-1 (corresponding to a concentration range of 7.0x10(-13) g ml-1 Se(IV), n=11). After 11-fold measurement, R.S.D. were 2.8 and 3.5% for the samples containing 0.0040 and 0.80 ng ml-1 of Se(IV), respectively. This accurate and sensitive method with good repeatability has been successfully applied to the determination of trace selenium in Chinese wolfberry and egg yolk with satisfactory results. The mechanism of the enhancement of phosphorescence was also discussed.

  14. Determination of trace selenium by solid substrate-room temperature phosphorescence enhancing method based on potassium chlorate oxidizing phenyl hydrazine-1,2-dihydroxynaphthalene-3,6-disulfonic acid system

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Cui, Xiao-Jie; Li, Lai-Ming; Fu, Geng-Min; Lin, Shao-Xian; Yang, Min-Lan; Xu, Mei-Ying; Wu, Zhi-Qun

    2007-04-01

    A new method for the determination of trace selenium based on solid substrate-room temperature phosphorimetry (SS-RTP) has been established. This method was based on the fact that in HCl-KCl buffer solution, potassium chlorate could oxidize phenyl hydrazine to form chloridize diazo-ion after being heated at 100 °C for 20 min, and then the diazo-ion reacted with 1,2-dihydroxynaphthalene-3,6-disulfonic acid to form red azo-compound which could emit strong room temperature phosphorescence (RTP) signal on filter paper. Selenium could catalyze potassium chlorate oxidizing the reaction between phenyl hydrazine and 1,2-dihydroxynaphthalene-3,6-disulfonic acid, which caused the sharp enhancement of SS-RTP. Under the optimum condition, the relationship between the phosphorescence emission intensity (Δ Ip) and the content of selenium obeyed Beer's law when the concentration of selenium is within the range of 1.60-320 fg spot -1 (or 0.0040-0.80 ng ml -1 with a sample volume of 0.4 μl). The regression equation of working curve can be expressed as Δ Ip = 13.12 + 0.4839 CSe(IV) (fg spot -1) ( n = 6), with correlation coefficient r = 0.9991 and a detection limit of 0.28 fg spot -1 (corresponding to a concentration range of 7.0 × 10 -13 g ml -1 Se(IV), n = 11). After 11-fold measurement, R.S.D. were 2.8 and 3.5% for the samples containing 0.0040 and 0.80 ng ml -1 of Se(IV), respectively. This accurate and sensitive method with good repeatability has been successfully applied to the determination of trace selenium in Chinese wolfberry and egg yolk with satisfactory results. The mechanism of the enhancement of phosphorescence was also discussed.

  15. Biomagnetic Recovery and Bioaccumulation of Selenium Granules in Magnetotactic Bacteria.

    PubMed

    Tanaka, Masayoshi; Knowles, William; Brown, Rosemary; Hondow, Nicole; Arakaki, Atsushi; Baldwin, Stephen; Staniland, Sarah; Matsunaga, Tadashi

    2016-07-01

    Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd(2+) adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Selenium in bone health: roles in antioxidant protection and cell proliferation.

    PubMed

    Zeng, Huawei; Cao, Jay J; Combs, Gerald F

    2013-01-10

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.

  17. Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation

    PubMed Central

    Zeng, Huawei; Cao, Jay J.; Combs, Gerald F.

    2013-01-01

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health. PMID:23306191

  18. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    PubMed

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  19. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides). [Radium 226; Uranium; Molybdenum; Selenium; Vanadium; Astatine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations inmore » plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes.« less

  20. Effect of Intestinal Tapeworm Clestobothrium crassiceps on Concentrations of Toxic Elements and Selenium in European Hake Merluccius merluccius from the Gulf of Lion (Northwestern Mediterranean Sea).

    PubMed

    Torres, Jordi; Eira, Catarina; Miquel, Jordi; Ferrer-Maza, Dolors; Delgado, Eulàlia; Casadevall, Margarida

    2015-10-28

    The capacity for heavy metal bioaccumulation by some fish parasites has been demonstrated, and their contribution to decreasing metal concentrations in tissues of parasitized fish has been hypothesized. The present study evaluated the effect of the cestode Clestobothrium crassiceps on the accumulation of trace elements in 30 European hake, Merluccius merluccius, in Spain (half of them infested by C. crassiceps). Tissue samples from all M. merluccius and specimens of C. crassiceps from the infected hakes were collected and stored until element analysis by inductively coupled plasma mass spectrometry (ICP-MS). Arsenic, mercury, and selenium were generally present in lower levels in the cestode than in all hake tissues. The mean value of the muscular Se:Hg molar ratio in the infested subsample was higher than that in hakes without cestodes. Values indicate that the edible part of infested hakes presents a lower amount of Cd and Pb in relation to noninfested hakes.

  1. Homeostasis of metals in the progression of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  2. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  3. Germanium, Arsenic, and Selenium Abundances in Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2012-09-01

    The elements germanium (Ge, Z = 32), arsenic (As, Z = 33), and selenium (Se, Z = 34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 <= [Fe/H] <= -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research made use of StarCAT, hosted by the Mikulski Archive at the Space Telescope Science Institute (MAST). These data are associated with Programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9455, and GO-9804.Based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 67.D-0439(A), 074.C-0364(A), 076.B-0055(A), and 080.D-0347(A).This research has made use of the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. These data are associated with Programs H2aH, H6aH, and H39aH (PI: Boesgaard), N01H (PI: Latham), and U11H (PI: Prochaska).This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  4. Forecasting Selenium Discharges to the San Francisco Bay-Delta Estuary: Ecological Effects of A Proposed San Luis Drain Extension

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2006-01-01

    Selenium discharges to the San Francisco Bay-Delta Estuary (Bay-Delta) could change significantly if federal and state agencies (1) approve an extension of the San Luis Drain to convey agricultural drainage from the western San Joaquin Valley to the North Bay (Suisun Bay, Carquinez Strait, and San Pablo Bay); (2) allow changes in flow patterns of the lower San Joaquin River and Bay-Delta while using an existing portion of the San Luis Drain to convey agricultural drainage to a tributary of the San Joaquin River; or (3) revise selenium criteria for the protection of aquatic life or issue criteria for the protection of wildlife. Understanding the biotransfer of selenium is essential to evaluating effects of selenium on Bay-Delta ecosystems. Confusion about selenium threats to fish and wildlife stem from (1) monitoring programs that do not address specific protocols necessary for an element that bioaccumulates; and (2) failure to consider the full complexity of the processes that result in selenium toxicity. Past studies show that predators are more at risk from selenium contamination than their prey, making it difficult to use traditional methods to predict risk from environmental concentrations alone. This report presents an approach to conceptualize and model the fate and effects of selenium under various load scenarios from the San Joaquin Valley. For each potential load, progressive forecasts show resulting (1) water-column concentration; (2) speciation; (3) transformation to particulate form; (4) particulate concentration; (5) bioaccumulation by invertebrates; (6) trophic transfer to predators; and (7) effects on those predators. Enough is known to establish a first-order understanding of relevant conditions, biological response, and ecological risks should selenium be discharged directly into the North Bay through a conveyance such as a proposed extension of the San Luis Drain. The approach presented here, the Bay-Delta selenium model, determines the mass, fate, and effects of selenium released to the Bay-Delta through use of (1) historical land-use, drainage, alluvial-fill, and runoff databases; (2) existing knowledge concerning biogeochemical reactions and physiological parameters of selenium (e.g., speciation, partitioning between dissolved and particulate forms, and bivalve assimilation efficiency); and (3) site-specific data mainly from 1986 to 1996 for clams and bottom-feeding fish and birds. Selenium load scenarios consider effluents from North Bay oil refineries and discharges of agricultural drainage from the San Joaquin Valley to enable calculation of (a) a composite freshwater endmember selenium concentration at the head of the estuary; and (b) a selenium concentration at a selected seawater location (Carquinez Strait) as a foundation for modeling. Analysis of selenium effects also takes into account the mode of conveyance for agricultural drainage (i.e., the San Luis Drain or San Joaquin River); and flows of the Sacramento River and San Joaquin River on a seasonal or monthly basis. Load scenarios for San Joaquin Valley mirror predictions made since 1955 of a worsening salt (and by inference, selenium) build-up exacerbated by an arid climate and massive irrigation. The reservoir of selenium in the San Joaquin Valley is sufficient to provide loading at an annual rate of approximately 42,500 pounds of selenium to a Bay-Delta disposal point for 63 to 304 years at the lower range of projections presented here, even if influx of selenium from the California Coast Ranges could be curtailed. Disposal of wastewaters on an annual basis outside of the San Joaquin Valley may slow the degradation of valley resources, but drainage alone cannot alleviate the salt and selenium build-up in the San Joaquin Valley, at least within a century. Load scenarios also show the different proportions of selenium loading to the Bay-Delta. Oil refinery loads from 1986 to 1992 ranged from 8.5 to 20 pounds of selenium per day;

  5. Correlative Cryo-Tem Cryo-Stxm and Cryo-Shxm Investigation of Selenium Bioreduction in a Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Fakra, S.; Luef, B.; Tyliszczak, T.; Castelle, C. J.; Mullin, S. W.; Hug, L. A.; Williams, K. H.; Marcus, M.; Banfield, J. F.

    2015-12-01

    Accurate mapping of the composition and ultrastructure of minerals and cells is key to understanding biogeochemical process in contaminated environments. Here we developed two apparatus that allow correlation of cryogenic transmission electron microscopy (TEM), synchrotron hard X-ray microprobe (SHXM) and scanning transmission X-ray microscopy (STXM) datasets. These cryogenic methods enabled precise determination of the distribution, valence state and structure of selenium in intact biofilms sampled during a biostimulation experiment in a contaminated aquifer near Rifle, CO, USA. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family, and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms consists of ~25-300 nm red amorphous Se0 aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for microbial dissimilatory reduction of Se(VI) to Se(IV) to Se0. X-ray diffraction and Se K-edge extended X-ray absorption fine structure spectroscopy revealed red amorphous Se0 with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. STXM showed that these aggregates are strongly associated with a protein-rich biofilm matrix containing acidic polysaccharides. From Rifle groundwater, we isolated a strain that shares 98.9% 16S rRNA gene sequence identity with Dechloromonas aromatica RCB and grows anaerobically by oxidizing acetate and reducing selenate. We refer to this isolate as Dechloromonas selenatis strain RGW99. 3D cryo-electron tomography showed that Se0 particles do not form inside the cytoplasm but rather originate in the cell membrane. The end product of selenate reduction by D. selenatis is 240 ± 66 nm diameter red amorphous Se0 colloidal aggregates. This product was found to be stable for months. Overall, these results established a role for D. selenatis RGW99 in selenate reduction in the Rifle aquifer and provided new insights into the nature and stability of selenium bioreduction products in the subsurface.

  6. Cancer incidence following long-term consumption of drinking water with high inorganic selenium content.

    PubMed

    Vinceti, Marco; Vicentini, Massimo; Wise, Lauren A; Sacchettini, Claudio; Malagoli, Carlotta; Ballotari, Paola; Filippini, Tommaso; Malavolti, Marcella; Rossi, Paolo Giorgi

    2018-04-16

    Selenium, a trace element to which humans are exposed mainly through diet, has been involved in the etiology of human cancer. We investigated the long-term effects of selenium exposure on cancer incidence using data from a natural experiment in Northern Italy. During the 1970s-1980s, in a part of the Italian municipality of Reggio Emilia, residents were inadvertently exposed to unusually high levels of inorganic hexavalent selenium (selenate) through drinking water. We followed the exposed residents for 28years, generating data on incidence (when available) and mortality rates for selected cancer sites; the remaining municipal residents comprised the unexposed (reference) group. We observed no substantial difference in overall cancer incidence comparing exposed and unexposed cohorts. We detected, however, a higher incidence of cancer at some sites, and for a few of them, namely cancers of the buccal cavity and pharynx, melanoma, urinary tract and lymphoid tissue, the excess incidence was particularly evident in the first period of follow-up but decreased over time. Overall, these results suggest that consumption of water with levels of selenium in its inorganic hexavalent form close to the European standard, 10μg/L, may have unfavourable effects on cancer incidence. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    PubMed

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  8. Characterization of selenium species in biological extracts by enhanced ion-pair liquid chromatography with inductively coupled plasma-mass spectrometry and by referenced electrospray ionization-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kotrebai, Mihály; Bird, Susan M.; Tyson, Julian F.; Block, Eric; Uden, Peter C.

    1999-11-01

    Selenium is an essential nutrient for humans; selenium compounds catalyze intermediate metabolism reactions and inhibit the toxic effects of heavy metals such as arsenic, cadmium and mercury. Some extracts of selenium-enriched biological materials show cancer preventive effects, tentatively attributable to the biological functions of selenoamino acids. An improved ion pair chromatographic method with methodological enhancements for the separation, qualitative and quantitative determination of non-volatile selenium compounds extracted from different samples has been developed using ICP-MS as an element-selective detector. Separation power early in the chromatogram was increased to baseline separation in the standard mixture as a result of decreasing spray chamber size from 97 to 14 ml, and increasing trifluoracetic acid (TFA) concentration in the mobile phase from 0.1 to 0.6%. The former pH was restored by the addition of ammonia to the mobile phase, which also served to increase the column recovery of inorganic anions. Calibration curves for different selenoamino acids showed statistically different behavior. Biological sample extracts were characterized using HPLC-ICP-MS. Mass spectral behavior of selenoamino acids, using electrospray and ion trap technology with direct infusion and liquid chromatographic sample introduction, is also reported.

  9. Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes.

    PubMed

    Weiller, Markus; Latta, Markus; Kresse, Matthias; Lucas, Rudolf; Wendel, Albrecht

    2004-09-01

    The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.

  10. Selenium impacts on razorback sucker, Colorado River, Colorado II. Eggs.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-05-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 microg/g from Horsethief, 46 microg/g from Adobe Creek, 38 microg/g from North Pond, and 6.0 microg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  11. Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions.

    PubMed

    Mozaffarian, Dariush

    2009-06-01

    Controversy has arisen among the public and in the media regarding the health effects of fish intake in adults. Substantial evidence indicates that fish consumption reduces coronary heart disease mortality, the leading cause of death in developed and most developing nations. Conversely, concerns have grown regarding potential effects of exposure to mercury found in some fish. Seafood species are also rich in selenium, an essential trace element that may protect against both cardiovascular disease and toxic effects of mercury. Such protective effects would have direct implications for recommendations regarding optimal selenium intake and for assessing the potential impact of mercury exposure from fish intake in different populations. Because fish consumption appears to have important health benefits in adults, elucidating the relationships between fish intake, mercury and selenium exposure, and health risk is of considerable scientific and public health relevance. The evidence for health effects of fish consumption in adults is reviewed, focusing on the strength and consistency of evidence and relative magnitudes of effects of omega-3 fatty acids, mercury, and selenium. Given the preponderance of evidence, the focus is on cardiovascular effects, but other potential health effects, as well as potential effects of polychlorinated biphenyls and dioxins in fish, are also briefly reviewed. The relevant current unanswered questions and directions of further research are summarized.

  12. Amblyomma maculatum SECIS binding protein 2 and putative selenoprotein P are indispensable for pathogen replication and tick fecundity.

    PubMed

    Budachetri, Khemraj; Crispell, Gary; Karim, Shahid

    2017-09-01

    Selenium, a vital trace element, is incorporated into selenoproteins to produce selenocysteine. Our previous studies have revealed an adaptive co-evolutionary process that has enabled the spotted fever-causing tick-borne pathogen Rickettsia parkeri to survive by manipulating an antioxidant defense system associated with selenium, which includes a full set of selenoproteins and other antioxidants in ticks. Here, we conducted a systemic investigation of SECIS binding protein 2 (SBP2) and putative selenoprotein P (SELENOP) by transcript silencing in adult female Gulf-coast ticks (Amblyomma maculatum). Knockdown of the SBP2 and SELENOP genes depleted the respective transcript levels of these tick selenogenes, and caused differential regulation of other antioxidants. Importantly, the selenium level in the immature and mature tick stages increased significantly after a blood meal, but the selenium level decreased in ticks after the SBP2 and SELENOP knockdowns. Moreover, the SBP2 knockdown significantly impaired both transovarial transmission of R. parkeri to tick eggs and egg hatching. Overall, our data offer new insight into the relationship between the SBP2 selenoprotein synthesis gene and the putative tick SELENOP gene. It also augments our understanding of selenoprotein synthesis, selenium maintenance and utilization, and bacterial colonization of a tick vector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Selenium impacts on razorback sucker, Colorado River, Colorado: II. Eggs

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.

    2005-01-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 μg/g from Horsethief, 46 μg/g from Adobe Creek, 38 μg/g from North Pond, and 6.0 μg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  14. Selenium in pollen gathered by bees foraging on fly ash-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, D.; Morse, R.A.; Gutenmann, W.H.

    1977-10-01

    Fly ash is the material collected in the stacks of coal burning electric power-generating plants by electrostatic precipitators. About 26 million metric tons of fly ash was estimated to have been produced in 1975 (BRACKETT, 1970). Aside from a small percentage of the material which is used as a base material for roads and in concrete, the bulk of it is deposited in landfills. It was first reported by Gutenmann et al. (1976) that sweet clover, found voluntarily growing on a fly ash landfill site, contained up to 200 ppM of selenium. Fly ashes from 21 states were found tomore » contain the element. Cabbage grown on each of these fly ashes added (7 percent w/w) to soil was shown to absorb selenium in proportion to its concentration in the particular ash (GUTENMANN et al., 1976). The percentage of fly ash in soil was also shown to dictate the extent of selenium absorption by a variety of plants (FURR et al., 1976). In the work reported, pollen collected by honey bees foraging on plants growing on a fly ash landfill was analyzed for selenium and compared with that collected by bees from the same plants growing on soil.« less

  15. Mercury and selenium in fish from the Savannah river: species, trophic level, and locational differences.

    PubMed

    Burger, J; Gaines, K F; Boring, C S; Stephens, W L; Snodgrass, J; Gochfeld, M

    2001-10-01

    Levels of contaminants in fish are of considerable interest because of potential effects on the fish themselves, as well as on other organisms that consume them. In this article we compare the mercury levels in muscle tissue of 11 fish species from the Savannah River, as well as selenium levels because of its known protective effect against mercury toxicity. We sampled fish from three stretches of the river: upstream, along, and downstream the Department of Energy's Savannah River Site, a former nuclear material production facility. We test the null hypothesis that there were no differences in mercury and selenium levels in fish tissue as a function of species, trophic level, and location along the river. There were significant interspecific differences in mercury levels, with bowfin (Amia calva) having the highest levels, followed by largemouth bass (Micropterus salmoides) and pickerel (Esox niger). Sunfish (Lepomis spp.) had the lowest levels of mercury. As expected, these differences generally reflected trophic levels. There were few significant locational differences in mercury levels, and existing differences were not great, presumably reflecting local movements of fish between the sites examined. Selenium and mercury concentrations were positively correlated only for bass, perch (Perca flavescens), and red-breasted sunfish (Lepomis auritus). Mercury levels were positively correlated with body mass of the fish for all species except American eel (Anguilla rostrata) and bluegill sunfish (L. macrochirus). The mercury and selenium levels in fish tissue from the Savannah River are similar to or lower than those reported in many other studies, and in most cases pose little risk to the fish themselves or to other aquatic consumers, although levels in bowfin and bass are sufficiently high to pose a potential threat to high-level consumers. Copyright 2001 Academic Press.

  16. A high prevalence of zinc- but not iron-deficiency among women in rural Malawi: a cross-sectional study.

    PubMed

    Siyame, Edwin W P; Hurst, Rachel; Wawer, Anna A; Young, Scott D; Broadley, Martin R; Chilimba, Allan D C; Ander, Louise E; Watts, Michael J; Chilima, Benson; Gondwe, Jellita; Kang'ombe, Dalitso; Kalimbira, Alexander; Fairweather-Tait, Susan J; Bailey, Karl B; Gibson, Rosalind S

    2013-01-01

    Zinc deficiency is often associated with nutritional iron deficiency (ID), and may be exacerbated by low selenium status. To investigate risk of iron and zinc deficiency in women with contrasting selenium status. In a cross-sectional study, 1-day diet composites and blood samples were collected from self-selected Malawian women aged 18-50 years from low- (Zombwe) (n=60) and high-plant-available soil selenium (Mikalango) (n=60) districts. Diets were analyzed for trace elements and blood for biomarkers. Zinc deficiency (>90 %) was greater than ID anemia (6 %), or ID (5 %), attributed to diets low in zinc (median 5.7 mg/day) with high phytate:zinc molar ratios (20.0), but high in iron (21.0 mg/day) from soil contaminant iron. Zombwe compared to Mikalango women had lower (p<0.05) intakes of selenium (6.5 vs. 55.3 µg/day), zinc (4.8 vs. 6.4 mg/day), iron (16.6 vs. 29.6 mg/day), lower plasma selenium (0.72 vs. 1.60 µmol/L), and higher body iron (5.3 vs. 3.8 mg/kg), although plasma zinc was similar (8.60 vs. 8.87 µmol/L). Body iron and plasma zinc were positive determinants of hemoglobin. Risk of zinc deficiency was higher than ID and was shown not to be associated with selenium status. Plasma zinc was almost as important as body iron as a hemoglobin determinant.

