NASA Astrophysics Data System (ADS)
DeLuca, R.
2006-03-01
Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.
Track Picture Book. Elementary Science Study.
ERIC Educational Resources Information Center
Webster, David; And Others
This picture book was designed to be used with an Elementary Science Study unit that provides opportunities for students in grades 4-6 to study animal tracks. Shown within this book are numerous examples of tracks, including those of tires, human beings, animal tracks, and others in various media, such as snow, sand, mud, dust, and cement. (CS)
High-Speed Automatic Microscopy for Real Time Tracks Reconstruction in Nuclear Emulsion
NASA Astrophysics Data System (ADS)
D'Ambrosio, N.
2006-06-01
The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) experiment will use a massive nuclear emulsion detector to search for /spl nu//sub /spl mu///spl rarr//spl nu//sub /spl tau// oscillation by identifying /spl tau/ leptons through the direct detection of their decay topology. The feasibility of experiments using a large mass emulsion detector is linked to the impressive progress under way in the development of automatic emulsion analysis. A new generation of scanning systems requires the development of fast automatic microscopes for emulsion scanning and image analysis to reconstruct tracks of elementary particles. The paper presents the European Scanning System (ESS) developed in the framework of OPERA collaboration.
Particle Accelerators Test Cosmological Theory.
ERIC Educational Resources Information Center
Schramm, David N.; Steigman, Gary
1988-01-01
Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)
Electron, Muon, and Tau Heavy Lepton--Are These the Truly Elementary Particles?
ERIC Educational Resources Information Center
Perl, Martin L.
1980-01-01
Discussed is the present concept of the ultimate nature of matter--the elementary particle. An explanation is given for why the lepton family of particles--the electron, muon, and tau--may be truly elementary. The tau lepton is described in more detail. (Author/DS)
The Richtmyer Memorial Lecture--When is a Particle?
ERIC Educational Resources Information Center
Drell, Sidney D.
1978-01-01
Discusses the concept of elementary particles. Reviews the history of the neutrino, and explains why the quarks, although they themselves are not "observed" in isolation, are to be considered elementary particles. (GA)
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan; Gholibeigian, Zeinab
2015-04-01
Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.
ERIC Educational Resources Information Center
Drell, Sidney D.
1978-01-01
Gives a new definition for the concept of the elementary particle in nuclear physics. Explains why the existance of the quark as an elementary particle could be an accepted fact even though it lacks what traditionally identifies a particle. Compares this with the development which took place during the discovery of the neutrino in the early…
NASA Technical Reports Server (NTRS)
Perkins, D. H.
1986-01-01
Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.
Latest AMS Results on elementary particles in cosmic rays
NASA Astrophysics Data System (ADS)
Kounine, Andrei; AMS Collaboration
2017-01-01
AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.
Teacher's Guide for Tracks. Elementary Science Study.
ERIC Educational Resources Information Center
Alexander, David; And Others
This teacher's guide suggests activities that provide opportunities for students in grades 4-6 to study animal tracks. Methods are explained for using sets of 52 Track Cards which show life-size drawings of tracks made by 14 animals; sets of 10 large Mystery Track Cards with life-size drawings of the prints of large mammals; and a Track Picture…
Teaching Elementary Particle Physics: Part I
ERIC Educational Resources Information Center
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called "high energy physics," in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a…
100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pais, Abraham; Weinberg, Steven; Quigg, Chris
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
100 years of Elementary Particles [Beam Line, vol. 27, issue 1, Spring 1997
DOE R&D Accomplishments Database
Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K. H.; Trimble, Virginia
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
Plato's Ideas and the Theories of Modern Particle Physics: Amazing Parallels
NASA Astrophysics Data System (ADS)
Machleidt, Ruprecht
2006-05-01
It is generally known that the question, ``What are the most elementary particles that all matter is made from?'', was already posed in the antiquity. The Greek natural philosophers Leucippus and Democritus were the first to suggest that all matter was made from atoms. Therefore, most people perceive them as the ancient fathers of elementary particle physics. However, this perception is wrong. Modern particle physics is not just a simple atomism. The characteristic point of modern particle theory is that it is concerned with the symmetries underlying the particles we discover in experiment. More than 2000 years ago, a similar idea was already advanced by the Greek philosopher Plato in his dialogue Timaeus: Geometric symmetries generate the atoms from just a few even more elementary items. Plato's vision is amazingly close to the ideas of modern particle theory. This fact, which is unfortunately little known, has been pointed out repeatedly by Werner Heisenberg.
ERIC Educational Resources Information Center
Clint, Frank Anthony
2012-01-01
This qualitative, action-research study used themes from appreciative interviews of Texas elementary teachers to recommend a framework for a school-wide assessment model for a Texas elementary school. The specific problem was that the Texas accountability system used a yearly measurement that failed to track progress over time and failed to…
Plato's TIMAIOσ (TIMAEUS) and Modern Particle Physics
NASA Astrophysics Data System (ADS)
Machleidt, Ruprecht
2005-04-01
It is generally known that the question, ``What are the smallest particles (elementary particles) that all matter is made from?'', was posed already in the antiquity. The Greek natural philosophers Leucippus and Democritus were the first to suggest that all matter was made from atoms. Therefore, most people perceive them as the ancient fathers of elementary particle physics. It will be the purpose of my contribution to point out that this perception is wrong. Modern particle physics is not just a primitive atomism. More important than the materialistic particles are the underlying symmetries (e. g., SU(3) and SU(6)). A similar idea was first advanced by Plato in his dialog TIMAIOσ (Latin translation: TIMAEUS): Geometric symmetries generate the materialistic particles from a few even more elementary items. Plato's vision is amazingly close to the ideas of modern particle physics. This fact, which is unfortunately little known, has been pointed out repeatedly by Heisenberg (see, e. g., Werner Heisenberg, Across the Frontiers, Harper & Row, New York, 1974).
Higgs Particle: The Origin of Mass
NASA Astrophysics Data System (ADS)
Okada, Yasuhiro
2007-11-01
The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.
Tracking single particle rotation: Probing dynamics in four dimensions
Anthony, Stephen Michael; Yu, Yan
2015-04-29
Direct visualization and tracking of small particles at high spatial and temporal resolution provides a powerful approach to probing complex dynamics and interactions in chemical and biological processes. Analysis of the rotational dynamics of particles adds a new dimension of information that is otherwise impossible to obtain with conventional 3-D particle tracking. In this review, we survey recent advances in single-particle rotational tracking, with highlights on the rotational tracking of optically anisotropic Janus particles. Furthermore, strengths and weaknesses of the various particle tracking methods, and their applications are discussed.
Instrumentation for Applied Physics and Industrial Applications
NASA Astrophysics Data System (ADS)
Hillemanns, H.; Le Goff, J.-M.
This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content:
Quantum Optics, Diffraction Theory, and Elementary Particle Physics
Glauber, Roy
2018-05-22
Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.
NASA Astrophysics Data System (ADS)
Nakahata, Masayuki
This document is part of Subvolume A `Theory and Experiments' of Volume 21 `Elementary Particles' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It contains of the Chapter `11 Experimental Results on Neutrino Masses and Mixings' the Section `11.2 Solar Neutrinos' with the content:
In search of elementary spin 0 particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasny, Mieczyslaw Witold, E-mail: krasny@lpnhep.in2p3.fr; Płaczek, Wiesław
2015-01-15
The Standard Model of strong and electroweak interactions uses point-like spin 1/2 particles as the building bricks of matter and point-like spin 1 particles as the force carriers. One of the most important questions to be answered by the present and future particle physics experiments is whether the elementary spin 0 particles exist, and if they do, what are their interactions with the spin 1/2 and spin 1 particles. Spin 0 particles have been searched extensively over the last decades. Several initial claims of their discoveries were finally disproved in the final experimental scrutiny process. The recent observation of themore » excess of events at the LHC in the final states involving a pair of vector bosons, or photons, is commonly interpreted as the discovery of the first elementary scalar particle, the Higgs boson. In this paper we recall examples of claims and subsequent disillusions in precedent searches spin 0 particles. We address the question if the LHC Higgs discovery can already be taken for granted, or, as it turned out important in the past, whether it requires a further experimental scrutiny before the existence of the first ever found elementary scalar particle is proven beyond any doubt. An example of the Double Drell–Yan process for which such a scrutiny is indispensable is discussed in some detail. - Highlights: • We present a short history of searches of spin 0 particles. • We construct a model of the Double Drell–Yan Process (DDYP) at the LHC. • We investigate the contribution of the DDYP to the Higgs searches background.« less
Development of Concepts in the History of Quantum Theory
ERIC Educational Resources Information Center
Heisenberg, Werner
1975-01-01
Traces the development of quantum theory from the concept of the discrete stationary states, to the generalized concept of state, to the search for the elementary particle. States that the concept of the elementary particle should be replaced by the concept of a fundamental symmetry. (MLH)
ERIC Educational Resources Information Center
Akerson, Valarie L.; Pongsanon, Khemmawadee; Weiland, Ingrid S.; Nargund-Joshi, Vanashri
2014-01-01
This study explores the development of professional identity as a teacher of nature of science (NOS). Our research question was "How can a teacher develop a professional identity as an elementary teacher of NOS?" Through a researcher log, videotaped lessons, and collection of student work, we were able to track efforts in teaching NOS as…
ERIC Educational Resources Information Center
Jackson, C. Kirabo
2013-01-01
Unlike in elementary school, high-school teacher effects may be confounded with both selection to tracks and unobserved track-level treatments. I document sizable confounding track effects, and show that traditional tests for the existence of teacher effects are likely biased. After accounting for these biases, high-school algebra and English…
PEAS AND PARTICLES, TEACHER'S GUIDE.
ERIC Educational Resources Information Center
1966
THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT ON "PEAS AND PARTICLES" WHICH DEALS WITH LARGE NUMBERS AND ESTIMATIONS. ITS PURPOSE IS TO GIVE ELEMENTARY SCHOOL CHILDREN AN UNDERSTANDING OF WHAT LARGE NUMBERS MEAN THROUGH INFORMAL ACTIVITIES INVOLVING FAMILIAR OBJECTS. THE MATERIAL HAS BEEN FOUND SUITABLE…
A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof
NASA Astrophysics Data System (ADS)
Sinha, Ashok
2016-03-01
An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.
