Sample records for elementary building block

  1. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  2. Electron-induced origins of prebiotic building blocks of sugars: mechanism of self-reactions of a methanol anion dimer

    NASA Astrophysics Data System (ADS)

    Karsili, Tolga N. V.; Fennimore, Mark A.; Matsika, Spiridoula

    The elementary synthesis of prebiotic molecules has attracted vast attention in recent years. Due to their rich surface chemistry and lack of suitable atmosphere, comets represent an important host for such synthesis, especially since they are routinely irradiated with short wavelength electromagnetic radiation and energetic cosmological electrons. Using high-level electronic structure theory, we present the details of the reactivity associated with the electron-impact induced prebiotic synthesis of ethylene glycol (a carbohydrate building block) from elementary methanol. The results suggest that the experimentally observed intermediates and fragment products can be viably formed by both neutral excited-state chemistry and by dissociative electron attachment - highlighting the importance of a theoretical mapping of the relevant potential energy surfaces that ultimately act as an important guide to the experimental results.

  3. Keeping Up in School? Identifying Learning Problems

    MedlinePlus

    ... español Send us your comments Reading, writing, and math are the building blocks of learning. Mastering these ... and can create issues with reading, writing, and math. “Typically, in the first few years of elementary ...

  4. Building Blocks of Psychology: on Remaking the Unkept Promises of Early Schools.

    PubMed

    Gozli, Davood G; Deng, Wei Sophia

    2018-03-01

    The appeal and popularity of "building blocks", i.e., simple and dissociable elements of behavior and experience, persists in psychological research. We begin our assessment of this research strategy with an historical review of structuralism (as espoused by E. B. Titchener) and behaviorism (espoused by J. B. Watson and B. F. Skinner), two movements that held the assumption in their attempts to provide a systematic and unified discipline. We point out the ways in which the elementism of the two schools selected, framed, and excluded topics of study. After the historical review, we turn to contemporary literature and highlight the persistence of research into building blocks and the associated framing and exclusions in psychological research. The assumption that complex categories of human psychology can be understood in terms of their elementary components and simplest forms seems indefensible. In specific cases, therefore, reliance on the assumption requires justification. Finally, we review alternative strategies that bypass the commitment to building blocks.

  5. Community Colleges for the Students They Actually Have

    ERIC Educational Resources Information Center

    Wyner, Josh

    2012-01-01

    In the United States, people think of elementary and secondary education as fundamentally different from higher education. The first two levels are where students are expected to learn the building blocks for lifelong learning, while college is meant to confer higher-order thinking and more-specialized skills. How students are treated flows…

  6. A Comparison of the Effects of Lego TC Logo and Problem Solving Software on Elementary Students' Problem Solving Skills.

    ERIC Educational Resources Information Center

    Palumbo, Debra L; Palumbo, David B.

    1993-01-01

    Computer-based problem-solving software exposure was compared to Lego TC LOGO instruction. Thirty fifth graders received either Lego LOGO instruction, which couples Lego building block activities with LOGO computer programming, or instruction with various problem-solving computer programs. Although both groups showed significant progress, the Lego…

  7. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  8. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  9. Building Blocks for a Strong Preschool to Early Elementary Education System. Testimony. CT-372

    ERIC Educational Resources Information Center

    Karoly, Lynn A.

    2012-01-01

    This testimony was presented before the Committe of the Whole Council of the District of Columbia on February 16, 2012. Experts in child development have long known that the earliest years of a child's life are a critical period of development across a range of domains: physical, socio-emotional, behavioral, and cognitive (Shonkoff and Phillips,…

  10. Are Patterns Important? An Investigation of the Relationships between Proficiencies in Patterns, Computation, Executive Functioning, and Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Swee Fong; Bull, Rebecca; Pe, Madeline Lee; Ho, Ringo Ho Moon

    2011-01-01

    Although mathematical pattern tasks are often found in elementary school curricula and are deemed a building block for algebra, a recent report (National Mathematics Advisory Panel, 2008) suggests the resources devoted to its teaching and assessment need to be rebalanced. We examined whether children's developing proficiency in solving algebraic…

  11. Exploring the evolution of protein function in Archaea.

    PubMed

    Goncearenco, Alexander; Berezovsky, Igor N

    2012-05-30

    Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function.

  12. Shape-shifting colloids via stimulated dewetting

    PubMed Central

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-01-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418

  13. Shape-shifting colloids via stimulated dewetting

    NASA Astrophysics Data System (ADS)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  14. [Network clusters of symptoms as elementary syndromes of psychopathology: implications for clinical practice].

    PubMed

    Goekoop, R; Goekoop, J G

    2016-01-01

    In a recent publication we reported the existence of around 11 (to 15) 'elementary syndromes' that may combine in various ways, rather like 'building blocks', to explain the wide range of psychiatric symptoms. 'Bridge symptoms' seem to be responsible both for combining large sets of symptoms into elementary syndromes and for combining the various elementary syndromes to form one globally connected network structure. To discuss the implication of these findings for clinical practice. We performed a network analysis of symptom scores. Elementary syndromes provide a massive simplification of the description of psychiatric disease. Instead of the more than 300 categories in DSM-5, we now need to consider only a handful of elementary syndromes and personality domains. This modular representation of psychiatric illnesses allows us to make a complete, systematic and efficient assessment of patients and a systematic review of treatment options. Clinicians, patients, managerial staff and insurance companies can verify whether symptom reduction is taking place in the most important domains of psychopathology. Unlike classic multidimensional methods of disease description, network models of psychopathology can be used to explain comorbidity patterns, predict the clinical course of psychopathology and to designate primary targets for therapeutic interventions. A network view on psychopathology could significantly improve everyday clinical practice.

  15. A semi-analytical method to evaluate the dielectric response of a tokamak plasma accounting for drift orbit effects

    NASA Astrophysics Data System (ADS)

    Van Eester, Dirk

    2005-03-01

    A semi-analytical method is proposed to evaluate the dielectric response of a plasma to electromagnetic waves in the ion cyclotron domain of frequencies in a D-shaped but axisymmetric toroidal geometry. The actual drift orbit of the particles is accounted for. The method hinges on subdividing the orbit into elementary segments in which the integrations can be performed analytically or by tabulation, and it relies on the local book-keeping of the relation between the toroidal angular momentum and the poloidal flux function. Depending on which variables are chosen, the method allows computation of elementary building blocks for either the wave or the Fokker-Planck equation, but the accent is mainly on the latter. Two types of tangent resonance are distinguished.

  16. Incorporation of spatial interactions in location networks to identify critical geo-referenced routes for assessing disease control measures on a large-scale campus.

    PubMed

    Wen, Tzai-Hung; Chin, Wei Chien Benny

    2015-04-14

    Respiratory diseases mainly spread through interpersonal contact. Class suspension is the most direct strategy to prevent the spread of disease through elementary or secondary schools by blocking the contact network. However, as university students usually attend courses in different buildings, the daily contact patterns on a university campus are complicated, and once disease clusters have occurred, suspending classes is far from an efficient strategy to control disease spread. The purpose of this study is to propose a methodological framework for generating campus location networks from a routine administration database, analyzing the community structure of the network, and identifying the critical links and nodes for blocking respiratory disease transmission. The data comes from the student enrollment records of a major comprehensive university in Taiwan. We combined the social network analysis and spatial interaction model to establish a geo-referenced community structure among the classroom buildings. We also identified the critical links among the communities that were acting as contact bridges and explored the changes in the location network after the sequential removal of the high-risk buildings. Instead of conducting a questionnaire survey, the study established a standard procedure for constructing a location network on a large-scale campus from a routine curriculum database. We also present how a location network structure at a campus could function to target the high-risk buildings as the bridges connecting communities for blocking disease transmission.

  17. Modeling discrete combinatorial systems as alphabetic bipartite networks: theory and applications.

    PubMed

    Choudhury, Monojit; Ganguly, Niloy; Maiti, Abyayananda; Mukherjee, Animesh; Brusch, Lutz; Deutsch, Andreas; Peruani, Fernando

    2010-03-01

    Genes and human languages are discrete combinatorial systems (DCSs), in which the basic building blocks are finite sets of elementary units: nucleotides or codons in a DNA sequence, and letters or words in a language. Different combinations of these finite units give rise to potentially infinite numbers of genes or sentences. This type of DCSs can be represented as an alphabetic bipartite network (ABN) where there are two kinds of nodes, one type represents the elementary units while the other type represents their combinations. Here, we extend and generalize recent analytical findings for ABNs derived in [Peruani, Europhys. Lett. 79, 28001 (2007)] and empirically investigate two real world systems in terms of ABNs, the codon gene and the phoneme-language network. The one-mode projections onto the elementary basic units are also studied theoretically as well as in real world ABNs. We propose the use of ABNs as a means for inferring the mechanisms underlying the growth of real world DCSs.

  18. Shape-tailored polymer colloids on the road to become structural motifs for hierarchically organized materials.

    PubMed

    Plüisch, Claudia Simone; Wittemann, Alexander

    2013-12-01

    Anisometric polymer colloids are likely to behave differently when compared with centrosymmetric particles. Their study may not only shine new light on the organization of matter; they may also serve as building units with specific symmetries and complexity to build new materials from them. Polymer colloids of well-defined complex geometries can be obtained by packing a limited number of spherical polymer particles into clusters with defined configurations. Such supracolloidal architectures can be fabricated at larger scales using narrowly dispersed emulsion droplets as templates. Assemblies built from at least two different types of particles as elementary building units open perspectives in selective targeting of colloids with specific properties, aiming for mesoscale building blocks with tailor-made morphologies and multifunctionality. Polymer colloids with defined geometries are also ideal to study shape-dependent properties such as the diffusion of complex particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. MOEMs devices for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Liotard, Arnaud; Lanzoni, Patrick; ElHadi, Kacem; Waldis, Severin; Noell, Wilfried; de Rooij, Nico; Conedera, Veronique; Fabre, Norbert; Muratet, Sylvaine; Camon, Henri

    2017-11-01

    Based on the micro-electronics fabrication process, Micro-Opto-Electro-Mechanical Systems (MOEMS) are under study in order to be integrated in next-generation astronomical instruments for ground-based and space telescopes. Their main advantages are their compactness, scalability, specific task customization using elementary building blocks, and remote control. At Laboratoire d'Astrophysique de Marseille, we are engaged since several years in the design, realization and characterization of programmable slit masks for multi-object spectroscopy and micro-deformable mirrors for wavefront correction. First prototypes have been developed and show results matching with the requirements.

  20. MOEMs, key optical components for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Dohlen, Kjetil; Burgarella, Denis; Ferrari, Marc; Buat, Veronique

    2017-11-01

    Based on the micro-electronics fabrication process, MicroOpto-Electro-Mechanical Systems (MOEMS) are under study, in order to be integrated in next-generation astronomical instruments and telescopes, especially for space missions. The main advantages of micro-optical components are their compactness, scalability, specific task customization using elementary building blocks, and they allows remote control. As these systems are easily replicable, the price of the components is decreasing dramatically when their number is increasing. The two major applications of MOEMS are Multi-Object Spectroscopy masks and Deformable Mirror systems.

  1. Beyond standard model calculations with Sherpa

    DOE PAGES

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; ...

    2015-03-24

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  2. Beyond standard model calculations with Sherpa.

    PubMed

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  3. Dissipation, Voltage Profile and Levy Dragon in a Special Ladder Network

    ERIC Educational Resources Information Center

    Ucak, C.

    2009-01-01

    A ladder network constructed by an elementary two-terminal network consisting of a parallel resistor-inductor block in series with a parallel resistor-capacitor block sometimes is said to have a non-dispersive dissipative response. This special ladder network is created iteratively by replacing the elementary two-terminal network in place of the…

  4. A model for evaluating the environmental benefits of elementary school facilities.

    PubMed

    Ji, Changyoon; Hong, Taehoon; Jeong, Kwangbok; Leigh, Seung-Bok

    2014-01-01

    In this study, a model that is capable of evaluating the environmental benefits of a new elementary school facility was developed. The model is composed of three steps: (i) retrieval of elementary school facilities having similar characteristics as the new elementary school facility using case-based reasoning; (ii) creation of energy consumption and material data for the benchmark elementary school facility using the retrieved similar elementary school facilities; and (iii) evaluation of the environmental benefits of the new elementary school facility by assessing and comparing the environmental impact of the new and created benchmark elementary school facility using life cycle assessment. The developed model can present the environmental benefits of a new elementary school facility in terms of monetary values using Environmental Priority Strategy 2000, a damage-oriented life cycle impact assessment method. The developed model can be used for the following: (i) as criteria for a green-building rating system; (ii) as criteria for setting the support plan and size, such as the government's incentives for promoting green-building projects; and (iii) as criteria for determining the feasibility of green building projects in key business sectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. MINIMUM AREAS FOR ELEMENTARY SCHOOL BUILDING FACILITIES.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Public Instruction, Harrisburg.

    MINIMUM AREA SPACE REQUIREMENTS IN SQUARE FOOTAGE FOR ELEMENTARY SCHOOL BUILDING FACILITIES ARE PRESENTED, INCLUDING FACILITIES FOR INSTRUCTIONAL USE, GENERAL USE, AND SERVICE USE. LIBRARY, CAFETERIA, KITCHEN, STORAGE, AND MULTIPURPOSE ROOMS SHOULD BE SIZED FOR THE PROJECTED ENROLLMENT OF THE BUILDING IN ACCORDANCE WITH THE PROJECTION UNDER THE…

  6. Splitting nodes and linking channels: A method for assembling biocircuits from stochastic elementary units

    NASA Astrophysics Data System (ADS)

    Ferwerda, Cameron; Lipan, Ovidiu

    2016-11-01

    Akin to electric circuits, we construct biocircuits that are manipulated by cutting and assembling channels through which stochastic information flows. This diagrammatic manipulation allows us to create a method which constructs networks by joining building blocks selected so that (a) they cover only basic processes; (b) it is scalable to large networks; (c) the mean and variance-covariance from the Pauli master equation form a closed system; and (d) given the initial probability distribution, no special boundary conditions are necessary to solve the master equation. The method aims to help with both designing new synthetic signaling pathways and quantifying naturally existing regulatory networks.

  7. Block copolymer systems: from single chain to self-assembled nanostructures.

    PubMed

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  8. Sustaining Knowledge Building as a Principle-Based Innovation at an Elementary School

    ERIC Educational Resources Information Center

    Zhang, Jianwei; Hong, Huang-Yao; Scardamalia, Marlene; Teo, Chew Lee; Morley, Elizabeth A.

    2011-01-01

    This study explores Knowledge Building as a principle-based innovation at an elementary school and makes a case for a principle- versus procedure-based approach to educational innovation, supported by new knowledge media. Thirty-nine Knowledge Building initiatives, each focused on a curriculum theme and facilitated by nine teachers over eight…

  9. The Relationship between Preschool Block Play and Reading and Maths Abilities in Early Elementary School: A Longitudinal Study of Children with and without Disabilities

    ERIC Educational Resources Information Center

    Hanline, Mary Frances; Milton, Sande; Phelps, Pamela C.

    2010-01-01

    The purpose of this study was to explore the predictive relationship between the level of symbolic representation in block constructions of preschoolers and reading and mathematics abilities and rate of growth in early elementary school for children with and without disabilities. Fifty-one children participated, 22 of whom had identified…

  10. Building blocks of topological quantum chemistry: Elementary band representations

    NASA Astrophysics Data System (ADS)

    Cano, Jennifer; Bradlyn, Barry; Wang, Zhijun; Elcoro, L.; Vergniory, M. G.; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time reversal in his theory of "elementary" band representations. In a recent paper [Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268] we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wave functions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.

  11. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    ERIC Educational Resources Information Center

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-01-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers' developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The…

  12. Inventory and Evaluation for Fort Riley Elementary School ( 104) and Custer Hill Elementary School ( 6344), Fort Riley, Kansas

    DTIC Science & Technology

    2017-05-15

    ERDC/CERL TR-17-14 ii Abstract This report documents an architectural survey and evaluation of two for- mer school buildings at Fort Riley, Kansas...2 1.6 Buildings and structures surveyed ...the broader range of building types surveyed under the first part of this project. 1.3.1 Site visits for architectural inventory and research The

  13. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  14. Social Studies IS Being Taught in the Elementary School: A Contrarian View

    ERIC Educational Resources Information Center

    Holloway, Jennifer Evers; Chiodo, John J.

    2009-01-01

    This study questions the belief that little or no social studies is being taught in regular elementary education classrooms. That belief is based on time studies and a body of research that looks at curriculum and teacher interviews and concludes that the social studies time block has been decreased in elementary classrooms, therefore little or no…

  15. Knowledge-Building Activity Structures in Japanese Elementary Science Pedagogy

    ERIC Educational Resources Information Center

    Oshima, Jun; Oshima, Ritsuko; Murayama, Isao; Inagaki, Shigenori; Takenaka, Makiko; Yamamoto, Tomokazu; Yamaguchi, Etsuji; Nakayama, Hayashi

    2006-01-01

    The purpose of this study is to refine Japanese elementary science activity structures by using a CSCL approach to transform the classroom into a knowledge-building community. We report design studies on two science lessons in two consecutive years and describe the progressive refinement of the activity structures. Through comparisons of student…

  16. Elementary School Counselors' Perceptions of Reality Play Counseling in Students' Relationship Building and Problem-Solving Skills

    ERIC Educational Resources Information Center

    Davis, Eric S.; Clark, Mary Ann

    2012-01-01

    In this qualitative study, eight school counselors participated in a series of reality play counseling trainings introducing techniques appropriate for counseling upper-grade elementary school students to enhance positive relationship building and problem solving skills. Participants were interviewed and their transcripts were analyzed using…

  17. Cognitive Development Assignment: Building Bridges between Chinese-Americans and Elementary School Classrooms.

    ERIC Educational Resources Information Center

    Schirmer, John

    Elementary schools are ideal places to build the bridges between Chinese-Americans and the larger society. Studying the history of Chinese-Americans, examining their many contributions to the United States, and studying the contemporary Chinese-American population are good places to start. There are many books available to help students understand…

  18. Sustainable School Improvement: Suburban Elementary Principals' Capacity Building

    ERIC Educational Resources Information Center

    Clark, Alison J.

    2017-01-01

    The increase of intense pressures to ensure long-term education reforms have created a challenge for school leaders as they direct and nurture the abilities of others. The purpose of this research was to understand and describe suburban elementary principals' practices and perceptions as change leaders related to capacity building through the…

  19. A grand unified model for liganded gold clusters

    NASA Astrophysics Data System (ADS)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  20. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  1. Unusual square roots in the ghost-free theory of massive gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Smirnov, Fedor

    2017-06-01

    A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.

  2. To Block-Schedule or Not?

    ERIC Educational Resources Information Center

    Mowen, Gregg G.; Mowen, Carol

    2004-01-01

    In this article, the authors discuss the advantages of block scheduling and how it can be an effective educational tool when faced with educational challenges. Block schedules can ease the transition from the homelike atmosphere of the elementary school to the departmentalized environment of the high school by reducing the need for constant class…

  3. The Role of Model Building in Problem Solving and Conceptual Change

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Jonassen, David; Teo, Timothy

    2011-01-01

    This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…

  4. Frank F. Liestman Elementary School of Alief Independent School District: Design Development Presentation.

    ERIC Educational Resources Information Center

    1977

    This publication is the design development presentation for an energy-conserving elementary school building proposed for Alief, Texas. Some of the energy conservation features presented in this proposal include: (1) wind powered emergency electrical system; (2) complete insulation resulting in a building with an over-all U factor of .04; (3) air…

  5. Sweet Grass Elementary School: A Study in Energy Conservation. Energy Conservation: School Design.

    ERIC Educational Resources Information Center

    Edmonton Public Schools (Alberta).

    The results of building a new school in Edmonton (Alberta) in accordance with energy efficient principles are described in this report, the third and last in a series describing three projects utilizing different approaches to energy conservation. The Sweet Grass Elementary School project consisted in designing, building, and monitoring an energy…

  6. Promoting Elementary Students' Epistemology of Science through Computer-Supported Knowledge-Building Discourse and Epistemic Reflection

    ERIC Educational Resources Information Center

    Lin, Feng; Chan, Carol K. K.

    2018-01-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…

  7. SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…

  8. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    NASA Astrophysics Data System (ADS)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  9. RX for Writer's Block.

    ERIC Educational Resources Information Center

    Tompkins, Gail E.; Camp, Donna J.

    1988-01-01

    Describes four prewriting techniques that elementary and middle grade students can use to gather and organize ideas for writing, and by so doing, cure writer's block. Techniques discussed are: (1) brainstorming; (2) clustering; (3) freewriting; and (4) cubing.

  10. Digital Alchemy for Materials Design: Colloids and Beyond

    NASA Astrophysics Data System (ADS)

    van Anders, Greg; Klotsa, Daphne; Karas, Andrew; Dodd, Paul; Glotzer, Sharon

    Starting with the early alchemists, a holy grail of science has been to make desired materials by manipulating basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that connecting building-block attributes to bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways. We show how to exploit the malleability of colloidal nanoparticle ``elements'' to quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term ``digital alchemy''. We use this framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-assembly, through a set of novel thermodynamic response functions. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature and can be applied to other types of matter.

  11. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    PubMed

    Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M

    2011-10-01

    Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.

  12. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations.

    PubMed

    Zhang, Haiyang; Tan, Tianwei; Hetényi, Csaba; Lv, Yongqin; van der Spoel, David

    2014-04-03

    Dimerization of cyclodextrin (CD) molecules is an elementary step in the construction of CD-based nanostructured materials. Cooperative binding of CD cavities to guest molecules facilitates the dimerization process and, consequently, the overall stability and assembly of CD nanostructures. In the present study, all three dimerization modes (head-to-head, head-to-tail, and tail-to-tail) of β-CD molecules and their binding to three isoflavone drug analogues (puerarin, daidzin, and daidzein) were investigated in explicit water surrounding using molecular dynamics simulations. Total and individual contributions from the binding partners and solvent environment to the thermodynamics of these binding reactions are quantified in detail using free energy calculations. Cooperative drug binding to two CD cavities gives an enhanced binding strength for daidzin and daidzein, whereas for puerarin no obvious enhancement is observed. Head-to-head dimerization yields the most stable complexes for inclusion of the tested isoflavones (templates) and may be a promising building block for construction of template-stabilized CD nanostructures. Compared to the case of CD monomers, the desolvation of CD dimers and entropy changes upon complexation prove to be influential factors of cooperative binding. Our results shed light on key points of the design of CD-based supramolecular assemblies. We also show that structure-based calculation of binding thermodynamics can quantify stabilization caused by cooperative effects in building blocks of nanostructured materials.

  13. Exploring Organizational Evaluation Capacity and Evaluation Capacity Building: A Delphi Study of Taiwanese Elementary and Junior High Schools

    ERIC Educational Resources Information Center

    Cheng, Shu-Huei; King, Jean A.

    2017-01-01

    Researchers have conducted numerous empirical studies on evaluation capacity (EC) and evaluation capacity building (ECB) in Western cultural settings. However, little is known about these practices in non-Western contexts. To that end, this study identified the major dimensions of EC and feasible ECB approaches in Taiwanese elementary and junior…

  14. Building Content Knowledge in Elementary English Language Arts: How a Shift in Curriculum Affects Teacher Perception of Reading

    ERIC Educational Resources Information Center

    Ellis, Raquel

    2017-01-01

    Desert Elementary is a suburban Phoenix K-5 school. The school has undergone a significant change in its approach to reading instruction due to the Common Core State Standards (CCSS) instructional shift of building knowledge through content rich nonfiction. Teachers implemented this shift in their classrooms through a 16-month professional…

  15. An Elementary School with a Global Perspective: The Building as a Teaching Tool

    ERIC Educational Resources Information Center

    O'Donnell, Sean; Cuthbert, Marjorie; Cronin, Abbie; Urbieta, Melissa Nosal

    2011-01-01

    Just 19 months after the start of design, Stoddert Elementary School's modernized and expanded campus in northwest Washington, DC reopened, welcoming back the school and its community. Featuring spaces that had been missing since the school was founded in 1932, such as a gym, cafeteria, and library/media center and up-to-date building systems and…

  16. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-07

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.

