Characterization of selected elementary motion detector cells to image primitives.
Benson, Leslie A; Barrett, Steven F; Wright, Cameron H G
2008-01-01
Developing a visual sensing system, complete with motion processing hardware and software would have many applications to current technology. It could be mounted on many autonomous vehicles to provide information about the navigational environment, as well as obstacle avoidance features. Incorporating the motion processing capabilities into the sensor requires a new approach to the algorithm implementation. This research, and that of many others, have turned to nature for inspiration. Elementary motion detector (EMD) cells are involved in a biological preprocessing network to provide information to the motion processing lobes of the house degrees y Musca domestica. This paper describes the response of the photoreceptor inputs to the EMDs. The inputs to the EMD components are tested as they are stimulated with varying image primitives. This is the first of many steps in characterizing the EMD response to image primitives.
Bio-inspired motion detection in an FPGA-based smart camera module.
Köhler, T; Röchter, F; Lindemann, J P; Möller, R
2009-03-01
Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10,000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device.
Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin
2015-01-01
Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771
Arenz, Alexander; Drews, Michael S; Richter, Florian G; Ammer, Georg; Borst, Alexander
2017-04-03
Detecting the direction of motion contained in the visual scene is crucial for many behaviors. However, because single photoreceptors only signal local luminance changes, motion detection requires a comparison of signals from neighboring photoreceptors across time in downstream neuronal circuits. For signals to coincide on readout neurons that thus become motion and direction selective, different input lines need to be delayed with respect to each other. Classical models of motion detection rely on non-linear interactions between two inputs after different temporal filtering. However, recent studies have suggested the requirement for at least three, not only two, input signals. Here, we comprehensively characterize the spatiotemporal response properties of all columnar input elements to the elementary motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium imaging. Between these input neurons, we find large differences in temporal dynamics. Based on this, computer simulations show that only a small subset of possible arrangements of these input elements maps onto a recently proposed algorithmic three-input model in a way that generates a highly direction-selective motion detector, suggesting plausible network architectures. Moreover, modulating the motion detection system by octopamine-receptor activation, we find the temporal tuning of T4 and T5 cells to be shifted toward higher frequencies, and this shift can be fully explained by the concomitant speeding of the input elements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Second-order processing of four-stroke apparent motion.
Mather, G; Murdoch, L
1999-05-01
In four-stroke apparent motion displays, pattern elements oscillate between two adjacent positions and synchronously reverse in contrast, but appear to move unidirectionally. For example, if rightward shifts preserve contrast but leftward shifts reverse contrast, consistent rightward motion is seen. In conventional first-order displays, elements reverse in luminance contrast (e.g. light elements become dark, and vice-versa). The resulting perception can be explained by responses in elementary motion detectors turned to spatio-temporal orientation. Second-order motion displays contain texture-defined elements, and there is some evidence that they excite second-order motion detectors that extract spatio-temporal orientation following the application of a non-linear 'texture-grabbing' transform by the visual system. We generated a variety of second-order four-stroke displays, containing texture-contrast reversals instead of luminance contrast reversals, and used their effectiveness as a diagnostic test for the presence of various forms of non-linear transform in the second-order motion system. Displays containing only forward or only reversed phi motion sequences were also tested. Displays defined by variation in luminance, contrast, orientation, and size were effective. Displays defined by variation in motion, dynamism, and stereo were partially or wholly ineffective. Results obtained with contrast-reversing and four-stroke displays indicate that only relatively simple non-linear transforms (involving spatial filtering and rectification) are available during second-order energy-based motion analysis.
A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.
Fisher, Yvette E; Leong, Jonathan C S; Sporar, Katja; Ketkar, Madhura D; Gohl, Daryl M; Clandinin, Thomas R; Silies, Marion
2015-12-21
Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.
Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M
2010-01-01
Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.
A neurocomputational model of figure-ground discrimination and target tracking.
Sun, H; Liu, L; Guo, A
1999-01-01
A neurocomputational model is presented for figureground discrimination and target tracking. In the model, the elementary motion detectors of the correlation type, the computational modules of saccadic and smooth pursuit eye movement, an oscillatory neural-network motion perception module and a selective attention module are involved. It is shown that through the oscillatory amplitude and frequency encoding, and selective synchronization of phase oscillators, the figure and the ground can be successfully discriminated from each other. The receptive fields developed by hidden units of the networks were surprisingly similar to the actual receptive fields and columnar organization found in the primate visual cortex. It is suggested that equivalent mechanisms may exist in the primate visual cortex to discriminate figure-ground in both temporal and spatial domains.
Schwegmann, Alexander; Lindemann, Jens P.; Egelhaaf, Martin
2014-01-01
Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way. PMID:25136314
Tripathy, Srimant P.; Shafiullah, Syed N.; Cox, Michael J.
2012-01-01
Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms [1]. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected. PMID:23056172
Tripathy, Srimant P; Shafiullah, Syed N; Cox, Michael J
2012-01-01
Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected.
Instrumentation for Applied Physics and Industrial Applications
NASA Astrophysics Data System (ADS)
Hillemanns, H.; Le Goff, J.-M.
This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content:
Optimized "detectors" for dynamics analysis in solid-state NMR
NASA Astrophysics Data System (ADS)
Smith, Albert A.; Ernst, Matthias; Meier, Beat H.
2018-01-01
Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.
Students' development of astronomy concepts across time
NASA Astrophysics Data System (ADS)
Plummer, Julia Diane
2006-02-01
The National Science Education Standards (NRC, 1996) recommend that students understand the apparent patterns of motion of the sun, moon and stars visible by the end of early elementary school. However, little information exists on students' knowledge of apparent celestial motion or instruction in this area. The goals of this dissertation were to describe children's knowledge of apparent celestial motion across elementary and middle school, explore early elementary students' ability to learn these topics through planetarium instruction, and begin the development of a learning progression for these concepts, First, third, and eighth grade students (N=60) were interviewed using a planetarium-like setting that allowed the students to demonstrate their ideas both verbally and with their own motions on an artificial sky. Analysis of these interviews suggests that students are not making the types of observations of the sky necessary to learn apparent celestial motion and any instruction they may have received has not helped them reach an accurate understanding of most topics. Most students at each grade level could not accurately describe the patterns of motion. Though the older students were more accurate in most of their descriptions than the younger students, in several areas the eighth grade students showed no improvement over the third grade students. The use of kinesthetic learning techniques in a planetarium program was also explored as a method to improve understanding of celestial motion. Pre- and post-interviews were conducted with participants from seven classes of first and second grade students (N=63). Students showed significant improvement in all areas of apparent celestial motion covered by the planetarium program and surpassed the middle school students' understanding of these concepts in most areas. This suggests that students in early elementary school are capable of learning the accurate description of apparent celestial motion. The results demonstrate the value of both kinesthetic learning techniques and the rich visual environment of the planetarium for improved understanding of celestial motion. Based on the results of these studies, I developed a learning progression describing how children may progress through successively more complex ways of understanding apparent celestial motion across elementary grades.
POSITION AND MOTION, A SCIENCE UNIT FOR THE UPPER ELEMENTARY GRADES, STUDENT MANUAL.
ERIC Educational Resources Information Center
BERGER, CARL; MONTGOMERY, MARSHALL
THIS MANUAL IS DESIGNED FOR STUDENTS IN UPPER ELEMENTARY GRADES STUDYING THE SCIENCE CURRICULUM IMPROVEMENT STUDY (SCIS) UNIT "POSITION AND MOTION". THE OVERALL STRUCTURE OF THE UNIT FOLLOWS A CYCLE OF PRELIMINARY EXPLORATION, INVENTION OF SPECIFIC CONCEPTS RELATED TO REFERENCE FRAMES, AND DISCOVERY OF THE USEFULNESS OF THE CONCEPT.…
Pre-service Elementary Teachers Understanding on Force and Motion
NASA Astrophysics Data System (ADS)
Anggoro, S.; Widodo, A.; Suhandi, A.
2017-09-01
The research is done to investigate the understanding on the subtopic of Force and Motion that exists among the pre-services elementary teachers. The participants were 71 Elementary Teachers Study Program students in 6th and 77 one in 2nd semester at private university. Research instrument consisted of background information of respondents, belief of preconception and 8 questions that relates to Force and Motion with four alternative answers and their explained. Descriptive statistics such as percentage and bar chart were used for analyzing the data collected. Research findings have shown many participants have some misunderstand or misconception conception especially in free fall object, rest object, buoyant force and gravitation. This research recommends learning progression pre-services teachers to be exposed with conflict cognitive strategy for science conceptual change.
Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector
NASA Astrophysics Data System (ADS)
Doukas, Jason; Lin, Shih-Yuin; Hu, B. L.; Mann, Robert B.
2013-11-01
The Unruh effect refers to the thermal fluctuations a detector experiences while undergoing linear motion with uniform acceleration in a Minkowski vacuum. This thermality can be demonstrated by tracing the vacuum state of the field over the modes beyond the accelerated detector's event horizon. However, the event horizon is well-defined only if the detector moves with eternal uniform linear acceleration. This idealized condition cannot be fulfilled in realistic situations when the motion unavoidably involves periods of non-uniform acceleration. Many experimental proposals to test the Unruh effect are of this nature. Often circular or oscillatory motion, which lacks an obvious geometric description, is considered in such proposals. The proper perspective for theoretically going beyond, or experimentally testing, the Unruh-Hawking effect in these more general conditions has to be offered by concepts and techniques in non-equilibrium quantum field theory. In this paper we provide a detailed analysis of how an Unruh-DeWitt detector undergoing oscillatory motion responds to the fluctuations of a quantum field. Numerical results for the late-time temperatures of the oscillating detector are presented. We comment on the digressions of these results from what one would obtain from a naive application of Unruh's result.
Mechanisms of time-based figure-ground segregation.
Kandil, Farid I; Fahle, Manfred
2003-11-01
Figure-ground segregation can rely on purely temporal information, that is, on short temporal delays between positional changes of elements in figure and ground (Kandil, F.I. & Fahle, M. (2001) Eur. J. Neurosci., 13, 2004-2008). Here, we investigate the underlying mechanisms by measuring temporal segregation thresholds for various kinds of motion cues. Segregation can rely on monocular first-order motion (based on luminance modulation) and second-order motion cues (contrast modulation) with a high temporal resolution of approximately 20 ms. The mechanism can also use isoluminant motion with a reduced temporal resolution of 60 ms. Figure-ground segregation can be achieved even at presentation frequencies too high for human subjects to inspect successive frames individually. In contrast, when stimuli are presented dichoptically, i.e. separately to both eyes, subjects are unable to perceive any segregation, irrespective of temporal frequency. We propose that segregation in these displays is detected by a mechanism consisting of at least two stages. On the first level, standard motion or flicker detectors signal local positional changes (flips). On the second level, a segregation mechanism combines the local activities of the low-level detectors with high temporal precision. Our findings suggest that the segregation mechanism can rely on monocular detectors but not on binocular mechanisms. Moreover, the results oppose the idea that segregation in these displays is achieved by motion detectors of a higher order (motion-from-motion), but favour mechanisms sensitive to short temporal delays even without activation of higher-order motion detectors.
A motion detection system for AXAF X-ray ground testing
NASA Technical Reports Server (NTRS)
Arenberg, Jonathan W.; Texter, Scott C.
1993-01-01
The concept, implementation, and performance of the motion detection system (MDS) designed as a diagnostic for X-ray ground testing for AXAF are described. The purpose of the MDS is to measure the magnitude of a relative rigid body motion among the AXAF test optic, the X-ray source, and X-ray focal plane detector. The MDS consists of a point source, lens, centroid detector, transimpedance amplifier, and computer system. Measurement of the centroid position of the image of the optical point source provides a direct measure of the motions of the X-ray optical system. The outputs from the detector and filter/amplifier are digitized and processed using the calibration with a 50 Hz bandwidth to give the centroid's location on the detector. Resolution of 0.008 arcsec has been achieved by this system. Data illustrating the performance of the motion detection system are also presented.
Suggestions for Teaching the Principles of Continental Drift in the Elementary School
ERIC Educational Resources Information Center
Glenn, William H.
1977-01-01
Provides a brief overview of current geographic ideas regarding continental drift and plate tectonics and suggests techniques for illustrating continental motions to elementary school pupils. (Author/DB)
Local motion adaptation enhances the representation of spatial structure at EMD arrays
Lindemann, Jens P.; Egelhaaf, Martin
2017-01-01
Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects. PMID:29281631
Shioiri, Satoshi; Matsumiya, Kazumichi
2009-05-29
We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatial frequency motion was perceived during adaptation. In contrast, in the flicker test, the MAE was perceived in the direction opposite to that of the low spatial frequency grating. These MAEs indicate that two different motion systems contribute to motion perception and can be isolated by using different test stimuli. Using a psychophysical technique based on the MAE, we investigated the differences between the two motion mechanisms. The results showed that the static MAE is the aftereffect of the motion system with a high spatial and low temporal frequency tuning (slow motion detector) and the flicker MAE is the aftereffect of the motion system with a low spatial and high temporal frequency tuning (fast motion detector). We also revealed that the two motion detectors differ in orientation tuning, temporal frequency tuning, and sensitivity to relative motion.
Norman, Joseph; Hock, Howard; Schöner, Gregor
2014-07-01
It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.
The free-flight response of Drosophila to motion of the visual environment.
Mronz, Markus; Lehmann, Fritz-Olaf
2008-07-01
In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.
Low-energy Lorentz violation from high-energy modified dispersion in inertial and circular motion
NASA Astrophysics Data System (ADS)
Louko, Jorma; Upton, Samuel D.
2018-01-01
We consider an Unruh-DeWitt detector in inertial and circular motion in Minkowski spacetime of arbitrary dimension, coupled to a quantized scalar field with the Lorentz-violating dispersion relation ω =|k |f (|k |/M⋆) , where M⋆ is the Lorentz-breaking scale. Assuming that f dips below unity somewhere, we show that an inertial detector experiences large low-energy Lorentz violations in all spacetime dimensions greater than two, generalizing previous results in four dimensions. For a detector in circular motion, we show that a similar low-energy Lorentz violation occurs in three spacetime dimensions, and we lay the analytic groundwork for examining circular motion in all dimensions greater than three, generalizing previous work by Stargen, Kajuri and Sriramkumar in four dimensions. The circular motion results may be relevant for the prospects of observing the circular motion Unruh effect in analogue laboratory systems.
ERIC Educational Resources Information Center
Nielsen, Wendy; Hoban, Garry
2015-01-01
This research studied a group of three preservice elementary teachers creating a narrated stop-motion animation (Slowmation) from start to finish in 3?hours to explain the challenging concept of "phases of the moon" to elementary school children. The research questions investigated the preservice teachers' learning before and after the…
Motion-Matching: A Challenge Game to Generate Motion Concepts
ERIC Educational Resources Information Center
Schuster, David; Adams, Betty; Brookes, David; Milner-Bolotin, Marina; Undreiu, Adriana
2009-01-01
Motion is a topic that is taught from elementary grades through to university at various levels of sophistication. It is an area that can be challenging for learning in a conceptually meaningful way, and formal kinematics instruction can sometimes seem dry and boring. Thus, the nature of students' initial introduction to motion is important in…
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
NASA Astrophysics Data System (ADS)
Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.
2018-03-01
Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.
Nanosecond monolithic CMOS readout cell
Souchkov, Vitali V.
2004-08-24
A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.
Time reversibility in the quantum frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masot-Conde, Fátima
2014-12-04
Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.
ERIC Educational Resources Information Center
Ballard, David M.
1990-01-01
Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)
Crossed beam roof target for motion tracking
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor)
2009-01-01
A system for detecting motion between a first body and a second body includes first and second detector-emitter pairs, disposed on the first body, and configured to transmit and receive first and second optical beams, respectively. At least a first optical rotator is disposed on the second body and configured to receive and reflect at least one of the first and second optical beams. First and second detectors of the detector-emitter pairs are configured to detect the first and second optical beams, respectively. Each of the first and second detectors is configured to detect motion between the first and second bodies in multiple degrees of freedom (DOFs). The first optical rotator includes a V-notch oriented to form an apex of an isosceles triangle with respect to a base of the isosceles triangle formed by the first and second detector-emitter pairs. The V-notch is configured to receive the first optical beam and reflect the first optical beam to both the first and second detectors. The V-notch is also configured to receive the second optical beam and reflect the second optical beam to both the first and second detectors.
Survey of Indoor Radon Concentrations in California Elementary Schools. Final Report.
ERIC Educational Resources Information Center
Zhou, Joey Y.; Liu, Kai-Shen; Waldman, Jed
This paper reports on the concentrations of radon found within a sample of 378 elementary schools in California. Long-term alpha-track radon detectors were placed in 6,485 classrooms within participating schools to detect radon levels for between 220 to 366 days. Only classrooms were tested. Results show that about 5.6 percent of the schools…
The use of Banyumas traditional art as analog sources of elementary school science materials
NASA Astrophysics Data System (ADS)
Handayani, L.; Nugroho, S. E.; Rohidi, T. R.; Wiyanto
2018-03-01
All various traditional arts of Banyumas area support this area to be one famous region located in the periphery of West and Central Java with its unique cultural identity. In science learning, these traditional arts are very important aspect which can be implemented as a source of analog by students thinking a science concept analogically. This paper discusses a kind of Banyumas traditional art: the ebeg, and its cultural characteristics which can play a significant role in supporting elementary school students’ analogical thinking of a science material. The method used were literature and documentary studies. It is concluded that the ebeg provides many cultural characteristics which can be used as analog of elementary school science material, in terms of its music player’s motion, kinds of musical instruments played and its dancer motion.
A Desktop Virtual Reality Earth Motion System in Astronomy Education
ERIC Educational Resources Information Center
Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang
2007-01-01
In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Nanomechanical motion measured with an imprecision below that at the standard quantum limit.
Teufel, J D; Donner, T; Castellanos-Beltran, M A; Harlow, J W; Lehnert, K W
2009-12-01
Nanomechanical oscillators are at the heart of ultrasensitive detectors of force, mass and motion. As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. If the imprecision of a measurement of the displacement of an oscillator is pushed below a scale set by the standard quantum limit, the measurement must perturb the motion of the oscillator by an amount larger than that scale. Here we show a displacement measurement with an imprecision below the standard quantum limit scale. We achieve this imprecision by measuring the motion of a nanomechanical oscillator with a nearly shot-noise limited microwave interferometer. As the interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN Hz(-1/2). This measurement is a critical step towards observing quantum behaviour in a mechanical object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelis, Georgios I., E-mail: georgios.angelis@sydney.edu.au; Ryder, William J.; Bashar, Rezaul
Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to themore » torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more advantageous. Conclusions: Motion-induced inconsistencies in the projection data and attenuation/emission mismatch are the two main causes of bias in reconstructed brain images when there is complex motion. It appears that these two factors have a synergistic effect on the qualitative and quantitative accuracy of the reconstructed images.« less
Evidence against the temporal subsampling account of illusory motion reversal
Kline, Keith A.; Eagleman, David M.
2010-01-01
An illusion of reversed motion may occur sporadically while viewing continuous smooth motion. This has been suggested as evidence of discrete temporal sampling by the visual system in analogy to the sampling that generates the wagon–wheel effect on film. In an alternative theory, the illusion is not the result of discrete sampling but instead of perceptual rivalry between appropriately activated and spuriously activated motion detectors. Results of the current study demonstrate that illusory reversals of two spatially overlapping and orthogonal motions often occur separately, providing evidence against the possibility that illusory motion reversal (IMR) is caused by temporal sampling within a visual region. Further, we find that IMR occurs with non-uniform and non-periodic stimuli—an observation that is not accounted for by the temporal sampling hypothesis. We propose, that a motion aftereffect is superimposed on the moving stimulus, sporadically allowing motion detectors for the reverse direction to dominate perception. PMID:18484852
Effect of relativistic motion on witnessing nonclassicality of quantum states
NASA Astrophysics Data System (ADS)
Checińska, Agata; Lorek, Krzysztof; Dragan, Andrzej
2017-01-01
We show that the operational definition of nonclassicality of a quantum state depends on the motion of the observer. We use the relativistic Unruh-DeWitt detector model to witness nonclassicality of the probed field state. It turns out that the witness based on the properties of the P representation of the quantum state depends on the trajectory of the detector. Inertial and noninertial motion of the device have qualitatively different impact on the performance of the witness.
ERIC Educational Resources Information Center
Plummer, Julia D.; Wasko, Kyle D.; Slagle, Cynthia
2011-01-01
This study investigated elementary students' explanations for the daily patterns of apparent motion of the Sun, Moon, and stars. Third-grade students were chosen for this study because this age level is at the lower end of when many US standards documents suggest students should learn to use the Earth's rotation to explain daily celestial motion.…
Stop-Motion to Foster Digital Literacy in Elementary School
ERIC Educational Resources Information Center
Sun, Koun-Tem; Wang, Chun-Huang; Liku, Ming-Chi
2017-01-01
Although digital media literacy is recognized as providing the essential competencies required for living in a new media age, it has only just started to gain focus in Taiwan's elementary education. One of the reasons is examination-oriented education, which diverts scarce resources away from this informal learning. The other reason is that…
Elementary Visual Hallucinations and Their Relationships to Neural Pattern-Forming Mechanisms
ERIC Educational Resources Information Center
Billock, Vincent A.; Tsou, Brian H.
2012-01-01
An extraordinary variety of experimental (e.g., flicker, magnetic fields) and clinical (epilepsy, migraine) conditions give rise to a surprisingly common set of elementary hallucinations, including spots, geometric patterns, and jagged lines, some of which also have color, depth, motion, and texture. Many of these simple hallucinations fall into a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapelain, Antoine
Particle physics aims to give a coherent description of the nature and the behavior of elementary particles of matter. Particle accelerators (colliders) allow pushing back our know- ledge in this domain producing particles that cannot be observed by other means. This thesis work contributes to this research eld and focuses on the study of the top quark which is the latest brick of matter discovered and the heaviest known elementary particle. The property of the top quark studied here, the charge asymmetry of the top quark-antiquark pairs, has driven a lot of attention in 2011 because of measurements released bymore » Tevatron experiments. These measurements showed deviations with the predictions made in the framework of the standard model of particle physics. New measurements of the charge asymmetry performed at the Tevatron (with the D0 detector) and at the LHC (with the ATLAS detector) are presented in this thesis.« less
A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring
Yang, Che-Chang; Hsu, Yeh-Liang
2010-01-01
Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies. PMID:22163626
Using the Graphing Calculator--in Two-Dimensional Motion Plots.
ERIC Educational Resources Information Center
Brueningsen, Chris; Bower, William
1995-01-01
Presents a series of simple activities involving generalized two-dimensional motion topics to prepare students to study projectile motion. Uses a pair of motion detectors, each connected to a calculator-based-laboratory (CBL) unit interfaced with a standard graphics calculator, to explore two-dimensional motion. (JRH)
Image deblurring by motion estimation for remote sensing
NASA Astrophysics Data System (ADS)
Chen, Yueting; Wu, Jiagu; Xu, Zhihai; Li, Qi; Feng, Huajun
2010-08-01
The imagery resolution of imaging systems for remote sensing is often limited by image degradation resulting from unwanted motion disturbances of the platform during image exposures. Since the form of the platform vibration can be arbitrary, the lack of priori knowledge about the motion function (the PSF) suggests blind restoration approaches. A deblurring method which combines motion estimation and image deconvolution both for area-array and TDI remote sensing has been proposed in this paper. The image motion estimation is accomplished by an auxiliary high-speed detector and a sub-pixel correlation algorithm. The PSF is then reconstructed from estimated image motion vectors. Eventually, the clear image can be recovered by the Richardson-Lucy (RL) iterative deconvolution algorithm from the blurred image of the prime camera with the constructed PSF. The image deconvolution for the area-array detector is direct. While for the TDICCD detector, an integral distortion compensation step and a row-by-row deconvolution scheme are applied. Theoretical analyses and experimental results show that, the performance of the proposed concept is convincing. Blurred and distorted images can be properly recovered not only for visual observation, but also with significant objective evaluation increment.
Latest AMS Results on elementary particles in cosmic rays
NASA Astrophysics Data System (ADS)
Kounine, Andrei; AMS Collaboration
2017-01-01
AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.
NASA Technical Reports Server (NTRS)
Perrone, J. A.; Stone, L. S.
1998-01-01
We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.
The High Energy Detector of Simbol-X
NASA Astrophysics Data System (ADS)
Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Le Mer, I.; Pinsard, F.; Cara, C.; Goetschy, A.; Martignac, J.; Tauzin, G.; Hervé, S.; Laurent, P.; Chipaux, R.; Rio, Y.; Fontignie, J.; Horeau, B.; Authier, M.; Ferrando, P.
2009-05-01
The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.
Geology and Earth Sciences Sourcebook for Elementary and Secondary Schools, Second Edition.
ERIC Educational Resources Information Center
Heller, Robert L.
This earth science resource book, designed for use by elementary and secondary school teachers, presents aspects of earth science which illustrate the significance of matter, energy, forces, motion, time, and space in the dynamics and history of the earth. The major content of this resource manual consists of authoritative information about earth…
Inquiry and Astronomy: Preservice Teachers' Investigations of Celestial Motion
ERIC Educational Resources Information Center
Plummer, Julia D.; Zahm, Valerie M.; Rice, Rebecca
2010-01-01
This study investigated the impact of an open inquiry experience on elementary science methods students' understanding of celestial motion as well as the methods developed by students to answer their own research questions. Pre/post interviews and assessments were used to measure change in participants' understanding (N = 18). A qualitative…
Projectile Motion without Calculus
ERIC Educational Resources Information Center
Rizcallah, Joseph A.
2018-01-01
Projectile motion is a constant theme in introductory-physics courses. It is often used to illustrate the application of differential and integral calculus. While most of the problems used for this purpose, such as maximizing the range, are kept at a fairly elementary level, some, such as determining the safe domain, involve not so elementary…
A Look at Damped Harmonic Oscillators through the Phase Plane
ERIC Educational Resources Information Center
Daneshbod, Yousef; Latulippe, Joe
2011-01-01
Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…
Demonstrating the Direction of Angular Velocity in Circular Motion
ERIC Educational Resources Information Center
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-01-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…
Comparative Study of Various Types of Vehicle Detectors
DOT National Transportation Integrated Search
1977-09-01
This report is a comparison between the different types of vehicle detectors and associated equipment. It covers practically all of the presence and motion detectors either being sold commercially or actively researched at this time, and includes rad...
Psilocybin impairs high-level but not low-level motion perception.
Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X
2004-08-26
The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.
Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes
ERIC Educational Resources Information Center
Gauthier, N.
2004-01-01
An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…
NASA Astrophysics Data System (ADS)
Allec, N.; Abbaszadeh, S.; Karim, K. S.
2011-09-01
The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.
Allec, N; Abbaszadeh, S; Karim, K S
2011-09-21
The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml(-1) in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.
Seven Experiments to Test the Local Lorentz Invariance of c
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.
2005-01-01
The speed of light has never been measured directly with a moving detector to test the fundamental assertion of special relativity that c is invariant to motion of the observer. Seven simple experiments are proposed, four of which could test the invariance of c to motion of the detector. Three other observations of moving sources could test Einstein s second postulate and the relativity of stellar aberration. There are lingering concerns that the speed of light may depend on the motion of the observer, after all. This issue can now be resolved by experiment.
Kobayashi, Yasuto; Ae, Michiyoshi; Miyazaki, Akiyo; Fujii, Norihisa; Iiboshi, Akira; Nakatani, Hideki
2016-09-01
The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5-15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.
Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic
NASA Astrophysics Data System (ADS)
Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2002-03-01
The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.
Maximov, Vadim; Maximova, Elena; Damjanović, Ilija; Maximov, Paul
2014-09-01
Responses of direction-selective and orientation-selective motion detectors were recorded extracellularly from the axon terminals of ganglion cells in the superficial layers of the tectum opticum of immobilized goldfish, Carassius gibelio (Bloch, 1782). Color stripes or edges moving on some color background (presented on the CRT monitor with known emission spectra of its phosphors) served as stimuli. It was shown that stimuli of any color can be more or less matched with the background by varying their intensities what is indicative of color blindness of the motion detectors. Sets of stimuli which matched the background proved to represent planes in the three-dimensional color space of the goldfish. A relative contribution of different types of cones to the spectral sensitivity was estimated according to orientation of the plane of color matches. The spectral sensitivity of any motion detector was shown to be determined mainly by long-wave cones with a weak negative (opponent) contributions of middle-wave and/or short-wave ones. This resulted in reduced sensitivity in the blue-green end of the spectrum, what may be considered as an adaptation to the aquatic environment where, because of the substantial light scattering of a blue-green light, acute vision is possible only in a red region of the spectrum.
Burchett, John; Shankar, Mohan; Hamza, A Ben; Guenther, Bob D; Pitsianis, Nikos; Brady, David J
2006-05-01
We use pyroelectric detectors that are differential in nature to detect motion in humans by their heat emissions. Coded Fresnel lens arrays create boundaries that help to localize humans in space as well as to classify the nature of their motion. We design and implement a low-cost biometric tracking system by using off-the-shelf components. We demonstrate two classification methods by using data gathered from sensor clusters of dual-element pyroelectric detectors with coded Fresnel lens arrays. We propose two algorithms for person identification, a more generalized spectral clustering method and a more rigorous example that uses principal component regression to perform a blind classification.
Projectile motion without calculus
NASA Astrophysics Data System (ADS)
Rizcallah, Joseph A.
2018-07-01
Projectile motion is a constant theme in introductory-physics courses. It is often used to illustrate the application of differential and integral calculus. While most of the problems used for this purpose, such as maximizing the range, are kept at a fairly elementary level, some, such as determining the safe domain, involve not so elementary techniques, which can hardly be assumed of the targeted audience. In the literature, several attempts have been undertaken to avoid calculus altogether and keep the exposition entirely within the realm of algebra and/or geometry. In this paper, we propose yet another non-calculus approach which uses the projectile’s travel times to shed new light on these problems and provide instructors with an alternate method to address them with their students.
ERIC Educational Resources Information Center
Hynd, Cynthia; And Others
1997-01-01
Investigates changes in preservice teachers' conceptions about projectile motion brought about by a combination of reading and demonstration and appeal to usefulness. Results indicate the effectiveness of a combined Demo-Text condition on immediate posttests and effectiveness of text in producing long-term change. Analysis also indicates an…
ERIC Educational Resources Information Center
Pan, Wen Fu
2017-01-01
The objective of this study was to test whether the Kinect motion-sensing interactive system (KMIS) enhanced students' English vocabulary learning, while also comparing the system's effectiveness against a traditional computer-mouse interface. Both interfaces utilized an interactive game with a questioning strategy. One-hundred and twenty…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"ARIES: Exploring Motion and Forces" is a physical science curriculum for students in grades 5-8 that employs 18 inquiry-centered, hands-on lessons called "explorations." The curriculum draws upon students' curiosity to explore phenomena, allowing for a discovery-based learning process. Group-centered lab work is designed to…
49 CFR 234.265 - Timing relays and timing devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS... devices which perform internal functions associated with motion detectors, motion sensors, and grade...
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan; Gholibeigian, Zeinab
2015-04-01
Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.
Macy High School We have a simple cosmic ray detector that can be built by high school teachers. This cosmic rays vary with elevation. In addition, it is a valuable tool to teach elementary measurement
Peripheral Processing Facilitates Optic Flow-Based Depth Perception
Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin
2016-01-01
Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions. PMID:27818631
NASA Astrophysics Data System (ADS)
Hartung, Christine; Spraul, Raphael; Schuchert, Tobias
2017-10-01
Wide area motion imagery (WAMI) acquired by an airborne multicamera sensor enables continuous monitoring of large urban areas. Each image can cover regions of several square kilometers and contain thousands of vehicles. Reliable vehicle tracking in this imagery is an important prerequisite for surveillance tasks, but remains challenging due to low frame rate and small object size. Most WAMI tracking approaches rely on moving object detections generated by frame differencing or background subtraction. These detection methods fail when objects slow down or stop. Recent approaches for persistent tracking compensate for missing motion detections by combining a detection-based tracker with a second tracker based on appearance or local context. In order to avoid the additional complexity introduced by combining two trackers, we employ an alternative single tracker framework that is based on multiple hypothesis tracking and recovers missing motion detections with a classifierbased detector. We integrate an appearance-based similarity measure, merge handling, vehicle-collision tests, and clutter handling to adapt the approach to the specific context of WAMI tracking. We apply the tracking framework on a region of interest of the publicly available WPAFB 2009 dataset for quantitative evaluation; a comparison to other persistent WAMI trackers demonstrates state of the art performance of the proposed approach. Furthermore, we analyze in detail the impact of different object detection methods and detector settings on the quality of the output tracking results. For this purpose, we choose four different motion-based detection methods that vary in detection performance and computation time to generate the input detections. As detector parameters can be adjusted to achieve different precision and recall performance, we combine each detection method with different detector settings that yield (1) high precision and low recall, (2) high recall and low precision, and (3) best f-score. Comparing the tracking performance achieved with all generated sets of input detections allows us to quantify the sensitivity of the tracker to different types of detector errors and to derive recommendations for detector and parameter choice.
ERIC Educational Resources Information Center
Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy
1998-01-01
Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…
Energy estimation of inclined air showers with help of detector responses
NASA Astrophysics Data System (ADS)
Dedenko, L. G.; Fedorova, G. F.; Fedunin, E. Yu.; Glushkov, A. V.; Kolosov, V. A.; Podgrudkov, D. A.; Pravdin, M. I.; Roganova, T. M.; Sleptsov, I. E.