  17. Selected vitamins and essential elements in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in mid- and northern Norway: geographical variations and effect of animal population density.

    PubMed

    Hassan, Ammar Ali; Sandanger, Torkjel M; Brustad, Magritt

    2012-07-01

    Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat.

  18. Selected Vitamins and Essential Elements in Meat from Semi-Domesticated Reindeer (Rangifer tarandus tarandus L.) in Mid- and Northern Norway: Geographical Variations and Effect of Animal Population Density

    PubMed Central

    Hassan, Ammar Ali; Sandanger, Torkjel M.; Brustad, Magritt

    2012-01-01

    Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat. PMID:22852060

  19. Evaluation of simultaneous reduction and transport of selenium in saturated soil columns

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Frankenberger, William T.; Jury, William A.

    1999-03-01

    Speciation plays an important role in determining the overall leachability of selenium in soil. In this study we present a mathematical model and results of miscible displacement experiments that were conducted to evaluate simultaneous reduction and transport of selenate in saturated soil columns. The experiments were carried out in organic amended (compost manure or gluten) or unamended soil, with O2-sparged or nonsparged influent solution. In all columns, reduction of selenate was fast enough to produce selenite flux in the effluent and elemental Se in the soil profile during a mean residence time of ˜30 hours. Reduction was accelerated in the presence of organic amendments and under low O2 concentrations, resulting in an increased retardation of selenium transport as a whole. The results of our experiments show that although selenate does not sorb to solid surfaces during transport, it reduces rapidly to forms that are strongly retarded. On the basis of simulation with the consecutive reaction and transport model using parameters derived from this study, selenium is expected to be retained near the soil surface, even under extreme leaching conditions.

  20. Facile Synthesis and Optical Properties of Small Selenium Nanocrystals and Nanorods

    NASA Astrophysics Data System (ADS)

    Jiang, Fengrui; Cai, Weiquan; Tan, Guolong

    2017-06-01

    Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

  1. Lack of Correlation between Metallic Elements Analyzed in Hair by ICP-MS and Autism

    ERIC Educational Resources Information Center

    De Palma, Giuseppe; Catalani, Simona; Franco, Anna; Brighenti, Maurizio; Apostoli, Pietro

    2012-01-01

    A cross-sectional case-control study was carried out to evaluate the concentrations of metallic elements in the hair of 44 children with diagnosis of autism and 61 age-balanced controls. Unadjusted comparisons showed higher concentrations of molybdenum, lithium and selenium in autistic children. Logistic regression analysis confirmed the role of…

  2. [The relationship between selenium and gastrointestinal inflammatory diseases].

    PubMed

    Nagy, Dániel Tamás; Fülesdi, Béla; Hallay, Judit

    2013-10-13

    The cell-membrane toxicity of reactive oxygen and nitrogen species (RONS) plays an increasing role in the pathomechanism of gastrointestinal tract diseases. Trace elements are important parts of antioxidant protecting system, especially the selenium (Se), which, in the form of glutathione peroxidase contributes to the immunity of the gut (GALT). Due to the absorptional disorders and consequent malnutrition observed in the course of inflammatory bowel diseases (IBD) an important role is associated with nutritional therapy, including energy-, protein- and trace element-support. Human studies show, that IBD is mostly accompanied by lower serum Se concentrations, reduced antoxidant and increased proinflammatory activity. Adequate Se-replacement may reduce the severity of organ failure and infections, but not mortality. However, it is encouraging that in animal studies obvious preventive effect of Se has been found on IBD and chronic inflammation induced colon cancer .

  3. Elemental content of tissues and excreta of lambs, goats, and kids fed white sweet clover growing on fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furr, A.K.; Parkinson, T.F.; Heffron, C.L.

    White sweet clover found voluntarily growing on a deep bed of soft coal fly ash was found to contain high concentrations of a number of elements including selenium, bromine, and molybdenum, rubidium, strontium, and others. The clover was harvested and fed as 23.5% of a dry pelleted ration to lambs and pregnant goats for up to 173 days. High concentrations of selenium were found in 11 tissues, blood, goats' milk, and excreta of lambs, goats, and newborn kids. Molybdenum in liver, strontium in bone, and bromine and rubidium in animal tissues were also elevated over those in the corresponding tissuesmore » of animals fed an identical ration containing control clover grown on soil. No gross or histologic lesions were present in any of the animals.« less

  4. Effect of diet, location and sampling year on bioaccumulation of mercury, selenium and cadmium in pelagic feeding seabirds in Svalbard.

    PubMed

    Øverjordet, Ida Beathe; Gabrielsen, Geir Wing; Berg, Torunn; Ruus, Anders; Evenset, Anita; Borgå, Katrine; Christensen, Guttorm; Lierhagen, Syverin; Jenssen, Bjørn Munro

    2015-03-01

    Hepatic concentrations of mercury (Hg), selenium (Se) and cadmium (Cd) were determined in black-legged kittiwakes (Rissa tridactyla) and little auks (Alle alle) from two fjords in Svalbard (Kongsfjorden; 78°57'N, 12°12'E and Liefdefjorden; 79°37'N, 13°20'E). The inflow of Arctic and Atlantic water differs between the two fjords, potentially affecting element accumulation. Trophic positions (TP) were derived from stable nitrogen isotope ratios (δ(15)N), and stable carbon isotope ratios (δ(13)C) were assessed to evaluate the terrestrial influence on element accumulation. Mercury, Cd, TP and δ(13)C varied significantly between locations and years in both species. Trophic position and feeding habits explained Hg and Cd accumulation in kittiwakes, but not in little auks. Biomagnification of Hg and Cd were found in the food webs of both the Atlantic and the Arctic fjord, and no inter-fjord differences were detected. The δ(13)C were higher in the seabirds from Kongsfjorden than in Liefdefjorden, but this did not explain variations in element accumulation. Selenium concentrations were not influenced by Hg accumulation in kittiwakes, indicating baseline levels of Se in this species. In contrast, correlations between Hg and Se and lower Se:Hg ratios in little auks from Kongsfjorden than in Liefdefjorden indicate a more pronounced influence of Se-Hg complex formation in little auks feeding in Atlantic waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories☆

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium’s protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single “protective” ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium–mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. PMID:22405995

  6. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    PubMed

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Effect of sodium selenite on chosen anti- and pro-oxidative parameters in rats treated with lithium: A pilot study.

    PubMed

    Musik, Irena; Kocot, Joanna; Kiełczykowska, Małgorzata

    2015-06-01

    Selenium is an essential element of antioxidant properties. Lithium is widely used in medicine but its administration can cause numerous side effects including oxidative stress. The present study aimed at evaluating if sodium selenite could influence chosen anti- and pro-oxidant parameters in rats treated with lithium. The experiment was performed on four groups of Wistar rats: I (control) - treated with saline; II (Li) - treated with lithium (2.7 mgLi/kg b.w. as Li2CO3), III (Se) - treated with selenium (0.5 mgSe/kg b.w. as Na2SeO3), IV (Li+Se) - treated with Li2CO3 and Na2SeO3 together at the same doses as in group II and III, respectively. All treatments were performed by stomach tube for three weeks in form of water solutions. The following anti- and pro-oxidant parameters: total antioxidant status (TAS) value, catalase (CAT) activity, concentrations of ascorbic acid (AA) and malonyldialdehyde (MDA) in plasma as well as whole blood superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured. Selenium given alone markedly enhanced whole blood GPx and diminished plasma CAT vs. Lithium significantly decreased plasma CAT and slightly increased AA vs. Selenium co-administration restored these parameters to the values observed in control animals. Furthermore, selenium co-administration significantly increased GPx in Li-treated rats. All other parameters (TAS, SOD and MDA) were not affected by lithium and/or selenium. Further research seems to be warranted to decide if application of selenium as an adjuvant in lithium therapy is worth considering. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Selenium protein identification and profiling by mass spectrometry: A tool to assess progression of cardiomyopathy in a whale model.

    PubMed

    Bryan, Colleen E; Bossart, Gregory D; Christopher, Steven J; Davis, W Clay; Kilpatrick, Lisa E; McFee, Wayne E; O'Brien, Terrence X

    2017-12-01

    Non-ischemic cardiomyopathy is a leading cause of congestive heart failure and sudden cardiac death in humans and in some cases the etiology of cardiomyopathy can include the downstream effects of an essential element deficiency. Of all mammal species, pygmy sperm whales (Kogia breviceps) present the greatest known prevalence of cardiomyopathy with more than half of examined individuals indicating the presence of cardiomyopathy from gross and histo-pathology. Several factors such as genetics, infectious agents, contaminants, biotoxins, and inappropriate dietary intake (vitamins, selenium, mercury, and pro-oxidants), may contribute to the development of idiopathic cardiomyopathy in K. breviceps. Due to the important role Se can play in antioxidant biochemistry and protein formation, Se protein presence and relative abundance were explored in cardiomyopathy related cases. Selenium proteins were separated and detected by multi-dimension liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS), Se protein identification was performed by liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS), and Se protein profiles were examined in liver (n=30) and heart tissue (n=5) by SEC/UV/ICP-MS detection. Data collected on selenium proteins was evaluated in the context of individual animal trace element concentration, life history, and histological information. Selenium containing protein peak profiles varied in presence and intensity between animals with no pathological findings of cardiomyopathy and animals exhibiting evidence of cardiomyopathy. In particular, one class of proteins, metallothioneins, was found to be associated with Se and was in greater abundance in animals with cardiomyopathy than those with no pathological findings. Profiling Se species with SEC/ICP-MS proved to be a useful tool to identify Se protein pattern differences between heart disease stages in K. breviceps and an approach similar to this may be applied to other species to study Se protein associations with cardiomyopathy. Published by Elsevier GmbH.

  10. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    PubMed

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulationmore » of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design.« less

  12. Chemical Sample Processing for Combined Selenium Isotope and Selenium-Tellurium Elemental Investigation of the Earth's Igneous Reservoirs

    NASA Astrophysics Data System (ADS)

    Yierpan, Aierken; König, Stephan; Labidi, Jabrane; Kurzawa, Timon; Babechuk, Michael G.; Schoenberg, Ronny

    2018-02-01

    The redox-sensitive, chalcophile, and volatile Se stable isotope system offers new perspectives to investigate the origin and evolution of terrestrial volatiles and the roles of magmatic and recycling processes in the development of the redox contrast between Earth's reservoirs. Selenium isotope systematics become more robust in a well-constrained petrogenetic context as can be inferred from Se-Te elemental signatures of sulfides and igneous rocks. In this study, we present a high-yield chemical sample processing method that allows the determination of Se-Te concentrations and Se isotope composition from the same sample digest of silicate rocks by hydride generation isotope dilution (ID) quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and double spike (DS) multicollector (MC)-ICP-MS, respectively. Our procedure yields ˜80% Se-Te recoveries with quantitative separation of relevant interfering elements such as Ge and HG-buffering metals. Replicate analyses of selected international reference materials yield uncertainties better than 0.11‰ (2 s.d.) on δ82/76Se and 3% (r.s.d.) on Se concentration for DS MC-ICP-MS determinations for as low as ˜10 ng sample Se. The precision of Se-Te concentration measurements by ID ICP-MS is better than 3% and 5% (r.s.d.) for total amounts of ˜0.5-1 ng Se and ˜0.2-0.5 ng Te, respectively. The basaltic reference materials have variable Se-Te contents, but their δ82/76Se values are rather uniform (on average 0.23 ± 0.14‰; 2 s.d.) and different from the chondritic value. This altogether provides the methodology and potential to extend the limited data set of coupled Se isotope and Se-Te elemental systematics of samples relevant to study the terrestrial igneous inventory.

  13. Effects of processed oil shale on the element content of Atriplex cancescens

    USGS Publications Warehouse

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with the gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium-- considered to be potential toxic contaminants--were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppm, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.

  14. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and inversely correlated with total suspended-solids concentrations. Although pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially mosquitofish, mollies, and red shiner (Cyprinella lutrensis). Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 32.8 micrograms per liter (?g/L), with selenate as the major constituent. Selenium concentrations in other matrices varied widely among drains and ponds, with one drain (Trifolium 18) exhibiting especially high concentrations in food chain matrices [particulate organic detritus, 5.98-58.0 micrograms of selenium per gram (?g Se/g); midge larvae, 12.7-50.6 ?g Se/g] and in fish (mosquitofish, 13.2-20.2 ?g Se/g; sailfin mollies, 12.8-30.4 ?g Se/g; all concentrations are based on dry weights). Although selenium was accumulated by all trophic levels, biomagnification (defined as a progressive increase in selenium concentration from one trophic level to the next higher level) in midge larvae and fish occurred only at lower exposure concentrations. Judging mostly from circumstantial evidence, the health and wellbeing of poeciliids and pupfish are not believed to be threatened by ambient exposure to selenium in the drains and ponds.

  15. Determination of trace elements in Ethiopian, Vietnamese, and Japanese women using high-resolution IC-PMS.

    PubMed

    Tekeste, Zinaye; Amare, Bemnet; Asfaw, Fanaye; Fantahun, Bereket; van Nguyen, Nhien; Nishikawa, Takeshi; Yabutani, Tomoki; Okayasu, Takako; Ota, Fusao; Kassu, Afework

    2015-10-01

    Humans and other living organisms require small quantities of trace elements throughout life. Both insufficient and excessive intakes of trace elements can have negative consequences. However, there is little information on serum level of trace elements in different populations. This study examines serum levels of trace elements in Ethiopian, Japanese, and Vietnamese women. Random samples of healthy women who were referred for routine hospital laboratory examinations in the cities of Hanoi, Sapporo, and Gondar were invited to participate in the study. Serum levels of magnesium, zinc, copper, iron, selenium, and calcium were determined using an inductively coupled plasma mass spectrometer. Furthermore, body mass index of each study participant was determined. The mean ± SD serum concentrations of zinc (μg/dL), copper (μg/dL), iron (μg/dL), selenium (μg/dL) and calcium (mg/dL), respectively, were 76.51 ± 39.16, 152.20 ± 55.37, 385.68 ± 217.95, 9.15 ± 4.21, and 14.18 ± 3.91 in Ethiopian women; 111.49 ± 52.92, 105.86 ± 26.02, 155.09 ± 94.83, 14.11 ± 3.41, and 11.66 ± 2.51 in Vietnamese women; and 60.69 ± 9.76, 107 ± 156, 268 ± 128, 8.33 ± 3.65, and 11.18 ± 0.68 in Japanese participants. Ethiopian women had significantly higher level of serum calcium than Vietnamese and Japanese women (both P < 0.05). Although the mean calcium concentration in Vietnamese women was higher than in women from Japan, the difference was not statistically significant (P > 0.05). Furthermore, compared with Japanese women, Ethiopian women had significantly high iron and copper concentrations (P < 0.05). Serum selenium and zinc levels were higher in Vietnamese than Ethiopian women. The study revealed a remarkable difference in serum concentrations of trace elements in women from different countries, implying differences in trace elements in the food or soil. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Trace elements in sera of patients with hepatitis B: Determination and analysis

    NASA Astrophysics Data System (ADS)

    Saod, Wahran M.; Darwish, Nadiya T.; Zaidan, Tahseen A.; Alfalujie, Abdul Wahab A.

    2018-04-01

    Chronic Hepatitis B (HBV) is the leading cause of morbidity and mortality worldwide with about 248 million people having HBV infection. Trace elements e.g. copper (Cu), zinc (Zn), selenium (Se) and iron (Fe) are constituent components of many metal proteins and metalloenzymes in human sera. Therefore, the ratios of these trace elements in human sera are often stated to be a good marker for diagnosing various diseases including HBV. The aims of this study are: to compare the level of trace elements in sera of patients infected with HBV and healthy participants, and to evaluate the efficiency of analytical techniques (e.g. Inductively Coupled Plasma-Mass spectrometry (ICP-MS), Atomic Absorption Spectroscopy (hydride generation) (AAS) and Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) that are currently used to detect Fe and Se elements in Patients' human sera. The findings of this study show that the concentration range of copper element between (132.80±28.64 µg/dl) to (105.66±23.20 µg/dl) was significantly higher in HBV infected patients as compared to those in healthy controls (91.27±9.20 µg/dl). Iron concentration range between (206.64±61.60 µg/l) to (170.00±36.71 µg/l) was significantly higher in HBV infected patients as compared to those in healthy controls (158.00±15.13 µg/l). However, patients with HBV had significantly lower serum concentrations of zinc with a concentration range between (111.64±20.90 µg/dl) to (99.25±24.06 µg/dl) as compared to those in healthy controls (113.44±16.38 µg/dl). While selenium concentration range between (64.39±7.39 µg/l) to (51.10±4.96 µg/l) was significantly lower in HBV infected patients as compared to those in healthy controls (67.68±7.60) (μg/l). Moreover, the results of this study suggest that (AAS) technique was the most accurate method to measure the concentration of selenium element, while (UV and ICP-MS) analytical techniques have the same efficiency in measuring the iron concentration.

  17. Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil.

    PubMed

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Podocnemis erythrocephala), big-headed Amazon (river) turtle (Peltocephalus dumerilianus), and matamata turtle (Chelus fimbriatus). Blood samples were taken from the vein in the left hind leg of each turtle. There were significant interspecific differences in the sizes of the turtles from the Rio Negro, and in concentrations of Pb, Hg, and Se; the smallest species (red-headed turtles) had the highest levels of Pb in their blood, while Se levels were highest in big-headed turtles and lowest in red-headed turtles. Hg in blood was highest in matamata, intermediate in big-headed, and lowest in the other two turtles. Even though females were significantly larger than males, there were no significant differences in metal levels as a function of gender, and the only relationship of metals to size was for Cd. Variations in metal levels among species suggest that blood may be a useful bioindicator. Metal levels were not high enough to pose a health risk to the turtles or to consumers, such as humans.

  18. Analysis of metals with luster: Roman brass and silver

    NASA Astrophysics Data System (ADS)

    Fajfar, H.; Rupnik, Z.; Šmit, Ž.

    2015-11-01

    Non-destructive PIXE analysis using in-air proton beam was used for the studies of earliest brass coins issued during the 1st century BC by Greek cities in Asia Minor, Romans and Celts, and for the studies of plated low grade silver coins of the 3rd century AD. The analysis determined the levels of zinc and important trace elements, notably selenium, which confirms spread of selenium-marked copper from the east. For plating, combined tinning and silvering was identified by the mapping technique for the mid 3rd century AD, which evolved into mere plating by 270 AD.

  19. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  20. Geochemistry of selenium.

    PubMed

    Kabata-Pendias, A

    1998-01-01

    Selenium (Se) is one of the most peculiar chemical elements in the geo- and biospheres. It partly resembles sulfur and tellurium; however, its behavior in the geosphere and its functions in the biosphere are very specific. Despite a relatively large database, its cycling in both the natural environment and in that modified by human activities requires further study. Selenium is rather concentrated in the geospheric cycle and is also bioconcentrated. The values of its accumulation ratios are: 5 for soil/sandstone, 2 for animal tissues/sandstone, and 5 for animal tissues/grain. For a specific plant/soil system, the bioconcentration factor for plants always has to be estimated because some plants can absorb extremely high concentrations of Se. Their ability to accumulate and tolerate high Se levels is related to different Se metabolisms. These plants play a significant role in geochemical prospecting and animal nutrition. This paper presents some geochemical observations toward a better understanding of the environmental properties of Se.

  1. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  2. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    PubMed

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  3. Disorders of metal metabolism

    PubMed Central

    Ferreira, Carlos R.; Gahl, William A.

    2017-01-01

    Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481

  4. Correlation between structural and thermodynamic properties of some selenium based phase-change materials

    NASA Astrophysics Data System (ADS)

    Chandel, Namrata; Mehta, Neeraj

    2018-04-01

    In this study, we prepared novel selenium rich multi-component glasses by incorporating In, Cd and Sb as foreign elements in an Sn containing Sesbnd Te system in order to study their metal-induced effects on the thermal properties of the parent ternary glass. In particular, we determined the thermodynamic parameters of Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glassy semiconductors in a non-isothermal environment using the differential scanning calorimetry. Calorimetric measurements were obtained in the glass transition regions for Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glasses to determine their thermodynamic parameters such as the specific heat, enthalpy, and entropy during glass transition. We analyzed the variation in the specific heat before and after the heat capacity jump in these alloys. The metal-induced effects of foreign elements on the thermodynamic properties of the parent glass were also investigated in terms of the influence of the elemental specific heat of the added elemental metal as well as the thermal stability and glass-forming ability of the glasses.

  5. Influence of volcanic activity and anthropic impact in the trace element contents of fishes from the North Patagonia in a global context.