  17. A grand unified model for liganded gold clusters

    PubMed Central

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-01-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours' (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design. PMID:27910848

  18. Professional Vision: Elementary School Principals' Perceptions of Mathematics Instruction

    ERIC Educational Resources Information Center

    Schoen, Robert C.

    2010-01-01

    This study explored 78 elementary school principals' perceptions of classroom mathematics instruction in an effort to build understanding of the professional vision (Goodwin, 1994) of elementary school principals as it relates to mathematics instruction. This study also tested the theory of Leadership Content Knowledge (Stein & Nelson, 2003)…

  19. Engineering at the Elementary Level

    ERIC Educational Resources Information Center

    McGrew, Cheryl

    2012-01-01

    Can engineering technology be taught at the elementary level? Designing and building trebuchets, catapults, solar cars, and mousetrap vehicles in a west central Florida elementary class was considered very unusual in recent years. After a review of current research on failing schools and poor curriculum, the author wondered what her school could…

  20. Unity in the Elementary School Classroom: Building Community Through Increasing Positive Social Interactions Between and Among Students

    ERIC Educational Resources Information Center

    Piatt-Jaeger, Sally

    2011-01-01

    Children's sense of a community is essential in elementary schools. This helps gives students a sense of belonging and control over their environment. The purpose of this study is to examine the impact of several strategies from the Toolbox Project and their effect on building community in the classroom. Collin (2003b) discusses his Toolbox…

  1. In Search of the Ultimate Building Blocks

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    1996-12-01

    An apology; 1. The beginning of the journey to the small: cutting paper; 2. To molecules and atoms; 3. The magic mystery of the quanta; 4. Dazzling velocities; 5. The elementary particle zoo before 1970; 6. Life and death; 7. The crazy kaons; 8. The invisible quarks; 9. Fields or bootstraps?; 10. The Yang-Mills bonanza; 11. Superconducting empty space: the Higgs-Kibble machine; 12. Models; 13. Colouring in the strong forces; 14. The magnetic monopole; 15. Gypsy; 16. The brilliance of the standard model; 17. Anomalies; 18. Deceptive perfection; 19. Weighing neutrinos; 20. The great desert; 21. Technicolor; 22. Grand unification; 23. Supergravity; 24. Eleven dimensional space-time; 25. Attaching the super string; 26. Into the black hole; 27. Theories that do not yet exist … ; 28. Dominance of the rule of the smallest.

  2. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    NASA Astrophysics Data System (ADS)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  3. Modeling generic aspects of ideal fibril formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D., E-mail: denis.michel@live.fr

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions.more » These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term “critical concentration” is used for different things, involved in either nucleation or elongation.« less

  4. Modeling generic aspects of ideal fibril formation

    NASA Astrophysics Data System (ADS)

    Michel, D.

    2016-01-01

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions. These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term "critical concentration" is used for different things, involved in either nucleation or elongation.

  5. Data Policy Construction Set - Building Blocks from Childhood Constructions

    NASA Astrophysics Data System (ADS)

    Fleischer, Dirk; Paul-Stueve, Thilo; Jobmann, Alexandra; Farrenkopf, Stefan

    2016-04-01

    A complete construction set of building blocks usually comes with instructions and these instruction include building stages. The products of these building stages usually build from very general parts become highly specialized building parts for very unique features of the whole construction model. This sounds very much like the construction or organization of an interdisciplinary research project, institution or association, doesn't it! The creation process of an overarching data policy for a project group or institution is exactly the combination of individual interests with the common goal of a collaborative data policy and can be compared with the building stages of a construction set of building blocks and the building instructions. Keeping this in mind we created the data policy construction set of textual building blocks. This construction set is subdivided into several building stages or parts each containing multiple building blocks as text blocks. By combining building blocks of all subdivisions it is supposed to create a cascading data policy document. Cascading from the top level as a construction set provider for all further down existing levels such as project, themes, work packages or Universities, faculties, institutes down to the working level of working groups. The working groups are picking from the remaining building blocks in the provided construction set the suitable blocks for its working procedures to create a very specific policy from the available construction set provided by the top level community. Nevertheless, if a working group realized that there are missing building blocks or worse that there are missing building parts, then they have the chance to add the missing pieces to the construction set of direct an future use. This cascading approach enables project or institution wide application of the encoded rules from the textual level on access to data storage infrastructure. This structured approach is flexible enough to allow for the fact that interdisciplinary research projects always bring together very diverse amount of working habits, methods and requirements. All these need to be considered for the creation of the general document on data sharing and research data management. This approach focused on the recommendation of the RDA practical policy working group to implement practical policies derived from the textual level. Therefore it aims to move the data policy creation procedure and implementation towards the consortium or institutional formation with all the benefits of an existing data policy construction set already during the proposal creation and proposal review. Picking up the metaphor of real building blocks in context of data policies provides also the insight that existing building blocks and building parts can be reused as they are, but also can be redesigned with very little changes or a full overhaul.

  6. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers.

    PubMed

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.

  7. All-Electric School Profile: Washington Elementary Educational Park

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    Existing elementary schools in Washington, Pennsylvania, were replaced by an educational park with two two-story buildings. A heat recovery system and an additional thickness of insulation conserve energy. (MLF)

  8. Creating Partnerships for Learning: Family Literacy in Elementary Schools.

    ERIC Educational Resources Information Center

    National Center for Family Literacy, Louisville, KY.

    Building on the link between parents' education and children's academic achievement, the Families in Schools model of family literacy brings at-risk elementary school students and their parents together to learn in the elementary school setting. This book describes the model, presents the federal definition of family literacy, and argues that…

  9. Developing Preservice Teachers' Self-Efficacy through Field-Based Science Teaching Practice with Elementary Students

    ERIC Educational Resources Information Center

    Flores, Ingrid M.

    2015-01-01

    Thirty preservice teachers enrolled in a field-based science methods course were placed at a public elementary school for coursework and for teaching practice with elementary students. Candidates focused on building conceptual understanding of science content and pedagogical methods through innovative curriculum development and other course…

  10. Analog Building Blocks for Communications Modems.

    DTIC Science & Technology

    1977-01-01

    x*—*- A0-A039 82b ELECTRONIC COMMUNICATIONS INC ST PETERSBURG FLA F/6 9/5 ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS .(U) JAN 77 B BLACK...F33615-7<t-C-1120 UNCLASSIFIED AFAL-TR-76-29 NL ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS ELECTRONIC COMMUNICATIONS INC. A SUBSIDIARY OF...Idantltr Or Mac* numb*,; Avionics Building-Block modules Frequency Synthesize* Costas Demodulator Amplifier Modem Frequency Multiplier ’ -^ « TRACT

  11. Fault-tolerant computer study. [logic designs for building block circuits

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.

    1981-01-01

    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.

  12. Adolescent Boys' and Girls' Block Constructions Differ in Structural Balance: A Block-Building Characteristic Related to Math Achievement

    ERIC Educational Resources Information Center

    Casey, Beth M.; Pezaris, Elizabeth E.; Bassi, Julie

    2012-01-01

    Two studies were conducted on block building in adolescents, assessing middle school (Study 1) and high school students (Study 2). Students were asked to build something interesting with blocks. In both samples, the same pattern of gender differences were found; boys built taller structures than girls, and balanced a larger number of blocks on a…

  13. Aerial Imagery and LIDAR Data Fusion for Unambiguous Extraction of Adjacent Level-Buildings Footprints

    NASA Astrophysics Data System (ADS)

    Mola Ebrahimi, S.; Arefi, H.; Rasti Veis, H.

    2017-09-01

    Our paper aims to present a new approach to identify and extract building footprints using aerial images and LiDAR data. Employing an edge detector algorithm, our method first extracts the outer boundary of buildings, and then by taking advantage of Hough transform and extracting the boundary of connected buildings in a building block, it extracts building footprints located in each block. The proposed method first recognizes the predominant leading orientation of a building block using Hough transform, and then rotates the block according to the inverted complement of the dominant line's angle. Therefore the block poses horizontally. Afterwards, by use of another Hough transform, vertical lines, which might be the building boundaries of interest, are extracted and the final building footprints within a block are obtained. The proposed algorithm is implemented and tested on the urban area of Zeebruges, Belgium(IEEE Contest,2015). The areas of extracted footprints are compared to the corresponding areas in the reference data and mean error is equal to 7.43 m2. Besides, qualitative and quantitative evaluations suggest that the proposed algorithm leads to acceptable results in automated precise extraction of building footprints.

  14. Portfolio of New Schools.

    ERIC Educational Resources Information Center

    Inform, 2002

    2002-01-01

    Describes the building designs of Virginia's Frost Montessori School, Pole Green Elementary School in Hanover County, and five elementary schools in Carroll County. Describes the educational context, design goals, and architects. Also includes photographs. (EV)

  15. Reigniting Writers: Using the Literacy Block with Elementary Students to Support Authentic Writing Experiences

    ERIC Educational Resources Information Center

    Blanch, Norine; Forsythe, Lenora C.; Van Allen, Jennifer H.; Roberts, Sherron Killingsworth

    2017-01-01

    Given the importance of writing, especially in light of college and career readiness emphasis, and the observations that time spent writing in context diminishes over a student's years in school, this article proposes to reignite writing instruction in elementary classrooms through three practical approaches for supporting students in authentic…

  16. Co-Teaching Math Content and Math Pedagogy for Elementary Pre-Service Teachers: A Pilot Study

    ERIC Educational Resources Information Center

    Ford, Pari; Strawhecker, Jane

    2011-01-01

    With a national need to improve Science, Technology, Engineering and Mathematics Education (STEM), elementary pre-service teachers must be provided with ample opportunities to increase their own knowledge and confidence in STEM disciplines. This article describes a Math Block experience developed for a special population of non-traditional…

  17. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.

  18. Engineering the formation of secondary building blocks within hollow interiors.

    PubMed

    Li, Xiaobo; Liu, Xiao; Ma, Yi; Li, Mingrun; Zhao, Jiao; Xin, Hongchuan; Zhang, Lei; Yang, Yan; Li, Can; Yang, Qihua

    2012-03-15

    Secondary building blocks within the cavities of primary silica-architecture building blocks are successfully engineered. The immobilized surfactant directs the selective dissolution and reassembly of dissolved silicate species for the formation of secondary building blocks (hollow nanospheres/nanorods; see figure). Supported TiO(2) on nanostructures with multilevel interiors is shown to exhibit significantly enhanced activity in photocatalytic H(2) production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers

    PubMed Central

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031

  20. Using the World Health Organization health system building blocks through survey of healthcare professionals to determine the performance of public healthcare facilities.

    PubMed

    Manyazewal, Tsegahun

    2017-01-01

    Acknowledging the health system strengthening agenda, the World Health Organization (WHO) has formulated a health systems framework that describes health systems in terms of six building blocks. This study aimed to determine the current status of the six WHO health system building blocks in public healthcare facilities in Ethiopia. A quantitative, cross-sectional study was conducted in five public hospitals in central Ethiopia which were in a post-reform period. A self-administered, structured questionnaire which covered the WHO's six health system building blocks was used to collect data on healthcare professionals who consented. Data was analyzed using IBM SPSS version 20. The overall performance of the public hospitals was 60% when weighed against the WHO building blocks which, in this procedure, needed a minimum of 80% score. For each building block, performance scores were: information 53%, health workforce 55%, medical products and technologies 58%, leadership and governance 61%, healthcare financing 62%, and service delivery 69%. There existed a significant difference in performance among the hospitals ( p  < .001). The study proved that the WHO's health system building blocks are useful for assessing the process of strengthening health systems in Ethiopia. The six blocks allow identifying different improvement opportunities in each one of the hospitals. There was no contradiction between the indicators of the WHO building blocks and the health sustainable development goal (SDG) objectives. However, such SDG objectives should not be a substitute for strategies to strengthen health systems.

  1. The Elementary Child's Place in the Natural World

    ERIC Educational Resources Information Center

    Allen, Phoebe

    2013-01-01

    Phoebe Allen's article speaks for the early bonding of children to the natural world prior to the elementary class. She also suggests the continuing exploration of children at elementary age in the outdoors in order to build the necessary sense of wonder and love of the environment to overcome anxiety over the negative realities of the planet's…

  2. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less

  3. The Building Blocks of Geology.

    ERIC Educational Resources Information Center

    Gibson, Betty O.

    2001-01-01

    Discusses teaching techniques for teaching about rocks, minerals, and the differences between them. Presents a model-building activity that uses plastic building blocks to build crystal and rock models. (YDS)

  4. Amyloid-like self-assembly of peptide sequences from the adenovirus fiber shaft: insights from molecular dynamics simulations.

    PubMed

    Tamamis, Phanourios; Kasotakis, Emmanouil; Mitraki, Anna; Archontis, Georgios

    2009-11-26

    The self-assembly of peptides and proteins into nanostructures is related to the fundamental problems of protein folding and misfolding and has potential applications in medicine, materials science and nanotechnology. Natural peptides, corresponding to sequence repeats from self-assembling proteins, may constitute elementary building blocks of such nanostructures. In this work, we study by implicit-solvent replica-exchange simulations the self-assembly of two amyloidogenic sequences derived from the naturally occurring fiber shaft of the adenovirus, the octapeptide NSGAITIG (asparagine-serine-glycine-alanine-isoleucine-threonine-isoleucine-glycine) and its hexapeptide counterpart, GAITIG. In accordance with their amyloidogenic capacity, both peptides form readily intermolecular beta-sheets, stabilized by extensive main- and side-chain contacts involving the C-terminal moieties (segments 3-8 and 2-6, respectively). The structural and energetic properties of these sheets are analyzed extensively. The N-terminal residues Asn1 and Ser2 of the octapeptide remain disordered in the sheets, suggesting that these residues are exposed at the exterior of the fibrils and accessible. On the basis of insight provided by the simulations, cysteine residues were recently substituted at positions 1 and 2 of NSGAITIG; the newly designed peptides maintain their amyloidogenic properties and can bind to silver, gold and platinum nanoparticles [Kasotakis et al. Biopolymers 2009, 92, 164-172]. Computational investigation can identify suitable positions for rational modification of peptide building blocks, aiming at the fabrication of novel biomaterials.

  5. Chemistry Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume III.

    ERIC Educational Resources Information Center

    Crosby, Glenn; And Others

    A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…

  6. Parent-Child Interaction Processes Related to Scholastic Achievement in Urban Elementary Children.

    ERIC Educational Resources Information Center

    Portes, Pedro R.; And Others

    In an attempt to identify parent-child interaction patterns that might differentiate bright from below-average elementary students, 16 high achievers and 16 low achievers were paired with their mothers and then videotaped whilst engaged in 3 sets of task situations, which involved copying of Block Design models and categorization of words and…

  7. Geology Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume IV.

    ERIC Educational Resources Information Center

    Webster, Gary

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…

  8. Astronomy Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume I.

    ERIC Educational Resources Information Center

    Lutz, Julie H.; Orlich, Donald C.

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Astronomy block of the physical science courses developed by the group. Included are…

  9. Functionalized Helical Building Blocks for Nanoelectronics.

    PubMed

    Khokhlov, Khrystofor; Schuster, Nathaniel J; Ng, Fay; Nuckolls, Colin

    2018-04-06

    Molecular building blocks are designed and created for the cis- and trans-dibrominated perylenediimides. The syntheses are simple and provide these useful materials on the gram scale. To demonstrate their synthetic versatility, these building blocks were used to create new dimeric perylenediimide helixes. Two of these helical dimers are twistacenes, and one is a helicene. Crucially, each possesses regiochemically defined functionality that allows the dimer helix to be elaborated into higher oligomers. It would be very difficult to prepare these helical PDI building blocks regioselectively without the methods described.

  10. The 10 building blocks of high-performing primary care.

    PubMed

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements-engaged leadership, data-driven improvement, empanelment, and team-based care-that assist the implementation of the other 6 building blocks-patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement.

  11. Two innovative solutions based on fibre concrete blocks designed for building substructure

    NASA Astrophysics Data System (ADS)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  12. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  13. Efficient Risk Determination of Risk of Road Blocking by Means of MMS and Data of Buildings and Their Surrounding

    NASA Astrophysics Data System (ADS)

    Nose, Kazuhito; Hatake, Shuhei

    2016-06-01

    Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.

  14. Investigating Mathematics with PentaBlocks.

    ERIC Educational Resources Information Center

    Berman, Sheldon; Plummer, Gary A.; Scheuer, Don

    These classic pattern blocks were introduced in the early 1960s as part of the Elementary Science Study materials developed by the Educational Development Center (EDC). The six classic shapes share one common characteristic: all of the angle measurements are multiplies of 30 degrees. Shapes include the regular triangle, square, and hexagon; the…

  15. Creative Technology for Schoolchildren.

    ERIC Educational Resources Information Center

    Stolyarov, Yuri

    1981-01-01

    Describes creative technology programs for elementary and secondary school children in the Soviet Union. Elementary school projects include aircraft, ship, and rocket models, amateur radio, electrical engineering, and electronics. Senior high school students design and build small-capacity vehicles, agricultural equipment, and electronic…

  16. The Development of Spatial Skills through Interventions Involving Block Building Activities

    ERIC Educational Resources Information Center

    Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita

    2008-01-01

    This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…

  17. Effects of Puppetry on Elementary Students' Knowledge of and Attitudes toward Individuals with Disabilities

    ERIC Educational Resources Information Center

    Dunst, Carl J.

    2012-01-01

    Findings from two studies investigating the effects of Kids on the Block (KOB) puppet shows on elementary school students' knowledge of and attitude toward individuals with disabilities are described. KOB is a troupe of life-size hand-and-rod puppets used to improve knowledge and change attitudes toward persons with disabilities. Results from both…

  18. Incorporating GIS building data and census housing statistics for sub-block-level population estimation

    USGS Publications Warehouse

    Wu, S.-S.; Wang, L.; Qiu, X.

    2008-01-01

    This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.

  19. A Trial of PBL Education with Emphasis on Improving Practical Competence of Engineering Students-A Trial Connected with the Support for Science Education in Elementary School

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hirotaka; Nikkuni, Hiroyuki; Kitakoshi, Daisuke; Yasuda, Toshitaka; Kikuchi, Akira; Mitani, Tomoyo

    Recently Colleges of technology as well as universities have some experience-oriented classes in sciences for elementary school students. These have proved to be successful as good motivation for students in the primary education to be engineers. This research has tried the PBL education, which combined the Support of Science Education in Elementary School and the improvement of students‧ practical competence in their careers. The support of science education in elementary school was carried out by using LEGO blocks, widely utilized in the educational researches of robots, and was conducted in the practical class with the autonomous robots. Finally, the method for the class was evaluated by the elementary school students on the basis of the questionnaire.

  20. Building Blocks: Enmeshing Technology and Creativity with Artistic Pedagogical Technologies

    ERIC Educational Resources Information Center

    Janzen, Katherine J.; Perry, Beth; Edwards, Margaret

    2017-01-01

    Using the analogy of children's building blocks, the reader is guided through the results of a research study that explored the use of three Artistic Pedagogical Technologies (APTs). "Building blocks" was the major theme that emerged from the data. Sub-themes included developing community, enhancing creativity, and risk taking. The…

  1. Study of the Employment Status of Block Program Graduates. Teacher Education Forum; Volume 4, Number 7.

    ERIC Educational Resources Information Center

    Buffie, Edward G.

    The Block Program is one of five major options at Indiana University, Bloomington, for students preparing to become elementary teachers. The project emphasizes team approach to instruction; flexibility of program; carefully articulated work with respect to preparation in language arts, mathematics, science, and social studies; carefully…

  2. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, themore » report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.« less

  3. Designing an Earthquake-Resistant Building

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.

    2016-01-01

    How do cross-bracing, geometry, and base isolation help buildings withstand earthquakes? These important structural design features involve fundamental geometry that elementary school students can readily model and understand. The problem activity, Designing an Earthquake-Resistant Building, was undertaken by several classes of sixth- grade…

  4. Convergence to Diagonal Form of Block Jacobi-type Processes

    NASA Astrophysics Data System (ADS)

    Hari, Vjeran

    2008-09-01

    The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.

  5. Building Fossils in the Elementary School and Writing about Them Using Computers.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Yoshida, Sarah

    This material describes a fossil-building activity using sea shells, chicken bones, and plaster for grade one through three students. Related process skills, vocabulary, computer principles, time requirements, and materials are listed. Two methods of building the fossils are discussed. After building the fossils, classes may be divided into pairs…

  6. 'Buildings in Use' Study. Field Tests Manual.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Milwaukee. School of Architecture and Urban Planning.

    This report is one product of the 'Buildings in Use' study. The overall study examines architectural attributes of existing buildings in order to determine how they have performed technically and functionally, and the relationship between the environment of the building and the behavior of its user population. Four elementary schools in Columbus,…

  7. Intercultural Communication Activities in the Classroom: Turning Stumbling Blocks into Building Blocks.

    ERIC Educational Resources Information Center

    Dillon, Randy K.

    This paper explores behavior patterns that inhibit effective communication in everyday, educational, and business cross-cultural settings. Opportunities to change these inhibiting patterns, metaphorically referred to as "stumbling blocks," into building blocks or tools for successful intercultural understandings are discussed in the…

  8. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    ERIC Educational Resources Information Center

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  9. The Building Blocks of Life Move from Ground to Tree to Animal and Back to Ground

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2015-12-01

    I generally use combinations of big words to describe my science, such as biogeochemistry, ecosystem ecology, nutrient cycling, stoichiometry, tropical deforestation, land-use change, agricultural intensification, eutrophication, greenhouse gas emissions, and sustainable development. I didn't expect to use any of these words, but I was surprised that I couldn't use some others that seem simple enough to me, such as farm, plant, soil, and forest. I landed on "building blocks" as my metaphor for the forms of carbon, nitrogen, phosphorus, and other elements that I study as they cycle through and among ecosystems. I study what makes trees and other kinds of life grow. We all know that they need the sun and that they take up water from the ground, but what else do trees need from the ground? What do animals that eat leaves and wood get from the trees? Just as we need building blocks to grow our bodies, trees and animals also need building blocks for growing their bodies. Trees get part of their building blocks from the ground and animals get theirs from what they eat. When animals poop and when leaves fall, some of their building blocks return to the ground. When they die, their building blocks also go back to the ground. I also study what happens to the ground, the water, and the air when we cut down trees, kill or shoo away the animals, and make fields to grow our food. Can we grow enough food and still keep the ground, water, and air clean? I think the answer is yes, but it will take better understanding of how all of those building blocks fit together and move around, from ground to tree to animal and back to ground.

  10. Using Stories in Elementary School Counseling: Brief, Narrative Techniques

    ERIC Educational Resources Information Center

    Eppler, Christie; Olsen, Jacob A.; Hidano, Lory

    2009-01-01

    This article describes using stories and story-telling techniques so that elementary professional school counselors can facilitate brief, narrative counseling. These approaches help counselors and students build rapport while assisting in understanding and externalizing the problem. Additionally, these interventions may help generate ideas for…

  11. Health Education Teaching Ideas: Elementary. Volume II.

    ERIC Educational Resources Information Center

    Hakala, Jane, Ed.; Buckner, W. P., Jr., Ed.; King, Karen, Ed.