Halyo; Kim; Lee; Lee; Loomba; Perl
2000-03-20
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.
Particle tracking in drug and gene delivery research: State-of-the-art applications and methods.
Schuster, Benjamin S; Ensign, Laura M; Allan, Daniel B; Suk, Jung Soo; Hanes, Justin
2015-08-30
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful. Copyright © 2015 Elsevier B.V. All rights reserved.
Final Report May 1, 2012 to May 31, 2015: "Theoretical Studies in Elementary Particle Physics"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John C.; Roiban, Radu
2015-08-19
This final report summarizes work at Penn State University from May 1, 2012 to May 31, 2015. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.
Multisensor fusion for 3D target tracking using track-before-detect particle filter
NASA Astrophysics Data System (ADS)
Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.
2015-05-01
This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.
Durability of Multi-Track Year-Round Elementary School Principals.
ERIC Educational Resources Information Center
Borba, John A.
2000-01-01
A followup study surveyed 79 principals of year-round, multitrack California elementary schools. YRE principal persistence between 1993 and 1998 was lower than that of counterparts in traditional-schedule schools. YRE schools need increased administrative support; their principals need stress management strategies. (Contains 14 references.) (MLH)
The Influence of Different Representations on Solving Concentration Problems at Elementary School
NASA Astrophysics Data System (ADS)
Liu, Chia-Ju; Shen, Ming-Hsun
2011-10-01
This study investigated the students' learning process of the concept of concentration at the elementary school level in Taiwan. The influence of different representational types on the process of proportional reasoning was also explored. The participants included nineteen third-grade and eighteen fifth-grade students. Eye-tracking technology was used in conducting the experiment. The materials were adapted from Noelting's (1980a) "orange juice test" experiment. All problems on concentration included three stages (the intuitive, the concrete operational, and the formal operational), and each problem was displayed in iconic and symbolic representations. The data were collected through eye-tracking technology and post-test interviews. The results showed that the representational types influenced students' solving of concentration problems. Furthermore, the data on eye movement indicated that students used different strategies or rules to solve concentration problems at the different stages of the problems with different representational types. This study is intended to contribute to the understanding of elementary school students' problem-solving strategies and the usability of eye-tracking technology in related studies.
Teaching the Conceptual Scheme "The Particle Nature of Matter" in the Elementary School.
ERIC Educational Resources Information Center
Pella, Milton O.; And Others
Conclusions of an extensive project aimed to prepare lessons and associated materials related to teaching concepts included in the scheme "The Particle Nature of Matter" for grades two through six are presented. The hypothesis formulated for the project was that children in elementary schools can learn theoretical concepts related to the particle…
Big Bang Day: 5 Particles - 3. The Anti-particle
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.
Big Bang Day: 5 Particles - 3. The Anti-particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existencemore » be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.« less
Improving z-tracking accuracy in the two-photon single-particle tracking microscope.
Liu, C; Liu, Y-L; Perillo, E P; Jiang, N; Dunn, A K; Yeh, H-C
2015-10-12
Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico . Our method can be generally applied to other 3D single-particle tracking techniques.
Improving z-tracking accuracy in the two-photon single-particle tracking microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Liu, Y.-L.; Perillo, E. P.
Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we havemore » precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.« less
Elementary particles, dark matter candidate and new extended standard model
NASA Astrophysics Data System (ADS)
Hwang, Jaekwang
2017-01-01
Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.
NASA Astrophysics Data System (ADS)
Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling
2015-01-01
The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.
Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.
Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae
2013-01-01
Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.
A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments
NASA Technical Reports Server (NTRS)
McDowell, Mark
2008-01-01
An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent
REVIEWS OF TOPICAL PROBLEMS: Elementary particles and cosmology (Metagalaxy and Universe)
NASA Astrophysics Data System (ADS)
Rozental', I. L.
1997-08-01
The close relation between cosmology and the theory of elementary particles is analyzed in the light of prospects of a unified field theory. The unity of their respective problems and solution methodologies is indicated. The difference between the concepts of 'Metagalaxy' and 'Universe' is emphasized and some possible schemes for estimating the size of the Universe are pointed out.
ERIC Educational Resources Information Center
Anchorage School District, AK.
This resource book introduces fourth-grade children to nature around them by studying animal tracks and other animal evidence. The lessons and concepts covered in this unit are designed to develop an awareness and appreciation of animals in our environment. Ten lessons are provided including: (1) identifying holes, tracks, and scratches; (2)…
Non-iterative double-frame 2D/3D particle tracking velocimetry
NASA Astrophysics Data System (ADS)
Fuchs, Thomas; Hain, Rainer; Kähler, Christian J.
2017-09-01
In recent years, the detection of individual particle images and their tracking over time to determine the local flow velocity has become quite popular for planar and volumetric measurements. Particle tracking velocimetry has strong advantages compared to the statistical analysis of an ensemble of particle images by means of cross-correlation approaches, such as particle image velocimetry. Tracking individual particles does not suffer from spatial averaging and therefore bias errors can be avoided. Furthermore, the spatial resolution can be increased up to the sub-pixel level for mean fields. A maximization of the spatial resolution for instantaneous measurements requires high seeding concentrations. However, it is still challenging to track particles at high seeding concentrations, if no time series is available. Tracking methods used under these conditions are typically very complex iterative algorithms, which require expert knowledge due to the large number of adjustable parameters. To overcome these drawbacks, a new non-iterative tracking approach is introduced in this letter, which automatically analyzes the motion of the neighboring particles without requiring to specify any parameters, except for the displacement limits. This makes the algorithm very user friendly and also offers unexperienced users to use and implement particle tracking. In addition, the algorithm enables measurements of high speed flows using standard double-pulse equipment and estimates the flow velocity reliably even at large particle image densities.
TQM and Tough Love: At Inner-City Applegate Elementary, There Are High Expectations and No Excuses.
ERIC Educational Resources Information Center
Muir, Maya
2002-01-01
A Portland (Oregon) elementary school, formerly designated a local "crisis school," has improved academic achievement through a combination of Total Quality Management, high expectations, and tough love. Quarterly assessments enable staff to keep track of each student and guide instructional decisions. Small classes, on-site professional…
The Influence of Different Representations on Solving Concentration Problems at Elementary School
ERIC Educational Resources Information Center
Liu, Chia-Ju; Shen, Ming-Hsun
2011-01-01
This study investigated the students' learning process of the concept of concentration at the elementary school level in Taiwan. The influence of different representational types on the process of proportional reasoning was also explored. The participants included nineteen third-grade and eighteen fifth-grade students. Eye-tracking technology was…
Research on the Outcomes of Elementary School Physical Education
ERIC Educational Resources Information Center
Shephard, Roy J.; Trudeau, Francois
2008-01-01
The purpose of this article is to provide an overview of objective assessments of the short- and long-term outcomes of elementary school physical education programs. Evaluations have used a variety of designs, including longitudinal and tracking studies as well as correlational analyses. The short-term effect of physical education on health and…
NASA Astrophysics Data System (ADS)
Ghosh, Avirup; Mondal, Tanmoy; Mukhopadhyaya, Biswarup
2017-12-01
We consider two theoretical scenarios, each including a ℤ 2-odd sector and leading to an elementary dark matter candidate. The first one is a variant of the Type-III seesaw model where one lepton triplet is ℤ 2-odd, together with a heavy sterile neutrino. It leads to a fermionic dark matter, together with the charged component of the triplet being a quasi-stable particle which decays only via a higher-dimensional operator suppressed by a high scale. The second model consists of an inert scalar doublet together with a ℤ 2-odd right-handed Majorana neutrino dark matter. A tiny Yukawa coupling delays the decay of the charged component of the inert doublet into the dark matter candidate, making the former long-lived on the scale of collider detectors. The parameter space of each model has been constrained by big-bang nucleosynthesis constraints, and also by estimating the contribution to the relic density through freeze-out of the long-lived charged particle as well the freeze-in production of the dark matter candidate. We consider two kinds of signals at the Large Hadron Collider for each case. For the first kind of models, namely two charged tracks and single track [InlineMediaObject not available: see fulltext.] and for the second kind, the characteristic signals are opposite as well as same-sign charged track pairs. We perform a detailed analysis using event selection criteria consistent with the current experimental programmes. It is found that the scenario with a lepton triplet can be probed upto 960 (1190) GeV with an integrated luminosity of 300 (3000) fb-1, while the corresponding numbers for the inert doublet scenario are 630 (800) GeV. Furthermore, the second kind of signal mentioned in each case allows us to differentiate different dark matter scenarios from each other.
The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles
NASA Astrophysics Data System (ADS)
Bednyakov, V. A.; Russakovich, N. A.
2018-05-01
The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.
Three-Dimensional Visualization of Particle Tracks.
ERIC Educational Resources Information Center
Julian, Glenn M.
1993-01-01
Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)
Apparatus and method for tracking a molecule or particle in three dimensions
Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM
2009-03-03
An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.
Certain problems in the current theory of gravitation
NASA Astrophysics Data System (ADS)
Markov, M. A.
1984-04-01
A number of problems (considered by the author to be the most significant) connected with the possible role of gravitation in the elementary-particle physics and cosmology are examined. Particular attention is given to the problems of self-energy, the limit mass of elementary particles, maximons and the evolution of the universe, the origin of the universe, and the physical meaning of Planck's length.
ERIC Educational Resources Information Center
Ziegler, Robert Edward
This study is concerned with determining the relative effectiveness of a static and dynamic theoretical model in teaching elementary school students to use the particle idea of matter when explaining certain physical phenomena. A clinical method of personal individual interview-testing, teaching, and retesting of a random sample population from…
Adaptation of reference volumes for correlation-based digital holographic particle tracking
NASA Astrophysics Data System (ADS)
Hesseling, Christina; Peinke, Joachim; Gülker, Gerd
2018-04-01
Numerically reconstructed reference volumes tailored to particle images are used for particle position detection by means of three-dimensional correlation. After a first tracking of these positions, the experimentally recorded particle images are retrieved as a posteriori knowledge about the particle images in the system. This knowledge is used for a further refinement of the detected positions. A transparent description of the individual algorithm steps including the results retrieved with experimental data complete the paper. The work employs extraordinarily small particles, smaller than the pixel pitch of the camera sensor. It is the first approach known to the authors that combines numerical knowledge about particle images and particle images retrieved from the experimental system to an iterative particle tracking approach for digital holographic particle tracking velocimetry.