2004-11-01
The method of groups of muons have been suggested to estimate the detector responses for the inclined giant air shower in terms of quark-gluon string model with the geomagnetic field taken into account. Groups are average numbers of muons of positive or negative sign in small intervals of energy, height production and direction of motion in the atmosphere estimated with help of transport equations. For every group a relativistic equation of motion has been solved with geomagnetic field and ionization losses taken into account. The response of a detector and arrival time for every group which strike a detector has been estimated. The energy of the inclined giant air shower estimated with help of calculated responses and the data observed at the Yakutsk array happens to be above 10 20 eV.
The Universe in Motion, Book 2. Guidebook. The University of Illinois Astronomy Program.
ERIC Educational Resources Information Center
Atkin, J. Myron; Wyatt, Stanley P., Jr.
Presented is book two in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. This guidebook is concerned with how celestial bodies move in space and how these motions are observed by astronomers. Topics discussed include: a study of the daily motion…
ERIC Educational Resources Information Center
Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako
2009-01-01
This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…
Motion sensors in mathematics teaching: learning tools for understanding general math concepts?
NASA Astrophysics Data System (ADS)
Urban-Woldron, Hildegard
2015-05-01
Incorporating technology tools into the mathematics classroom adds a new dimension to the teaching of mathematics concepts and establishes a whole new approach to mathematics learning. In particular, gathering data in a hands-on and real-time method helps classrooms coming alive. The focus of this paper is on bringing forward important mathematics concepts such as functions and rate of change with the motion detector. Findings from the author's studies suggest that the motion detector can be introduced from a very early age and used to enliven classes at any level. Using real-world data to present the main functions invites an experimental approach to mathematics and encourages students to engage actively in their learning. By emphasizing learning experiences with computer-based motion detectors and aiming to involve students in mathematical representations of real-world phenomena, six learning activities, which were developed in previous research studies, will be presented. Students use motion sensors to collect physical data that are graphed in real time and then manipulate and analyse them. Because data are presented in an immediately understandable graphical form, students are allowed to take an active role in their learning by constructing mathematical knowledge from observation of the physical world. By utilizing a predict-observe-explain format, students learn about slope, determining slope and distance vs. time graphs through motion-filled activities. Furthermore, exploring the meaning of slope, viewed as the rate of change, students acquire competencies for reading, understanding and interpreting kinematics graphs involving a multitude of mathematical representations. Consequently, the students are empowered to efficiently move among tabular, graphical and symbolic representation to analyse patterns and discover the relationships between different representations of motion. In fact, there is a need for further research to explore how mathematics teachers can integrate motion sensors into their classrooms.
Development of 100 g Si and 250 g Ge detectors for a dark matter search
NASA Astrophysics Data System (ADS)
Brink, P. L.; Cabrera, B.; Chugg, B.; Clarke, R. M.; Davies, A.; Nam, S. W.; Young, B. A.
1996-05-01
Over the last two years we have proposed and implemented a new phonon sensing scheme for Cryogenic elementary particle detectors based upon Transition Edge Sensors (TES) operated in the (negative) Electrothermal-feedback (ETF) mode, and utilizing large Al collection pads for the initial phonon absorption. We have also implemented an ionization electrode, in addition to the phonon sensors, to allow the simultaneous measurement of ionization and phonon signals in Si and Ge absorbers. Our progress to date include successfully discriminating between electron and nuclear recoils down to a threshold of 4 keV recoil energy for a 4 g Si detector. Our first 100 g Si detectors have been fabricated, and initial work on Ge detectors indicates that our phonon sensing scheme will also work on large mass Ge absorbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn
We study the spontaneous excitation of a detector (modeled by a two-level atom) in circular motion coupled nonlinearly to vacuum massless Rarita–Schwinger fields in the ultrarelativistic limit and demonstrate that the spontaneous excitation occurs for ground-state atoms in circular motion in vacuum but the excitation rate is not of a pure thermal form as that of the atoms in linear uniform acceleration. An interesting feature is that terms of odd powers in acceleration appear in the excitation rate whereas in the linear acceleration case there are only terms of even powers present. On the other hand, what makes the presentmore » case unique in comparison to the atom’s coupling to other fields that are previously studied is the appearance of the terms proportional to the seventh and ninth powers of acceleration in the mean rate of change of atomic energy which are absent in the scalar, electromagnetic and Dirac field cases. -- Highlights: •Circular Unruh effect for detector coupled to Rarita–Schwinger field. •Nonlinear coupling between the detector and the fields. •Detector in circular motion does not feel pure thermal bath. •Excitation rate contains terms of odd powers in acceleration.« less
Athermal Energy Loss from X-rays Deposited in Thin Superconducting Films on Solid Substrates
NASA Technical Reports Server (NTRS)
Kozorezov, Alexander G.; Lambert, Colin J.; Bandler, Simon R.; Balvin, Manuel A.; Busch, Sarah E.; Sagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.
2013-01-01
When energy is deposited in a thin-film cryogenic detector, such as from the absorption of an X-ray, an important feature that determines the energy resolution is the amount of athermal energy that can be lost to the heat bath prior to the elementary excitation systems coming into thermal equilibrium. This form of energy loss will be position-dependent and therefore can limit the detector energy resolution. An understanding of the physical processes that occur when elementary excitations are generated in metal films on dielectric substrates is important for the design and optimization of a number of different types of low temperature detector. We have measured the total energy loss in one relatively simple geometry that allows us to study these processes and compare measurements with calculation based upon a model for the various di.erent processes. We have modeled the athermal phonon energy loss in this device by finding an evolving phonon distribution function that solves the system of kinetic equations for the interacting system of electrons and phonons. Using measurements of device parameters such as the Debye energy and the thermal di.usivity we have calculated the expected energy loss from this detector geometry, and also the position-dependent variation of this loss. We have also calculated the predicted impact on measured spectral line-shapes, and shown that they agree well with measurements. In addition, we have tested this model by using it to predict the performance of a number of other types of detector with di.erent geometries, where good agreement is also found.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
Kinetics of the Shanghai Maglev: Kinematical Analysis of a Real "Textbook" Case of Linear Motion
ERIC Educational Resources Information Center
Hsu, Tung
2014-01-01
A vehicle starts from rest at constant acceleration, then cruises at constant speed for a time. Next, it decelerates at a constant rate.… This and similar statements are common in elementary physics courses. Students are asked to graph the motion of the vehicle or find the velocity, acceleration, and distance traveled by the vehicle from a given…
NASA Technical Reports Server (NTRS)
Perrone, John A.; Stone, Leland S.
1997-01-01
We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.
The motion of throw away detectors relative to the space shuttle
NASA Technical Reports Server (NTRS)
Mullins, L. D.
1975-01-01
The motions of throw away detectors (TAD's) are analyzed using the linearized relative motion equations. The TAD's are to be used in the amps program as diagnostic instruments for making various measurements near the shuttle. The TAD's are ejected from the shuttle in arbitrary directions with small relative velocities (0.1 to 1.0 m/s) their subsequent trajectories relative to the shuttle are analyzed. Initial conditions that are likely to result in recontact between the TAD and the shuttle are identified. The sensitivity of the motion to variations in the initial conditions, possibly resulting from inaccuracy in the ejection mechanism, are analyzed as are effects of atmospheric drag. A targeting method, a method of giving the TAD correct initial conditions such that it will pass through a given point relative to the shuttle at a given time, is developed. The results of many specific cases are presented in graphical form.
Adaptation without parameter change: Dynamic gain control in motion detection
Borst, Alexander; Flanagin, Virginia L.; Sompolinsky, Haim
2005-01-01
Many sensory systems adapt their input-output relationship to changes in the statistics of the ambient stimulus. Such adaptive behavior has been measured in a motion detection sensitive neuron of the fly visual system, H1. The rapid adaptation of the velocity response gain has been interpreted as evidence of optimal matching of the H1 response to the dynamic range of the stimulus, thereby maximizing its information transmission. Here, we show that correlation-type motion detectors, which are commonly thought to underlie fly motion vision, intrinsically possess adaptive properties. Increasing the amplitude of the velocity fluctuations leads to a decrease of the effective gain and the time constant of the velocity response without any change in the parameters of these detectors. The seemingly complex property of this adaptation turns out to be a straightforward consequence of the multidimensionality of the stimulus and the nonlinear nature of the system. PMID:15833815
Motion compensation for cone-beam CT using Fourier consistency conditions
NASA Astrophysics Data System (ADS)
Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.
2017-09-01
In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.
High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors
Kim, Sungho
2015-01-01
This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448
ERIC Educational Resources Information Center
Dimas, Chris
The purpose of this study was to determine the effects of motion pictures utilizing black models on the self-concept of black fourth and sixth grade students; that perhaps, mediated black models may be effective in bringing about a more positive self-concept among black students. The design of this study was of the post-test form only. This was…
ERIC Educational Resources Information Center
Masterson, James; And Others
Forty-eight sixth-grade students were studied to determine their response to selected compressions of the narration of an instructional sound motion picture. A 4:10 color film with a 158 wpm recorded narration was shown at 25, 33-1/3 and 50 percent compression rates; performance time and quality were measured immediately and after 12-day…
ERIC Educational Resources Information Center
Koh, Hwan Cui; Milne, Elizabeth; Dobkins, Karen
2010-01-01
The magnocellular (M) pathway hypothesis proposes that impaired visual motion perception observed in individuals with Autism Spectrum Disorders (ASD) might be mediated by atypical functioning of the subcortical M pathway, as this pathway provides the bulk of visual input to cortical motion detectors. To test this hypothesis, we measured luminance…
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
High-level, but not low-level, motion perception is impaired in patients with schizophrenia.
Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia
2013-01-01
Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.
ERIC Educational Resources Information Center
School Science Review, 1984
1984-01-01
Presents (1) suggestions on teaching volume and density in the elementary school; (2) ideas for teaching about floating and sinking; (3) a simple computer program on color addition; and (4) an illustration of Newton's second law of motion. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Ludovic; Vaeck, Nathalie; Justum, Yves
2015-04-07
Following a recent proposal of L. Wang and D. Babikov [J. Chem. Phys. 137, 064301 (2012)], we theoretically illustrate the possibility of using the motional states of a Cd{sup +} ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schrödingermore » equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field which is able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state, and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.« less
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-01-01
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-12-30
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.
NASA Technical Reports Server (NTRS)
Baker, John G.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Baker, John G; Thorpe, J I
2012-05-25
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Looking at Op Art from a computational viewpoint.
Zanker, Johannes M
2004-01-01
Arts history tells an exciting story about repeated attempts to represent features that are crucial for the understanding of our environment and which, at the same time, go beyond the inherently two-dimensional nature of a flat painting surface: depth and motion. In the twentieth century, Op artists such as Bridget Riley began to experiment with simple black and white patterns that do not represent motion in an artistic way but actually create vivid dynamic illusions in static pictures. The cause of motion illusions in such paintings is still a matter of debate. The role of involuntary eye movements in this phenomenon is studied here with a computational approach. The possible consequences of shifting the retinal image of synthetic wave gratings, dubbed as 'riloids', were analysed by a two-dimensional array of motion detectors (2DMD model), which generates response maps representing the spatial distribution of motion signals generated by such a stimulus. For a two-frame sequence reflecting a saccadic displacement, these motion signal maps contain extended patches in which local directions change only little. These directions, however, do not usually precisely correspond to the direction of pattern displacement that can be expected from the geometry of the curved gratings as an instance of the so-called 'aperture problem'. The patchy structure of the simulated motion detector response to the displacement of riloids resembles the motion illusion, which is not perceived as a coherent shift of the whole pattern but as a wobbling and jazzing of ill-defined regions. Although other explanations are not excluded, this might support the view that the puzzle of Op Art motion illusions could potentially have an almost trivial solution in terms of small involuntary eye movement leading to image shifts that are picked up by well-known motion detectors in the early visual system. This view can have further consequences for our understanding of how the human visual system usually compensates for eye movements, in order to let us perceive a stable world despite continuous image shifts generated by gaze instability.
NASA Astrophysics Data System (ADS)
Wells, Jered R.; Segars, W. Paul; Kigongo, Christopher J. N.; Dobbins, James T., III
2011-03-01
This paper describes a recently developed post-acquisition motion correction strategy for application to lower-cost computed tomography (LCCT) for under-resourced regions of the world. Increased awareness regarding global health and its challenges has encouraged the development of more affordable healthcare options for underserved people worldwide. In regions such as sub-Saharan Africa, intermediate level medical facilities may serve millions with inadequate or antiquated equipment due to financial limitations. In response, the authors have proposed a LCCT design which utilizes a standard chest x-ray examination room with a digital flat panel detector (FPD). The patient rotates on a motorized stage between the fixed cone-beam source and FPD, and images are reconstructed using a Feldkamp algorithm for cone-beam scanning. One of the most important proofs-of-concept in determining the feasibility of this system is the successful correction of undesirable motion. A 3D motion correction algorithm was developed in order to correct for potential patient motion, stage instabilities and detector misalignments which can all lead to motion artifacts in reconstructed images. Motion will be monitored by the radiographic position of fiducial markers to correct for rigid body motion in three dimensions. Based on simulation studies, projection images corrupted by motion were re-registered with average errors of 0.080 mm, 0.32 mm and 0.050 mm in the horizontal, vertical and depth dimensions, respectively. The overall absence of motion artifacts in motion-corrected reconstructions indicates that reasonable amounts of motion may be corrected using this novel technique without significant loss of image quality.
The Mathematics of Motion, Sensors, and the Introduction of Function to Eight Graders in Brazil.
ERIC Educational Resources Information Center
Borba, Marcelo C.; Scheffer, Nilce Fatima
This paper describes how 8th grade students are using CBR, a motion detector linked to a graphing calculator, as a way of generating mathematical ideas regarding the motions concepts that surround their action. Students were previously introduced to the calculators in the classroom and teaching experiments were then carried out afterwards with a…
The Complex Structure of Receptive Fields in the Middle Temporal Area
Richert, Micah; Albright, Thomas D.; Krekelberg, Bart
2012-01-01
Neurons in the middle temporal area (MT) are often viewed as motion detectors that prefer a single direction of motion in a single region of space. This assumption plays an important role in our understanding of visual processing, and models of motion processing in particular. We used extracellular recordings in area MT of awake, behaving monkeys (M. mulatta) to test this assumption with a novel reverse correlation approach. Nearly half of the MT neurons in our sample deviated significantly from the classical view. First, in many cells, direction preference changed with the location of the stimulus within the receptive field. Second, the spatial response profile often had multiple peaks with apparent gaps in between. This shows that visual motion analysis in MT has access to motion detectors that are more complex than commonly thought. This complexity could be a mere byproduct of imperfect development, but can also be understood as the natural consequence of the non-linear, recurrent interactions among laterally connected MT neurons. An important direction for future research is to investigate whether these in homogeneities are advantageous, how they can be incorporated into models of motion detection, and whether they can provide quantitative insight into the underlying effective connectivity. PMID:23508640
NASA Technical Reports Server (NTRS)
Alley, C. O.
1982-01-01
Einstein's theory of gravity as curved space-time is presented. Emphasis is on the physical concepts, using only elementary mathematics. For the slow motions and weak gravitational fields experienced on Earth, the main curvature is that of time, not space. Experiments demonstrating this property are reviewed. The fundamental effects of motion and gravitational potential on clocks in many practical situations are discussed.
Radiography by selective detection of scatter field velocity components
NASA Technical Reports Server (NTRS)
Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)
2007-01-01
A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalarvo, Niina H; Gourdon, Olivier; Bi, Zhonghe
2013-01-01
Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activationmore » energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.« less
Microstates of D1-D5(-P) black holes, as interacting D-branes
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Shiba, Shotaro
2015-07-01
In our previous study (Morita et al., 2014 [1]), we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal). We test this proposal in the near-extremal D1-D5 and D1-D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves). It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1-D5(-P) black holes in superstring theory.
Skyhook gravitational-wave detector
NASA Astrophysics Data System (ADS)
Braginskii, V. B.; Thorne, K. S.
1985-08-01
A new and more sensitive type of earth-orbiting gravitational wave detector, called a 'skyhook', which would operate in the 10-100 mHz band, is proposed. The skyhook would consist of two masses, one on each end of a long thin cable with a spring at its center. As it orbits the earth, the cable wold be stretched radially by the earth's tidal gravitational field. Gravitational waves would pull the masses apart and push them together in an oscillatory fashion. Their motion would be transmitted to the spring by the cable, and a sensor would monitor the spring's resulting motion.
GEM Detector Performance Assessment in the BM@N Experiment
NASA Astrophysics Data System (ADS)
Kapishin, Mikhail; Karjavin, Vladimir; Kulish, Elena; Lenivenko, Vasilisa; Makankin, Alexander; Maksymchuk, Anna; Palichik, Vladimir; Vasiliev, Sergey
2018-02-01
The Gas Electron Multiplier (GEM) chambers are developed for modern purposes in the elementary particle physics. In the BM@N experiment, a GEM system is used for the reconstruction of the trajectories of the charged particles. The investigation of GEM performance (efficiency and spatial resolution) is presented.
On the Piezoelectric Detection of Guided Ultrasonic Waves
2017-01-01
In order to quantify the wave motion of guided ultrasonic waves, the characteristics of piezoelectric detectors, or ultrasonic transducers and acoustic emission sensors, have been evaluated systematically. Such guided waves are widely used in structural health monitoring and nondestructive evaluation, but methods of calibrating piezoelectric detectors have been inadequate. This study relied on laser interferometry for the base displacement measurement of bar waves, from which eight different guided wave test set-ups are developed with known wave motion using piezoelectric transmitters. Both plates and bars of 12.7 and 6.4 mm thickness were used as wave propagation media. The upper frequency limit was 2 MHz. Output of guided wave detectors were obtained on the test set-ups and their receiving sensitivities were characterized and averaged. While each sensitivity spectrum was noisy for a detector, the averaged spectrum showed a good convergence to a unique receiving sensitivity. Twelve detectors were evaluated and their sensitivity spectra determined in absolute units. Generally, these showed rapidly dropping sensitivity with increasing frequency due to waveform cancellation on their sensing areas. This effect contributed to vastly different sensitivities to guided wave and to normally incident wave for each one of the 12 detectors tested. Various other effects are discussed and recommendations on methods of implementing the approach developed are provided. PMID:29156579
NASA Astrophysics Data System (ADS)
Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc
2016-03-01
We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.
Discovery Science: Newton All around You.
ERIC Educational Resources Information Center
Prigo, Robert; Humphrey, Gregg
1993-01-01
Presents activities for helping elementary students learn about Newton's third law of motion. Several activity cards demonstrate the concept of the law of action and reaction. The activities require only inexpensive materials that can be found around the house. (SM)
ERIC Educational Resources Information Center
Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy
2016-01-01
For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…
Neural mechanisms underlying sensitivity to reverse-phi motion in the fly
Meier, Matthias; Serbe, Etienne; Eichner, Hubert; Borst, Alexander
2017-01-01
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics. PMID:29261684
Neural mechanisms underlying sensitivity to reverse-phi motion in the fly.
Leonhardt, Aljoscha; Meier, Matthias; Serbe, Etienne; Eichner, Hubert; Borst, Alexander
2017-01-01
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics.
Earthquake early warning using P-waves that appear after initial S-waves
NASA Astrophysics Data System (ADS)
Kodera, Y.
2017-12-01
As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al., 2013) reached the local maximum several seconds after the P-filter peaks appeared. These findings indicate that the proposed P-wave detector allows wavefield-estimation approaches to predict the peak ground motion of SMGAs with a certain lead time.
NASA Astrophysics Data System (ADS)
Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida
2018-01-01
The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding and organizing NOS explicit and reflective science teaching.
NASA Technical Reports Server (NTRS)
Rees, D.; Conboy, J.; Heinz, W.; Heppner, J. P.
1985-01-01
Observations of four shaped charge releases from rockets launched from Alaska are described. Results demonstrate that imaging and Doppler imaging instruments, based on exploiting the imaging photon detector, provide additional insight into the motion and development of low intensity targets such as the fast ion jets produced by shaped charge releases. It is possible to trace the motion of fast ion jets to very great distances, of the order of 50,000 km, outward along the Earth's magnetic field, when the conditions are suitable for the outward (upward) motion and/or acceleration of such ion jets. It is shown that ion jets, which fade below the lower sensitivity threshold of previous instruments, do not always disappear. There is no evidence of an abrupt field-aligned shear-type acceleration.
Selmanović, Aleksandar; Milanović, Dragan; Custonja, Zrinko
2013-06-01
The aim was to evaluate the transformational effects of an additional weekly PE session based on team sports (basketball and volleyball) on students' motor status. The research was conducted on a sample of 125 eleven-year-old boys divided into three groups (two experimental and one control) which were examined by 12 motor tests at the beginning and at the end of the 9-month period. The tests included evaluation of explosive power dynamic and static strength endurance, co-ordination, flexibility and hand frequency motion. Although all three treatments together, complemented by the natural growth and developmental factors, induced significant quantitative changes, the results showed the highest motor improvements in the basketball experimental group, followed by the volleyball experimental group. While explosive power mainly contributed toward significant difference between the control and experimental groups in the final measurement, univarate test results also showed distinctive improvements in dynamic strength, hand frequency motion and various factors of co-ordination within experimental groups. The general conclusion points to the fact that even one additional PE session per week of the given program is sufficient to produce significant changes in motor abilities of elementary school fifth graders. Therefore the authors' support the legal provisions of mandatory implementation of extra-curricular forms of physical activity in elementary schools.
Getting NuSTAR on target: predicting mast motion
NASA Astrophysics Data System (ADS)
Forster, Karl; Madsen, Kristin K.; Miyasaka, Hiromasa; Craig, William W.; Harrison, Fiona A.; Rana, Vikram R.; Markwardt, Craig B.; Grefenstette, Brian W.
2016-07-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning.
Getting NuSTAR on Target: Predicting Mast Motion
NASA Technical Reports Server (NTRS)
Forster, Karl; Madsen, Kristin K.; Miyasaka, Hiroshima; Craig, William W.; Harrison, Fiona A.; Rana, Vikram R.; Markwardt, Craig B.; Grenfenstette, Brian W.
2017-01-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning.
When a School Burns, Cool Heads and Quick Action Keep Education on Track.
ERIC Educational Resources Information Center
Parry, Robert; Burris, Carol
1988-01-01
A fire destroyed an elementary school in the East Rockaway (New York) school system. A substitute facility, furniture, and textbooks were secured and classes opened, missing only four school days. Future precautions include insurance to cover actual reconstruction costs, smoke detectors, and a computerized inventory system. (MLF)
Microswimmers - From Single Particle Motion to Collective Behavior
NASA Astrophysics Data System (ADS)
Gompper, Gerhard; Bechinger, Clemens; Herminghaus, Stephan; Isele-Holder, Rolf; Kaupp, U. Benjamin; Löwen, Hartmut; Stark, Holger; Winkler, Roland G.
2016-11-01
Locomotion of autonomous microswimmers is a fascinating field at the cutting edge of science. It combines the biophysics of self-propulsion via motor proteins, artificial propulsion mechanisms, swimming strategies at low Reynolds numbers, the hydrodynamic interaction of swimmers, and the collective motion and synchronisation of large numbers of agents. The articles of this Special Issue are based on the lecture notes of an international summer school, which was organized by the DFG Priority Programme 1726 "Microswimmers - From Single Particle Motion to Collective Behaviour" in the fall of 2015. The minireviews provide a broad overview of the field, covering both elementary and advanced material, as well as selected areas from current research.
The dynamics and control of a spherical robot with an internal omniwheel platform
NASA Astrophysics Data System (ADS)
Karavaev, Yury L.; Kilin, Alexander A.
2015-03-01
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
NASA Technical Reports Server (NTRS)
Baker, John G.; Thorpe, J. I.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.
Linear and nonlinear stiffness and friction in biological rhythmic movements.
Beek, P J; Schmidt, R C; Morris, A W; Sim, M Y; Turvey, M T
1995-11-01
Biological rhythmic movements can be viewed as instances of self-sustained oscillators. Auto-oscillatory phenomena must involve a nonlinear friction function, and usually involve a nonlinear elastic function. With respect to rhythmic movements, the question is: What kinds of nonlinear friction and elastic functions are involved? The nonlinear friction functions of the kind identified by Rayleigh (involving terms such as theta3) and van der Pol (involving terms such as theta2theta), and the nonlinear elastic functions identified by Duffing (involving terms such as theta3), constitute elementary nonlinear components for the assembling of self-sustained oscillators, Recently, additional elementary nonlinear friction and stiffness functions expressed, respectively, through terms such as theta2theta3 and thetatheta2, and a methodology for evaluating the contribution of the elementary components to any given cyclic activity have been identified. The methodology uses a quantification of the continuous deviation of oscillatory motion from ideal (harmonic) motion. Multiple regression of this quantity on the elementary linear and nonlinear terms reveals the individual contribution of each term to the oscillator's non-harmonic behavior. In the present article the methodology was applied to the data from three experiments in which human subjects produced pendular rhythmic movements under manipulations of rotational inertia (experiment 1), rotational inertia and frequency (experiment 2), and rotational inertia and amplitude (experiment 3). The analysis revealed that the pendular oscillators assembled in the three experiments were compositionally rich, braiding linear and nonlinear friction and elastic functions in a manner that depended on the nature of the task.
Livieratos, L; Stegger, L; Bloomfield, P M; Schafers, K; Bailey, D L; Camici, P G
2005-07-21
High-resolution cardiac PET imaging with emphasis on quantification would benefit from eliminating the problem of respiratory movement during data acquisition. Respiratory gating on the basis of list-mode data has been employed previously as one approach to reduce motion effects. However, it results in poor count statistics with degradation of image quality. This work reports on the implementation of a technique to correct for respiratory motion in the area of the heart at no extra cost for count statistics and with the potential to maintain ECG gating, based on rigid-body transformations on list-mode data event-by-event. A motion-corrected data set is obtained by assigning, after pre-correction for detector efficiency and photon attenuation, individual lines-of-response to new detector pairs with consideration of respiratory motion. Parameters of respiratory motion are obtained from a series of gated image sets by means of image registration. Respiration is recorded simultaneously with the list-mode data using an inductive respiration monitor with an elasticized belt at chest level. The accuracy of the technique was assessed with point-source data showing a good correlation between measured and true transformations. The technique was applied on phantom data with simulated respiratory motion, showing successful recovery of tracer distribution and contrast on the motion-corrected images, and on patient data with C15O and 18FDG. Quantitative assessment of preliminary C15O patient data showed improvement in the recovery coefficient at the centre of the left ventricle.
Changes in concepts of time from Aristotle to Einstein
NASA Astrophysics Data System (ADS)
Sachs, Mendel
1996-03-01
The meaning of time and motion is discussed, at first tracing conceptual changes from Aristotle to Galileo/Newton to Einstein. Different views of ‘time’ in 20th century physics are then examined, with primary focus on the revolutionary changes that came with the theory of general relativity. Implications of its new view in all domains of physics are discussed — from elementary particles to cosmology. The special role of Hamilton's quaternion calculus in equations of motion in general relativity is shown.
NASA Astrophysics Data System (ADS)
Kahn, Jason
This dissertation concerns kindergarteners' and second graders' invented representations of motion, their interactions with conventional representations of motion built from the child's movement in front of a motion detector and using real-time graphing tools, and any changes in the invented representations that this interaction brings about. We have known for several decades that advanced learners (high school aged and beyond) struggle with physics concepts of motion and sometimes Cartesian graph-based representations of motion. Little has been known about how younger students approach the same concepts. In this study, eighteen children (10 kindergarteners and eight second graders) completed a three-hour clinical interview spread out evenly over three weeks. In the first and last interviews, the child was asked to produce external representations of movement and interpret conventional distance and time graphs of motion. In the second interview the children interacted with a motion detector and real-time graphing tools in a semi-self-directed format. Qualitative and quantitative results are presented and discussed. Qualitative data shows that children are adroit at representing motion and their productions are systematic and purposeful. Children produce drawings that both give context to the physical environment around them and also redescribe the drawn environment, meaning that they provide a potential audience with information otherwise imperceptible, by making certain implicit aspects more explicit. Second graders quickly appropriate the Cartesian graph during the intervention, though at times misinterpret the meaning associated with slope. Children correctly associate slope with direction, but at times misattribute sign of slope (positive or negative) and its corresponding direction (i.e. some children do not ascribe positive slope with motion away from a point of reference, but toward it). Kindergarteners showed a range of experiences during the intervention, one of the students showed a near mastery in interpretation of a Cartesian graph as a representation of motion, while another vehemently resisted graph as a representation of motion. Quantitative data gives a mechanism for comparing pre- and post-assessment productions. Both kindergarten and second grade students provide richer post-assessment representations, with kindergarteners more likely to include a figurative point of reference in the post-assessment and second graders including more explicit information about speed. The implications of this study are that invented representations of motion are a powerful tool for providing insights into children's thinking. The motion detector and real-time graphing tool can be used as early as kindergarten to help children build resources in their representations of motion; second grade students could find the same benefit and potentially begin to build conventional ideas about graphing and movement.
Quantum parameter estimation in the Unruh–DeWitt detector model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Xiang, E-mail: xhao@phas.ubc.ca; Pacific Institute of Theoretical Physics, Department of Physics and Astronomy, University of British Columbia, 6224 Agriculture Rd., Vancouver B.C., Canada V6T 1Z1; Wu, Yinzhong
2016-09-15
Relativistic effects on the precision of quantum metrology for particle detectors, such as two-level atoms are studied. The quantum Fisher information is used to estimate the phase sensitivity of atoms in non-inertial motions or in gravitational fields. The Unruh–DeWitt model is applicable to the investigation of the dynamics of a uniformly accelerated atom weakly coupled to a massless scalar vacuum field. When a measuring device is in the same relativistic motion as the atom, the dynamical behavior of quantum Fisher information as a function of Rindler proper time is obtained. It is found out that monotonic decrease in phase sensitivitymore » is characteristic of dynamics of relativistic quantum estimation. The origin of the decay of quantum Fisher information is the thermal bath that the accelerated detector finds itself in due to the Unruh effect. To improve relativistic quantum metrology, we reasonably take into account two reflecting plane boundaries perpendicular to each other. The presence of the reflecting boundary can shield the detector from the thermal bath in some sense.« less
ERIC Educational Resources Information Center
Harper, Christopher
1994-01-01
Describes mobile computer carts developed at the Lawrence Hall of Science that use IBM PS/2 computers and Personal Science Laboratory probeware. Activities using temperature probes for elementary and secondary school students are described, including greenhouse environments, ice cream/chemical reactions, probe races, motion studies, and…
pODI at WIYN: Instrument Performance and Upgrade Path
NASA Astrophysics Data System (ADS)
Harbeck, Daniel R.; Boroson, T. A.; Rajagopal, J.; ODI Team; PPA Team
2013-06-01
A preliminary version of the WIYN One Degree Imager (ODI) has been commissioned throughout the semester 2012B, and has been put into scientific operation February 2013. ODI was devised to take advantage of the excellent image quality and wide field of view of the WIYN 3.5m telescope. To further improve delivered image quality, ODI uses Orthogonal Transfer Array (OTA) detectors that have the capability to electronically correct for image motion in the detectors during an exposure. The partial ODI (pODI) populates 13 out of the 64 OTAs in the focal plane, and coherent image motion correction is enabled. The 13 OTAs are configured as a 24 x 24 arcminute central “science field”, plus 4 outer OTAs, allowing the sampling of all radii within the one square degree field. Guide star signals from the outer detectors are either directed to the telescope only, or additionally used to calculate a global, coherent shift correction that is sent to the OTAs. The performance of pODI is excellent. Image quality is site seeing limited, and, on good seeing nights, we can achieve images around 0.4 arcsec FWHM over the entire field. We are still in the process of characterizing the gains from active image motion correction, but the detectors perform well in this mode. Data are immediately transferred to an archive at Indiana University, where they are pipeline-processed to remove instrumental signature. In this poster we summarize the current performance of the pODI instrument and outline a path towards a future, expanded version of ODI with a 6x6 central detector array, or a field of view of 48 x 48 arcminutes.
A hadron-nucleus collision event generator for simulations at intermediate energies
NASA Astrophysics Data System (ADS)
Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA-Collaboration
2002-10-01
Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the Δ33-resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon-nucleon as well as elastic and charge exchange pion-nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code. The original as well as the extended Bertini model have been implemented as shower codes into the high energy detector simulation package GEANT-3.14, allowing now its use also in full Monte Carlo studies of detector systems at intermediate energies. The GEANT-3.14 here have been used mainly for its powerful geometry and analysing packages due to the complex EDDA detector system.
Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.
Freites, J Alfredo; Schow, Eric V; White, Stephen H; Tobias, Douglas J
2012-06-06
Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Thallium halide radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ijaz-ur-Rahman; Hofstadter, R.
1984-03-15
During a series of experiments on crystal conduction counters performed at Stanford University on thallium halide crystals, we have observed motion of both hole and electron carriers in a TlBr crystal. At a temperature near -90 /sup 0/C the hole motion produces larger pulses than electron motion. We have studied the behavior of TlBr, TlCl, and KRS-5 (40 mol % TlBr + 60 mol % TlI) crystals and examined them as possible crystal conduction detectors of ..cap alpha.. particles and ..gamma.. rays. TlBr appears to be a promising candidate for applications to nuclear physics and high-energy ..gamma..-ray physics. Modules ofmore » TlBr in ''crystal-ball'' geometry may lead to new detection possibilities. At -20 /sup 0/C space-charge accumulation in TlBr decreases to such an extent that operation at this temperature seems possible with moderate electrical gradients. In the long-neglected field of crystal conduction counters, we have potentially removed the space-charge limitation in TlBr and, allowing for both hole and electron motion, raised the possibility for spectroscopic performance of this material for ..gamma..-ray studies.« less
Elementary Mechanisms of Shear-Coupled Grain Boundary Migration
NASA Astrophysics Data System (ADS)
Rajabzadeh, A.; Mompiou, F.; Legros, M.; Combe, N.