    This guide contains innovative learning activities and teaching ideas to enhance classroom instruction. The 40 papers are divided into 12 areas: "Health Attitudes and Values" (e.g., understanding elementary students' perceptions of health through art, narrative and discussion); "Mental Health" (e.g., building community through…

  12. Building Curriculum during Block Play

    ERIC Educational Resources Information Center

    Andrews, Nicole

    2015-01-01

    Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…

  13. The 10 Building Blocks of High-Performing Primary Care

    PubMed Central

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement. PMID:24615313

  14. Topological superfluids with finite-momentum pairing and Majorana fermions.

    PubMed

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  15. [Faustlos -- promotion of social-emotional competences in elementary schools and kindergartens].

    PubMed

    Schick, Andreas; Cierpka, Manfred

    2005-11-01

    Aggressive and violent behavior of children often is caused by a lack of social and emotional competences, which blocks constructive problem- and conflict-management. Therefore lots of different US-American prevention approaches for the promotion of crucial social competences have been developed. Faustlos is the first German violence prevention curriculum, which promotes the social and emotional competences of first grade pupils and kindergarten aged children. The curriculum builds on the promotion of empathy, impulse control and anger management. Evaluation studies on the effectiveness of Faustlos prove its positive effects on aggressive behavior and on the promotion of social-emotional competence. Further, the feedback of people working with Faustlos concerning the acceptance and practicability of the program is positive too. Besides the development of additive materials (e. g. Faustlos for parents) evaluation studies on the long-term effects of the program are needed.

  16. Moon Munchies: Human Exploration Project Engineering Design Challenge--A Standards-Based Elementary School Model Unit Guide--Design, Build, and Evaluate (Lessons 1-6). Engineering By Design: Advancing Technological Literacy--A Standards-Based Program Series. EP-2007-08-92-MSFC

    ERIC Educational Resources Information Center

    Weaver, Kim M.

    2005-01-01

    In this unit, elementary students design and build a lunar plant growth chamber using the Engineering Design Process. The purpose of the unit is to help students understand and apply the design process as it relates to plant growth on the moon. This guide includes six lessons, which meet a number of national standards and benchmarks in…

  17. Residential Academic-Year Programs for Prospective Unit Leaders, Building Principals, and Reading Staff Teachers in Multiunit Schools--Elementary. Report from the Project on Multiunit Schools--Elementary. Technical Report No. 267.

    ERIC Educational Resources Information Center

    Klausmeier, Herbert J.; Fruth, Marvin J.

    This technical report provides summary information and evaluation of the activities that were carried out in the institutionalization phase of the implementation of the Individually Guided Education (IGE) Project in the Multiunit School--Elementary (MUS-E). The institutionalization phase, the last of four, is defined as the introduction of IGE…

  18. Elementary Classroom Web Sites

    ERIC Educational Resources Information Center

    Baker, Elizabeth A.

    2007-01-01

    The purpose of this study was to understand how elementary classroom Web sites support children's literacy. From a sociocultural perspective of literacy and a transformative stance toward the integration of literacy and technology, and building on explorations of new literacies, I discuss opportunities provided by the Internet that can support…

  19. Building Relationships within Extended Field Placements in Elementary Education

    ERIC Educational Resources Information Center

    Hughes, Michelle; McCartney, Holly

    2015-01-01

    Researchers, using qualitative methodology, investigated whether an extended model for organizing fieldwork could potentially elevate the skills, knowledge, and dispositions of Elementary (prek-6) teacher candidates in this study. Questionnaires, focus group interviews, and observations from the pre-service and veteran teachers provided data on…

  20. Historic Preservation and Elementary Student Extracurricular Community Service

    ERIC Educational Resources Information Center

    Morris, Ronald V.

    2016-01-01

    Elementary students survey buildings in an extracurricular community service project to learn social studies and historic preservation. From these experiences students formed values and dispositions by engaging in a constructivist process of creating knowledge by examining their community. They gathered data, transformed it into information, and…

  1. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    NASA Astrophysics Data System (ADS)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  2. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  3. The Effectiveness of Full Day School System for Students’ Character Building

    NASA Astrophysics Data System (ADS)

    Benawa, A.; Peter, R.; Makmun, S.

    2018-01-01

    The study aims to put forward that full day school which was delivered in Marsudirini Elementary School in Bogor is effective for students’ character building. The study focused on the implementation of full day school system. The qualitative-based research method applied in the study is characteristic evaluation involving non-participant observation, interview, and documentation analysis. The result of this study concludes that the full day school system is significantly effective in education system for elementary students’ character building. The full day school system embraced the entire relevant processes based on the character building standard. The synergy of comprehensive components in instructional process at full day school has influenced the building of the students’ character effectively and efficiently. The relationship emerged between instructional development process in full day school system and the character building of the students. By developing instructional process through systemic and systematic process in full day school system, the support of stakeholders (leaders, human resources, students, parents’ role) and other components (learning resources, facilities, budget) provides a potent and expeditious contribution for character building among the students eventually.

  4. INFERENCE BUILDING BLOCKS

    DTIC Science & Technology

    2018-02-15

    address the problem that probabilistic inference algorithms are diÿcult and tedious to implement, by expressing them in terms of a small number of...building blocks, which are automatic transformations on probabilistic programs. On one hand, our curation of these building blocks reflects the way human...reasoning with low-level computational optimization, so the speed and accuracy of the generated solvers are competitive with state-of-the-art systems. 15

  5. 1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, FROM NORTHWEST. THE RIGHT END OF THE BLOCK IS THE E.S. WOOD BUILDING; THE BUILDING WITH A FIRE ESCAPE IS THE ROSENFIELD BUILDING; THE T.W. HOUSE BUILDING IS TO THE LEFT OF THE PRECEDING BUILDING; JOHN BERLOCHER BUILDING IS AT THE LEFT END OF THE BLOCK. - Strand Historic District, Wood-Rosenfield-House-Berlocher Buildings, 2213-2223 Strand, Galveston, Galveston County, TX

  6. The Professional Identity of Three Innovative Teachers Engaging in Sustained Knowledge Building Using Technology

    ERIC Educational Resources Information Center

    Vokatis, Barbara; Zhang, Jianwei

    2016-01-01

    Diffusing inquiry-based pedagogy in schools for deep and lasting change requires teacher transformation and capacity building. This study characterizes the professional identity of three elementary school teachers who have productively engaged in inquiry-based classroom practice using knowledge building pedagogy and Knowledge Forum, a…

  7. Preference for blocking or response redirection during stereotypy treatment.

    PubMed

    Giles, Aimee F; St Peter, Claire C; Pence, Sacha T; Gibson, Alexandra B

    2012-01-01

    Response redirection and response blocking reduce stereotypy maintained by automatic reinforcement. The current study evaluated the effects of redirection and response blocking on the stereotypic responding of three elementary-age children diagnosed with autism. During the treatment evaluation, redirection and response blocking were evaluated using an alternating treatment embedded in a reversal design. Both procedures resulted in comparably low levels of motor stereotypy. Following treatment evaluation, a concurrent chain was conducted to evaluate participant preference for redirection or response blocking. All three participants preferred redirection. Practitioners may wish to consider participant preference when developing and implementing treatments for stereotypy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Wanted: A Revolution in Elementary Science Teaching.

    ERIC Educational Resources Information Center

    Triangle Coalition for Science and Technology Education, College Park, MD.

    Children come to school with a foundation for formal learning from their early experiences with interactions of the natural and technological world. Failure of elementary schools to build on this experience can discourage children, especially those who do not identify readily with the science establishment (girls, blacks, Hispanics, and the…

  9. Using a Computer Simulation To Teach Science Process Skills to College Biology and Elementary Education Majors.

    ERIC Educational Resources Information Center

    Lee, Aimee T.; Hairston, Rosalina V.; Thames, Rachel; Lawrence, Tonya; Herron, Sherry S.

    2002-01-01

    Describes the Lateblight computer simulation implemented in the general biology laboratory and science methods course for elementary teachers to reinforce the processes of science and allow students to engage, explore, explain, elaborate, and evaluate the methods of building concepts in science. (Author/KHR)

  10. The Case of Rivera Elementary School: The Politics of Collaboration

    ERIC Educational Resources Information Center

    Maxcy, Brendan D.; Nguyen, Thu Suong T.

    2013-01-01

    This case involves a struggle for control among differently situated leaders--district- and building-level administrators, teachers, parents and community members, and university partners--seeking to influence the reform agenda of a high-poverty urban elementary school serving Latina/Latino students. The various stakeholders encounter a variety of…

  11. The Principal and Fiscal Management. Elementary Principal Series No. 6.

    ERIC Educational Resources Information Center

    Walters, James K.; Marconnit, George D.

    The sixth of six volumes in the "Elementary Principal Series," this booklet is designed to help principals develop sound fiscal management strategies at the building level. The first section reviews Indiana statutory provisions for handling extracurricular and booster group funds. The second section presents guidelines for managing…

  12. Video Projects for Elementary and Middle Schools.

    ERIC Educational Resources Information Center

    Kyker, Keith; Curchy, Christopher

    With step-by-step plans for 25 creative curriculum-based video projects, this project guide for elementary and middle school educators facilitates video production. Activities that span the curriculum increase student knowledge in a variety of subjects while building video production skills and putting students in an active role with television.…

  13. Public Schools Energy Conservation Measures, Report Number 4: Hindman Elementary School, Hindman, Kentucky.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    Presented is a study identifying and evaluating opportunities for decreasing energy use at Hindman Elementary School, Hindman, Kentucky. Methods used in this engineering investigation include building surveys, computer simulations and cost estimates. Findings revealed that modifications to the school's boiler, temperature controls, electrical…

  14. Building Type Basics for Elementary and Secondary Schools.

    ERIC Educational Resources Information Center

    Perkins, Bradford

    This book provides the essential information architects need to fast-start a school design process and shares what leading architects have learned about elementary and secondary school design. It provides critical information on the process, potential problems, design concerns, and recent trends in school design, along with complete coverage of…

  15. Teaching Scientific Metaphors through Informational Text Read-Alouds

    ERIC Educational Resources Information Center

    Barnes, Erica M.; Oliveira, Alandeom W.

    2018-01-01

    Elementary students are expected to use various features of informational texts to build knowledge in the content areas. In science informational texts, scientific metaphors are commonly used to make sense of complex and invisible processes. Although elementary students may be familiar with literary metaphors as used in narratives, they may be…

  16. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2015-01-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…

  17. Building Bridges: Transitions from Elementary to Secondary School

    ERIC Educational Resources Information Center

    Tilleczek, Kate

    2008-01-01

    Most young people leave elementary school and move into some form of secondary school during early adolescence. At precisely the time that young people are navigating multiple developmental challenges (social, intellectual, academic, physical), they are expected to move between these intuitions of public education. The transition is commonly…

  18. Building the Wall Brick by Brick: One Prospective Teacher's Experiences with Mathematics Anxiety

    ERIC Educational Resources Information Center

    Stoehr, Kathleen Jablon

    2017-01-01

    Mathematics education researchers have investigated mathematics anxiety in prospective elementary teachers. While many of these studies have focused on the bodily sensations and emotions of mathematics anxiety, particularly those felt in assessment situations, opportunities remain to investigate how prospective elementary teachers interpret their…

  19. Building a Knowledge Base: Understanding Prospective Elementary Teachers' Mathematical Content Knowledge

    ERIC Educational Resources Information Center

    Thanheiser, Eva; Browning, Christine; Edson, Alden J.; Kastberg, Signe; Lo, Jane-Jane

    2013-01-01

    This survey of the literature summarizes and reflects on research findings regarding elementary preservice teachers' (PSTs') mathematics conceptions and the development thereof. Despite the current focus on teacher education, peer-reviewed journals offer a surprisingly sparse insight in these areas. The limited research that exists…

  20. George A. Towns Elementary School. Atlanta, Georgia

    ERIC Educational Resources Information Center

    Burt, Ralph H.

    1976-01-01

    A project testing solar heating and cooling in an existing building, the George A. Towns Elementary School, is intended to provide information on system design and performance, allow the identification and correction of problems encountered in installing large units, and gauge community/user reaction to solar equipment. (Author/MLF)

  1. Reducing School Mobility: A Randomized Trial of a Relationship-Building Intervention

    PubMed Central

    Fiel, Jeremy E.; Haskins, Anna R.; López Turley, Ruth N.

    2013-01-01

    Student turnover has many negative consequences for students and schools, and the high mobility rates of disadvantaged students may exacerbate inequality. Scholars have advised schools to reduce mobility by building and improving relationships with and among families, but such efforts are rarely tested rigorously. A cluster-randomized field experiment in 52 predominantly Hispanic elementary schools in San Antonio, TX, and Phoenix, AZ, tested whether student mobility in early elementary school was reduced through Families and Schools Together (FAST), an intervention that builds social capital among families, children, and schools. FAST failed to reduce mobility overall but substantially reduced the mobility of Black students, who were especially likely to change schools. Improved relationships among families help explain this finding. PMID:25346541

  2. Zero Energy Building Pays for Itself: Odyssey Elementary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in themore » natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.« less

  3. A Library of Rad Hard Mixed-Voltage/Mixed-Signal Building Blocks for Integration of Avionics Systems for Deep Space

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.

    2001-01-01

    To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.

  4. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.

    PubMed

    Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L

    2018-06-07

    Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.

  5. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-10-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.

  6. Top Value Added Chemicals from Biomass - Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  7. Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werpy, T.; Petersen, G.

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  8. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    PubMed

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  9. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    PubMed Central

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  10. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    PubMed Central

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  11. COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Building outside the Box. Public-Private Partnership: A Strategy for Improved Public School Buildings.

    ERIC Educational Resources Information Center

    Twenty-First Century School Fund, Washington, DC.

    This publication describes the creation of a new school building for James F. Oyster Bilingual Elementary School in Washington, DC. Despite the success of its academic program, the school's 70-year-old building had become unsafe and unsuitable for teaching and learning and was threatened with closure in 1993 because of the district's fiscal…

  13. Bole Elementary School: A Study of the Arrangement of Information. Part 4: School Building in Early Development. International School Building News 16, No. 1.

    ERIC Educational Resources Information Center

    Ghebtsawi, Tesheme

    This report illustrates the method, called the "SfB System," recommended in an earlier publication by this organization, for systematization of building projects. The aim of the report is to show how to arrange information on building elements and building construction for clear definition of the parts to be built and for easy…

  14. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  15. Setting the Foundation: A Report on Elementary Grades Reading in Tennessee. Appendix

    ERIC Educational Resources Information Center

    Tennessee Department of Education, 2016

    2016-01-01

    "Setting the Foundation: A Report on Elementary Grades Reading in Tennessee" (ED572952) provides insight into the challenges associated with early grades reading in Tennessee, along with a set of recommendations for building more readers across the state. This appendix provides detailed information about reading programs in Tennessee…

  16. The Effects of Technology-Mediated Dialogic Learning in Elementary Mathematics Instruction

    ERIC Educational Resources Information Center

    Working, Christopher

    2018-01-01

    The use of technology in elementary mathematics instruction tends to be low-level, despite its affordance of supporting the development of students' high-level reasoning ability. This study builds upon a sociocultural view of learning and was designed to determine what effect a technology-mediated dialogic learning intervention has on third-grade…

  17. Engineering in Elementary STEM Education: Curriculum Design, Instruction, Learning, and Assessment

    ERIC Educational Resources Information Center

    Cunningham, Christine M.

    2018-01-01

    Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of…

  18. Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back

    ERIC Educational Resources Information Center

    Klahr, David; Li, Junlei

    2005-01-01

    Can cognitive research generate usable knowledge for elementary science instruction? Can issues raised by classroom practice drive the agenda of laboratory cognitive research? Answering yes to both questions, we advocate building a reciprocal interface between basic and applied research. We discuss five studies of the teaching, learning, and…

  19. The Elementary & Secondary Education Act: New Leaders Recommendations on School Leadership

    ERIC Educational Resources Information Center

    New Leaders, 2015

    2015-01-01

    This brief outlines a series of proposals for using federal policy to bolster school leadership. The Elementary & Secondary Education Act (ESEA) should highlight the unique role that principals play by targeting funding within the law to build principals' capacity as instructional leaders, culture builders and talent managers. ESEA should also…

  20. Phase IV: Educational Needs Assessment For Washington State Students. March 1973. (Summary).

    ERIC Educational Resources Information Center

    Brouillet, Frank B.

    The results of the Washington Elementary Educational Assessment Project (WEEAP) are presented in this report. The purposes of the Assessment project were (1) to assess the reading and mathematics achievement in Washington elementary schools by sampling fourth and sixth grade students in randomly selected school buildings; (2) to identify…

  1. "We Get To Learn!": Building Urban Children's Sense of Future in an Elementary School.

    ERIC Educational Resources Information Center

    Kinney, David A.

    Students' experiences of daily classroom activities and the larger school context were studied at the Robert W. Coleman Elementary School, Baltimore (Maryland). Coleman is an inner-city school serving about 500 African American children in prekindergarten through grade 5. The school is organized into three campuses--primary, "Coleman"…

  2. Building Interest in Math and Science for Rural and Underserved Elementary School Children Using Robots

    ERIC Educational Resources Information Center

    Matson, Eric; DeLoach, Scott; Pauly, Robyn

    2004-01-01

    The "Robot Roadshow Program" is designed to increase the interest of elementary school children in technical disciplines, specifically math and science. The program focuses on children from schools categorized as rural or underserved, which often have limited access to advanced technical resources. We developed the program using robots…

  3. The Landscape of Elementary School Physical Education

    ERIC Educational Resources Information Center

    Graber, Kim C.; Locke, Lawrence F.; Lambdin, Dolly; Solmon, Melinda A.

    2008-01-01

    Elementary school physical education has repeatedly been shaped by the forces of history. Presently, concerns about the obesity epidemic and the low levels of physical activity in children are exerting a major influence on curriculum. Whereas building physical fitness has been a dominant influence during wartime, the focus today is on (a)…

  4. Building the Numeracy Skills of Undergraduate and Elementary School Students

    ERIC Educational Resources Information Center

    Boger, Pam

    2005-01-01

    This paper describes a project with the goal of exposing both elementary school and undergraduate students to the concepts associated with the experimental method, from the formulation of a researchable question to the analysis and interpretation of the results. Under the guidance of their university mentors, fourth and fifth grade students…

  5. Using Teacher Learning Walks to Build Capacity in a Rural Elementary School: Repurposing a Supervisory Tool

    ERIC Educational Resources Information Center

    Allen, Ann Sundstrom; Topolka-Jorissen, Kathleen

    2014-01-01

    This qualitative methods study examined a rural North Carolina elementary school that implemented teacher learning walks as a method of professional development. Adapted from the practice of principal walkthroughs, teachers followed a protocol for collaboratively observing colleagues' classrooms and reflecting on teaching and learning. The…

  6. Mixing It Up: Integrated, Interdisciplinary, Intriguing Science in the Elementary Classroom. An NSTA Press Journals Collection.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Arlington, VA.

    This compendium of articles from "Science and Children", the elementary school journal of the National Science Teachers Association (NSTA), aims to help teachers build connections in their students' minds. The articles describe lessons and units that are interdisciplinary, both integrated and interdisciplinary, or thematic. Each article is…

  7. Children Exploring Their World: Theme Teaching in Elementary School.

    ERIC Educational Resources Information Center

    Walmsley, Sean A.

    With this book as a guide, elementary school teachers can build classroom themes that offer students substantive encounters with knowledge, literature, and language. The book discusses a rationale for theme teaching; an explanation of the different kinds of themes; a variety of ways in which themes can be treated in the classroom; a detailed…

  8. Encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework.

    PubMed

    Zhang, Huabin; Lin, Ping; Chen, Erxia; Tan, Yanxi; Wen, Tian; Aldalbahi, Ali; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian

    2015-03-23

    The first example of an inorganic-organic composite framework with an interpenetrated diamondoid inorganic building block, featuring unique {InNa}n helices and {In12 Na16 } nano-rings, has been constructed and structurally characterized. This framework also represents a unique example of encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 23. The Stroud Building beard the 'Temme Springs' advertisement. Westfacing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. The Stroud Building beard the 'Temme Springs' advertisement. West-facing windows of the entire block are protected from the afternoon sun by awnings. The north-facing windows of the second-story restaurant were later blocked by an adjacent two-story building. Circa 1914. Credit PPL. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  10. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  11. A synaptic organizing principle for cortical neuronal groups

    PubMed Central

    Perin, Rodrigo; Berger, Thomas K.; Markram, Henry

    2011-01-01

    Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and synaptic weights were surprisingly predictable. Synaptic weights follow very closely the number of connections in a group of neurons, saturating after only 20% of possible connections are formed between neurons in a group. When we examined the network topology of connectivity between neurons, we found that the neurons cluster into small world networks that are not scale-free, with less than 2 degrees of separation. We found a simple clustering rule where connectivity is directly proportional to the number of common neighbors, which accounts for these small world networks and accurately predicts the connection probability between any two neurons. This pyramidal neuron network clusters into multiple groups of a few dozen neurons each. The neurons composing each group are surprisingly distributed, typically more than 100 μm apart, allowing for multiple groups to be interlaced in the same space. In summary, we discovered a synaptic organizing principle that groups neurons in a manner that is common across animals and hence, independent of individual experiences. We speculate that these elementary neuronal groups are prescribed Lego-like building blocks of perception and that acquired memory relies more on combining these elementary assemblies into higher-order constructs. PMID:21383177

  12. Why elementary teachers might be inadequately prepared to teach reading.

    PubMed

    Joshi, R Malatesha; Binks, Emily; Hougen, Martha; Dahlgren, Mary E; Ocker-Dean, Emily; Smith, Dennie L

    2009-01-01

    Several national reports have suggested the usefulness of systematic, explicit, synthetic phonics instruction based on English word structure along with wide reading of quality literature for supporting development in early reading instruction. Other studies have indicated, however, that many in-service teachers are not knowledgeable in the basic concepts of the English language. They may be well versed in children's literature but not know how to address the basic building blocks of language and reading. The authors hypothesized that one of the reasons for this situation is that many instructors responsible for training future elementary teachers are not familiar with the concepts of the linguistic features of English language. This hypothesis was tested by administering a survey of language concepts to 78 instructors. The results showed that even though teacher educators were familiar with syllabic knowledge, they performed poorly on concepts relating to morphemes and phonemes. In a second study, 40 instructors were interviewed about best practices in teaching components and subskills of reading. Eighty percent of instructors defined phonological awareness as letter-sound correspondence. They also did not mention synthetic phonics as a desirable method to use for beginning reading instruction, particularly for students at risk for reading difficulties. In conclusion, providing professional development experiences related to language concepts to instructors could provide them the necessary knowledge of language concepts related to early literacy instruction, which they could then integrate into their preservice reading courses.

  13. Building Blocks for Sustainable Communities: Assistance from Grantees

    EPA Pesticide Factsheets

    EPA awarded Building Blocks for Sustainable Communities grants to four nonprofit organizations with extensive expertise in community sustainability. These organizations deliver technical assistance to communities.

  14. Block Play and Mathematics Learning in Preschool: The Effects of Building Complexity, Peer and Teacher Interactions in the Block Area, and Replica Play Materials

    ERIC Educational Resources Information Center

    Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika

    2017-01-01

    Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…

  15. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334

  16. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    PubMed

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  17. Big Questions: The Ultimate Building Blocks of Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

  18. Building Blocks for Personal Brands

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.