ERIC Educational Resources Information Center
Huang, Yueh-Min; Liang, Tsung-Ho
2015-01-01
Tracking individual reading behaviors is a difficult task, as is carrying out real-time recording and analysis throughout the reading process, but these aims are worth pursuing. In this study, the reading rate is adopted as an indicator to identify different reading behaviors and comprehension outcomes. A reading rate tracking technique is thus…
Evaluating the Promise of Single-Track Year-Round Schools.
ERIC Educational Resources Information Center
Haenn, Joseph F.
1996-01-01
Describes two single-track year-round elementary schools in Durham, North Carolina, established in discrete attendance zones. Remediation and enrichment activities were provided during intersession. Low-SES students were overrepresented in remediation sessions. Student outcomes data (end-of-grade reading and math test scores) suggest that…
Elementary Particles and Weak Interactions
DOE R&D Accomplishments Database
Lee, T. D.; Yang, C. N.
1957-01-01
Some general patterns of interactions between various elementary particles are reviewed and some general questions concerning the symmetry properties of these particles are studied. Topics are included on the theta-tau puzzle, experimental limits on the validity of parity conservation, some general discussions on the consequences due to possible non-invariance under P, C, and T, various possible experimental tests on invariance under P, C, and T, a two-component theory of the neutrino, a possible law of conservation of leptons and the universal Fermi interactions, and time reversal invariance and Mach's principle. (M.H.R.)
ERIC Educational Resources Information Center
Schuh, Alex
2015-01-01
This study examined the high school experiences, graduation rates and post-secondary attendance rates of students who received need-based scholarships to attend private elementary schools from the Children's Scholarship Fund Baltimore (CSFB). CSFB provides funds to students from low-income families in the Baltimore area to attend the private or…
ERIC Educational Resources Information Center
McCarthy, Maria S.
This study examined the experiences of 15 elementary schools in Washington state demonstrating relatively slow improvement on the reading and mathematics sections of the Washington Assessment of Student Learning. Since the passage of educational reform legislation in 1993, Washington has undertaken a systematic overhaul of its K-12 public school…
Compensation Strategies: Tracking Movement in EFL Learners' Speaking Skills
ERIC Educational Resources Information Center
Karbalaei, Alireza; Negin Taji, Tania
2014-01-01
The present study aimed to determine the compensation strategies used by Iranian elementary EFL learners across the speaking skill. The participants of this study were a sample of 120 EFL elementary male and female learners whose ages ranged between 11 and 25 at a language institute in Rostam, Iran. The main participants were homogenized through…
Proto-experiences and subjective experiences: classical and quantum concepts.
Vimal, Ram Lakhan Pandey
2008-03-01
Deterministic reductive monism and non-reductive substance dualism are two opposite views for consciousness, and both have serious problems. An alternative view is needed. For this, we hypothesize that strings or elementary particles (fermions and bosons) have two aspects: (i) elemental proto-experiences (PEs) as phenomenal aspect, and (ii) mass, charge, and spin as material aspect. Elemental PEs are hypothesized to be the properties of elementary particles and their interactions, which are composed of irreducible fundamental subjective experiences (SEs)/PEs that are in superimposed form in elementary particles and in their interactions. Since SEs/PEs are superimposed, elementary particles are not specific to any SE/PE; they (and all inert matter) are carriers of SEs/PEs, and hence, appear as non-experiential material entities. Furthermore, our hypothesis is that matter and associated elemental PEs co-evolved and co-developed into neural-nets and associated neural-net PEs (neural Darminism), respectively. The signals related to neural PEs interact in a neural-net and neural-net PEs emerges from random process of self-organization. The neural-net PEs are a set of SEs embedded in the neural-net by a non-computational or non-algorithmic process. The non-specificity of elementary particles is transformed into the specificity of neural-nets by neural Darwinism. The specificity of SEs emerges when feedforward and feedback signal interacts in the neuropil and are dependent on wakefulness (i.e., activation) attention, re-entry between neural populations, working memory, stimulus at above threshold, and neural net PE signals. This PE-SE framework integrates reductive and non-reductive views, complements the existing models, bridges the explanatory gaps, and minimizes the problem of causation.
Particle track identification: application of a new technique to apollo helmets.
Fleischer, R L; Hart, H R; Giard, W R
1970-12-11
The Apollo helmets are being used to record the dose of heavy particles to which astronauts are exposed on space missions. An improved method for examining and identifying the etched tracks of heavy charged particles consists of replicating tracks and measuring the etching rate as a function of position along the track. Tracks have been observed in Apollo helmets that correspond to ionized atoms heavier than iron.
Teaching Elementary Particle Physics: Part I1
NASA Astrophysics Data System (ADS)
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called high energy physics, in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a great way to make a fascinating topic meaningless. Students need a conceptual framework from which to view the elementary particles. That conceptual framework is quantum field theory (QFT). Teachers and students alike tend to quake at this topic, but bear with me. We're talking here about concepts, not technicalities. My approach will be conceptual and suitable for non-scientists and scientists; if mathematical details are added in courses for future scientists, they should be simple and sparse. Introductory students should not be expected to do QFT, but only to understand its concepts. Those concepts take some getting used to, but they are simple and can be understood by any literate person, be she plumber, attorney, musician, or physicist.
Ding, Yu; Li, Chunqiang
2016-01-01
Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724
How to Integrate Bilingual Education without Tracking.
ERIC Educational Resources Information Center
Glenn, Charles L.
1990-01-01
Integrated schools that stress learning among students in two languages are called two-way schools. They provide a singularly rich educational environment and avoid the negative effects of educational segregation by tracking. A Chelsea, Massachusetts, bilingual elementary school focused on team building to use existing resources more effectively.…
Tracking the Integration of Library Skills in the Curriculum.
ERIC Educational Resources Information Center
Gill, Suzanne L.
2003-01-01
Describes the use of IMSeries software, a relational database capable of implementing curriculum design, in an elementary school. Topics include Big6 research skills; tracking the scope and sequence of curriculum; tying library skills to curricular disciplines; information literacy; and examples of a lesson unit and assessment strategy. (LRW)
A Coincidental Sound Track for "Time Flies"
ERIC Educational Resources Information Center
Cardany, Audrey Berger
2014-01-01
Sound tracks serve a valuable purpose in film and video by helping tell a story, create a mood, and signal coming events. Holst's "Mars" from "The Planets" yields a coincidental soundtrack to Eric Rohmann's Caldecott-winning book, "Time Flies." This pairing provides opportunities for upper elementary and…
Paglieroni, David W [Pleasanton, CA; Manay, Siddharth [Livermore, CA
2011-12-20
A stochastic method and system for detecting polygon structures in images, by detecting a set of best matching corners of predetermined acuteness .alpha. of a polygon model from a set of similarity scores based on GDM features of corners, and tracking polygon boundaries as particle tracks using a sequential Monte Carlo approach. The tracking involves initializing polygon boundary tracking by selecting pairs of corners from the set of best matching corners to define a first side of a corresponding polygon boundary; tracking all intermediate sides of the polygon boundaries using a particle filter, and terminating polygon boundary tracking by determining the last side of the tracked polygon boundaries to close the polygon boundaries. The particle tracks are then blended to determine polygon matches, which may be made available, such as to a user, for ranking and inspection.
Positron emission particle tracking and its application to granular media
NASA Astrophysics Data System (ADS)
Parker, D. J.
2017-05-01
Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.
Determination of time zero from a charged particle detector
Green, Jesse Andrew [Los Alamos, NM
2011-03-15
A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.
On charged particle tracks in cellulose nitrate and Lexan
NASA Technical Reports Server (NTRS)
Benton, E. V.; Henke, R. P.
1972-01-01
Investigations were performed aimed at developing plastic nuclear track detectors into quantitative tools for recording and measuring multicharged, heavy particles. Accurate track etch rate measurements as a function of LET were performed for cellulose nitrate and Lexan plastic detectors. This was done using a variety of incident charged particle types and energies. The effect of aging of latent tracks in Lexan in different gaseous atmospheres was investigated. Range distributions of high energy N-14 particle bevatron beams in nuclear emulsion were measured. Investigation of charge resolution and Bragg peak measurements were carried out using plastic nuclear track detectors.
Langford, Seth T.; Wiggins, Cody S.; Santos, Roque; ...
2017-07-06
A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, Seth T.; Wiggins, Cody S.; Santos, Roque
A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences
Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong
2016-01-01
Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514
Survey of Indoor Radon Concentrations in California Elementary Schools. Final Report.
ERIC Educational Resources Information Center
Zhou, Joey Y.; Liu, Kai-Shen; Waldman, Jed
This paper reports on the concentrations of radon found within a sample of 378 elementary schools in California. Long-term alpha-track radon detectors were placed in 6,485 classrooms within participating schools to detect radon levels for between 220 to 366 days. Only classrooms were tested. Results show that about 5.6 percent of the schools…
Tracking and people counting using Particle Filter Method
NASA Astrophysics Data System (ADS)
Sulistyaningrum, D. R.; Setiyono, B.; Rizky, M. S.
2018-03-01
In recent years, technology has developed quite rapidly, especially in the field of object tracking. Moreover, if the object under study is a person and the number of people a lot. The purpose of this research is to apply Particle Filter method for tracking and counting people in certain area. Tracking people will be rather difficult if there are some obstacles, one of which is occlusion. The stages of tracking and people counting scheme in this study include pre-processing, segmentation using Gaussian Mixture Model (GMM), tracking using particle filter, and counting based on centroid. The Particle Filter method uses the estimated motion included in the model used. The test results show that the tracking and people counting can be done well with an average accuracy of 89.33% and 77.33% respectively from six videos test data. In the process of tracking people, the results are good if there is partial occlusion and no occlusion
Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV
NASA Astrophysics Data System (ADS)
Elsinga, G. E.; Tokgoz, S.