    PubMed

    Bubach, D F; Macchi, P J; Pérez Catán, S

    2015-11-01

    The elemental contents in salmonid muscle and liver tissues from different lakes around the world were investigated. Fish from pristine areas were compared with those fishes from impacted environments, both by volcanic and anthropogenic activities. Within the data, special attention was given to fishes from the Andean Patagonian lakes in two contexts: local and global. The local evaluation includes geological and limnological parameters and diet composition which were obtained through a data search from published works. The volcanic influence in Andean Patagonian lakes was mainly observed by an increase of cesium (Cs) and rubidium (Rb) concentrations in fishes, influenced by calcium (Ca) and potassium (K) water contents. Zinc (Zn), selenium (Se), iron (Fe), silver (Ag), and mercury (Hg) contents in fishes showed the effect of the geological substratum, and some limnological parameters. The diet composition was another factor which affects the elemental concentration in fishes. The analyzed data showed that the fishes from Andean Patagonian lakes had elemental content patterns corresponding to those of pristine regions with volcanic influence. Selenium and Ag contents from Andean Patagonian fishes were the highest reported.

  6. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial).

    PubMed

    Andrews, Peter J D; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C

    2007-09-20

    Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2-3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. 2 x 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrollment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826.

  7. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial)

    PubMed Central

    Andrews, Peter JD; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C

    2007-01-01

    Background Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2–3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. Methods/design 2 × 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrolment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. Discussion To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. Trial registration This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826 PMID:17883854

  8. Microbial Selenite Reduction and the Selenium Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Wells, M.

    2016-12-01

    Selenium is an essential trace element utilized by many species in the three domains of life. In most Bacteria and Archaea, selenium is primarily assimilated to form selenocysteine, the 21st amino acid (Sec). Additionally selenium can be methylated, demethylated, or used as a terminal electron acceptor in dissimilatory selenate or selenite reduction. Although progress has been made on elucidating the synthesis of selenoproteins, less is known of their occurrence, diversity, and functionality, primarily due to poor genome annotation (e.g., failure to recognize UGA as a Sec and not a stop codon) and proteomics analysis (e.g., failure to detect Sec in LC/MS-MS). Furthermore important parts of the selenium biogeochemical cycle remain to be fully explored, in particular the reduction of Se(IV) to Se(O). We have examined the selenoproteome of a selenate respiring bacterium Sulfurospirillum barnesii strain SES-3, which reduces Se(VI) to Se(0) and the dissimilatory selenite reducing bacterium, Bacillus selenitireducens, strain MLS-10, which reduces Se(IV) to Se(0). Candidate selenoproteins including D-proline reductase, formate dehydrogenase, and methionine-S sulfoxide reductase have been identified in the genomes. A putative dissimilatory selenate reducase (Ser) was found in the genome of S. barnesii. More significant was the discovery of a candidate for the respiratory selenite reductase in B. selenitireducens as determined by in gel assays and LC/MS-MS. The latter has provided a hint at the potential diversity of DSiR bacteria and the development of molecular probes for investigating DSiR in the selenium biogeochemical cycle.

  9. Functional role of inorganic trace elements in angiogenesis--Part I: N, Fe, Se, P, Au, and Ca.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Sorenson, Christine M; Sheibani, Nader

    2015-10-01

    Many inorganic elements are recognized as being essential for the growth of all living organisms. Transfer of nutrients and waste material from cells and tissues in the biological systems are accomplished through a functional vasculature network. Maintenance of the vascular system is vital to the wellbeing of organisms, and its alterations contribute to pathogenesis of many diseases. This article is the first part of a review on the functional role of inorganic elements including nitrogen, iron, selenium, phosphorus, gold, and calcium in angiogenesis. The methods of exposure, structure, mechanisms, and potential activity of these elements are briefly summarized. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. The recent aspects of the relationship between different elements and their role in angiogenesis, and production of pro- and anti-angiogenic factors were assessed. Several studies emphasized the role of these elements on the different phases of angiogenesis process in vivo. These elements can either enhance or inhibit angiogenesis events. Nitrogen in combination with bisphosphonates has antiangiogenic effects, while nitric oxide promotes the production of angiogenic growth factors. Iron deficiency can stimulate angiogenesis, but its excess suppresses angiogenesis events. Gold nanoparticles and selenium agents have therapeutic effects due to their anti-angiogenic characteristics, while phosphorus and calcium ions are regarded as pro-angiogenic elements. Understanding how these elements impact angiogenesis may provide new strategies for treatment of many diseases with neovascular component. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. A blood survey of elements, viral antibodies, and hemoparasites in wintering Harlequin Ducks (Histrionicus histrionicus) and Barrow's Goldeneyes (Bucephala islandica)

    USGS Publications Warehouse

    Heard, D.J.; Mulcahy, D.M.; Iverson, S.A.; Rizzolo, D.J.; Greiner, E.C.; Hall, J.; Ip, Hon S.; Esler, Daniel N.

    2008-01-01

    Twenty-eight Harlequin Ducks (Histrionicus histrionicus) and 26 Barrow's Goldeneyes (Bucephala islandica) were captured in Prince William Sound, Alaska, between 1 and 15 March 2005. Blood was collected for quantification of element concentrations, prevalence of antibodies to several viruses, and hemoparasite prevalence and identification. Although we found selenium concentrations that have been associated with selenosis in some birds (???.0 ppm ww), our findings contribute to a growing literature describing relatively high selenium in apparently healthy birds in marine environments. Avian influenza virus antibodies were detected in the plasma of 28% of the ducks. No antibodies against adenovirus, reovirus, or paramyxovirus 1 were detected. Several hemoparasite species were identified in 7% of ducks. Our findings are similar to those in other free-living marine waterfowl and do not indicate unusual concerns for the health of these species in this area in late winter. ?? Wildlife Disease Association 2008.

  11. A blood survey of elements, viral antibodies, and hemoparasites in wintering Harlequin Ducks (Histrionicus histrionicus) and Barrow's Goldeneyes (Bucephala islandica).

    PubMed

    Heard, Darryl J; Mulcahy, Daniel M; Iverson, Samuel A; Rizzolo, Daniel J; Greiner, Ellis C; Hall, Jeff; Ip, Hon; Esler, Daniel

    2008-04-01

    Twenty-eight Harlequin Ducks (Histrionicus histrionicus) and 26 Barrow's Goldeneyes (Bucephala islandica) were captured in Prince William Sound, Alaska, between 1 and 15 March 2005. Blood was collected for quantification of element concentrations, prevalence of antibodies to several viruses, and hemoparasite prevalence and identification. Although we found selenium concentrations that have been associated with selenosis in some birds (>or=2.0 ppm ww), our findings contribute to a growing literature describing relatively high selenium in apparently healthy birds in marine environments. Avian influenza virus antibodies were detected in the plasma of 28% of the ducks. No antibodies against adenovirus, reovirus, or paramyxovirus 1 were detected. Several hemo-parasite species were identified in 7% of ducks. Our findings are similar to those in other free-living marine waterfowl and do not indicate unusual concerns for the health of these species in this area in late winter.

  12. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.

    PubMed

    Nissim, Werther Guidi; Hasbroucq, Séverine; Kadri, Hafssa; Pitre, Frederic E; Labrecque, Michel

    2015-01-01

    In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m(-2)), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.

  13. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950

    PubMed Central

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna

    2015-01-01

    Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa. PMID:26185592

  14. Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice.

    PubMed

    Van der Jeugd, Ann; Parra-Damas, Arnaldo; Baeta-Corral, Raquel; Soto-Faguás, Carlos M; Ahmed, Tariq; LaFerla, Frank M; Giménez-Llort, Lydia; D'Hooge, Rudi; Saura, Carlos A

    2018-04-24

    Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer's disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12-14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.

  15. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  16. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1

    PubMed Central

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed. PMID:26005349

  17. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1.

    PubMed

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed.

  18. Secondary power-producing cell. [electrodes contain same two elements in different proportions

    DOEpatents

    Fischer, A.K.

    1971-10-26

    This cell consists of an anode and a cathode containing the same two elements in different proportions and an electrolyte which contains ions of the element which is to be transported through it. The electrodes consist of chromium, iron, lithium, sodium, cadmium, copper, or zinc and phosphorus, selenium, tellurium, sulfur, arsenic, or nitrogen. A method to heat the cathode in the regeneration cycle to transfer the electronegative component to the anode is provided. (RWR)

  19. Assessment of dissolved-selenium concentrations and loads in the lower Gunnison River Basin, Colorado, as part of the Selenium Management Program, from 2011 to 2016

    USGS Publications Warehouse

    Henneberg, Mark F.

    2018-04-23

    The Gunnison Basin Selenium Management Program implemented a water-quality monitoring network in 2011 in the lower Gunnison River Basin in Colorado. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents the percentile values of selenium because regulatory agencies in Colorado make decisions based on the U.S. Environmental Protection Agency (EPA) Clean Water Act Section 303(d) that uses percentile values of concentration. Also presented are dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for water years (WYs) 2011–2016 (October 1, 2010, through September 30, 2016). Annual dissolved-selenium loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations. Annual dissolved-selenium loads for WY 2011 through WY 2016 ranged from 179 and 391 pounds (lb) at Uncompahgre River at Colona to 11,100 and 17,300 lb at Gunnison River near Grand Junction (herein called Whitewater), respectively. Instantaneous loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations and 13 ancillary sites where discrete water-quality sampling also took place, using discrete water-quality samples and the associated discharge measurements collected during the period. Median instantaneous loads ranged from 0.01 pound per day (lb/d) at Smith Fork near Lazear to 33.0 lb/d at Whitewater. Mean instantaneous loads ranged from 0.06 lb/d at Smith Fork near Lazear to 36.2 lb/d at Whitewater. Most tributary sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb/day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream. The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected sites. Annual 85th percentiles for dissolved selenium were calculated for the five core sites having USGS streamflow-gaging stations using estimated dissolved-selenium concentrations from linear regression models. The 85th-percentile concentrations for WYs 2011–2016 based on this method ranged from 0.62 µg/L and 1.1µg/L at Uncompahgre River at Colona to 12.1 µg/L and 18.7 µg/L at Uncompahgre River at Delta. The 85th percentiles for dissolved selenium also were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2016. The annual 85th-percentile concentrations based on the discrete samples ranged from 0.16 µg/L and 0.17 µg/L at Gunnison River below Gunnison Tunnel to 62.2 µg/L and 170 µg/L at Loutzenhizer Arroyo at North River Road. A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 9,100 lb from WY 1986 to WY 2016, a 40.8 percent reduction during the time period. The trend analysis for the annual dissolved-selenium load for WY 1994 to WY 2016 indicates a decrease of 6,300 lb per year, or 33.3 percent.

  20. Toxicokinetics of selenium in the slider turtle, Trachemys scripta.

    PubMed

    Dyc, Christelle; Far, Johann; Gandar, Frédéric; Poulipoulis, Anastassios; Greco, Anais; Eppe, Gauthier; Das, Krishna

    2016-05-01

    Selenium (Se) is an essential element that can be harmful for wildlife. However, its toxicity in poikilothermic amniotes, including turtles, remains poorly investigated. The present study aims at identifying selenium toxicokinetics and toxicity in juvenile slider turtles (age: 7 months), Trachemys scripta, dietary exposed to selenium, as selenomethionine SeMet, for eight weeks. Non-destructive tissues (i.e. carapace, scutes, skin and blood) were further tested for their suitability to predict selenium levels in target tissues (i.e. kidney, liver and muscle) for conservation perspective. 130 juvenile yellow-bellied slider turtles were assigned in three groups of 42 individuals each (i.e. control, SeMet1 and SeMet2). These groups were subjected to a feeding trial including an eight-week supplementation period SP 8 and a following 4-week elimination period EP 4 . During the SP8, turtles fed on diet containing 1.1 ± 0.04, 22.1 ± 1.0 and 45.0 ± 2.0 µg g(-1) of selenium (control, SeMet1 and SeMet2, respectively). During the EP4, turtles fed on non-supplemented diet. At different time during the trial, six individuals per group were sacrificed and tissues collected (i.e. carapace, scutes, skin, blood, liver, kidney, muscle) for analyses. During the SP8 (Fig. 1), both SeMet1 and SeMet2 turtles efficiently accumulated selenium from a SeMet dietary source. The more selenium was concentrated in the food, the more it was in the turtle body but the less it was removed from their tissues. Moreover, SeMet was found to be the more abundant selenium species in turtles' tissues. Body condition (i.e. growth in mass and size, feeding behaviour and activity) and survival of the SeMet1 and SeMet2 turtles seemed to be unaffected by the selenium exposure. There were clear evidences that reptilian species are differently affected by and sensitive to selenium exposure but the lack of any adverse effects was quite unexpected. Fig. 1 Design of the feeding trial. T, Time of tissues collection in weeks. The feeding trial included a supplementation period of 8 weeks (i.e. SP8) followed by an elimination period of 4 weeks (i.e. EP4). Six turtles from each turtle group (i.e. control, SeMet1 and SeMet2) were sacrifice at each collection time, from T1 to T12. At T0, four turtles were sacrificed.

  1. Year 3 Summary Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2008-01-01

    This report summarizes findings from the third year of a 4-year-long field investigation to document selected baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water quality and fish species were measured at roughly quarterly intervals from April 2007 to January 2008. The water quality measurements included total suspended solids and total (particulate plus dissolved) selenium. In addition, during April and October 2007, water samples were collected from seven intensively monitored drains for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices (particulate organic detritus, filamentous algae, net plankton, and midge [chironomid] larvae), and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for desert pupfish (Cyprinodon macularius), an endangered species that we were not permitted to take for selenium determinations. Water quality values were typical of surface waters in a hot desert climate. A few drains exhibited brackish, near anoxic conditions especially during the summer and fall when water temperatures occasionally exceeded 30 degrees C. In general, total selenium concentrations in water varied directly with conductivity and inversely with pH. Although desert pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially red shiner (Cyprinella lutrensis), mosquitofish, and mollies. Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 24.1 ug/L, with selenate as the major constituent in all samples. Selenium concentrations in other matrices varied widely among drains and ponds, with at least one drain (for example, Trifolium 18) exhibiting especially high concentrations in food chain organisms (in detritus, 13.3-28.9 ug Se/g; in net plankton, 11.9-19.3 ug Se/g; in midge larvae, 12.7-15.4 ug Se/g) and fish (in mollies, 12.8-25.1 ug Se/g; in mosquitofish, 13.2-20.2 ug Se/g; all concentrations are dry weights). These elevated concentrations approached or exceeded average concentrations reported from flowing waters in seleniferous wetlands in the San Joaquin Valley.

  2. Selenium Nanoparticles Formed by Modulation of Carrageenan Enhance Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Kim, Jin; Lee, Ki-Young; Lee, Chang-Moon

    2016-03-01

    Fabrication of nano-sized selenium (Se) particles may help to expend the applications of Se. In this study, we focused on the preparation and characterization of Se nanoparticles (Se NPs) modulated with carrageenan (CA). Furthermore, their influence on osteoblast cell growth was investigated in vitro. Spherical Se-NPs, of 100-200 nm diameter, were prepared simply by adding κ-, ι-, and λ-CA, which has sulfate groups, hydroxyl groups, and carboxyl groups. CA-modulated Se NPs (CA-Se NPs) were readily suspended in liquid medium with no precipitation over long time periods. In particular, it was found through Alizarin Red S staining that the growth of osteoblast D1 cells treated with λ-CA-Se NPs was improved significantly. These results suggest that Se NPs can be prepared simply, using CA, have good suspension stability in liquid medium, and λ-CA-Se NPs may induce the growth of osteoblast cells.

  3. Total Mercury, Methylmercury, Inorganic Arsenic and Other Elements in Meat from Minke Whale (Balaenoptera acutorostrata) from the North East Atlantic Ocean.

    PubMed

    Maage, Amund; Nilsen, Bente M; Julshamn, Kaare; Frøyland, Livar; Valdersnes, Stig

    2017-08-01

    Meat samples of 84 minke whales (Balaenoptera acutorostrata) mainly from the Barents Sea, collected between 1 May and 16 August 2011, were analyzed for total mercury, methylmercury, cadmium, lead, total arsenic, inorganic arsenic and selenium. The average total mercury concentration found was 0.15 ± 0.09 mg/kg, with a range from 0.05 to 0.49 mg/kg. The molar ratio of selenium to mercury varied between 1.0 and 10.3. Cadmium content ranged from 0.002 to 0.036 mg/kg, while the content of lead in whale meat ranged from <0.01 to 0.09 mg/kg. None of the whale samples exceeded established EU maximum levels for metals in fish muscle, but 4.8% and 6.8% of the samples exceeded Japanese maximum levels for total mercury and methylmercury, respectively, in whale meat. There was only minor variations in element concentrations between whales from different geographical areas, and cadmium was the only element were the concentration increased with increasing length.

  4. Organochlorine and trace element contamination in wintering and migrating diving ducks in the southern Great Lakes, USA, since the zebra mussel invasion

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    2000-01-01

    Because of the potential for increased trophic transfer of contaminants by zebra mussels (Dreissena sp.) to higher trophic levels, we collected four species of waterfowl (n = 65 ducks) from four locations in Lake Erie, Lake St. Clair, and Lake Michigan, USA, between 1991 and 1993 for organochlorine contaminant and trace element analyses. Geometric mean concentrations of total polychlorinated biphenyls (PCBs) and p,pa??-dichlorodiphenyldichloroethylene (DDE) were 1.35 and 0.15 I?g/g wet weight in lesser scaup (Aythya affinis) carcasses and were below known effect levels. Total PCBs in 80% of carcasses, however, were above the U.S. Food and Drug Administration's threshold of 3.0 I?g/g lipid weight for consumption of poultry. With the exception of selenium, trace elements were also at background or no-effect levels. Selenium concentrations in livers of 95% of lesser scaup, 90% of bufflehead (Bucephala albeola), and 72% of common goldeneye (Bucephala clangula) were in the elevated (>10 I?g/g dry wt) or potentially harmful range (>33 I?g/g dry wt). The effects of these high selenium concentrations are unknown but should be investigated further based on reproductive effects observed in field and laboratory studies of dabbling ducks and because lesser scaup populations are declining. Concentrations of total PCBs in dreissenid mussels in western Lake Erie were 10 times higher than in the upper Mississippi River but were similar to concentrations in other industrialized rivers in Europe and the United States. Metal concentrations were similar to other industrialized sites where zebra mussels have been sampled.

  5. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats.

    PubMed

    Shi, Li-guang; Yang, Ru-jie; Yue, Wen-bin; Xun, Wen-juan; Zhang, Chun-xiang; Ren, You-she; Shi, Lei; Lei, Fu-lin

    2010-04-01

    The objective of this experiment is to study the effects of novel elemental nano-selenium in the diet on testicular ultrastructure, semen quality and GSH-Px activity in male goats. Forty-two 2-month-old bucks were offered a total mixed ration which had been supplemented with nano-Se (0.3mg/kg Se) or unsupplemented (the control group only received 0.06mg/kg Se-background), for a period of 12 weeks (from weaning to sexual maturity). Results showed that the testicular Se level, semen glutathione peroxidase and ATPase activity increased significantly in the nano-Se supplementation group compared with control (P<0.05). The semen quality (volume, density, motility and pH) was not affected by added Se in diets, however, the sperm abnormality rate of control bucks was significantly higher than Se supplemented bucks (P<0.05). The testes of 5 goats in each group were examined by transmission electron microscopy (TEM), and showed that in Se-deficient bucks the membrane was damaged, and showed the occurrence of abnormalities in the mitochondria of the midpiece of spermatozoa. In conclusion, selenium deficiency resulted in abnormal spermatozoal mitochondria, and supplementation with nano-Se enhanced the testis Se content, testicular and semen GSH-Px activity, protected the membrane system integrity and the tight arrayment of the midpiece of the mitochondria. Further studies are required to research the novel elemental nano-Se with characterization of bioavailability and toxicity in small ruminants. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Mineralogical Studies Related to Endemic Diseases in Rural P. R. China

    NASA Astrophysics Data System (ADS)

    Belkin, H. E.; Zheng, B.; Finkelman, R. B.

    2003-12-01

    Domestic combustion of coal for heating and cooking is mostly confined to the world's developing countries and probably involves about 1 billion persons in China, India, Indonesia, and Africa. Various endemic diseases affecting millions of people involving arsenic, selenium, and fluorine poisoning have been associated with domestic coal combustion in rural China. We have investigated the relationship between mineralized coals (and stone coals) and disease occurrences in Guizhou and Hubei Provinces. The mineralogy of the coals has been studied by a wide variety of techniques, including optical petrography, scanning electron microscopy, electron microprobe analysis, ion probe, Synchrotron XANES-EXAFS, and Raman spectroscopy. Arsenic enrichment (up to 3 weight percent) in Upper Permian Longtan Formation coals, southwestern Guizhou Province, occurs in both 3+ and 5+ valence states. Arsenic occurs in arsenopyrite, pyrite, Al-phosphate, scorodite, Fe-oxides, and as an organically-bound species. Fluorine poisoning, much more widespread than arsenic-poisoning, is related to burning F-rich coals and F-rich clays as admixtures. Mineralogical and chemical analysis suggests that the clays contain the fluorine probably substituting for the hydroxyl group. Localized selenium poisoning in Hubei Province is related to Se-rich stone coals. The selenium occurs as a native element and in rare mandarinoite. In these three cases, knowledge of the paragenesis and mineralogy of the element enrichment in coal was vital to help understand and mitigate the endemic diseases. For the situation concerning arsenic and selenium poisoning, suspect coals have been identified and mining from these deposits has been curtailed. Fluorine has been a much more difficult problem for the local public health officials as both the coal and clay in the burning admixture can contain high fluorine. Regional geochemical and mineralogical studies will help to define coal and clay with low fluorine, suitable for domestic use.