  19. A study of Monitoring and Mapping for Radon-Concentration Distribution in Gyeongju - 12201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chan Hee; Lee, Jung Min; Jang, So Young

    Radon is one of the most important contributors to the radiation exposure in humans. This study measured the indoor radon concentrations at the 17 elementary school auditoriums that were sampled from those in the city of Gyeongju, Korea. The reason that an elementary school was selected as a measurement object is that many students and teachers stay for a long time in a day and it's easy to identify the characteristics of the auditorium building such as the essential building. The measurement shows that most of the indoor radon concentrations at the 17 elementary school auditoriums did not exceed 148more » Bq/m{sup 3} that is the action level recommended by U.S. Environmental Protection Agency. This study measured the indoor radon concentrations at the elementary school auditoriums in Gyeongju. The measurements were analyzed according to the bedrock type and the time intervals per day. In this study, it was found that the indoor radon concentrations over off-duty hours were generally higher that those over on-duty hours, and the indoor radon concentration in the area whose bedrock is volcanic rock was higher than those in the area of the other types of bedrock. As mentioned above, attention has to be paid to an elementary school since many young students and teachers stay for more 6 hours a day at it. Hence, it is necessary to continuously monitor and properly manage the indoor radon concentrations in the elementary schools. (authors)« less

  20. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  1. Wet Worlds: Explore the World of Water. Marine and Fresh Water Activities for the Elementary Classroom.

    ERIC Educational Resources Information Center

    Solomon, Gerard; And Others

    Complete with student worksheets, field trip ideas, illustrations, vocabulary lists, suggested materials, and step-by-step procedures, the document presents a compilation of ideas for teaching elementary school (K-6) students about marine and fresh water. In the first unit students build miniature monuments and observe the deterioration of…

  2. The Nation's School of the Year. Valley Winds Elementary School, St. Louis County, Missouri.

    ERIC Educational Resources Information Center

    Boggs, Bruce J.

    1965-01-01

    A description of how a progressive educational program dictates the unusual form of an elementary school for 660 is presented. Featured in the design are--(1) flexibility of space usage, (2) an instructional materials center, (3) an audiovisual nerve center, (4) the spiral building configuration, and (5) the stimulating learning environment.…

  3. Learning without Boundaries: Developing Mobile Learning Scenarios for Elementary and Middle School Language Arts & Mathematics

    ERIC Educational Resources Information Center

    Evans, Michael A.; Gracanin, Denis

    2009-01-01

    This article provides an overview to a collaborative knowledge building project using iPod Touches in elementary and secondary language arts and mathematics classrooms, working with 4 teachers and over 80 students. The interactive technologies for embodied Learning in Reading and Mathematics (iteL*RM) project intends to facilitate student…

  4. Improving Access to Elementary School Social Studies Instruction: Strategies to Support Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Ciullo, Stephen

    2015-01-01

    Social studies instruction in upper elementary school (Grades 3-5) is important for building foundational content knowledge to equip students for the secondary school curriculum. Due to numerous school initiatives and demands on the time of teachers, social studies instruction can play second fiddle to reading and mathematics instruction, which…

  5. Circuit Sense for Elementary Teachers and Students: Understanding and Building Simple Logic Circuits.

    ERIC Educational Resources Information Center

    Houghton, Janaye Matteson; Houghton, Robert S.

    Today and in the future, critical toolmaking advances will need to be made in the area of circuit design, construction, and implementation. Traditional school curriculum has sidestepped the area of tool design, especially at the elementary level. This publication addresses a calling for a new curriculum direction, based not only on the study of…

  6. Learning to Lead: A Social Justice Perspective on Understanding Elementary Teacher Leadership in Papua New Guinea

    ERIC Educational Resources Information Center

    Brownlee, Joanne; Scholes, Laura; Farrell, Ann; Davis, Julie; Cook, Donna

    2012-01-01

    Leadership in elementary education is currently recognized as a political imperative in Papua New Guinea (PNG), as the nation develops strategies towards equitable access to schooling. One recent initiative aimed at building educational leadership was an intensive Australian Leadership Award Fellowship (ALAF) program funded by AusAID, involving a…

  7. The Effect of a Noise Reducing Test Accommodation on Elementary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Smith, Gregory W.; Riccomini, Paul J.

    2013-01-01

    Researchers in the fields of cognitive psychology and education have been studying the negative effects of noise on human performance for almost a century. A new empirical study that builds upon past relevant research on (1) test accommodations and (2) auditory distraction and academic performance was conducted with elementary age students.…

  8. Teacher Leaders Building Foundations for Data-Informed Teacher Learning in One Urban Elementary School

    ERIC Educational Resources Information Center

    Nicholson, Julie; Capitelli, Sarah; Richert, Anna E.; Wilson, Carrie; Bove, Claire

    2017-01-01

    We examine how teacher leaders (TLs), working in a low-income urban elementary school, supported their colleagues to learn how to collect quality formative data and to discuss it in collaborative conversations in order to make their students' learning visible. The TLs faced challenges reflecting consequences resulting from the district's high…

  9. Facilitating the Inclusion of Mildly Disabled Elementary Students in an Innercity School: A Service Delivery Model.

    ERIC Educational Resources Information Center

    Clarke, Sharon

    The goal of this practicum was to have building-based special education personnel support classroom teachers so that mildly disabled elementary students in an inner city school could be included in the classroom successfully. Through inservice education sessions, the staff were provided with current information on facilitating the inclusion of…

  10. The Effects of 3D-Representation Instruction on Composite-Solid Surface-Area Learning for Elementary School Students

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Shih, Pao-Chen; Chang, Kuo-En

    2015-01-01

    Providing instruction on spatial geometry, specifically how to calculate the surface areas of composite solids, challenges many elementary school teachers. Determining the surface areas of composite solids involves complex calculations and advanced spatial concepts. The goals of this study were to build on students' learning processes for…

  11. Coral Way Elementary School: A Success Story in Bilingualism and Biliteracy.

    ERIC Educational Resources Information Center

    Pellerano, Cristina; Fradd, Sandra H.; Rovira, Lourdes

    1998-01-01

    Coral Way Elementary School (Florida), the nation's oldest 20th-century public bilingual school, is recognized as a model for bilingual education. Its curriculum promotes enrichment and language development while building on the languages students bring to school. As well as a medium for moving students to English proficiency, it is a vehicle for…

  12. The Perceptions of Elementary Principals about Their Role in the Establishment of Collaborative Workplaces in Their School Buildings

    ERIC Educational Resources Information Center

    Sullivan, Bradley D.

    2012-01-01

    The purpose of this case study was to develop an understanding of the elementary principal's perceived role in creating and sustaining a collaborative workplace environment within their school. Collaboration among education professionals, when used effectively, is one strategy that has demonstrated improvement of instruction and student learning.…

  13. Trajectories of Anxiety during Elementary-School Years and the Prediction of High School Noncompletion

    ERIC Educational Resources Information Center

    Duchesne, Stephane; Vitaro, Frank; Larose, Simon; Tremblay, Richard E.

    2008-01-01

    Previous research has provided mixed results regarding the effect of anxiety on academic achievement. Building on this body of research, the present longitudinal study pursued two goals. The first goal was to describe trajectories of anxiety during elementary-school years. The second goal was to determine the predictive value of these trajectories…

  14. Increasing Elementary and High School Student Motivation through the Use of Extrinsic and Intrinsic Rewards

    ERIC Educational Resources Information Center

    Haywood, Joey; Kuespert, Sarah; Madecky, Dani; Nor, Abbey

    2008-01-01

    This action research project report examined strategies to motivate students from extrinsically rewarding behaviors to intrinsically motivating behaviors. The action research was conducted in two different schools by four different teacher researchers within the same district. Three teachers in an elementary building (Site A) and one teacher in a…

  15. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  16. Self-Advocacy: The Importance of Building Interpersonal-Communication and Help-Seeking Skills in Elementary School Children

    ERIC Educational Resources Information Center

    Gasparini, Daniel

    2014-01-01

    Now, more so than in the past, children have been deprived of the opportunity to learn and exercise effective interpersonal communication skills. Interpersonal communication skills, for elementary students, are important in the development of a student's ability to self-advocate. The purpose of this study is to identify techniques in which…

  17. Automate Your Physical Plant Using the Building Block Approach.

    ERIC Educational Resources Information Center

    Michaelson, Matt

    1998-01-01

    Illustrates how Mount Saint Vincent University (Halifax), by upgrading the control and monitoring of one building or section of the school at a time, could produce savings in energy and operating costs and improve the environment. Explains a gradual, "building block" approach to facility automation that provides flexibility without a…

  18. Building Numbers from Primes

    ERIC Educational Resources Information Center

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  19. 2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS 2000 BLOCK OF MORRIS AVENUE WITH HEAVIEST CORNER ON EARTH BUILDINGS (TOP LEFT) AND COMER BUILDING (TOP RIGHT) - Morris Avenue Warehouse District, 2000-2400 blocks of Morris Avenue & 2100-2500 blocks of First Avenue, North, Birmingham, Jefferson County, AL

  20. Automated electrochemical assembly of the protected potential TMG-chitotriomycin precursor based on rational optimization of the carbohydrate building block.

    PubMed

    Nokami, Toshiki; Isoda, Yuta; Sasaki, Norihiko; Takaiso, Aki; Hayase, Shuichi; Itoh, Toshiyuki; Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-ichi

    2015-03-20

    The anomeric arylthio group and the hydroxyl-protecting groups of thioglycosides were optimized to construct carbohydrate building blocks for automated electrochemical solution-phase synthesis of oligoglucosamines having 1,4-β-glycosidic linkages. The optimization study included density functional theory calculations, measurements of the oxidation potentials, and the trial synthesis of the chitotriose trisaccharide. The automated synthesis of the protected potential N,N,N-trimethyl-d-glucosaminylchitotriomycin precursor was accomplished by using the optimized building block.

  1. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    PubMed Central

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973

  2. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  3. Build Your Own Space Station

    NASA Technical Reports Server (NTRS)

    Bolinger, Allison

    2016-01-01

    This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.

  4. School Capacity. Educational Facility Series; A Guide to Planning.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton. Bureau of School Planning Services.

    Information, instructions and worksheets are provided for use in computing the functional capacity of an elementary, middle or secondary school building. The functional capacity is the number of pupils that can adequately be housed in a school building without overcrowding. (FS)

  5. Unsentimental Education.

    ERIC Educational Resources Information Center

    Guiney, Anne

    2001-01-01

    Explains how architect Mathias Klotz skillfully exploited qualities of Santiago, Chile's, urban landscape, including mountains, low buildings, wide streets, modest houses, and cars to create a simple elementary and high school building that provides occupants with a sophisticated and rich environment. Includes nine photographs, three plans, and a…

  6. Inquiring Minds

    Science.gov Websites

    and leptons seem to be the fundamental building blocks - but perhaps there is something even smaller properties of the fundamental building blocks of our universe, there are untold mysteries still to solve

  7. Measuring health systems strength and its impact: experiences from the African Health Initiative.

    PubMed

    Sherr, Kenneth; Fernandes, Quinhas; Kanté, Almamy M; Bawah, Ayaga; Condo, Jeanine; Mutale, Wilbroad

    2017-12-21

    Health systems are essential platforms for accessible, quality health services, and population health improvements. Global health initiatives have dramatically increased health resources; however, funding to strengthen health systems has not increased commensurately, partially due to concerns about health system complexity and evidence gaps demonstrating health outcome improvements. In 2009, the African Health Initiative of the Doris Duke Charitable Foundation began supporting Population Health Implementation and Training Partnership projects in five sub-Saharan African countries (Ghana, Mozambique, Rwanda, Tanzania, and Zambia) to catalyze significant advances in strengthening health systems. This manuscript reflects on the experience of establishing an evaluation framework to measure health systems strength, and associate measures with health outcomes, as part of this Initiative. Using the World Health Organization's health systems building block framework, the Partnerships present novel approaches to measure health systems building blocks and summarize data across and within building blocks to facilitate analytic procedures. Three Partnerships developed summary measures spanning the building blocks using principal component analysis (Ghana and Tanzania) or the balanced scorecard (Zambia). Other Partnerships developed summary measures to simplify multiple indicators within individual building blocks, including health information systems (Mozambique), and service delivery (Rwanda). At the end of the project intervention period, one to two key informants from each Partnership's leadership team were asked to list - in rank order - the importance of the six building blocks in relation to their intervention. Though there were differences across Partnerships, service delivery and information systems were reported to be the most common focus of interventions, followed by health workforce and leadership and governance. Medical products, vaccines and technologies, and health financing, were the building blocks reported to be of lower focus. The African Health Initiative experience furthers the science of evaluation for health systems strengthening, highlighting areas for further methodological development - including the development of valid, feasible measures sensitive to interventions in multiple contexts (particularly in leadership and governance) and describing interactions across building blocks; in developing summary statistics to facilitate testing intervention effects on health systems and associations with health status; and designing appropriate analytic models for complex, multi-level open health systems.

  8. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study.

    PubMed

    Mutale, Wilbroad; Bond, Virginia; Mwanamwenge, Margaret Tembo; Mlewa, Susan; Balabanova, Dina; Spicer, Neil; Ayles, Helen

    2013-08-01

    The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia's MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions.

  9. Rapid and annealing-free self-assembly of DNA building blocks for 3D hydrogel chaperoned by cationic comb-type copolymers.

    PubMed

    Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie

    2017-10-01

    The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.

  10. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    NASA Astrophysics Data System (ADS)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  11. Portrait of a Remarkable School.

    ERIC Educational Resources Information Center

    Lutz, J. P.; And Others

    1989-01-01

    President Ronald Reagan honored the Gulf Elementary School of Cape Coral, Florida, for national excellence and achievement. The school followed four major steps to success: (1) build an academic foundation; (2) establish, monitor, and maintain high expectations; (3) build positive discipline; and (4) provide academic enrichment. (SI)

  12. Concepts and tools for predictive modeling of microbial dynamics.

    PubMed

    Bernaerts, Kristel; Dens, Els; Vereecken, Karen; Geeraerd, Annemie H; Standaert, Arnout R; Devlieghere, Frank; Debevere, Johan; Van Impe, Jan F

    2004-09-01

    Description of microbial cell (population) behavior as influenced by dynamically changing environmental conditions intrinsically needs dynamic mathematical models. In the past, major effort has been put into the modeling of microbial growth and inactivation within a constant environment (static models). In the early 1990s, differential equation models (dynamic models) were introduced in the field of predictive microbiology. Here, we present a general dynamic model-building concept describing microbial evolution under dynamic conditions. Starting from an elementary model building block, the model structure can be gradually complexified to incorporate increasing numbers of influencing factors. Based on two case studies, the fundamentals of both macroscopic (population) and microscopic (individual) modeling approaches are revisited. These illustrations deal with the modeling of (i) microbial lag under variable temperature conditions and (ii) interspecies microbial interactions mediated by lactic acid production (product inhibition). Current and future research trends should address the need for (i) more specific measurements at the cell and/or population level, (ii) measurements under dynamic conditions, and (iii) more comprehensive (mechanistically inspired) model structures. In the context of quantitative microbial risk assessment, complexity of the mathematical model must be kept under control. An important challenge for the future is determination of a satisfactory trade-off between predictive power and manageability of predictive microbiology models.

  13. An Analysis of the Time Use of Elementary School Library Media Specialists and Factors That Influence It.

    ERIC Educational Resources Information Center

    Deusen, Jean Donham van

    1996-01-01

    Elementary library media specialists in Iowa recorded their use of time for two days. Descriptive measures indicated nearly equal amounts of time for direct services and for management and operations activities. Automation, scheduling, support staff, and number of buildings served by the media specialist were found to have a significant influence…

  14. Teaching Academic Content and Literacy to English Learners in Elementary and Middle School. IES Practice Guide. NCEE 2014-4012

    ERIC Educational Resources Information Center

    Baker, Scott; Lesaux, Nonie; Jayanthi, Madhavi; Dimino, Joseph; Proctor, C. Patrick; Morris, Joan; Gersten, Russell; Haymond, Kelly; Kieffer, Michael J.; Linan-Thompson, Sylvia; Newman-Gonchar, Rebecca

    2014-01-01

    As English learners face the double demands of building knowledge of a second language while learning complex grade-level content, teachers must find effective ways to make challenging content comprehensible for students. This updated English learner practice guide, "Teaching Academic Content and Literacy to English Learners in Elementary and…

  15. Urban Forestry Laboratory Exercises for Elementary, Middle and High School Students.

    ERIC Educational Resources Information Center

    Kupkowski, Gary; And Others

    The curriculum in this program has been developed for the elementary, middle, and high school levels. Each level builds on the other, and forms a "thread of skills" that are upgraded at each level. The program is divided into two components. The first component is for the development of a school arboretum, tree walk, and herbarium. The second…

  16. Exploratory Case Studies of the Role of the Community School Coordinator: Developing the School Social Network in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Ruffin, Verna Dean

    2013-01-01

    This exploratory case study examines the role of the community school coordinator (CSC) in the community school model in two urban elementary schools. It seeks to understand how the role and responsibilities of a community school coordinator supports fostering relationships with parents, teachers, students and the community (i.e. building the…

  17. Working toward a Third Space in the Teaching of Elementary Mathematics

    ERIC Educational Resources Information Center

    Flessner, Ryan

    2009-01-01

    Building on work in the area of third space theory, this study documents one teacher's efforts to create third spaces in an elementary mathematics classroom. In an attempt to link the worlds of theory and practice, I examine how the work of other theorists and researchers--inside and outside the field of education--can create new lenses for…

  18. Teacher Leadership: A Delphi Study of Factors in Building Teacher Leadership Capacity in Elementary Educational Organizations

    ERIC Educational Resources Information Center

    Castilleja Gray, Beatrice

    2016-01-01

    Purpose: The purpose of this qualitative study was to identify and describe the most important factors that motivate or deter teachers in deciding to take on the informal or formal role of teacher-leader in Riverside County elementary school districts. Methodology: Endemic of a Delphi method, the instruments used within this study collected data…

  19. Every Child Is a V.I.P.: A Schoolwide Program to Build Self- Esteem.

    ERIC Educational Resources Information Center

    Gemmer, Thomas C.

    Many forces work to undermine the self-esteem and attitude toward school of an elementary school student. A program to reverse this trend, the V.I.P. (Very Important Person) Program, was undertaken in a Florida elementary school. For the counselor this program provides contact with every student, positive communications with parents, and a way to…

  20. A Synthesis of Interventions for Improving Oral Reading Fluency of Elementary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Kim, Min Kyung; Bryant, Diane Pedrotty; Bryant, Brian R.; Park, Yujeong

    2017-01-01

    A synthesis of the research literature was conducted from 2004 to 2014 on interventions designed to build oral reading fluency for elementary students with learning disabilities (LD). An extensive search yielded a total of 12 intervention studies. Among the 12 studies, the majority (n = 9) implemented repeated reading with or without a model.…

  1. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    ERIC Educational Resources Information Center

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  2. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    ERIC Educational Resources Information Center

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  3. A Case Study of General Education Teacher Use of Picture Books to Support Inclusive Practice in the Primary Grades of an Inclusive Elementary School

    ERIC Educational Resources Information Center

    Bland, Carol Mason

    2013-01-01

    Scholars advocate the use of children's literature to help build awareness, understanding, and acceptance of disability in elementary school classrooms. Moreover, children's literature has been used as a component of disability awareness studies seeking to improve relationships between students with disabilities and their typically developing…

  4. Exploring the Role of Elementary Parent Involvement Coordinators in a North Georgia Title I Charter School District

    ERIC Educational Resources Information Center

    Elrod, Philip

    2015-01-01

    This study explored the role of elementary parent involvement coordinators (EPIC) in a Northeast Georgia Title I Charter School District. EPICs were charged with facilitating programs designed to build social capital and network closure for families. This nested case study explored the experiences of five EPICs, each located in one of the five…

  5. Building Community from Diversity: Connecting Students to Their Learning Environments. An Anthology of Classroom Projects Undertaken for the Kellogg Beacon Grant. Final Report.

    ERIC Educational Resources Information Center

    Mahony, Elizabeth M., Ed.; And Others

    This five-part anthology presents descriptions of 22 classroom projects undertaken by a consortium of Missouri community colleges and elementary and secondary schools, directed by St. Louis Community College. The collection comprises the following articles: "Views of an Elementary Teacher" (Susan Biffignani); "Writing To Learn and…

  6. 15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; 1920-22 PACIFIC AVE., WIEGAL COMPANY CANDY FACTORY (1904); 1924-26 PACIFIC AVE., CAMPBELL BUILDING (DAVIS BUILDING) (1890); 1928-30 PACIFIC AVE., REESE-CRANDALL & REDMAN BUILDING, (1890); 1932-36 PACIFIC AVE., MC DONALD & SMITH BUILDING (1890); 1938-48 PACIFIC AVE., F.S. HARMON COMPANY WAREHOUSE (1908), DESIGNED BY CARL AUGUST DARMER. - Union Depot Area Study, Tacoma, Pierce County, WA

  7. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  8. Intelligent services for discovery of complex geospatial features from remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Yue, Peng; Di, Liping; Wei, Yaxing; Han, Weiguo

    2013-09-01

    Remote sensing imagery has been commonly used by intelligence analysts to discover geospatial features, including complex ones. The overwhelming volume of routine image acquisition requires automated methods or systems for feature discovery instead of manual image interpretation. The methods of extraction of elementary ground features such as buildings and roads from remote sensing imagery have been studied extensively. The discovery of complex geospatial features, however, is still rather understudied. A complex feature, such as a Weapon of Mass Destruction (WMD) proliferation facility, is spatially composed of elementary features (e.g., buildings for hosting fuel concentration machines, cooling towers, transportation roads, and fences). Such spatial semantics, together with thematic semantics of feature types, can be used to discover complex geospatial features. This paper proposes a workflow-based approach for discovery of complex geospatial features that uses geospatial semantics and services. The elementary features extracted from imagery are archived in distributed Web Feature Services (WFSs) and discoverable from a catalogue service. Using spatial semantics among elementary features and thematic semantics among feature types, workflow-based service chains can be constructed to locate semantically-related complex features in imagery. The workflows are reusable and can provide on-demand discovery of complex features in a distributed environment.

  9. Reorganization of the Connectivity between Elementary Functions – A Model Relating Conscious States to Neural Connections

    PubMed Central

    Mogensen, Jesper; Overgaard, Morten

    2017-01-01

    In the present paper it is argued that the “neural correlate of consciousness” (NCC) does not appear to be a separate “module” – but an aspect of information processing within the neural substrate of various cognitive processes. Consequently, NCC can only be addressed adequately within frameworks that model the general relationship between neural processes and mental states – and take into account the dynamic connectivity of the brain. We presently offer the REFGEN (general reorganization of elementary functions) model as such a framework. This model builds upon and expands the REF (reorganization of elementary functions) and REFCON (of elementary functions and consciousness) models. All three models integrate the relationship between the neural and mental layers of description via the construction of an intermediate level dealing with computational states. The importance of experience based organization of neural and cognitive processes is stressed. The models assume that the mechanisms of consciousness are in principle the same as the basic mechanisms of all aspects of cognition – when information is processed to a sufficiently “high level” it becomes available to conscious experience. The NCC is within the REFGEN model seen as aspects of the dynamic and experience driven reorganizations of the synaptic connectivity between the neurocognitive “building blocks” of the model – the elementary functions. PMID:28473797

  10. How Crossover Speeds up Building Block Assembly in Genetic Algorithms.

    PubMed

    Sudholt, Dirk

    2017-01-01

    We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every ([Formula: see text]+[Formula: see text]) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate [Formula: see text] and [Formula: see text]. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from [Formula: see text] to [Formula: see text]. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.