2013-06-01
A detailed theoretical study of the elementary mechanisms occurring during the shear-coupled grain boundary (GB) migration at low temperature is performed focusing on both the energetic and structural characteristics. The migration of a Σ13(320) GB in a copper bicrystal in response to external shear displacements is simulated using a semiempirical potential. The minimum energy path of the shear-coupled GB migration is computed using the nudge elastic band method. The GB migration occurs through the nucleation and motion of GB steps identified as disconnections. Energy barriers for the GB and disconnection migrations are evaluated.
Kinetics of the Shanghai Maglev: Kinematical Analysis of a Real "Textbook" Case of Linear Motion
NASA Astrophysics Data System (ADS)
Hsu, Tung
2014-10-01
A vehicle starts from rest at constant acceleration, then cruises at constant speed for a time. Next, it decelerates at a constant rate.… This and similar statements are common in elementary physics courses. Students are asked to graph the motion of the vehicle or find the velocity, acceleration, and distance traveled by the vehicle from a given graph.1 However, a "constant acceleration-constant velocity-constant deceleration" motion, which gives us an ideal trapezoidal shape in the velocity-time graph, is not common in everyday life. Driving a car or riding a bicycle for a short distance can be much more complicated. Therefore, it is interesting to take a look at a real case of "constant acceleration-constant velocity-constant deceleration" motion.
Modelling and Characterisation of Detection Models in WAMI for Handling Negative Information
2014-02-01
behaviour of the multi-stage detectors used in LoFT. This model is then used in a Probabilistic Hypothesis Density Filter (PHD). Unlike most multitarget...Therefore, we decided to use machine learning techniques which could model — and pre- dict — the behaviour of the detectors in LoFT. Because we are using...on feature detectors [8], motion models [13] and descriptor and template adaptation [9]. 2.3.2 State Model The state space of LoFT is defined in 2D
Potential applications of electron emission membranes in medicine
NASA Astrophysics Data System (ADS)
Bilevych, Yevgen; Brunner, Stefan E.; Chan, Hong Wah; Charbon, Edoardo; van der Graaf, Harry; Hagen, Cornelis W.; Nützel, Gert; Pinto, Serge D.; Prodanović, Violeta; Rotman, Daan; Santagata, Fabio; Sarro, Lina; Schaart, Dennis R.; Sinsheimer, John; Smedley, John; Tao, Shuxia; Theulings, Anne M. M. G.
2016-02-01
With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.
Transformation-aware perceptual image metric
NASA Astrophysics Data System (ADS)
Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter
2016-09-01
Predicting human visual perception has several applications such as compression, rendering, editing, and retargeting. Current approaches, however, ignore the fact that the human visual system compensates for geometric transformations, e.g., we see that an image and a rotated copy are identical. Instead, they will report a large, false-positive difference. At the same time, if the transformations become too strong or too spatially incoherent, comparing two images gets increasingly difficult. Between these two extrema, we propose a system to quantify the effect of transformations, not only on the perception of image differences but also on saliency and motion parallax. To this end, we first fit local homographies to a given optical flow field, and then convert this field into a field of elementary transformations, such as translation, rotation, scaling, and perspective. We conduct a perceptual experiment quantifying the increase of difficulty when compensating for elementary transformations. Transformation entropy is proposed as a measure of complexity in a flow field. This representation is then used for applications, such as comparison of nonaligned images, where transformations cause threshold elevation, detection of salient transformations, and a model of perceived motion parallax. Applications of our approach are a perceptual level-of-detail for real-time rendering and viewpoint selection based on perceived motion parallax.
Spatial filtering precedes motion detection.
Morgan, M J
1992-01-23
When we perceive motion on a television or cinema screen, there must be some process that allows us to track moving objects over time: if not, the result would be a conflicting mass of motion signals in all directions. A possible mechanism, suggested by studies of motion displacement in spatially random patterns, is that low-level motion detectors have a limited spatial range, which ensures that they tend to be stimulated over time by the same object. This model predicts that the direction of displacement of random patterns cannot be detected reliably above a critical absolute displacement value (Dmax) that is independent of the size or density of elements in the display. It has been inferred that Dmax is a measure of the size of motion detectors in the visual pathway. Other studies, however, have shown that Dmax increases with element size, in which case the most likely interpretation is that Dmax depends on the probability of false matches between pattern elements following a displacement. These conflicting accounts are reconciled here by showing that Dmax is indeed determined by the spacing between the elements in the pattern, but only after fine detail has been removed by a physiological prefiltering stage: the filter required to explain the data has a similar size to the receptive field of neurons in the primate magnocellular pathway. The model explains why Dmax can be increased by removing high spatial frequencies from random patterns, and simplifies our view of early motion detection.
Understanding Rigid Geometric Transformations: Jeff's Learning Path for Translation
ERIC Educational Resources Information Center
Yanik, Huseyin Bahadir; Flores, Alfinio
2009-01-01
This article describes the development of knowledge and understanding of translations of Jeff, a prospective elementary teacher, during a teaching experiment that also included other rigid transformations. His initial conceptions of translations and other rigid transformations were characterized as undefined motions of a single object. He…
Quarks, Leptons, and Bosons: A Particle Physics Primer.
ERIC Educational Resources Information Center
Wagoner, Robert; Goldsmith, Donald
1983-01-01
Presented is a non-technical introduction to particle physics. The material is adapted from chapter 3 of "Cosmic Horizons," (by Robert Wagoner and Don Goldsmith), a lay-person's introduction to cosmology. Among the topics considered are elementary particles, forces and motion, and higher level structures. (JN)
Attention and apparent motion.
Horowitz, T; Treisman, A
1994-01-01
Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.
Demonstrating the Direction of Angular Velocity in Circular Motion
NASA Astrophysics Data System (ADS)
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-09-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.
Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter
2013-01-01
Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.
Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter
2014-01-01
Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (“optic flow”) to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and—in many behavioral contexts—less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism. PMID:25389392
Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter
2014-01-01
Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around ("optic flow") to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and-in many behavioral contexts-less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.
ERIC Educational Resources Information Center
Grant, Barbara M.
This descriptive research study had as its major objective the development of a category system through which the teacher's physical motions in relation to his verbal actions could be analyzed with a high degree of reliability. The performances of five elementary teachers at the College Demonstration School were recorded on video tape. Narrative…
Motion Picture Production Handbook.
ERIC Educational Resources Information Center
Rynew, Arden
Designed to be distributed to each child in the filmmaking course for elementary school children outlined in "Filmmaking for Children" (EM 009 409), this handbook contains most of the information needed for them to start making films. Each of the ten chapters supplies specific working rules and information for a particular filmmaking specialty,…
Elementary Student Knowledge Gains in the Digital Portable Planetarium
ERIC Educational Resources Information Center
Carsten-Conner, Laura D.; Larson, Angela M.; Arseneau, Jennifer; Herrick, Robert R.
2015-01-01
Immersive environments hold promise to provide unique and heightened sensory experiences that focus a learner's attention, and thus may be useful learning platforms. In particular, portable planetariums may be useful in advancing conceptual knowledge about the night sky, because they afford learners with Earth-based views of celestial motions,…
Teacher's Guide for Spinning Tables. Elementary Science Study.
ERIC Educational Resources Information Center
Hein, George E.; And Others
This teacher's guide suggests a number of ways to use a spinning table to explore circular motion. Activities are described which are appropriate for children in kindergarten through third grade. Suggestions are made for exploratory activities using the equipment rather than supplying detailed instructions for formal activities. Equipment and…
Large seismic source imaging from old analogue seismograms
NASA Astrophysics Data System (ADS)
Caldeira, Bento; Buforn, Elisa; Borges, José; Bezzeghoud, Mourad
2017-04-01
In this work we present a procedure to recover the ground motions by a proper digital structure, from old seismograms in analogue physical support (paper or microfilm) to study the source rupture process, by application of modern finite source inversion tools. Despite the quality that the analog data and the digitizing technologies available may have, recover the ground motions with the accurate metrics from old seismograms, is often an intricate procedure. Frequently the general parameters of the analogue instruments response that allow recover the shape of the ground motions (free periods and damping) are known, but the magnification that allow recover the metric of these motions is dubious. It is in these situations that the procedure applies. The procedure is based on assign of the moment magnitude value to the integral of the apparent Source Time Function (STF), estimated by deconvolution of a synthetic elementary seismogram from the related observed seismogram, corrected with an instrument response affected by improper magnification. Two delicate issues in the process are 1) the calculus of the synthetic elementary seismograms that must consider later phases if applied to large earthquakes (the portions of signal should be 3 or 4 times larger than the rupture time) and 2) the deconvolution to calculate the apparent STF. In present version of the procedure was used the Direct Solution Method to compute the elementary seismograms and the deconvolution was processed in time domain by an iterative algorithm that allow constrains the STF to stay positive and time limited. The method was examined using synthetic data to test the accuracy and robustness. Finally, a set of 17 real old analog seismograms from the Santa Maria (Azores) 1939 earthquake (Mw=7.1) was used in order to recover the waveforms in the required digital structure, from which by inversion allows compute the finite source rupture model (slip distribution). Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.
Processing Ultra Wide Band Synthetic Aperture Radar Data with Motion Detectors
NASA Technical Reports Server (NTRS)
Madsen, Soren Norvang
1996-01-01
Several issues makes the processing of ultra wide band (UWB) SAR data acquired from an airborne platform difficult. The character of UWB data invalidates many of the usual SAR batch processing techniques, leading to the application of wavenumber domain type processors...This paper will suggest and evaluate an algorithm which combines a wavenumber domain processing algorithm with a motion compensation procedure which enables motion compensation to be applied as a function of target range and the azimuth angle.
Proceedings of the 1982 DPF summer study on elementary particle physics and future facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, R.; Gustafson, R.; Paige, F.
1982-01-01
This book presents the papers given at a conference on high energy physics. Topics considered at the conference included synchrotron radiation, testing the standard model, beyond the standard model, exploring the limits of accelerator technology, novel detector ideas, lepton-lepton colliders, lepton-hadron colliders, hadron-hadron colliders, fixed-target accelerators, non-accelerator physics, and sociology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Yin, F; Mao, R
2015-06-15
Purpose: To develop a dual-detector phase-matched DTS technique for continuous and fast intra-treatment lung tumor localization. Methods: Tumor localization accuracy of limited-angle DTS imaging is affected by low inter-slice resolution. The dual-detector DTS technique aims to overcome this limitation through combining orthogonally acquired beam’s eye view MV projections and kV projections for intra-treatment DTS reconstruction and localization. To aggregate the kV and MV projections for reconstruction, the MV projections were linearly converted to synthesize corresponding kV projections. To further address the lung motion induced localization errors, this technique uses respiratory phase-matching to match the motion information between on-board DTS andmore » reference DTS to offset the adverse effects of motion blurriness in tumor localization.A study was performed using the CIRS008A lung phantom to simulate different on-board target variation scenarios for localization. The intra-treatment kV and MV acquisition was achieved through the Varian TrueBeam Developer Mode. Four methods were compared for their localization accuracy: 1. the proposed dual-detector phase-matched DTS technique; 2. the single-detector phase-matched DTS technique; 3. the dual-detector 3D-DTS technique without phase-matching; and 4. the single-detector 3D-DTS technique without phase-matching. Results: For scan angles of 2.5°, 5°, 10°, 20° and 30°, the dual-detector phase-matched DTS technique localized the tumor with average(±standard deviations) errors of 0.4±0.3 mm, 0.5±0.3 mm, 0.6±0.2 mm, 0.9±0.4 mm and 1.0±0.3 mm, respectively. The corresponding values of single-detector phase-matched DTS technique were 4.0±2.5 mm, 2.7±1.1 mm, 1.7±1.2 mm, 2.2±0.9 mm and 1.5±0.8 mm, respectively. The values of dual-detector 3D-DTS technique were 6.2±1.7 mm, 6.3±1.2 mm, 5.3±1.3 mm, 2.0±2.2 mm and 1.5±0.5 mm, respectively. And the values of single-detector 3D-DTS technique were 9.7±8.9 mm, 9.8±8.8 mm, 10.0±9.7 mm, 3.9±2.7 mm and 2.2±1.3 mm, respectively. Conclusion: The dual-detector phase-matched DTS technique substantially improves the tumor localization accuracy, which can be applied to real-time intra-treatment lung tumor localization. The research was funded by the National Institutes of Health Grant No. R01-CA184173 and a grant from Varian Medical Systems.« less
Physics through the 1990s: Elementary-particle physics
NASA Astrophysics Data System (ADS)
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: elementary-particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less
Physics through the 1990s: Elementary-particle physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Hwang, V; Duchossois, G P; Garcia‐Espana, J F; Durbin, D R
2006-01-01
The objective of this study was to determine the impact of a community based fire prevention intervention directed only to parents on the fire safety knowledge and behavior in elementary school children. This was a prospective, quasi‐randomized controlled study in which third and fourth grade students from two elementary schools in an urban, poor, minority community completed knowledge/behavior surveys at baseline and following completion of the intervention. The intervention group received an in‐home visit from fire department personnel who installed free lithium smoke detectors and provided a fire escape plan. After accounting for a small difference in baseline summary scores of knowledge and behavior between the control and intervention groups, this study found a modest improvement in fire safety behavior among children whose families received a fire prevention intervention reflecting a change in household fire safety practices. However, there was no significant change in fire safety knowledge. PMID:17018679
Search for electroweak single top-quark production with the CDF II experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Svenja
2007-11-02
Understanding the world -- This aim drives humankind since the beginning of conscious thinking. Especially the nature of matter has been of major interest. Nowadays, we have a complex image of the constitution of matter. Atoms consist of electrons and nucleons. But even nucleons are not elementary. Their basic constituents are called quarks. Physicists developed a model describing the elementary components of matter as well as the forces between them: the standard model of elementary particle physics. The substructure of matter is only visible in scattering experiments. In high energy physics, these experiments are done at particle accelerators. The world'smore » highest energetic collider, the Tevatron, is hosted by the Fermi National Accelerator Laboratory (FNAL), also called Fermilab, in the vicinity of Chicago. The proton-antiproton collisions with a center-of-mass energy of {radical}s = 1.96 TeV are recorded by two multipurpose detectors, namely D0 and CDF II.« less
Measurement of Motion Transfer Functions for Mirror Suspensions
NASA Astrophysics Data System (ADS)
Stuver, Amber; Beilby, Mark; Glancy, Aran; Gonzalez, Gabriela
2001-04-01
Interferometric gravitational wave detectors, such as LIGO, use mirrors suspended in pendulums. The current LIGO dectors use simple pendulums, but advanced LIGO detectors will use multiple pendulums with some stages on soft vertical springs. A drawback of the a multiple pendulum design is that it is difficult to model and predict cross couplings from one vibrational mode to another due to slight unavoidable asymmetries in the real system. Of most concern are the couplings to motion along the optical axis and into angular motions, which have the most potential to contaminate data. Our research focuses on the experimental testing of the pendulum designs for cross couplings with a special dedicated shaking stage. The cross couplings in each degree of freedom, their isolation and damping are investigated in this research though the measurement of transfer functions as filtered though the suspension system. This research is supported by The Pennsylvania State University, the NSF Grant no. PHY-9870032, and the REU program at The Pennsylvania State University.
NASA Astrophysics Data System (ADS)
Vasisht, Vishwas V.; Dutta, Sudeep K.; Del Gado, Emanuela; Blair, Daniel L.
2018-01-01
We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find that the mechanism of unjamming and the upturn in the material flow curve are associated to a qualitative change in spatiotemporal correlations of such rearrangements with the applied shear rate. At high shear rates, droplet clusters follow coordinated, stringlike motion. Conversely, at low shear rates, the elementary nonaffine rearrangements exhibit longer-ranged correlations, with complex spatiotemporal patterns. The 3D microscopic details provide novel insights into the specific features of the material flow curve, common to a large class of technologically relevant soft disordered solids and new fundamental ingredients for constitutive models.
Observation and analysis of high-speed human motion with frequent occlusion in a large area
NASA Astrophysics Data System (ADS)
Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng
2009-12-01
The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.
A Real-Time Position-Locating Algorithm for CCD-Based Sunspot Tracking
NASA Technical Reports Server (NTRS)
Taylor, Jaime R.
1996-01-01
NASA Marshall Space Flight Center's (MSFC) EXperimental Vector Magnetograph (EXVM) polarimeter measures the sun's vector magnetic field. These measurements are taken to improve understanding of the sun's magnetic field in the hopes to better predict solar flares. Part of the procedure for the EXVM requires image motion stabilization over a period of a few minutes. A high speed tracker can be used to reduce image motion produced by wind loading on the EXVM, fluctuations in the atmosphere and other vibrations. The tracker consists of two elements, an image motion detector and a control system. The image motion detector determines the image movement from one frame to the next and sends an error signal to the control system. For the ground based application to reduce image motion due to atmospheric fluctuations requires an error determination at the rate of at least 100 hz. It would be desirable to have an error determination rate of 1 kHz to assure that higher rate image motion is reduced and to increase the control system stability. Two algorithms are presented that are typically used for tracking. These algorithms are examined for their applicability for tracking sunspots, specifically their accuracy if only one column and one row of CCD pixels are used. To examine the accuracy of this method two techniques are used. One involves moving a sunspot image a known distance with computer software, then applying the particular algorithm to see how accurately it determines this movement. The second technique involves using a rate table to control the object motion, then applying the algorithms to see how accurately each determines the actual motion. Results from these two techniques are presented.
The Focal Surface of the JEM-EUSO Telescope
NASA Technical Reports Server (NTRS)
Kawasaki, Yoshiya
2007-01-01
Extreme Universe Space Observatory onboard JEM/EP (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region to observe time-resolved atmospheric fluorescence images of the extensive air showers from the International Space Station. The focal surface is a spherical curved surface, and its area amounts to about 4.5 square m. The focal surface detector is covered with about 6,000 multi-anode photomultipliers (MAPMTs). The focal surface detector consists of Photo-Detector-Modules, each of which consists of 9 Elementary Cells (ECs). The EC contains 4 units of the MAPMTs. Therefore, about 1,500 ECs or about 160 PDMS are arranged on the whole of the focal surface of JEM- EUSO. The EC is a basic unit of the front-end electronics. The PDM is a, basic unit of the data acquisition system
Mechanisms & Other Systems. Stuff That Works! A Technology Curriculum for the Elementary Grades.
ERIC Educational Resources Information Center
Benenson, Gary
This book focuses on devices and systems that transform motion or convert energy. Contents are divided into six chapters: (1) "Appetizers" includes activities that can be done individually to become familiar with the topic of machines and mechanisms; (2) "Concepts" provides a basis for machine and mechanism development; (3)…
Embodying Earth's Place in the Solar System
ERIC Educational Resources Information Center
Plummer, Julia
2015-01-01
Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…
The Hydrogen Economy as a Technological Bluff
ERIC Educational Resources Information Center
Vanderburg, Willem H.
2006-01-01
The hydrogen economy is a technological bluff in its implied assurance that, despite the accelerating pace at which we are depleting the remaining half of our fossil fuels, our energy future is secure. Elementary thermodynamic considerations are developed to show that a hydrogen economy is about as feasible as a perpetual motion machine. Hydrogen…
Misconceptions of Selected Science Concepts Held by Elementary School Students
ERIC Educational Resources Information Center
Doran, Rodney L.
1972-01-01
Describes a test, administered as a motion picture, designed to measure misconceptions about the particle model of matter held by students in grades two through six. Reliability values for tests of eight misconceptions are given and the correlations of misconception scores with measures of IQ, reading, mathematics, and science ability reported.…
ERIC Educational Resources Information Center
Fay, T. H.; Mead, L.
2006-01-01
The paper discusses an elementary spring model representing the motion of a magnet suspended from the ceiling at one end of a vertical spring which is held directly above a second magnet fixed on the floor. There are two cases depending upon the north-south pole orientation of the two magnets. The attraction or repelling force induced by the…
ERIC Educational Resources Information Center
Ginsberg, Edw S.
2018-01-01
The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to…
Position-sensitive ``movie'' in situ neutron detector for the UCN τ experiment
NASA Astrophysics Data System (ADS)
Weaver, Hannah; UCNTau Collaboration
2016-09-01
Precision measurements of neutron β-decay parameters provide tests of fundamental theories in elementary particle physics and cosmology such as the Standard Model and Big Bang nucleosynthesis. In particular, the UCN τ experiment aims to measure the mean lifetime of ultracold neutrons confined in an asymmetric magneto-gravitational trap using an in situ neutron detector. This detector consists of a 20 nm film of 10B on top of a ZnS:Ag scintillating screen. The screen is readout using two photomultipliers which view an array of wavelength shifting fibers optically coupled to the scintillator. When the detector is lowered into the loaded trap, light is emitted due to the charged particles recoiling into the ZnS:Ag when neutrons absorb on the 10B. Phase space evolution in the stored neutron population can lead to apparent shifts in the measured neutron lifetime with the detector height. In order to quantify this systematic uncertainty, we are implementing a supplemental 64-channel position-sensitive PMT module with high quantum efficiency and fast time response to image the entire detector in situ during measurements. We have characterized a prototype using a ZnS screen and an α-particle source along with a prototype lens system and will report the results and future plans.
High-Speed Automatic Microscopy for Real Time Tracks Reconstruction in Nuclear Emulsion
NASA Astrophysics Data System (ADS)
D'Ambrosio, N.
2006-06-01
The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) experiment will use a massive nuclear emulsion detector to search for /spl nu//sub /spl mu///spl rarr//spl nu//sub /spl tau// oscillation by identifying /spl tau/ leptons through the direct detection of their decay topology. The feasibility of experiments using a large mass emulsion detector is linked to the impressive progress under way in the development of automatic emulsion analysis. A new generation of scanning systems requires the development of fast automatic microscopes for emulsion scanning and image analysis to reconstruct tracks of elementary particles. The paper presents the European Scanning System (ESS) developed in the framework of OPERA collaboration.
Students' Development of Astronomy Concepts across Time
NASA Astrophysics Data System (ADS)
Plummer, Julia
Students in Grades 1, 3, and 8 (N = 60) were interviewed while using a planetarium-like setting that allowed the students to demonstrate their ideas about apparent celestial motion both verbally and with their own motions. Though the older students were generally more accurate in many conceptual areas compared with the younger students, in several areas, the eighth-grade students showed no improvement over the third-grade students. The use of kinesthetic learning techniques in a planetarium program was also explored as a method to improve understanding of celestial motion. Pre- and postinterviews were conducted with participants from seven classes of first- and second-grade students (N = 63). Students showed significant improvement in all areas of apparent celestial motion covered by the planetarium program and surpassed the middle school students' understanding of these concepts in most areas. Based on the results of these studies, a learning progression was developed describing how children may progress through successively more complex ways of understanding apparent celestial motion across elementary grades.
On the dynamics of a human body model.
NASA Technical Reports Server (NTRS)
Huston, R. L.; Passerello, C. E.
1971-01-01
Equations of motion for a model of the human body are developed. Basically, the model consists of an elliptical cylinder representing the torso, together with a system of frustrums of elliptical cones representing the limbs. They are connected to the main body and each other by hinges and ball and socket joints. Vector, tensor, and matrix methods provide a systematic organization of the geometry. The equations of motion are developed from the principles of classical mechanics. The solution of these equations then provide the displacement and rotation of the main body when the external forces and relative limb motions are specified. Three simple example motions are studied to illustrate the method. The first is an analysis and comparison of simple lifting on the earth and the moon. The second is an elementary approach to underwater swimming, including both viscous and inertia effects. The third is an analysis of kicking motion and its effect upon a vertically suspended man such as a parachutist.
Improving acceptance for Higgs events at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sforza, Federico; /INFN, Pisa
2008-03-01
The Standard Model of elementary particles predicts the existence of the Higgs boson as the responsable of the electroweak symmetry breaking, the process by which fermions and vector bosons acquire mass. The Higgs existence is one of the most important questions in the present high energy physics research. This work concerns the search of W H associate production at the CDF II experiment (Collider Detector at Fermilab).
The Versatile Elastohydrodynamics of a Free Particle near a Thin Soft Wall
NASA Astrophysics Data System (ADS)
Salez, Thomas; Saintyves, Baudouin; Mahadevan, L.
2015-03-01
We address the free motion of a buoyant particle inside a viscous fluid, in the vicinity of a thin compressible elastic wall. After discussing the main scalings, we obtain analytically the dominant drag forces within the soft lubrication approximation. By including those into the equations of motion of the particle, we establish a general governing system of three coupled nonlinear and singular differential equations, that describe the three essential motions: sedimentation, hydroplaning, and hydrospinning, through four dimensionless control parameters. Numerical integration allows us to predict a wide zoology of exotic solutions - despite the low-Reynolds feature of the flow - including: spontaneous oscillation, Magnus-like effect, enhanced sedimentation, and boomerang-like effect. We compare these predictions to experiments. The presented elementary approach could be of interest in the description of a broad variety of elastohydrodynamical phenomena, including: landslides, ageing of cartilaginous joints, and motion of a cell in a microfluidic channel or in a blood vessel.
The Escaramujo Project: Instrumentation Courses During a Road Trip Across the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izraelevitch, Federico
The Escaramujo Project was a series of eight hands-on laboratory courses on High Energy Physics and Astroparticle Instrumentation, in Latinamerican Institutions. The Physicist Federico Izraelevitch traveled on a van with his wife and dogs from Chicago to Buenos Aires teaching the courses. The sessions took place at Institutions in Mexico, Guatemala, Costa Rica, Colombia, Ecuador, Peru and Bolivia at an advanced undergraduate and graduate level. During these workshops, each group built a modern cosmic ray detector based on plastic scintillator and silicon photomultipliers, designed specifically for this project. After the courses, a functional detector remained at each institution to bemore » used by the faculty to facilitate the training of future students and to support and enable local research activities. The five-days workshops covered topics such as elementary particle and cosmic ray Physics, radiation detection and instrumentation, low-level light sensing with solid state devices, front-end analog electronics and object-oriented data analysis (C++ and ROOT). Throughout this initiative, about a hundred of talented and highly motivated young students were reached. With the detector as a common thread, they were able to understand the designing principles and the underlying Physics involved in it, build the device, start it up, characterize it, take data and analyze it, mimicking the stages of a real elementary particle Physics experiment. Besides the aims to awaken vocations in science, technology and engineering, The Escaramujo Project was an effort to strengthen the integration of Latinamerican academic institutions into the international scientific community.« less
Kepler unbound: Some elegant curiosities of classical mechanics
NASA Astrophysics Data System (ADS)
MacKay, Niall J.; Salour, Sam
2015-01-01
We explain two exotic systems of classical mechanics: the McIntosh-Cisneros-Zwanziger ("MICZ") Kepler system, of motion of a charged particle in the presence of a modified dyon; and Gibbons and Manton's description of the slow motion of well-separated solitonic ("BPS") monopoles using Taub-NUT space. Each system is characterized by the conservation of a Laplace-Runge-Lenz vector, and we use elementary vector techniques to show that each obeys a subtly different variation on Kepler's three laws for the Newton-Coulomb two-body problem, including a new modified Kepler third law for BPS monopoles.
On the dynamics of chain systems. [applications in manipulator and human body models
NASA Technical Reports Server (NTRS)
Huston, R. L.; Passerello, C. E.
1974-01-01
A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien
2009-01-01
This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…
2015-04-21
seismic sensors , acoustic sensors , electromagnetic sensors and infrared (IR) detectors are among in-need multimodal sensing of vehicles, personnel, weapons... sensors and detectors largely due to the fact that the nature of piezoelectricity renders both active and passive sensing with fast response, low profile...and low power consumption. Acoustic and seismic sensors are used to ascertain the exact target location, speed, direction of motion, and
DynamiX, numerical tool for design of next-generation x-ray telescopes.
Chauvin, Maxime; Roques, Jean-Pierre
2010-07-20
We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.
Posteriori error determination and grid adaptation for AMR and ALE computational fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, G. M.
2002-01-01
We discuss grid adaptation for application to AMR and ALE codes. Two new contributions are presented. First, a new method to locate the regions where the truncation error is being created due to an insufficient accuracy: the operator recovery error origin (OREO) detector. The OREO detector is automatic, reliable, easy to implement and extremely inexpensive. Second, a new grid motion technique is presented for application to ALE codes. The method is based on the Brackbill-Saltzman approach but it is directly linked to the OREO detector and moves the grid automatically to minimize the error.
Formative Assessment Probes: Pushes and Pulls
ERIC Educational Resources Information Center
Keeley, Page
2011-01-01
When the concept of force is first taught in the elementary curriculum, it is usually introduced as a push or a pull. The recently released "A Framework for K-12 Science Education" describes grade band endpoints for the Core Idea: Motion and Stability: Forces and Interactions (NRC 2011). It states that by the end of grade 2 students should know…
ERIC Educational Resources Information Center
Suppes, P.; And Others
From some simple and schematic assumptions about information processing, a stochastic differential equation is derived for the motion of a student through a computer-assisted elementary mathematics curriculum. The mathematics strands curriculum of the Institute for Mathematical Studies in the Social Sciences is used to test: (1) the theory and (2)…
Gravitation, Book 3. The University of Illinois Astronomy Program.
ERIC Educational Resources Information Center
Atkin, J. Myron; Wyatt, Stanley P., Jr.
Presented is book three in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. The causes of celestial motion are investigated and the laws that apply to all moving things in the universe are examined in detail. Topics discussed include: the basic…
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Gerretson, Helen; Olkun, Sinan; Yuan, Yuan; Dogbey, James; Erdem, Aliye
2009-01-01
This study investigated how female elementary education pre-service teachers in the United States, Turkey and Taiwan learned spatial skills from structured activities involving discrete, as opposed to continuous, transformations in interactive computer programs, and how these activities transferred to non-related standardized tests of spatial…
Motor Coordination Dynamics Underlying Graphic Motion in 7- to 11-Year-Old Children
ERIC Educational Resources Information Center
Danna, Jeremy; Enderli, Fabienne; Athenes, Sylvie; Zanone, Pier-Giorgio
2012-01-01
Using concepts and tools of a dynamical system approach in order to understand motor coordination underlying graphomotor skills, the aim of the current study was to establish whether the basic coordination dynamics found in adults is already established in children at elementary school, when handwriting is trained and eventually acquired. In the…
Measurement of "g" Using a Magnetic Pendulum and a Smartphone Magnetometer
ERIC Educational Resources Information Center
Pili, Unofre; Violanda, Renante; Ceniza, Claude
2018-01-01
The internal sensors in smartphones for their advanced add-in functions have also paved the way for these gadgets becoming multifunctional tools in elementary experimental physics. For instance, the acceleration sensor has been used to analyze free-falling motion and to study the oscillations of a spring-mass system. The ambient light sensor on…
Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector.
Del Hougne, Philipp; F Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N; Fink, Mathias; Lerosey, Geoffroy; Smith, David R
2018-04-25
Detecting and analysing motion is a key feature of Smart Homes and the connected sensor vision they embrace. At present, most motion sensors operate in line-of-sight Doppler shift schemes. Here, we propose an alternative approach suitable for indoor environments, which effectively constitute disordered cavities for radio frequency (RF) waves; we exploit the fundamental sensitivity of modes of such cavities to perturbations, caused here by moving objects. We establish experimentally three key features of our proposed system: (i) ability to capture the temporal variations of motion and discern information such as periodicity ("smart"), (ii) non line-of-sight motion detection, and (iii) single-frequency operation. Moreover, we explain theoretically and demonstrate experimentally that the use of dynamic metasurface apertures can substantially enhance the performance of RF motion detection. Potential applications include accurately detecting human presence and monitoring inhabitants' vital signs.
Visual Motion Perception and Visual Attentive Processes.
1988-04-01
88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
Macro-motion detection using ultra-wideband impulse radar.
Xin Li; Dengyu Qiao; Ye Li
2014-01-01
Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.
Individuality and togetherness in joint improvised motion.
Hart, Yuval; Noy, Lior; Feniger-Schaal, Rinat; Mayo, Avraham E; Alon, Uri
2014-01-01
Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes.
Individuality and Togetherness in Joint Improvised Motion
Feniger-Schaal, Rinat; Mayo, Avraham E.; Alon, Uri
2014-01-01
Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes. PMID:24533054
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole
2015-01-01
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342
Real-time observation of valence electron motion.
Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc
2010-08-05
The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.
A new look at Op art: towards a simple explanation of illusory motion.
Zanker, Johannes M; Walker, Robin
2004-04-01
Vivid motion illusions created by some Op art paintings are at the centre of a lively scientific debate about possible mechanisms that might underlie these phenomena. Here we review emerging evidence from a new approach that combines perceptual judgements of the illusion and observations of eye movements with simulations of the induced optic flow. This work suggests that the small involuntary saccades which participants make when viewing such Op art patterns would generate an incoherent distribution of motion signals that resemble the perceptual effects experienced by the observers. The combined experimental and computational evidence supports the view that the illusion is indeed caused by involuntary image displacements picked up by low-level motion detectors, and further suggests that coherent motion signals are crucial to perceive a stable world.
A new look at Op art: towards a simple explanation of illusory motion
NASA Astrophysics Data System (ADS)
Zanker, Johannes M.; Walker, Robin
Vivid motion illusions created by some Op art paintings are at the centre of a lively scientific debate about possible mechanisms that might underlie these phenomena. Here we review emerging evidence from a new approach that combines perceptual judgements of the illusion and observations of eye movements with simulations of the induced optic flow. This work suggests that the small involuntary saccades which participants make when viewing such Op art patterns would generate an incoherent distribution of motion signals that resemble the perceptual effects experienced by the observers. The combined experimental and computational evidence supports the view that the illusion is indeed caused by involuntary image displacements picked up by low-level motion detectors, and further suggests that coherent motion signals are crucial to perceive a stable world.