  8. A Nano-Selenium Reactive Barrier Approach for Managing Mercury over the Life-Cycle of Compact Fluorescent Lamps

    PubMed Central

    Lee, Brian; Sarin, Love; Johnson, Natalie C.; Hurt, Robert H.

    2013-01-01

    Compact fluorescent lamps contain small quantities of mercury, whose release can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nano-selenium as the reactive component. Multi-layer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of the three scenarios. The nano-selenium barriers also exhibit a unique indicator function that can reveal the location of Hg-contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nano-selenium and its reaction products. PMID:19731697

  9. Effectiveness of selenium on acrylamide toxicity to retina

    PubMed Central

    Ali, Mervat Ahmed; Aly, Eman Mohamed; Elawady, Amal Ibrahim

    2014-01-01

    AIM To investigate the hematological parameters, biochemical and electrophysiological role of acrylamide (ACR) in the retina and to assess whether selenium (Se) has protective potential in experimental oral intoxication with ACR. METHODS Sixty Wistar age matched-albino rats (3mo) weighing 195-230 g comprised of both sex were divided into 4 groups. Group I served as the control one in which animals take saline; group II was animals administrated ACR in dose of 15 mg/kg body weight per day for 28d; group III was animals received ACR then additionally Se (0.1 mg/kg body weight) for 28d; and group IV was animals received Se only (0.1 mg/kg body weight) for 28d. Blood analysis and serum trace element levels (Fe, Cu, and Zn) were measured. The electroretinogram (ERG) was recorded, the levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) in the retinal tissues were determined. Moreover the regulation of ion channels such as calcium, sodium and potassium were studied. All measurements were done for all groups after 28d. RESULTS Administration of ACR in group II caused a significant decrease (P<0.05) in hemoglobin (Hb), red blood cells (RBCs), hematocrit (HCT), white blood cells (WBCs) and lymphocyte of rats. A significant decrease (P<0.05) in Zn level, and alkaline phosphatase enzyme was observed compared to control. ERG which is a reflection of the electric activity in the retina; a- and-b wave amplitudes in ACR group had a reduction of 40% and 20% respectively. These changes accompanied by significant increases (P<0.05) in MDA level in the ACR group, in contrast with GSH-Px which is significant decreased (P<0.05). Moreover sodium and calcium were significant increased but potassium was significant decreased (P<0.05) compared to control group. There were no significant differences between group III (treated with Se) and control in all hematological parameter. Also serum trace elements levels (Cu, Fe and Zn), alkaline phosphatase enzyme and electric activity of the retina didn't change compared to control due to Se treatment. CONCLUSION This study provides evidence for the protective effect of Se on acrylamide induced toxicity by reducing oxidative stress. PMID:25161930

  10. Sorption and diffusion of selenium oxyanions in granitic rock

    NASA Astrophysics Data System (ADS)

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0 ± 2.0) × 10- 3 m3/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5 ± 0.3) × 10- 3 m3/kg and (1.0 ± 0.6) × 10- 4 m3/kg. The De of selenium was significantly higher for GG; De = (2.5 ± 1.5) × 10- 12 m2/s than for KGG; De = (7 ± 2) × 10- 13 m2/s due to the higher permeability of GG compared with KGG.

  11. Sorption and diffusion of selenium oxyanions in granitic rock.

    PubMed

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0±2.0)×10(-3)m(3)/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5±0.3)×10(-3)m(3)/kg and (1.0±0.6)×10(-4)m(3)/kg. The De of selenium was significantly higher for GG; De=(2.5±1.5)×10(-12)m(2)/s than for KGG; De=(7±2)×10(-13)m(2)/s due to the higher permeability of GG compared with KGG. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  13. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  14. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    NASA Astrophysics Data System (ADS)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  15. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  16. Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey.

    PubMed

    Ayoglu, Hilal; Sezer, Ustun; Akin, Mehmet; Okyay, Dilek; Ayoglu, Ferruh; Can, Murat; Kucukosman, Gamze; Piskin, Ozcan; Aydin, Bengu; Cimencan, Murat; Gur, Abdullah; Turan, Isil

    2016-04-01

    To evaluate the changing levels of selenium, copper, zinc and iron in patients with sepsis and systemic inflammatory response syndrome and their influence on mortality. The prospective study was conducted at a tertiary care university hospital in Zonguldak city in the western Black Sea region of Turkey from January 2012 to December 2013, and comprised patients with sepsis and systemic inflammatory response syndrome. Blood samples were taken on 1st, 3rd, 5th and 7th days to measure serum selenium, copper, zinc and iron levels. Patients' demographic data, presence of additional diseases and mortality were recorded. Of the 57 patients, 28(49.1%) were female and 29(50.9%) were male, with an overall mean age of 60.3±19.4 years, mean height of 166.1±11.4cm, mean weight of 76.5±17.5kg. Copper and zinc levels were in the normal range, while selenium and iron levels were lower than the limit values at all measuring periods. There was no significant difference between first and other days in accordance with element levels (p>0.05). Baseline copper levels in patients with malignancy were lower than patients without malignancy (p< 0.05). In hypertensive patients, baseline copper levels were higher and 7th day levels were lower than non-hypertensive (p< 0.05). Baseline selenium levels of those who died were lower than the other patients (p< 0.05). Selenium and iron levels were decreased in patients with sepsis-systemic inflammatory response syndrome and copper levels were lower in patients with malignancy, hypertension and chronic obstructive pulmonary disease (p< 0.05). There was no change in zinc levels of the patients. Reduced basal selenium levels of patients with sepsis and systemic inflammatory response syndrome were associated with mortality.

  17. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved.

    PubMed

    Skröder, Helena; Engström, Karin; Kuehnelt, Doris; Kippler, Maria; Francesconi, Kevin; Nermell, Barbro; Tofail, Fahmida; Broberg, Karin; Vahter, Marie

    2018-02-01

    It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. We aimed to investigate potential interactions in the methylation of selenium and arsenic. Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women ( n =226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe ( INMT rs6970396 AG+AA, n =74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA ( p -interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.

  18. Variation in Sulfur and Selenium Accumulation Is Controlled by Naturally Occurring Isoforms of the Key Sulfur Assimilation Enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis Species Range1[W][OPEN

    PubMed Central

    Chao, Dai-Yin; Baraniecka, Patrycja; Danku, John; Koprivova, Anna; Lahner, Brett; Luo, Hongbing; Yakubova, Elena; Dilkes, Brian; Kopriva, Stanislav; Salt, David E.

    2014-01-01

    Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored. PMID:25245030

  19. Homeostasis of chosen bioelements in organs of rats receiving lithium and/or selenium.

    PubMed

    Kiełczykowska, Małgorzata; Musik, Irena; Żelazowska, Renata; Lewandowska, Anna; Kurzepa, Jacek; Kocot, Joanna

    2016-10-01

    Lithium is an essential trace element, widely used in medicine and its application is often long-term. Despite beneficial effects, its administration can lead to severe side effects including hyperparathyroidism, renal and thyroid disorders. The aim of the current study was to evaluate the influence of lithium and/or selenium treatment on magnesium, calcium and silicon levels in rats' organs as well as the possibility of using selenium as an adjuvant in lithium therapy. The study was performed on rats divided into four groups (six animals each): control-treated with saline; Li-treated with Li2CO3 (2.7 mg Li/kg b.w.); Se-treated with Na2SeO3·H2O (0.5 mg Se/kg b.w.); Se + Li-treated simultaneously with Li2CO3 and Na2SeO3·H2O (2.7 mg Li/kg b.w. and of 0.5 mg Se/kg b.w., respectively). The administration was performed in form of water solutions by stomach tube once a day for 3 weeks. In the organs (liver, kidney, brain, spleen, heart, lung and femoral muscle) the concentrations of magnesium, calcium and silicon were determined. Magnesium was increased in liver of Se and Se + Li given rats. Lithium decreased tissue Ca and co-administration of selenium reversed this effect. Silicon was not affected by any treatment. The beneficial effect of selenium on disturbances of calcium homeostasis let suggest that further research on selenium application as an adjuvant in lithium therapy is worth being performed.

  20. Trace element supplementation in hemodialysis patients: a randomized controlled trial.

    PubMed

    Tonelli, Marcello; Wiebe, Natasha; Thompson, Stephanie; Kinniburgh, David; Klarenbach, Scott W; Walsh, Michael; Bello, Aminu K; Faruque, Labib; Field, Catherine; Manns, Braden J; Hemmelgarn, Brenda R

    2015-04-11

    People with kidney failure are often deficient in zinc and selenium, but little is known about the optimal way to correct such deficiency. We did a double-blind randomized trial evaluating the effects of zinc (Zn), selenium (Se) and vitamin E added to the standard oral renal vitamin supplement (B and C vitamins) among hemodialysis patients in Alberta, Canada. We evaluated the effect of two daily doses of the new supplement (medium dose: 50 mg Zn, 75 mcg Se, 250 IU vitamin E; low dose: 25 mg Zn, 50 mcg Se, 250 IU vitamin E) compared to the standard supplement on blood concentrations of Se and Zn at 90 days (primary outcome) and 180 days (secondary outcome) as well as safety outcomes. We enrolled 150 participants. The proportion of participants with low zinc status (blood level <815 ug/L) did not differ between the control group and the two intervention groups at 90 days (control 23.9% vs combined intervention groups 23.9%, P > 0.99) or 180 days (18.6% vs 28.2%, P = 0.24). The proportion with low selenium status (blood level <121 ug/L) was similar for controls and the combined intervention groups at 90 days (32.6 vs 19.6%, P = 0.09) and 180 days (34.9% vs 23.5%, P = 0.17). There were no significant differences in the risk of adverse events between the groups. Supplementation with low or medium doses of zinc and selenium did not correct low zinc or selenium status in hemodialysis patients. Future studies should consider higher doses of zinc (≥75 mg/d) and selenium (≥100 mcg/d) with the standard supplement. Registered with ClinicalTrials.gov (NCT01473914).

  1. The investigation of the possible protective influence of selenium on antioxidant barrier in heart of rats exposed to lithium.

    PubMed

    Musik, Irena; Kocot, Joanna; Lewandowska, Anna; Żelazowska, Renata; Kiełczykowska, Małgorzata

    2015-07-01

    Selenium is an essential element possessing antioxidant properties and the treatment with it has displayed protective effects against toxicity of different substances occurring in the environment and food as well as against the side effects of some drugs. Lithium is used in medicine although numerous side effects can occur during therapy, including disturbances of the heart. For these reasons studies to find protective adjuvants have been performed. In the current study the possibility of selenium (as sodium selenite) application as a protective adjuvant in lithium treatment was studied. Male Wistar rats were treated: control - with saline; Li-group - with Li2CO3 (2.7 mg Li/kg b.w.); Se-group - with Na2SeO3 (0.5 mg Se/kg b.w.); Li+Se-group simultaneously with Li2CO3 and Na2SeO3 (2.7 mg Li/kg b.w. and 0.5 mg Se/kg b.w., respectively) by a stomach tube for a period of three weeks, once a day. In heart homogenate activities of antioxidant enzymes - catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of low-molecular-weight antioxidants - ascorbic acid (AA) and reduced glutathione (GSH) as well as total antioxidant status (TAS) values were determined. GPx/SOD and CAT/SOD ratios were evaluated. In comparison with control selenium caused no significant changes of the studied parameters except for GPx, whereas lithium slightly disturbed TAS and markedly GPx, CAT and CAT/SOD ratio. In Li-treated rats co-administration of selenium displayed tendency towards restoring the impaired parameters. The results suggest that research on selenium application as an adjuvant in lithium therapy is worthy to be continued. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dietary selenium requirements based on tissue selenium concentration and glutathione peroxidase activities in old female rats.

    PubMed

    Sunde, Roger A; Thompson, Kevin M

    2009-01-01

    Dietary nutrient requirements for older animals have been studied far less than have requirements for young growing animals. To determine dietary selenium (Se) requirements in old rats, we fed female weanling rats a Se-deficient diet (0.007 microg Se/g) or supplemented rats with graded levels of dietary Se (0-0.3 microg Se/g) as Na(2)SeO(3) for 52 weeks. At no point did Se deficiency or level of Se supplementation have a significant effect (P>0.05) on growth. To determine Se requirements, Se response curves were determined for 7 Se-dependent parameters. We found that minimum dietary Se requirements in year-old female rats were at or below 0.05 microg Se/g diet based on liver Se, red blood cell glutathione peroxidase (Gpx1) activity, plasma Gpx3 activity, liver and kidney Gpx1 activity, and liver and kidney Gpx4 activity. In conclusion, this study found that dietary Se requirements in old female rats were decreased at least 50% relative to requirements found in young, rapidly growing female rats. Collectively, this indicates that the homeostatic mechanisms related to retention and maintenance of Se status are still fully functional in old female rats.

  3. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite.

    PubMed

    Sadeghian, Sirous; Kojouri, Gholam Ali; Mohebbi, Abdonnaser

    2012-06-01

    The present study was designed to compare the effects of nano red selenium and sodium selenite on the antioxidative activities of neutrophils and the hematological parameters in sheep. Fifteen sheep were randomly allocated into three groups. Groups 1 and 2 received selenium nanoparticles orally at 1 mg/kg and sodium selenite at 1 mg Se/kg for 10 consecutive days; group 3 served as the control. To assess the degrees of oxidative stress and of lipid peroxidation of the cellular membranes, the levels of thiobarbituric acid reactive substances (TBARS) were determined in serum samples that were collected at different supplementation intervals, i.e., after 0, 10, 20, and 30 days. In addition, hematological parameters in the serum samples were measured by routine procedures. It was found that TBARS levels in groups 1 and 2 were significantly higher on days 20 and 30 compared to the basal level on day 0. It was also found that on day 30, the TBARS activities in both treated groups were significantly higher than those of the controls (P < 0.05). These findings may explain the seemingly paradoxical effects of supplemental selenium on the indicators of oxidative stress, as the levels of TBARS were generally expected to decrease in the presence of selenium. There were no significant differences between the PCV and RBC values in the three groups. The white blood cell count (WBC) in group 1 showed a significant increase on days 20 and 30 in comparison with the control group. However, in group 2, there was a significant increase of the WBC value just on day 20 in comparison with the control group. Also, there were significant increases of the neutrophil counts and significant decreases of the lymphocyte counts on day 10 in group 1, in comparison with those in group 2 and controls, and on days 20 and 30 in groups 1 and 2 in comparison with those in the control group.

  4. Selenium extraction: development on extraction chromatographic resins compatible with Diffusive Gradient in Thin film (DGT)

    NASA Astrophysics Data System (ADS)

    Rad, S.; Dirks-Fandrei, C.; Happel, S. A.; Bombard, A.; Cary, L.

    2016-12-01

    Measurement of Selenium is of importance regarding public health as the ratio between beneficial daily intake and toxicity is rather low [1], [2]. Also from the radiological perspective, Se-79 as a long-lived fission nuclide (T1/2=2.8x105y) with high mobility in environment, is of concern regarding waste management and decommissioning [3], [4]. Due to the existence of different oxidation states Selenium has a complex speciation chemistry which makes extraction and separation schemes not straightforward. The aim of this research is to develop extraction methods for Selenium based on extraction chromatographic resins allowing for the extraction of Se(VI), as well as Se(IV), from water samples for later use on DGT (Diffusive Gradients in Thin films) devices. Extraction chromatographic resins have been tested and characterized for Se and other elements. For Se(VI) a commercially available Aliquat 336 based extraction chromatographic resin (TEVA resin[5]) was found to be most suitable, for Se(IV) a newly developed extraction chromatographic resin based on Piazselenol chemistry was found to be most effective, data on the selectivity of this resin will be presented. The extraction of Se(IV) and Se(VI) by these resins was tested on water sampled in Lille City, where a high Se spatial variability has been observed. Concentrations in groundwater can reach 30µg/L as a consequence; most Se-contaminated wells are no longer exploited by the water operators. One of the applications of this development is to be able to measure Se concentrations insitu in contaminated areas including very complex object such as hyporheic zone. [1] Cary L. et al. Applied Geochemistry 48 (2014) 70-82 [2] Chen C. et al. Biological Trace Element Research Vols. 71-72 (1999) 131-138 [3] http://www.irsn.fr/FR/Larecherche/publications-documentation/fiches-radionucleides/Documents/environnement/Selenium_Se79_v2.pdf last access 03/03/2016 [4] Uchida et al. WM2009 Conference, March 1-5, 2009, Phoenix, AZ [5] Horwitz P. et al. Analytica Chimica Acta 310 (1995) 63-78

  5. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water.

    PubMed

    Li, Zhengkai; Ke, Fang; Deng, Hang; Xu, Hualong; Xiang, Haifeng; Zhou, Xiangge

    2013-05-14

    A simple and efficient protocol for copper-catalyzed coupling reactions between aryl halides and elemental sulfur or selenium has been developed. A variety of disulfides and diselenides can be obtained in moderate to excellent yields up to 96%.

  6. Effects of processed oil shale on the element content of Atriplex cancescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with themore » gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium - considered to be potential toxic contaminants - were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppM, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.« less

  7. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities.

    PubMed

    Shoeibi, Sara; Mashreghi, Mohammad

    2017-01-01

    Microorganisms are capable of synthesizing metal nanoparticles, and specifically Enterococcus faecalis bacteria were tested for its ability to synthesize selenium nanoparticles (Se-NPs) from sodium selenite. The biosynthesized Se-NPs were spherical in shape with the size range of 29-195nm. Also, the TEM microscopy showed the accumulation of nano-structures as extracellular deposits. The ability of the bacteria to tolerate high levels of toxic selenite was studied by changing with different concentrations of sodium selenite (0.19mM-2.97mM). Also, the effect of Se-NPs was studied on the growth profile of number of pathogenic Gram-positive and -negative bacteria. High concentrations of sodium selenite in the medium led to the production of small amounts of selenium nanostructures by bacteria. In addition, Se-NPs can be used as an anti-staphylococcal element to effectively prevent and treat S. aureus infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Selenium as a versatile center in fluorescence probe for the redox cycle between HClO oxidative stress and H2S repair.

    PubMed

    Lou, Zhangrong; Li, Peng; Han, Keli

    2015-01-01

    Selenium is a biologically important trace element and acts as an active center of glutathione peroxidase (GPx). GPx is the important antioxidant enzyme to protect organisms from oxidative damage via catalyzing the reaction between ROS and glutathione (GSH). Mimicking the oxidation-reduction cycles of the versatile selenium core in GPx, we can develop fluorescence probes to detect oxidation and reduction events in living systems. The cellular redox balance between hypochloric acid (HClO) and hydrogen sulfide (H2S) has broad implications in human health and diseases, such as Alzheimer's disease (AD). Therefore, to further investigate the roles of this redox balance and understand the pathogenesis of neurodegenerative diseases, it is necessary to detect the redox state between HClO and H2S in real time. We have developed a reversible fluorescence probe MPhSe-BOD for imaging of the redox cycle between HClO and H2S based on oxidation and reduction of selenide in living cells.

  9. Safety of long-term restrictive diets for peroxisomal disorders: vitamin and trace element status of patients treated for Adult Refsum Disease.

    PubMed

    Baldwin, E J; Harrington, D J; Sampson, B; Feher, M D; Wierzbicki, A S

    2016-03-01

    Adult Refsum's Disease (ARD) is caused by defects in the pathway for alpha-oxidation of phytanic acid (PA). Treatment involves restricting the dietary intake of phytanic acid by reducing the intake of dairy-derived fat. The adequacy of micronutrient intake in patients with ARD is unknown. Patients established on the Chelsea low-PA diet had general diet macronutrients, vitamins and trace elements assessed using 7-day-weighed intakes and serial 24-h recalls. Intakes were compared with biochemical assessments of nutritional status for haematinics (ferritin), trace elements (copper, zinc, iron, selenium), water- (vitamin B6 , B12 and folate) and fat-soluble vitamins (A, D, E and K). Eleven subjects (four women, seven men) were studied. Body mass index was 27 ± 5 kg/m(2) (range 19-38). All subjects had high sodium intakes (range 1873-4828 mg). Fat-soluble vitamin insufficiencies occurred in some individuals (vitamin A, n = 2; vitamin D, n = 6; vitamin E, n = 3; vitamin K, n = 10) but were not coincident. Vitamin B6 levels were normal or elevated (n = 6). Folate and 5-methyltetrahydrofolate concentrations were normal. Metabolic vitamin B12 insufficiency was suspected in four subjects based on elevated methylmalonic acid concentrations. Low copper and selenium intakes were noted in some subjects (n = 7, n = 2) but plasma levels were adequate. Iron, ferritin and zinc intakes and concentrations were normal. Subjects with ARD can be safely managed on the Chelsea low PA without routine micronutrient supplementation. Sodium intake should be monitored and reduced. Periodic nutritional screening may be necessary for fat-soluble vitamins, vitamin B12 , copper or selenium. © 2016 John Wiley & Sons Ltd.