  11. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    PubMed

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  12. Single molecule magnets from magnetic building blocks

    NASA Astrophysics Data System (ADS)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  13. Embeddable Reconfigurable Neuroprocessors

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Duong, Tuan; Langenbacher, Harry; Tran, Mua; Thakoor, Anil

    1993-01-01

    Reconfigurable and cascadable building block neural network chips, fabricated using analog VLSI design tools, are interfaced to a PC. The building block chip designs, the cascadability and the hardware-in-the-loop supervised learning aspects of these chips are described.

  14. Two-dimensional non-volatile programmable p-n junctions

    NASA Astrophysics Data System (ADS)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  15. Loading a single photon into an optical cavity

    NASA Astrophysics Data System (ADS)

    Du, Shengwang; Liu, Chang; Sun, Yuan; Zhao, Luwei; Zhang, Shanchao; Loy, M. M. T.

    2015-05-01

    Confining and manipulating single photons inside a reflective optical cavity is an essential task of cavity quantum electrodynamics (CQED) for probing the quantum nature of light quanta. Such systems are also elementary building blocks for many protocols of quantum network, where remote cavity quantum nodes are coupled through flying photons. The connectivity and scalability of such a quantum network strongly depends on the efficiency of loading a single photon into cavity. In this work we demonstrate that a single photon with an optimal temporal waveform can be efficiently loaded into a cavity. Using heralded narrow-band single photons with exponential growth wave packet whose time constant matches the photon lifetime in the cavity, we demonstrate a loading efficiency of more than 87 percent from free space to a single-sided Fabry-Perot cavity. Our result and approach may enable promising applications in realizing large-scale CQED-based quantum networks. The work was supported by the Hong Kong RGC (Project No. 601411).

  16. On the Spectrum of the Plenoptic Function.

    PubMed

    Gilliam, Christopher; Dragotti, Pier-Luigi; Brookes, Mike

    2014-02-01

    The plenoptic function is a powerful tool to analyze the properties of multi-view image data sets. In particular, the understanding of the spectral properties of the plenoptic function is essential in many computer vision applications, including image-based rendering. In this paper, we derive for the first time an exact closed-form expression of the plenoptic spectrum of a slanted plane with finite width and use this expression as the elementary building block to derive the plenoptic spectrum of more sophisticated scenes. This is achieved by approximating the geometry of the scene with a set of slanted planes and evaluating the closed-form expression for each plane in the set. We then use this closed-form expression to revisit uniform plenoptic sampling. In this context, we derive a new Nyquist rate for the plenoptic sampling of a slanted plane and a new reconstruction filter. Through numerical simulations, on both real and synthetic scenes, we show that the new filter outperforms alternative existing filters.

  17. Self-organization of network dynamics into local quantized states

    DOE PAGES

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    2016-02-17

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less

  18. Self-organization of network dynamics into local quantized states.

    PubMed

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    2016-02-17

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model-a minimal-ingredients model of nodal activation and interaction within a complex network-is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.

  19. Self-organization of network dynamics into local quantized states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less

  20. Two-dimensional non-volatile programmable p-n junctions.

    PubMed

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe 2 /hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 10 4 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  1. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    DOE PAGES

    Tselev, Alexander; Yu, Pu; Cao, Ye; ...

    2016-05-31

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less

  2. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  3. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  4. Tops as building blocks for G 2 manifolds

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.

    2017-10-01

    A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.

  5. Origami-inspired building block and parametric design for mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  6. Large space erectable structures - building block structures study

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.

    1977-01-01

    A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.

  7. When Students Say School Makes Them Sick, Sometimes They're Right.

    ERIC Educational Resources Information Center

    Reecer, Marcia

    1988-01-01

    "Sick building syndrome" results mainly from tightly sealed, poorly ventilated buildings with low levels of airborne pollutants. This article describes the problem at a Pennsylvania elementary school, examines roles of specific contaminants, and discusses credibility problems, prescriptions, and preventive measures. Insets explain causes…

  8. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE PAGES

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...

    2015-05-15

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less

  9. View of the southwest guard tower, cell blocks seven and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the southwest guard tower, cell blocks seven and eight, administration building west tower, and Fairmount Avenue, looking from the administration building facing west - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  10. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    PubMed

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  11. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction

    NASA Astrophysics Data System (ADS)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  12. Expanding the biomass derived chemical space

    PubMed Central

    Brun, Nicolas; Hesemann, Peter

    2017-01-01

    Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this “renewable chemical space” to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities. In order to be integrated into value-added compounds, they require additional functionalization and/or covalent modification thereby generating secondary building blocks. The latter can be thus regarded as functional components of bio-active molecules or materials and represent an expansion of the renewable chemical space. This perspective highlights the most recent developments and opportunities for the synthesis of secondary biomass derived building blocks and their application to the preparation of value added products. PMID:28959397

  13. Witten diagrams revisited: the AdS geometry of conformal blocks

    DOE PAGES

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; ...

    2016-01-25

    Here, we develop a new method for decomposing blocks. The steps involved are elementary, requiring no explicit integration, and operate directly in position space. Central to this construction is an appealingly simple answer to the question: what object in AdS computes a conformal block? The answer is a "geodesic Witten diagram", which is essentially an ordinary exchange Witten diagram, except that the cubic vertices are not integrated over all of AdS, but only over bulk geodesics connecting the boundary operators. In particular, we also consider the case of four-point functions of scalar operators, and show how to easily reproduce existingmore » results for the relevant conformal blocks in arbitrary dimension.« less

  14. Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles - a review

    NASA Astrophysics Data System (ADS)

    Martin, Sara F.

    2018-05-01

    Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3-4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or sometimes not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42-75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of large active regions being generated in the same way and close the same depth as small active regions in a shallow zone below the photosphere. All evidence considered together, understanding the origins of the magnetic fields of solar cycles boils down to learning how and where elementary bipoles are generated beneath the photosphere.

  15. Hydraulic logic gates: building a digital water computer

    NASA Astrophysics Data System (ADS)

    Taberlet, Nicolas; Marsal, Quentin; Ferrand, Jérémy; Plihon, Nicolas

    2018-03-01

    In this article, we propose an easy-to-build hydraulic machine which serves as a digital binary computer. We first explain how an elementary adder can be built from test tubes and pipes (a cup filled with water representing a 1, and empty cup a 0). Using a siphon and a slow drain, the proposed setup combines AND and XOR logical gates in a single device which can add two binary digits. We then show how these elementary units can be combined to construct a full 4-bit adder. The sequencing of the computation is discussed and a water clock can be incorporated so that the machine can run without any exterior intervention.

  16. Building Everyday Leadership in All Kids: An Elementary Curriculum to Promote Attitudes and Actions for Respect and Success

    ERIC Educational Resources Information Center

    MacGregor, Mariam G.

    2013-01-01

    "Building Everyday Leadership in All Kids" emphasizes that anyone can be a leader--and it's never too early to start learning what leadership means and how to lead. This resource engages all emerging leaders, at all emotional and academic levels, by taking a full, practical approach to building personal and group leadership attitudes.…

  17. Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Our Savior's School.

    ERIC Educational Resources Information Center

    Parker, Danny S.; Sherwin, John R.; Sonne, Jeffrey K.; Barkaszi, Stephen F., Jr.

    A 2-year Florida study attempted to quantify air conditioning cost savings when buildings have a white reflective roof. A 10,000 square foot elementary school with a gray modified bitumen roof over plywood decking that had a solar reflectance of 23 percent was monitored for an entire year. After one year of building thermal conditions and…

  18. A VLSI decomposition of the deBruijn graph

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Mceliece, R.; Pollara, F.

    1990-01-01

    A new Viterbi decoder for convolutional codes with constraint lengths up to 15, called the Big Viterbi Decoder, is under development for the Deep Space Network. It will be demonstrated by decoding data from the Galileo spacecraft, which has a rate 1/4, constraint-length 15 convolutional encoder on board. Here, the mathematical theory underlying the design of the very-large-scale-integrated (VLSI) chips that are being used to build this decoder is explained. The deBruijn graph B sub n describes the topology of a fully parallel, rate 1/v, constraint length n+2 Viterbi decoder, and it is shown that B sub n can be built by appropriately wiring together (i.e., connecting together with extra edges) many isomorphic copies of a fixed graph called a B sub n building block. The efficiency of such a building block is defined as the fraction of the edges in B sub n that are present in the copies of the building block. It is shown, among other things, that for any alpha less than 1, there exists a graph G which is a B sub n building block of efficiency greater than alpha for all sufficiently large n. These results are illustrated by describing a special hierarchical family of deBruijn building blocks, which has led to the design of the gate-array chips being used in the Big Viterbi Decoder.

  19. TLC II. Talking, Listening, Communicating II. A Curriculum Guide for Small Groups.

    ERIC Educational Resources Information Center

    Treat, Carol Lou; Bormaster, Jeff

    This workbook provides affective education activities in building human relations skills in elementary and secondary school students in small discussion groups. Goals of the talking-listening-communicating (TLC) groups are: to develop positive regard for individual differences; to build a sense of belonging; to foster horizontal, nonauthoritative…

  20. Partners in Character: Building a Moral Culture.

    ERIC Educational Resources Information Center

    Sudeck, Maria; Dinovi, Raymond; Gehringer, Christine; Tonia, Rachael; Wuillermin, Monica

    This paper describes the professional partnership between Rowan University, New Jersey, and Radix Elementary School, emphasizing the building of a moral culture in the learning community. The partnership is a driving force behind the movement to promote character education within the school community. This is being accomplished by facilitating…

  1. FLASTAR: Florida Alliance for Saving Taxes and Energy Resources. Final Report.

    ERIC Educational Resources Information Center

    Sherwin, John R.; Parker, Danny S.

    A study of the Florida Public Building Loan Concept pilot program determined its effectiveness in helping to upgrade building energy systems. The pilot program, termed FLASTAR (Florida Alliance for Saving Taxes and Resources), involved the comprehensive metering of an elementary school to demonstrate energy savings potential after retrofitting…

  2. SOCIAL PSYCHOLOGICAL ASPECTS OF SCHOOL BUILDING DESIGN.

    ERIC Educational Resources Information Center

    KEITH, PAT M.; SMITH, LOUIS M.

    THE DEVELOPMENT AND INTEGRATION OF SOCIOPSYCHOLOGICAL ASPECTS OF SCHOOL DESIGN WERE INVESTIGATED BY FOCUSING ON THE IMPACT OF A UNIQUELY DESIGNED ELEMENTARY SCHOOL BUILDING, THE KENSINGTON SCHOOL. AN ATTEMPT WAS MADE TO SYNTHESIZE ROLE THEORY, DECISION MAKING THEORY, SOCIAL SYSTEM THEORY, AND SUCH PROBLEM AREAS AS STAFF PEER GROUPS, EDUCATIONAL…

  3. Educational Excellence for All Children Act of 1999: An Overview of the Clinton Administration's Proposal To Reauthorize the Elementary and Secondary Education Act.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This volume discusses "Educational Excellence for All Children Act of 1999, the proposed reauthorization of the Elementary and Secondary Education Act (ESEA), which was established in 1965 as part of Lyndon Johnson's "War on Poverty" program. The proposed 1999 Act builds upon the 1994 reauthorization of ESEA titled "Improving…

  4. Framework for Nutrition Education: A Guide for Elementary Teachers, Grades K-6. Bulletin 1976, No. 5.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery. Div. of Administration and Finance.

    The purpose of this guide is to provide a framework on which elementary school teachers (K through 6) can build a nutrition program that can be implemented into the existing curriculum. Founded on the importance of early and sound education for instilling good nutrition habits, the guide is divided into three grade levels: K through 2 (Discovering…

  5. Building Forts and Drawing on Walls: Fostering Student-Initiated Creativity inside and outside the Elementary Classroom

    ERIC Educational Resources Information Center

    Rufo, David

    2012-01-01

    The arts embody "one of the oldest forms of knowledge and knowing" and "action research provides opportunities to experiment with art as an integral part of the creation and dissemination of knowledge." From his 16 years' experience as an elementary classroom teacher, the author has found that young children are drawn to an arts-based approach of…

  6. Making Mass Schooling Affordable: In-Kind Taxation and the Establishment of an Elementary School System in Sweden, 1840-1870

    ERIC Educational Resources Information Center

    Westberg, Johannes

    2016-01-01

    This article discusses the significance of in-kind taxation and payments in kind for the establishment of an elementary school system in Sweden, in the 1840-1870 period. By analysing the funding of teachers' wages, the heating of the school facilities, and school building construction in the 12 rural school districts of the Sundsvall region, this…

  7. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  8. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    PubMed

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  9. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study

    PubMed Central

    2013-01-01

    Background The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia’s MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. Methods A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. Results The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. Conclusion The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions. PMID:23902601

  10. ABCs of Early Mathematics Experiences

    ERIC Educational Resources Information Center

    Hensen, Laurie E.

    2005-01-01

    Children begin to develop mathematical thinking before they enter school. Art, baking, playing with blocks, counting numbers, games, puzzles, singing, playing with pretend money, water play all these early mathematical experiences help the children to learn in the elementary school years.

  11. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less

  12. The role of multivalency in the association kinetics of patchy particle complexes.

    PubMed

    Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G

    2017-06-21

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  13. The role of multivalency in the association kinetics of patchy particle complexes

    NASA Astrophysics Data System (ADS)

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2017-06-01

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  14. Command-line cellular electrophysiology for conventional and real-time closed-loop experiments.

    PubMed

    Linaro, Daniele; Couto, João; Giugliano, Michele

    2014-06-15

    Current software tools for electrophysiological experiments are limited in flexibility and rarely offer adequate support for advanced techniques such as dynamic clamp and hybrid experiments, which are therefore limited to laboratories with a significant expertise in neuroinformatics. We have developed lcg, a software suite based on a command-line interface (CLI) that allows performing both standard and advanced electrophysiological experiments. Stimulation protocols for classical voltage and current clamp experiments are defined by a concise and flexible meta description that allows representing complex waveforms as a piece-wise parametric decomposition of elementary sub-waveforms, abstracting the stimulation hardware. To perform complex experiments lcg provides a set of elementary building blocks that can be interconnected to yield a large variety of experimental paradigms. We present various cellular electrophysiological experiments in which lcg has been employed, ranging from the automated application of current clamp protocols for characterizing basic electrophysiological properties of neurons, to dynamic clamp, response clamp, and hybrid experiments. We finally show how the scripting capabilities behind a CLI are suited for integrating experimental trials into complex workflows, where actual experiment, online data analysis and computational modeling seamlessly integrate. We compare lcg with two open source toolboxes, RTXI and RELACS. We believe that lcg will greatly contribute to the standardization and reproducibility of both simple and complex experiments. Additionally, on the long run the increased efficiency due to a CLI will prove a great benefit for the experimental community. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  16. Dendronized Metal Nanoparticles-Self-Organizing Building Blocks for the Design of New Functional Materials

    DTIC Science & Technology

    2016-04-01

    characterization has just started.       The hybrids that we have synthesized are based on plasmonic gold and  silver   nanoparticles  (NPs) but  the concept  is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT

  17. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks.

    PubMed

    Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He

    2014-01-13

    A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Three dimensional Origami-based metamaterial

    NASA Astrophysics Data System (ADS)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan; High Performance Materials; Structures Labratory Team

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson's ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  19. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1991-01-01

    We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.

  20. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  1. Using Mindfulness to Build a Transformative School Culture: A Phenomenological Study of Elementary School Principals Who Create an Atmosphere of Academic Rigor and Teacher Effectiveness

    ERIC Educational Resources Information Center

    FitzGerald, Susan

    2012-01-01

    This study focused on the motivations and discernment leading to the transformational leadership approach and showed there is continuing momentum in the area towards mindful engagement to build trust in a school culture. The purpose of the study was to investigate how transformational leaders build a culture through trust and commitment within a…

  2. "I Wish Everyone Had a Library Like This": Year 2 Report on the Baltimore Elementary and Middle School Library Project

    ERIC Educational Resources Information Center

    Sheldon, Steven B.; Davis, Marcia H.

    2015-01-01

    This report focuses on the opening of new school libraries and their impact on schools, teachers and students after two years of implementation of the Baltimore Elementary and Middle School Library Project (Library Project). The findings build on the first report of this project and show that it is not just new facilities, but also the added…

  3. How Rural Elementary Building Principals Conceptualize the Programs in Their Schools, the Processes of Connecting Students to Programs, and Their Leadership Role in Doing So

    ERIC Educational Resources Information Center

    Hatton, Holly

    2013-01-01

    Principals in rural schools lead with an awareness of multiple contingent factors that influence their decisions every day regarding programming for students. The purpose of this research is to examine how rural elementary school principals conceptualize programs in their schools, the processes used to connect students to these programs, and their…

  4. Hydration effects on the electronic properties of eumelanin building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assis Oliveira, Leonardo Bruno; Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO; Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in themore » electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.« less

  5. Hydration effects on the electronic properties of eumelanin building blocks.

    PubMed

    Assis Oliveira, Leonardo Bruno; L Fonseca, Tertius; Costa Cabral, Benedito J; Coutinho, Kaline; Canuto, Sylvio

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  6. Hydration effects on the electronic properties of eumelanin building blocks

    NASA Astrophysics Data System (ADS)

    Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-08-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  7. ARCHITECTURE FOR ADULT EDUCATION. A GRAPHIC GUIDE FOR THOSE WHO ARE PLANNING PHYSICAL FACILITIES FOR ADULT EDUCATION.

    ERIC Educational Resources Information Center

    BECKER, JOHN W.

    THIS BOOK IS DESIGNED PARTICULARLY FOR THOSE PLANNING PHYSICAL FACILITIES FOR ADULT EDUCATION. FLOOR PLANS, PHOTOGRAPHS AND DISCUSSION ARE GIVEN FOR BUILDINGS USED FOR HOSPITALS, HEALTH CENTERS, INDUSTRY, ELEMENTARY SCHOOLS, HIGH SCHOOLS, COLLEGE BUILDINGS, FINE ARTS, LIBRARIES, RECREATION COMMUNITY CENTERS, AND ADULT EDUCATION. COPIES OF THIS…

  8. 'Buildings in Use' Study. Technical Factors.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Milwaukee. School of Architecture and Urban Planning.

    The second report of the 'Buildings in Use' study documents the results of over 100 field tests conducted at four elementary schools, as well as discussion of these results and relevant technical specifications and details. The procedural framework used in the Field Tests Manual is followed and test results are rated numerically wherever possible.…

  9. Building Relationships Step by Step: One Teacher Leader's Journey

    ERIC Educational Resources Information Center

    Mangin, Melinda M.

    2010-01-01

    This case describes how Hannah, a new math specialist, strives to create a positive math culture in her elementary school. Along the way, she works to build relationships with the teachers and the school principal. The accompanying teaching notes facilitate analysis of the case from the perspective of professional relationships in schools.

  10. A Toolkit of Strategies: Building Literacy in the World Languages Classroom

    ERIC Educational Resources Information Center

    Zeppieri, Rosanne; Russel, Priscilla

    2013-01-01

    In elementary schools around the United States, children learn in text-rich environments with literacy a primary goal of instruction, whether the instruction is in Arabic, Chinese, English, French, Russian, or Spanish. Nonetheless, second language instruction is often overlooked as a vehicle for building students' reading, writing, speaking,…

  11. Building Academic Confidence in English Language Learners in Elementary School

    ERIC Educational Resources Information Center

    Vazquez, Alejandra

    2014-01-01

    Non-English speaking students lack the confidence and preparation to be verbally actively engaged in the classroom. Students may frequently display hesitation in learning to speak English, and may also lack a teacher's guidance in becoming proficient English speakers. The purpose of this research is to examine how teachers build academic…

  12. Building Social Inclusion through Critical Arts-Based Pedagogies in University Classroom Communities

    ERIC Educational Resources Information Center

    Chappell, Sharon Verner; Chappell, Drew

    2016-01-01

    In humanities and education university classrooms, the authors facilitated counter-narrative arts-based inquiry projects in order to build critical thought and social inclusion. The first author examines public performance installations created by graduate students in elementary and bilingual education on needs-based and dignity-based rights of…

  13. Development of an Empirically Based Learning Performances Framework for Third-Grade Students' Model-Based Explanations about Plant Processes

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2016-01-01

    To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…

  14. The Great Build-a-Buoy Challenge

    ERIC Educational Resources Information Center

    Dickerson, Daniel; Hathcock, Stephanie; Stonier, Frank; Levin, Doug

    2012-01-01

    As Science, Technology, Engineering, and Mathematics (STEM) Education continues to become more visible in elementary school curricula, the need for activities that address STEM content is growing. Build-A-Buoy is one such activity. This activity was developed by Doug Levin in 2008 when he was an education coordinator for the NOAA Chesapeake Bay…

  15. Team Building OD Interventions and Outcomes in a Public School.

    ERIC Educational Resources Information Center

    Patterson, Wade N.; DeVille, Anthony P.

    This paper describes a study of an organization development intervention with an eight-person teaching-support-administrative team in a suburban elementary school. Data for the study were gathered through observation by two participant-observers, through interviews with all eight direct participants in the team-building project, and through a…

  16. Movement planning reflects skill level and age changes in toddlers

    PubMed Central

    Chen, Yu-ping; Keen, Rachel; Rosander, Kerstin; von Hofsten, Claes

    2010-01-01

    Kinematic measures of children’s reaching were found to reflect stable differences in skill level for planning for future actions. Thirty-five toddlers (18–21 months) were engaged in building block towers (precise task) and in placing blocks into an open container (imprecise task). Sixteen children were re-tested on the same tasks a year later. Longer deceleration as the hand approached the block for pickup was found in the tower task compared to the imprecise task, indicating planning for the second movement. More skillful toddlers who could build high towers had a longer deceleration phase when placing blocks on the tower than toddlers who built low towers. Kinematic differences between the groups remained a year later when all children could build high towers. PMID:21077868

  17. Exploring ethnomathematics in Central Java

    NASA Astrophysics Data System (ADS)

    Zaenuri; Dwidayati, N.

    2018-03-01

    This research was intended to: (1) explore the forms of ethnomathematics and (2) analyze the integration of ethnomathematic at elementary and intermediate educations. This research used surveys as the main method. The data were collected by means of questionnaires, observations and documentation as well as literature reviews. The data were then analyzed descriptively and qualitatively. The analyses showed the following results: (1) ethnomathematics within the cultures of communities in northern coastal areas of Java Island were in the forms of: (a) cultural buildings (Menara Kudus), (b) non-cultural buildings, traditional foods and (c) batik motifs, and (2) various forms of ethnomathematics in the communities studied relate to the concepts of mathematics that they could be integrated into mathematic learning-teaching activities both in elementary and intermediate levels.

  18. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  19. Two integrator loop quadrature oscillators: A review.

    PubMed

    Soliman, Ahmed M

    2013-01-01

    A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.

  20. Toward Generalization of Iterative Small Molecule Synthesis

    PubMed Central

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  1. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther

    2017-12-01

    The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.

  2. Building Quality Report Cards for Geriatric Care in The Netherlands: Using Concept Mapping to Identify the Appropriate "Building Blocks" from the Consumer's Perspective

    ERIC Educational Resources Information Center

    Groenewoud, A. Stef; van Exel, N. Job A.; Berg, Marc; Huijsman, Robbert

    2008-01-01

    Purpose: This article reports on a study to identify "building blocks" for quality report cards for geriatric care. Its aim is to present (a) the results of the study and (b) the innovative step-by-step approach that was developed to arrive at these results. Design and Methods: We used Concept Mapping/Structured Conceptualization to…

  3. Building blocks for subleading helicity operators

    DOE PAGES

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-24

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less

  4. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    NASA Astrophysics Data System (ADS)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-04-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  5. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    PubMed Central

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-01-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments. PMID:28387345

  6. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    PubMed

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  7. Recent advances in synthesis of bacterial rare sugar building blocks and their applications.