Petasecca, M; Newall, M K; Booth, J T; Duncan, M; Aldosari, A H; Fuduli, I; Espinoza, A A; Porumb, C S; Guatelli, S; Metcalfe, P; Colvill, E; Cammarano, D; Carolan, M; Oborn, B; Lerch, M L F; Perevertaylo, V; Keall, P J; Rosenfeld, A B
2015-06-01
Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named "MagicPlate-512" for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by (GEANT)4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.
Directional bias of illusory stream caused by relative motion adaptation.
Tomimatsu, Erika; Ito, Hiroyuki
2016-07-01
Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
40 CFR 63.1363 - Standards for equipment leaks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... heating and cooling systems which do not combine their materials with those in the processes they serve..., magnetic sensor, motion detector on the pressure relief valve stem, flow monitor, or pressure monitor. (B...
40 CFR 63.1331 - Equipment leak provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pump or seal whereby polymer fluid used to provide lubrication and/or cooling of the pump or agitator... limited to, a rupture disk indicator, magnetic sensor, motion detector on the pressure relief valve stem...
Motion and Emotional Behavior Design for Pet Robot Dog
NASA Astrophysics Data System (ADS)
Cheng, Chi-Tai; Yang, Yu-Ting; Miao, Shih-Heng; Wong, Ching-Chang
A pet robot dog with two ears, one mouth, one facial expression plane, and one vision system is designed and implemented so that it can do some emotional behaviors. Three processors (Inter® Pentium® M 1.0 GHz, an 8-bit processer 8051, and embedded soft-core processer NIOS) are used to control the robot. One camera, one power detector, four touch sensors, and one temperature detector are used to obtain the information of the environment. The designed robot with 20 DOF (degrees of freedom) is able to accomplish the walking motion. A behavior system is built on the implemented pet robot so that it is able to choose a suitable behavior for different environmental situation. From the practical test, we can see that the implemented pet robot dog can do some emotional interaction with the human.
Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.
A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.
Model for the computation of self-motion in biological systems
NASA Technical Reports Server (NTRS)
Perrone, John A.
1992-01-01
A technique is presented by which direction- and speed-tuned cells, such as those commonly found in the middle temporal region of the primate brain, can be utilized to analyze the patterns of retinal image motion that are generated during observer movement through the environment. The developed model determines heading by finding the peak response in a population of detectors or neurons each tuned to a particular heading direction. It is suggested that a complex interaction of multiple cell networks is required for the solution of the self-motion problem in the primate brain.
Scanned carbon beam irradiation of moving films: comparison of measured and calculated response
2012-01-01
Background Treatment of moving target volumes with scanned particle beams benefits from treatment planning that includes the time domain (4D). Part of 4D treatment planning is calculation of the expected result. These calculation codes should be verified against suitable measurements. We performed simulations and measurements to validate calculation of the film response in the presence of target motion. Methods All calculations were performed with GSI's treatment planning system TRiP. Interplay patterns between scanned particle beams and moving film detectors are very sensitive to slight deviations of the assumed motion parameters and therefore ideally suited to validate 4D calculations. In total, 14 film motion parameter combinations with lateral motion amplitudes of 8, 15, and 20 mm and 4 combinations for lateral motion including range changes were used. Experimental and calculated film responses were compared by relative difference, mean deviation in two regions-of-interest, as well as line profiles. Results Irradiations of stationary films resulted in a mean relative difference of -1.52% ± 2.06% of measured and calculated responses. In comparison to this reference result, measurements with translational film motion resulted in a mean difference of -0.92% ± 1.30%. In case of irradiations incorporating range changes with a stack of 5 films as detector the deviations increased to -6.4 ± 2.6% (-10.3 ± 9.0% if film in distal fall-off is included) in comparison to -3.6% ± 2.5% (-13.5% ± 19.9% including the distal film) for the stationary irradiation. Furthermore, the comparison of line profiles of 4D calculations and experimental data showed only slight deviations at the borders of the irradiated area. The comparisons of pure lateral motion were used to determine the number of motion states that are required for 4D calculations depending on the motion amplitude. 6 motion states per 10 mm motion amplitude are sufficient to calculate the film response in the presence of motion. Conclusions By comparison to experimental data, the 4D extension of GSI's treatment planning system TRiP has been successfully validated for film response calculations in the presence of target motion within the accuracy limitation given by film-based dosimetry. PMID:22462523
NASA Astrophysics Data System (ADS)
Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.
2011-03-01
A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1979-01-01
A microwave backscatter technique is presented that has the ability to sense the dominant surface wavelength of a random rough surface. The purpose of this technique is to perform this measurement from an aircraft or spacecraft, wherein the horizontal velocity of the radar is an important parameter of the measurement system. Attention will be directed at water surface conditions for which a dominant wavelength can be defined, then the spatial variations of reflectivity will have a two dimensional spectrum that is sufficiently close to that of waves to be useful. The measurement concept is based on the relative motion between the water waves and a nadir looking radar, and the fact that while the instantaneous Doppler frequency at the receiver returned by any elementary group of scatterers on a water wave is monotonically changing, the difference in the Doppler frequency between any two scattering 'patches' stays approximately constant as these waves travel parallel to the major axis of an elliptical antenna footprint. The results of a theoretical analysis and a laboratory experiment with a continuous wave (CW) radar that encompasses several of the largest waves in the illuminated area show how the structure in the Doppler spectrum of the backscattered signal is related to the surface spectrum and its parameters in an especially direct and simple way when an incoherent envelope detector is the receiver.
A Role for MST Neurons in Heading Estimation
NASA Technical Reports Server (NTRS)
Stone, L. S.; Perrone, J. A.
1994-01-01
A template model of human visual self-motion perception, which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions. We tested the model detectors with stimuli used by others in single-unit studies. The detectors showed emergent properties similar to those of MST neurons: (1) Sensitivity to non-preferred flow; Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow, and (2) Position invariance; The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields. It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.
Nori, Francesco; Frezza, Ruggero
2005-11-01
Recent experiments on frogs and rats, have led to the hypothesis that sensory-motor systems are organized into a finite number of linearly combinable modules; each module generates a motor command that drives the system to a predefined equilibrium. Surprisingly, in spite of the infiniteness of different movements that can be realized, there seems to be only a handful of these modules. The structure can be thought of as a vocabulary of "elementary control actions". Admissible controls, which in principle belong to an infinite dimensional space, are reduced to the linear vector space spanned by these elementary controls. In the present paper we address some theoretical questions that arise naturally once a similar structure is applied to the control of nonlinear kinematic chains. First of all, we show how to choose the modules so that the system does not loose its capability of generating a "complete" set of movements. Secondly, we realize a "complete" vocabulary with a minimal number of elementary control actions. Subsequently, we show how to modify the control scheme so as to compensate for parametric changes in the system to be controlled. Remarkably, we construct a set of modules with the property of being invariant with respect to the parameters that model the growth of an individual. Robustness against uncertainties is also considered showing how to optimally choose the modules equilibria so as to compensate for errors affecting the system. Finally, the motion primitive paradigm is extended to locomotion and a related formalization of internal (proprioceptive) and external (exteroceptive) variables is given.
Defining the computational structure of the motion detector in Drosophila
Clark, Damon A.; Bursztyn, Limor; Horowitz, Mark; Schnitzer, Mark J.; Clandinin, Thomas R.
2011-01-01
SUMMARY Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt Correlator (HRC), relates visual inputs to neural and behavioral responses to motion, but the circuits that implement this computation remain unknown. Using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, “reverse phi”, that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. PMID:21689602
Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.
1982-04-01
Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.
Turning Kids On to Science in the Home: Forces & Motion. Book 3.
ERIC Educational Resources Information Center
Liem, Tik L.
This is the third book in a sequence of four volumes written and designed for parents of students of science, particularly for those at the lower and upper elementary and junior high or intermediate level, senior high students, college students preparing to teach science, and all those individuals who are interested in science and the application…
Future of ePix detectors for high repetition rate FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaj, G., E-mail: blaj@slac.stanford.edu; Caragiulo, P.; Carini, G.
2016-07-27
Free-electron lasers (FELs) made the imaging of atoms and molecules in motion possible, opening new science opportunities with high brilliance, ultra-short x-ray laser pulses at up to 120 Hz. Some new or upgraded FEL facilities will operate at greatly increased pulse rates (kHz to MHz), presenting additional requirements on detection. We will present the ePix platform for x-ray detectors and the current status of the ePix detectors: ePix100 for low noise applications, ePix10k for high dynamic range applications, and ePixS for spectroscopic applications. Then we will introduce the plans to match the ePix detectors with the requirements of currently plannedmore » high repetition rate FELs (mainly readout speed and energy range).« less
Zero Energy Building Pays for Itself: Odyssey Elementary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A
Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in themore » natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.« less
The upper spatial limit for perception of displacement is affected by preceding motion.
Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim
2009-03-01
The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.
Unruh, W.P.
1987-03-23
Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.
Pinhole/coronograph pointing control system integration and noise reduction analysis
NASA Technical Reports Server (NTRS)
Greene, M.
1981-01-01
The Pinhole Occulter Facility (P/OF) is a Space Shuttle based experiment for the production of solar coronographics and hard X-ray images. The system is basically pinhole camera utilizing a deployable 50-m flexible boom for separating the pinholes and coronograph shields from the recording devices located in the Shuttle bay. At the distal end of the boom from the Shuttle is a 25 kg mask containing pinholes and coronograph shields. At the proximal end the detectors are located and mounted, along with the deployable boom, to the ASPS gimbal pointing system (AGS). The mask must be pointed at the Sun with a high degree of pointing stability and accuracy to align the axes of the detectors with the pinholes and shields. Failure to do so will result in a blurring of the images on the detectors and a loss of resolution. Being a Shuttle based experiment, the system will be subjected to the disturbances of the Shuttle. The worst of these is thruster firing for orbit correction; the Shuttle uses a bang-bang thruster control system to maintain orbit to within preset limits. Other disturbances include man motion, motion induced by other systems, and gravity gradient torques.
Pinhole/coronograph pointing control system integration and noise reduction analysis
NASA Astrophysics Data System (ADS)
Greene, M.
1981-09-01
The Pinhole Occulter Facility (P/OF) is a Space Shuttle based experiment for the production of solar coronographics and hard X-ray images. The system is basically pinhole camera utilizing a deployable 50-m flexible boom for separating the pinholes and coronograph shields from the recording devices located in the Shuttle bay. At the distal end of the boom from the Shuttle is a 25 kg mask containing pinholes and coronograph shields. At the proximal end the detectors are located and mounted, along with the deployable boom, to the ASPS gimbal pointing system (AGS). The mask must be pointed at the Sun with a high degree of pointing stability and accuracy to align the axes of the detectors with the pinholes and shields. Failure to do so will result in a blurring of the images on the detectors and a loss of resolution. Being a Shuttle based experiment, the system will be subjected to the disturbances of the Shuttle. The worst of these is thruster firing for orbit correction; the Shuttle uses a bang-bang thruster control system to maintain orbit to within preset limits. Other disturbances include man motion, motion induced by other systems, and gravity gradient torques.
NASA Astrophysics Data System (ADS)
Kodera, Yuki
2018-01-01
Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.
An overview of LIGO and Virgo -- status and plans
NASA Astrophysics Data System (ADS)
Miller, John
2014-06-01
Interferometric gravitational-wave detectors, the most sensitive position meters ever operated, aim to detect the motion of massive bodies throughout the universe by pushing precision measurement to the standard quantum limit and beyond. A global network of these detectors is currently under construction, promising unprecedented sensitivity and the ability to determine the sky position of any detected signals. I will describe the current status and expected performance of this network with a focus on limiting noise sources and the techniques currently being developed to combat them.
SU-E-J-64: Feasibility Study of Surgical Clips for Fiducial Tracking in CyberKnife System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Yoon, J; Lee, E
Purpose: To investigate the ability of CyberKnife to track surgical clips used as fiducial markers. Methods: The Octavius 1000SRS detector and solid water (RW3) slab phantom were used with motion platform to evaluate the study. The RW3 slab phantom was set up to measure the dose distribution from coronal plane. It consists of 9 plates and the thickness of each plate is 10mm. Among them, one plate was attached with 3 surgical clips, which are orthogonally positioned on outer region of array. The length of attached clip was represented as 1cm on planning CT. The clip plate was placed onmore » the 1000SRS detector and 3 slabs were stacked up on the plate to build the measuring depth. Below the detector, 5 slabs were set. The two-axis motion platform was programmed with 1D sinusoidal movement (20mm peak-to-peak, 3s period) toward superior/inferior and left/right directions to simulate target motion. During delivery, two clips were extracted by two X-ray imagers, which led to translational error correction only. Synchrony was also used for dynamic tracking. After the irradiation, the measured dose distribution of coronal plane was compared with the planar dose distribution calculated by the CyberKnife treatment planning system (Multiplan) for cross verification. The results were assessed by comparing the absolute Gamma (γ) index. Results: The dose distributions measured by the 1000SRS detector were in good agreements with those calculated by Multiplan. In the dosimetric comparison using γ-function criteria based on the distance-to-agreement of 3mm and the local dose difference of 3%, the passing rate with γ- parameter ≤1 was 91% in coronal plane. Conclusion: The surgical clips can be considered as new fiducials for robotic radiosurgery delivery by considering the target margin with less than 5mm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
ERIC Educational Resources Information Center
Annetta, Leonard; Mangrum, Jennifer; Holmes, Shawn; Collazo, Kimberly; Cheng, Meng-Tzu
2009-01-01
The purpose of this study was to examine students' learning of simple machines, a fifth-grade (ages 10-11) forces and motion unit, and student engagement using a teacher-created Multiplayer Educational Gaming Application. This mixed-method study collected pre-test/post-test results to determine student knowledge about simple machines. A survey…
Control Strategies for Guided Collective Motion
2015-01-30
Control, Atlanta, GA, USA, December 2010, pp. 5468-5473. [19] C. Rorres and H. Anton , “ Elementary linear algebra applications version,” 9th Edition...work addresses and analyses deviated linear cyclic pursuit in which an Distribution Code A: Approved for public release, distribution is unlimited...Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and Asynchronous Heterogeneous Cyclic
NASA Astrophysics Data System (ADS)
DiFilippo, Frank P.; Patel, Sagar
2009-06-01
A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.
Gravitational Waves: A New Observational Window
NASA Technical Reports Server (NTRS)
Camp, Jordan B.
2010-01-01
The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.
Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. V. Morgan; S. Iversen; R. A. Hilko
2002-06-01
The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the originalmore » 1.5-MVp value.« less
Arnold Diffusion of Charged Particles in ABC Magnetic Fields
NASA Astrophysics Data System (ADS)
Luque, Alejandro; Peralta-Salas, Daniel
2017-06-01
We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.
Computerized method to compensate for breathing body motion in dynamic chest radiographs
NASA Astrophysics Data System (ADS)
Matsuda, H.; Tanaka, R.; Sanada, S.
2017-03-01
Dynamic chest radiography combined with computer analysis allows quantitative analyses on pulmonary function and rib motion. The accuracy of kinematic analysis is directly linked to diagnostic accuracy, and thus body motion compensation is a major concern. Our purpose in this study was to develop a computerized method to reduce a breathing body motion in dynamic chest radiographs. Dynamic chest radiographs of 56 patients were obtained using a dynamic flat-panel detector. The images were divided into a 1 cm-square and the squares on body counter were used to detect the body motion. Velocity vector was measured using cross-correlation method on the body counter and the body motion was then determined on the basis of the summation of motion vector. The body motion was then compensated by shifting the images based on the measured vector. By using our method, the body motion was accurately detected by the order of a few pixels in clinical cases, mean 82.5% in right and left directions. In addition, our method detected slight body motion which was not able to be identified by human observations. We confirmed our method effectively worked in kinetic analysis of rib motion. The present method would be useful for the reduction of a breathing body motion in dynamic chest radiography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Sambit Bikas; Haldar, Arijit; Roy, Basudev
A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe-however, this mode has problems of low S/N due to the small backscattering cross sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors, it would help if the detector size matched with the detection beam radius after the condenser lens (which for backscattered detection would be the trappingmore » objective itself). To suit this condition, we have used a miniature displacement sensor whose dimensions makes it ideal to work with 1:1 images of micrometer-sized trapped probes in the backscattering detection mode. The detector is based on the quadrant photo-integrated chip in the optical pick-up head of a compact disc player. Using this detector, we measured absolute displacements of an optically trapped 1.1 {mu}m probe with a resolution of {approx}10 nm for a bandwidth of 10 Hz at 95% significance without any sample or laser stabilization. We characterized our optical trap for different sized probes by measuring the power spectrum for each probe to 1% accuracy, and found that for 1.1 {mu}m diameter probes, the noise in our position measurement matched the thermal resolution limit for averaging times up to 10 ms. We also achieved a linear response range of around 385 nm with cross talk between axes {approx_equal}4% for 1.1 {mu}m diameter probes. The detector has extremely high bandwidth (few MHz) and low optical power threshold-other factors that can lead to its widespread use in photonic force microscopy.« less
Orientation selectivity sharpens motion detection in Drosophila
Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.
2015-01-01
SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048
Scene-based nonuniformity correction with video sequences and registration.
Hardie, R C; Hayat, M M; Armstrong, E; Yasuda, B
2000-03-10
We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity.
The Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Blair, David G.
2005-10-01
Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.
Detector system dose verification comparisons for arc therapy: couch vs. gantry mount
Manikandan, Arjunan; Nandy, Maitreyee; Sureka, Chandra Sekaran; Gossman, Michael S.; Sujatha, Nadendla; Rajendran, Vivek Thirupathur
2014-01-01
The aim of this study was to assess the performance of a gantry‐mounted detector system and a couch set detector system using a systematic multileaf collimator positional error manually introduced for volumetric‐modulated arc therapy. Four head and neck and esophagus VMAT plans were evaluated by measurement using an electronic portal imaging device and an ion chamber array. Each plan was copied and duplicated with a 1 mm systematic MLC positional error in the left leaf bank. Direct comparison of measurements for plans with and without the error permitted observational characteristics for quality assurance performance between detectors. A total of 48 different plans were evaluated for this testing. The mean percentage planar dose differences required to satisfy a 95% match between plans with and without the MLCPE were 5.2% ± 0.5% for the chamber array with gantry motion, 8.12% ± 1.04% for the chamber array with a static gantry at 0°, and 10.9% ± 1.4% for the EPID with gantry motion. It was observed that the EPID was less accurate due to overresponse of the MLCPE in the left leaf bank. The EPID always images bank‐A on the ipsilateral side of the detector, whereas for a chamber array or for a patient, that bank changes as it crosses the ‐90° or +90° position. A couch set detector system can reproduce the TPS calculated values most consistently. We recommend it as the most reliable patient specific QA system for MLC position error testing. This research is highlighted by the finding of up to 12.7% dose variation for H/N and esophagus cases for VMAT delivery, where the mere source of error was the stated clinically acceptability of 1 mm MLC position deviation of TG‐142. PACS numbers: 87.56.‐v, 87.55.‐x, 07.57.KP, 29.40.‐n, 85.25.Pb PMID:24892330
Defining the computational structure of the motion detector in Drosophila.
Clark, Damon A; Bursztyn, Limor; Horowitz, Mark A; Schnitzer, Mark J; Clandinin, Thomas R
2011-06-23
Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt correlator (HRC), relates visual inputs to neural activity and behavioral responses to motion, but the circuits that implement this computation remain unknown. By using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, "reverse phi," that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Noble, Tracy
This study is an exploration of the role of physical activity in making sense of the physical world. Recent work on embodied cognition has helped to break down the barrier between the body and cognition, providing the inspiration for this work. In this study, I asked ten elementary-school students to explain to me how a toy parachute works. The methods used were adapted from those used to study the role of the body in cognition in science education, child development, and psychology. This study focused on the processes of learning rather than on measuring learning outcomes. Multiple levels of analysis were pursued in a mixed-method research design. The first level was individual analyses of two students' utterances and body motions. These analyses provided initial hypotheses about the interaction of speech and body motion in students' developing understandings. The second level was group analyses of all ten students' data, in search of patterns and relationships between body motion and speech production across all the student-participants. Finally, a third level of analysis was used to explore all cases in which students produced analogies while they discussed how the parachute works. The multiple levels of analysis used in this study allowed for raising and answering some questions, and allowed for the characterization of both individual differences and group commonalities. The findings of this study show that there are several significant patterns of interaction between body motion and speech that demonstrate a role for the body in cognition. The use of sensory feedback from physical interactions with objects to create new explanations, and the use of interactions with objects to create blended spaces to support the construction of analogies are two of these patterns. Future work is needed to determine the generalizability of these patterns to other individuals and other learning contexts. However, the existence of these patterns lends concrete support to the ideas of embodied cognition and demonstrates how students can use their own embodied experience to understand the world.
Idea Project Final Report, Laser Vehicle Detector-Classifier
DOT National Transportation Integrated Search
1995-11-28
WEIGH-IN-MOTION OR WIM, COMMERCIAL VEHICLE OPERATIONS OR CVO : THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM, WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFAC...
On relativistic motion of a pair of particles having opposite signs of masses
NASA Astrophysics Data System (ADS)
Ivanov, Pavel B.
2012-12-01
In this methodological note, we consider, in a weak-fleld limit, the relativistic linear motion of two particles with masses of opposite signs and a small difference between their absolute values: m_{1,2}=+/- (\\mu+/- \\Delta \\mu) , \\mu \\gt 0, \\vert\\Delta \\mu \\vert \\ll\\mu. In 1957, H Bondi showed in the framework of both Newtonian analysis and General Relativity that, when the relative motion of particles is absent, such a pair can be accelerated indefinitely. We generalize the results of his paper to account for the small nonzero difference between the velocities of the particles. Assuming that the weak-field limit holds and the dynamical system is conservative, an elementary treatment of the problem based on the laws of energy and momentum conservation shows that the system can be accelerated indefinitely, or attain very large asymptotic values of the Lorentz factor \\gamma. The system experiences indefinite acceleration when its energy-momentum vector is null and the mass difference \\Delta \\mu \\le 0. When the modulus of the square of the norm of the energy-momentum vector, \\vert N^{\\,2}\\vert, is sufficiently small, the system can be accelerated to very large \\gamma \\propto \\vert N^{\\,2}\\vert^{-1}. It is stressed that, when only leading terms in the ratio of a characteristic gravitational radius to the distance between the particles are retained, our elementary analysis leads to equations of motion equivalent to those derived from relativistic weak-field equations of motion by Havas and Goldberg in 1962. Thus, in the weak-field approximation it is possible to bring the system to the state with extremely high values of \\gamma. The positive energy carried by the particle with positive mass may be conveyed to other physical bodies, say by intercepting this particle with a target. If we suppose that there is a process of production of such pairs and the particles with positive mass are intercepted, while the negative mass particles are expelled from the region of space occupied by the physical bodies of interest, this scheme could provide a persistent transfer of positive energy to the bodies, which may be classified as `perpetual motion of the third kind'. Additionally, we critically evaluate some recent claims regarding the problem.
UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.
2013-07-29
The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.
Newtonian noise and ambient ground motion for gravitational wave detectors
NASA Astrophysics Data System (ADS)
Beker, M. G.; van den Brand, J. F. J.; Hennes, E.; Rabeling, D. S.
2012-06-01
Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.
Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson
2017-01-01
This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936
The rf coil as a sensitive motion detector for magnetic resonance imaging.
Buikman, D; Helzel, T; Röschmann, P
1988-01-01
A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.
Motion detection using extended fractional Fourier transform and digital speckle photography.
Bhaduri, Basanta; Tay, C J; Quan, C; Sheppard, Colin J R
2010-05-24
Digital speckle photography is a useful tool for measuring the motion of optically rough surfaces from the speckle shift that takes place at the recording plane. A simple correlation based digital speckle photographic system has been proposed that implements two simultaneous optical extended fractional Fourier transforms (EFRTs) of different orders using only a single lens and detector to simultaneously detect both the magnitude and direction of translation and tilt by capturing only two frames: one before and another after the object motion. The dynamic range and sensitivity of the measurement can be varied readily by altering the position of the mirror/s used in the optical setup. Theoretical analysis and experiment results are presented.
Wanetick, S.
1962-03-01
ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)
The network of photodetectors and diode lasers of the CMS Link alignment system
NASA Astrophysics Data System (ADS)
Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Brochero, J.; Calderón, A.; Fernández, M. G.; Gómez, G.; González-Sánchez, F. J.; Martínez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Árbol, P.; Scodellaro, L.; Sobrón, M.; Vila, I.; Virto, A. L.; Fernández, J.; Raics, P.; Szabó, Zs.; Trócsnyi, Z.; Ujvári, B.; Zilizi, Gy.; Béni, N.; Christian, G.; Imrek, J.; Molnar, J.; Novak, D.; Pálinkás, J.; Székely, G.; Szillási, Z.; Bencze, G. L.; Vestergombi, G.; Benettoni, M.; Gasparini, F.; Montecassiano, F.; Rampazzo, M.; Zago, M.; Benvenuti, A.; Reithler, H.; Jiang, C.
2018-07-01
The central feature of the CMS Link alignment system is a network of Amorphous Silicon Position Detectors distributed throughout the muon spectrometer that are connected by multiple laser lines. The data collected during the years from 2008 to 2015 is presented confirming an outstanding performance of the photo sensors during more than seven years of operation. Details of the photo sensor readout of the laser signals are presented. The mechanical motions of the CMS detector are monitored using these photosensors and good agreement with distance sensors is obtained.
Quantum radiation produced by the entanglement of quantum fields
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Oshita, Naritaka; Tatsukawa, Rumi; Yamamoto, Kazuhiro; Zhang, Sen
2017-01-01
We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006), 10.1103/PhysRevD.73.124018]. We infer that this quantum radiation from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state, which has its origin in the entanglement of the state between the left and the right Rindler wedges.
2011-03-24
HOG) dismount detector that cues based off of the presence of human skin (to limit false detections and to reduce the search space complexity). While...wave infrared wavelengths in addition to the visible spectra in order to identify human skin [29] and selectively scan the image for the presence of...and the angle of the acqui- sition camera. Consequently, it is expected that limitations exist on the humans ’ range of motion or stance that still
Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Biscans, S.; Warner, J.; Mittleman, R.; Buchanan, C.; Coughlin, M.; Evans, M.; Gabbard, H.; Harms, J.; Lantz, B.; Mukund, N.; Pele, A.; Pezerat, C.; Picart, P.; Radkins, H.; Shaffer, T.
2018-03-01
Advanced gravitational-wave detectors such as the laser interferometer gravitational-wave observatories (LIGO) require an unprecedented level of isolation from the ground. When in operation, they measure motion of less than 10‑19 m. Strong teleseismic events like earthquakes disrupt the proper functioning of the detectors, and result in a loss of data. An earthquake early-warning system, as well as a prediction model, have been developed to understand the impact of earthquakes on LIGO. This paper describes a control strategy to use this early-warning system to reduce the LIGO downtime by ∼30%. It also presents a plan to implement this new earthquake configuration in the LIGO automation system.
Method and apparatus for radiometer star sensing
NASA Technical Reports Server (NTRS)
Wilcox, Jack E. (Inventor)
1989-01-01
A method and apparatus for determining the orientation of the optical axis of radiometer instruments mounted on a satellite involves a star sensing technique. The technique makes use of a servo system to orient the scan mirror of the radiometer into the path of a sufficiently bright star such that motion of the satellite will cause the star's light to impinge on the scan mirror and then the visible light detectors of the radiometer. The light impinging on the detectors is converted to an electronic signal whereby, knowing the position of the star relative to appropriate earth coordinates and the time of transition of the star image through the detector array, the orientation of the optical axis of the instrument relative to earth coordinates can be accurately determined.
ERIC Educational Resources Information Center
Patterson, Kristin
1996-01-01
Property theft at schools is a problem districts are having to confront. Deterrents include inventory checks and etching equipment with inventory control numbers. In Washington, D.C., officials are installing high-security equipment such as closed-circuit television, fiber-optics lines to secure computers, and motion detectors. (MLF)
Twin helix system produces fast scan in infrared detector
NASA Technical Reports Server (NTRS)
Vanzetti, R.
1966-01-01
Two rotating wheels in orthogonal relationship with helicoidal reflecting surfaces mounted on their outer rims achieve a linear speed without normal time loss in their return motion. The pitch of the helicoidal surfaces equals the displacement that the mirrors must traverse.
Squirming motion of baby skyrmions in nematic fluids.
Ackerman, Paul J; Boyle, Timothy; Smalyukh, Ivan I
2017-09-22
Skyrmions are topologically protected continuous field configurations that cannot be smoothly transformed to a uniform state. They behave like particles and give origins to the field of skyrmionics that promises racetrack memory and other technological applications. Unraveling the non-equilibrium behavior of such topological solitons is a challenge. We realize skyrmions in a chiral liquid crystal and, using numerical modeling and polarized video microscopy, demonstrate electrically driven squirming motion. We reveal the intricate details of non-equilibrium topology-preserving textural changes driving this behavior. Direction of the skyrmion's motion is robustly controlled in a plane orthogonal to the applied field and can be reversed by varying frequency. Our findings may spur a paradigm of soliton dynamics in soft matter, with a rich interplay between topology, chirality, and orientational viscoelasticity.A skyrmion is a topological object originally introduced to model elementary particles and a baby skyrmion is its two-dimensional counterpart which can be realized as a defect in liquid crystals. Here the authors show that an electric field can drive uniform motion of baby skyrmions in liquid crystals.
Dead layer on silicon p-i-n diode charged-particle detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, B. L.; Amsbaugh, John F.; Beglarian, A.
Abstract Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra tomore » the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by discussion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.« less
Field signature for apparently superluminal particle motion
NASA Astrophysics Data System (ADS)
Land, Martin
2015-05-01
In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.
Modeling Fault Diagnosis Performance on a Marine Powerplant Simulator.
1985-08-01
two definitions are very similar. They emphasize that fidelity is a two dimensional -:oncept. They also pointed out the measurement prob- lems. Tasks...simulator duplicares cne enscr-: ztimulation, 4. . rnamic motion cues , visual :ues, ec. ?svcno ogicai fidelity is simply the degree to which the trainee...functions is only acceptable if the performance is paced by tne system, i.e., cues from the system serve to initiate elementary, skilled sub-routines
NASA Astrophysics Data System (ADS)
Ginsberg, Edw. S.
2018-02-01
The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to students at that level, are used. Emphasis is on pedagogy and concepts related to the transformation properties of potential energy.
Control Strategies for Guided Collective Motion
2015-02-27
Rorres and H. Anton , “ Elementary linear algebra applications version,” 9th Edition, Wiley India Pvt. Ltd., 2011. [20] S.H. Strogatz, “From Kuramoto to... linear cyclic pursuit in which an agent pursues its leader with an angle of deviation. The sufficient conditions for the stability of such systems are...Generalized Hierarchical Cyclic Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and
A detector interferometric calibration experiment for high precision astrometry
NASA Astrophysics Data System (ADS)
Crouzier, A.; Malbet, F.; Henault, F.; Léger, A.; Cara, C.; LeDuigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.
2016-11-01
Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 × 10-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4 × 10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 × 10-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 × 10-3 pixel), a photon noise limited precision of 3 × 10-5 pixel was reached.
Research in High Energy Physics at Duke University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark
2013-07-29
This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM)more » and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the {mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.« less
Detectors in Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaj, G.; Carini, G.; Carron, S.
2015-08-06
Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 10 12 - 10 13 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impedingmore » data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.« less
Thermal Noise in the Initial LIGO Interferometers
NASA Astrophysics Data System (ADS)
Gillespie, Aaron D.
1995-01-01
Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational waves from inspiralling compact binaries was investigated. An optimal pendulum length for detecting these signals was found. It was shown that the narrow band thermally excited violin resonances could be efficiently filtered from the broadband gravitational wave signal.
Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.
Kline, Keith; Holcombe, Alex O; Eagleman, David M
2004-10-01
In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.
Exact Fan-Beam Reconstruction With Arbitrary Object Translations and Truncated Projections
NASA Astrophysics Data System (ADS)
Hoskovec, Jan; Clackdoyle, Rolf; Desbat, Laurent; Rit, Simon
2016-06-01
This article proposes a new method for reconstructing two-dimensional (2D) computed tomography (CT) images from truncated and motion contaminated sinograms. The type of motion considered here is a sequence of rigid translations which are assumed to be known. The algorithm first identifies the sufficiency of angular coverage in each 2D point of the CT image to calculate the Hilbert transform from the local “virtual” trajectory which accounts for the motion and the truncation. By taking advantage of data redundancy in the full circular scan, our method expands the reconstructible region beyond the one obtained with chord-based methods. The proposed direct reconstruction algorithm is based on the Differentiated Back-Projection with Hilbert filtering (DBP-H). The motion is taken into account during backprojection which is the first step of our direct reconstruction, before taking the derivatives and inverting the finite Hilbert transform. The algorithm has been tested in a proof-of-concept study on Shepp-Logan phantom simulations with several motion cases and detector sizes.
The role of motion streaks in the perception of the kinetic Zollner illusion.
Khuu, Sieu K
2012-06-12
In classic geometric illusions such as the Zollner illusion, vertical lines superimposed on oriented background lines appear tilted in the direction opposite to the background. In kinetic forms of this illusion, an object moving over oriented background lines appears to follow a titled path, again in the direction opposite to the background. Existing literature does not proffer a complete explanation of the effect. Here, it is suggested that motion streaks underpin the illusion; that the effect is a consequence of interactions between detectors tuned to the orientation of background lines and those sensing the motion streaks that arise from fast object motion. This account was examined in the present study by measuring motion-tilt induction under different conditions in which the strength or salience of motion streaks was attenuated: by varying object speed (Experiment 1), contrast (Experiment 2), and trajectory/length by changing the element life-time within the stimulus (Experiment 3). It was predicted that, as motion streaks become less available, background lines would less affect the perceived direction of motion. Consistent with this prediction, the results indicated that, with a reduction in object speed below that required to generate motion streaks (< 1.12°/s), Weber contrast (< 0.125) and motion streak length (two frames) reduced or extinguished the motion-tilt-induction effect. The findings of the present study are consistent with previous reports and computational models that directly combine form and motion information to provide an effective determinant of motion direction.