  10. Quantitative determination of selenium and mercury, and an ICP-MS semi-quantitative scan of other elements in samples of eagle tissues collected from the Pacific Northwest--Summer 2011

    USGS Publications Warehouse

    May, Thomas; Walther, Mike; Brumbaugh, William

    2013-01-01

    Eagle tissues from dead eagle carcasses were collected by U.S. Fish and Wildlife Service personnel at various locations in the Pacific Northwest as part of a study to document the occurrence of metal and metalloid contaminants. A group of 182 eagle tissue samples, consisting of liver, kidney, brain, talon, feather, femur, humerus, and stomach contents, were quantitatively analyzed for concentrations of selenium and mercury by atomic absorption techniques, and for other elements by semi-quantitative scan with an inductively coupled plasma-mass spectrometer. For the various tissue matrices analyzed by an ICP-MS semiquantitative scan, some elemental concentrations (micrograms per gram dry weight) were quite variable within a particular matrix; notable observations were as follows: lead concentrations ranged from 0.2 to 31 in femurs, 0.1 to 29 in humeri, 0.1 to 54 in talons, less than (<) 0.05 to 120 in livers, <0.05 to 34 in kidneys, and 0.05 to 8 in brains; copper concentrations ranged from 5 to 9 in feathers, 8 to 47 in livers, 7 to 43 in kidneys, and 7 to 28 in brains; cadmium concentrations ranged from 0.1 to 10 in kidneys. In stomach contents, concentrations of vanadium ranged from 0.08 to 5, chromium 2 to 34, manganese 1 to 57, copper 2 to 69, arsenic <0.05 to 6, rubidium 1 to 13, and barium <0.5 to 18. Selenium concentrations from highest to lowest based on the matrix mean were as follows: kidney, liver, feather, brain, stomach content, talon, femur, and humerus. For mercury, the highest to lowest concentrations were feather, liver, talon, brain, stomach content, femur, and humerus.

  11. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Trace elements in streambed sediment and fish livers, 1995-96

    USGS Publications Warehouse

    Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.

    2000-01-01

    In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.

  12. Dietary exposure estimates of 14 trace elements in Xuanwei and Fuyuan, two high lung cancer incidence areas in China.

    PubMed

    Zhang, Linlin; Lv, Jungang; Liao, Chunyang

    2012-06-01

    Xuanwei and Fuyuan, located in the Yunnan province in southwest of China, are known to have a strikingly high incidence of lung cancer. Among the many factors that have been explored, the association between lung cancer and trace elements has not received enough attention. In this study, dietary samples were collected from 60 families of the lung cancer and control groups and abundances of 14 trace elements were determined using inductively coupled-plasma mass spectroscopy. Accuracy and sensitivity of the method were demonstrated by analyzing national standard reference materials. The results showed that the dietary intake of the trace elements contributed 96.6% of total intake. Among the 14 elements tested, cadmium and titanium were found to be present at a significantly higher level in the food consumed by the cancer group than by the control group. The intake of selenium by the population living in the areas is much lower than what it should be, with the people in the cancer group experiencing even more severe selenium deficiency. In addition, in both groups, the intakes of several essential elements (iron, copper, and zinc) from food and the drinking water were found to be significantly lower than required according to the Chinese Dietary Reference Intakes. The present study of the relationship between trace element intakes of lung cancer cases and controls provides important information urgently needed for the assessment of lung cancer risk of healthy subjects. The study also gives rational dietary suggestions to local residents which is important to the early diagnosis and pretreatment of lung cancer.

  13. Biofortification and phytoremediation of selenium in China

    PubMed Central

    Wu, Zhilin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Yuan, Linxi; Yin, Xuebin; Li, Miao

    2015-01-01

    Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed. PMID:25852703

  14. Field evidence of selenium bioreduction in a uranium-contaminated aquifer.

    PubMed

    Williams, Kenneth H; Wilkins, Michael J; N'Guessan, A Lucie; Arey, Bruce; Dodova, Elena; Dohnalkova, Alice; Holmes, Dawn; Lovley, Derek R; Long, Philip E

    2013-06-01

    Removal of selenium from groundwater was documented during injection of acetate into a uranium-contaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0 m(-2) tubing day(-1). Removal was inferred to result from the activity of a mixed microbial community within the biofilms capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.

  15. Field evidence of selenium bioreduction in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams , K. H.; Wilkins, Michael J.; N'Guessan, A. Lucie

    2013-06-01

    Removal of selenium from groundwater was documented during injection of acetate into a uraniumcontaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0m-2 tubing day-1. Removal was inferred to result from the activity of a mixed microbial community within the biofilmsmore » capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.« less

  16. Evaluation of trace elements in selected foods and dietary intake by young children in Thailand.

    PubMed

    Nookabkaew, S; Rangkadilok, N; Akib, C A; Tuntiwigit, N; Saehun, J; Satayavivad, J

    2013-01-01

    Elemental concentrations in rice, animal products, eggs, vegetables, fruits, infant formulas and drinking water were determined in 667 food samples randomly collected from local markets, big supermarkets and grocery stores in Bangkok, Thailand, during the period October 2005-August 2008. Samples were digested with nitric acid and analysed by inductively coupled plasma-mass spectrometry. Arsenic and cadmium levels in most foods were below the maximum levels as set by international organisations. Filtered and bottled drinking water, rice, vegetables and banana contained low concentrations of arsenic, cadmium and lead. Non-polished rice had higher magnesium, calcium, manganese, iron and selenium concentrations than polished rice. Banana was a major source for manganese and selenium. Pig kidney and liver contained high levels of arsenic and cadmium. Manganese, cadmium, lead and aluminium concentrations in soybean milk could also be of concern. With respect to food safety for children, the amounts of arsenic and cadmium ingested with poultry, pig liver or rice corresponded to high weekly or monthly intake.

  17. Trace elements have beneficial, as well as detrimental effects on bone homeostasis.

    PubMed

    Zofkova, I; Davis, M; Blahos, J

    2017-07-18

    The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.

  18. Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh

    2017-04-01

    The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.

  19. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tercia G; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M

    2016-06-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hginorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hginorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hginorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Selenium and other elements in freshwater fishes from the irrigated San Joaquin Valley, California

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; May, T.W.

    1992-01-01

    Arsenic (As), chromium (Cr), mercury (Hg), and selenium (Se) were measured in composite whole-body samples of five fishes — bluegill (Lepomis macrochirus), common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), largemouth bass (Micropterus salmoides), and Sacramento blackfish (Orthodon microlepidotus) — from the San Joaquin River system to determine if concentrations were elevated from exposure to agricultural subsurface (tile) drainage. Except for Cr, the concentrations of these elements in fishes from one or more sites were elevated; however, only Se approached concentrations that may adversely affect survival, growth, or reproduction in warm water fishes. Moreover, only Se among the four measured elements exhibited a geographic (spatial) pattern that coincided with known inflows of tile drainage to the San Joaquin River and its tributaries. Historical data from the Grassland Water District (Grasslands; a region exposed to concentrated tile drainage) suggested that concentrations of Se in fishes were at maximum during or shortly after 1984 and have been slightly lower since then. The recent decline of Se concentrations in fishes from the Grasslands could be temporary if additional acreages of irrigated lands in this portion of the San Joaquin Valley must be tile-drained to protect agricultural crops from rising groundwater tables.

  1. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects ofmore » Se and Cu on planarians.« less

  2. Low temperature co-pyrolysis of hexabenzylditinsulfide and selenium. An alternate route to Sn(S{sub x}Se{sub 1{minus}x})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudjouk, P.; Remington, M.P. Jr.; Seidler, D.J.

    1999-12-01

    Benzyl-substituted tin chalcogenides (Bn{sub 3}Sn){sub 2}S (1) and (Bn{sub 3}Sn){sub 2}Se (2) yield polycrystalline-phase pure SnS and SnSe in good ceramic yields when pyrolyzed with S and Se, respectively, at 275 C. Heating mixtures of (1) and elemental selenium produce solid solutions of the formula Sn(S{sub x}Se{sub 1{minus}x}). Combustion analysis showed less than 1% residual carbon in all ceramic products. This methodology allows the complete conversion of tin-to-tin chalcogenides and eliminates the need to synthesize organosulfur and organoselenium intermediates.

  3. Organic Selenium, Probiotics, and Prebiotics Effects on Growth, Blood Biochemistry, and Carcass Traits of Growing Rabbits During Summer and Winter Seasons.

    PubMed

    Ayyat, Mohamed S; Al-Sagheer, Adham A; Abd El-Latif, Khaled M; Khalil, Bakry A

    2018-03-07

    The effect of organic selenium, prebiotics, or probiotics on productive performances, blood biochemistry, and carcass characteristics of growing rabbits was studied throughout summer and winter seasons. In an 8-week feeding trial, a total of 100 New Zealand White rabbits were randomly distributed to 10 groups. Two seasons (winter and summer) and five diets fortified with 0 (control), 0.03 mg selenium, 3 g Bio-Mos®, 1 g Bactocell® (1 × 10 10  CFU) or 3 g yeast/kg diet were used in 2 × 5 factorial design. Results indicated that growth performance, feed intake (FI), and blood components (red blood cells [RBCs], serum total protein [TP], globulin [GLOB], albumin [ALB]) decreased significantly in rabbits reared during summer than in those during winter. In contrast, white blood cells, urea-N, creatinine, alanine transaminase [ALT], and aspartate transaminase [AST] increased significantly in summer. However, growth performance indices, FI, blood hemoglobin, RBCs, TP, ALB, and GLOB increased significantly in rabbits when fed the tested feed additives. The respiration rate, rectal temperature, and heart rate of the animals were significantly decreased with all feed additives. Adjusted weight of carcass, liver, kidney fat, and carcass cuts were not affected by feed additives. Final margin and margin efficiency increased in rabbit fed diets supplemented with feed additives than those fed the basal diet without any supplementation. Results of the current study concluded that a supplementation of rabbit diets with organic selenium, probiotics, and prebiotics can promote rabbit performance during mild weather and also alleviate the adverse impact of heat stress during summer season.

  4. Characterization and data-gap analysis of surface-water quality data in the Piceance study area, western Colorado, 1959–2009

    USGS Publications Warehouse

    Thomas, Judith C.; Moore, Jennifer L.; Schaffrath, Keelin R.; Dupree, Jean A.; Williams, Cory A.; Leib, Kenneth J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Federal, State, county, and industry partners, developed a Web-accessible common data repository to provide access to historical and current (as of August 2009) water-quality information (available on the Internet at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml). Surface-water-quality data from public and private sources were compiled for the period 1931 to 2009 and loaded into the common data repository for the Piceance Basin. A subset of surface-water-quality data for 1959 to 2009 from the repository were compiled, reviewed, and checked for quality assurance for this report. This report contains data summaries, comparisons to water-quality standards, trend analyses, a generalized spatial analysis, and a data-gap analysis for select water-quality properties and constituents. Summary statistics and a comparison to standards were provided for 347 sites for 33 constituents including field properties, nutrients, major ions, trace elements, suspended sediment, Escherichia coli, and BTEX (benzene, toluene, ethylbenzene, and xylene). When sufficient data were available, trends over time were analyzed and loads were calculated for those sites where there were also continuous streamflow data. The majority of sites had information on field properties. Water temperature data was available for 316 sites where data were collected between 1959 and 2009. The only trend that was detected in temperature was an upward trend at the Gunnison River near Grand Junction, Colorado. There were 326 values out of a total of 32,006 values in the study area that exceeded the aquatic-life standard for daily maximum water temperature. For the entire study area, 196 sites had dissolved-oxygen data collected between 1970 and 2009, and median dissolved-oxygen concentrations ranged from 6.8 to11.2 milligrams per liter (mg/L). There were 185 concentrations that exceeded the dissolved oxygen aquatic-life standard out of a total of 11,248 values. The pH data were available for 276 sites, and median pH values ranged from 7.5 to 9.0. There were 241 values that exceeded the high pH standard and 13 values that were less than the low pH standard of the 16,790 values in the study area. Nutrients within the study area were not well represented in each basin and were often not being sampled currently. For the entire study area, 62 sites had nitrate data collected between 1958 and 2009, and median nitrate concentrations ranged from less than detection to 3.72 mg/L as nitrogen. The maximum contaminant level for domestic water supply for nitrate is 10 mg/L and was exceeded once in 3,736 samples. Total phosphorus was collected at 113 sites between 1974 and 2009, and median total phosphorus concentrations ranged from less than detection to 5.04 mg/L. The U.S. Environmental Protection Agency recommendation for phosphorus is less than 0.1 mg/L, and 1,469 of 4,842 samples exceeded this recommended standard. An upward trend in both nitrate and total phosphorus was detected in the White River above Coal Creek near Meeker, Colo. Standards for major ions exist only for chloride and sulfate. For the entire study area, 118 sites had both chloride and sulfate concentration data collected between 1958 and 2009. Median chloride concentrations ranged from 0.085 mg/L to 280 mg/L. Median sulfate concentrations ranged from 4.57 mg/L to 15,000 mg/L. Both chloride and sulfate domestic water-supply standards are 250 mg/L. There were 120 chloride concentrations and 1,111 sulfate concentration samples that exceeded these standards. A downward trend in dissolved solids was detected at the Colorado River near the Colorado-Utah state border and could be a result of salinity control work near Grand Junction, Colo. Trace elements were relatively well represented both temporally and spatially in the study area though the number of trace element samples per site was not typically enough to compute trends or loads except for selenium. There were 127 sites that had dissolved iron concentration data collected between 1961 and 2009, and median iron concentrations ranged from less than detection to 1,100 micrograms per liter (µg/L). The 30-day drinking-water standard for iron is 300 µg/L, and 203 samples exceeded the standard. Selenium was the best represented trace element with selenium concentration data collected at 197 sites between 1973 and 2009, and median selenium concentrations range from less than detection to 181 µg/L. The chronic standard of 4.6 µg/L for selenium concentrations was exceeded in 899 samples, and the acute aquatic-life standard of 18.4 µg/ for selenium was exceeded in 629 samples. High concentrations of selenium are of concern in the Lower Gunnison River Basin because of the combination of geologic formations and land use. There were significant downward trends in selenium at both main-stem sites on the Gunnison River at Delta, Colo., and the Gunnison River near Grand Junction, Colo. High selenium concentrations correlate with high salinity concentrations; thus, when salinity control efforts are conducted in selenium-rich areas in the Lower Gunnison River Basin, both salinity and selenium have the potential to decrease. Spatial, temporal, and analytical data gaps were identified in the study area. The spatial coverage of sampling sites could be expanded in the White River Basin by adding more tributary sites. No water-quality data exist for tributary streams in the area north of Rangely, Colo., where extensive energy development has occurred in a complex geologic setting. Douglas Creek has a drainage area of 425 square miles and has limited historic water-quality and water-quantity data. Limited data were available for field properties, major ions, nutrients, and trace elements on the main stem of the Colorado River between Glenwood Springs and Cameo, Colo. Nutrient data were minimally collected upstream from Colorado River at the Colorado-Utah state border and on the Gunnison River (major tributary in the reach). Approximately 30 percent of the samples for total phosphorus in the Lower Gunnison River Basin exceeded the recommended standard, yet there were insufficient data to do trends analysis in the Lower Gunnison River Basin except at the Gunnison near Grand Junction site. There is limited trace element data except for selenium in the Lower Gunnison River Basin. Additional sampling is necessary to understand the occurrence, concentrations, and loads of these constituents.

  5. COMPARING THE RECOMMENDED DIETARY ALLOWANCE TO TOXICITY VALUES FOR ZN, SE, MN, AND MB

    EPA Science Inventory

    Certain essential nutrients can be toxic when ingested at dosages higher than the daily nutritional requirement. Research data for the essential trace elements, zinc, selenium, manganese and molybdenum have been reviewed by various government agencies for both their nutritional n...

  6. Selenium Ameliorate Peripheral Nerve Ischemic-Reperfusion Injury via Decreased TNF-α.

    PubMed

    Zendedel, Abolfazl; Gharibi, Zahra; Anbari, Khatereh; Abbaszadeh, Abolfazl; Khayat, Zahra Khanipour; Khorramabadi, Reza Mohammadrezaei; Soleymaninejad, Maryam; Gholami, Mohammadreza

    2017-04-01

    Selenium is considered as a trace element that plays antioxidant role in the body. So, the aim of this study was to evaluate the effect of selenium on ameliorating of sciatic nerve ischemia-reperfusion injury. Eighty (80) adult male Wistar rats weighing 250-300 g were used. They were divided into 10 groups (n = 8). Then, femoral vessels were obstructed by using 4/0 silk and splitknot techniques. After 3-h ischemia for all the groups, reperfusion was applied for different periods: 3, 7, 14, and 28 days. In half of each experimental group, 0.2 mg/kg selenium was injected intraperitoneally, coinciding with ischemia. After reperfusion, according to the grouping, rats were killed by using high dose of anesthetic drug and then sciatic nerve was removed and fixed. Then, tissue samples were processed and subsequently stained with hematoxylin-eosin, apoptosis, and immunohistochemistry stains. On the third day of reperfusion, the amount of TNF-α as an inflammatory marker of ischemia-reperfusion acute phase increased. On the seventh day of reperfusion, the amount of NF-кB as an apoptotic index and infiltration of mast cells increased in the tissue as a result of development of inflammation. But, on the 14th day of reperfusion, the amount of NF-кB as an apoptotic index decreased to the lowest amount. On the 28th day of reperfusion, the amount of TNF-α as an inflammatory marker decreased to its lowest level. Prescription of selenium concurrent with development of ischemia can reduce the damage caused by sciatic nerve ischemia-reperfusion.

  7. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  8. Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event.

    PubMed

    Nam, Dong-Ha; Adams, Douglas H; Reyier, Eric A; Basu, Niladri

    2011-05-01

    Tissue levels of mercury (Hg; total, organic) and selenium (Se) were assessed in juvenile lemon sharks (Negaprion brevirostris) from Florida nearshore waters collected during a harmful algal bloom (HAB, brevetoxin) event and compared with sharks not exposed to HABs. In all sharks studied, total Hg levels in the muscle were generally present in a molar excess over Se (which may protect against Hg toxicity) and mean muscle Hg levels (0.34 microg/g) exceed safe human consumption guidelines. While there was generally no difference in tissue Hg and Se levels following exposure of sharks to HABs, hepatic Hg levels were significantly lower (56% reduction) in the HAB-exposed sharks compared to controls. As Hg and HABs are globally increasing in scope and magnitude, further work is warranted to assess their interactions and biotic impacts within aquatic ecosystems, especially for a species such as the lemon shark that is classified as a near-threatened species by the International Union for the Conservation of Nature.

  9. The preparation of three selenium-containing Cordyceps militaris polysaccharides: Characterization and anti-tumor activities.

    PubMed

    Liu, Fei; Zhu, Zhen-Yuan; Sun, Xiaoli; Gao, Hui; Zhang, Yong-Min

    2017-06-01

    In the present work, three fractions of selenized Cordyceps militaris polysaccharides (SeCPS) named SeCPS- I, SeCPS- II and SeCPS- III were isolated and purified by ultra-filtration. Their selenium content were measured as 541.3, 863.7 and 623.3μg/g respectively by a graphite furnace atomic absorption spectroscopy. The monosaccharide comformation analysis showed that they were mainly consisted of D-Mannose, D-Glucose, and D-Galactose in mole ratios of 1:7.63:0.83, 1:1.34:0.31 and 1:3.77:0.41 respectively. Their structure characteristics were compared by IFR and NMR spectroscopy. Scanning electron microscopy (SEM) and Congo red (CR) spectrophotometric method were used to investigate their morphological characteristics and conformational transition. SeCPS-II showed the strongest anti-tumor effects judging from the result of in vitro anti-tumor assays against two tumor cell lines (hepatocellular carcinoma HepG-2 cells and lung adenocarcinom A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    PubMed Central

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by Selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and co-localized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.14 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. PMID:19379757

  11. Hepatic element concentrations of lesser scaup (Aythya affinis) during spring migration in the upper Midwest

    USGS Publications Warehouse

    Pillatzki, Angela E.; Neiger, Regg D.; Chipps, Steven R.; Higgins, Kenneth F.; Thiex, Nancy; Afton, Alan D.

    2011-01-01

    High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 μg/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 μg/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction.

  12. Impact of low level radiation on concentrations of some trace elements in radiation workers.

    PubMed

    Rostampour, Nima; Almasi, Tinoosh; Rostampour, Masoumeh; Sadeghi, Hamid Reza; Khodamoradi, Ehsan; Razi, Reyhaneh; Derakhsh, Zahra

    2018-05-01

    Small variations in trace element levels may cause important physiological changes in the human body. This study aims to evaluate five important trace elements in radiation workers. In this study, 44 radiation workers and an equal number of non-radiation workers were selected as the case and control group, respectively. The concentrations of iron, magnesium, zinc, copper, and selenium in the serum of the participants were measured using an Atomic Absorption Spectrometry (AAS). The mean concentrations of iron, magnesium, zinc, copper, and selenium for the case group were 107.3 µg/dl, 2.3 mg/dl, 80.9 µg/dl, 112.6 µg/dl and 216.7 ng/ml, respectively. The results for the control group were 121.9 µg/dl, 2.3 mg/dl, 82.3 µg/dl, 112.8 µg/dl and 225.2 ng/ml, respectively. The mean concentration of iron in the case group was significantly lower than the control group (p-value = 0.012), while the concentrations of other elements in both of the groups were not significantly different. In the case group, except magnesium (p-value = 0.021), no significant relationship was found between age and the elemental concentrations. According to Spearman's test, there was a meaningful statistical correlation between the sex and concentration of iron, Mg, Zn, and Se. Also, the correlation between the concentration of magnesium and the weights of radiation workers was significant (p-value =0.044). © 2018 Old City Publishing, Inc.