    PubMed

    Emmadi, Madhu; Kulkarni, Suvarn S

    2014-07-01

    Covering: 1964 to 2013. Bacteria have unusual glycans on their surfaces which distinguish them from the host cells. These unique structures offer avenues for targeting bacteria with specific therapeutics and vaccine. However, these rare sugars are not accessible in acceptable purity and amounts by isolation from natural sources. Thus, procurement of orthogonally protected rare sugar building blocks through efficient chemical synthesis is regarded as a crucial step towards the development of glycoconjugate vaccines. This Highlight focuses on recent advances in the synthesis of the bacterial deoxy amino hexopyranoside building blocks and their application in constructing various biologically important bacterial O-glycans.

  8. Ae2Sb2X4F2 (Ae = Sr, Ba): new members of the homologous series Ae2M(1+n)X(3+n)F2 designed from rock salt and fluorite 2D building blocks.

    PubMed

    Kabbour, Houria; Cario, Laurent

    2006-03-20

    We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.

  9. Scientific iconoclasm and active imagination: synthetic cells as techno-scientific mandalas.

    PubMed

    Zwart, Hub

    2018-05-14

    Metaphors allow us to come to terms with abstract and complex information, by comparing it to something which is structured, familiar and concrete. Although modern science is "iconoclastic", as Gaston Bachelard phrases it (i.e. bent on replacing living entities by symbolic data: e.g. biochemical and mathematical symbols and codes), scientists are at the same time prolific producers of metaphoric images themselves. Synthetic biology is an outstanding example of a technoscientific discourse replete with metaphors, including textual metaphors such as the "Morse code" of life, the "barcode" of life and the "book" of life. This paper focuses on a different type of metaphor, however, namely on the archetypal metaphor of the mandala as a symbol of restored unity and wholeness. Notably, mandala images emerge in textual materials (papers, posters, PowerPoints, etc.) related to one of the new "frontiers" of contemporary technoscience, namely the building of a synthetic cell: a laboratory artefact that functions like a cell and is even able to replicate itself. The mandala symbol suggests that, after living systems have been successfully reduced to the elementary building blocks and barcodes of life, the time has now come to put these fragments together again. We can only claim to understand life, synthetic cell experts argue, if we are able to technically reproduce a fully functioning cell. This holistic turn towards the cell as a meaningful whole (a total work of techno-art) also requires convergence at the "subject pole": the building of a synthetic cell as a practice of the self, representing a turn towards integration, of multiple perspectives and various forms of expertise.

  10. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione.

    PubMed

    Michalak, Karol; Wicha, Jerzy

    2011-08-19

    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  11. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.

    PubMed

    Song, Junyeob; Zhou, Wei

    2018-06-27

    Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.

  12. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    PubMed

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Encouraging the Development of Key Life Skills in Elementary School-Age Children: A Literature Review and Recommendations to the Tauck Family Foundation. Working Paper. Publication #2012-28

    ERIC Educational Resources Information Center

    Chien, Nina; Harbin, Vanessa; Goldhagen, Samantha; Lippman, Laura; Walker, Karen E.

    2012-01-01

    Child Trends is pleased to support the Tauck Family Foundation in its efforts to focus on programs that help build skills that are important to success in the elementary school years and beyond. This report addresses three key questions: (1) What life skills have been identified in the research literature as contributing to success for elementary…

  14. Physical basis of the Thellier-Thellier and related paleointensity methods

    NASA Astrophysics Data System (ADS)

    Dunlop, David J.

    2011-08-01

    Émile and Odette Thellier produced the first reliable determinations of paleointensity following an experimental protocol used earlier by Johann Koenigsberger. Although Koenigsberger did groundbreaking work on thermoremanent magnetization (TRM), it was the Thelliers who formulated the fundamental idea of partial TRMs as building blocks for TRM. In his 1938 doctoral thesis and a series of short notes, Émile Thellier minutely examined the data on TRM and partial TRM, ultimately establishing for bricks and other baked clays his laws of pTRM reciprocity, independence and additivity. In 1946 he speculated that blocking represents "…immobilization of elementary magnetic moments below a temperature Θ … Θ will vary at each point in the body, perhaps with the dimensions and the shape of the crystalline grains … One can thus explain thermoremanence by the progressive fixing, in the course of cooling, of moments which find themselves held fast when they pass through their individual temperature Θ." Thellier thus established the physical basis of TRM blocking and recognized the essential role of grain size and shape. In 1949 Louis Néel quantified these concepts in terms of the properties of single-domain grains. Today the Thellier-Thellier method remains the benchmark of reliable paleointensity data. The challenge has been the non-ideality of real geological and archeological materials: TRM carriers larger than single-domain size and physicochemical alteration during heating. The Thelliers avoided these problems by using bricks and pottery previously fired under conditions similar to those in laboratory heatings, eschewing volcanic and other rocks. But despite their problems, we have to deal with the material nature provides. This paper provides insights into the physics underlying the Thellier-Thellier method and check procedures that detect non-ideal behavior, as well as reviewing recent advances in paleointensity methodology.

  15. Alq3 nanorods: promising building blocks for optical devices.

    PubMed

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Building Word Knowledge: Opportunities for Direct Vocabulary Instruction in General Education for Students with Reading Difficulties

    ERIC Educational Resources Information Center

    Wanzek, Jeanne

    2014-01-01

    Direct vocabulary instruction is 1 critical component of reading instruction. Although most students in the elementary grades need to continue building their vocabulary knowledge, students with reading difficulties are at the greatest risk of falling further behind each year in vocabulary and concept knowledge without effective instruction. This…

  17. The Role of Learning Goals in Building a Knowledge Base for Elementary Mathematics Teacher Education

    ERIC Educational Resources Information Center

    Jansen, Amanda; Bartell, Tonya; Berk, Dawn

    2009-01-01

    In this article, we describe features of learning goals that enable indexing knowledge for teacher education. Learning goals are the key enabler for building a knowledge base for teacher education; they define what counts as essential knowledge for prospective teachers. We argue that 2 characteristics of learning goals support knowledge-building…

  18. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same…

  19. Increasing Student Achievement and Improving Self-Esteem through a Community Building Intervention

    ERIC Educational Resources Information Center

    Lupo, Concetta M.

    2012-01-01

    This study focused on improving students' self-esteem through community building at an elementary school in a low socioeconomic community where over 55% of the students live below the poverty line. Orefield and Yun state in their 1999 article, "Resegregation of America's schools," "school level poverty is related to many…

  20. Capacity Building Special Alternatives Program Community School District 3. Final Evaluation Report, 1993-94. OER Report.

    ERIC Educational Resources Information Center

    Duque, Diana L.

    The Capacity Building Special Alternatives Program, an Elementary and Secondary Education Act Title VII-funded project in its second year of operation, functioned at seven schools in a community school district of Manhattan (New York). The project served 195 students of limited English proficiency (LEP) whose native languages were Albanian,…

  1. Exemplary Capacity Building Program of Transitional Bilingual Education, Community School District 3. Final Evaluation Report, 1992-93. OREA Report.

    ERIC Educational Resources Information Center

    Cantalupo, Denise

    The Exemplary Capacity Building Program of Transitional Bilingual Education was a federally funded program serving 266 limited-English-speaking, Spanish-speaking students in two Manhattan (New York) elementary schools. Participating students received instruction in English as a Second Language (ESL), native language arts (NLA), and content areas.…

  2. Description of Success: A Four-Teacher Instructional Model.

    ERIC Educational Resources Information Center

    Reed, Dianne

    This study described a four-teacher instructional model in operation at an elementary school, noting the perceptions of fourth grade students, parents, and teachers regarding the model. The model encompassed teaming, block scheduling, departmentalization of subjects, integrated/interdisciplinary instruction, and in-depth instruction in each…

  3. How Portuguese and American Teachers Plan for Literacy Instruction

    ERIC Educational Resources Information Center

    Spear-Swerling, Louise; Lopes, Joao; Oliveira, Celia; Zibulsky, Jamie

    2016-01-01

    This study explored American and Portuguese elementary teachers' preferences in planning for literacy instruction using the Language Arts Activity Grid (LAAG; Cunningham, Zibulsky, Stanovich, & Stanovich, 2009), on which teachers described their preferred instructional activities for a hypothetical 2-h language arts block. Portuguese teachers…

  4. ESS/Special Education Teacher's Guide.

    ERIC Educational Resources Information Center

    Ball, Daniel W.

    This teacher's guide provides Elementary Science Study (ESS) units that can be used with students in grades 1-12 in special education programs. The ESS units represent an interdisciplinary approach to learning and emphasize "hands-on" activities. Activities include Mirror Cards, Pattern Blocks, Clay Boats, Mapping, Earthworms, and…

  5. Federal Cuts to Cripple Many New Jersey School Programs.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Looks at how the Reagan administration's proposed federal budget cuts may impact on the amount of money New Jersey will receive under various federal programs, including block grants, the Elementary Secondary Education Act titles, the Child Nutrition Act, and guaranteed student loans. (SJL)

  6. Forecasting Maintenance Shortcomings of a Planned Equipment Density Listing in Support of Expeditionary Missions

    DTIC Science & Technology

    2017-06-01

    importantly, it examines the methodology used to build the class IX block embarked on ship prior to deployment. The class IX block is defined as a repository...compared to historical data to evaluate model and simulation outputs. This thesis provides recommendations on improving the methodology implemented in...improving the level of organic support available to deployed units. More importantly, it examines the methodology used to build the class IX block

  7. π-Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors.

    PubMed

    Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi

    2017-11-22

    The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.

  8. Letter of intent for KM3NeT 2.0

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belhorma, B.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherkaoui El Moursli, R.; Cherubini, S.; Chiarusi, T.; Circella, M.; Classen, L.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amico, A.; De Bonis, G.; De Rosa, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Díaz García, A. F.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; El Khayati, N.; Elsaesser, D.; Enzenhöfer, A.; Fassi, F.; Favali, P.; Fermani, P.; Ferrara, G.; Filippidis, C.; Frascadore, G.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Navas, S.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Siotis, I.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Tézier, D.; Theraube, S.; Thompson, L.; Timmer, P.; Tönnis, C.; Trasatti, L.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Voulgaris, G.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zornoza, J. D.; Zúñiga, J.

    2016-08-01

    The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.

  9. Au13(8e): A secondary block for describing a special group of liganded gold clusters containing icosahedral Au13 motifs

    NASA Astrophysics Data System (ADS)

    Xu, Wen Wu; Zeng, Xiao Cheng; Gao, Yi

    2017-05-01

    A grand unified model (GUM) has been proposed recently to understand structure anatomy and evolution of liganded gold clusters. In this work, besides the two types of elementary blocks (triangular Au3(2e) and tetrahedral Au4(2e)), we introduce a secondary block, namely, the icosahedral Au13 with 8e valence electrons, noted as Au13(8e). Using this secondary block, structural anatomy and evolution of a special group of liganded gold nanoclusters containing icosahedral Au13 motifs can be conveniently analyzed. In addition, a new ligand-protected cluster Au49(PR3)10(SR)15Cl2 is predicted to exhibit high chemical and thermal stability, suggesting likelihood of its synthesis in the laboratory.

  10. Determining Possible Building Blocks of the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; OBrien, K. M.

    2004-01-01

    One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.

  11. School Building Enhancement Act

    THOMAS, 113th Congress

    Rep. Holt, Rush [D-NJ-12

    2013-01-03

    House - 04/23/2013 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. School Building Enhancement Act

    THOMAS, 112th Congress

    Rep. Holt, Rush [D-NJ-12

    2011-12-16

    House - 03/29/2012 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  13. An Approach to Energy Education for High School, Junior High School and Elementary School Students at Aichi Institute of Technology

    NASA Astrophysics Data System (ADS)

    Yukita, Kazuto; Ichiyanagi, Katsuhiro; Mori, Tsuyoshi; Goto, Yasuyuki

    This paper discusses the methods of implementation and improvement adopted in the energy education program of “Marugoto Taiken World” (“Total Experience World”) at Aichi Institute of Technology. The program, which is aimed at high school, junior high school and elementary school students, has been carried on at Aichi Institute of Technology for a number of years now, and the authors have been involved in the energy education project for the past four years. During that time, the following four courses have been held : 1) Let's use wind power to generate electricity, 2) Let's use flowers to build a solar battery, 3) Let's use bottles to build a fuel cell battery, 4) Let's make all sorts of batteries.

  14. Long-Term Electronic Technology Trends: Forecasted Impacts on Education. Paper presented to Congress of the United States, House of Representatives, Committee on Education and Labor, Subcommittee on Elementary, Secondary, and Vocational Education (April 25, 1979).

    ERIC Educational Resources Information Center

    Joseph, Earl C.

    The technological-driven future will evolve through the next decades to massively impact elementary and secondary education, starting in the 1980 decade and building toward revolutionizing education in the 1990 decade. The evolving "silicon revolution" is producing a continuing list of new electronic technology poised at the threshold for massive…

  15. Science Alive!: Connecting with Elementary Students through Science Exploration.

    PubMed

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  16. Implementing Elementary School Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Kennedy, Katheryn B.

    Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.

  17. LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants

    PubMed Central

    Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716

  18. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    PubMed

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  19. English Leadership Quarterly, 2000-2001.

    ERIC Educational Resources Information Center

    Kiernan, Henry, Ed.

    2001-01-01

    This 23rd volume of "English Leadership Quarterly" contains articles on topics of interest to those in positions of leadership in departments (elementary, secondary, or college) where English is taught. Each issue focuses on a different theme. Articles in Volume 23 Number 1 are: "Block Scheduling and Student Achievement"…

  20. Walk around the Block Curriculum.

    ERIC Educational Resources Information Center

    Center for Understanding the Built Environment, Prairie Village, KS.

    This curriculum packet contains two teacher-developed lesson plans for upper elementary students focusing on the built environment. The first lesson plan, "The Built Environment--An Integrating Theme" (Liesa Schroeder), offers suggestions for developing a walking tour around the school neighborhood, a historic area, or a city square. It…

  1. Building Blocks and Cognitive Building Blocks: Playing to Know the World Mathematically

    ERIC Educational Resources Information Center

    Sarama, Julie; Clements, Douglas H.

    2009-01-01

    The authors explore how children's play can support the development of the foundations of mathematics learning and how adults can support children's representation of--and thus the "mathematization" of--their play. The authors review research about the amount and nature of mathematics found in the free play of children. They briefly…

  2. Trainer's Guide to Building Blocks for Teaching Preschoolers with Special Needs [CD-ROM

    ERIC Educational Resources Information Center

    Joseph, Gail E.; Sandall, Susan R.; Schwartz, Ilene S.

    2010-01-01

    An essential teaching companion for instructors of pre-K educators, this convenient CD-ROM is a vivid blueprint for effective inclusive education using the popular "Building Blocks" approach. Following the structure of the bestselling textbook, this comprehensive guide helps teacher educators provide effective instruction on the three types of…

  3. 1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING 0520 WEST OF FIRING CONTOL BLOCK HOUSE (BLDG. 0545), BETWEEN SLED TRACK AND CAMERA ACCESS ROAD. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA

  4. Building an Early Childhood Parent-Teacher Resource Center.

    ERIC Educational Resources Information Center

    Holloway, Mary A.

    This manual is a guidebook to the development of the Project Enlightenment Parent-Teacher Resource Center and serves as a reference for the replication of this type of center in other communities. The manual consists of three chapters that are conceptualized as building blocks, because they are sequential, incremental, and independent. Block A…

  5. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  6. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. University Education in Ontario: Shared Goals & Building Blocks.

    ERIC Educational Resources Information Center

    Council of Ontario Universities, Toronto.

    This brochure suggests five goals that are likely to be shared by the people of Ontario, their government, and the province's publicly funded universities for a strong university system, and identifies the building blocks and resource-related commitments that would enable Ontario universities to achieve these goals. The goals are: (1) all…

  8. Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.

    PubMed

    Borkar, Santosh Ramdas; Aidhen, Indrapal Singh

    2017-04-18

    Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.

  9. Patterning nonisometric origami in nematic elastomer sheets

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik

    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.

  10. Theme: Innovative Curricula.

    ERIC Educational Resources Information Center

    Coffey, David M.; And Others

    1994-01-01

    Includes "Risking the Future" (Coffey); "Breaking Tradition" (Paynton); "Sustainable Farm Plan Activity" (Vahoviak et al.); "Curriculum Integration and Ornamental Horticulture" (Clark); "Ties That Bind" (Barden et al.); "Building Capacity for an Innovative Elementary Agriscience…

  11. Structure of clusters and building blocks in amylopectin from African rice accessions.

    PubMed

    Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric

    2016-09-05

    Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).

    PubMed

    Yu, Hongtao; Brock, Stephanie L

    2008-08-01

    We demonstrate the effect of differently shaped CdSe nanoscale building blocks (dots, rods, branched nanoparticles, and hyperbranched nanoparticles) on the morphologies, surface characteristics, and optical properties of resultant porous CdSe nanostructured aerogels. Monolithic CdSe aerogels were produced by controlled oxidative removal of surface thiolate ligands from differently shaped CdSe nanoparticles to yield a wet gel, followed by CO(2) supercritical drying. The X-ray diffraction data show that the resultant CdSe aerogels maintain the crystalline phase of the building blocks without significant grain growth. However, the transmission electron microscopy images indicate that the morphology of CdSe aerogels changes from a colloid-type morphology to a polymer-type morphology when the building block changes from dot to rod or the branched nanoparticle. The morphology of the CdSe aerogel assembled from hyperbranched nanoparticles appears to be intermediate between the colloid-type and the polymer-type. Nitrogen physisorption measurements suggest that the surface areas and porosity are a direct function of the shape of the primary building blocks, with aerogels formed from rods or branched particles exhibiting the greatest surface areas (>200 m(2)/g) and those prepared from hyperbranched nanoparticles exhibiting the least (<100 m(2)/g). Band gap measurements and photoluminescence studies show that the as-prepared CdSe aerogels retain to a large extent the intrinsic quantum confinement of the differently shaped building blocks, despite being connected into a 3D network.

  13. Helping Students Who Struggle with Math and Science: A Collaborative Approach for Elementary and Middle Schools

    ERIC Educational Resources Information Center

    Adams, Dennis; Hamm, Mary

    2008-01-01

    This book builds on the social nature of learning to provide useful suggestions for reaching reluctant learners. It is based on the assumption that instruction that focuses on students' interests and builds on collaborative and differentiated learning will allow students to move from believing they "can't do mathematics or science" to a feeling of…

  14. The Development of Capacity for Data Use: The Role of Teacher Networks in an Elementary School

    ERIC Educational Resources Information Center

    Farley-Ripple, Elizabeth; Buttram, Joan

    2015-01-01

    Background: Amid calls for increased data use, there is little research or policy guidance for how to build schools' capacity to leverage data to improve teaching and learning. Building on previous research highlighting the social nature of data use, we contend that in order to understand how capacity develops, research must focus on relationships…

  15. "FRIENDS for Life": The Results of a Resilience-Building, Anxiety-Prevention Program in a Canadian Elementary School

    ERIC Educational Resources Information Center

    Rose, Heather; Miller, Lynn; Martinez, Yvonne

    2009-01-01

    The purpose of the study in this article was to replicate past findings showing the effectiveness of a cognitive, behavioral resilience-building/anxiety-prevention program, "FRIENDS for Life." The results of the controlled study of two Grade 4 classrooms in Canada (N = 52) indicate that all children reported reduced levels of anxiety…

  16. Lake Erie...Build a Fish to Scale!

    ERIC Educational Resources Information Center

    Canning, Maureen; Dunlevy, Margie

    This elementary school teaching unit was developed as a part of a series of teaching units that deal with Lake Erie. This unit was developed to enable children to: (1) name the different parts of a fish; (2) assemble a fish using overlapping overheads to reinforce fish parts; (3) build a fish to scale using jumbo fish puzzle parts; (4) classify…

  17. The Building of an Airplane (with a Little Help from Friends).

    ERIC Educational Resources Information Center

    Morehouse, Pam

    1995-01-01

    The students in a K-1 class at a Washington elementary school built a mock four-seater airplane with some community assistance. They hired a building contractor (promising him red wriggler worms from the class compost bin) to help design the plane, obtained a Boeing certificate for $500 worth of spare parts, and attended an air show as exhibitors.…

  18. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    NASA Astrophysics Data System (ADS)

    Martins, M. J.; Melo, C. S.

    2009-10-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  19. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, Josef; Magnera, Thomas F.; David, Donald E.; Harrison, Robin M.

    1999-01-01

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures.

  20. Mechanically Strong Aerogels Formed by Templated Growth of Polymer Cross- Linkers on Inorganic Nanoparticles

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Fabrizio, Eve F.; Johnston, Chris; Meador, Maryann

    2004-01-01

    In the search for materials with better mechanical, thermal, and electrical properties, it is becoming evident that oftentimes dispersing ceramic nanoparticles in plastics improves performance. Along these lines, chemical bonding (both covalent and noncovalent) between a filler and a polymer improves their compatibility, and thus enhances certain properties of the polymeric matrix above and beyond what is accomplished by simple doping with the filler. When a similarly sized dopant and matrix are used, elementary building blocks may also have certain distinct advantages (e.g., in catalysis). In this context, researchers at the NASA Glenn Research Center reasoned that in the extreme case, where the dopant and the matrix (e.g., a filler and a polymer) are not only sized similarly, but their relative amounts are comparable, the relative roles of the dopant and matrix can be reversed. Then, if the "filler," or a certain form thereof, possesses desirable properties of its own, such properties could be magnified by cross-linking with a polymer. We at Glenn have identified silica as such a filler in its lowest-density form, namely the silica aerogel.

  1. Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    PubMed Central

    Gu, X.; Kim, Y. S.; Kaiser, R. I.; Mebel, A. M.; Liang, M. C.; Yung, Y. L.

    2009-01-01

    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH). PMID:19805262

  2. Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere.

    PubMed

    Gu, X; Kim, Y S; Kaiser, R I; Mebel, A M; Liang, M C; Yung, Y L

    2009-09-22

    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH).

  3. 'Soft' amplifier circuits based on field-effect ionic transistors.

    PubMed

    Boon, Niels; Olvera de la Cruz, Monica

    2015-06-28

    Soft materials can be used as the building blocks for electronic devices with extraordinary properties. We introduce a theoretical model for a field-effect transistor in which ions are the gated species instead of electrons. Our model incorporates readily-available soft materials, such as conductive porous membranes and polymer-electrolytes to represent a device that regulates ion currents and can be integrated as a component in larger circuits. By means of Nernst-Planck numerical simulations as well as an analytical description of the steady-state current we find that the responses of the system to various input voltages can be categorized into ohmic, sub-threshold, and active modes. This is fully analogous to what is known for the electronic field-effect transistor (FET). Pivotal FET properties such as the threshold voltage and the transconductance crucially depend on the half-cell redox potentials of the source and drain electrodes as well as on the polyelectrolyte charge density and the gate material work function. We confirm the analogy with the electronic FETs through numerical simulations of elementary amplifier circuits in which we successfully substitute the electronic transistor by an ionic transistor.