Novel wearable and wireless ring-type pulse oximeter with multi-detectors.
Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh
2014-09-19
The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter.
Novel Wearable and Wireless Ring-Type Pulse Oximeter with Multi-Detectors
Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh
2014-01-01
The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter. PMID:25244586
Cope, Alex J; Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A R
2016-05-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer.
Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A. R.
2016-01-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee’s behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968
Seeing tobacco mosaic virus through direct electron detectors
Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten
2015-01-01
With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571
Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, A., E-mail: aziz.kurt@istanbul.edu.tr; Yalcin, L. Sahin, E-mail: latife.sahin@gmail.com; Oktem, Y., E-mail: sgyks@istanbul.edu.tr
Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine {sup 222}Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values weremore » calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m{sup 3}. This results compared with Turkey’s limits (400 Bq/m{sup 3}) are low, conversely higher compared with WHO’s limits (100 Bq/m{sup 3}).« less
Measuring mechanical motion with a single spin
NASA Astrophysics Data System (ADS)
Bennett, S. D.; Kolkowitz, S.; Unterreithmeier, Q. P.; Rabl, P.; Bleszynski Jayich, A. C.; Harris, J. G. E.; Lukin, M. D.
2012-12-01
We study theoretically the measurement of a mechanical oscillator using a single two-level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen-vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature (Kolkowitz et al 2012 Science 335 1603). Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero-point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero-point motion. Throughout the paper, we focus on the experimental implementation of a nitrogen-vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. The implications for the preparation of nonclassical states of a mechanical oscillator are also discussed.
Tsai, Chung-Yu
2012-04-01
An exact analytical approach is proposed for measuring the six-degree-of-freedom (6-DOF) motion of an object using the image-orientation-change (IOC) method. The proposed measurement system comprises two reflector systems, where each system consists of two reflectors and one position sensing detector (PSD). The IOCs of the object in the two reflector systems are described using merit functions determined from the respective PSD readings before and after motion occurs, respectively. The three rotation variables are then determined analytically from the eigenvectors of the corresponding merit functions. After determining the three rotation variables, the order of the translation equations is downgraded to a linear form. Consequently, the solution for the three translation variables can also be analytically determined. As a result, the motion transformation matrix describing the 6-DOF motion of the object is fully determined. The validity of the proposed approach is demonstrated by means of an illustrative example.
Image motion compensation on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/
NASA Technical Reports Server (NTRS)
Tarbell, T. D.; Duncan, D. W.; Finch, M. L.; Spence, G.
1981-01-01
The SOUP experiment on Spacelab 2 includes a 30 cm visible light telescope and focal plane package mounted on the Instrument Pointing System (IPS). Scientific goals of the experiment dictate pointing stability requirements of less than 0.05 arcsecond jitter over periods of 5-20 seconds. Quantitative derivations of these requirements from two different aspects are presented: (1) avoidance of motion blurring of diffraction-limited images; (2) precise coalignment of consecutive frames to allow measurement of small image differences. To achieve this stability, a fine guider system capable of removing residual jitter of the IPS and image motions generated on the IPS cruciform instrument support structure has been constructed. This system uses solar limb detectors in the prime focal plane to derive an error signal. Image motion due to pointing errors is compensated by the agile secondary mirror mounted on piezoelectric transducers, controlled by a closed-loop servo system.
Complementary mechanisms create direction selectivity in the fly
Haag, Juergen; Arenz, Alexander; Serbe, Etienne; Gabbiani, Fabrizio; Borst, Alexander
2016-01-01
How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection. DOI: http://dx.doi.org/10.7554/eLife.17421.001 PMID:27502554
NASA Astrophysics Data System (ADS)
Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.
2016-03-01
We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.
Gas electron multiplier (GEM) enhanced ionization chamber for fluorescence detector
NASA Astrophysics Data System (ADS)
Shaban, E. H.; Siddons, D. P.; Kuczewski, A.
2007-11-01
Detecting dilute elements in thin materials using extended X-ray absorption fluorescence spectroscopy (EXAFS) method requires a detector capable of high count rate and low noise. For detection of dilute elements, the fluorescence signal amplitude is often overcome by the presence of noise or background interference. In this paper we have used a gas ionization chamber enhanced by a gas electron multiplier (GEM) to amplify the primary ionized electrons due to the X-ray fluorescence of a dilute element. The GEM provides an essentially noise free electron amplification of the signal primary photoelectrons. It provides a larger output current prior to the electronic amplification, allowing a lower gain amplifier with lower electronic circuit noise contribution and hence improved S/ N ratio. In addition, since the signal is produced only by electrons, and not from ion motion, the detector is capable of recording rapidly changing signals. Iron in an arbitrary tree leaf was used as a test sample. This sample was measured using our detector SUBRSAB, and also with Lytle and passivated implanted planar silicon (PIPS) detectors. An improvement in the signal amplitude by a factor of 20 and a factor of 2 are recorded for the proposed detector with respect to the Lytle and PIPS detectors, respectively. Although the gain in signal over the PIPS detector is small for this detector, its lack of sensitivity to light and its low and temperature-independent dark current are further advantages.
Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress
NASA Astrophysics Data System (ADS)
Minami, Takuto
2017-09-01
Motional induction is the process by which the motion of conductive seawater in the ambient geomagnetic main field generates electromagnetic (EM) variations, which are observable on land, at the seafloor, and sometimes at satellite altitudes. Recent years have seen notable progress in our understanding of motional induction associated with tsunamis and with ocean tides. New studies of tsunami motional induction were triggered by the 2004 Sumatra earthquake tsunami and further promoted by subsequent events, such as the 2010 Chile earthquake and the 2011 Tohoku earthquake. These events yielded observations of tsunami-generated EM variations from land and seafloor stations. Studies of magnetic fields generated by ocean tides attracted interest when the Swarm satellite constellation enabled researchers to monitor tide-generated magnetic variations from low Earth orbit. Both avenues of research benefited from the advent of sophisticated seafloor instruments, by which we may exploit motional induction for novel applications. For example, seafloor EM measurements can serve as detectors of vector properties of tsunamis, and seafloor EM data related to ocean tides have proved useful for sounding Earth's deep interior. This paper reviews and discusses the progress made in motional induction studies associated with tsunamis and ocean tides during the last decade.
Three Stages and Two Systems of Visual Processing
1989-01-01
as squaring do not, in and of themselves, imply second- order processing . For example, the Adelson and Bergen’s (1985) detector of directional motion...rectification, halfwave rectification is a second- order processing scheme. Figure 8. Stimuli for analyzing second- order processing . (a) An x,y,t representation of
Advanced Imaging of Elementary Circuits
NASA Astrophysics Data System (ADS)
Baird, William H.; Richards, Caleb; Godbole, Pranav
2012-12-01
Students commonly find the second semester of introductory physics to be more challenging than the first, probably due to the mechanical intuition we acquire just by moving around. For most students, there is no similar comfort with electricity or magnetism. In an effort to combat this confusion, we decided to examine simple electric circuits with either a high-speed camera or a thermal imager in an effort to make things like current and voltage as familiar as slow motion or temperature.
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1986-01-01
Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.
Limiting the Effects of Earthquake Shaking on Gravitational-Wave Interferometers
NASA Astrophysics Data System (ADS)
Perry, M. R.; Earle, P. S.; Guy, M. R.; Harms, J.; Coughlin, M.; Biscans, S.; Buchanan, C.; Coughlin, E.; Fee, J.; Mukund, N.
2016-12-01
Second-generation ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-amplitude waves from teleseismic events, which can cause astronomical detectors to fall out of mechanical lock (lockloss). This causes the data to be useless for gravitational wave detection around the time of the seismic arrivals and for several hours thereafter while the detector stabilizes enough to return to the locked state. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining lock even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is typically available within 5 to 20 minutes of the origin time of significant earthquakes, generally before the arrival of high-amplitude waves from these teleseisms at LIGO. These alerts are used to estimate arrival times and ground velocities at the gravitational wave detectors. In general, 94% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal with about 90% of the events falling within a factor of 2 of the final predicted value. By using a Machine Learning Algorithm, we develop a lockloss prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could save lockloss from 40-100 earthquake events in a 6-month time-period.
Rougier, P
2004-04-01
The visual feedback technique (VFB) is recognized by several studies as a valuable tool for re-establishing the balance functions. However, one former study has highlighted the fact that the increased control induced by this technique infer both favourable (the amplitudes of the horizontal motions of the centre of gravity (CoG(h)) are diminished) and unfavourable features (the vertical difference between the CoG(h) motions and centre of pressure (CoP) trajectories are enhanced). One means to decrease these CoP-CoG(v) motions is to delay their display on the screen of the monitor. To assess these behavioural effects, 16 healthy adults were evaluated with various delays from 0 to 1200 ms. CoP displacements, measured through a force platform, were decomposed into two elementary motions: CoG(h) and the difference CoP-CoG(v). A fractional Brownian motion modelling of these motions allowed to determine from which distance and for how long the corrective process takes over and to what extent the motion is controlled. Compared to the VFB real time condition, increasing the delay induces some effects mainly on the CoP-CoG(v) motions which are largely diminished, the most striking effect appearing for delays exceeding 600 ms. Despite the lower forces these reduced amplitudes infer to control body sways, the amplitudes of the CoG(h) motions tend to increase slightly. Considered as a whole, whilst retaining the beneficial aspects of VFB without delay and significantly suppressing the unfavourable features, the data suggests that the method of delaying the screen display optimises the VFB technique.
Modified Einstein and Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Bulyzhenkov, I. É.
2018-05-01
The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.
Partners in Physics with Colorado School of Mines' Society of Physics Students
NASA Astrophysics Data System (ADS)
Moore, Shirley; Stilwell, Matthew; Boerner, Zach
2011-04-01
The Colorado School of Mines (CSM) Society of Physics Students (SPS) revitalized in 2008 and has since blown up with outreach activity, incorporating all age levels into our programs. In Spring 2010, CSM SPS launched a new program called Partners in Physics. Students from Golden High School came to CSM where they had a college-level lesson on standing waves and their applications. These students then joined volunteers from CSM in teaching local elementary school students about standing waves beginning with a science show. The CSM and high school students then helped the children to build make-and-take demonstrations incorporating waves. This year, rockets are the theme for Partners in Physics and we began with demonstrations with local middle school students. In Spring 2011, CSM SPS will be teaching elementary school students about projectile motion and model rockets along with these middle school students. Colorado School of Mines Department of Physics
Stronger vection in junior high school children than in adults.
Shirai, Nobu; Imura, Tomoko; Tamura, Rio; Seno, Takeharu
2014-01-01
Previous studies have shown that even elementary school-aged children (7 and 11 years old) experience visually induced perception of illusory self-motion (vection) (Lepecq et al., 1995, Perception, 24, 435-449) and that children of a similar age (mean age = 9.2 years) experience more rapid and stronger vection than do adults (Shirai et al., 2012, Perception, 41, 1399-1402). These findings imply that although elementary school-aged children experience vection, this ability is subject to further development. To examine the subsequent development of vection, we compared junior high school students' (N = 11, mean age = 14.4 years) and adults' (N = 10, mean age = 22.2 years) experiences of vection. Junior high school students reported significantly stronger vection than did adults, suggesting that the perceptual experience of junior high school students differs from that of adults with regard to vection and that this ability undergoes gradual changes over a relatively long period of development.
Level Anticrossing of Impurity States in Semiconductor Nanocrystals
Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Ponomareva, Irina O.; Leonov, Mikhail Yu.; Perova, Tatiana S.; Berwick, Kevin; Baranov, Alexander V.; Fedorov, Anatoly V.
2014-01-01
The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states' coupling strength. PMID:25369911
Modified Einstein and Navier–Stokes Equations
NASA Astrophysics Data System (ADS)
Bulyzhenkov, I. É.
2018-05-01
The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.
Anatomy of an Elementary Chemical Reaction
NASA Astrophysics Data System (ADS)
Alexander, Andrew J.; Zare, Richard N.
1998-09-01
The alchemists of old sought the knowledge to transform one material to another-for example, base metals into gold-as a path to the elixir of life. As chemists have concerned themselves with the transformation from compound to compound, so they have become involved in trying to uncover the structures of molecules and the pathways that reactions follow. Classically, the study of reaction mechanisms in chemistry encompasses reaction kinetics, the study of velocities or rates of reactions, and reaction dynamics, the study of the nanoscopic motion and rearrangement of atoms during a reactive event. An essential aim of this article is to bring the reader to a favorable vantage point with a brief introduction to reactive dynamics, and from there to describe some examples of recent strategies that have been employed to promote a fundamental understanding of the anatomy of elementary chemical reactions. In the final section we ponder future directions for this rapidly evolving field of research.
Had the planet Mars not existed: Kepler's equant model and its physical consequences
NASA Astrophysics Data System (ADS)
Bracco, C.; Provost, J.-P.
2009-09-01
We examine the equant model for the motion of planets, which was the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity, which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal acceleration with an r-2 dependence on the distance to the Sun. If this dependence is assumed to be universal, Kepler's third law follows immediately. This elementary exercise in kinematics for undergraduates emphasizes the proximity of the equant model coming from ancient Greece with our present knowledge. It adds to its historical interest a didactical relevance concerning, in particular, the discussion of the Aristotelian or Newtonian conception of motion.
On event-based optical flow detection
Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko
2015-01-01
Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470
Android application for handwriting segmentation using PerTOHS theory
NASA Astrophysics Data System (ADS)
Akouaydi, Hanen; Njah, Sourour; Alimi, Adel M.
2017-03-01
The paper handles the problem of segmentation of handwriting on mobile devices. Many applications have been developed in order to facilitate the recognition of handwriting and to skip the limited numbers of keys in keyboards and try to introduce a space of drawing for writing instead of using keyboards. In this one, we will present a mobile theory for the segmentation of for handwriting uses PerTOHS theory, Perceptual Theory of On line Handwriting Segmentation, where handwriting is defined as a sequence of elementary and perceptual codes. In fact, the theory analyzes the written script and tries to learn the handwriting visual codes features in order to generate new ones via the generated perceptual sequences. To get this classification we try to apply the Beta-elliptic model, fuzzy detector and also genetic algorithms in order to get the EPCs (Elementary Perceptual Codes) and GPCs (Global Perceptual Codes) that composed the script. So, we will present our Android application M-PerTOHS for segmentation of handwriting.
E-Invariant Quantized Motion of Valence Quarks
NASA Astrophysics Data System (ADS)
Kreymer, E. L.
2018-06-01
In sub-proton space wave processes are impossible. The analog of the Klein-Gordon equation in sub-proton space is elliptical and describes a stationary system with a constant number of particles. For dynamical processes, separation of variables is used and in each quantum of motion of the quark two states are distinguished: a localization state and a translation state with infinite velocity. Alternation of these states describes the motion of a quark. The mathematical expectations of the lifetimes of the localization states and the spatial extents of the translation states for a free quark and for a quark in a centrally symmetric potential are found. The action after one quantum of motion is equal to the Planck constant. The one-sided Laplace transform is used to determine the Green's function. Use of path integrals shows that the quantized trajectory of a quark is a broken line enveloping the classical trajectory of oscillation of the quark. Comparison of the calculated electric charge distribution in a proton with its experimental value gives satisfactory results. A hypothesis is formulated, according to which the three Grand Geometries of space correspond to the three main interactions of elementary particles.
Development of optoelectronic monitoring system for ear arterial pressure waveforms
NASA Astrophysics Data System (ADS)
Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando
1994-02-01
Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.
Directional Antineutrino Detection
NASA Astrophysics Data System (ADS)
Safdi, B. R.; Suerfu, J.
2014-12-01
We propose the first truly directional antineutrino detector for antineutrinos near the threshold for the inverse beta decay (IBD) of hydrogen, with potential applications including the spatial mapping of geo-neutrinos, searches for stellar antineutrinos, and the monitoring of nuclear reactors. The detector consists of adjacent and separated target and neutron-capture layers. The IBD events, which result in a neutron and a positron, take place in the target layers. These layers are thin enough so that the neutrons escape without scattering elastically. The neutrons are detected in the thicker neutron-capture layers. The location of the IBD event is determined from the energy deposited by the positron as it slows in the medium and from the two gamma rays that come from the positron annihilation. Since the neutron recoils in the direction of the antineutrino's motion, a line may then be drawn between the IBD event location and the neutron-capture location to approximate the antineutrino's velocity. In some events, we may even measure the positron's velocity, which further increases our ability to reconstruct the antineutrino's direction of motion. Our method significantly improves upon previous methods by allowing the neutron to freely travel a long distance before diffusing and being captured. Moreover, our design is a straightforward modification of existing antineutrino detectors; a prototype could easily be built with existing technology. We verify our design through Monte Carlo simulations in Geant4, using commercially-available boron-loaded plastic scintillators for the target and neutron-capture layer materials. We are able to discriminate from background using multiple coincidence signatures within a short, ~microsecond time interval. We conclude that the detector could likely operate above ground with minimal shielding.
Limiting the effects of earthquakes on gravitational-wave interferometers
NASA Astrophysics Data System (ADS)
Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew
2017-02-01
Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.
Limiting the effects of earthquakes on gravitational-wave interferometers
Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew
2017-01-01
Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volk, James; Hansen, Sten; Johnson, Todd
2012-01-01
Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.
Quantum non-demolition detection of an itinerant microwave photon
NASA Astrophysics Data System (ADS)
Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.
2018-06-01
Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.
A study of longitudinal tumor motion in helical tomotherapy using a cylindrical phantom
Klein, Michael; Gaede, Stewart
2013-01-01
Tumor motion during radiation treatment on a helical tomotherapy unit may create problems due to interplay with motion of the multileaf collimator, gantry rotation, and patient couch translation through the gantry. This study evaluated this interplay effect for typical clinical parameters using a cylindrical phantom consisting of 1386 diode detectors placed on a respiratory motion platform. All combinations of radiation field widths (1, 2.5, and 5 cm) and gantry rotation periods (16, 30, and 60 s) were considered for sinusoidal motions with a period of 4 s and amplitudes of 5, 6, 7, 8, 9, and 10 mm, as well as real patient breathing pattern. Gamma comparisons with 2% dose difference and 2 mm distance to agreement and dose profiles were used for evaluation. The required motion margins were determined for each set of parameters. The required margin size increased with decreasing field width and increasing tumor motion amplitude, but was not affected by rotation period. The plans with the smallest field width of 1 cm have required motion margins approximately equal to the amplitude of motion (±25%), while those with the largest field width of 5 cm had required motion margins approximately equal to 20% of the motion amplitude (±20%). For tumor motion amplitudes below 6 mm and field widths above 1 cm, the required additional motion margins were very small, at a maximum of 2.5 mm for sinusoidal breathing patterns and 1.2 mm for the real patient breathing pattern. PACS numbers: 87.55.km, 87.55.Qr, 87.56.Fc
Planning Robotic Manipulation Strategies for Sliding Objects
NASA Astrophysics Data System (ADS)
Peshkin, Michael A.
Automated planning of grasping or manipulation requires an understanding of both the physics and the geometry of manipulation, and a representation of that knowledge which facilitates the search for successful strategies. We consider manipulation on a level conveyor belt or tabletop, on which a part may slide when touched by a robot. Manipulation plans for a given part must succeed in the face of two types of uncertainty: that of the details of surfaces in contact, and that of the initial configuration of the part. In general the points of contact between the part and the surface it slides on will be unknown, so the motion of the part in response to a push cannot be predicted exactly. Using a simple variational principle (which is derived), we find the set of possible motions of a part for a given push, for all collections of points of contact. The answer emerges as a locus of centers of rotation (CORs). Manipulation plans made using this locus will succeed despite unknown details of contact. Results of experimental tests of the COR loci are presented. Uncertainty in the initial configuration of a part is usually also present. To plan in the presence of uncertainty, configuration maps are defined, which map all configurations of a part before an elementary operation to all possible outcomes, thus encapsulating the physics and geometry of the operation. The configuration map for an operation sequence is a product of configuration maps of elementary operations. Using COR loci we compute configuration maps for elementary sliding operations. Appropriate search techniques are applied to find operation sequences which succeed in the presence of uncertainty in the initial configuration and unknown details of contact. Such operation sequences may be used as parts feeder designs or as manipulation or grasping strategies for robots. As an example we demonstrate the automated design of a class of passive parts feeders consisting of multiple sequential fences across a conveyor belt.
Layered motion segmentation and depth ordering by tracking edges.
Smith, Paul; Drummond, Tom; Cipolla, Roberto
2004-04-01
This paper presents a new Bayesian framework for motion segmentation--dividing a frame from an image sequence into layers representing different moving objects--by tracking edges between frames. Edges are found using the Canny edge detector, and the Expectation-Maximization algorithm is then used to fit motion models to these edges and also to calculate the probabilities of the edges obeying each motion model. The edges are also used to segment the image into regions of similar color. The most likely labeling for these regions is then calculated by using the edge probabilities, in association with a Markov Random Field-style prior. The identification of the relative depth ordering of the different motion layers is also determined, as an integral part of the process. An efficient implementation of this framework is presented for segmenting two motions (foreground and background) using two frames. It is then demonstrated how, by tracking the edges into further frames, the probabilities may be accumulated to provide an even more accurate and robust estimate, and segment an entire sequence. Further extensions are then presented to address the segmentation of more than two motions. Here, a hierarchical method of initializing the Expectation-Maximization algorithm is described, and it is demonstrated that the Minimum Description Length principle may be used to automatically select the best number of motion layers. The results from over 30 sequences (demonstrating both two and three motions) are presented and discussed.
Angular oversampling with temporally offset layers on multilayer detectors in computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjölin, Martin, E-mail: martin.sjolin@mi.physics.kth.se; Danielsson, Mats
2016-06-15
Purpose: Today’s computed tomography (CT) scanners operate at an increasingly high rotation speed in order to reduce motion artifacts and to fulfill the requirements of dynamic acquisition, e.g., perfusion and cardiac imaging, with lower angular sampling rate as a consequence. In this paper, a simple method for obtaining angular oversampling when using multilayer detectors in continuous rotation CT is presented. Methods: By introducing temporal offsets between the measurement periods of the different layers on a multilayer detector, the angular sampling rate can be increased by a factor equal to the number of layers on the detector. The increased angular samplingmore » rate reduces the risk of producing aliasing artifacts in the image. A simulation of a detector with two layers is performed to prove the concept. Results: The simulation study shows that aliasing artifacts from insufficient angular sampling are reduced by the proposed method. Specifically, when imaging a single point blurred by a 2D Gaussian kernel, the method is shown to reduce the strength of the aliasing artifacts by approximately an order of magnitude. Conclusions: The presented oversampling method is easy to implement in today’s multilayer detectors and has the potential to reduce aliasing artifacts in the reconstructed images.« less
Accelerating navigation in the VecGeom geometry modeller
NASA Astrophysics Data System (ADS)
Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers, 2017-10-01 The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.
1981-10-01
earthquake. The analysis works from first "hysical principles and, so rar as possible, uses elementary ray theory and kinematic arguments. Nevertheless...elements of the more sophisticated theory of earthquake mechanisms and seismic wave propagation in the near field were taken into account in the...Broad Principles of Interpretation 163 4.2 Robust Estimation of Parameters 171 4.3 Some Remarks on High-Acceleration Values 180 4.4 The Focussing
Internal friction measurement in high purity tungsten single crystal
NASA Technical Reports Server (NTRS)
Rieu, G. E.
1974-01-01
Internal friction peaks observed after small deformation in high purity tungsten single crystals between liquid helium temperature and 800 K in the frequency range 30-50 KHz, are studied as a function of orientation. An orientation effect is observed in the internal friction spectra due to the creation of internal stresses. The elementary processes related to these peaks are discussed in terms of kink generation and geometric kink motion on screw and edge dislocations in an internal stress field.
An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Balog, János
2014-11-01
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
Rapid transitions between defect configurations in a block copolymer melt.
Tsarkova, Larisa; Knoll, Armin; Magerle, Robert
2006-07-01
With in situ scanning force microscopy, we image the ordering of cylindrical microdomains in a thin film of a diblock copolymer melt. Tracking the evolution of individual defects reveals elementary steps of defect motion via interfacial undulations and repetitive transitions between distinct defect configurations on a time scale of tens of seconds. The velocity of these transitions suggests a cooperative movement of clusters of chains. The activation energy for the opening/closing of a connection between two cylinders is estimated.
Blast-induced Mild Traumatic Brain Injury
2010-01-01
concentration with agents such as psychostimulants, or improving compensatory strategies through cognitive- behavioral therapies. Pharmacological interventions...participate in educational activities and support groups. Some examples of general educational content include (1) compensatory strategies for impaired...or simple, ranging from electronic transmitters to trip wires, tilt switches, motion detectors, or thermal or pressure-sensitive switches. lEOs are
Advanced Instrumentation for Positron Emission Tomography [PET
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.
1985-04-01
This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.
A restraint-free small animal SPECT imaging system with motion tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisenberger, A.G.; Gleason, S.S.; Goddard, J.
2005-06-01
We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less
NASA Astrophysics Data System (ADS)
Sannikova, T. N.; Kholshevnikov, K. V.
2015-08-01
The motion of a point mass under the action of a gravitational force toward a central body and a perturbing acceleration P is considered. The magnitude of P is taken to be small compared to the main gravitational acceleration due to the central body, and the direction of P to be constant in a standard astronomical coordinate system with its origin at the central body and axes directed along the radius vector, the transversal, and the binormal. Consideration of a constant vector perturbing acceleration simplifies averaging of the Euler equations for the motion in osculating elements, making it straightforward to obtain evolutionary differential equations of motion in the mean elements, as was done earlier in a first small-parameter approximation. This paper is devoted to integration of the mean equations. The system is integratable by quadratures if at least one component of the perturbing acceleration is zero, and also if the orbit is initially circular. Moreover, all the quadratures can be expressed in terms of elementary functions and elliptical integrals of the first kind in Jacobi form. If all three components of P are non-zero, this problem reduces to a system of two first-order differential equations, which are apparently not integrable. Possible applications include the motion of natural and artificial satellites taking into account light pressure, the motion of a spacecraft with low thrust, and the motion of an asteroid subject to a thrust from an engine mounted on it or to a gravitational tractor designed, for example, to avoid a collision with Earth.
Turbulence characterization by studying laser beam wandering in a differential tracking motion setup
NASA Astrophysics Data System (ADS)
Pérez, Darío G.; Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Garavaglia, Mario
2009-09-01
The Differential Image Motion Monitor (DIMM) is a standard and widely used instrument for astronomical seeing measurements. The seeing values are estimated from the variance of the differential image motion over two equal small pupils some distance apart. The twin pupils are usually cut in a mask on the entrance pupil of the telescope. As a differential method, it has the advantage of being immune to tracking errors, eliminating erratic motion of the telescope. The Differential Laser Tracking Motion (DLTM) is introduced here inspired by the same idea. Two identical laser beams are propagated through a path of air in turbulent motion, at the end of it their wander is registered by two position sensitive detectors-at a count of 800 samples per second. Time series generated from the difference of the pair of centroid laser beam coordinates is then analyzed using the multifractal detrended fluctuation analysis. Measurements were performed at the laboratory with synthetic turbulence: changing the relative separation of the beams for different turbulent regimes. The dependence, with respect to these parameters, and the robustness of our estimators is compared with the non-differential method. This method is an improvement with respect to previous approaches that study the beam wandering.
NASA Astrophysics Data System (ADS)
Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.
2004-02-01
This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.
A Role for MST Neurons in Heading Estimation
NASA Technical Reports Server (NTRS)
Stone, Leland Scott; Perrone, J. A.; Wade, Charles E. (Technical Monitor)
1994-01-01
A template model of human visual self-motion perception (Perrone, JOSA, 1992; Perrone & Stone, Vis. Res., in press), which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results (Warren & Hannon, Nature, 1988; Stone & Perrone, Neuro. Abstr., 1991) including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions (Royden et al., Nature, 1992). We tested the model detectors with stimuli used by others in- single-unit studies. The detectors showed emergent properties similar to those of MST neurons: 1) Sensitivity to non-preferred flow. Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow (Orban et al., PNAS, 1992), and 2) Position invariance. The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields (e.g. Duffy & Wurtz, J. Neurophys., 1991; Graziano et al., J. Neurosci., 1994). It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.
Results from a calibration of XENON100 using a source of dissolved radon-220
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration
2017-04-01
A
Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping
NASA Astrophysics Data System (ADS)
Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.
2018-03-01
X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.
NASA Astrophysics Data System (ADS)
Lu, Zhong-Lin; Sperling, George
2002-10-01
Two theories are considered to account for the perception of motion of depth-defined objects in random-dot stereograms (stereomotion). In the LuSperling three-motion-systems theory J. Opt. Soc. Am. A 18 , 2331 (2001), stereomotion is perceived by the third-order motion system, which detects the motion of areas defined as figure (versus ground) in a salience map. Alternatively, in his comment J. Opt. Soc. Am. A 19 , 2142 (2002), Patterson proposes a low-level motion-energy system dedicated to stereo depth. The critical difference between these theories is the preprocessing (figureground based on depth and other cues versus simply stereo depth) rather than the motion-detection algorithm itself (because the motion-extraction algorithm for third-order motion is undetermined). Furthermore, the ability of observers to perceive motion in alternating feature displays in which stereo depth alternates with other features such as texture orientation indicates that the third-order motion system can perceive stereomotion. This reduces the stereomotion question to Is it third-order alone or third-order plus dedicated depth-motion processing? Two new experiments intended to support the dedicated depth-motion processing theory are shown here to be perfectly accounted for by third-order motion, as are many older experiments that have previously been shown to be consistent with third-order motion. Cyclopean and rivalry images are shown to be a likely confound in stereomotion studies, rivalry motion being as strong as stereomotion. The phase dependence of superimposed same-direction stereomotion stimuli, rivalry stimuli, and isoluminant color stimuli indicates that these stimuli are processed in the same (third-order) motion system. The phase-dependence paradigm Lu and Sperling, Vision Res. 35 , 2697 (1995) ultimately can resolve the question of which types of signals share a single motion detector. All the evidence accumulated so far is consistent with the three-motion-systems theory. 2002 Optical Society of America
Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II
NASA Astrophysics Data System (ADS)
Smith, D.; Boese, M.; Heaton, T. H.
2015-12-01
Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.
Jacoby, Jason
2017-01-01
Retinal ganglion cells (RGCs) are frequently divided into functional types by their ability to extract and relay specific features from a visual scene, such as the capacity to discern local or global motion, direction of motion, stimulus orientation, contrast or uniformity, or the presence of large or small objects. Here we introduce three previously uncharacterized, nondirection-selective ON–OFF RGC types that represent a distinct set of feature detectors in the mouse retina. The three high-definition (HD) RGCs possess small receptive-field centers and strong surround suppression. They respond selectively to objects of specific sizes, speeds, and types of motion. We present comprehensive morphological characterization of the HD RGCs and physiological recordings of their light responses, receptive-field size and structure, and synaptic mechanisms of surround suppression. We also explore the similarities and differences between the HD RGCs and a well characterized RGC with a comparably small receptive field, the local edge detector, in response to moving objects and textures. We model populations of each RGC type to study how they differ in their performance tracking a moving object. These results, besides introducing three new RGC types that together constitute a substantial fraction of mouse RGCs, provide insights into the role of different circuits in shaping RGC receptive fields and establish a foundation for continued study of the mechanisms of surround suppression and the neural basis of motion detection. SIGNIFICANCE STATEMENT The output cells of the retina, retinal ganglion cells (RGCs), are a diverse group of ∼40 distinct neuron types that are often assigned “feature detection” profiles based on the specific aspects of the visual scene to which they respond. Here we describe, for the first time, morphological and physiological characterization of three new RGC types in the mouse retina, substantially augmenting our understanding of feature selectivity. Experiments and modeling show that while these three “high-definition” RGCs share certain receptive-field properties, they also have distinct tuning to the size, speed, and type of motion on the retina, enabling them to occupy different niches in stimulus space. PMID:28100743
De-Trending K2 Exoplanet Targets for High Spacecraft Motion
NASA Astrophysics Data System (ADS)
Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory
2018-01-01
After the failure of two reaction wheels, the Kepler space telescope lost its fine pointing ability and entered a new phase of observation, K2. Targets observed by K2 have high motion relative to the detector and K2 light curves have higher noise than Kepler observations. Despite the increased noise, systematics removal pipelines such as K2SFF and EVEREST have enabled continued high-precision transiting planet science with the telescope, resulting in the detection of hundreds of new exoplanets. However, as the spacecraft begins to run out of fuel, sputtering will drive large and random variations in pointing that can prevent detection of exoplanets during the remaining 5 campaigns. In general, higher motion will spread the stellar point spread function (PSF) across more pixels during a campaign, which increases the number of degrees of freedom in the noise component and significantly reduces the de-trending power of traditional systematics removal methods. We use a model of the Kepler CCD combined with pixel-level information of a large number of stars across the detector to improve the performance of the EVEREST pipeline at high motion. We also consider the problem of increased crowding for static apertures in the high-motion regime and develop pixel response function (PRF)-fitting techniques to mitigate contamination and maximize the de-trending power. We assess the performance of our code by simulating sputtering events and assessing exoplanet detection efficiency with transit injection/recovery tests. We find that targets with roll amplitudes of up to 8 pixels, approximately 15 times K2 roll, can be de-trended within 2 to 3 factors of current K2 photometric precision for stars up to 14th magnitude. Achieved recovery precision allows detection of small planets around 11th and 12th magnitude stars. These methods can be applied to the light curves of K2 targets for existing and future campaigns to ensure that precision exoplanet science can still be performed despite increased motion. We further discuss how these methods can be applied to upcoming space telescope missions, such as the Transiting Exoplanet Survey Satellite (TESS), to improve future detection and characterization of exoplanet candidates.