  13. Hepatic element concentrations of lesser scaup (aythya affinis) during spring migration in the upper midwest

    USGS Publications Warehouse

    Pillatzki, A.E.; Neiger, R.D.; Chipps, S.R.; Higgins, K.F.; Thiex, N.; Afton, A.D.

    2011-01-01

    High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 ??g/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 ??g/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction. ?? 2010 Springer Science+Business Media, LLC.

  14. Feasibility of measuring selenium in humans using in vivo neutron activation analysis.

    PubMed

    Tahir, S N A; Chettle, D R; Byun, S H; Prestwich, W V

    2015-11-01

    Selenium (Se) is an element that, in trace quantities, plays an important role in the normal function of a number of biological processes in humans. Many studies have demonstrated that selenium deficiency in the body may contribute to an increased risk for certain neoplastic, cardiovascular, osseous, and nervous system diseases including retardation of bone formation. However, at higher concentrations Se is cytotoxic. For these reasons it is desirable to have a means of monitoring selenium concentration in humans.This paper presents the outcome of a feasibility study carried out for measuring selenium in humans using in vivo neutron activation analysis (IVNAA). In this technique a small dose of neutrons is delivered to the organ of interest, the neutrons are readily captured by the target nuclei, and the γ-rays given off are detected outside of the body. For the present study, human hand (bone) tissue equivalent phantoms were prepared with varying amounts of Se. These were irradiated by a low energy fast neutron beam produced by the (7)Li(p,n)(7)Be reaction employing the high beam current Tandetron accelerator. The counting data saved using a 4π NaI(TI) detection system were analyzed. The selenium was detected via the neutron capture reaction, (76)Se(n,γ)(77 m)Se, whereas calcium was detected through the (48)Ca(n,γ)(49)Ca reaction for the purpose of normalization of the Se signals to the calcium signals. From the calibration lines drawn between Se/Ca concentrations and Se/Ca counts ratio, the minimum detection limits (MDLs) were computed for two sets of phantoms irradiated under different irradiation parameters.In this study the optimized MDL value was determined to be 81 ng g(-1) (Se/phantom mass) for an equivalent dose of 188 mSv to the phantom. This MDL was found at least 10 times lower than the reported data on Se concentration measured in bone tissues. It was concluded that the NAA technique would be a feasible means of performing in vivo measurements of selenium in humans. Currently the data on in vivo measurement of selenium in humans are limited; the results of the present study would greatly contribute to the present data.

  15. Protective effects of Nano-elemental selenium against chromium-vi-induced oxidative stress in broiler liver.

    PubMed

    Xueting, L; Rehman, M U; Zhang, H; Tian, X; Wu, X; Shixue; Mehmood, K; Zhou, D

    2018-01-01

    The valuable role of selenium in mitigation of oxidative stress and heavy metal toxicity is well-known. Thus, the aim of the current study on broiler chickens was to examine whether nano elemental selenium (Nano-Se) supplementation can reduce the effects of chromium VI (K2Cr2O7) toxicity. For this purpose, a total of 150, one-day-old broiler chickens were allotted to five groups with three replicates: control group (standard diet), poisoned group (K2Cr2O7 via drinking water), protection group (K2Cr2O7 + Nano- Se), cure group (K2Cr2O7 for initial 2 weeks and then Nano-Se), and prevention group (opposite to the cure group). The broilers were detected by the activities of marker enzymes and oxidative stress markers including, aspartate aminotransferase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (GGT) and superoxide dismutase (SOD), glutathione peroxidase (GSH-px), malondialdehyde (MDA), respectively. The (K2Cr2O7 administration caused histopathological damage in the liver of the chickens. Moreover, changes in serum biochemical indicators and oxidative stress parameters were also observed. Nano-Se supplementation increased the levels of GSH-px but reduced the activities of SOD, MDA, GGT, ALT and AST in the experimental groups (P less than 0.05). Our results showed that Nano-Se plays a protective role by preventing the oxidative stress induced by the chromium VI in broiler chickens.

  16. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    PubMed

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A post-publication analysis of the idealized upper reference value of 2.5 mIU/L for TSH: Time to support the thyroid axis with magnesium and iron especially in the setting of reproduction medicine.

    PubMed

    Moncayo, Roy; Moncayo, Helga

    2017-06-01

    Laboratory medicine approaches the evaluation of thyroid function mostly through the single determination of the blood level of thyroid stimulating hormone (TSH). Some authors have suggested an upper reference value for TSH of 2.5 mIU/L. This suggestion has not been confirmed by recent clinical studies. These studies have delivered a clinically valid reference range going from 0.3 to 3.5 mIU/L. These values are valid for both for the general population as well as in the setting of fertility and pregnancy. Current biochemical evidence about the elements required to maintain thyroid function shows that these not only include dietary iodine but also magnesium, iron, selenium and coenzyme Q10. Iron is important for the synthesis of thyroid peroxidase; magnesium-ATP contributes to the active process of iodine uptake; iodine has to be sufficiently present in the diet; selenium acts through selenoproteins to protect the thyroid cell during hormone synthesis and in deiodination of thyroxine; coenzyme Q10 influences thyroid vascularity. As a consequence, good clinical practice requires additional biochemical information on the blood levels of magnesium, selenium, coenzyme Q10 as well as iron status. Since these elements are also important for the maintenance of reproductive function, we postulate that they constitute the connecting link between both endocrine systems.

  18. Derivatization of DNAs with Selenium at 6-Position of Guanine for Function and Crystal Structure Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salon, J.; Jiang, J; Sheng, J

    2008-01-01

    To investigate nucleic acid base pairing and stacking via atom-specific mutagenesis and crystallography, we have synthesized for the first time the 6-Se-deoxyguanosine phosphoramidite and incorporated it into DNAs via solid-phase synthesis with a coupling yield over 97%. We found that the UV absorption of the Se-DNAs red-shifts over 100 nm to 360 nm ({Epsilon} = 2.3 x 10{sup 4} M{sup -1} cm{sup -1}), the Se-DNAs are yellow colored, and this Se modification is relatively stable in water and at elevated temperature. Moreover, we successfully crystallized a ternary complex of the Se-G-DNA, RNA and RNase H. The crystal structure determination andmore » analysis reveal that the overall structures of the native and Se-modified nucleic acid duplexes are very similar, the selenium atom participates in a Se-mediated hydrogen bond (Se H-N), and the {sup Se}G and C form a base pair similar to the natural G-C pair though the Se-modification causes the base-pair to shift (approximately 0.3 {angstrom}). Our biophysical and structural studies provide new insights into the nucleic acid flexibility, duplex recognition and stability. Furthermore, this novel selenium modification of nucleic acids can be used to investigate chemogenetics and structure of nucleic acids and their protein complexes.« less

  19. Final report for CCQM-K107: total elements and selenomethionine in human serum

    NASA Astrophysics Data System (ADS)

    Goenaga Infante, Heidi

    2016-01-01

    Routine tests that measure the concentration of electrolytes in serum are needed for diagnosis and management of renal, endocrine, acid-base, water balance and other conditions such as screening D- and A-vitamin disorders, kidney insufficiency, bone diseases and leukaemia. The diagnostic concentration ranges for many such markers are narrow, requiring reference methods with small uncertainty. Serum concentration of total selenium (Se) is important in health studies but there is increasing interest in the speciation of selenium compounds in clinical samples such as serum and individual Se- Species are bio-indicators of Se status. The last CCQM IAWG key comparison for elements in the clinical area (CCQM-K14: Ca in human serum) was organized in 2003 and the previous key comparison (CCQM-K60) for Se and Se species used a wheat flour sample. Therefore, the CCQM IAWG agreed that CCQM-K107 and a parallel pilot study CCQM-P146 should be carried out. The candidate human serum sample used for both CCQM-K107 and P146 is of high complexity and contains approximately 1000-fold lower concentrations of selenium methionine (SeMet) than those encountered in the CCQM-K60 wheat flour. This significantly broadens the scope and degree of difficulty of earlier measurements in this field. A total of eleven institutes participated in CCQM-K107 (11 participants for total elements and 7 for SeMet). The performance of the majority of the K107 participants for all the measurands was very good, illustrating their ability to obtain accurate results for analytes such as electrolytes at mg kg-1 level, essential elements at µg kg-1 level and selenium species at µg kg-1 level in a complex biological fluid. The range of agreement between participants was within the interval of ± 0.1% for Ca and up to ± 1.8% for Fe. CMC claims based on total elements in this study may include other elements with similar core competencies (e.g. Se, Cu, Zn) in a wide range of biological materials (including liquids and solids) at a similar level of performance using the same measurement technique applied in CCQM-K107 provided that there are no additional factors (e.g. blank or dissolution issues). CMC claims based on SeMet measurements in this study may be applied to other biological matrices (e.g., tissues) provided that the concentration range is similar and due diligence is taken to ensure an appropriate extraction process is achieved and species specific spikes are available for quantitation by isotope dilution. Indeed, having accepted such conditions, application to quantitation of other organometallic species and other elements in similar matrices should be possible with the same level of performance. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Exposure to monomethylarsonous acid (MMA(III)) leads to altered selenoprotein synthesis in a primary human lung cell model.

    PubMed

    Meno, Sarah R; Nelson, Rebecca; Hintze, Korry J; Self, William T

    2009-09-01

    Monomethylarsonous acid (MMA(III)), a trivalent metabolite of arsenic, is highly cytotoxic and recent cell culture studies suggest that it might act as a carcinogen. The general consensus of studies indicates that the cytotoxicity of MMA(III) is a result of increased levels of reactive oxygen species (ROS). A longstanding relationship between arsenic and selenium metabolism has led to the use of selenium as a supplement in arsenic exposed populations, however the impact of organic arsenicals (methylated metabolites) on selenium metabolism is still poorly understood. In this study we determined the impact of exposure to MMA(III) on the regulation of expression of TrxR1 and its activity using a primary lung fibroblast line, WI-38. The promoter region of the gene encoding the selenoprotein thioredoxin reductase 1 (TrxR1) contains an antioxidant responsive element (ARE) that has been shown to be activated in the presence of electrophilic compounds. Results from radiolabeled selenoproteins indicate that exposure to low concentrations of MMA(III) resulted in increased synthesis of TrxR1 in WI-38 cells, and lower incorporation of selenium into other selenoproteins. MMA(III) treatment led to increased mRNA encoding TrxR1 in WI-38 cells, while lower levels of mRNA coding for cellular glutathione peroxidase (cGpx) were detected in exposed cells. Luciferase activity of TrxR1 promoter fusions increased with addition of MMA(III), as did expression of a rat quinone reductase (QR) promoter fusion construct. However, MMA(III) induction of the TRX1 promoter fusion was abrogated when the ARE was mutated, suggesting that this regulation is mediated via the ARE. These results indicate that MMA(III) alters the expression of selenoproteins based on a selective induction of TrxR1, and this response to exposure to organic arsenicals that requires the ARE element.

  1. [Trace elements in serum of malnourished and well-nourished children living in Lubumbashi and Kawama].

    PubMed

    Musimwa, Aimée Mudekereza; Kanteng, Gray Wakamb; Kitoko, Hermann Tamubango; Luboya, Oscar Numbi

    2016-01-01

    The role of trace metals elements in human nutrition can no longer be ignored. Deficiency caused by inadequate dietary intake, secondary deficiencies often under - estimated, and iatrogenic deficiencies lead to pathologies such as infections and others. For this reason their dosages are particularly important to assess disease severity and to facilitate early treatment or improve patient's diet. The aim of this study was to determine trace elements profile in blood (copper, selenium, zinc, iron, chromium, cobalt, etc.) among malnourished and well-nourished children in a mining community in Lubumbashi. Three hundred eleven cases have been collected, 182 malnourished children and 129 well-nourished children in a cross-sectional descriptive study conducted from July 2013 to December 2014. Exhaustive sampling was performed. Metal determination in serum was performed using Inductively Coupled Plasma Spectroscopy (ICP-OES/MS) in the laboratory at Congolese Control Office in Lubumbashi. Essential trace elements (copper, zinc, selenium and iron) were found at very low concentrations in both the malnourished and well-nourished children. Arsenic, cadmium, magnesium and manganese concentrations were normal compared with reference values in well-nourished children Antimony, chromium, lead and cobalt levels were high in both the malnourished and well-nourished children. Nickel level was normal malnourished and well-nourished children. Magnesium, manganese were found in very low levels in malnourished children. Both the malnourished and well-nourished children suffer from deficiencies of essential trace elements associated with trace metals elements This allows to assume that essential micronutrients deficiency promotes the absorption of heavy metals.

  2. Association of Serum Selenium, Zinc and Magnesium Levels with Glycaemic Indices and Insulin Resistance in Pre-diabetes: a Cross-Sectional Study from South India.

    PubMed

    Yadav, Charu; Manjrekar, Poornima A; Agarwal, Ashish; Ahmad, Afzal; Hegde, Anupama; Srikantiah, Rukmini Mysore

    2017-01-01

    A growing understanding of antioxidant mechanisms and insulin-like actions of trace elements selenium and zinc has rekindled researchers' interest towards their role in diabetes mellitus, nutritional management of which concentrates predominantly on macronutrient intake. However, selenium studies limiting largely to diabetes have yielded inconsistent results with sparse knowledge in the pre-diabetes population. This hospital-based cross-sectional study screened 300 people who came to the institutional hospital laboratory with fasting plasma glucose and glycosylated haemoglobin requisition over a period of 6 months. Thirty-five pre-diabetes subjects aged 25-45 years and 35 age-matched healthy controls were selected as per inclusion criteria and clinical history. Serum selenium was estimated by inductively coupled plasma-mass spectrometry, zinc and magnesium by colorimetric end-point methods and insulin by enzyme-linked immunosorbent assay, and insulin resistance was calculated using a homeostasis model assessment (HOMA) 2 calculator. Data analysis was done using SPSS ver. 16 employing an independent sample t test for intergroup comparison of means and Pearson's correlation for correlation analysis. Serum mineral levels in the pre-diabetes group (selenium 63.01 ± 17.6 μg/L, zinc 55.78 ± 13.49 μg/dL, magnesium 1.37 ± 0.38 mg/dL) were significantly reduced (p < 0.05) in comparison to the healthy controls (selenium 90.98 ± 15.81 μg/L, zinc 94.53 ± 15.41 μg/dL, magnesium 2.12 ± 0.22 mg/dL). A significant negative correlation was seen with glycaemic indices and insulin resistance. This study conducted in pre-diabetes subjects highlights a considerable deficiency of serum selenium, zinc and magnesium observed at a much earlier pre-clinical phase. This coupled with the evidence of a strong inverse association with glycaemic indices and insulin resistance postulates the role of mineral alterations in the pathophysiology of hyperglycaemia and insulin resistance.

  3. Effect of Mg incorporation on solution-processed kesterite solar cells

    NASA Astrophysics Data System (ADS)

    Caballero, Raquel; Haass, Stefan G.; Andres, Christian; Arques, Laia; Oliva, Florian; Izquierdo-Roca, Victor; Romanyuk, Yaroslav E.

    2018-01-01

    The introduction of the alkaline-earth element Mg into Cu2ZnSn(S,Se)4 (CTZSSe) is explored in view of potential photovoltaic applications. Cu2Zn1-xMgxSn(S,Se)4 absorber layers with variable Mg content x=0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with x = 0.55…1 the phase separation into Cu2SnSe3, MgSe2, MgSe and SnSe2 occurs in agreement with literature predictions. A lower Mg content of x=0.04 results in the kesterite phase as confirmed by XRD and Raman spectroscopy. A photoluminescence maximum is red-shifted by 0.02 eV as compared to the band-gap and a carrier concentration NCV of 1 x 1016 cm-3 is measured for a Mg-containing kesterite solar cell device. Raman spectroscopy indicates that structural defects can be reduced in Mg-containing absorbers as compared to the Mg-free reference samples, however the best device efficiency of 7.2% for a Mg-containing cell measured in this study is lower than those frequently reported for the conventional Na doping.

  4. Chemical equilibrium and reaction modeling of arsenic and selenium in soils

    USDA-ARS?s Scientific Manuscript database

    The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...

  5. Metastable Se6 as a ligand for Ag+: from isolated molecular to polymeric 1D and 2D structures.

    PubMed

    Aris, Damian; Beck, Johannes; Decken, Andreas; Dionne, Isabelle; Schmedt auf der Günne, Jörn; Hoffbauer, Wilfried; Köchner, Tobias; Krossing, Ingo; Passmore, Jack; Rivard, Eric; Steden, Folker; Wang, Xinping

    2011-06-14

    Attempts to prepare the hitherto unknown Se(6)(2+) cation by the reaction of elemental selenium and Ag[A] ([A](-) = [Sb(OTeF(5))(6)](-), [Al(OC(CF(3))(3))(4)](-)) in SO(2) led to the formation of [(OSO)Ag(Se(6))Ag(OSO)][Sb(OTeF(5))(6)](2)1 and [(OSO)(2)Ag(Se(6))Ag(OSO)(2)][Al(OC(CF(3))(3))(4)](2)2a. 1 could only be prepared by using bromine as co-oxidant, however, bulk 2b (2a with loss of SO(2)) was accessible from Ag[Al(OC(CF(3))(3))(4)] and grey Se in SO(2) (chem. analysis). The reactions of Ag[MF(6)] (M = As, Sb) and elemental selenium led to crystals of 1/∞{[Ag(Se(6))](∞)[Ag(2)(SbF(6))(3)](∞)} 3 and {1/∞[Ag(Se(6))Ag](∞)}[AsF(6)](2)4. Pure bulk 4 was best prepared by the reaction of Se(4)[AsF(6)](2), silver metal and elemental selenium. Attempts to prepare bulk 1 and 3 were unsuccessful. 1-4 were characterized by single-crystal X-ray structure determinations, 2b and 4 additionally by chemical analysis and 4 also by X-ray powder diffraction, FT-Raman and FT-IR spectroscopy. Application of the PRESTO III sequence allowed for the first time (109)Ag MAS NMR investigations of 4 as well as AgF, AgF(2), AgMF(6) and {1/∞[Ag(I(2))](∞)}[MF(6)] (M = As, Sb). Compounds 1 and 2a/b, with the very large counter ions, contain isolated [Ag(Se(6))Ag](2+) heterocubane units consisting of a Se(6) molecule bicapped by two silver cations (local D(3d) sym). 3 and 4, with the smaller anions, contain close packed stacked arrays of Se(6) rings with Ag(+) residing in octahedral holes. Each Ag(+) ion coordinates to three selenium atoms of each adjacent Se(6) ring. 4 contains [Ag(Se(6))(+)](∞) stacks additionally linked by Ag(2)(+) into a two dimensional network. 3 features a remarkable 3-dimensional [Ag(2)(SbF(6))(3)](-) anion held together by strong Sb-FAg contacts between the component Ag(+) and [SbF(6)](-) ions. The hexagonal channels formed by the [Ag(2)(SbF(6))(3)](-) anions are filled by stacks of [Ag(Se(6))(+)](∞) cations. Overall 1-4 are new members of the rare class of metal complexes of neutral main group elemental clusters, in which the main group element is positively polarized due to coordination to a metal ion. Notably, 1 to 4 include the commonly metastable Se(6) molecule as a ligand. The structure, bonding and thermodynamics of 1 to 4 were investigated with the help of quantum chemical calculations (PBE0/TZVPP and (RI-)MP2/TZVPP, in part including COSMO solvation) and Born-Fajans-Haber-cycle calculations. From an analysis of all the available data it appears that the formation of the usually metastable Se(6) molecule from grey selenium is thermodynamically driven by the coordination to the Ag(+) ions.

  6. Selenium Speciation and Management in Wet FGD Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Richardson, M; Blythe, G

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less

  7. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats.

    PubMed

    Jia, X; Li, N; Chen, J

    2005-03-11

    The subchronic toxicity of Nano-Se was compared with selenite and high-selenium protein in rats. Groups of Sprague-Dawley rats (12 males and 12 females per group) were fed diets containing Nano-Se, selenite and high-selenium protein at concentrations of 0, 2, 3, 4 and 5 ppm Se, respectively, for 13 weeks. Clinical observations were made and body weight and food consumption were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry determination. Histopathological examination was performed on selected tissues. At the two higher doses (4 and 5 ppm Se), significant abnormal changes were found in body weight, hematology, clinical chemistry, relative organ weights and histopathology parameters. However, the toxicity was more pronounced in the selenite and high-selenium protein groups than the Nano-Se group. At the dose of 3 ppm Se, significant growth inhibition and degeneration of liver cells were found in the selenite and high-selenium protein groups. No changes attributable to administration of Nano-Se at the dose of 3 ppm Se were found. Taken together, the no-observed-adverse-effect level (NOAEL) of Nano-Se in male and female rats was considered to be 3 ppm Se, equivalent to 0.22 mg/kg bw/day for males and 0.33 mg/kg bw/day for females. On the other hand, the NOAELs of selenite and high-selenium protein in males and females were considered to be 2 ppm Se, equivalent to 0.14 mg/kg bw/day for males and 0.20 mg/kg bw/day for females. In addition, studies have shown that Nano-Se has a similar bioavailability in rat, and much less acute toxicity in mice compared with selenite. In conclusion, Nano-Se is less toxic than selenite and high-selenium protein in the 13-week rat study.