  4. Bending nanofibers into nanospirals: coordination chemistry as a tool for shaping hydrophobic assemblies.

    PubMed

    Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris

    2015-01-02

    In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Flow dynamics analyses of pathophysiological liver lobules using porous media theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinrong; Lü, Shouqin; Feng, Shiliang; Long, Mian

    2017-08-01

    Blood flow inside the liver plays a key role in hepatic functions, and abnormal hemodynamics are highly correlated with liver diseases. To date, the flow field in an elementary building block of the organ, the liver lobule, is difficult to determine experimentally in humans due to its complicated structure, with radially branched microvasculature and the technical difficulties that derive from its geometric constraints. Here we established a set of 3D computational models for a liver lobule using porous media theory and analyzed its flow dynamics in normal, fibrotic, and cirrhotic lobules. Our simulations indicated that those approximations of ordinary flow in portal tracts (PTs) and the central vein, and of porous media flow in the sinusoidal network, were reasonable only for normal or fibrotic lobules. Models modified with high resistance in PTs and collateral vessels inside sinusoids were able to describe the flow features in cirrhotic lobules. Pressures, average velocities, and volume flow rates were profiled and the predictions compared well with experimental data. This study furthered our understanding of the flow dynamics features of liver lobules and the differences among normal, fibrotic, and cirrhotic lobules.

  6. Cellular organization of cortical barrel columns is whisker-specific

    PubMed Central

    Meyer, Hanno S.; Egger, Robert; Guest, Jason M.; Foerster, Rita; Reissl, Stefan; Oberlaender, Marcel

    2013-01-01

    The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related “barrel” columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic “barreloid” varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles. PMID:24101458

  7. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, J.; Magnera, T.F.; David, D.E.; Harrison, R.M.

    1999-03-02

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures. 9 figs.

  8. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    PubMed

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with size<10 μm are demonstrated. Possible applications in filtering, sensing, electro-optical modulation, solar cells, and photocatalysis are envisioned.

  9. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. SynTrack: DNA Assembly Workflow Management (SynTrack) v2.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MENG, XIANWEI; SIMIRENKO, LISA

    2016-12-01

    SynTrack is a dynamic, workflow-driven data management system that tracks the DNA build process: Management of the hierarchical relationships of the DNA fragments; Monitoring of process tasks for the assembly of multiple DNA fragments into final constructs; Creations of vendor order forms with selectable building blocks. Organizing plate layouts barcodes for vendor/pcr/fusion/chewback/bioassay/glycerol/master plate maps (default/condensed); Creating or updating Pre-Assembly/Assembly process workflows with selected building blocks; Generating Echo pooling instructions based on plate maps; Tracking of building block orders, received and final assembled for delivering; Bulk updating of colony or PCR amplification information, fusion PCR and chewback results; Updating with QA/QCmore » outcome with .csv & .xlsx template files; Re-work assembly workflow enabled before and after sequencing validation; and Tracking of plate/well data changes and status updates and reporting of master plate status with QC outcomes.« less

  11. Secure Multiparty AES

    NASA Astrophysics Data System (ADS)

    Damgård, Ivan; Keller, Marcel

    We propose several variants of a secure multiparty computation protocol for AES encryption. The best variant requires 2200 + {{400}over{255}} expected elementary operations in expected 70 + {{20}over{255}} rounds to encrypt one 128-bit block with a 128-bit key. We implemented the variants using VIFF, a software framework for implementing secure multiparty computation (MPC). Tests with three players (passive security against at most one corrupted player) in a local network showed that one block can be encrypted in 2 seconds. We also argue that this result could be improved by an optimized implementation.

  12. Creating Bilingual Books to Facilitate Second Language Learning

    ERIC Educational Resources Information Center

    Glazer, Morgan; Harris, Kara; Ost, Dottie; Gower, Mariah; Ceprano, Maria

    2017-01-01

    This article describes a pilot study conducted by teacher candidates (TCs) at an elementary level charter school in Buffalo, New York. The TCs, undergraduate and graduate level college students, enrolled in an English Language Arts/Social Studies methods course block, wrote bilingual English/Spanish information texts and used them in conjunction…

  13. Adaptive Identification by Systolic Arrays.

    DTIC Science & Technology

    1987-12-01

    BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK

  14. Building Trades. Block II. Foundations.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Twelve informational lessons and eleven manipulative lessons are provided on foundations as applied to the building trades. Informational lessons cover land measurements; blueprint reading; level instruments; building and site planning; building site preparation; laying out building lines; soil preparation and special evacuation; concrete forms;…

  15. The Building Blocks of Digital Media Literacy: Socio-Material Participation and the Production of Media Knowledge

    ERIC Educational Resources Information Center

    Dezuanni, Michael

    2015-01-01

    This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…

  16. Plumbing Specialist II & III, 3-22. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, course chart, plan of instruction, lesson plans, study guides, and workbooks for use in training plumbing specialists II and III. Covered in the course blocks are building waste systems and exterior and interior supply systems. Course block II, on building waste…

  17. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  18. Functionalized coronenes: synthesis, solid structure, and properties.

    PubMed

    Wu, Di; Zhang, Hua; Liang, Jinhua; Ge, Haojie; Chi, Chunyan; Wu, Jishan; Liu, Sheng Hua; Yin, Jun

    2012-12-21

    The construction of coronenes using simple building blocks is a challenging task. In this work, triphenylene was used as a building block to construct functionalized coronenes, and their solid structures and optoelectronic properties were investigated. The single crystal structures showed that coronenes have different packing motifs. Their good solubility and photostability make them potential solution-processable candidates for organic devices.

  19. The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1-4

    ERIC Educational Resources Information Center

    Kamii, Constance; Miyakawa, Yoko; Kato, Yasuhiko

    2004-01-01

    To study the developmental interrelationships among various aspects of logico-mathematical knowledge, 80 one- to 4-year-olds were individually asked to build "something tall" with 20 blocks. Percentages of new and significant behaviors increased with age and were analyzed in terms of the development of logico-mathematical relationships. It was…

  20. Building Blocks of Contemporary HRD Research: A Citation Analysis on Human Resource Development Quarterly between 2007 and 2013

    ERIC Educational Resources Information Center

    Mehdiabadi, Amir Hedayati; Seo, Gaeun; Huang, Wenhao David; Han, Seung-hyun Caleb

    2017-01-01

    Human resource development is known to encapsulate a collection of social science disciplines including communications, psychology, and economics. Since these and other similar areas are the cornerstones of HRD, the changing nature of HRD demands constant reflections on the value and building blocks of contemporary HRD inquiries. This article…

  1. ARTmobile Adventure.

    ERIC Educational Resources Information Center

    Koontz, Joanne; Terry, Teresa

    1990-01-01

    Describes the creation of a traveling art museum to expose elementary and middle school children to contemporary art. Maintains that this is a sound way to build school and community support for art education in general. (KM)

  2. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    PubMed

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comprehensive assessment of the efficiency of high-rise construction projects in the form of urban blocks

    NASA Astrophysics Data System (ADS)

    Orlov, Alexandr; Chubarkina, Irina

    2018-03-01

    The paper is dedicated to main modern trends in the area of high-rise construction. The classification of buildings and structures by height is given. Functional distribution by the height of buildings is presented. A review of positive and negative aspects of high-rise construction from the economic point of view is given. On the basis of the data obtained, it is proposed to build up residential microdistricts in the form of urban blocks. A plan of microdistricts development is presented. It takes into account urban blocks and includes their main characteristics. An economic and mathematical model was developed to carry out a comprehensive assessment of the effectiveness of high-rise construction projects.

  4. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. An Ap-Structure with Finslerian Flavor I:. the Principal Idea

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.

    A geometric structure (FAP-structure), having both absolute parallelism and Finsler properties, is constructed. The building blocks of this structure are assumed to be functions of position and direction. A nonlinear connection emerges naturally and is defined in terms of the building blocks of the structure. Two linear connections, one of Berwald type and the other of the Cartan type, are defined using the nonlinear connection of the FAP. Both linear connections are nonsymmetric and consequently admit torsion. A metric tensor is defined in terms of the building blocks of the structure. The condition for this metric to be a Finslerian one is obtained. Also, the condition for an FAP-space to be an AP-one is given.

  6. BUILD Career and Technical Education Act of 2014

    THOMAS, 113th Congress

    Rep. Schrader, Kurt [D-OR-5

    2014-05-30

    House - 11/17/2014 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  8. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  9. Blockbusters: Ideas for the Block Center.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Nesmith, Jaynie

    1996-01-01

    Goals of block building in early childhood classrooms focus on physical, social, cognitive, and emotional development. Reports survey results of the value teachers place on block play. Offers illustrations of task cards to use with blocks in math, language arts, social studies, and science. Discusses guidelines and suggests idea cards and sentence…

  10. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  11. Statistical analysis of atmospheric turbulence about a simulated block building

    NASA Technical Reports Server (NTRS)

    Steely, S. L., Jr.

    1981-01-01

    An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.

  12. "Looking through the Eyes of the Learner": Implementation of Building Blocks for Student Engagement

    ERIC Educational Resources Information Center

    D'Annolfo, Suzanne Cordier; Schumann, Jeffrey A.

    2012-01-01

    The Building Blocks for Student Engagement (BBSE) protocol was designed to provide a consistent framework of common language and a visual point of reference shared among students, teachers and school leaders to keep a laser-like focus on the instructional core and student engagement. Grounded in brain-based learning and implemented in urban,…

  13. Oligomers and Polymers Based on Pentacene Building Blocks

    PubMed Central

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  14. Public Opinion on Youth, Crime and Race: A Guide for Advocates. Building Blocks for Youth.

    ERIC Educational Resources Information Center

    Soler, Mark

    This guide summarizes public opinion research on youth and juvenile justice issues from the Building Blocks for Youth focus groups and various national polls. Overall, the public is less fearful about crime than in the past but believes juvenile crime is increasing. There is serious public concern about the effectiveness of the juvenile justice…

  15. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics.

    PubMed

    Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael

    2015-01-16

    Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.

  16. A “fullerene-carbon nanotube” structure with tunable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ji, W. M.; Zhang, L. W.; Liew, K. M.

    2018-03-01

    Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.

  17. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.

    PubMed

    Schneider, G; Lee, M L; Stahl, M; Schneider, P

    2000-07-01

    An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.

  18. Versatile plasmid-based expression systems for Gram-negative bacteria--General essentials exemplified with the bacterium Ralstonia eutropha H16.

    PubMed

    Gruber, Steffen; Schwab, Helmut; Koefinger, Petra

    2015-12-25

    The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  20. 13. A southeastward view of buildings #3 (on the right), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. A southeastward view of buildings #3 (on the right), building #5 ( to the immediate left of building #3), and buildings #6-B (low building on the far left) and #6 ( to the immediate rear of #6-B). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  1. 1. Historic American Buildings Survey E. W. Russell, Photographer, October ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey E. W. Russell, Photographer, October 17, 1935 51-69 Government St. BLOCK OF BUILDINGS ON GOVERNMENT ST. (S. SIDE) BETWEEN WATER AND ROYAL STREETS - 51-69 Government Street (Commercial Building), Mobile, Mobile County, AL

  2. Science Alive!: Connecting with Elementary Students through Science Exploration†

    PubMed Central

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-01-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309

  3. Wet and Wild.

    ERIC Educational Resources Information Center

    Barmone, Karen; Kemp, Jane

    2002-01-01

    Describes an advanced elementary art project that was inspired by a fountain. Explains that the students created water fountains for tabletop display using hand building clay and glazing techniques. States that students selected a design based upon their abilities. (CMK)

  4. Reconstructing an Ancient Wonder.

    ERIC Educational Resources Information Center

    Imhof, Christopher J.

    2001-01-01

    Describes a Montessori class project involving the building of a model of the ancient Briton monument, Stonehenge. Illustrates how the flexibility of the Montessori elementary curriculum encourages children to make their own toys and learn from the process. (JPB)

  5. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Neil P.; Sheffler, William; Sawaya, Michael R.

    2015-09-17

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less

  6. Expressivism, Relativism, and the Analytic Equivalence Test

    PubMed Central

    Frápolli, Maria J.; Villanueva, Neftalí

    2015-01-01

    The purpose of this paper is to show that, pace (Field, 2009), MacFarlane’s assessment relativism and expressivism should be sharply distinguished. We do so by arguing that relativism and expressivism exemplify two very different approaches to context-dependence. Relativism, on the one hand, shares with other contemporary approaches a bottom–up, building block, model, while expressivism is part of a different tradition, one that might include Lewis’ epistemic contextualism and Frege’s content individuation, with which it shares an organic model to deal with context-dependence. The building-block model and the organic model, and thus relativism and expressivism, are set apart with the aid of a particular test: only the building-block model is compatible with the idea that there might be analytically equivalent, and yet different, propositions. PMID:26635690

  7. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  8. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  9. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science Teaching (NARST) Zangori, L., & Forbes, C. T. (2015). Exploring 3rd-grade student model-based explanations about plant process interactions within the hydrosphere Portions of this paper are based on that work.

  10. 2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  11. Elementary Environmental Learning Packet K-3, Second Revised Edition. [Primary CEL Blocks. Teacher's Guide].

    ERIC Educational Resources Information Center

    Brevard County School Board, Cocoa, FL.

    This environmental education program consists of two levels: primary and intermediate. The material in this publication encompasses the primary level. The learning materials are activity-based and incorporate process and subject area skills with knowledge and concern for the environment. The program is also interdisciplinary including activities…

  12. Elementary Environmental Learning Packet Grades 4-6, Second Revised Edition. [Intermediate CEL Blocks. Teacher's Guide].

    ERIC Educational Resources Information Center

    Brevard County School Board, Cocoa, FL.

    This environmental education program consists of two levels: primary and intermediate. The material in this publication encompasses the intermediate level. The learning materials are activity-based and incorporate process and subject area skills with knowledge and concern for the environment. The program is also interdisciplinary including…

  13. Elementary Environmental Learning Packet K-3, Third Revised Edition. [Primary CEL Blocks, Student Activity Cards].

    ERIC Educational Resources Information Center

    Brevard County School Board, Cocoa, FL.

    This environmental education program consists of two levels: primary and intermediate. The learning materials are activity based and incorporate process and subject area skills with knowledge and concern for the environment. The program is also interdisciplinary including activities and skills from art, language arts, mathematics, music, science,…

  14. Too Many Cooks Spoil the Broth? Potential Contradictions between Inclusive Schools and Integrated Curriculum.

    ERIC Educational Resources Information Center

    Cooper, Delia; Goldman, Paul

    1995-01-01

    This study examined special services in four elementary schools in British Columbia (Canada), finding conflicts between mandated inclusion and integrated-curriculum block scheduling. Interviews with 31 teachers revealed that nearly half of the students received special services, and most teachers needed to coordinate planning with several…

  15. Fiscal Impacts and Redistributive Effects of the New Federalism on Michigan School Districts.

    ERIC Educational Resources Information Center

    Kearney, C. Philip; Kim, Taewan

    1990-01-01

    The fiscal impacts and redistribution effects of the recently enacted (1981) federal education block grant on 525 elementary and secondary school districts in Michigan were examined using a quasi-experimental time-series design and multiple regression and analysis of covariance techniques. Implications of changes in federal policy are discussed.…

  16. Public Elementary and Secondary Education in the '80s.

    ERIC Educational Resources Information Center

    Broudy, H. S.

    Privatism, vouchers, too many pressure groups, and a deemphasis of citizenship present the worst stumbling blocks to education. A five-point curriculum model includes: (1) the symbolics of information--the skills of language and computation; (2) the key concepts of a selected set of the physical sciences and mathematics; (3) developmental studies…

  17. Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs

    ERIC Educational Resources Information Center

    Eudey, T. Lynn; Kerr, Joshua D.; Trumbo, Bruce E.

    2010-01-01

    Null distributions of permutation tests for two-sample, paired, and block designs are simulated using the R statistical programming language. For each design and type of data, permutation tests are compared with standard normal-theory and nonparametric tests. These examples (often using real data) provide for classroom discussion use of metrics…

  18. Block Play: Practical Suggestions for Common Dilemmas

    ERIC Educational Resources Information Center

    Tunks, Karyn Wellhousen

    2009-01-01

    Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…

  19. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guidedmore » the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.« less

  20. Emergent mechanics of biological structures

    PubMed Central

    Dumont, Sophie; Prakash, Manu

    2014-01-01

    Mechanical force organizes life at all scales, from molecules to cells and tissues. Although we have made remarkable progress unraveling the mechanics of life's individual building blocks, our understanding of how they give rise to the mechanics of larger-scale biological structures is still poor. Unlike the engineered macroscopic structures that we commonly build, biological structures are dynamic and self-organize: they sculpt themselves and change their own architecture, and they have structural building blocks that generate force and constantly come on and off. A description of such structures defies current traditional mechanical frameworks. It requires approaches that account for active force-generating parts and for the formation of spatial and temporal patterns utilizing a diverse array of building blocks. In this Perspective, we term this framework “emergent mechanics.” Through examples at molecular, cellular, and tissue scales, we highlight challenges and opportunities in quantitatively understanding the emergent mechanics of biological structures and the need for new conceptual frameworks and experimental tools on the way ahead. PMID:25368421

  1. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes T.; Lapidus, Saul H.; Calik, Mona; Hettstedt, Christina; Karaghiosoff, Konstantin; Döblinger, Markus; Clark, Timothy; Chapman, Karena W.; Auras, Florian; Bein, Thomas

    2016-04-01

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.

  2. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    PubMed

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Influence of Building Block Play on Mathematics Achievement and Logical and Divergent Thinking in Italian Primary School Mathematics Classes

    ERIC Educational Resources Information Center

    Pirrone, Concetta; Tienken, Christopher H.; Pagano, Tatiana; Di Nuovo, Santo

    2018-01-01

    In an experimental study to explain the effect of structured Building Block Play with LEGO™ bricks on 6-year-old student mathematics achievement and in the areas of logical thinking, divergent thinking, nonverbal reasoning, and mental imagery, students in the experimental group scored significantly higher (p = 0.05) in mathematics achievement and…

  4. Novel single photon sources for new generation of quantum communications

    DTIC Science & Technology

    2017-06-13

    be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental

  5. Building Blocks for Transport-Class Hybrid and Turboelectric Vehicles

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy; Bowman, Cheryl; Jansen, Ralph

    2016-01-01

    NASA has been investing in research efforts to define potential vehicles that use hybrid and turboelectric propulsion to enable savings in fuel burn and carbon usage. This paper overviews the fundamental building blocks that have been derived from those studies and details what key performance parameters have been defined, what key ground and flight tests need to occur, and highlights progress toward each.

  6. 2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures

    NASA Image and Video Library

    2016-06-16

    Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.

  7. Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels.

    PubMed

    Ma, Chunxin; Li, Tiefeng; Zhao, Qian; Yang, Xuxu; Wu, Jingjun; Luo, Yingwu; Xie, Tao

    2014-08-27

    Inspired by the assembly of Lego toys, hydrogel building blocks with heterogeneous responsiveness are assembled utilizing macroscopic supramolecular recognition as the adhesion force. The Lego hydrogel provides 3D transformation upon pH variation. After disassembly of the building blocks by changing the oxidation state, they can be re-assembled into a completely new shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Damage of modern building materials by microscopic fungi].

    PubMed

    Chuenko, A I; Karpenko, Iu V

    2011-01-01

    Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.

  9. Building Blocks for Father Involvement: Building Block 1--Appreciating How Fathers Give Children a Head Start

    ERIC Educational Resources Information Center

    US Department of Health and Human Services, Head Start Bureau, 2004

    2004-01-01

    Nearly 30 years ago, leading child psychologist Michael E. Lamb reminded us that fathers are the "forgotten contributors to child development." Since then, much work has been done to explore the ways fathers uniquely contribute to the healthy development of their children. Scholars now know that boys and girls who grow up with an involved father,…

  10. Highly crystalline covalent organic frameworks from flexible building blocks.

    PubMed

    Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu

    2016-03-28

    Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.

  11. Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS): Building Blocks for Low Surface Energy Materials

    DTIC Science & Technology

    2010-10-21

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia

  12. Little River Project.

    ERIC Educational Resources Information Center

    Naisbitt, Ian

    1995-01-01

    Describes the adoption of an old riverside landfill by an elementary school as a Habitat 2000 community project. Contains a "how-to" checklist for such a project, information on building school-community community partnerships, and promotional ideas for stewardship projects. (LZ)

  13. P-20 Model of Digital Citizenship.

    PubMed

    Curran, Marialice B F X; Ribble, Mike

    2017-03-01

    This chapter explores a P-20 digital citizenship model that builds upon the respect, educate, and protect REP model beginning with our earliest learners through elementary, middle, high school, and college. © 2017 Wiley Periodicals, Inc., A Wiley Company.

  14. The Flying Sunflower: A Seed Dispersal Project.

    ERIC Educational Resources Information Center

    Buege, Douglas J.

    1999-01-01

    Describes an open-ended activity in which students build a "plant" that launches its seeds as far as possible to study the dispersal strategies of various plants. Recommends extension activities for elementary- and secondary-level students. (WRM)

  15. Architectural Survey of Pershing Elementary School, Fort Leonard Wood, Missouri

    DTIC Science & Technology

    2013-08-01

    information important in prehistory or history. 16 NPS 1991. 17 Excerpted from...school has yielded, or was likely to yield, any information important in prehistory or history. Final Determination for Building 6501 It is the

  16. Expansion and improvements of the FORMA system for response and load analysis. Volume 1: Programming manual

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.

    1976-01-01

    Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.

  17. Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks

    NASA Astrophysics Data System (ADS)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-02-01

    We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.

  18. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds

    DOE PAGES

    Rios, Orlando; Chen, Jihua; Li, Yuzhan; ...

    2016-06-01

    Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. Lastly, all three functionalmore » building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.« less

  19. General synthesis of inorganic single-walled nanotubes

    PubMed Central

    Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun

    2015-01-01

    The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862

  20. Representing macropore flow at the catchment scale: a comparative modeling study

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  1. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    NASA Astrophysics Data System (ADS)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  2. A narrative study of novice elementary teachers' perceptions of science instruction

    NASA Astrophysics Data System (ADS)

    Harrell, Roberta

    It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).

  3. 7. Historic American Buildings Survey Verlin Berry, Photographer November 10, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey Verlin Berry, Photographer November 10, 1977 FIRST FLOOR, VIEW OF PRESSED TIN CEILING WITH WOOD BLOCKING AT CROWN MOLDING - 111 West First Street (Commercial Building), Mishawaka, St. Joseph County, IN

  4. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  5. GENERAL VIEW OF TYPE HB54s (BUILDINGS T1088 TO T1093) & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF TYPE HB-54s (BUILDINGS T-1088 TO T-1093) & CONVERTED TYPE HB-54S (BUILDINGS T-1094 TO T-1096), LOOKING SOUTHWEST; BUILDING T-1088 AT LEFT, BUILDING T-1096 AT RIGHT - Fort McCoy, Building No. T-1096, South side of South Ninth Avenue, Block 10, Sparta, Monroe County, WI

  6. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An easy access to 2-Amino-5,6-dihydro-3H-pyrimidin-4-one building blocks: the reaction under conventional and microwave conditions.

    PubMed

    Ostras, Konstantin S; Gorobets, Nikolay Yu; Desenko, Sergey M; Musatov, Vladimir I

    2006-08-01

    A new one-stage fast multicomponent synthesis of title compounds leads to products in 21-55% isolated yields under both conventional and microwave conditions. The primary amino group in the building blocks can be easily acylated by various usual electophilic agents that can be utilized in the synthesis of diverse heterocylic compounds libraries.

  8. [Spatial distribution characteristics of urban potential population in Shenyang City based on QuickBird image and GIS].