2014-08-01
This paper discusses and compares several methods, which aim to remove spurious peaks, i.e. ghost particles, from the volume intensity reconstruction in tomographic-PIV. The assessment is based on numerical simulations of time-resolved tomographic-PIV experiments in linear shear flows. Within the reconstructed volumes, intensity peaks are detected and tracked over time. These peaks are associated with particles (either ghosts or actual particles) and are characterized by their peak intensity, size and track length. Peak intensity and track length are found to be effective in discriminating between most ghosts and the actual particles, although not all ghosts can be detected using only a single threshold. The size of the reconstructed particles does not reveal an important difference between ghosts and actual particles. The joint distribution of peak intensity and track length however does, under certain conditions, allow a complete separation of ghosts and actual particles. The ghosts can have either a high intensity or a long track length, but not both combined, like all the actual particles. Removing the detected ghosts from the reconstructed volume and performing additional MART iterations can decrease the particle position error at low to moderate seeding densities, but increases the position error, velocity error and tracking errors at higher densities. The observed trends in the joint distribution of peak intensity and track length are confirmed by results from a real experiment in laminar Taylor-Couette flow. This diagnostic plot allows an estimate of the number of ghosts that are indistinguishable from the actual particles.
Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian
2018-04-03
Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.
Adaptive particle filter for robust visual tracking
NASA Astrophysics Data System (ADS)
Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai
2009-10-01
Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.
Where Has the Money Been Going? A Preliminary Update. EPI Briefing Paper #281
ERIC Educational Resources Information Center
Alonso, Juan Diego; Rothstein, Richard
2010-01-01
For two decades, researchers at the Economic Policy Institute have been tracking nine school districts, typical of districts nationwide, to understand how the spending levels and composition in elementary and secondary education have changed over time. The first report, "Where's the Money Gone?" (1995) tracked expenditures from 1967 to…
Optical tracking of nanoscale particles in microscale environments
NASA Astrophysics Data System (ADS)
Mathai, P. P.; Liddle, J. A.; Stavis, S. M.
2016-03-01
The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.
Apparent electric charge of protein molecules. Human thyroxine - binding proteins.
Hocman, G; Sadlon, J
1977-01-01
1. By comparison of electrophoretic mobilities of two different charged particles under the same conditions the net elementary electrostatic charge of one particle could be calculated when the charge of the other is known. 2. The electrophoretic mobility of human thyroxine - binding globulin does not depend upon the concentration of Tris - HCl buffer in the range 0.05 to 0.20 molar. The value of this mobility is 0.078 and 0.083 cm2 vol(-1) hour(-1) at pH 7.0 and 8.6, respectively. 3. The net elementary electrostatic charge of the human thyroxine - binding globulin appears to be approximately 22 negative elementary electrostatic units in mild alkaline solutions.
USDA-ARS?s Scientific Manuscript database
A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The Multiple-Particle Tracking (MPT) method was used in this study, which was originally described by ...
A high-speed tracking algorithm for dense granular media
NASA Astrophysics Data System (ADS)
Cerda, Mauricio; Navarro, Cristóbal A.; Silva, Juan; Waitukaitis, Scott R.; Mujica, Nicolás; Hitschfeld, Nancy
2018-06-01
Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10 × when compared to a sequential CPU implementation in C and up to 40 × when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions.
ERIC Educational Resources Information Center
Bruner, Charles; Discher, Anne; Chang, Hedy
2011-01-01
Chronic absenteeism--or missing 10 percent or more of school days for any reason--is a proven early warning sign of academic risk and school dropout. Too often, though, this problem is overlooked, especially among elementary students, because of the way attendance data are tracked. This study confirms the premise that districts and schools may…
Current experiments in elementary particle physics. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Armstrong, F.E.; von Przewoski, B.
1994-08-01
This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
NASA Astrophysics Data System (ADS)
Hartman, John; Kirby, Brian
2017-03-01
Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.
Optical tracking of nanoscale particles in microscale environments
Mathai, P. P.; Liddle, J. A.; Stavis, S. M.
2016-01-01
The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research. PMID:27213022
Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed.
Buist, Kay A; Jayaprakash, Pavithra; Kuipers, J A M; Deen, Niels G; Padding, Johan T
2017-12-01
In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain data on the translational motion only. This paper focusses on the unique capability of Magnetic Particle Tracking to track the orientation of a marker in a full 3-D cylindrical fluidized bed. Stainless steel particles with the same volume and different aspect ratios are fluidized at a range of superficial gas velocities. Spherical and rod-like particles show distinctly different fluidization behavior. Also, the distribution of angles for rod-like particles changes with position in the fluidized bed as well as with the superficial velocity. Magnetic Particle Tracking shows its unique capability to study both spatial distribution and orientation of the particles allowing more in-depth validation of Discrete Particle Models. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 63: 5335-5342, 2017.
Making Tracks 1.0: Action Researching an Active Transportation Education Program
ERIC Educational Resources Information Center
Robinson, Daniel; Foran, Andrew; Robinson, Ingrid
2014-01-01
This paper reports on the results of the first cycle of an action research project. The objective of this action research was to examine the implementation of a school-based active transportation education program (Making Tracks). A two-cycle action research design was employed in which elementary school students' (ages 7-9), middle school…
1983-01-01
Amoebae of Dictyostelium discoideum produce tracks with two distinct morphologies on gold-coated coverslips. The wild-type strain and other strains that feed only by phagocytosis produced indistinct, fuzzy tracks, whereas mutants capable of axenic growth produced clear, sharp tracks. The sharp track morphology was found to be a recessive phenotype that segregates with axenicity and probably requires a previously unidentified axenic mutation. Axenic and nonaxenic strains also differed in their ability to pinocytose. When the two types of cells were shifted from bacterial growth plates to nutrient media, within 24 h the axenic strain established a rapid rate of pinocytosis, approximately 100-fold higher than the low rate detectable for the nonaxenic strain. However, track formation did not appear to be directly related to endocytosis. Electron microscopic examination of cells during track formation showed that both axenic and nonaxenic strains accumulated gold particles on their surfaces, but neither strain internalized the gold to any significant degree. Observation of living cells revealed that axenic strains collected all particles that they contacted, whereas wild-type strains left many particles undisturbed. The size of the gold particle clusters discarded by the cells also contributed to track morphology. PMID:6619183
Current experiments in elementary particle physics. Revised
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Wohl, C.G.; Armstrong, B.
This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Exploring dynamics in living cells by tracking single particles.
Levi, Valeria; Gratton, Enrico
2007-01-01
In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.
Fuzzy logic particle tracking velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
NASA Technical Reports Server (NTRS)
Cruty, M. R.; Benton, E. V.; Turnbill, C. E.; Philpott, D. E.
1975-01-01
Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package.
Chemistry and particle track studies of Apollo 14 glasses.
NASA Technical Reports Server (NTRS)
Glass, B. P.; Storzer, D.; Wagner, G. A.
1972-01-01
The abundance and the composition of Apollo 14 glasses have been studied. Glass particles were analyzed for Si, Ti, Al, Fe, Mn, Mg, Na, and K by electron microprobe analysis. The refractive indices of 26 particles were determined by the oil immersion method. Track analyses have been carried out in order to determine the uranium content and the radiation history of glass particles. The proper identification of galactic and solar flare nuclei tracks makes it possible to estimated residence times of the glass particles in the top layer of the lunar soil.
Interactions and scattering of quantum vortices in a polariton fluid.
Dominici, Lorenzo; Carretero-González, Ricardo; Gianfrate, Antonio; Cuevas-Maraver, Jesús; Rodrigues, Augusto S; Frantzeskakis, Dimitri J; Lerario, Giovanni; Ballarini, Dario; De Giorgi, Milena; Gigli, Giuseppe; Kevrekidis, Panayotis G; Sanvitto, Daniele
2018-04-13
Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.
Modeling the solute transport by particle-tracing method with variable weights
NASA Astrophysics Data System (ADS)
Jiang, J.
2016-12-01
Particle-tracing method is usually used to simulate the solute transport in fracture media. In this method, the concentration at one point is proportional to number of particles visiting this point. However, this method is rather inefficient at the points with small concentration. Few particles visit these points, which leads to violent oscillation or gives zero value of concentration. In this paper, we proposed a particle-tracing method with variable weights. The concentration at one point is proportional to the sum of the weights of the particles visiting it. It adjusts the weight factors during simulations according to the estimated probabilities of corresponding walks. If the weight W of a tracking particle is larger than the relative concentration C at the corresponding site, the tracking particle will be splitted into Int(W/C) copies and each copy will be simulated independently with the weight W/Int(W/C) . If the weight W of a tracking particle is less than the relative concentration C at the corresponding site, the tracking particle will be continually tracked with a probability W/C and the weight will be adjusted to be C. By adjusting weights, the number of visiting particles distributes evenly in the whole range. Through this variable weights scheme, we can eliminate the violent oscillation and increase the accuracy of orders of magnitudes.
Franck, J.V.; Broadhead, P.S.; Skiff, E.W.
1959-07-14
A semiautomatic measuring projector particularly adapted for measurement of the coordinates of photographic images of particle tracks as prcduced in a bubble or cloud chamber is presented. A viewing screen aids the operator in selecting a particle track for measurement. After approximate manual alignment, an image scanning system coupled to a servo control provides automatic exact alignment of a track image with a reference point. The apparatus can follow along a track with a continuous motion while recording coordinate data at various selected points along the track. The coordinate data is recorded on punched cards for subsequent computer calculation of particle trajectory, momentum, etc.
Physics through the 1990s: Elementary-particle physics
NASA Astrophysics Data System (ADS)
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: elementary-particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less
Physics through the 1990s: Elementary-particle physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Accelerating navigation in the VecGeom geometry modeller
NASA Astrophysics Data System (ADS)
Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers, 2017-10-01 The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.
Design Considerations for High Energy Electron -- Positron Storage Rings
DOE R&D Accomplishments Database
Richter, B.
1966-11-01
High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.
NASA Astrophysics Data System (ADS)
Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.
2018-05-01
Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.
Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul
2017-01-01
Abstract Target motion–induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. PMID:28201522
Cheng, Wen-Chang
2012-01-01
In this paper we propose a robust lane detection and tracking method by combining particle filters with the particle swarm optimization method. This method mainly uses the particle filters to detect and track the local optimum of the lane model in the input image and then seeks the global optimal solution of the lane model by a particle swarm optimization method. The particle filter can effectively complete lane detection and tracking in complicated or variable lane environments. However, the result obtained is usually a local optimal system status rather than the global optimal system status. Thus, the particle swarm optimization method is used to further refine the global optimal system status in all system statuses. Since the particle swarm optimization method is a global optimization algorithm based on iterative computing, it can find the global optimal lane model by simulating the food finding way of fish school or insects under the mutual cooperation of all particles. In verification testing, the test environments included highways and ordinary roads as well as straight and curved lanes, uphill and downhill lanes, lane changes, etc. Our proposed method can complete the lane detection and tracking more accurately and effectively then existing options. PMID:23235453
NASA Technical Reports Server (NTRS)
Brenker, Frank E.; Westphal, Andrew J.; Simionovici, Alexandre S.; Flynn, George J.; Gainsforth, Zack; Allen, Carlton C.; Sanford, Scott; Zolensky, Michael E.; Bastien, Ron K.; Frank, David R.
2014-01-01
Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called midnight tracks that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.
Defante, Adrian P; Vreeland, Wyatt N; Benkstein, Kurt D; Ripple, Dean C
2018-05-01
Nanoparticle tracking analysis (NTA) obtains particle size by analysis of particle diffusion through a time series of micrographs and particle count by a count of imaged particles. The number of observed particles imaged is controlled by the scattering cross-section of the particles and by camera settings such as sensitivity and shutter speed. Appropriate camera settings are defined as those that image, track, and analyze a sufficient number of particles for statistical repeatability. Here, we test if image attributes, features captured within the image itself, can provide measurable guidelines to assess the accuracy for particle size and count measurements using NTA. The results show that particle sizing is a robust process independent of image attributes for model systems. However, particle count is sensitive to camera settings. Using open-source software analysis, it was found that a median pixel area, 4 pixels 2 , results in a particle concentration within 20% of the expected value. The distribution of these illuminated pixel areas can also provide clues about the polydispersity of particle solutions prior to using a particle tracking analysis. Using the median pixel area serves as an operator-independent means to assess the quality of the NTA measurement for count. Published by Elsevier Inc.
Teaching Elementary Particle Physics, Part II
ERIC Educational Resources Information Center
Hobson, Art
2011-01-01
In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…
An automatic, stagnation point based algorithm for the delineation of Wellhead Protection Areas
NASA Astrophysics Data System (ADS)
Tosco, Tiziana; Sethi, Rajandrea; di Molfetta, Antonio
2008-07-01
Time-related capture areas are usually delineated using the backward particle tracking method, releasing circles of equally spaced particles around each well. In this way, an accurate delineation often requires both a very high number of particles and a manual capture zone encirclement. The aim of this work was to propose an Automatic Protection Area (APA) delineation algorithm, which can be coupled with any model of flow and particle tracking. The computational time is here reduced, thanks to the use of a limited number of nonequally spaced particles. The particle starting positions are determined coupling forward particle tracking from the stagnation point, and backward particle tracking from the pumping well. The pathlines are postprocessed for a completely automatic delineation of closed perimeters of time-related capture zones. The APA algorithm was tested for a two-dimensional geometry, in homogeneous and nonhomogeneous aquifers, steady state flow conditions, single and multiple wells. Results show that the APA algorithm is robust and able to automatically and accurately reconstruct protection areas with a very small number of particles, also in complex scenarios.
Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah
2015-01-01
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
Particle Tracking Model (PTM) with Coastal Modeling System (CMS)
2015-11-04
Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development
Alpha particle spectroscopy using FNTD and SIM super-resolution microscopy.
Kouwenberg, J J M; Kremers, G J; Slotman, J A; Wolterbeek, H T; Houtsmuller, A B; Denkova, A G; Bos, A J J
2018-06-01
Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution. A pronounced difference was seen in the spatial scattering of alpha particles in the detectors, where SIM showed an almost 50% reduction compared to CLSM. The improved resolution of SIM allows for more detailed studies of the tracks induced by ionising particles. The combination of SIM and FNTDs for alpha radiation paves the way for affordable and fast alpha spectroscopy and dosimetry. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapelain, Antoine
Particle physics aims to give a coherent description of the nature and the behavior of elementary particles of matter. Particle accelerators (colliders) allow pushing back our know- ledge in this domain producing particles that cannot be observed by other means. This thesis work contributes to this research eld and focuses on the study of the top quark which is the latest brick of matter discovered and the heaviest known elementary particle. The property of the top quark studied here, the charge asymmetry of the top quark-antiquark pairs, has driven a lot of attention in 2011 because of measurements released bymore » Tevatron experiments. These measurements showed deviations with the predictions made in the framework of the standard model of particle physics. New measurements of the charge asymmetry performed at the Tevatron (with the D0 detector) and at the LHC (with the ATLAS detector) are presented in this thesis.« less
Scintillator-fiber charged particle track-imaging detector
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Klarmann, J.
1983-01-01
A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
3D laser traking of a particle in 3DFM
NASA Astrophysics Data System (ADS)
Desai, Kalpit; Welch, Gregory; Bishop, Gary; Taylor, Russell; Superfine, Richard
2003-11-01
The principal goal of 3D tracking in our home-built 3D Magnetic Force Microscope is to monitor movement of the particle with respect to laser beam waist and keep the particle at the center of laser beam. The sensory element is a Quadrant Photo Diode (QPD) which captures scattering of light caused by particle motion with bandwidth up to 40 KHz. XYZ translation stage is the driver element which moves particle back in the center of the laser with accuracy of couple of nanometers and with bandwidth up to 300 Hz. Since our particles vary in size, composition and shape, instead of using a priori model we use standard system identification techniques to have optimal approximation to the relationship between particle motion and QPD response. We have developed position feedback control system software that is capable of 3-dimensional tracking of beads that are attached to cilia on living cells which are beating at up to 15Hz. We have also modeled the control system of instrument to simulate performance of 3D particle tracking for different experimental conditions. Given operational level of nanometers, noise poses a great challenge for the tracking system. We propose to use stochastic control theory approaches to increase robustness of tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajt, S; Sandford, S A; Flynn, G J
2007-08-28
Infrared spectroscopy maps of some tracks, made by cometary dust from 81P/Wild 2 impacting Stardust aerogel, reveal an interesting distribution of volatile organic material. Out of six examined tracks three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained excess volatile organic material, they were found to be -CH{sub 2}-rich. Off-normal particle tracks could indicate impacts by lower velocity particles that could have bounced off the Whipple shield, therefore carry off some contamination from it. However, this theory is not supported by data that show excess organic-rich material in normal andmore » off-normal particle tracks. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also include grains that contained little or none of this volatile organic component. This observation is consistent with the highly heterogeneous nature of the collected grains, as seen by a multitude of other analytical techniques. We propose that at least some of the volatile organic material might be of cometary origin based on supporting data shown in this paper. However, we also acknowledge the presence of carbon (primarily as -CH{sub 3}) in the original aerogel, which complicates interpretation of these results.« less
NASA Technical Reports Server (NTRS)
Blanford, G. E., Jr.; Friedlander, M. W.; Hoppe, M.; Klarmann, J.; Walker, R. M.; Wefel, J. P.
1974-01-01
Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high-altitude balloon flights. From an analysis of 141 particle tracks recorded during a total exposure of 13,000,000 sq m-ster-sec, a charge spectrum of the VVH particles has been derived.
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
The Birth of Elementary-Particle Physics.
ERIC Educational Resources Information Center
Brown, Laurie M.; Hoddeson, Lillian
1982-01-01
Traces the origin and development of particle physics, concentrating on the roles of cosmic rays and theory. Includes charts highlighting significant events in the development of cosmic-ray physics and quantum field theory. (SK)
Signal Processing for Radar Target Tracking and Identification
1996-12-01
Computes the likelihood for various potential jump moves. 12. matrix_mult.m: Parallel implementation of linear algebra ... Elementary Lineary Algebra with Applications, John Wiley k Sons, Inc., New York, 1987. [9] A. K. Bhattacharyya, and D. L. Sengupta, Radar Cross...Miller, ’Target Tracking and Recognition Using Jump-Diffusion Processes," ARO’s 11th Army Conf. on Applied Mathemat- ics and Computing, June 8-11
Quarks, Leptons, and Bosons: A Particle Physics Primer.
ERIC Educational Resources Information Center
Wagoner, Robert; Goldsmith, Donald
1983-01-01
Presented is a non-technical introduction to particle physics. The material is adapted from chapter 3 of "Cosmic Horizons," (by Robert Wagoner and Don Goldsmith), a lay-person's introduction to cosmology. Among the topics considered are elementary particles, forces and motion, and higher level structures. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano
In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of thesemore » methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.« less
ERIC Educational Resources Information Center
Pascolini, A.; Pietroni, M.
2002-01-01
We report on an educational project in particle physics based on Feynman diagrams. By dropping the mathematical aspect of the method and keeping just the iconic one, it is possible to convey many different concepts from the world of elementary particles, such as antimatter, conservation laws, particle creation and destruction, real and virtual…
Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih
2017-09-01
Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
Lach, Theodore
2017-01-01
The Checkerboard model of the Nucleus has been in the public domain for over 20 years. Over those years it has been described by nuclear and particle physicists as; cute, ``the Bohr model of the nucleus'' and ``reminiscent of the Eightfold Way''. It has also been ridiculed as numerology, laughed at, and even worse. In 2000 the theory was taken to the next level by attempting to explain why the mass of the ``up'' and ``dn'' quarks were significantly heavier than the SM ``u'' and ``d'' quarks. This resulted in a paper published on arXiv.nucl-th/0008026 in 2000, predicting 5 generations of quarks, each quark and negative lepton particle related to each other by a simple geometric mean. The CBM predicts that the radii of the elementary particles are proportional to the cube root of their masses. This was realized Pythagorean musical intervals (octave, perfect 5th, perfect 4th plus two others). Therefore each generation can be explained by a simple right triangle and the height of the hypotenuse. Notice that the height of a right triangle breaks the hypotenuse into two line segments. The geometric mean of those two segments equals the length of the height of this characteristic triangle. Therefore the CBM theory now predicts that all the elementary particles mass are proportion to the cube of their radii. Therefore the mass density of all elementary particles (and perhaps black holes too) are a constant of nature.
NASA Astrophysics Data System (ADS)
van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.