Rajesh, R; Krishnamurthy, Supriya
2002-10-01
We examine the effect of spatial bias on a nonequilibrium system in which masses on a lattice evolve through the elementary moves of diffusion, coagulation, and fragmentation. When there is no preferred directionality in the motion of the masses, the model is known to exhibit a nonequilibrium phase transition between two different types of steady state, in all dimensions. We show analytically that introducing a preferred direction in the motion of the masses inhibits the occurrence of the phase transition in one dimension, in the thermodynamic limit. A finite-size system, however, continues to show a signature of the original transition, and we characterize the finite-size scaling implications of this. Our analysis is supported by numerical simulations. In two dimensions, bias is shown to be irrelevant.
Open-field mouse brain PET: design optimisation and detector characterisation.
Kyme, Andre Z; Judenhofer, Martin S; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R; Meikle, Steven R
2017-07-13
'Open-field' PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal's behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of 'retro-fitting' motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal's motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23 × 23 array of 0.785 × 0.785 × 20 mm 3 LSO crystals (overall dim. 19.6 × 19.6 × 20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for imaging the mouse brain. We also built and characterised the block detector modelled in the simulations, including a dual-ended readout based on 6 × 6 arrays of through-silicon-via silicon photomultipliers (active area 84%) for DoI estimation. Identification of individual crystals in the flood map was excellent, energy resolution varied from 12.4% ± 0.6% near the centre to 24.4% ± 3.4% at the ends of the crystal, and the average DoI resolution was 2.8 mm ± 0.35 mm near the central depth (10 mm) and 3.5 mm ± 1.0 mm near the ends. Timing resolution was 1.4 ± 0.14 ns. Therefore, the DoI detector module meets the target specifications for the application and will be used as the basis for a prototype open-field mouse PET scanner.
Open-field mouse brain PET: design optimisation and detector characterisation
NASA Astrophysics Data System (ADS)
Kyme, Andre Z.; Judenhofer, Martin S.; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R.; Meikle, Steven R.
2017-08-01
‘Open-field’ PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal’s behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of ‘retro-fitting’ motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal’s motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23 × 23 array of 0.785 × 0.785 × 20 mm3 LSO crystals (overall dim. 19.6 × 19.6 × 20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for imaging the mouse brain. We also built and characterised the block detector modelled in the simulations, including a dual-ended readout based on 6 × 6 arrays of through-silicon-via silicon photomultipliers (active area 84%) for DoI estimation. Identification of individual crystals in the flood map was excellent, energy resolution varied from 12.4% ± 0.6% near the centre to 24.4% ± 3.4% at the ends of the crystal, and the average DoI resolution was 2.8 mm ± 0.35 mm near the central depth (10 mm) and 3.5 mm ± 1.0 mm near the ends. Timing resolution was 1.4 ± 0.14 ns. Therefore, the DoI detector module meets the target specifications for the application and will be used as the basis for a prototype open-field mouse PET scanner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petasecca, M., E-mail: marcop@uow.edu.au; Newall, M. K.; Aldosari, A. H.
Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of smallmore » field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.« less
Visual Search for Motion-Form Conjunctions: Selective Attention to Movement Direction.
Von Mühlenen, Adrian; Müller, Hermann J
1999-07-01
In 2 experiments requiring visual search for conjunctions of motion and form, the authors reinvestigated whether motion-based filtering (e.g., P. McLeod, J. Driver, Z. Dienes, & J. Crisp, 1991) is direction selective and whether cuing of the target direction promotes efficient search performance. In both experiments, the authors varied the number of movement directions in the display and the predictability of the target direction. Search was less efficient when items moved in multiple (2, 3, and 4) directions as compared with just 1 direction. Furthermore, precuing of the target direction facilitated the search, even with "wrap-around" displays, relatively more when items moved in multiple directions. The authors proposed 2 principles to explain that pattern of effects: (a) interference on direction computation between items moving in different directions (e.g., N. Qian & R. A. Andersen, 1994) and (b) selective direction tuning of motion detectors involving a receptive-field contraction (cf. J. Moran & R. Desimone, 1985; S. Treue & J. H. R. Maunsell, 1996).
Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation.
Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, Gonzalo
2014-01-01
Human body motion is usually variable in terms of intensity and, therefore, any Inertial Measurement Unit attached to a subject will measure both low and high angular rate and accelerations. This can be a problem for the accuracy of orientation estimation algorithms based on adaptive filters such as the Kalman filter, since both the variances of the process noise and the measurement noise are set at the beginning of the algorithm and remain constant during its execution. Setting fixed noise parameters burdens the adaptation capability of the filter if the intensity of the motion changes rapidly. In this work we present a conjoint novel algorithm which uses a motion intensity detector to dynamically vary the noise statistical parameters of different approaches of the Kalman filter. Results show that the precision of the estimated orientation in terms of the RMSE can be improved up to 29% with respect to the standard fixed-parameters approaches.
Nakagawa, Junichiro; Tasaki, Osamu; Watanabe, Yoshiyuki; Azuma, Takeo; Ohnishi, Mitsuo; Ukai, Isao; Tahara, Kenichi; Ogura, Hiroshi; Kuwagata, Yasuyuki; Hamasaki, Toshimitsu; Shimazu, Takeshi
2013-01-01
Electrocardiogram-gated imaging combined with multi-detector row computed tomography (MDCT) has reduced cardiac motion artifacts, but it was not practical in the emergency setting. The purpose of this study was to evaluate the ability of a high-pitch, 128-slice dual-source CT (DSCT) scanner to reduce motion artifacts in patients admitted to the emergency room. This study comprised 100 patients suspected of having thoracic aorta lesions. We examined 47 patients with the 128-slice DSCT scanner (DSCT group), and 53 patients were examined with a 64-slice MDCT scanner (MDCT group). Six anatomic areas in the thoracic aorta were evaluated. Computed tomography images in the DSCT group were distinct, and significant differences were observed in images of all areas between the 2 groups except for the descending aorta. The high-pitch DSCT scanner can reduce motion artifacts of the thoracic aorta and enable radiological diagnosis even in patients with tachycardia and without breath hold.
Pasquali, Vittorio; Renzi, Paolo
2005-08-01
Modified motion detectors can be used to monitor locomotor activity and measure endogenous rhythms. Although these devices can help monitor insects in their home cages, the small size of the animals requires a very short wavelength detector. We modified a commercial microwave-based detection device, connected the detector's output to the digital input of a computer, and validated the device by recording circadian and ultradian rhythms. Periplaneta americana were housed in individual cages, and their activity was monitored at 18 degrees C and subsequently at 28 degrees C in constant darkness. Time series were analyzed by a discrete Fourier transform and a chi-square periodogram. Q10 values and the circadian free-running period confirmed the data reported in the literature, validating the apparatus. Moreover, the spectral analysis and periodogram revealed the presence of ultradian rhythmicity in the range of 1-8 h.
Optomechanical terahertz detection with single meta-atom resonator.
Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo
2017-11-17
Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.
2D metal profile detector using a polymeric fiber optic sensor
NASA Astrophysics Data System (ADS)
Hua, Wei-Shu; Hooks, Joshua R.; Erwin, Nicholas A.; Wu, Wen-Jong; Wang, Wei-Chih
2012-04-01
As sensors become integrated in more applications, interest in magnetostrictive sensor technology has blossomed. Magnetostrictive materials have many advantages and useful applications in daily life, such as high efficient coupling between elastic and polymer material, large displacement, magnetic field sensors, micro actuator and motion motor, etc. The purpose of this paper is to develop a metal sensor which is capable of detecting different geometries and shapes of metal objects. The main configuration is using a Mach-Zehnder fiber-optic interferometer coated with magnetostrictive material. The metal detector system is a novel design of metal detector, easy to fabricate and capable of high sensitivity. In our design, metal detection is made possible by disrupting the magnetic flux density that encompasses the magnetostriction sensor. In this paper, experimental setups are described and metal sensing results are presented. The results of detecting complex metal's geometry and metal's mapping results are discussed.
Dark matter directional detection: comparison of the track direction determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couturier, C.; Zopounidis, J.P.; Sauzet, N.
Several directional techniques have been proposed for a directional detection of Dark matter, among others anisotropic crystal detectors, nuclear emulsion plates, and low-pressure gaseous TPCs. The key point is to get access to the initial direction of the nucleus recoiling due to the elastic scattering by a WIMP. In this article, we aim at estimating, for each method, how the information of the recoil track initial direction is preserved in different detector materials. We use the SRIM simulation code to emulate the motion of the first recoiling nucleus in each material. We propose the use of a new observable, Dmore » , to quantify the preservation of the initial direction of the recoiling nucleus in the detector. We show that in an emulsion mix and an anisotropic crystal, the initial direction is lost very early, while in a typical TPC gas mix, the direction is well preserved.« less
Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter
2016-06-22
Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.
Correction for human head motion in helical x-ray CT
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.
2016-02-01
Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can be accurately determined.
Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji
2016-08-09
Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.
The pricing of credit default swaps under a generalized mixed fractional Brownian motion
NASA Astrophysics Data System (ADS)
He, Xinjiang; Chen, Wenting
2014-06-01
In this paper, we consider the pricing of the CDS (credit default swap) under a GMFBM (generalized mixed fractional Brownian motion) model. As the name suggests, the GMFBM model is indeed a generalization of all the FBM (fractional Brownian motion) models used in the literature, and is proved to be able to effectively capture the long-range dependence of the stock returns. To develop the pricing mechanics of the CDS, we firstly derive a sufficient condition for the market modeled under the GMFBM to be arbitrage free. Then under the risk-neutral assumption, the CDS is fairly priced by investigating the two legs of the cash flow involved. The price we obtained involves elementary functions only, and can be easily implemented for practical purpose. Finally, based on numerical experiments, we analyze quantitatively the impacts of different parameters on the prices of the CDS. Interestingly, in comparison with all the other FBM models documented in the literature, the results produced from the GMFBM model are in a better agreement with those calculated from the classical Black-Scholes model.
Myers, Beth M; Wells, Nancy M
2015-04-01
Gardens are a promising intervention to promote physical activity (PA) and foster health. However, because of the unique characteristics of gardening, no extant tool can capture PA, postures, and motions that take place in a garden. The Physical Activity Research and Assessment tool for Garden Observation (PARAGON) was developed to assess children's PA levels, tasks, postures, and motions, associations, and interactions while gardening. PARAGON uses momentary time sampling in which a trained observer watches a focal child for 15 seconds and then records behavior for 15 seconds. Sixty-five children (38 girls, 27 boys) at 4 elementary schools in New York State were observed over 8 days. During the observation, children simultaneously wore Actigraph GT3X+ accelerometers. The overall interrater reliability was 88% agreement, and Ebel was .97. Percent agreement values for activity level (93%), garden tasks (93%), motions (80%), associations (95%), and interactions (91%) also met acceptable criteria. Validity was established by previously validated PA codes and by expected convergent validity with accelerometry. PARAGON is a valid and reliable observation tool for assessing children's PA in the context of gardening.
Documentation of the ISA Micro Computed Tomography System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, William D.; Smith, Jerel A.
2013-12-18
This document is intended to provide information on the ISA Micro Computed Tomography (MicroCT) system that will be installed in Yavne, Israel. X-ray source, detector, and motion control hardware are specified as well as specimen platforms, containers, and reference material types. Most of the details on the system are derived from Reference 1 and 2.
Using Touchscreens as Position Detectors in Physics Experiments
ERIC Educational Resources Information Center
Dilek, Ufuk; Sengören, Serap Kaya
2017-01-01
The position of a ball was measured by using the touchscreen of a mobile phone during its rolling motion. The translational speed of the ball was determined using the recorded position and time data. The speed was also calculated by a conventional method. The speed values determined by the two methods were consistent, thus it was proven that a…
The Calibration of an Ultra-High Energy Muon Hodoscope and Search for Cosmic Gamma Ray Anisotropies.
NASA Astrophysics Data System (ADS)
McCarthy, Thomas K.
1996-01-01
The Homestake Deep Underground Hodoscope is a liquid scintillation detector that lies at a depth of 4200 mwe within a cavernous chamber of granite within the Homestake Gold Mine. At this depth, it is shielded from all but the most energetic elementary particles, in particular, muons with an energy of less than 27 TeV. Consequently, primaries with energies greater than 1 PeV are indirectly detected. The detector has two tiers of detectors each comprised of 40 scintillation modules of dimension.305 m x.305 m x 7.925 m, separated by a distance of 8.047 m. With this geometrical arrangement and the use of fast timing triggers (2.5 ns resolution), a directional study of ultra -high energy particles was conducted. By exploiting the fact that these particles enter the detector at very nearly the speed of light and that the trigger window has a fixed timing limit, a methodology was developed to fine tune the detector using these constraints. Once calibration was established, noisy events are easily eliminated and the resulting data is used to compute the flux of muons entering the detector, to plot the number of muons entering the detector as a function of angle and to compare this with theoretical profiles and, finally, to extrapolate the muon's velocity vector back onto the celestial sphere to search for anisotropies. The results of this study indicate a flux that is constant in time and is consistent with other, independent measurements. The angular profile is consistent with theoretical models, although a different scale factor was required to make a precise agreement. This may be due to the particular nature of the Homestake stratum. There was no indication for discrete gamma ray sources of cosmic origin, supporting earlier work using the same detector. Lastly, the methodology developed can be applied to similar detection facilities that are in operation on a long term basis. With its use of a personal computer, on site, a large facility could be monitored quite effectively.
NASA Astrophysics Data System (ADS)
Finn, Lee Samuel; Mukherjee, Soma
2001-03-01
Interferometric gravitational wave detectors operate by sensing the differential light travel time between free test masses. Correspondingly, they are sensitive to anything that changes the physical distance between the test masses, including physical motion of the masses themselves. In ground-based detectors the test masses are suspended as pendula, in order that they be approximately ``free'' above the pendulumn frequency. Still, thermal or other excitations of the suspension wires' violin modes do impart a force on the masses that appears as a strong, albeit narrow-band, ``signal'' in the detectors waveband. Gravitational waves, on the other hand, change the distance between the test masses without disturbing the suspensions. Consequently, violin modes can confound attempts to observe gravitational waves since ``signals'' that are correlated with a disturbance of the suspension violin modes are not likely due to a passing gravitational wave. Here we describe the design of a Kalman filter that determines the time-dependent vibrational state of a detector's suspension ``violin'' modes from time dependent observations of the detector output. From the estimated state we can predict that component of the detector output due to suspension excitations, thermal or otherwise. The wire state can be examined for evidence of suspension disturbances that might, in the absence of such a diagnostic, be mistaken for gravitational wave signals. Additionally, from the wire state we can subtractively remove the contribution from suspension disturbances, thermal or otherwise, from the detector output, leaving a residual free from this instrumental artifact. We demonstrate the filter's effectiveness both through numerical simulations and application to real data taken on the LIGO 40 M prototype detector.
The Final Results from the Sudbury Neutrino Observatory
Bellerive, Alain
2017-12-15
The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.
Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope
NASA Astrophysics Data System (ADS)
Limousin, O.; Meuris, A.; Lugiez, F.; Gevin, Olivier; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.; Penquer, A.; Billot, M.
2017-11-01
In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event timetagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of 65 electrons rms over the 64 channels. For the first prototypes, we chose Pt//CdTe//Al/Ti/Au Schottky detectors because of their very low dark current and excellent spectroscopic performances. Recently a Caliste 64 prototype has been also equipped with a 2 mm thick Au//CdZnTe//Au detector. This paper presents the performances of these four prototypes and demonstrates spectral performances better than 1 keV fwhm at 59.54 keV when the samples are moderately cooled down to -10°C.
A priori motion models for four-dimensional reconstruction in gated cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalush, D.S.; Tsui, B.M.W.; Cui, Lin
1996-12-31
We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these {open_quotes}most likely{close_quotes} motion vectors.more » To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies.« less
Particle Detectors in the Theory of Quantum Fields on Curved Spacetimes
NASA Astrophysics Data System (ADS)
Cant, John Fraser
This work discusses aspects of a fundamental problem in the theory of quantum fields on curved spacetimes--that of giving physical meaning to the particle representations of the theory. In particular, the response of model particle detectors is analysed in detail. Unruh (1976) first introduced the idea of a model particle detector in order to give an operational definition to particles. He found that even in flat spacetime, the excitation of a particle detector does not necessarily correspond to the presence of an energy carrier--an accelerating detector will excite in response to the zero-energy state of the Minkowski vacuum. The central question I consider in this work is --where does the energy for the excitation of the accelerating detector come from? The accepted response has been that the accelerating force provides the energy. Evaluating the energy carried by the (conformally-invariant massless scalar) field after the interaction with the detector, however, I find that the detector excitation is compensated by an equal but opposite emission of negative energy. This result suggests that there may be states of lesser energy than that of the Minkowski vacuum. To resolve this paradox, I argue that the emission of a detector following a more realistic trajectory than that of constant acceleration--one that starts and finishes in inertial motion--will in total be positive, although during periods of constant acceleration the detector will still emit negative energy. The Minkowski vacuum retains its status as the field state of lowest energy. The second question I consider is the response of Unruh's detector in curved spacetime--is it possible to use such a detector to measure the energy carried by the field? In the particular case of a detector following a Killing trajectory, I find that there is a response to the energy of the field, but that there is also an inherent 'noise'. In a two dimensional model spacetime, I show that this 'noise' depends on the detector's acceleration and on the curvature of the spacetime, thereby encompassing previous results of Unruh (1976) and of Gibbons & Hawking (1977).
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.
Schenberg microwave cabling seismic isolation.
NASA Astrophysics Data System (ADS)
Bortoli, F. S.; Frajuca, C.; Aguiar, O. D.
2018-02-01
SCHENBERG is a resonant-mass gravitational wave detector with a frequency about 3.2 kHz. Its spherical antenna, weighing 1.15 metric ton, is connected to the external world by a system which must attenuate seismic noise. When a gravitational wave passes the antenna vibrates, its motion is monitored by transducers. These parametric transducers uses microwaves carried by coaxial cables that are also connected to the external world, they also carry seismic noise. In this analysis the system was modeled using finite element method. This work shows that the addition of masses along these cables can decrease this noise, so that this noise is below the thermal noise of the detector when operating at 50 mK.
Tracking and imaging humans on heterogeneous infrared sensor arrays for law enforcement applications
NASA Astrophysics Data System (ADS)
Feller, Steven D.; Zheng, Y.; Cull, Evan; Brady, David J.
2002-08-01
We present a plan for the integration of geometric constraints in the source, sensor and analysis levels of sensor networks. The goal of geometric analysis is to reduce the dimensionality and complexity of distributed sensor data analysis so as to achieve real-time recognition and response to significant events. Application scenarios include biometric tracking of individuals, counting and analysis of individuals in groups of humans and distributed sentient environments. We are particularly interested in using this approach to provide networks of low cost point detectors, such as infrared motion detectors, with complex imaging capabilities. By extending the capabilities of simple sensors, we expect to reduce the cost of perimeter and site security applications.
Laser radiography forming bremsstrahlung radiation to image an object
Perry, Michael D.; Sefcik, Joseph A.
2004-01-13
A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.
Fidelity of the ensemble code for visual motion in primate retina.
Frechette, E S; Sher, A; Grivich, M I; Petrusca, D; Litke, A M; Chichilnisky, E J
2005-07-01
Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.
Stronger vection in junior high school children than in adults
Shirai, Nobu; Imura, Tomoko; Tamura, Rio; Seno, Takeharu
2014-01-01
Previous studies have shown that even elementary school-aged children (7 and 11 years old) experience visually induced perception of illusory self-motion (vection) (Lepecq et al., 1995, Perception, 24, 435–449) and that children of a similar age (mean age = 9.2 years) experience more rapid and stronger vection than do adults (Shirai et al., 2012, Perception, 41, 1399–1402). These findings imply that although elementary school-aged children experience vection, this ability is subject to further development. To examine the subsequent development of vection, we compared junior high school students' (N = 11, mean age = 14.4 years) and adults' (N = 10, mean age = 22.2 years) experiences of vection. Junior high school students reported significantly stronger vection than did adults, suggesting that the perceptual experience of junior high school students differs from that of adults with regard to vection and that this ability undergoes gradual changes over a relatively long period of development. PMID:24971067
Using Science and the Internet as Everyday Classroom Tools
NASA Technical Reports Server (NTRS)
Mandel, Eric
1999-01-01
The Everyday Classroom Tools project developed a K-6 inquiry-based curriculum to bring the tools of scientific inquiry, together with the Internet, into the elementary school classroom. Our curriculum encourages students and teachers to experience the adventure of science through investigation of the world around us. In this project, experts in computer science and astronomy at SAO worked closely with teachers and students in Massachusetts elementary schools to design and model activities which are developmentally appropriate, fulfill the needs of the curriculum standards of the school district, and provide students with a chance to experience for themselves the joy and excitement of scientific inquiry. The results of our efforts are embodied in the Threads of Inquiry, a series of free-flowing dialogues about inquiry-inspiring investigations that maintain a solid connection with our experience and with one another. These investigations are concerned with topics such as the motion of the Earth, shadows, light, and time. Our work emphasizes a direct hands-on approach through concrete experience, rather than memorization of facts.
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
The Focal Surface of the JEM-EUSO Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Y.; EUSO Team, ASI, RIKEN; Casolino, M.
The Extreme Universe Space Observatory on JEM/EF (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in the near-ultraviolet wavelength region which will be mounted to the International Space Station. Its goal is to measure time-resolved fluorescence images of extensive air showers in the atmosphere. In this paper we describe in detail the main features and technological aspects of the focal surface of the instrument. The JEM-EUSO focal surface is a spherically curved surface, with an area of about 4.5m{sup 2}. The focal surface detector is made of more thanmore » 5,000 multi-anode photomultipliers (MAPMTs). Current baseline is Hamamatsu R11265-03-M64. The approach to the focal surface detector is highly modular. Photo-Detector-Modules (PDM) are the basic units that drive the mechanical structure and data acquisition. Each PDM consists of 9 Elementary Cells (ECs). The EC, which is the basic unit of the MAPMT support structure and of the front-end electronics, contains 4 units of MAPMTs. In total, about 1,200 ECs or about 150 PDMs are arranged on the whole of the focal surface of JEM-EUSO.« less
Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions
NASA Astrophysics Data System (ADS)
Vale, D.; Rauscher, T.; Paar, N.
2016-02-01
We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.
Free-Space Quantum Communication with a Portable Quantum Memory
NASA Astrophysics Data System (ADS)
Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden
2017-12-01
The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.
NASA Technical Reports Server (NTRS)
Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.; Peng, Qing
2007-01-01
Any superposition effect as measured (SEM) by us is the summation of simultaneous stimulations experienced by a detector due to the presence of multiple copies of a detectee each carrying different values of the same parameter. We discus the cases with light beams carrying same frequency for both diffraction and multiple beam Fabry-Perot interferometer and also a case where the two superposed light beams carry different frequencies. Our key argument is that if light really consists of indivisible elementary particle, photon, then it cannot by itself create superposition effect since the state vector of an elementary particle cannot carry more than one values of any parameter at the same time. Fortunately, semiclassical model explains all light induced interactions using quantized atoms and classical EM wave packet. Classical physics, with its deeper commitment to Reality Ontology, was better prepared to nurture the emergence of Quantum Mechanics and still can provide guidance to explore nature deeper if we pay careful attention to successful classical formulations like Huygens-Fresnel diffraction integral.
Jeon, Hyungkook; Hong, Seong Kyung; Kim, Min Seo; Cho, Seong J; Lim, Geunbae
2017-12-06
Here, we report an omni-purpose stretchable strain sensor (OPSS sensor) based on a nanocracking structure for monitoring whole-body motions including both joint-level and skin-level motions. By controlling and optimizing the nanocracking structure, inspired by the spider sensory system, the OPSS sensor is endowed with both high sensitivity (gauge factor ≈ 30) and a wide working range (strain up to 150%) under great linearity (R 2 = 0.9814) and fast response time (<30 ms). Furthermore, the fabrication process of the OPSS sensor has advantages of being extremely simple, patternable, integrated circuit-compatible, and reliable in terms of reproducibility. Using the OPSS sensor, we detected various human body motions including both moving of joints and subtle deforming of skin such as pulsation. As specific medical applications of the sensor, we also successfully developed a glove-type hand motion detector and a real-time Morse code communication system for patients with general paralysis. Therefore, considering the outstanding sensing performances, great advantages of the fabrication process, and successful results from a variety of practical applications, we believe that the OPSS sensor is a highly suitable strain sensor for whole-body motion monitoring and has potential for a wide range of applications, such as medical robotics and wearable healthcare devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayser, Boris
2012-06-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far themore » most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.« less
1st- and 2nd-order motion and texture resolution in central and peripheral vision
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1995-01-01
STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.
Manifestations of the rotation and gravity of the Earth in high-energy physics experiments
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2016-08-01
The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.
Elementary Development of the Gravitational Self-Force
NASA Astrophysics Data System (ADS)
Detweiler, Steven
The gravitational field of a particle of small mass m moving through curved spacetime, with metric g ab , is naturally and easily decomposed into two parts each of which satisfies the perturbed Einstein equations through O(m). One part is an inhomogeneous field h ab S which, near the particle, looks like the Coulomb m / r field with tidal distortion from the local Riemann tensor. This singular field is defined in a neighborhood of the small particle and does not depend upon boundary conditions or upon the behavior of the source in either the past or the future. The other part is a homogeneous field h ab R. In a perturbative analysis, the motion of the particle is then best described as being a geodesic in the metric g ab + h ab R. This geodesic motion includes all of the effects which might be called radiation reaction and conservative effects as well.
Non-classical light generated by quantum-noise-driven cavity optomechanics.
Brooks, Daniel W C; Botter, Thierry; Schreppler, Sydney; Purdy, Thomas P; Brahms, Nathan; Stamper-Kurn, Dan M
2012-08-23
Optomechanical systems, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage and transduction of quantum information to enhanced detection sensitivity in gravitational wave detectors. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object’s motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing, and the control and measurement of motion in quantum gases.
Enrico Fermi's Impact on Science - John Marburger Speech
neutrons in a similar way, by directing a high energy proton beam onto a target, dislodging a spray of then spun at a very high speed inside a fissure in a large paraffin block. We found that, while, with the wheel at rest, the two detectors became equally active, when the wheel was in motion during the
Episodic Feelings and Transfer of Learning
ERIC Educational Resources Information Center
Nemirovsky, Ricardo
2011-01-01
The goal of this article is to develop a new perspective on transfer of learning integrating cognition, emotion, and bodily experience. It is based on a case study with a 10-year-old girl as she explored the use of a motion detector, allowing for the simultaneous graphing of the position versus time of 2 moving points. The paper elaborates on the…
Development of Adaptive Tilt Tracker that Utilizes QUAD-cell Detector to Track Extended Objects
2014-03-17
telescopes. When incident light encounters the atmosphere , it experiences a turbulent medium that distorts optical wavefronts. Without the AO...fluctuations which randomize optical path lengths. Figure 2 - The temporal and spatial aspects of atmospheric turbulence [6] Consider...the PTS are determined by atmospheric turbulence , optical set-up, and object characteristics such as size, shape, motion, and intensity
A low cost PSD-based monocular motion capture system
NASA Astrophysics Data System (ADS)
Ryu, Young Kee; Oh, Choonsuk
2007-10-01
This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.
NASA Astrophysics Data System (ADS)
Drewery, J. O.; Storey, R.; Tanton, N. E.
1984-07-01
A video noise and film grain reducer is described which is based on a first-order recursive temporal filter. Filtering of moving detail is avoided by inhibiting recursion in response to the amount of motion in a picture. Motion detection is based on the point-by-point power of the picture difference signal coupled with a knowledge of the noise statistics. A control system measures the noise power and adjusts the working point of the motion detector accordingly. A field trial of a manual version of the equipment at Television Center indicated that a worthwhile improvement in the quality of noisy or grainy pictures received by the viewer could be obtained. Subsequent trials of the automated version confirmed that the improvement could be maintained. Commercial equipment based on the design is being manufactured and marketed by Pye T.V.T. under license. It is in regular use on both the BBC1 and BBC2 networks.
Clearance detector and method for motion and distance
Xavier, Patrick G [Albuquerque, NM
2011-08-09
A method for correct and efficient detection of clearances between three-dimensional bodies in computer-based simulations, where one or both of the volumes is subject to translation and/or rotations. The method conservatively determines of the size of such clearances and whether there is a collision between the bodies. Given two bodies, each of which is undergoing separate motions, the method utilizes bounding-volume hierarchy representations for the two bodies and, mappings and inverse mappings for the motions of the two bodies. The method uses the representations, mappings and direction vectors to determine the directionally furthest locations of points on the convex hulls of the volumes virtually swept by the bodies and hence the clearance between the bodies, without having to calculate the convex hulls of the bodies. The method includes clearance detection for bodies comprising convex geometrical primitives and more specific techniques for bodies comprising convex polyhedra.
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
NASA Technical Reports Server (NTRS)
Kogut, J.; Larduinat, E.
1985-01-01
The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.
Introductory Physics Experiments Using the Wiimote
NASA Astrophysics Data System (ADS)
Somers, William; Rooney, Frank; Ochoa, Romulo
2009-03-01
The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.
2014-11-15
In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of themore » x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.« less
NASA Astrophysics Data System (ADS)
Chida, Kensaku; Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira
2015-08-01
We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.
Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro
2016-08-19
We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 10(4) at 8.3 · 10(-3) mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale.
Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro
2016-01-01
We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 104 at 8.3 · 10−3 mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale. PMID:27538586
Figure-ground segregation can rely on differences in motion direction.
Kandil, Farid I; Fahle, Manfred
2004-12-01
If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.
Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René
2018-06-01
Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.
Full-wave receiver architecture for the homodyne motion sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting ofmore » a RF signal received at the receiver input, thereby enhancing receiver sensitivity.« less
Human face detection using motion and color information
NASA Astrophysics Data System (ADS)
Kim, Yang-Gyun; Bang, Man-Won; Park, Soon-Young; Choi, Kyoung-Ho; Hwang, Jeong-Hyun
2008-02-01
In this paper, we present a hardware implementation of a face detector for surveillance applications. To come up with a computationally cheap and fast algorithm with minimal memory requirement, motion and skin color information are fused successfully. More specifically, a newly appeared object is extracted first by comparing average Hue and Saturation values of background image and a current image. Then, the result of skin color filtering of the current image is combined with the result of a newly appeared object. Finally, labeling is performed to locate a true face region. The proposed system is implemented on Altera Cyclone2 using Quartus II 6.1 and ModelSim 6.1. For hardware description language (HDL), Verilog-HDL is used.
Full-wave receiver architecture for the homodyne motion sensor
Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E
2013-11-19
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.
Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei
2015-05-01
In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).
Phantom motion after effects--evidence of detectors for the analysis of optic flow.
Snowden, R J; Milne, A B
1997-10-01
Electrophysiological recording from the extrastriate cortex of non-human primates has revealed neurons that have large receptive fields and are sensitive to various components of object or self movement, such as translations, rotations and expansion/contractions. If these mechanisms exist in human vision, they might be susceptible to adaptation that generates motion aftereffects (MAEs). Indeed, it might be possible to adapt the mechanism in one part of the visual field and reveal what we term a 'phantom MAE' in another part. The existence of phantom MAEs was probed by adapting to a pattern that contained motion in only two non-adjacent 'quarter' segments and then testing using patterns that had elements in only the other two segments. We also tested for the more conventional 'concrete' MAE by testing in the same two segments that had adapted. The strength of each MAE was quantified by measuring the percentage of dots that had to be moved in the opposite direction to the MAE in order to nullify it. Four experiments tested rotational motion, expansion/contraction motion, translational motion and a 'rotation' that consisted simply of the two segments that contained only translational motions of opposing direction. Compared to a baseline measurement where no adaptation took place, all subjects in all experiments exhibited both concrete and phantom MAEs, with the size of the latter approximately half that of the former. Adaptation to two segments that contained upward and downward motion induced the perception of leftward and rightward motion in another part of the visual field. This strongly suggests there are mechanisms in human vision that are sensitive to complex motions such as rotations.
Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji
2017-04-01
Diaphragmatic motion in a standing position during tidal breathing remains unclear. The purpose of this observational study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants' demographic characteristics. One hundred seventy-two subjects (103 men; aged 56.3 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions of and peak motion speeds of the diaphragms. Associations between the excursions and participants' demographics (gender, height, weight, body mass index [BMI], smoking history, tidal volume, vital capacity, and forced expiratory volume) were investigated. The average excursion of the left diaphragm (14.9 ± 4.6 mm, 95% CI 14.2-15.5 mm) was significantly larger than that of the right (11.0 ± 4.0 mm, 95% CI 10.4-11.6 mm) (P <0.001). The peak motion speed of the left diaphragm (inspiratory, 16.6 ± 4.2 mm/s; expiratory, 13.7 ± 4.2 mm/s) was significantly faster than that of the right (inspiratory, 12.4 ± 4.4 mm/s; expiratory, 9.4 ± 3.8 mm/s) (both P <0.001). Both simple and multiple regression models demonstrated that higher BMI and higher tidal volume were associated with increased excursions of the bilateral diaphragm (all P <0.05). The average excursions of the diaphragms are 11.0 mm (right) and 14.9 mm (left) during tidal breathing in a standing position. The diaphragmatic motion of the left is significantly larger and faster than that of the right. Higher BMI and tidal volume are associated with increased excursions of the bilateral diaphragm. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.