  8. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There are few data on risks to biota and humans from mercury levels in saltwater fish. This paper examines mercury and selenium levels in muscle of 19 species of fish caught by recreational fisherfolk off the New Jersey shore, as a function of species of fish, size, and season, and risk of mercury to consumers. Average mercury levels ranged from 0.01 ppm (wet weight) (Menhaden Brevoortia tyrannus) to 1.83 ppm (Mako Shark Isurus oxyrinchus). There were four categories of mercury levels: very high (only Mako), high (averaging 0.3–0.5 ppm, 3 species), medium (0.14–0.20 ppm, 10 species), and low (below 0.13 ppm, 5 species). Average selenium levels for the fish species ranged from 0.18 ppm to 0.58 ppm, and had lower variability than mercury (coefficient of variation=38.3 vs 69.1%), consistent with homeostatic regulation of this essential element. The correlation between mercury and selenium was significantly positive for five and negative for two species. Mercury levels showed significant positive correlations with fish size for ten species. Size was the best predictor of mercury levels. Selenium showed no consistent relationship to fish length. Over half of the fish species had some individual fish with mercury levels over 0.3 ppm, and a third had fish with levels over 0.5 ppm, levels that pose a human health risk for high end consumers. Conversely several fish species had no individuals above 0.5 ppm, and few above 0.3 ppm, suggesting that people who eat fish frequently, can reduce their risk from mercury by selecting which species (and which size) to consume. Overall, with the exception of shark, Bluefin Tuna (Thunnus thynnus), Bluefish (Pomatomus saltatrix) and Striped Bass (Morone saxatilis), the species sampled are generally medium to low in mercury concentration. Selenium:mercury molar ratios were generally above 1:1, except for the Mako shark. PMID:21292311

  9. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the American Falls Reservoir area, Idaho, 1988-89

    USGS Publications Warehouse

    Low, Walton H.; Mullins, William H.

    1990-01-01

    Increased concern about the quality of irrigation drainage and its potential effects on human health, fish, and wildlife prompted the Department of the Interior to begin a program during late 1985 to identify irrigation-induced water-quality problems that might exist in the Western States. During `988, the Task Group on Irrigation Drainage selected the American Falls Reservoir area, Idaho, for study to determine whether potentially toxic concentrations of trace elements or organochlorine compounds existed in water, bottom sediment, and biota. The 91-square mile American Falls Reservoir has a total capacity of 1.7 million acre-feet and is used primarily for irrigation-water supply and power generation. Irrigated land upstream from the reservoir totals about 550,000 acres. Total water inflow to the reservoir is about 5.8 million acre-feet per year, of which about 63 percent is from surface-water runoff, 33 percent is from ground-water discharge, and about 4 percent is from ungaged tributaries, canals, ditches, sloughs, and precipitation. Ground-water discharge to the reservoir originates, in part, from irrigation of land upstream from and adjacent to the reservoir. The 1988 water year was a drought year, and water discharge was about 34 percent less than during 1939-88. Water samples were collected during the post-irrigation (October 1987) and irrigation (July 1988) seasons and were analyzed for major ions and trace elements. Bottom-sediment samples were collected during the irrigation season and were analyzed for trace elements and organochlorine compounds. Biota samples were collected during May, June, July, and August 1988 and were analyzed for trace elements and organochlorine compounds. Dissolved-solids concentrations in water ranged from 216 to 561 milligrams per liter. The similarity of dissolved-solids concentrations between the irrigation and post-irrigation seasons can be attributed to the large volume of ground-water discharge in the study area. Most trace-element concentrations in water were near analytical reporting limits; none exceeded State or Federal water-quality standards or criteria. Trace elements that were present at all sites in analytically detectable concentrations (in micrograms per liter) included arsenic (2 to 7), boron (40 to 130), uranium (0.7 to 3.5), vanadium (1 to 6) and zinc (less than 3 to 42). The ranges of arsenic, cadmium, and mercury concentrations in water analyzed during previous investigations. Selenium concentrations ranged from less than 1 (the reporting limit) to 6 micrograms per liter and did not exceed State of Federal water-quality standards or criteria. Concentrations of most trace elements in bottom sediment were similar to geometric mean concentrations in study area soils and were within the expected 95-percent range of concentrations in soils in the Western United States. Mercury concentrations in 9 of the 18 bottom-sediment samples exceeded the 95th-percentile concentration for mercury in area soils. Selenium concentration for selenium in area soils and, in 1 sample, exceeded the upper limit of the expected 95-percent range for selenium in Western United States soils. Most organochlorine compunds in bottom sediment were lower than analytical reporting limits. Only DDE (0.2 micrograms per kilogram) and DDT (0.3 micrograms per kilogram) were detected in bottom sediment from the Portneuf River. Except for mercury and selenium, concentrations of most trace elements in biota were not considered high enough to be harmful to humans or wildlife. Some mercury concentrations in fish exceeded the U.S. Fish and Wildlife Service National Contaminant Biomonitoring Program 85th-percentile concentration and were at levels that might not be safe for human consumption, especially for pregnant women. Elevated mercury concentrations in fish-eating waterbirds, such as double-crested cormorants, indicates biomagnification in the food chain. Selenium concentrations generally were low except in mallard livers (6.6 to 41.8 micrograms per gram, dry weight). This range is within the range of selenium concentrations (19 to 43 micrograms per gram, dry weight) reported in livers of ducks from Kesterson National Wildlife Refuge, California, where waterbird deformities, moralities, and reproductive impairment were observed. Selenium concentrations in mayfly nymphs were at or near dietary concentrations (5 to 8 micrograms per gram, dry weight) that had adverse reproductive effects on mallards during laboratory toxicity studies. p,p'DDE was detected in all waterbird eggs and juvenile mallared carcasses. Highest concentrations were in cormorant eggs (0.59 to 5.70 micrograms per gram, wet weight). p,p'DDE concentrations in four of five cormorant eggs exceeded the National Academy of Sciences, National Academy of Engineering criterion for protection of aquatic wildlife (1 microgram per gram, wet weight, for p,p'DDT and its metabolites). p,p'DDE was detected in all fish samples except rainbow trout. p,p'DDE was detected in one sample of Utah suckers. No concentrations of p,p'DDE or p,p'DDT in fish exceeded the criterion for protection of aquatic life. Total PCB's were detected in all cormorant eggs and all fish samples. PCB's were not detected in other waterbird eggs. PCB concentrations in cormorant eggs (0.28 to 1.8 micro per gram, wet weight) were lower than concentrations that would be expected to cause adverse effects. Two of the three carp samples contained PCB concntrations higher than the recommended level for protection of fish and wildlife (0.4 micrograms per gram, wet weight). Eggshell thinning was noted in cormorant and mallard eggs but was not considered great enough to cause reporductive problems. Observations of the general health of fish and waterbird populations during the study indicated that the area did not appear to have a serious contaminant problem that could be associated with irrigation grainage. No waterbird or fish die-offs were observed, and nesting waterbird populations were noted to be increasing. Selenium concentrations in mallard livers, however, are of concern, as are p,p'DDE residues in cormorant eggs.

  10. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres.

    PubMed

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD 50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings.

  11. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres

    PubMed Central

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings. PMID:28684913

  12. Metals in albatross feathers from Midway Atoll: Influence of species, age, and nest location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Gochfeld, M.

    2000-03-01

    In this paper the authors examine the concentrations of metals (heavy metals, mercury, lead, cadmium, chromium, manganese, tin; and metalloids, arsenic and selenium), in the down and contour (body) feathers of half-grown young albatrosses, and contour feathers of one of their parents. They collected feathers from Laysan Diomedea immutabilis and black-footed Diomedea nigripes albatrosses from Midway Atoll in the central Pacific Ocean. The authors test the null hypotheses that there is no difference in metal levels as a function of species, age, feather type, and location on the island. Using linear regression they found significant models accounting for the variationmore » in the concentrations of mercury, lead, cadmium, selenium, chromium, and manganese (but not arsenic or tin) as a function of feather type (all metals), collection location (all metals but lead), species (selenium only), and interactions between these factors. Most metals (except mercury, arsenic, and tin) were significantly higher in down than in the contour feathers of either chicks or adults. Comparing the two species, black-footed albatross chicks had higher levels of most elements (except arsenic) in their feathers and/or down. Black-footed adults had significantly higher levels of mercury and selenium. They also collected down and feathers from Laysan albatross chicks whose nests were close to buildings, including buildings with flaking lead paint and those that had been lead-abated.« less

  13. Activity of Selected Antioxidant Enzymes, Selenium Content and Fatty Acid Composition in the Liver of the Brown Hare (Lepus europaeus L.) in Relation to the Season of the Year.

    PubMed

    Drozd, Radosław; Pilarczyk, Renata; Pilarczyk, Bogumiła; Drozd, Arleta; Tomza-Marciniak, Agnieszka; Bombik, Teresa; Bąkowska, Małgorzata; Bombik, Elżbieta; Jankowiak, Dorota; Wasak, Agata

    2015-12-01

    The aim of the study was to evaluate the effect of low concentrations of selenium in the environment on the activity of selected antioxidant enzymes: Se-GSHPx, total GSHPx, SOD, CAT, and GST as well as fatty acid profile in the livers of brown hares during winter and spring. Liver tissues obtained from 20 brown hares collected in the north-eastern Poland in the winter and spring season were analyzed. In the tissue analyzed, a significantly lower level of selenium was noticeable in the spring compared to winter; however, values measured in both seasons indicated a deficiency of this element in the analyzed population of brown hares. There were no differences found that could indicate the influence of Se deficiency on the activity of antioxidant enzymes. The determined activity of antioxidant enzymes and fatty acid composition suggest a negligible impact of the low concentration of Se on the analyzed biochemical parameters of brown hare livers.

  14. The Relationship between Selenoprotein P and Glucose Metabolism in Experimental Studies

    PubMed Central

    Mao, Jinyuan; Teng, Weiping

    2013-01-01

    Selenium is an essential trace element in the diet of mammals which is important for many physiological functions. However, a number of epidemiological studies have suggested that high selenium status is a possible risk factor for the development of type 2 diabetes, although they cannot distinguish between cause and effect. Selenoprotein P (Sepp1) is central to selenium homeostasis and widely expressed in the organism. Here we review the interaction between Sepp1 and glucose metabolism with an emphasis on experimental evidence. In models with or without gene modification, glucose and insulin can regulate Sepp1 expression in the pancreas and liver, and vice versa. Especially in the liver, Sepp1 is regulated virtually like a gluconeogenic enzyme. Combining these data suggests that there could be a feedback regulation between hepatic Sepp1 and pancreatic insulin and that increasing circulating Sepp1 might be the result rather than the cause of abnormal glucose metabolism. Future studies specifically designed to overexpress Sepp1 are needed in order to provide a more robust link between Sepp1 and type 2 diabetes. PMID:23760059

  15. Assessment of serum selenium levels in 2-month-old sucking calves using total reflection X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Buoso, M. C.; Ceccato, D.; Moschini, G.; Bernardini, D.; Testoni, S.; Torboli, A.; Valdes, M.

    2001-11-01

    The assessment of selenium status of livestock plays an important role in the production of medicine since low serum Se levels influence disease resistance in ruminants. It has been proved that Se deficiency may cause muscular dystrophy, cardiomyopathy and even death. Serum level has been widely used to evaluate the Se short-term status in animals since there is a good association between serum Se level and the dietary intake of the element over a wide range. The purpose of this work was to determine the Se serum concentration in a population of 78 sucking 2-month-old calves, in order to corroborate a clinical diagnosis of severe deficiency status. The samples were analyzed by total reflection X-ray fluorescence (TXRF) at the ITAL STRUCTURES Research Laboratory. The results obtained from the serum samples presented Se concentrations varying from 10 to 66 ng/ml. The comparison between the obtained values and the expected serum selenium values (60-80 ng/ml), confirmed a mild to severe deficiency status in the investigated population.

  16. Arsenic and selenium capture by fly ashes at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Antonia Lopez-Anton; Mercedes Diaz-Somoano; D. Alan Spears

    2006-06-15

    Arsenic and selenium compounds may be emitted to the environment during coal conversion processes, although some compounds are retained in the fly ashes, in different proportions depending on the characteristics of the ashes and process conditions. The possibility of optimizing the conditions to achieve better trace element retention appears to be an attractive, economical option for reducing toxic emissions. This approach requires a good knowledge of fly ash characteristics and a thorough understanding of the capture mechanism involved in the retention. In this work the ability of two fly ashes, one produced in pulverized coal combustion and the other inmore » fluidized bed combustion, to retain arsenic and selenium compounds from the gas phase in coal combustion and coal gasification atmospheres was investigated. To explore the possible simultaneous retention of mercury, the influence of the unburned coal particle content was also evaluated. Retention capacities between 2 and 22 mg g{sup -1} were obtained under different conditions. The unburned coal particle content in the fly ash samples does not significantly modify retention capacities. 21 refs., 6 figs., 5 tabs.« less

  17. Selenium contamination and remediation at Stewart Lake Waterfowl Management Area and Ashley Creek, middle Green River basin, Utah

    USGS Publications Warehouse

    Rowland, Ryan C.; Stephens, Doyle W.; Waddell, Bruce; Naftz, David L.

    2003-01-01

    Selenium is an element required in trace amounts for human and animal health, but it can cause health problems for livestock, wildlife, and humans when ingested in higher-than-required concentrations. Incidences of mortality, birth defects, and reproductive failure in waterfowl were discovered at Kesterson National Wildlife Refuge, San Joaquin Valley, California, by the U.S. Fish and Wildlife Service (USFWS) in 1983 (Presser, 1994). These problems were attributed to elevated concentrations of selenium in irrigation drainage that discharged to the refuge. Because of concern about possible adverse effects from irrigation drainage on Department of the Interior (DOI) projects elsewhere in the United States, the DOI organized scientists from the U.S. Geological Survey (USGS), USFWS, Bureau of Reclamation (BOR), and Bureau of Indian Affairs (BIA) to form the National Irrigation Water-Quality Program (NIWQP). The objectives of the program are to investigate DOI-managed lands for potential contamination related to irrigation drainage, conduct studies to identify the problems, investigate methodologies to remediate those problems, and implement remediation plans (U.S. Department of the Interior, 2002).

  18. High cell density media for Escherichia coli are generally designed for aerobic cultivations – consequences for large-scale bioprocesses and shake flask cultures

    PubMed Central

    Soini, Jaakko; Ukkonen, Kaisa; Neubauer, Peter

    2008-01-01

    Background For the cultivation of Escherichia coli in bioreactors trace element solutions are generally designed for optimal growth under aerobic conditions. They do normally not contain selenium and nickel. Molybdenum is only contained in few of them. These elements are part of the formate hydrogen lyase (FHL) complex which is induced under anaerobic conditions. As it is generally known that oxygen limitation appears in shake flask cultures and locally in large-scale bioreactors, function of the FHL complex may influence the process behaviour. Formate has been described to accumulate in large-scale cultures and may have toxic effects on E. coli. Although the anaerobic metabolism of E. coli is well studied, reference data which estimate the impact of the FHL complex on bioprocesses of E. coli with oxygen limitation have so far not been published, but are important for a better process understanding. Results Two sets of fed-batch cultures with conditions triggering oxygen limitation and formate accumulation were performed. Permanent oxygen limitation which is typical for shake flask cultures was caused in a bioreactor by reduction of the agitation rate. Transient oxygen limitation, which has been described to eventually occur in the feed-zone of large-scale bioreactors, was mimicked in a two-compartment scale-down bioreactor consisting of a stirred tank reactor and a plug flow reactor (PFR) with continuous glucose feeding into the PFR. In both models formate accumulated up to about 20 mM in the culture medium without addition of selenium, molybdenum and nickel. By addition of these trace elements the formate accumulation decreased below the level observed in well-mixed laboratory-scale cultures. Interestingly, addition of the extra trace elements caused accumulation of large amounts of lactate and reduced biomass yield in the simulator with permanent oxygen limitation, but not in the scale-down two-compartment bioreactor. Conclusion The accumulation of formate in oxygen limited cultivations of E. coli can be fully prevented by addition of the trace elements selenium, nickel and molybdenum, necessary for the function of FHL complex. For large-scale cultivations, if glucose gradients are likely, the results from the two-compartment scale-down bioreactor indicate that the addition of the extra trace elements is beneficial. No negative effects on the biomass yield or on any other bioprocess parameters could be observed in cultures with the extra trace elements if the cells were repeatedly exposed to transient oxygen limitation. PMID:18687130

  19. Long-term organic selenium supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus).

    PubMed

    Takahashi, Leonardo Susumu; Biller-Takahashi, Jaqueline Dalbello; Mansano, Cleber Fernando Menegasso; Urbinati, Elisabeth Criscuolo; Gimbo, Rodrigo Yukihiro; Saita, Marcos Vinícius

    2017-01-01

    Selenium (Se) is an essential nutrient for antioxidant defenses in fish because of its role in preventing immunosuppression caused by oxidative stress. In this study it was demonstrated the relation between the oxidative stress and immune status after a long Se supplementation period, as a result of the evaluation of immunological, hematological and antioxidant responses, as well as growth performance of pacu fed diets supplemented with different concentrations of organic selenium (0, 0.3, 0.6, 0.9, and 1.8 mg Se-yeast/kg, but the final analyzed selenium concentrations were 0.72, 0.94, 1.15, 1.57 and 2.51 mg/kg, respectively) for 65 days. Dietary Se supplementation at 1.15 mg Se-yeast/kg (analyzed value) restored the production of antioxidant enzymes (glutathione peroxidase (GPx) and glutathione S-transferase (GST)), and consequently allowed the increased of some immunological parameters (leukocyte respiratory burst activity and lysozyme activity), hematological parameters (red blood cell count (RBC), hematocrit (HTC), mean corpuscular volume (MCV), and white blood cell count (WBC)). Se supplementation in pacu diets at 1.15 mg Se-yeast/kg for 65 days improved immune response and antioxidant defenses, suggesting that oxidative stress impairs immune system response to prevent excessive reactive oxygen species in cells and indicating the occurrence of a physiological trade-off between immune and antioxidant systems. Higher Se levels, such as 1.57 mg Se-yeast/kg increased the leukocyte respiratory burst activity, the WBC and thrombocyte counts, the RBC and HTC, and the GST and GPx enzymes. However, 2.51 mg Se-yeast/kg decreased the lysozyme levels, the WBC and thrombocyte counts, the RBC, HTC and MCV, and the GST and GPx enzymes. Those findings are important to future studies because showed the negative effect of oxidative stress on immunity, and may help to prevent any inhibition of the expected immune response after immunomodulators administration and vaccination. Also it was possible to meet the dietary selenium requirement of pacu, that was estimated to be 1.56 mg/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jinsong; Wang Huali; Yu Hanqing

    2007-10-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes upmore » and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels.« less

  1. Transformations of Heavy Metals and Plant Nutrients in Dredged Sediments as Affected by Oxidation Reduction Potential and pH. Volume 1. Literature Review

    DTIC Science & Technology

    1977-05-01

    895-896 (1974). 191. Fagerstrom, T., and Jernelov, A. "Formation of Methyl Mercury from Pure Mercuric Sulphide in Aerobic Organic Sediment." Water...was available. The toxic and nutrient elements included are lead, cadmium, mercury , arsenic, selenium, copper, zinc, manganese, iron, nitrogen...on the exchange of these materials between sediment and water. The toxic and nutrient elements included are lead, cadmium, mercury , ar- senic

  2. Gastric anti-ulcer and cytoprotective effect of selenium in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmar, N.S.; Tariq, M.; Ageel, A.M.