2018-04-01
Pseudo-tracking refers to the construction of imaginary particle paths from PIV velocity fields and the subsequent estimation of the particle (material) acceleration. In view of the variety of existing and possible alternative ways to perform the pseudo-tracking method, it is not straightforward to select a suitable combination of numerical procedures for its implementation. To address this situation, this paper extends the theoretical framework for the approach. The developed theory is verified by applying various implementations of pseudo-tracking to a simulated PIV experiment. The findings of the investigations allow us to formulate the following insights and practical recommendations: (1) the velocity errors along the imaginary particle track are primarily a function of velocity measurement errors and spatial velocity gradients; (2) the particle path may best be calculated with second-order accurate numerical procedures while ensuring that the CFL condition is met; (3) least-square fitting of a first-order polynomial is a suitable method to estimate the material acceleration from the track; and (4) a suitable track length may be selected on the basis of the variation in material acceleration with track length.
Tracking of Ball and Players in Beach Volleyball Videos
Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern
2014-01-01
This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936
A hand tracking algorithm with particle filter and improved GVF snake model
NASA Astrophysics Data System (ADS)
Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe
2017-07-01
To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.
Fast Track to College Act of 2009
Rep. Kildee, Dale E. [D-MI-5
2009-03-18
House - 03/22/2010 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)
1998-01-01
It is a common practice to estimate the number of particle-track traversals per cell or cell nucleus as the product of the ion's linear energy transfer (LET) and cell area. This practice ignores the effects of track width due to the lateral extension of delta rays. We make estimates of the number of particle-track traversals per cell, which includes the effects of delta rays using radial cutoffs in the ionization density about an ion's track of 1 mGy and 1 cGy. Calculations for laboratory and space radiation exposures are discussed, and show that the LET approximation provides a large underestimate of the actual number of particle-track traversals per cell from high-charge and energy (HZE) ions. In light of the current interest in the mechanisms of radiation action, including signal transduction and cytoplasmic damage, these results should be of interest for radiobiology studies with HZE ions.
Detection limit of a VCO based detection chain dedicated to particles recognition and tracking
NASA Astrophysics Data System (ADS)
Coulié, K.; Rahajandraibe, W.; Aziza, H.; Micolau, G.; Vauché, R.
2018-01-01
A particle detection chain based on CMOS-SOI VCO circuit is presented. The solution is used for the recognition and the tracking of a given particle at circuit level. TCAD simulation of the detector has been performed on a 3×3 matrix of diodes based detector for particles recognition and tracking. The current response of the detector has been used for a case study in order to determine the ability of the chain to recognize an alpha particle crossing a 3×3 detection cell. The detection limit of the proposed solution is investigated and discussed in this paper.
Track-structure simulations for charged particles.
Dingfelder, Michael
2012-11-01
Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.
An Alternative Proposal for the Graphical Representation of Anticolor Charge
ERIC Educational Resources Information Center
Wiener, Gergried J.; Schmeling, Sascha M.; Hopf, Martin
2017-01-01
We have developed a learning unit based on the Standard Model of particle physics, featuring novel typographic illustrations of elementary particles and particle systems. Since the unit includes antiparticles and systems of antiparticles, a visualization of anticolor charge was required. We propose an alternative to the commonly used…
Material content of the universe - Introductory survey
NASA Astrophysics Data System (ADS)
Tayler, R. J.
1986-12-01
Matter in the universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.
Misut, Paul
2014-01-01
A three-dimensional groundwater-flow model is coupled with the particle-tracking program MODPATH to delineate zones of contribution to wells pumping from the Magothy aquifer and supplying water to a chlorinated volatile organic compound removal plant at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York. By use of driller’s logs, a transitional probability approach generated three alternative realizations of heterogeneity within the Magothy aquifer to assess uncertainty in model representation. Finer-grained sediments with low hydraulic conductivity were realized as laterally discontinuous, thickening towards the south, and comprising about 17 percent of the total aquifer volume. Particle-tracking evaluations of a steady state present conditions model with alternative heterogeneity realizations were used to develop zones of contribution of remedial pumping wells. Because of heterogeneity and high rates of advection within the coarse-grained sediments, transport by dispersion and (or) diffusion was assumed to be negligible. Resulting zones of contribution of existing remedial wells are complex shapes, influenced by heterogeneity of each realization and other nearby hydrologic stresses. The use of two particle tracking techniques helped identify zones of contribution to wells. Backtracking techniques and observations of points of intersection of backward-tracked particles at shells of the GM–38 Hot Spot, as defined by surfaces of equal total volatile organic compound concentration, identified the source of water within the GM–38 Hot Spot to simulated wells. Forward-tracking techniques identified the fate of water within the GM–38 Hot Spot, including well capture and discharge to model constant head and drain boundaries. The percentage of backward-tracked particles, started at GM–38 wells that were sourced from within the Hot Spot, varied from 72.0 to 98.2, depending on the Hot Spot delineation used (present steady state model and Magothy aquifer heterogeneity realization A). The percentage of forward-tracked particles that were captured by GM–38 wells varied from 81.1 to 94.6, depending on the Hot Spot delineation used, with the remainder primarily captured by Bethpage Water District Plant 4 production wells (present steady state model and Magothy aquifer heterogeneity realization A). Less than 1 percent of forward-tracked particles ultimately discharge at model constant head and drain boundaries. The differences between forward- and backward-tracked particle percentage ranges are due to some forward-tracked particles not being captured by GM–38 wells, and some backward-tracked particles not intersecting specific regions of the Hot Spot. During 2013, an aquifer test generated detailed time series of well pumping rates and corresponding water-level responses were recorded at numerous locations. These data were used to verify the present conditions steady state model and demonstrate the sensitivity of model results to transient-state changes.
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Ball, A. D.; Wozniakiewicz, P. A.; Graham, G. A.; Burchell, M. J.; Cole, M. J.; Horz, F.; See, T. H.
2007-01-01
The Stardust spacecraft returned the first undoubted samples of cometary dust, with many grains embedded in the silica aerogel collector . Although many tracks contain one or more large terminal particles of a wide range of mineral compositions , there is also abundant material along the track walls. To help interpret the full particle size, structure and mass, both experimental simulation of impact by shots and numerical modeling of the impact process have been attempted. However, all approaches require accurate and precise measurement of impact track size parameters such as length, width and volume of specific portions. To make such measurements is not easy, especially if extensive aerogel fracturing and discoloration has occurred. In this paper we describe the application and limitations of laser confocal imagery for determination of aerogel track parameters, and for the location of particle remains.
NASA Technical Reports Server (NTRS)
Postberg, F.; Sterken, V.; Achilles, C.; Allen, C.; Bastien, R. K.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Butterworth, A.; Gainesforth, Z.
2014-01-01
The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 lm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight spare low-density (approximately 0.01 g/cu cm) silica aerogel. The impact velocities (3-21 km/s) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km/s. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 lm and below hard to identify at low capture speeds (<10 km/s). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found.
Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P
2016-08-26
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Willenbrock, M.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration
2016-08-01
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 ×1 05 antiproton events and 2.42 ×1 09 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ˜60 to ˜500 GV , the antiproton p ¯, proton p , and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e- flux exhibits a different rigidity dependence. Below 60 GV, the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios each reaches a maximum. From ˜60 to ˜500 GV , the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
Luminescent sensors for tracking spatial particle distributions in an explosion
NASA Astrophysics Data System (ADS)
Anderson, Benjamin R.; Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen; Svingala, Forrest R.; Daniels, Amber; Lightstone, James M.
2017-01-01
We previously developed and tested thermally sensitive particles that, when seeded into an explosive event, flow with the expanding post-detonation fireball and provide ex-situ measurements of this thermal environment. This current work presents the development and testing of tracking particles that are used in concert with the thermally sensitive particles to encode the initial positions of materials recovered for ex-situ analysis. These tracking sensors consist of fully-crystallized (c) rare-earth-doped yttria particles such as c-Dy:Y2O3, c-Sm:Y2O3, and c-Er,Yb:Y2O3. The temperature sensors consist of mixtures of precursor (p) and fully crystallized materials such as p-Eu:Y2O3/c-Tb:Y2O3 or p-Eu:ZrO2. Three mixtures containing one of the tracking sensors and one of the temperature sensing mixtures are placed at different locations within the chamber. Post-detonation, the tracking particles in the debris are excited by 355 nm light, resulting in different color luminescence, and allowing for potential visual inspection of the particle distribution originating from the different locations. Meanwhile, the temperature is determined from spectral changes of the precursor sensor materials or by comparison of the precursor sensor materials with the Tb:Y2O3 intensity reference.
Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir
2015-01-01
Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.
Single-camera three-dimensional tracking of natural particulate and zooplankton
NASA Astrophysics Data System (ADS)
Troutman, Valerie A.; Dabiri, John O.
2018-07-01
We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm × 10 cm × 24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.
Yang, Haw; Welsher, Kevin
2016-11-15
A system and method for non-invasively tracking a particle in a sample is disclosed. The system includes a 2-photon or confocal laser scanning microscope (LSM) and a particle-holding device coupled to a stage with X-Y and Z position control. The system also includes a tracking module having a tracking excitation laser, X-Y and Z radiation-gathering components configured to detect deviations of the particle in an X-Y and Z directions. The system also includes a processor coupled to the X-Y and Z radiation gathering components, generate control signals configured to drive the stage X-Y and Z position controls to track the movement of the particle. The system may also include a synchronization module configured to generate LSM pixels stamped with stage position and a processing module configured to generate a 3D image showing the 3D trajectory of a particle using the LSM pixels stamped with stage position.
Nanometer-scale anatomy of entire Stardust tracks
NASA Astrophysics Data System (ADS)
Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo
2011-07-01
We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.
Particles, Feynman Diagrams and All That
ERIC Educational Resources Information Center
Daniel, Michael
2006-01-01
Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.
Duality and 'particle' democracy
NASA Astrophysics Data System (ADS)
Castellani, Elena
2017-08-01
Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.