Bio-inspired multi-mode optic flow sensors for micro air vehicles
NASA Astrophysics Data System (ADS)
Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik
2013-06-01
Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.
Real-time visual target tracking: two implementations of velocity-based smooth pursuit
NASA Astrophysics Data System (ADS)
Etienne-Cummings, Ralph; Longo, Paul; Van der Spiegel, Jan; Mueller, Paul
1995-06-01
Two systems for velocity-based visual target tracking are presented. The first two computational layers of both implementations are composed of VLSI photoreceptors (logarithmic compression) and edge detection (difference-of-Gaussians) arrays that mimic the outer-plexiform layer of mammalian retinas. The subsequent processing layers for measuring the target velocity and to realize smooth pursuit tracking are implemented in software and at the focal plane in the two versions, respectively. One implentation uses a hybrid of a PC and a silicon retina (39 X 38 pixels) operating at 333 frames/second. The software implementation of a real-time optical flow measurement algorithm is used to determine the target velocity, and a closed-loop control system zeroes the relative velocity of the target and retina. The second implementation is a single VLSI chip, which contains a linear array of photoreceptors, edge detectors and motion detectors at the focal plane. The closed-loop control system is also included on chip. This chip realizes all the computational properties of the hybrid system. The effects of background motion, target occlusion, and disappearance are studied as a function of retinal size and spatial distribution of the measured motion vectors (i.e. foveal/peripheral and diverging/converging measurement schemes). The hybrid system, which tested successfully, tracks targets moving as fast as 3 m/s at 1.3 meters from the camera and it can compensate for external arbitrary movements in its mounting platform. The single chip version, whose circuits tested successfully, can handle targets moving at 10 m/s.
Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform
Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B.
2016-01-01
Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks. PMID:26909015
Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.
Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B
2016-01-01
Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.
Spaceborne electronic imaging systems
NASA Technical Reports Server (NTRS)
1971-01-01
Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.
Detector Damage at X-Ray Free-Electron Laser Sources
NASA Astrophysics Data System (ADS)
Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Stan, C. A.; Tomada, A.
2016-06-01
Free-electron lasers (FELs) opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120 Hz pulses with 1012 to 1013 photons in 10 fs (billions of times brighter than at the most powerful synchrotrons). Concurrently, users and staff operate under high pressure due to flexible and often rapidly changing setups and low tolerance for system malfunction. This extreme detection environment raises unique challenges, from obvious to surprising, and leads to treating detectors as consumables. We discuss in detail the detector damage mechanisms observed in 7 years of operation at LCLS, together with the corresponding damage mitigation strategies and their effectiveness. Main types of damage mechanisms already identified include: (1) x-ray radiation damage (from “catastrophic” to “classical”), (2) direct and indirect damage caused by optical lasers, (3) sample induced damage, (4) vacuum related damage, (5) high-pressure environment. In total, 19 damage mechanisms have been identified. We also present general strategies for reducing damage risk or minimizing the impact of detector damage on the science program. These include availability of replacement parts and skilled operators and also careful planning, incident investigation resulting in updated designs, procedures and operator training.
Self-adaptive calibration for staring infrared sensors
NASA Astrophysics Data System (ADS)
Kendall, William B.; Stocker, Alan D.
1993-10-01
This paper presents a new, self-adaptive technique for the correlation of non-uniformities (fixed-pattern noise) in high-density infrared focal-plane detector arrays. We have developed a new approach to non-uniformity correction in which we use multiple image frames of the scene itself, and take advantage of the aim-point wander caused by jitter, residual tracking errors, or deliberately induced motion. Such wander causes each detector in the array to view multiple scene elements, and each scene element to be viewed by multiple detectors. It is therefore possible to formulate (and solve) a set of simultaneous equations from which correction parameters can be computed for the detectors. We have tested our approach with actual images collected by the ARPA-sponsored MUSIC infrared sensor. For these tests we employed a 60-frame (0.75-second) sequence of terrain images for which an out-of-date calibration was deliberately used. The sensor was aimed at a point on the ground via an operator-assisted tracking system having a maximum aim point wander on the order of ten pixels. With these data, we were able to improve the calibration accuracy by a factor of approximately 100.
Preliminary design study. Shuttle modular scanning spectroradiometer
NASA Technical Reports Server (NTRS)
1975-01-01
Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.
Quantum locking of mirrors in interferometers.
Courty, Jean-Michel; Heidmann, Antoine; Pinard, Michel
2003-02-28
We show that quantum noise in very sensitive interferometric measurements such as gravitational-wave detectors can be drastically modified by quantum feedback. We present a new scheme based on active control to lock the motion of a mirror to a reference mirror at the quantum level. This simple technique allows one to reduce quantum effects of radiation pressure and to greatly enhance the sensitivity of the detection.
Vehicle tracking in wide area motion imagery from an airborne platform
NASA Astrophysics Data System (ADS)
van Eekeren, Adam W. M.; van Huis, Jasper R.; Eendebak, Pieter T.; Baan, Jan
2015-10-01
Airborne platforms, such as UAV's, with Wide Area Motion Imagery (WAMI) sensors can cover multiple square kilometers and produce large amounts of video data. Analyzing all data for information need purposes becomes increasingly labor-intensive for an image analyst. Furthermore, the capacity of the datalink in operational areas may be inadequate to transfer all data to the ground station. Automatic detection and tracking of people and vehicles enables to send only the most relevant footage to the ground station and assists the image analysts in effective data searches. In this paper, we propose a method for detecting and tracking vehicles in high-resolution WAMI images from a moving airborne platform. For the vehicle detection we use a cascaded set of classifiers, using an Adaboost training algorithm on Haar features. This detector works on individual images and therefore does not depend on image motion stabilization. For the vehicle tracking we use a local template matching algorithm. This approach has two advantages. In the first place, it does not depend on image motion stabilization and it counters the inaccuracy of the GPS data that is embedded in the video data. In the second place, it can find matches when the vehicle detector would miss a certain detection. This results in long tracks even when the imagery is of low frame-rate. In order to minimize false detections, we also integrate height information from a 3D reconstruction that is created from the same images. By using the locations of buildings and roads, we are able to filter out false detections and increase the performance of the tracker. In this paper we show that the vehicle tracks can also be used to detect more complex events, such as traffic jams and fast moving vehicles. This enables the image analyst to do a faster and more effective search of the data.
NASA Technical Reports Server (NTRS)
Leonard, Robert W; Budiansky, Bernard
1954-01-01
The basic equations of Timoshenko for the motion of vibrating nonuniform beams, which allow for effects of transverse shear deformation and rotary inertia, are presented in several forms, including one in which the equations are written in the directions of the characteristics. The propagation of discontinuities in moment and shear, as governed by these equations, is discussed. Numerical traveling-wave solutions are obtained for some elementary problems of finite uniform beams for which the propagation velocities of bending and shear discontinuities are taken to be equal. These solutions are compared with modal solutions of Timoshenko's equations and, in some cases, with exact closed solutions. (author)
A blur-invariant local feature for motion blurred image matching
NASA Astrophysics Data System (ADS)
Tong, Qiang; Aoki, Terumasa
2017-07-01
Image matching between a blurred (caused by camera motion, out of focus, etc.) image and a non-blurred image is a critical task for many image/video applications. However, most of the existing local feature schemes fail to achieve this work. This paper presents a blur-invariant descriptor and a novel local feature scheme including the descriptor and the interest point detector based on moment symmetry - the authors' previous work. The descriptor is based on a new concept - center peak moment-like element (CPME) which is robust to blur and boundary effect. Then by constructing CPMEs, the descriptor is also distinctive and suitable for image matching. Experimental results show our scheme outperforms state of the art methods for blurred image matching
Design of a dynamic test platform for autonomous robot vision systems
NASA Technical Reports Server (NTRS)
Rich, G. C.
1980-01-01
The concept and design of a dynamic test platform for development and evluation of a robot vision system is discussed. The platform is to serve as a diagnostic and developmental tool for future work with the RPI Mars Rover's multi laser/multi detector vision system. The platform allows testing of the vision system while its attitude is varied, statically or periodically. The vision system is mounted on the test platform. It can then be subjected to a wide variety of simulated can thus be examined in a controlled, quantitative fashion. Defining and modeling Rover motions and designing the platform to emulate these motions are also discussed. Individual aspects of the design process are treated separately, as structural, driving linkages, and motors and transmissions.
Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories
NASA Astrophysics Data System (ADS)
Vallisneri, Michele; Galley, Chad R.
2012-06-01
The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a detected signal. SNRs are usually computed from a sensitivity curve, which describes the gravitational-wave amplitude needed by a monochromatic source of given frequency to achieve a threshold SNR. Although the term ‘sensitivity’ is used loosely to refer to the detector’s noise spectral density, the two quantities are not the same: the sensitivity includes also the frequency- and orientation-dependent response of the detector to gravitational waves and takes into account the duration of observation. For interferometric space-based detectors similar to LISA, which are sensitive to long-lived signals and have constantly changing position and orientation, exact SNRs need to be computed on a source-by-source basis. For convenience, most authors prefer to work with sky-averaged sensitivities, accepting inaccurate SNRs for individual sources and giving up control over the statistical distribution of SNRs for source populations. In this paper, we describe a straightforward end-to-end recipe to compute the non-sky-averaged sensitivity of interferometric space-based detectors of any geometry. This recipe includes the effects of spacecraft motion and of seasonal variations in the partially subtracted confusion foreground from Galactic binaries, and it can be used to generate a sampling distribution of sensitivities for a given source population. In effect, we derive error bars for the sky-averaged sensitivity curve, which provide a stringent statistical interpretation for previously unqualified statements about sky-averaged SNRs. As a worked-out example, we consider isotropic and Galactic-disk populations of monochromatic sources, as observed with the ‘classic LISA’ configuration. We confirm that the (standard) inverse-rms average sensitivity for the isotropic population remains the same whether or not the LISA orbits are included in the computation. However, detector motion tightens the distribution of sensitivities, so for 50% of sources the sensitivity is within 30% of its average. For the Galactic-disk population, the average and the distribution of the sensitivity for a moving detector turn out to be similar to the isotropic case.
On-line Adaptive Radiation Treatment of Prostate Cancer
2008-01-01
novel imaging system using a linear x-ray source and a linear detector . This imaging system may significantly improve the quality of online images...yielded the Euclidean voxel distances nside the ROI. The two distance maps were combined with ositive distances outside and negative distances inside...is reduced by 1cm. IMRT is more sensitive to organ motion. Large discrepancies of bladder and rectum doses were observed compared to the actual
Improved Robustness and Efficiency for Automatic Visual Site Monitoring
2009-09-01
the space of expected poses. To avoid having to compare each test window with the whole training corpus, he builds a template hierarchy by...directions of motion. In a second layer of clustering, it also learns how the low-level clusters co-occur with each other. An infinite mix- ture model is used...implementation. We demonstrate the utility of this detector by modeling scene-level activities with a Hierarchical
Wide swath imaging spectrometer utilizing a multi-modular design
Chrisp, Michael P.
2010-10-05
A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.
Hoi, Tran Xuan; Phuong, Huynh Truc; Van Hung, Nguyen
2016-09-01
During the production of iodine-131 from neutron irradiated tellurium dioxide by the dry distillation, a considerable amount of (131)I vapor is dispersed to the indoor air. People who routinely work at the production area may result in a significant risk of exposure to chronic intake by inhaled (131)I. This study aims to estimate the inhalation dose for individuals manipulating the (131)I at a radioisotope production. By using an application installed on smartphones, we collected the time-microenvironment data spent by a radiation group during work days in 2015. Simultaneously, we used a portable air sampler combined with radioiodine cartridges for grabbing the indoor air samples and then the daily averaged (131)I concentration was calculated. Finally, the time-microenvironment data jointed with the concentration to estimate the inhalation dose for the workers. The result showed that most of the workers had the annual internal dose in 1÷6mSv. We concluded that using smartphone as a motion detector is a possible and reliable way instead of the questionnaires, diary or GPS-based method. It is, however, only suitable for monitoring on fixed indoor environments and limited the targeted people. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya
2005-04-01
The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.
Measurement of g using a magnetic pendulum and a smartphone magnetometer
NASA Astrophysics Data System (ADS)
Pili, Unofre; Violanda, Renante; Ceniza, Claude
2018-04-01
The internal sensors in smartphones for their advanced add-in functions have also paved the way for these gadgets becoming multifunctional tools in elementary experimental physics. For instance, the acceleration sensor has been used to analyze free-falling motion and to study the oscillations of a spring-mass system. The ambient light sensor on the other hand has been proven to be a capable tool in studying an astronomical phenomenon as well as in measuring speed and acceleration. In this paper we present an accurate, convenient, and engaging use of the smartphone magnetic field sensor to measure the acceleration due to gravity via measurement of the period of oscillations (simply called "period" in what follows) of a simple pendulum. Measurement of the gravitational acceleration via the simple pendulum is a standard elementary physics laboratory activity, but the employment of the magnetic field sensor of a smartphone device in measuring the period is quite new and the use of it is seen as fascinating among students. The setup and procedure are rather simple and can easily be replicated as a classroom demonstration or as a regular laboratory activity.
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
Chen, Min; Hashimoto, Koichi
2017-01-01
Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189
Beam-induced motion correction for sub-megadalton cryo-EM particles.
Scheres, Sjors Hw
2014-08-13
In electron cryo-microscopy (cryo-EM), the electron beam that is used for imaging also causes the sample to move. This motion blurs the images and limits the resolution attainable by single-particle analysis. In a previous Research article (Bai et al., 2013) we showed that correcting for this motion by processing movies from fast direct-electron detectors allowed structure determination to near-atomic resolution from 35,000 ribosome particles. In this Research advance article, we show that an improved movie processing algorithm is applicable to a much wider range of specimens. The new algorithm estimates straight movement tracks by considering multiple particles that are close to each other in the field of view, and models the fall-off of high-resolution information content by radiation damage in a dose-dependent manner. Application of the new algorithm to four data sets illustrates its potential for significantly improving cryo-EM structures, even for particles that are smaller than 200 kDa. Copyright © 2014, Scheres.
On a Possibility of the Gravitational Wave Detection at the High Energy Colliders
NASA Astrophysics Data System (ADS)
Verma, Murli Manohar
A strong follow up of a previous proposal (ICHEP, Valencia 2014) is made leading to the first experiment to observe the gravitational waves at the collision sites at the colliders such as the Large Hadron Collider at CERN. The amplitudes have been calculated with regard to the sensitivity of the detector. Compared with the standard model physics, it is shown to have a measurable impact on the particle motions and corresponds to ‘missing’ energy in form of the gravitational wave loss. This is unlike the cosmological detectors like BICEP2 etc. where the indirect B mode polarization on CMBR were masked by dust. In contrast, this experiment would be the first experiment where the energy-momentum tensor of the source can be controlled.
Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
NASA Astrophysics Data System (ADS)
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue
2012-04-01
The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.
Han, Bin; Xu, X. George; Chen, George T. Y.
2011-01-01
Purpose: Monte Carlo methods are used to simulate and optimize a time-resolved proton range telescope (TRRT) in localization of intrafractional and interfractional motions of lung tumor and in quantification of proton range variations. Methods: The Monte Carlo N-Particle eXtended (MCNPX) code with a particle tracking feature was employed to evaluate the TRRT performance, especially in visualizing and quantifying proton range variations during respiration. Protons of 230 MeV were tracked one by one as they pass through position detectors, patient 4DCT phantom, and finally scintillator detectors that measured residual ranges. The energy response of the scintillator telescope was investigated. Mass density and elemental composition of tissues were defined for 4DCT data. Results: Proton water equivalent length (WEL) was deduced by a reconstruction algorithm that incorporates linear proton track and lateral spatial discrimination to improve the image quality. 4DCT data for three patients were used to visualize and measure tumor motion and WEL variations. The tumor trajectories extracted from the WEL map were found to be within ∼1 mm agreement with direct 4DCT measurement. Quantitative WEL variation studies showed that the proton radiograph is a good representation of WEL changes from entrance to distal of the target. Conclusions:MCNPX simulation results showed that TRRT can accurately track the motion of the tumor and detect the WEL variations. Image quality was optimized by choosing proton energy, testing parameters of image reconstruction algorithm, and comparing to ground truth 4DCT. The future study will demonstrate the feasibility of using the time resolved proton radiography as an imaging tool for proton treatments of lung tumors. PMID:21626923
Disconnections kinks and competing modes in shear-coupled grain boundary migration
NASA Astrophysics Data System (ADS)
Combe, N.; Mompiou, F.; Legros, M.
2016-01-01
The response of small-grained metals to mechanical stress is investigated by a theoretical study of the elementary mechanisms occurring during the shear-coupled migration of grain boundaries (GB). Investigating a model Σ 17 (410 ) GB in a copper bicrystal, both <110 > and <100 > GB migration modes are studied focusing on both the structural and energetic characteristics. The minimum energy paths of these shear-coupled GB migrations are computed using the nudge elastic band method. For both modes, the GB migration occurs through the nucleation and motion of disconnections. However, the atomic mechanisms of both modes qualitatively differ: While the <110 > mode presents no metastable state, the <100 > mode shows multiple metastable states, some of them evidencing some kinks along the disconnection lines. Disconnection kinks nucleation and motion activation energies are evaluated. Besides, the activation energies of the <100 > mode are smaller than those of the <110 > one except for very high stresses. These results significantly improve our knowledge of the GB migration mechanisms and the conditions under which they occur.
VanRullen, Rufin; Pascual-Leone, Alvaro; Battelli, Lorella
2008-01-01
A continuous periodic motion stimulus can sometimes be perceived moving in the wrong direction. These illusory reversals have been taken as evidence that part of the motion perception system samples its inputs as a series of discrete snapshots –although other explanations of the phenomenon have been proposed, that rely on the spurious activation of low-level motion detectors in early visual areas. We have hypothesized that the right inferior parietal lobe (‘when’ pathway) plays a critical role in timing perceptual events relative to one another, and thus we examined the role of the right parietal lobe in the generation of this “continuous Wagon Wheel Illusion” (c-WWI). Consistent with our hypothesis, we found that the illusion was effectively weakened following disruption of right, but not left, parietal regions by low frequency repetitive transcranial magnetic stimulation (1 Hz, 10 min). These results were independent of whether the motion stimulus was shown in the left or the right visual field. Thus, the c-WWI appears to depend on higher-order attentional mechanisms that are supported by the ‘when’ pathway of the right parietal lobe. PMID:18682842
Tricoli, Ugo; Macdonald, Callum M; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A
2018-02-01
Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.
NASA Astrophysics Data System (ADS)
Tricoli, Ugo; Macdonald, Callum M.; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A.
2018-02-01
Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.
ECLAIRs detection plane: current state of development
NASA Astrophysics Data System (ADS)
Lacombe, K.; Pons, R.; Amoros, C.; Atteia, J.-L.; Barret, D.; Billot, M.; Bordon, S.; Cordier, B.; Gevin, O.; Godet, O.; Gonzalez, F.; Houret, B.; Mercier, K.; Mandrou, P.; Marty, W.; Nasser, G.; Rambaud, D.; Ramon, P.; Rouaix, G.; Waegebaert, V.
2014-07-01
ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate Gamma-ray bursts (GRBs) in near real time in the 4-150 keV energy band. The design of ECLAIRs has been mainly driven by the objective of achieving a low-energy threshold of 4 keV, unprecedented for this type of instrument. The detection plane is an assembly of 6400 Schottky CdTe semiconductor detectors of size 4x4x1 mm3 organized on elementary hybrid matrices of 4x8 detectors. The detectors will be polarized from -300V to -500V and operated at -20°C to reduce both the leakage current and the polarization effect induced by the Schottky contact. The remarkable low-energy threshold homogeneity required for the detection plane has been achieved thanks to: i) an extensive characterization and selection of the detectors, ii) the development of a specific low-noise 32-channel ASIC, iii) the realization of an innovative hybrid module composed of a thick film ceramic (holding 32 CdTe detectors with their high voltage grid), associated to an HTCC ceramic (housing the ASIC chip within an hermetic enclosure). In this paper, we start describing a complete hybrid matrix, and then the manufacturing of a first set of 50 matrices (representing 1600 detectors, i.e. a quarter of ECLAIRs detector's array). We show how this manufacturing allowed to validate the different technologies used for this hybridization, as well as the industrialization processes. During this phase, we systematically measured the leakage current on Detector Ceramics after an outgassing, and the Equivalent Noise Charge (ENC) for each of the 32 channels on ASIC Ceramics, in order to optimize the coupling of the two ceramics. Finally, we performed on each hybrid module, spectral measurements at -20°C in our vacuum chamber, using several calibrated radioactive sources (241Am and 55Fe), to check the performance homogeneity of the 50 modules. The results demonstrated that the 32-detector hybrid matrices presented homogeneous spectral properties and that a lowenergy threshold of 4 keV for each detector could be reached. In conclusion, our hybrid module has obtained the performance required at the SVOM mission level and successfully withstood the space environment tests (TRL 6/7). This development phase has given us the opportunity to build a detector's array prototype (Engineering Model) equipped with 50 hybrid modules. Thanks to this prototype we are in the process of validating a complete detection chain (from the detectors to the backend electronics) and checking the performance. In addition it enables us to consolidate the instrument's mechanical and thermal design, and to write preliminary versions of the quality procedures required for integration, functional tests and calibration steps. At the end of this prototype development and testing, we will be ready to start the detailed design of the detection plane Flight Model.
Motion compensation using origin ensembles in awake small animal positron emission tomography
NASA Astrophysics Data System (ADS)
Gillam, John E.; Angelis, Georgios I.; Kyme, Andre Z.; Meikle, Steven R.
2017-02-01
In emission tomographic imaging, the stochastic origin ensembles algorithm provides unique information regarding the detected counts given the measured data. Precision in both voxel and region-wise parameters may be determined for a single data set based on the posterior distribution of the count density allowing uncertainty estimates to be allocated to quantitative measures. Uncertainty estimates are of particular importance in awake animal neurological and behavioral studies for which head motion, unique for each acquired data set, perturbs the measured data. Motion compensation can be conducted when rigid head pose is measured during the scan. However, errors in pose measurements used for compensation can degrade the data and hence quantitative outcomes. In this investigation motion compensation and detector resolution models were incorporated into the basic origin ensembles algorithm and an efficient approach to computation was developed. The approach was validated against maximum liklihood—expectation maximisation and tested using simulated data. The resultant algorithm was then used to analyse quantitative uncertainty in regional activity estimates arising from changes in pose measurement precision. Finally, the posterior covariance acquired from a single data set was used to describe correlations between regions of interest providing information about pose measurement precision that may be useful in system analysis and design. The investigation demonstrates the use of origin ensembles as a powerful framework for evaluating statistical uncertainty of voxel and regional estimates. While in this investigation rigid motion was considered in the context of awake animal PET, the extension to arbitrary motion may provide clinical utility where respiratory or cardiac motion perturb the measured data.
Maddali, S.; Calvo-Almazan, I.; Almer, J.; ...
2018-03-21
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddali, S.; Calvo-Almazan, I.; Almer, J.
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less
Gravitational Wave Detection on the Moon and the Moons of Mars
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; YethadkaVenkateswara, Krishna
2004-01-01
The Moon and the moons of Mars should be extremely quiet seismically and could therefore become sensitive gravitational wave detectors, if instrumented properly. Highly sensitive displacement sensors could be deployed on these planetary bodies to monitor the motion induced by gravitational waves. A superconducting displacement sensor with a 10-kg test mass cooled to 2 K will have an intrinsic instrument noise of 10(exp -16) m Hz(exp -1/2). These sensors could be tuned to the lowest two quadrupole modes of the body or operated as a wideband detector below its fundamental mode. An interesting frequency range is 0.1 to approx. 1 Hz, which will be missed by both the ground detectors on the Earth and LISA and would be the best window for searching for stochastic background gravitational waves. Phobos and Deimos have their lowest quadrupole modes at 0.2 to approx. 0.3 Hz and could offer a sensitivity h(sub min) = 10(exp -22) Hz(exp -1/2) within their resonance peaks, which is within two orders of magnitude from the goal of the Big Bang Observer (BBO). The lunar and Martian moon detectors would detect many interesting foreground sources in a new frequency window and could serve as a valuable precursor for BBO.
Maddali, S; Calvo-Almazan, I; Almer, J; Kenesei, P; Park, J-S; Harder, R; Nashed, Y; Hruszkewycz, S O
2018-03-21
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this data set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. We use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, P; Cheng, S; Chao, C
Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. Themore » new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during therapy.« less
A Third Type of Defensive Behavior in the Tenebrionid Beetle Zophobas atratus Pupae
Ichikawa, Toshio; Sakamoto, Hirofumi
2013-01-01
Pupae of the tenebrionid beetle Zophobas atratus Fabricius (Coleoptera: Tenebrionidae) exhibit two types of reflex abdominal motions in response to tactile stimulation: circular rotation and lateral bending to close pinching devices (gin-traps). In the present study, the pupa exhibited novel, sequential abdominal movements at 0.3–2.2 sec after the onset of mechanical stimulation. The most effective stimulation was gentle, double brushing on the ventral surface of an abdominal segment (sternite). The sequential abdominal movements consisted of the following three types of discrete elementary motions (100–350 ms in duration): rapid vibration of 30–40 Hz, circular rotation (or swing), and small wiggling movements. A sequence of abdominal movements generally started with a few bouts of vibration, but the number and order of subsequent motions varied considerably among different sessions and conditions. A restrained pupa often showed a prolonged sequence of many motions, including several rotations, whereas an unrestrained pupa often shortened the sequence by skipping a few rotations after the displacement of its whole body induced by the first abdominal rotation. Stimulation of two types of mechanosensitive sensilla, the hair sensilla (touch sensors) and campaniform sensilla (strain sensors), seemed to be necessary to initiate the defensive response. In natural environments, crawling of a small predator (or parasitoid) on the surface of the abdomen or repeated attacks of a large predator may induce this defensive response in the pupae. PMID:23895506
2013-09-26
vehicle-lengths between frames. The low specificity of object detectors in WAMI means all vehicle detections are treated equally. Motion clutter...timing of the anomaly . If an anomaly was detected , recent activity would have a priority over older activity. This is due to the reasoning that if the...this could be a potential anomaly detected . Other baseline activities include normal work hours, religious observance times and interactions between
Specialization of Perceptual Processes.
1994-09-01
population rose and fell, furniture was rearranged, a small mountain range was built in part of the lab (really), carpets were shampooed , and oce lighting...common task is the tracking of moving objects. Coombs [22] implemented a system 44 for xating and tracking objects using a stereo eye/ head system...be a person (person?). Finally, a motion unit is used to detect foot gestures. A pair of nod-of-the- head detectors were implemented and tested, but
The WIYN One Degree Imager - Status and Performance
NASA Astrophysics Data System (ADS)
Boroson, Todd A.
2013-06-01
A preliminary version of the WIYN One Degree Imager (ODI) has been commissioned and put into scientific operation. ODI was designed to take advantage of the excellent image quality and wide field of view of the WIYN 3.5m telescope. It will do this by covering a one square degree focal plane with orthogonal transfer array (OTA) detectors, which have the capability to correct for image motion during the exposure in regions approximately the size of the isokinetic patch. The partial ODI (pODI) differs from the complete ODI in two ways - only 13 of the 64 OTAs populate the focal plane, and only coherent image motion correction is enabled. However, this implementation has allowed the commissioning of the instrument with all subsystems except the additional detectors in place. The 13 OTAs are configured as a 24 X 24 arcminute “science field”, plus 4 outer OTAs, allowing the sampling of all radii within the one square degree field. pODI is now in use for science observations as we prepare to upgrade the focal plane. The performance of pODI is excellent. Image quality is site seeing limited, and, on good seeing nights, we can achieve images around 0.4 arcsec FWHM over the entire field. The guide signal, from selected regions in the outer OTAs, can be passed to the telescope exclusively, or the high frequency component can be applied as a global shift to the OTAs. We are still in the process of characterizing the gains from this coherent correction, but the detectors perform well in this mode. Data are immediately transferred to an archive at Indiana University, where they are pipeline-processed to remove instrumental signature. The OTA detectors perform adequately in terms of read noise, full well, sensitivity, and dark current. They show 2 anomalies: (1) regions in the circuitry outside the imaging area glow under certain circumstances, and (2) a low level degradation of charge transfer efficiency is present between the imaging area and the serial registers. We have found ways to address both of these effects in operation, calibration, and post-processing, and the instrument is producing valuable scientific observations.
NASA Astrophysics Data System (ADS)
Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.
2018-03-01
A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.
NASA Astrophysics Data System (ADS)
Couturier, C.; Riffard, Q.; Sauzet, N.; Guillaudin, O.; Naraghi, F.; Santos, D.
2017-11-01
Low-pressure gaseous TPCs are well suited detectors to correlate the directions of nuclear recoils to the galactic Dark Matter (DM) halo. Indeed, in addition to providing a measure of the energy deposition due to the elastic scattering of a DM particle on a nucleus in the target gas, they allow for the reconstruction of the track of the recoiling nucleus. In order to exclude the background events originating from radioactive decays on the surfaces of the detector materials within the drift volume, efforts are ongoing to precisely localize the track nuclear recoil in the drift volume along the axis perpendicular to the cathode plane. We report here the implementation of the measure of the signal induced on the cathode by the motion of the primary electrons toward the anode in a MIMAC chamber. As a validation, we performed an independent measurement of the drift velocity of the electrons in the considered gas mixture, correlating in time the cathode signal with the measure of the arrival times of the electrons on the anode.
Status of the DRIFT-II Directional Dark Matter Detector
NASA Astrophysics Data System (ADS)
Ghag, Chamkaur
2006-10-01
DRIFT is a directional dark matter detection programme that utilises the fact that as the Earth rotates and revolves around the Sun, an annual and diurnal signal modulation could be detected as a result of relative motion between the Earth and the non-rotating WIMP halo. This would provide very strong evidience of WIMPs since such a signal could not be mimicked by background sources. DRIFT II is an array of gas filled time projection chambers (TPCs) with Multi Wire Proportional Counter (MWPC) readout. Signals from different types of events differ greatly, between nuclear and electron recoils for example, due to the amount of ionisation initially produced and recombination times. This provides phenomenal discrimination capabilities. The first module of the DRIFT-II detector was successfully installed underground at Boulby Mine, N. Yorkshire early last year and has proven very stable, collecting high quality calibration and WIMP data. Since then a second module has been installed and is also currently operational. This presentation will describe the status of the detector and will focus on the determination of neutron efficiency and gamma rejection factors.
NASA Astrophysics Data System (ADS)
Silva, Adrian; Schmookler, Barak; Papadopoulou, Afroditi; Schmidt, Axel; Hen, Or; Khachatryan, Mariana; Weinstein, Lawrence
2017-09-01
Using wide phase-space electron scattering data, we study a novel technique for neutrino energy reconstruction for future neutrino oscillation experiments. Accelerator-based neutrino oscillation experiments require detailed understanding of neutrino-nucleus interactions, which are complicated by the underlying nuclear physics that governs the process. One area of concern is that neutrino energy must be reconstructed event-by-event from the final-state kinematics. In charged-current quasielastic scattering, Fermi motion of nucleons prevents exact energy reconstruction. However, in scattering from deuterium, the momentum of the electron and proton constrain the neutrino energy exactly, offering a new avenue for reducing systematic uncertainties. To test this approach, we analyzed d (e ,e' p) data taken with the CLAS detector at Jefferson Lab Hall B and made kinematic selection cuts to obtain quasielastic events. We estimated the remaining inelastic background by using d (e ,e' pπ-) events to produce a simulated dataset of events with an undetected π-. These results demonstrate the feasibility of energy reconstruction in a hypothetical future deuterium-based neutrino detector. Supported by the Paul E. Gray UROP Fund, MIT.
An IR Navigation System for Pleural PDT
NASA Astrophysics Data System (ADS)
Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith
2015-03-01
Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1993-01-01
A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.
The fractal nature of vacuum arc cathode spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
2005-05-27
Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Severalmore » points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.« less
Classical plasma dynamics of Mie-oscillations in atomic clusters
NASA Astrophysics Data System (ADS)
Kull, H.-J.; El-Khawaldeh, A.
2018-04-01
Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].
Research in High Energy Physics at Duke University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark
2013-07-29
This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM)more » and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water- lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.« less
Texture dependence of motion sensing and free flight behavior in blowflies
Lindemann, Jens P.; Egelhaaf, Martin
2013-01-01
Many flying insects exhibit an active flight and gaze strategy: purely translational flight segments alternate with quick turns called saccades. To generate such a saccadic flight pattern, the animals decide the timing, direction, and amplitude of the next saccade during the previous translatory intersaccadic interval. The information underlying these decisions is assumed to be extracted from the retinal image displacements (optic flow), which scale with the distance to objects during the intersaccadic flight phases. In an earlier study we proposed a saccade-generation mechanism based on the responses of large-field motion-sensitive neurons. In closed-loop simulations we achieved collision avoidance behavior in a limited set of environments but observed collisions in others. Here we show by open-loop simulations that the cause of this observation is the known texture-dependence of elementary motion detection in flies, reflected also in the responses of large-field neurons as used in our model. We verified by electrophysiological experiments that this result is not an artifact of the sensory model. Already subtle changes in the texture may lead to qualitative differences in the responses of both our model cells and their biological counterparts in the fly's brain. Nonetheless, free flight behavior of blowflies is only moderately affected by such texture changes. This divergent texture dependence of motion-sensitive neurons and behavioral performance suggests either mechanisms that compensate for the texture dependence of the visual motion pathway at the level of the circuits generating the saccadic turn decisions or the involvement of a hypothetical parallel pathway in saccadic control that provides the information for collision avoidance independent of the textural properties of the environment. PMID:23335890
Tracking 3-D body motion for docking and robot control
NASA Technical Reports Server (NTRS)
Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.