    PubMed

    Li, Jun-Ying; Hu, Yuan-Man; Chen, Wei; Liu, Miao; Hu, Jian-Bo; Zhong, Qiao-Lin; Lu, Ning

    2012-06-01

    Population is the most active factor affecting city development. To understand the distribution characteristics of urban population is of significance for making city policy decisions and for optimizing the layout of various urban infrastructures. In this paper, the information of the residential buildings in Shenyang urban area was extracted from the QuickBird remote sensing images, and the spatial distribution characteristics of the population within the Third-Ring Road of the City were analyzed, according to the social and economic statistics data. In 2010, the population density in different types of residential buildings within the Third-Ring Road of the City decreased in the order of high-storey block, mixed block, mixed garden, old multi-storey building, high-storey garden, multi-storey block, multi-storey garden, villa block, shanty, and villa garden. The vacancy rate of the buildings within the Third-Ring Road was more than 30%, meaning that the real estate market was seriously overstocked. Among the five Districts of Shenyang City, Shenhe District had the highest potential population density, while Tiexi District and Dadong District had a lower one. The gravity center of the City and its five Districts was also analyzed, which could provide basic information for locating commercial facilities and planning city infrastructure.

  9. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency

    PubMed Central

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-01-01

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W−1 due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications. PMID:26066737

  10. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency.

    PubMed

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-06-11

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W(-1) due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications.

  11. Intrinsic Folding Proclivities in Cyclic β-Peptide Building Blocks: Configuration and Heteroatom Effects Analyzed by Conformer-Selective Spectroscopy and Quantum Chemistry.

    PubMed

    Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J

    2015-11-09

    This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    NASA Astrophysics Data System (ADS)

    Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.

    2010-06-01

    A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM) intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  13. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 4: Detailed data. Part 2: Program plans and common support needs (a study of the commonality of space vehicle applications to future national needs

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.

  14. Making Your Own Hollow Blocks. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    The procedures needed to make hollow blocks from palay hull, sawdust, soil, or sand are outlined in this module. Also outlined are the procedures needed to construct the wooden molds used to make the blocks. The hollow blocks can be used in building a one story house where the roof does not rest on the hollow block wall, an additional room to the…

  15. The Safari Game.

    ERIC Educational Resources Information Center

    Frank, Roger

    1978-01-01

    An art teacher paired off his elementary classes and had one team member lead the other blindfolded through an obstacle course with a jungle theme. Students then painted their impressions. The object was to foster imagination and to build trust between partners. (SJL)

  16. 76 FR 44044 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Historic District, Buildings fronting Rodney Sq. at 10th, 11th, Market and King Sts., Wilmington IDAHO... MONTANA Missoula County Target Range Elementary School, 4095 South Ave., W., Missoula NEBRASKA Custer...

  17. The Efficacy of ClassWide Peer Tutoring in Middle Schools

    ERIC Educational Resources Information Center

    Kamps, Debra M.; Greenwood, Charles; Arreaga-Mayer, Carmen; Veerkamp, Mary Baldwin; Utley, Cheryl; Tapia, Yolanda; Bowman-Perrott, Lisa; Bannister, Harriett

    2008-01-01

    The majority of research on the efficacy of ClassWide Peer Tutoring (CWPT) is based on research with urban elementary students (Rohrbeck, Ginsberg-Block, Fantuzzo, & Miller, 2003), with much less research in middle schools. This study investigated CWPT with 975 middle school students in 52 classrooms, grades 6 through 8, over a three-year period.…

  18. Teacher Training in Urban Settings: Inquiry, Efficacy, and Culturally Diverse Field Placements

    ERIC Educational Resources Information Center

    McGlamery, Sheryl L.; Franks, Bridget A.; Shillingstad, Saundra L.

    2016-01-01

    This study describes two years of findings with a unique field experience (teaching science inquiry activities to African-American girls in a summer STEM camp) for preservice elementary education majors. It reports on the effects of the field experience, in conjunction with blocked science and mathematics methods courses, on preservice teachers'…

  19. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  20. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  1. Solar Heating Proof-of-Concept Experiment for a Public School Building. Report for the Period 15 Jan. 1974 to 15 May 1974. No. ER-7934.

    ERIC Educational Resources Information Center

    AAI Corp., Baltimore, MD.

    In the middle of January 1974, AAI Corporation received a contract to conduct a solar heating proof-of-concept experiment (POCE) for a public school building. On March 1, 1974, the experiment began as Timonium Elementary School, in Maryland, became the first school in the United States to be heated by solar energy. In this brief period, the…

  2. 17. A southward view of buildings #6B and #6 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. A southward view of buildings #6-B and #6 in the left background and buildings #5 (center) and #3 (right of center). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  3. Considering Community Psychology Competencies: A Love Letter to Budding Scholar-Activists Who Wonder if They Have What It Takes.

    PubMed

    Langhout, Regina Day

    2015-06-01

    Recently, community psychologists have re-vamped a set of 18 competencies considered important for how we practice community psychology. Three competencies are: (1) ethical, reflexive practice, (2) community inclusion and partnership, and (3) community education, information dissemination, and building public awareness. This paper will outline lessons I-a white working class woman academic-learned about my competency development through my research collaborations, using the lens of affective politics. I describe three lessons, from school-based research sites (elementary schools serving working class students of color and one elite liberal arts school serving wealthy white students). The first lesson, from an elementary school, concerns ethical, reflective practice. I discuss understanding my affect as a barometer of my ability to conduct research from a place of solidarity. The second lesson, which centers community inclusion and partnership, illustrates how I learned about the importance of "before the beginning" conversations concerning social justice and conflict when working in elementary schools. The third lesson concerns community education, information dissemination, and building public awareness. This lesson, from a college, taught me that I could stand up and speak out against classism in the face of my career trajectory being threatened. With these lessons, I flesh out key aspects of community practice competencies.

  4. Streambank Protection Guidelines,

    DTIC Science & Technology

    1983-10-01

    the types of rubble suitable for dumping on an eroding bank include broken pavement, bricks, building blocks , slag , and quarry waste. Large flat slabs...not provide any long-termn protection. blocks , and house brick. I rfbiae omrilgbo akt Completed gabion revetment made from prefabricated baskets...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be ypi i .,, p no- , ,,, ,hag ,.,.,,,,t

  5. Rockfall vulnerability assessment for masonry buildings

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga

    2015-04-01

    The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.

  6. Exploring the impact of an industrial volunteer/school science partnership on elementary teaching strategies and attitudes about future science study: A case study

    NASA Astrophysics Data System (ADS)

    White, Michael Robert

    This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type of partnership influenced the types of teaching behaviors used by elementary teachers during science instruction. Especially significant is that neither questioning wait-time nor level of questions asked was affected by the partnership experience. Furthermore, the partnership did not lead to teachers exhibiting a more constructivist-oriented approach to science instruction. However, teacher members of both partnerships expressed a strong wish for the partnership activities to continue.

  7. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Hurricane Katrina was the largest natural disaster in the United States, striking the Gulf Coast on August 29, 2005, and flooding 80% of New Orleans; to make matters worse, the city was flooded again only three weeks later by the effects of Hurricane Rita. Many of the buildings, including schools, were heavily damaged. The devastation of schools in New Orleans from the hurricanes was exacerbated by many years of deferred school maintenance. This casemore » study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools-Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School-and one major renovation, Joseph A. Craig Elementary School-are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates. Before Hurricane Katrina, New Orleans had 128 public schools. As part of the recovery planning, New Orleans Public Schools underwent an assessment and planning process to determine how many schools were needed and in what locations. Following a series of public town hall meetings and a district-wide comprehensive facility assessment, a Master Plan was developed, which outlined the renovation or construction of 85 schools throughout the city, which are expected to be completed by 2017. New Orleans Public Schools expects to build or renovate approximately eight schools each year over a 10-year period to achieve 21st century schools district-wide. Reconstruction costs are estimated at nearly $2 billion.« less

  8. Shades of Monet.

    ERIC Educational Resources Information Center

    Baber, Bonnie

    1999-01-01

    Presents an art lesson for elementary students using painter Claude Monet as an introduction to Impressionism. Discusses Monet and his artwork. Explains that the students copy Monet's painting "The House of Parliament, Sunset" in order to draw the contour or outline of the buildings. (CMK)

  9. Real World Robotics.

    ERIC Educational Resources Information Center

    Clark, Lisa J.

    2002-01-01

    Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)

  10. A Drainage Model: A One-Week Project.

    ERIC Educational Resources Information Center

    Lennert, James W.

    1981-01-01

    Describes a one-week unit in Earth science for the elementary science classroom. The concepts included are land formation, erosion, the water cycle, and human impact on the Earth's surface through planning and building a massive outdoor drainage model. (Author/DS)

  11. Implementing School-Based Professional Development in Kentucky.

    ERIC Educational Resources Information Center

    Daniel, Patricia L.; Stallion, Brenda K.

    1996-01-01

    Data from elementary and secondary principals and teachers identified six recommendations for improving school based professional development: (preparing an articulated mission; planning for professional development at the school and practitioner level; implementing the plan; providing broad support for professional development; building and…

  12. Technotown: A LEGO Experience. [and] Technotown: A School-Wide Design Technology Project.

    ERIC Educational Resources Information Center

    Belch, Harry; Knobloch, Stephan F.

    1994-01-01

    Describes how 900 elementary students planned, designed, and constructed Technotown out of 1 million LEGO pieces. Presents a learning activity (objectives, materials, challenge, evaluation, and closing thoughts) on the building of a subway system for Technotown. (SK)

  13. Design and synthesis of unnatural heparosan and chondroitin building blocks

    PubMed Central

    Bera, Smritilekha; Linhardt, Robert J.

    2011-01-01

    Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620

  14. PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. 11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL BLOCK 'A' (SOLITARY CONFINEMENT CELL BLOCK), TYPICAL SOLITARY CONFINEMENT CELL. THE CELL SHOWN IN CENTER OF PHOTO, HAS A 2-1/2' THICK STEEL DOOR. THE CELL SHOWN IN THE LEFT OF PHOTO, HAS A 3/4' DIAMETER IRON GRILLE DOOR. - U.S. Naval Base, Pearl Harbor, Brig, Neville Way near Ninth Street at Marine Barracks, Pearl City, Honolulu County, HI

  16. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  17. Effector-Triggered Self-Replication in Coupled Subsystems.

    PubMed

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Laboratory testing of a building envelope segment based on cellular concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  19. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  20. Tandem Repeat Proteins Inspired By Squid Ring Teeth

    NASA Astrophysics Data System (ADS)

    Pena-Francesch, Abdon

    Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.

  1. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    PubMed

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational spectroscopy, to ascertain features about the constituent superatomic building blocks, such as the charge of the cluster cores, by analysis of bond distances from the SCXRD data. The combination of atomic precision and intercluster interactions in these SACs produces novel collective properties, including tunable electrical transport, crystalline thermal conductivity, and ferromagnetism. In addition, we have developed a synthetic strategy to insert redox-active guests into the superstructure of SACs via single-crystal-to-single-crystal intercalation. This intercalation process allows us to tune the optical and electrical transport properties of the superatomic crystal host. These properties are explored using a host of techniques, including Raman spectroscopy, SQUID magnetometry, electrical transport measurements, electronic absorption spectroscopy, differential scanning calorimetry, and frequency-domain thermoreflectance. Superatomic crystals have proven to be both robust and tunable, representing a new method of materials design and architecture. This Account demonstrates how precisely controlling the structure and properties of nanoscale building blocks is key in developing the next generation of functional materials; several examples are discussed and detailed herein.

  2. Building a Case for Blocks as Kindergarten Mathematics Learning Tools

    ERIC Educational Resources Information Center

    Kinzer, Cathy; Gerhardt, Kacie; Coca, Nicole

    2016-01-01

    Kindergarteners need access to blocks as thinking tools to develop, model, test, and articulate their mathematical ideas. In the current educational landscape, resources such as blocks are being pushed to the side and being replaced by procedural worksheets and academic "seat time" in order to address standards. Mathematics research…

  3. Revisit Pattern Blocks to Develop Rational Number Sense

    ERIC Educational Resources Information Center

    Champion, Joe; Wheeler, Ann

    2014-01-01

    Pattern blocks are inexpensive wooden, foam, or plastic manipulatives developed in the 1960s to help students build an understanding of shapes, proportions, equivalence, and fractions (EDC 1968). The colorful collection of basic shapes in classic pattern block kits affords opportunities for amazing puzzle-like problem-solving tasks and for…

  4. Learning multivariate distributions by competitive assembly of marginals.

    PubMed

    Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald

    2013-02-01

    We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.

  5. Simple arithmetic: not so simple for highly math anxious individuals.

    PubMed

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  6. Molecular metamorphosis in polcalcin allergens by EF-hand rearrangements and domain swapping.

    PubMed

    Magler, Iris; Nüss, Dorota; Hauser, Michael; Ferreira, Fatima; Brandstetter, Hans

    2010-06-01

    Polcalcins such as Bet v 4 and Phl p 7 are pollen allergens that are constructed from EF-hand motifs, which are very common and well characterized helix-loop-helix motifs with calcium-binding functions, as elementary building blocks. Being members of an exceptionally well-characterized protein superfamily, these allergens highlight the fundamental challenge in explaining what features distinguish allergens from nonallergenic proteins. We found that Bet v 4 and Phl p 7 undergo oligomerization transitions with characteristics that are markedly different from those typically found in proteins: transitions from monomers to dimers and to distinct higher oligomers can be induced by increasing temperature; similarly, low concentrations of destabilizing agents, e.g. SDS, induce oligomerization transitions of Bet v 4. The changes in the quaternary structure, termed molecular metamorphosis, are induced and controlled by a combination of EF-hand rearrangements and domain swapping rather than by the classical law of mass action. Using an EF-hand-pairing model, we provide a two-step model that consistently explains and substantiates the observed metamorphosis. Moreover, the unusual oligomerization behavior suggests a straightforward explanation of how allergens can accomplish the crosslinking of IgE on mast cells, a hallmark of allergens.

  7. Quantum non-demolition detection of an itinerant microwave photon

    NASA Astrophysics Data System (ADS)

    Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.

    2018-06-01

    Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

  8. Simple arithmetic: not so simple for highly math anxious individuals

    PubMed Central

    Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-01-01

    Abstract Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low—compared to high—math anxious individuals perform better when they activate this network less—a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. PMID:29140499

  9. Extracting Lane Geometry and Topology Information from Vehicle Fleet Trajectories in Complex Urban Scenarios Using a Reversible Jump Mcmc Method

    NASA Astrophysics Data System (ADS)

    Roeth, O.; Zaum, D.; Brenner, C.

    2017-05-01

    Highly automated driving (HAD) requires maps not only of high spatial precision but also of yet unprecedented actuality. Traditionally small highly specialized fleets of measurement vehicles are used to generate such maps. Nevertheless, for achieving city-wide or even nation-wide coverage, automated map update mechanisms based on very large vehicle fleet data gain importance since highly frequent measurements are only to be obtained using such an approach. Furthermore, the processing of imprecise mass data in contrast to few dedicated highly accurate measurements calls for a high degree of automation. We present a method for the generation of lane-accurate road network maps from vehicle trajectory data (GPS or better). Our approach therefore allows for exploiting today's connected vehicle fleets for the generation of HAD maps. The presented algorithm is based on elementary building blocks which guarantees useful lane models and uses a Reversible Jump Markov chain Monte Carlo method to explore the models parameters in order to reconstruct the one most likely emitting the input data. The approach is applied to a challenging urban real-world scenario of different trajectory accuracy levels and is evaluated against a LIDAR-based ground truth map.

  10. Quantum information, oscillations and the psyche

    NASA Astrophysics Data System (ADS)

    Martin, F.; Carminati, F.; Galli Carminati, G.

    2010-05-01

    In this paper, taking the theory of quantum information as a model, we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qubits). We view how there can be communication between these various qubit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this way we build a model of handling a mental qubit with the help of pulses of a mental field. Starting with an elementary interaction between two qubits we build two-qubit quantum logic gates that allow information to be transferred from one qubit to the other. In this manner we build a quantum process that permits consciousness to "read" the unconscious and vice versa. The elementary interaction, e.g. between a pre-consciousness qubit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi oscillations. This time evolution shows how for example the unconscious can influence consciousness. In a process like mourning the influence of the unconscious on consciousness, as the influence of consciousness on the unconscious, are in agreement with what is observed in psychiatry.

  11. Two new hybrid molybdenum arsenate derivative constructed from [As2Mo6O26]6- building: Synthesis, structural characterization and photocatalysis property

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Luo, Xuan; Duan, Yuanling; Huang, Yanping; Zhang, Nanxi; Zhao, Liyan; Wu, Jie

    2017-08-01

    Two new inorganic-organic hybrid materials [Cu(enMe)2]2{(As2Mo6O26) [Cu(enMe)2]}·4H2O (1) and [As2Mo6(OH)2O24][Cu(H2O)2(phen)]2 (2) (enMe = 1,2'-propanediamine, phen = 1,10'-phenanthroline) based on [As2Mo6O26]6- building blocks, denoted as [As2Mo6], have been obtained by hydrothermal methods. 1 shows a 1-D straight chain structure constructed form [As2Mo6] building blocks and [Cu(enMe)2] complexes, and then extended to 3-D supramolecular network by lattice water via hydrogen bonds interactions. 2 exhibits a new 1-D covalent ribbon with large rectangular grids formed from [As2Mo6] building blocks connected by [Cu(H2O)2(phen)] complexes, then extended into 3-D supramolecular network via hydrogen bonds and π···π interactions. In additional, the photocatalytic activity for methylene blue degradation under visible-light irradiation of 2 was investigated.

  12. Building a Program of University Physics and Mathematics Education

    NASA Astrophysics Data System (ADS)

    Tanaka, Tadayoshi; Nakamura, Akira; Kagiyama, Shigenori; Namiki, Masatoshi; Ejiri, Arisato; Ohshima, Kazunari; Mishima, Akiomi; Aoki, Katsuhiko

    Authors built physics learning modules which consist of lectures, experiments and practices, introducing physics experiments of elementary and secondary education. In addition, we are operating "KIT Mathematics Navigation" in order to complement mathematical basics to engineering education. Based on these results, we are building studies and development of an education program in order to support the learning paradigm shift and to help students learn physics and mathematics complimentarily for liberal arts education course in universities.

  13. Schema building profiles among elementary school students in solving problems related to operations of addition to fractions on the basis of mathematic abilities

    NASA Astrophysics Data System (ADS)

    Gembong, S.; Suwarsono, S. T.; Prabowo

    2018-03-01

    Schema in the current study refers to a set of action, process, object and other schemas already possessed to build an individual’s ways of thinking to solve a given problem. The current study aims to investigate the schemas built among elementary school students in solving problems related to operations of addition to fractions. The analyses of the schema building were done qualitatively on the basis of the analytical framework of the APOS theory (Action, Process, Object, and Schema). Findings show that the schemas built on students of high and middle ability indicate the following. In the action stage, students were able to add two fractions by way of drawing a picture or procedural way. In the Stage of process, they could add two and three fractions. In the stage of object, they could explain the steps of adding two fractions and change a fraction into addition of fractions. In the last stage, schema, they could add fractions by relating them to another schema they have possessed i.e. the least common multiple. Those of high and middle mathematic abilities showed that their schema building in solving problems related to operations odd addition to fractions worked in line with the framework of the APOS theory. Those of low mathematic ability, however, showed that their schema on each stage did not work properly.

  14. Urban Renewable Building And Neighborhood Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    URBANopt is a user interface for creating and running district and city scale building energy simulations. The framework is built around the OpenStudio Urban Measures which are part of the OpenStudio project. Building footprints, building height, building type, and other data can be imported from public records or other sources. Footprints and locations for new buildings and district systems can also be specified. OpenStudio Measures are used to create starting point energy models and to model energy design features and efficiency measures for each building. URBANopt allows a user to pose several scenarios such as “what if 30% of themore » commercial retail buildings added roof top solar” or “what if all elementary schools converted to ground source heat pumps” and then visualize the impacts at a district or city scale. URBANopt is capable of modeling existing buildings, new construction, and district energy systems. URBANopt can be used to explore options for achieving Zero Energy across a collection of buildings (e.g., Zero Energy Districts).« less

  15. A Spectrum of Interoperability: The Site for Science Prototype for the NSDL; Re-Inventing the Wheel? Standards, Interoperability and Digital Cultural Content; Preservation Risk Management for Web Resources: Virtual Remote Control in Cornell's Project Prism; Safekeeping: A Cooperative Approach to Building a Digital Preservation Resource; Object Persistence and Availability in Digital Libraries; Illinois Digital Cultural Heritage Community-Collaborative Interactions among Libraries, Museums and Elementary Schools.

    ERIC Educational Resources Information Center

    Arms, William Y.; Hillmann, Diane; Lagoze, Carl; Krafft, Dean; Marisa, Richard; Saylor, John; Terizzi, Carol; Van de Sompel, Herbert; Gill, Tony; Miller, Paul; Kenney, Anne R.; McGovern, Nancy Y.; Botticelli, Peter; Entlich, Richard; Payette, Sandra; Berthon, Hilary; Thomas, Susan; Webb, Colin; Nelson, Michael L.; Allen, B. Danette; Bennett, Nuala A.; Sandore, Beth; Pianfetti, Evangeline S.

    2002-01-01

    Discusses digital libraries, including interoperability, metadata, and international standards; Web resource preservation efforts at Cornell University; digital preservation at the National Library of Australia; object persistence and availability; collaboration among libraries, museums and elementary schools; Asian digital libraries; and a Web…

  16. Self-assembly: Misfits unite

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2017-12-01

    The spontaneous assembly of particulate or molecular 'building blocks' into larger architectures underlies structure formation in many biological and synthetic materials. Shape frustration of ill-fitting blocks holds a surprising key to more regular assemblies.

  17. Door in west wall of the center block, positioned near ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Door in west wall of the center block, positioned near the detached kitchen/bake house building. - Lazaretto Quarantine Station, Wanamaker Avenue and East Second Street, Essington, Delaware County, PA

  18. A crown-like heterometallic unit as the building block for a 3D In-Ge-S framework.

    PubMed

    Han, Xiaohui; Wang, Zhenqing; Xu, Jin; Liu, Dan; Wang, Cheng

    2015-12-14

    Supertetrahedral clusters are the most common building blocks in constructing Group 13/14/16 microporous metal chalcogenide materials while other types of clusters are yet scarcely explored. Herein, a new crown-like building unit [In3Ge3S16] has been obtained. The units assemble into a 3D framework [C6H14NO]4[In6Ge3S17]·1.5H2O (1) via a dual-connection mode and a SrSi2 (srs)-type topology could be achieved by treating each unit as a tri-connected node.

  19. Trick or Treat or Trouble: Featuring Brian McDaniel. The Kids on the Block Book Series.

    ERIC Educational Resources Information Center

    Aiello, Barbara; Shulman, Jeffrey

    One of a series of children's books written from the point of view of an elementary grade child with a disability or other problem, the stories emphasize the similarities in childhood experience while providing information specific to the disability. In this book, fifth-grader Brian, who has epilepsy, finds that his misconceptions about a funeral…

  20. It's Your Turn at Bat: Featuring Mark Riley. The Kids on the Block Book Series.

    ERIC Educational Resources Information Center

    Aiello, Barbara; Shulman, Jeffrey

    One of a series of children's books written from the point of view of an elementary grade child with a disability or other problem, the stories emphasize similarities in childhood experience while providing information specific to the disability. In this book, Mark, a fifth grader with cerebral palsy, has been reluctantly doing research on sewing…

Top