    1988-01-01

    Selenium, a trace element, in the form of sodium selenite has been studied for its ability to protect the gastric mucosa against the injuries caused by hypothermic restraint stress, aspirin, indomethacin, reserpine, dimaprit, and various other gastric mucosal-damaging (necrotizing) agents in rats. The results demonstrate that oral administration of sodium selenite produces a significant inhibition of the gastric mucosal damage induced by all the procedures used in this study. Selenium, in a nonantisecretory dose, produced a marked cytoprotective effect against all the necrotizing agents. The cytoprotective effect of selenium against the effects of 80% ethanol and 0.6 M HCl wasmore » significantly reversed by prior treatment with a dose of indomethacin that inhibits prostaglandin biosynthesis. These data indicate that sodium selenite inhibits the formation of these lesions by the mucosal generation of prostaglandins. The concentrations of nonprotein sulfhydryls (NP-SH) were significantly decreased in the gastric mucosa following the administration of necrotizing agents--80% ethanol and 0.6 M HCl. Treatment with sodium selenite, which significantly reduced the intensity of gastric lesions, did not replenish the reduced levels of gastric mucosal NP-SH, thus ruling out the mediation of its protective effect through sulfhydryls. The antisecretory effect of sodium selenite, which becomes evident only in the high dose of 20 mumol/kg, may be responsible for the inhibition of gastric lesions induced by aspirin, indomethacin, reserpine, and dimaprit. Our findings show that selenium possesses significant anti-ulcer and adaptive cytoprotective effects. However, further detailed studies are required to confirm these effects, to establish its mechanism(s) of action, and to determine its role in the prophylaxis and treatment of peptic ulcer disease.« less

  3. Trace elements in sera from patients with renal disease

    NASA Astrophysics Data System (ADS)

    Miura, Yoshinori; Nakai, Keiko; Sera, Kouichiro; Sato, Michirou

    1999-04-01

    In hemodialysis (HD) patients, an accumulation of trace elements such as aluminum, copper, silicon and vanadium has been reported. Aluminum-caused encephalopathy and aluminum-related bone diseases are important trace element-related complications. Using particle induced X-ray emission (PIXE) we determined concentrations of aluminum, silicon, copper, zinc, selenium and bromine in sera of 29 patients with HD, 14 nondialysis patients with renal disease (RD) and 27 normal controls. The concentration of serum silicon of the patients with HD was 107.4 ± 61.3 μmol/l, which is markedly higher than that of normal controls (48.3 ± 25.8 μmol/l, p < 0.0001). The serum concentrations of zinc and bromine in patients with HD were 11.9 ± 1.7 and 21.3 ± 3.0 μmol/l, respectively. Both were markedly lower than those of normal controls (15.6 ± 2.6, 69.2 ± 8.3 μmol/l, p < 0.0001). The concentrations of aluminium and bromine in the serum of patients with RD were 171.9 ± 64.3 and 81.9 ± 11.6 μmol/l, which were markedly higher than those of normal controls ( p < 0.0001, p < 0.001). No significant differences were observed in the concentration of copper and selenium among three groups.

  4. Effects of three types of trace element supplementation on the fertility of three commercial dairy herds.

    PubMed

    Black, D H; French, N P

    2004-05-22

    The effects on the fertility of three commercial dairy herds of three types of copper- and selenium-containing mineral supplements was investigated. As the cows on each farm were dried off they were allocated to one of three treatment groups, and treated with either subcutaneous injections of copper and selenium, or two matrix intraruminal trace element boluses, or two glass intraruminal trace element boluses. When the data from the 406 cows on the three farms were combined, there was a significant difference between the conception rates of the three groups (P < 0.001). The cows treated with the glass boluses conceived at a rate 1.8 times greater than those treated by injection (P < 0.001), and at a rate 1.5 times greater than those treated with matrix boluses (P = 0.002). These differences were associated with a significantly higher likelihood of service resulting in a conception in the group treated with glass boluses than in the group treated by injection (P = 0.004). After adjusting for time from calving, time from treatment, time of year and farm, there was a significant (P = 0.012) difference in glutathione peroxidase activities between the treatments, with the group treated by injection having a significantly lower activity than the groups treated with boluses.

  5. Respiration of arsenate and selenate by hyperthermophilic archaea.

    PubMed

    Huber, R; Sacher, M; Vollmann, A; Huber, H; Rose, D

    2000-10-01

    A novel, strictly anaerobic, hyperthermophilic, facultative organotrophic archaeon was isolated from a hot spring at Pisciarelli Solfatara, Naples, Italy. The rod-shaped cells grew chemolithoautotrophically with carbon dioxide as carbon source, hydrogen as electron donor and arsenate, thiosulfate or elemental sulfur as electron acceptor. H2S was formed from sulfur or thiosulfate, arsenite from arsenate. Organotrophically, the new isolate grew optimally in the presence of an inorganic electron acceptor like sulfur, selenate or arsenate. Cultures, grown on arsenate and thiosulfate or arsenate and L-cysteine, precipitated realgar (As2S2). During growth on selenate, elemental selenium was produced. The G+C content of the DNA was 58.3 mol%. Due to 16S rRNA gene sequence analysis combined with physiological and morphological criteria, the new isolate belongs to the Thermoproteales order. It represents a new species within the genus Pyrobaculum, the type species of which we name Pyrobaculum arsenaticum (type strain PZ6*, DSM 13514, ATCC 700994). Comparative studies with different Pyrobaculum-species showed, that Pyrobaculum aerophilum was also able to grow organotrophically under anaerobic culture conditions in the presence of arsenate, selenate and selenite. During growth on selenite, elemental selenium was formed as final product. In contrast to P. arsenaticum, P. aerophilum could use selenate or arsenate for lithoautotrophic growth with carbon dioxide and hydrogen.

  6. Determination of Chromium, Selenium, and Molybdenum in Infant Formula and Adult Nutritional Products by Inductively Coupled Plasma/Mass Spectrometry: Collaborative Study, Final Action 2011.19.

    PubMed

    Pacquette, Lawrence H; Thompson, Joseph J

    2015-01-01

    AOAC First Action Method 2011.19: Chromium, Selenium, and Molybdenum in Infant Formula and Adult Nutritional Products, was collaboratively studied. This method uses microwave digestion of samples with nitric acid, hydrogen peroxide, and internal standard followed by simultaneous detection of the elements by an inductively coupled plasma (ICP)/MS instrument equipped with a collision/reaction cell. During this collaborative study, nine laboratories from four different countries, using seven different models of ICP/MS instruments, analyzed blind duplicates of seven infant, pediatric, and adult nutritional formulas. One laboratory's set of data was rejected in its entirety. The method demonstrated acceptable repeatability and reproducibility and met the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) Standard Method Performance Requirements (SMPRs®) for almost all of the matrixes analyzed. The Cr, Mo, and Se SPIFAN requirement for repeatability was ≤5% RSD. The SMPR called for a reproducibility of ≤15% RSD for products with ultratrace element concentrations above the targeted LOQ of 20 μg/kg Cr/Mo and 10 μg/kg Se (as ready-to-feed). During this collaborative study, RSDr ranged from 1.0 to 7.0% and RSDR ranged from 2.5 to 13.4% across all three ultratrace elements.

  7. Aging and walnut-rich diet supplementation affects the expression of immediate-early genes in critical brain regions

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence indicates a direct link between age-associated changes in epigenetic mechanisms and onset of neurodegenerative diseases, and that these genomic modulations are directly affected by diet. Diets deficient in folate, choline and methionine, or the trace elements zinc and selenium, are...

  8. Effects of aging and walnut diet on DNA methylation and expression of immediate-early genes in critical brain regions

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence indicates a direct link between age-associated changes in epigenetic mechanisms and onset of neurodegenerative diseases, and that these genomic modulations are directly affected by the diet. Diets deficient in folate, choline and methionine, or the trace elements zinc and selenium,...

  9. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron

    USDA-ARS?s Scientific Manuscript database

    Salinization is one important factor contributing to land degradation, which affects agricultural production and environmental quality, especially in the West side of central California. When salinization is combined with a natural contamination of trace elements (i.e., Se and B) in arid and semi-ar...

  10. Selenium and tellurium nanomaterials

    NASA Astrophysics Data System (ADS)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  11. Minerals and Trace Elements in Human Breast Milk Are Associated with Guatemalan Infant Anthropometric Outcomes within the First 6 Months.

    PubMed

    Li, Chen; Solomons, Noel W; Scott, Marilyn E; Koski, Kristine G

    2016-10-01

    Breast milk is the recommended source of nutrients for infant growth, but its adequacy to meet infants' mineral and trace element needs is unknown. We used breast-milk mineral and trace element concentrations of Guatemalan mothers at 3 lactation stages to estimate total daily intakes and to determine whether intakes were associated with early infant growth. In this cross-sectional study, breast-milk samples were collected from Mam-Mayan mothers during transitional (5-17 d, n = 56), early (18-46 d, n = 75), and established (4-6 mo, n = 103) lactation; z scores for weight (WAZ), length (LAZ), and head circumference (HCAZ) were measured. Concentrations of 11 minerals (calcium, potassium, magnesium, sodium, copper, iron, manganese, rubidium, selenium, strontium, and zinc) were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). WHO equations were used to calculate the estimated energy requirement, which was divided by the energy density of breast milk to estimate daily milk volume, and this number was multiplied by breast-milk mineral concentrations to estimate intakes. Principal component analyses identified clusters of minerals; principal components (PCs) were used in regression analyses for anthropometric outcomes. Estimated breast-milk intakes during established lactation were insufficient to compensate for the lower milk sodium, copper, manganese, and zinc concentrations in male infants and the lower sodium, iron and manganese concentrations in female infants. Estimated intakes of calcium, magnesium, potassium, sodium, and selenium were below the Institute of Medicine Adequate Intake for both sexes at all 3 stages of lactation. In early lactation, multiple linear regressions showed that PC1 (calcium, magnesium, potassium, rubidium, and strontium intakes) was positively associated with WAZ, LAZ, and HCAZ. In established lactation, the same PC with sodium added was positively associated with all 3 anthropometric outcomes; a second PC (PC2: zinc, copper, and selenium intakes) was associated with WAZ and LAZ but not HCAZ. Breast milk may be inadequate in selected minerals and trace elements where higher estimated intakes were associated with greater infant growth. © 2016 American Society for Nutrition.

  12. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.

    PubMed

    Qu, Yang; Lian, Bin

    2013-05-01

    The aim of this work is to investigate biological leaching of rare earth elements (REEs) and radioactive elements from red mud, and to evaluate the radioactivity of the bioleached red mud used for construction materials. A filamentous, acid-producing fungi named RM-10, identified as Penicillium tricolor, is isolated from red mud. In our bioleaching experiments by using RM-10, a total concentration of 2% (w/v) red mud under one-step bioleaching process was generally found to give the maximum leaching ratios of the REEs and radioactive elements. However, the highest extraction yields are achieved under two-step bioleaching process at 10% (w/v) pulp density. At pulp densities of 2% and 5% (w/v), red mud processed under both one- and two-step bioleaching can meet the radioactivity regulations in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effects of heteroatom substitution in conjugated heterocyclic compounds on photovoltaic performance: from sulfur to tellurium.

    PubMed

    Park, Y S; Kale, T S; Nam, C-Y; Choi, D; Grubbs, R B

    2014-07-28

    We report a general strategy for fine-tuning the bandgap of donor-acceptor-donor based organic molecules by modulating the electron-donating ability of the donor moiety by changing the benzochalcogenophene donor groups from benzothiophenes to benzoselenophenes to benzotellurophenes. These molecules show red-shifts in absorption and external quantum efficiency maxima from sulfur to selenium to tellurium. In bulk heterojunction solar cell devices, the benzoselenophene derivative shows a power conversion efficiency as high as 5.8% with PC61BM as the electron acceptor.

  14. Trace elements and diabetes: Assessment of levels in tears and serum.

    PubMed

    Cancarini, A; Fostinelli, J; Napoli, L; Gilberti, M E; Apostoli, P; Semeraro, F

    2017-01-01

    Tear film is critical for the well-being and homeostasis of the ocular surface. Although the composition of the tear film is well known, the composition of metallic elements have yet to be analysed. Despite trace elements metabolism has been reported to play a role in the pathogenesis of diabetes mellitus, a metabolic disease that affects several aspects of homeostasis, little is known in the literature regarding concentration and possible variation of metallic elements in tear film. We studied the concentrations of several essential and non-essential metallic elements in the tear fluid and serum of patients with type II diabetes mellitus and a group of non-diabetic controls. Serum and tear fluid were collected from 97 patients: 47 type II diabetic patients and 50 non-diabetic controls. Regarding tear film, there were statistically significant differences in Zinc, Chrome, Cobalt, Manganese, Barium, and Lead between groups; the values of all metallic elements were found to be statistically significant higher in patients with mellitus type II diabetes. Regarding serum values there was a statistically significant difference in Chrome, Cobalt, and Selenium values; the concentrations of Chrome and Cobalt were higher in the control group, while Selenium concentration was higher in diabetic patients. In patients with type II diabetes, metal elements with higher concentrations in tears compared to serum were: Lead, Barium, Manganese, Cobalt, and Chrome. In the control group, the metal elements with the highest concentration in tear film compared to serum were Chrome, Manganese, Barium, and Lead. In this study, we attempted to evaluate the possible effect of a disease, such as diabetes, on the metabolism of metallic elements. Although our evidence was very interesting, it is probably limited in its accuracy due to the fact that individuals in the control group harboured ocular pathologies. This work lays the foundation for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Alterations of serum macro-minerals and trace elements are associated with major depressive disorder: a case-control study.

    PubMed

    Islam, Md Rabiul; Islam, Md Reazul; Shalahuddin Qusar, M M A; Islam, Mohammad Safiqul; Kabir, Md Humayun; Mustafizur Rahman, G K M; Islam, Md Saiful; Hasnat, Abul

    2018-04-10

    Major depressive disorder (MDD) is a mixed disorder with the highly irregular course, inconsistent response to treatment and has no well-known mechanism for the pathophysiology. Major causes of depression are genetic, neurobiological, and environmental. However, over the past few years, altered serum levels of macro-minerals (MM) and trace elements (TE) have been recognized as major causative factors to the pathogenesis of many mental disorders. The purpose of this study was to determine the serum levels of MM (calcium and magnesium) and TE (copper, iron, manganese, selenium, and zinc) in MDD patients and find out their associations with depression risk. This prospective case-control study recruited 247 patients and 248 healthy volunteers matched by age and sex. The serum levels of MM and TE were analyzed by atomic absorption spectroscopy (AAS). Statistical analysis was performed with independent sample t-tests and Pearson's correlation test. We found significantly decreased concentrations of calcium and magnesium, iron, manganese, selenium, and zinc in MDD patients compared with control subjects (p < 0.05). But the concentration of copper was significantly increased in the patients than control subjects (p < 0.05). Data obtained from different inter-element relations in MDD patients and control subjects strongly suggest that there is a disturbance in the element homeostasis. Our study suggests that altered serum concentrations of MM and TE are major contributing factors for the pathogenesis of MDD. Alterations of these elements in serum levels of MDD patients arise independently and they may provide a prognostic tool for the assessment of depression risk.

  16. Association between trace elements in the environment and stroke risk: The reasons for geographic and racial differences in stroke (REGARDS) study.

    PubMed

    Merrill, Peter D; Ampah, Steve B; He, Ka; Rembert, Nicole J; Brockman, John; Kleindorfer, Dawn; McClure, Leslie A

    2017-07-01

    The disparities in stroke mortality between blacks and whites, as well as the increased stroke mortality in the "stroke belt" have long been noted. The reasons for these disparities have yet to be fully explained. The association between trace element status and cardiovascular diseases, including stroke, has been suggested as a possible contributor to the disparities in stroke mortality but has not been fully explored. The purpose of this study is to investigate distributions of four trace elements (arsenic, mercury, magnesium, and selenium) in the environment in relation to stroke risk. The study population (N=27,770) is drawn from the Reasons for Geographic and Racial Disparities in Stroke (REGARDS) cohort. Environmental distribution of each trace element was determined using data from the United States Geological Survey (USGS) and was categorized in quartiles. A proportional hazards model, adjusted for demographic data and stroke risk factors, was used to examine the association of interest. The results showed that higher selenium levels in the environment were associated with increased stroke risk, and the hazard ratio for the 4th quartile compared to the 1st quartile was 1.33 (95% CI: 1.09, 1.62). However, there was no statistically significant relationship between environmental arsenic, mercury or magnesium and the risk of stroke. Because of dietary and non-dietary exposure as well as bioavailability, further research using biomarkers is warranted to examine the association between these trace elements and the risk of stroke. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Biogeochemical sampling in the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ebens, Richard J.; Shacklette, Hansford T.; Worl, Ronald G.

    1983-01-01

    A biogeochemical reconnaissance of the Mahd adh Dhahab district, Kingdom of Saudi Arabia, confirms the ability of deep-rooted Acacia trees to reflect bedrock concentrations of some trace elements. The analytical values for lead, zinc, selenium, and cadmium in ash of tree branches are significantly higher in samples from areas of known mineralization (13 sites) than in samples from areas of no known mineralization (12 sites). Geometric mean concentrations of these elements in the two areas (mineralized; nonmineralized), quoted as parts per million in ash, are lead (122; 28), zinc (713; 443), selenium (1.2; 0.6), and cadmium (1.4; 0.5). The range of molybdenum values in ash from the two areas is similar, but a cluster of four sites in an area classified as nonmineralized corresponds to an area where the U.S. Geological Survey reported anomalous molybdenum values in rock in 1965. Results for other elements were either equivocal (mercury, tellurium, silver) or showed no correspondence to the two areas. Mean values for barium, manganese, potassium, and sodium are significantly higher in areas of no known mineralization, but we conclude that this reflects a difference in country rock major-element chemistry rather than the effect of ore-forming processes. The pattern of trace-metal values in Acacia ash is present whether the sampled tree grows on bedrock, on talus, or on residual or modern alluvium. This fact suggests that the trace-element chemistry of the trees reflects bedrock geochemistry and implies that Acacia biogeochemistry could be applied as a prospecting tool in areas where bedrock is not well exposed.

  18. Potential Moderating Effects of Selenium on Mercury Uptake and Selenium:Mercury Molar Ratios in Fish From Oak Ridge and Savannah River Site - 12086

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna; Gochfeld, Michael; Donio, Mark

    2012-07-01

    Mercury contamination is an important remediation issue at the U.S. Department of Energy's (DOE) Oak Ridge Reservation and to a lesser extent at other DOE sites because of the hazard it presents, potential consequences to humans and eco-receptors, and completed pathways, to offsite receptors. Recent work has emphasized that selenium might ameliorate the toxicity of mercury, and we examine the selenium:mercury (Se:Hg) molar ratios in fish from Oak Ridge, and compare them to Se:Hg molar ratios in fish from the Savannah River. Selenium/mercury molar ratios varied considerably among and within fish species. There was considerable variation in the molar ratiosmore » for individual fish (as opposed to mean ratios by species) for freshwater fish from both sites. The inter-individual variation in molar ratios indicates that such that the molar ratios of mean Se and Hg concentrations may not be representative. Even for fish species with relatively low mercury levels, some individual fish have molar ratios less than unity, the value sometime thought to be protective. Selenium levels varied narrowly regardless of fish size, consistent with homeostatic regulation of this essential trace element. The data indicate that considerable attention will need to be directed toward variations and variances, as well as the mechanisms of the interaction of selenium and mercury, before risk assessment and risk management policies can use this information to manage mercury pollution and risk. Even so, if there are high levels of selenium in the fish from Poplar Creek on Oak Ridge, then the potential exists for some amelioration of adverse health effects, on the fish themselves, predators that eat them, and people who consume them. This work will aid DOE because it will allow managers and scientists to understand another aspect that affects fate and transport of mercury, as well as the potential effects of methylmercury in fish for human and ecological receptors. The variability within fish species, however, suggests that the relative Se:Hg molar ratios in fish are not stable enough to be used in risk assessment at this time. Nor is it known how much excess selenium is required to confer any degree of protectiveness. That is, in conducting risk assessments, it is not possible to determine the spread of ratios, which would be needed for probabilistic risk assessment. Significantly more fish samples per species are required to begin to generate data that would allow it use in risk assessment. Adding Se:Hg molar ratios seems to complicate risk assessment for the potential adverse effects of mercury exposure, and using mercury levels at this time remains the most viable option. (authors)« less

  19. Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: Manganese and selenium interest in Algerian participants with dysthyroidism.

    PubMed

    Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed

    2015-10-01

    The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of real target therapy in thyroid dysfunction. The publisher would like to apologise for any inconvenience caused. [corrected].

  20. Low concentrations of selenium and zinc in nails are associated with childhood asthma.

    PubMed

    Carneiro, Maria Fernanda Hornos; Rhoden, Claudia Ramos; Amantéa, Sérgio Luis; Barbosa, Fernando

    2011-12-01

    The purpose of this study was to investigate possible associations between Zn, Se, Cu, Mn, and Co concentrations in nails and asthma in a young population from a Southern Brazil city. Additionally, correlations between these chemical elements among asthmatic and non-asthmatic children were evaluated. Before nail collection (n = 165), children were asked to complete the International Study of Asthma and Allergies in Childhood questionnaire. The concentrations of trace elements were determined by inductively coupled plasma mass spectrometry. The chi-square test was used to evaluate the association between element concentrations in nails and the respiratory outcome. To evaluate correlations between the elements, we used the Spearman correlation test. For all tests, the significance level was set at 95% (P ≤ 0.05). Children included in the highest quartile of nail Se and Zn concentration presented a fivefold decrease in the prevalence ratio of asthma while children in the lowest Se range presented an almost 2.5-fold increase in the asthma prevalence ratio. There were weak to strong correlations between Cu vs. Zn, Cu vs. Co, Cu vs. Se, Zn vs. Se, Zn vs. Mn, and Mn vs. Co in both asthmatic and non-asthmatic children. Interestingly, non-asthmatics also presented correlations between Co vs. Se and Zn. Taken together, our results clearly demonstrated an association between concentrations of selenium and zinc and childhood asthma and the usefulness of nail as a noninvasive matrix to detect minerals imbalance in asthma patients.

Top