Elementary particles in the early Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N.A., E-mail: gromov@dm.komisc.ru
The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes inmore » this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.« less
NASA Astrophysics Data System (ADS)
Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus
2017-10-01
We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile robust tracking programs handling these concerns and providing a powerful post-processing option are significantly limited. Solution method: UmUTracker is a multi-functional tool to extract particle positions from long video sequences acquired with either light microscopy or digital holographic microscopy. The program provides an easy-to-use graphical user interface (GUI) for both tracking and post-processing that does not require any programming skills to analyze data from particle tracking experiments. UmUTracker first conduct automatic 2D particle detection even under noisy conditions using a novel circle detector based on the isosceles triangle sampling technique with a multi-scale strategy. To reduce the computational load for 3D tracking, it uses an efficient implementation of the Rayleigh-Sommerfeld light propagation model. To analyze and visualize the data, an efficient data analysis step, which can for example show 4D flow visualization using 3D trajectories, is included. Additionally, UmUTracker is easy to modify with user-customized modules due to the object-oriented programming style Additional comments: Program obtainable from https://sourceforge.net/projects/umutracker/
Resolving occlusion and segmentation errors in multiple video object tracking
NASA Astrophysics Data System (ADS)
Cheng, Hsu-Yung; Hwang, Jenq-Neng
2009-02-01
In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.
Angle only tracking with particle flow filters
NASA Astrophysics Data System (ADS)
Daum, Fred; Huang, Jim
2011-09-01
We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Top Quark and Higgs Boson Physics at LHC-ATLAS
NASA Astrophysics Data System (ADS)
Tomoto, M.
2013-03-01
One of the main goal of the Large Hadron Collider (LHC) experiments at CERN in Switzerland is to aim to solve the "origin of the mass" by discovering the Higgs boson and understanding the interaction of the Higgs boson with the elementary particles. The ATLAS, which is one of the LHC experiments has taken about 5 fb-1 of physics quality data and published several results with regard to the "origin of the mass" since March 2010. This presentation focuses on the latest results of the heaviest elementary particle, namely, top quark physics and the Higgs boson searches from ATLAS.
Noncanonical harmonic and anharmonic oscillator in high-energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannussis, A.; Vavougios, D.
1986-09-01
We study the eigenvalues of the noncanonical harmonic and anharmonic oscillator, by using different values of the elementary length l corresponding to typical cross sections for the strong interactions. There is evidence for a correlation between the energies of elementary particles (mesons, baryons, resonances) and the energy eigenvalues of the noncanonical theory.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1995-01-01
Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the improved spatial resolution which is available from the particle tracking operation. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two staged approach offers a velocimetric technique capable of measuring particle velocities with high spatial resolution over a broad range of seeding densities.
Iterative Track Fitting Using Cluster Classification in Multi Wire Proportional Chamber
NASA Astrophysics Data System (ADS)
Primor, David; Mikenberg, Giora; Etzion, Erez; Messer, Hagit
2007-10-01
This paper addresses the problem of track fitting of a charged particle in a multi wire proportional chamber (MWPC) using cathode readout strips. When a charged particle crosses a MWPC, a positive charge is induced on a cluster of adjacent strips. In the presence of high radiation background, the cluster charge measurements may be contaminated due to background particles, leading to less accurate hit position estimation. The least squares method for track fitting assumes the same position error distribution for all hits and thus loses its optimal properties on contaminated data. For this reason, a new robust algorithm is proposed. The algorithm first uses the known spatial charge distribution caused by a single charged particle over the strips, and classifies the clusters into ldquocleanrdquo and ldquodirtyrdquo clusters. Then, using the classification results, it performs an iterative weighted least squares fitting procedure, updating its optimal weights each iteration. The performance of the suggested algorithm is compared to other track fitting techniques using a simulation of tracks with radiation background. It is shown that the algorithm improves the track fitting performance significantly. A practical implementation of the algorithm is presented for muon track fitting in the cathode strip chamber (CSC) of the ATLAS experiment.
ERIC Educational Resources Information Center
Widick, Paul R.
1969-01-01
Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)
Let's Have a Coffee with the Standard Model of Particle Physics!
ERIC Educational Resources Information Center
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-01-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called "Lagrangian," which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only…
The new approach for infrared target tracking based on the particle filter algorithm
NASA Astrophysics Data System (ADS)
Sun, Hang; Han, Hong-xia
2011-08-01
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation, and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value .Last because of the gray and fusion target motion information, this approach also inhibit interference from the background, ultimately improve the stability and the real-time of the target track.
Tracking Detectors in the STAR Experiment at RHIC
NASA Astrophysics Data System (ADS)
Wieman, Howard
2015-04-01
The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.
Nakajima, Nakako Izumi; Brunton, Holly; Watanabe, Ritsuko; Shrikhande, Amruta; Hirayama, Ryoichi; Matsufuji, Naruhiro; Fujimori, Akira; Murakami, Takeshi; Okayasu, Ryuichi; Jeggo, Penny; Shibata, Atsushi
2013-01-01
Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle. PMID:23967070
The notions of mass in gravitational and particle physics
NASA Astrophysics Data System (ADS)
Castellani, Gianluca
It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at any conclusion. In the foreseeable future, there will be more extended top quark production statistics from the Tevatron accelerator so that the mass shift hypothesis can be experimentally probed.
Luminescent Sensors for Tracking Spatial Particle Distribution in an Explosion
NASA Astrophysics Data System (ADS)
Eilers, Hergen; Gunawidjaja, Ray; Diez-Y-Riega, Helena; Svingala, Forrest; Daniels, Amber; Lightstone, James; Washington State University Collaboration; Nswc Iheodtd Collaboration
2015-06-01
We previously developed and tested thermally sensitive particles that, when seeded into an explosive event, flow with the expanding post-detonation fireball and provide ex-situ measurements of this thermal environment. This current work presents the development and testing of tracking particles that are used in concert with the thermally sensitive particles to encode the initial positions of materials recovered for ex-situ analysis. These tracking sensors consist of fully-crystallized (c) rare-earth-doped yttria particles such as c-Dy:Y2O3, c-Sm:Y2O3, and c-Er,Yb:Y2O3. The temperature sensors consist of mixtures of precursor (p) and fully crystallized materials such as p-Eu:Y2O3/c-Tb:Y2O3 orp-Eu:ZrO2/c-Tb:Y2O3. Three mixtures containing one of the tracking sensors and one of the temperature sensing mixtures are placed at different locations within the chamber. Post-detonation, the tracking particles in the debris are excited by 365 nm light, resulting in different color luminescence, and allowing for potential visual inspection of the particle distribution originating from the different locations. Meanwhile, the temperature is determined from spectral changes of the precursor sensor materials or by comparison of the precursor sensor materials with the Tb:Y2O3 intensity reference. Defense Threat Reduction Agency, HDTRA1-10-1-0005.
A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking
Wang, Xuedong; Sun, Shudong; Corchado, Juan M.
2017-01-01
We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal, computing efficiency, particle degeneracy/impoverishment and constrained/multi-modal systems. The second part of our review is on analyzing the intractable challenges raised within the general multitarget (multi-sensor) tracking due to random target birth and termination, false alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream multitarget PF approaches consist of two main classes, one based on M2T association approaches and the other not such as the finite set statistics-based PF. In either case, significant challenges remain due to unknown tracking scenarios and integrated tracking management. PMID:29168772
Automated Proton Track Identification in MicroBooNE Using Gradient Boosted Decision Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, Katherine
MicroBooNE is a liquid argon time projection chamber (LArTPC) neutrino experiment that is currently running in the Booster Neutrino Beam at Fermilab. LArTPC technology allows for high-resolution, three-dimensional representations of neutrino interactions. A wide variety of software tools for automated reconstruction and selection of particle tracks in LArTPCs are actively being developed. Short, isolated proton tracks, the signal for low- momentum-transfer neutral current (NC) elastic events, are easily hidden in a large cosmic background. Detecting these low-energy tracks will allow us to probe interesting regions of the proton's spin structure. An effective method for selecting NC elastic events is tomore » combine a highly efficient track reconstruction algorithm to find all candidate tracks with highly accurate particle identification using a machine learning algorithm. We present our work on particle track classification using gradient tree boosting software (XGBoost) and the performance on simulated neutrino data.« less
Strange Particle Reconstruction by the Missing Mass Method
NASA Astrophysics Data System (ADS)
Kisel, Pavel; Kisel, Ivan; Senger, Peter; Vassiliev, Iouri; Zyzak, Maksym
2018-02-01
The main goal of modern heavy-ion experiments is a comprehensive study of the QCD phase diagram, in a region of Quark-Gluon Plasma (QGP) and possible phase transition to QGP phase. Strange particles produced in the collision are sensitive probes of the created media. Reconstruction of Σ particles together with other strange particles completes the picture of strangeness production. Σ+ and Σ- have all decay modes with at least one neutral daughter, which can not be registered by the CBM detector. For their identification the missing mass method is proposed: a) tracks of the mother (Σ-) and the charged daughter (π-) particles are reconstructed in the tracking system; b) the neutral daughter particle (n) is reconstructed from these tracks; c) a mass constraint is set on the reconstructed neutral daughter; d) the mother particle is constructed of the charged and reconstructed neutral daughter particles and the mass spectrum is obtained, by which the particle can be identified. The method can be applied for other strange particles too. In total 18 particle decays with neutral daughter are now included into physics analysis.
Elementary Particles and Forces.
ERIC Educational Resources Information Center
Quigg, Chris
1985-01-01
Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…
A Protocol for Real-time 3D Single Particle Tracking.
Hou, Shangguo; Welsher, Kevin
2018-01-03
Real-time three-dimensional single particle tracking (RT-3D-SPT) has the potential to shed light on fast, 3D processes in cellular systems. Although various RT-3D-SPT methods have been put forward in recent years, tracking high speed 3D diffusing particles at low photon count rates remains a challenge. Moreover, RT-3D-SPT setups are generally complex and difficult to implement, limiting their widespread application to biological problems. This protocol presents a RT-3D-SPT system named 3D Dynamic Photon Localization Tracking (3D-DyPLoT), which can track particles with high diffusive speed (up to 20 µm 2 /s) at low photon count rates (down to 10 kHz). 3D-DyPLoT employs a 2D electro-optic deflector (2D-EOD) and a tunable acoustic gradient (TAG) lens to drive a single focused laser spot dynamically in 3D. Combined with an optimized position estimation algorithm, 3D-DyPLoT can lock onto single particles with high tracking speed and high localization precision. Owing to the single excitation and single detection path layout, 3D-DyPLoT is robust and easy to set up. This protocol discusses how to build 3D-DyPLoT step by step. First, the optical layout is described. Next, the system is calibrated and optimized by raster scanning a 190 nm fluorescent bead with the piezoelectric nanopositioner. Finally, to demonstrate real-time 3D tracking ability, 110 nm fluorescent beads are tracked in water.