1987-01-01
An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.
Einstein-Podolsky-Rosen-entangled motion of two massive objects
NASA Astrophysics Data System (ADS)
Schnabel, Roman
2015-07-01
In 1935, Einstein, Podolsky, and Rosen (EPR) considered two particles in an entangled state of motion to illustrate why they questioned the completeness of quantum theory. In past decades, microscopic systems with entanglement in various degrees of freedom have successfully been generated, representing compelling evidence to support the completeness of quantum theory. Today, the generation of an EPR-entangled state of motion of two massive objects of up to the kilogram scale seems feasible with state-of-the-art technology. Recently, the generation and verification of EPR-entangled mirror motion in interferometric gravitational wave detectors was proposed, with the aim of testing quantum theory in the regime of macroscopic objects, and to make available nonclassical probe systems for future tests of modified quantum theories that include (nonrelativistic) gravity. The work presented here builds on these earlier results and proposes a specific Michelson interferometer that includes two high-quality laser mirrors of about 0.1 kg mass each. The mirrors are individually suspended as pendula and located close to each other, and cooled to about 4 K. The physical concepts for the generation of the EPR-entangled center-of-mass motion of these two mirrors are described. Apart from a test of quantum mechanics in the macroscopic world, the setup is envisioned to test predictions of yet-to-be-elaborated modified quantum theories that include gravitational effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fattori, G; Klimpki, G; Safai, S
Purpose: We aim to compare the performance of discrete spot- or continuous line scanning combined with rescanning in mitigating residual organ motion during gated proton therapy treatments. Methods: The Quasar respiratory phantom was used to move a 2D scintillation detector on a linear trajectory with sinusoidal motion pattern (sin{sup 4}), 20 mm peak-to-peak amplitude and 5 sec period. Its motion was monitored using a customized solution based on optical tracking technology. We compared spot and line scanning plans for a monoenergetic 150 MeV circular field, 50.4 mm radius at isocenter. Transverse dose distributions at 13 cm depth in PMMA (15.47more » mm water equivalent) were measured to compare three options for motion mitigation: rescanning (10× factor), gating and their combination. The gating window was centered in the trajectory plateau to simulate end-exhale gated treatment in presence of 2 mm and 4 mm residual motion, parallel or perpendicular to the primary scanning direction. Results: When the target moves perpendicular to the primary scanning direction, large dose deviations are measured (γ3%/3mm=47%) without mitigation techniques. Beam gating combined with rescanning restores target coverage (γ3%/3mm=91%). For parallel target motion, observed dose distortions in the non-compensated irradiation are smaller (γ3%/3mm=77%). Beam gating alone recovers the 100% gamma pass-rate at 3%/3mm. Continuous line scanning reduces delivery time by up to 60% with respect to discrete spot scanning in presence of motion mitigation, and improves homogeneity when rescanning is applied (up to 20%, perpendicular motion, 4 mm residual motion). Conclusion: The direction of motion has a large impact on the target dose coverage. Nevertheless, even in the worst case scenario, gating combined with rescanning could mitigate the impact of motion on dose deposition. Moreover, continuous line rescanning improves the robustness against residual motion in the gating window. This study has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n.290605 (PSI-FELLOW/COFUND) and ‘Giuliana and Giorgio Stefanini Foundation’.« less
Improvement of the Davydov theory of bioenergy transport in protein molecular systems.
Pang, X F
2000-11-01
The Hamiltonian and the wave function in the Davydov theory have simultaneously been improved and extended, based on some physical and biological grounds and on results from other models. The equations of motion for the improved Davydov model with a quasicoherent two-quanta state and a new interaction term in the Hamiltonian describe bioenergy transport along the molecular chains in protein molecules by a soliton mechanism. Some elementary properties of the soliton, including the nonlinear coupling energy and greatly increased binding energy of the soliton, are also given. The results obtained suggest that the model could be a candidate for a bioenergy transport mechanism in protein molecules.
The memory effect for plane gravitational waves
NASA Astrophysics Data System (ADS)
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2017-09-01
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zehua, E-mail: zehuatian@126.com; Wang, Jieci; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081
We show how the use of entanglement can enhance the precision of the detection of the Unruh effect with an accelerated probe. We use a two-level atom interacting relativistically with a quantum field as the probe, and treat it as an open quantum system to derive the master equation governing its evolution. By means of quantum state discrimination, we detect the accelerated motion of the atom by examining its time evolving state. It turns out that the optimal strategy for the detection of the Unruh effect, to which the accelerated atom is sensitive, involves letting the atom-thermometer equilibrate with themore » thermal bath. However, introducing initial entanglement between the detector and an external degree of freedom leads to an enhancement of the sensitivity of the detector. Also, the maximum precision is attained within finite time, before equilibration takes place.« less
Radiometrically accurate scene-based nonuniformity correction for array sensors.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2003-10-01
A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.
Neutral particle beam sensing and steering
Maier, II, William B.; Cobb, Donald D.; Robiscoe, Richard T.
1991-01-01
The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...
2017-03-21
Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less
Understanding the composition of nucleon spin with the PHENIX detector at RHIC
Deshpande, Abhay
2015-01-12
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has just finished 14 years of operation. A significant fraction of these operating years were with polarized proton collisions at 62.4, 200, and 500 GeV center of mass, investigating various aspects of nucleon spin through longitudinal and transversely polarized collisions. These data have helped to address some of the most puzzling and fundamental questions in quantum chromodynamics including: what fraction of the nucleon’s spin originates in the gluon’s helicity contribution?, how polarized are the sea quarks?, and what if any, is the evidence for transverse motion of quarks inmore » polarized protons? These questions have been addressed by the PHENIX detector collaboration. We present in this review highlights of the PHENIX results and discuss their impact.« less
Chekmarev, Sergei F
2013-03-01
The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of the flow to find this state.
Variations in global thunderstorm activity inferred from the OTD records
NASA Astrophysics Data System (ADS)
Nickolaenko, A. P.; Hayakawa, M.; Sekiguchi, M.
2006-03-01
We use the data on the planetary distribution of thunderstorms collected by optical transient detector (OTD) to derive the properties of global electric activity. Processing of optical data indicates that modern observations from space confirm the general concept of thunderstorm distribution and motion. Close similarity is demonstrated between the World Meteorological Organization data and modern records including Carnegie curve. Departures noted might be caused by thunderstorms redistribution owing to climate change; the issue deserves a special examination.
Engineering Design Handbook: Environmental Series. Part Three. Induced Environmental Factors
1976-01-20
beams are combined on a photo- detector, a beat frequency at 25 MHz is produced. Periodic motion of the reflecting surface then modulates sidebands...about the 25-MHz beat frequency. The ampli- tude and frequency of the vibration are determined by demodulation of the phase-modulated 25-MHz signal...VibrationBulletin, No. 41, Part 6 (December 1970), pp. 29-34. 70. E. G Fischer, "Sine Beat Vibration Testing Related to Earthquake Response Spectra
Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems
NASA Astrophysics Data System (ADS)
Bertolini, Alessandro; DeSalvo, Riccardo; Fidecaro, Francesco; Francesconi, Mario; Marka, Szabolcs; Sannibale, Virginio; Simonetti, Duccio; Takamori, Akiteru; Tariq, Hareem
2006-01-01
The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150 Hz. The very high mechanical quality factor, Q≃3000 at a resonant frequency of 0.5 Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1 nm, integrated over the frequency band from 0.01 to 150 Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10-3 has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.
Auroral Proper Motion in the Era of AMISR and EMCCD
NASA Astrophysics Data System (ADS)
Semeter, J. L.
2016-12-01
The term "aurora" is a catch-all for luminosity produced by the deposition of magnetospheric energy in the outer atmosphere. The use of this single phenomenological term occludes the rich variety of sources and mechanisms responsible for the excitation. Among these are electron thermal conduction (SAR arcs), electrostatic potential fields ("inverted-V" aurora), wave-particle resonance (Alfvenic aurora, pulsating aurora), pitch-angle scattering (diffuse aurora), and direct injection of plasma sheet particles (PBIs, substorms). Much information about auroral energization has been derived from the energy spectrum of primary particles, which may be measured directly with an in situ detector or indirectly via analysis of the atmospheric response (e.g., auroral spectroscopy, tomography, ionization). Somewhat less emphasized has been the information in the B_perp dimension. Specifically, the scale-dependent motions of auroral forms in the rest frame of the ambient plasma provide a means of partitioning both the source region and the source mechanism. These results, in turn, affect ionospheric state parameters that control the M-I coupling process-most notably, the degree of structure imparted to the conductance field. This paper describes recent results enabled by the advent of two technologies: high frame-rate, high-resolution imaging detectors, and electronically steerable incoherent scatter radar (the AMISR systems). In addition to contributing to our understanding of the aurora, these results may be used in predictive models of multi-scale energy transfer within the disturbed geospace system.
Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Kyle; Rong, Yi, E-mail: yrong@ucdavis.edu
2015-11-15
Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Methods: Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltagemore » (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. Results: The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139 ± 10 ms for MV beams and 92 ± 11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6 ± 3.1 ms for slow, 24.9 ± 2.9 ms for intermediate, and 23.0 ± 20.1 ms for fast speed. Conclusions: A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.« less
Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating.
Woods, Kyle; Rong, Yi
2015-11-01
To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltage (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139±10 ms for MV beams and 92±11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6±3.1 ms for slow, 24.9±2.9 ms for intermediate, and 23.0±20.1 ms for fast speed. A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.
Search for the Theta+ in photoproduction on the deuteron
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.H. Hicks
2005-07-26
A high-statistics experiment on a deuterium target was performed using a real photon beam with energies up to 3.6 GeV at the CLAS detector of Jefferson Lab. The reaction reported here is for {gamma}d {yields} pK{sup -} K{sup +} n where the neutron was identified using the missing mass technique. No statistically significant narrow peak in the mass region from 1.5-1.6 GeV was found. An upper limit on the elementary process {gamma}n {yields} K{sup -} {Theta}{sup +} was estimated to be about 4-5 nb, using a model-dependent correction for rescattering determined from {Lambda}(1520) production. Other reactions with less model-dependence aremore » being pursued.« less
Neutral beam dose and sputtering characteristics in an ion implantation system
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.
1973-01-01
A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.
NASA Astrophysics Data System (ADS)
Rashid, Teeba
Large Hadron Collider (LHC) is a top quark factory, which is the heaviest elementary particle discovered so far. Due to its small life-time top quark decays before hadronization, and hence most of its properties are not washed out. Top quark events are often a large background in many beyond the Standard Model scenarios. For this reason, a deep knowledge of its properties and behavior is of crucial importance in searches for new physics at the LHC. This dissertation describes a measurement of the top anti-top pair production cross-section in tau + jets channel. The measurement is obtained by using 4.7 fb-1 data collected in year 2011 by ATLAS detector from proton proton (pp) collisions at the center of mass energy s = 7 TeV. Selected events are required to have one isolated tau with missing transverse energy and hadronic jets, at least one of which must be originated from a b quark. The measured cross section is 152 +/- 12 (stat.) +28-30 (syst.); +/- 3(lumi.) pb, which is in agreement with standard model predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence themore » name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.« less
Xu, Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee
2011-01-01
Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual energy system used in this study can acquire up to 15 frame of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1 to 3.0 frames /sec). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual-energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy. PMID:21285477
Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee
2011-02-21
Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.
The Use of Lego Technologies in Elementary Teacher Preparation
NASA Astrophysics Data System (ADS)
Hadjiachilleos, Stella; Avraamidou, Lucy; Papastavrou, Stavros
2013-10-01
The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in J Res Sci Teach 36:121-140, 1999; Bryan and Atwater in Sci Educ 8(6):821-839, 2002; Harrington and Hathaway in J Teach Educ 46(4):275-284, 1995). Science teachers are charged with the responsibility of incorporating both cognitive and non-cognitive parameters in their everyday teaching practices. This often results in their reluctance to teach science because they often lack disciplinary and/or pedagogical expertise required to promote science learning. The purpose of this study is to propose an alternative instructional approach in which Lego vehicles were used as a tool to promote pre-service elementary teachers' development and to examine whether there are non-cognitive parameters that promote or obstruct them from using Lego Technologies as a teaching tool. The context of the study was defined by a teacher preparation program of a private university in a small Mediterranean country. A sample of 28 pre-service elementary teachers, working in five 5-6-member groups were involved in scientific inquiries, during which they had to use vehicles in order to solve scientific problems related to concepts such as gear functioning, force, and motion. The nature of their cognitive engagement in the scientific inquiry process, non-cognitive parameters contributing to their cognitive engagement, and the impact of their involvement in the process on their development were examined through qualitative analysis of pre- and post-inquiry interviews, presentations of their solutions to the scientific problems and of their personal reflective journals.
Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells
NASA Astrophysics Data System (ADS)
David, P.; Collet, M.; Cote, J.-M.
2010-03-01
New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. Smart structures combining large arrays of elementary motion pixels are thus being studied so that fundamental properties could be dynamically adjusted. This paper investigates the acoustical capabilities of a network of distributed transducers connected with a suitable controlling strategy. The research aims at designing an integrated active interface for sound attenuation by using suitable changes of acoustical impedance. The control strategy is based on partial differential equations (PDE) and the multiscaled physics of electromechanical elements. Specific techniques based on PDE control theory have provided a simple boundary control equation able to annihilate the reflections of acoustic waves. To experimentally implement the method, the control strategy is discretized as a first order time-space operator. The obtained quasi-collocated architecture, composed of a large number of sensors and actuators, provides high robustness and stability. The experimental results demonstrate how a well controlled active skin can substantially modify sound reflectivity of the acoustical interface and reduce the propagation of acoustic waves.
Astronomy in the College Curriculum for Preservice Elementary Teachers
NASA Astrophysics Data System (ADS)
French, L. M.; MacCormack, A.; Winokur, J.
1997-05-01
Astronomy, astrophysics, and space science play a major role in courses being developed at Wheelock College. The majority of the students are preparing for careers as elementary and early childhood teachers; they will thus be among the first teachers of science a child meets. Wheelock's introductory course in astronomy is based around key topics in the new national science frameworks such as size and scale, our place in the Universe, and light and color. Astrophysics, an intermediate level course, provides a more quantitative survey for those with a background in physical science. An interdisciplinary sequence of two courses, "The Physical Universe" and "The Living World", introduces students to key concepts such as motion and energy. Applications are studied from all of the sciences, including crater formation and the conversion of light to chemical energy in photosynthesis. The interdisciplinary courses have been developed and taught by an astrophysicist, an ecologist, and an early childhood educator. This work has been done under the auspices of TEAMS-BC (Teacher Education Addressing Math and Science in Boston and Cambridge), a Collaborative for Excellence in Teacher Preparation involving Harvard University, MIT, the University of Massachusetts-Boston, Wheelock College, and the Boston and Cambridge Public School Systems.
Chiarelli, Antonio M; Libertino, Sebania; Zappasodi, Filippo; Mazzillo, Massimo; Pompeo, Francesco Di; Merla, Arcangelo; Lombardo, Salvatore; Fallica, Giorgio
2017-07-01
We report development, testing, and in vivo characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers. The coupling of SiPMs and light-emitting diodes (LEDs) made the optical probe lightweight and robust against motion artifacts. After characterization of SiPM performances, which was proven to provide a noise equivalent power below 3 fW, the apparatus was compared through an in vivo experiment to a commercial system relying on laser diodes, PMTs, and optical fibers for light probing and detection. The optical probes were located over the primary sensorimotor cortex and the similarities between the hemodynamic responses to the contralateral motor task were assessed. When compared to other state-of-the-art wearable fNIRS systems, where photodiode detectors are employed, the single photon sensitivity and dynamic range of SiPMs can fully exploit the long and variable interoptode distances needed for correct estimation of brain hemodynamics using CW-fNIRS.
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.
2012-01-01
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).
Electrocardiographically gated 16-section CT of the thorax: cardiac motion suppression.
Hofmann, Lars K; Zou, Kelly H; Costello, Philip; Schoepf, U Joseph
2004-12-01
Thirty patients underwent 16-section multi-detector row computed tomographic (CT) angiography of the thorax with retrospective electrocardiographic gating. Institutional review board approval was obtained for retrospective analysis of CT scan data and records; patient informed consent was not required. Images reconstructed at six different time points (0%, 20%, 40%, 50%, 60%, 80%) within the R-R interval on the electrocardiogram were analyzed by two radiologists for diagnostic quality, to identify suitable reconstruction intervals for optimal suppression of cardiac motion. Five regions of interest (left coronary artery, aortic root, ascending and descending aorta, pulmonary arteries) were evaluated. Best image quality was achieved by referencing image reconstruction to middiastole (50%-60%) for the left coronary artery, aortic root, and ascending aorta. The pulmonary arteries are best displayed during mid- to late diastole (80%). (c) RSNA, 2004
Detecting free-mass common-mode motion induced by incident gravitational waves
NASA Astrophysics Data System (ADS)
Tobar, Michael Edmund; Suzuki, Toshikazu; Kuroda, Kazuaki
1999-05-01
In this paper we show that information on both the differential and common mode free-mass response to a gravitational wave can provide important information on discriminating the direction of the gravitational wave source and between different theories of gravitation. The conventional Michelson interferometer scheme only measures the differential free-mass response. By changing the orientation of the beam splitter, it is possible to configure the detector so it is sensitive to the common-mode of the free-mass motion. The proposed interferometer is an adaptation of the Fox-Smith interferometer. A major limitation to the new scheme is its enhanced sensitivity to laser frequency fluctuations over the conventional, and we propose a method of cancelling these fluctuations. The configuration could be used in parallel to the conventional differential detection scheme with a significant sensitivity and bandwidth.
Improving Planck calibration by including frequency-dependent relativistic corrections
NASA Astrophysics Data System (ADS)
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves
NASA Astrophysics Data System (ADS)
Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.
2018-02-01
The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.
Dual-energy imaging using a photon counting detector with electronic spectrum-splitting
NASA Astrophysics Data System (ADS)
Bornefalk, Hans; Lundqvist, Mats
2006-03-01
This paper presents a dual-energy imaging technique optimized for contrast-enhanced mammography using a photon counting detector. Each photon pulse is processed separately in the detector and the addition of an electronic threshold near the middle of the energy range of the x-ray spectrum allows discrimination of high and low energy photons. This effectively makes the detector energy sensitive, and allows the acquisition of high- and low-energy images simultaneously. These high- and low-energy images can be combined to dual-energy images where the anatomical clutter has been suppressed. By setting the electronic threshold close to 33.2 keV (the k-edge of iodine) the system is optimized for dual-energy contrast-enhanced imaging of breast tumors. Compared to other approaches, this method not only eliminates the need for separate exposures that might lead to motion artifacts, it also eliminates the otherwise deteriorating overlap between high- and low-energy spectra. We present phantom dual-energy images acquired on a prototype system to illustrate that the technique is already operational, albeit in its infancy. We also present a theoretical estimation of the potential gain in tumor signal-difference-to-noise ratio when using this electronic spectrum-splitting method as opposed to acquiring the high- and low-energy images separately with double exposures with separate x-ray spectra. Assuming ideal energy sensitive photon counting detectors, we arrive at the conclusion that the signal-difference-to-noise ratio could be increased by 145% at constant dose. We also illustrate our results on synthetic images.
Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence
2018-06-01
Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants with maximum dose deviations greater than 3.7%, dose deviation as a function of fraction number was protracted. For treatments on the Halcyon 1.0 linear accelerator, the convergence of dose deviation with fraction number happened more slowly than reported for conventional linear accelerators. However, if plan complexity is reduced for IMRT and if tumor motion is less than ~10-mm, interplay is greatly reduced. To minimize dose deviations across multiple fractions for dynamic targets, we recommend limiting treatment plan complexity and avoiding one-arc VMAT on the Halcyon 1.0 linear accelerator when interplay is a concern. © 2018 American Association of Physicists in Medicine.
Relativistic quantum optics: The relativistic invariance of the light-matter interaction models
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; Rodriguez-Lopez, Pablo
2018-05-01
In this article we discuss the invariance under general changes of reference frame of all the physical predictions of particle detector models in quantum field theory in general and, in particular, of those used in quantum optics to model atoms interacting with light. We find explicitly how the light-matter interaction Hamiltonians change under general coordinate transformations, and analyze the subtleties of the Hamiltonians commonly used to describe the light-matter interaction when relativistic motion is taken into account.
Improvised Explosive Devise Placement Detection from a Semi-Autonomous Ground Vehicle
2006-12-01
is not autonomous, weighs approximately 100 lbs , costs well over $50,000, and has dimensions of approximately 3’ x 2’ x 3’ [Ref. 2]. These factors...bottom. 2. Power Bus and Battery The power bus with battery consists of all commercial off the shelf (COTS) products. The battery (Figure 10) is...camera is mounted on AGV’s shelf , above the motion detectors (future locations will include a more protected area). Figure 29. D-Link, DCS-900
Using touchscreens as position detectors in physics experiments
NASA Astrophysics Data System (ADS)
Dilek, Ufuk; Kaya Şengören, Serap
2017-05-01
The position of a ball was measured by using the touchscreen of a mobile phone during its rolling motion. The translational speed of the ball was determined using the recorded position and time data. The speed was also calculated by a conventional method. The speed values determined by the two methods were consistent, thus it was proven that a touchscreen could be used to detect position in physics experiments. Touchscreens of other smart mobile devices and touch tables can also be used for the same purpose.
JASMINE project Instrument design and centroiding experiment
NASA Astrophysics Data System (ADS)
Yano, Taihei; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki
JASMINE will study the fundamental structure and evolution of the Milky Way Galaxy. To accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about 10 million stars with a precision of 10 μarcsec at z = 14 mag. In this paper the instrument design (optics, detectors, etc.) of JASMINE is presented. We also show a CCD centroiding experiment for estimating positions of star images. The experimental result shows that the accuracy of estimated distances has a variance of less than 0.01 pixel.
A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector
NASA Astrophysics Data System (ADS)
Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.
2015-01-01
We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.
NASA Astrophysics Data System (ADS)
Hendry, Martin; Woan, Graham
2007-02-01
Like the surface of a busy swimming pool, spacetime is awash with waves generated by the local and distant motions of mass and, in principle, much of this activity can be reconstructed by analysing the waveforms. However, instrumentation with a reasonable chance of directly detecting these gravitational waves has only become available within the past year, with the LIGO detectors now running at design sensitivity. Here we review the burgeoning field of observational gravitational astrophysics: using gravitational wave detectors as telescopes to help answer a wide range of astrophysical questions from neutron-star physics to cosmology. The next generation of ground-based telescopes should be able to make extensive gravitational observations of some of the more energetic events in our local universe. Looking only slightly further ahead, the space-based LISA observatory will reveal the gravitational universe in phenomenal detail, supplying high-quality data on perhaps thousands of sources, and tackling some of the most fascinating questions in contemporary astronomy.
Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate
NASA Astrophysics Data System (ADS)
Khoshouei, Maryam; Radjainia, Mazdak; Baumeister, Wolfgang; Danev, Radostin
2017-06-01
With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination.
Advances in Dust Detection and Removal for Tokamaks
NASA Astrophysics Data System (ADS)
Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.
2008-11-01
Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
NASA Technical Reports Server (NTRS)
Kogut, J.; Larduinat, E.
1984-01-01
The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.
Bistatic LIDAR experiment proposed for the shuttle/tethered satellite system missions
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Spense, H. E.; Karl, R. R.; Horak, H. G.; Wilkerson, T. D.
1986-01-01
A new experiment concept has been proposed for the shuttle/tethered satellite system missions, which can provide high resolution, global density mappings of certain ionospheric species. The technique utilizes bistatic LIDAR to take advantage of the unique dual platform configuration offered by these missions. A tuned, shuttle-based laser is used to excite a column of the atmosphere adjacent to the tethered satellite, while triangulating photometic detectors on the satellite are employed to measure the fluorescence from sections of the column. The fluorescent intensity at the detectors is increased about six decades over both ground-based and monostatic shuttle-based LIDAR sounding of the same region. In addition, the orbital motion of the Shuttle provides for quasi-global mapping unattainable with ground-based observations. Since this technique provides such vastly improved resolution on a synoptic scale, many important middle atmospheric studies, heretofore untenable, may soon be addressed.
The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization
NASA Technical Reports Server (NTRS)
1980-01-01
Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.
Semiclassical Wigner theory of photodissociation in three dimensions: Shedding light on its basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbelo-González, W.; CNRS, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence; Université Bordeaux, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence
2015-04-07
The semiclassical Wigner theory (SCWT) of photodissociation dynamics, initially proposed by Brown and Heller [J. Chem. Phys. 75, 186 (1981)] in order to describe state distributions in the products of direct collinear photodissociations, was recently extended to realistic three-dimensional triatomic processes of the same type [Arbelo-González et al., Phys. Chem. Chem. Phys. 15, 9994 (2013)]. The resulting approach, which takes into account rotational motions in addition to vibrational and translational ones, was applied to a triatomic-like model of methyl iodide photodissociation and its predictions were found to be in nearly quantitative agreement with rigorous quantum results, but at a muchmore » lower computational cost, making thereby SCWT a potential tool for the study of polyatomic reaction dynamics. Here, we analyse the main reasons for this agreement by means of an elementary model of fragmentation explicitly dealing with the rotational motion only. We show that our formulation of SCWT makes it a semiclassical approximation to an approximate planar quantum treatment of the dynamics, both of sufficient quality for the whole treatment to be satisfying.« less
Elementary quantum mechanics of the neutron with an electric dipole moment
Baym, Gordon; Beck, D. H.
2016-01-01
The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, D→, is not constrained to lie along the spin operator. Although the expectation value of D→ in the neutron is less than 10−13 of the neutron radius, rn, the expectation value of D→ 2 is of order rn2. We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron. PMID:27325765
Elementary quantum mechanics of the neutron with an electric dipole moment.
Baym, Gordon; Beck, D H
2016-07-05
The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.
Free Cooling of a Granular Gas of Rodlike Particles in Microgravity
NASA Astrophysics Data System (ADS)
Harth, Kirsten; Trittel, Torsten; Wegner, Sandra; Stannarius, Ralf
2018-05-01
Granular gases as dilute ensembles of particles in random motion are at the basis of elementary structure-forming processes in the Universe, involved in many industrial and natural phenomena, and also excellent models to study fundamental statistical dynamics. The essential difference to molecular gases is the energy dissipation in particle collisions. Its most striking manifestation is the so-called granular cooling, the gradual loss of mechanical energy E (t ) in the absence of external excitation. We report an experimental study of homogeneous cooling of three-dimensional granular gases in microgravity. The asymptotic scaling E (t )∝t-2 obtained by Haff's minimal model [J. Fluid Mech. 134, 401 (1983), 10.1017/S0022112083003419] proves to be robust, despite the violation of several of its central assumptions. The shape anisotropy of the grains influences the characteristic time of energy loss quantitatively but not qualitatively. We compare kinetic energies in the individual degrees of freedom and find a slight predominance of translational motions. In addition, we observe a preferred rod alignment in the flight direction, as known from active matter or animal flocks.
A contribution to calculation of the mathematical pendulum
NASA Astrophysics Data System (ADS)
Anakhaev, K. N.
2014-11-01
In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.
TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Y; Zhang, Y; Shao, Y
Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with themore » source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm{sup 3} voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.« less
Chandra Radiation Environment Modeling
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, W. C.
2003-01-01
CRMFLX (Chandra Radiation Model of ion FluX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operations times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space Chandra must operate, and on-board particle detectors do not measure proton flux levels of the required energy range. This presentation will describe the plasma environment data analysis and modeling basis of the CRMFLX engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. The recently released CRMFLX Version 2 implementation includes an algorithm that propagates flux from an observation location to other regions of the magnetosphere based on convective ExB and VB-curvature particle drift motions. This technique has the advantage of more completely filling out the database and makes maximum use of limited data obtained during high Kp periods or in areas of the magnetosphere with poor satellite flux measurement coverage.
Optical and IR applications in astronomy and astrophysics
NASA Astrophysics Data System (ADS)
McLean, Ian S.
2009-06-01
The set comprising silicon charge-coupled devices, low band-gap infrared arrays and bolometer arrays provide astronomers with position-sensitive photon detectors from the X-ray to the sub-mm. In recent years the most significant advances have occurred in the near-infrared part of the spectrum because not only have the detector formats caught up with those of charge-coupled device (CCDs) but also because the advent of adaptive optics (AO) has meant that the very largest telescopes can achieve their diffraction limit in the near-infrared. Thus infrared cameras, spectrometers and hybrid instruments that measure spatial and spectral information simultaneously are now commanding the greatest attention on telescopes from 6.5 to 10 m in effective aperture. Scientific applications of these new infrared instruments span everything from the search for nearby solar systems to the orbital motions of stars about the massive black hole at the center of the Milky Way, and studies of the first galaxies to form in the high redshift Universe. Background, principles and applications of infrared array detectors to astronomy and astrophysics will be discussed with particular emphasis on work at the W.M. Keck 10-m telescope on Mauna Kea, Hawaii.
Discovery potential for directional dark matter detection with nuclear emulsions
NASA Astrophysics Data System (ADS)
Guler, A. M.;
2017-06-01
Direct Dark Matter searches are nowadays one of the most exciting research topics. Several Experimental efforts are concentrated on the development, construction, and operation of detectors looking for the scattering of target nuclei with Weakly Interactive Massive Particles (WIMPs). In this field a new frontier can be opened by directional detectors able to reconstruct the direction of the WIMP-recoiled nucleus thus allowing to extend dark matter searches beyond the neutrino floor. Exploiting directionality would also give a proof of the galactic origin of dark matter making it possible to have a clear and unambiguous signal to background separation. The angular distribution of WIPM-scattered nuclei is indeed expected to be peaked in the direction of the motion of the Solar System in the Galaxy, i.e. toward the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on the use of gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we show the potentiality in terms of exclusion limit of a directional experiment based on the use of a solid target made by newly developed nuclear emulsions and read-out systems reaching sub-micrometric resolution.
Effectiveness of using a magnetic spectrograph with the Trojan Horse method
NASA Astrophysics Data System (ADS)
Manwell, S.; Parikh, A.; Chen, A. A.; de Séréville, N.; Adsley, P.; Irvine, D.; Hammache, F.; Stefan, I.; Longland, R. F.; Tomlinson, J.; Morfuace, P.; Le Crom, B.
2018-01-01
The Trojan Horse method relies on performing reactions in a specific kinematic phase space that maximizes contributions of a quasi-free reaction mechanism. The hallmark of this method is that the incident particle can be accelerated to high enough energies to overcome the Coulomb barrier of the target, but once inside the target nucleus the relative motion of the clustered nuclei allows the reaction of interest to proceed at energies below this Coulomb Barrier. This method allows the experimentalist to probe reactions that have significance in astrophysics at low reaction energies that would otherwise be impossible due to the vanishing cross section. Traditionally the Trojan Horse method has been applied with the use of silicon detectors to observe the reaction products. In this study we apply the Trojan Horse method to a well studied reaction to examine the potential benefits of using a splitpole magnetic spectrograph to detect one of the reaction products. We have measure the three body 7Li(d,αn)α reaction to constrain the energy 7Li(d,α)α cross section. Measurements were first made using two silicon detectors, and then by replacing one detector with the magnetic spectrograph. The experimental design, limitations, and early results are discussed.
An autonomous single-piston engine with a quantum rotor
NASA Astrophysics Data System (ADS)
Roulet, Alexandre; Nimmrichter, Stefan; Taylor, Jacob M.
2018-07-01
Pistons are elementary components of a wide variety of thermal engines, allowing to convert input fuel into rotational motion. Here, we propose a single-piston engine where the rotational degree of freedom is effectively realized by the flux of a Josephson loop—a quantum rotor—while the working volume corresponds to the effective length of a superconducting resonator. Our autonomous design implements a Carnot cycle, relies solely on standard thermal baths and can be implemented with circuit quantum electrodynamics. We demonstrate how the engine is able to extract a net positive work via its built-in synchronicity using a filter cavity as an effective valve, eliminating the need for external control.
Water Dynamics in the Hydration Shells of Biomolecules
2017-01-01
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491
STS-54 MS3 Helms uses DSO 802 & Physics of Toys fish toy on OV-105's middeck
1993-01-15
STS054-S-019 (15 Jan 1993) --- Helms with a fish toy on the middeck demonstrates some of the physics of toys to students watching on television. Four schools were chosen to ask questions of the astronauts during the lengthy program. Helms fielded questions from students at Shaver Elementary School in Portland, Oregon. The fish was used to demonstrate Newton's third law of motion and the conservation of angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the fall of this year. The scene was recorded at 17:50:08:27 GMT, Jan. 15, 1993.
STS-54 MS3 Helms uses DSO 802 & Physics of Toys frog toy on OV-105's middeck
1993-01-15
STS054-S-021 (15 Jan 1993) --- Helms with a frog swimmer toy on the middeck demonstrates some of the physics of toys to students watching on television. Four schools were chosen to ask questions of the astronauts during the lengthy program. Helms fielded questions from students at Shaver Elementary School in Portland, Oregon. The swimmer frog was used to demonstrate Newton's third law of motion and the conservation of angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the fall of this year. The scene was recorded at 17:51:38:12 GMT, Jan. 15, 1993.
Theory and simulations of adhesion receptor dimerization on membrane surfaces.
Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam
2013-03-19
The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.