ERIC Educational Resources Information Center
McIntyre, Patrick J.
1974-01-01
Reported is a study to verify the pattern of bias associated with the Model Identification Test and to determine its source. This instrument is a limited verbal science test designed to determine the knowledge possessed by elementary school children of selected concepts related to "the particle nature of matter." (PEB)
Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain
NASA Astrophysics Data System (ADS)
Kunishima, Y.; Onishi, R.
2017-12-01
Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column domain. The centre of the discussion will be the Lagrangian statistics which is collected from the individual behaviour of the tracked particles.
A New Approach to Time-Resolved 3D-PTV
NASA Astrophysics Data System (ADS)
Boomsma, Aaron; Troolin, Dan; Bjorkquist, Dan; TSI Inc Team
2017-11-01
Volumetric three-component velocimetry via particle tracking is a powerful alternative to TomoPIV. It has been thoroughly documented that compared to TomoPIV, particle tracking velocimetry (PTV) methods (whether 2D or 3D) better resolve regions of high velocity gradient, identify fewer ghost particles, and are less computationally demanding, which results in shorter processing times. Recently, 3D-PTV has seen renewed interest in the PIV community with the availability of time-resolved data. Of course, advances in hardware are partly to thank for that availability-higher speed cameras, more effective memory management, and higher speed lasers. But in software, algorithms that utilize time resolved data to improve 3D particle reconstruction and particle tracking are also under development and advancing (e.g. shake-the-box, neighbor tracking reconstruction, etc.). .In the current study, we present a new 3D-PTV method that incorporates time-resolved data. We detail the method, its performance in terms of particle identification and reconstruction error and their relation to varying seeding densities, as well as computational performance.
Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight
Guo, Siqiu; Zhang, Tao; Song, Yulong
2018-01-01
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610
Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng
2018-04-23
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.
3D imaging of neutron tracks using confocal microscopy
NASA Astrophysics Data System (ADS)
Gillmore, Gavin; Wertheim, David; Flowers, Alan
2016-04-01
Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4 and 10 microns. Thus this study suggests that, using confocal microscopy, 3D imaging of neutron tracks in SSNTDs is feasible. (1) Wertheim D, Gillmore G, Brown L, Petford N. A new method of imaging particle tracks in solid state nuclear track detectors. J Microsc. 2010; 237: 1-6.
Image-based Lagrangian Particle Tracking in Bed-load Experiments.
Radice, Alessio; Sarkar, Sankar; Ballio, Francesco
2017-07-20
Image analysis has been increasingly used for the measurement of river flows due to its capabilities to furnish detailed quantitative depictions at a relatively low cost. This manuscript describes an application of particle tracking velocimetry (PTV) to a bed-load experiment with lightweight sediment. The key characteristics of the investigated sediment transport conditions were the presence of a covered flow and of a fixed rough bed above which particles were released in limited number at the flume inlet. Under the applied flow conditions, the motion of the individual bed-load particles was intermittent, with alternating movement and stillness terms. The flow pattern was preliminarily characterized by acoustic measurements of vertical profiles of the stream-wise velocity. During process visualization, a large field of view was obtained using two action-cameras placed at different locations along the flume. The experimental protocol is described in terms of channel calibration, experiment realization, image pre-processing, automatic particle tracking, and post-processing of particle track data from the two cameras. The presented proof-of-concept results include probability distributions of the particle hop length and duration. The achievements of this work are compared to those of existing literature to demonstrate the validity of the protocol.
Particle Diffusion in an Inhomogeneous Medium
ERIC Educational Resources Information Center
Bringuier, E.
2011-01-01
This paper is an elementary introduction to particle diffusion in a medium where the coefficient of diffusion varies with position. The introduction is aimed at third-year university courses. We start from a simple model of particles hopping on a discrete lattice, in one or more dimensions, and then take the continuous-space limit so as to obtain…
NASA Astrophysics Data System (ADS)
Nikezic, D.; Yu, K. N.
2006-01-01
A computer program called TRACK_TEST for calculating parameters (lengths of the major and minor axes) and plotting profiles in nuclear track materials resulted from light-ion irradiation and subsequent chemical etching is described. The programming steps are outlined, including calculations of alpha-particle ranges, determination of the distance along the particle trajectory penetrated by the chemical etchant, calculations of track coordinates, determination of the lengths of the major and minor axes and determination of the contour of the track opening. Descriptions of the program are given, including the built-in V functions for the two commonly employed nuclear track materials commercially known as LR 115 (cellulose nitrate) and CR-39 (poly allyl diglycol carbonate) irradiated by alpha particles. Program summaryTitle of the program:TRACK_TEST Catalogue identifier:ADWT Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWT Computer:Pentium PC Operating systems:Windows 95+ Programming language:Fortran 90 Memory required to execute with typical data:256 MB No. of lines in distributed program, including test data, etc.: 2739 No. of bytes in distributed program, including test data, etc.:204 526 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MSFLIB library Nature of problem: Fast heavy charged particles (like alpha particles and other light ions etc.) create latent tracks in some dielectric materials. After chemical etching in aqueous NaOH or KOH solutions, these tracks become visible under an optical microscope. The growth of a track is based on the simultaneous actions of the etchant on undamaged regions (with the bulk etch rate V) and along the particle track (with the track etch rate V). Growth of the track is described satisfactorily by these two parameters ( V and V). Several models have been presented in the past describing the track development, one of which is the model of Nikezic and Yu (2003) [D. Nikezic, K.N. Yu, Three-dimensional analytical determination of the track parameters. Over-etched tracks, Radiat. Meas. 37 (2003) 39-45] used in the present program. The present computer program has been written to calculate coordinates of points on the track wall and to determine other relevant track parameters. Solution method:Coordinates of points on the track wall assuming normal incidence were calculated by using the method as described by Fromm et al. (1988) [M. Fromm, A. Chambaudet, F. Membrey, Data bank for alpha particle tracks in CR39 with energies ranging from 0.5 to 5 MeV recording for various incident angles, Nucl. Tracks Radiat. Meas. 15 (1988) 115-118]. The track is then rotated through the incident angle in order to obtain the coordinates of the oblique track [D. Nikezic, K.N. Yu, Three-dimensional analytical determination of the track parameters. Over-etched tracks, Radiat. Meas. 37 (2003) 39-45; D. Nikezic, Three dimensional analytical determination of the track parameters, Radiat. Meas. 32 (2000) 277-282]. In this way, the track profile in two dimensions (2D) was obtained. In the next step, points in the track wall profile are rotated around the particle trajectory. In this way, circles that outline the track in three dimensions (3D) are obtained. The intersection between the post-etching surface of the detector and the 3D track is the track opening (or the track contour). Coordinates of the track 2D and 3D profiles and the track opening are saved in separate output data files. Restrictions: The program cannot calculate track parameters for the incident angle of exactly 90°. The alpha-particle energy should be smaller than 10 MeV. Furthermore, the program cannot perform calculations for tracks in some extreme cases, such as for very low incident energies or very small incident angles. Additional comments: This is a freeware, but publications arising from using this program should cite the present paper and the paper describing the track growth model [D. Nikezic, K.N. Yu, Three-dimensional analytical determination of the track parameters. Over-etched tracks, Radiat. Meas. 37 (2003) 39-45]. Moreover, the references for the V functions used should also be cited. For the CR-39 detector: Function (1): S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection. Principles, Methods and Applications, Pergamon Press, 1987. Function (2): C. Brun, M. Fromm, M. Jouffroy, P. Meyer, J.E. Groetz, F. Abel, A. Chambaudet, B. Dorschel, D. Hermsdorf, R. Bretschneider, K. Kadner, H. Kuhne, Intercomparative study of the detection characteristics of the CR-39 SSNTD for light ions: Present status of the Besancon-Dresden approaches, Radiat. Meas. 31 (1999) 89-98. Function (3): K.N. Yu, F.M.F. Ng, D. Nikezic, Measuring depths of sub-micron tracks in a CR-39 detector from replicas using atomic force microscopy, Radiat. Meas. 40 (2005) 380-383. For the LR 115 detector: Function (1): S.A. Durrani, P.F. Green, The effect of etching conditions on the response of LR 115, Nucl. Tracks 8 (1984) 21-24. Function (2): C.W.Y. Yip, D. Nikezic, J.P.Y Ho, K.N. Yu, Chemical etching characteristics for cellulose nitrate, Mat. Chem. Phys. 95 (2005) 307-312. Running time: Order of several minutes, dependent on input parameters and the resolution requested by the user.
Simulation of radiation effects on three-dimensional computer optical memories
NASA Technical Reports Server (NTRS)
Moscovitch, M.; Emfietzoglou, D.
1997-01-01
A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.
REVIEWS OF TOPICAL PROBLEMS: Contemporary status and prospects of high-energy physics
NASA Astrophysics Data System (ADS)
Okun', Lev B.
1981-05-01
A concise review of the most recent major achievements of elementary-particle physics is given. The successes and problems of gauge theories of the strong and electroweak interactions are discussed. A comparison is made of the possible alternatives in the development of physics in the transition to laboratory energies of the order of a tera-electron-volt. Models of grand unification and superunification of the various types of fundamental interactions are considered. A number of examples are used to demonstrate the connection between the properties of elementary particles and the properties of astronomical objects and of the Universe as a whole.
High Z particle Apollo astronaut dosimetry with plastics
NASA Technical Reports Server (NTRS)
Benton, E. V.; Henke, R. P.
1972-01-01
On Apollo missions, the individual astronauts' high Z particle exposure is measured by means of Lexan polycarbonate plastic. These layers form one component of the passive dosimetry packets worn in the constant wear garment. They serve as threshold type, high Z, charged particle track detectors, recording only the very highly ionizing particles. The detectors yield information on the particles' charge, energy, and direction of travel. This data, in turn, is used to obtain the track fluence, the stopping particle density as an integral Z distribution, and the particles' integral LET spectrum. Some of the data gathered on Apollo missions 8-13 is presented.
Gao, Han; Li, Jingwen
2014-06-19
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.
Gao, Han; Li, Jingwen
2014-01-01
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640
Solid State Nuclear Track Detectors--I: Track Characteristics and Formation Mechanisms.
ERIC Educational Resources Information Center
Lal, Nand
1991-01-01
Heavily ionizing charged particles produce radiation damage tracks in a wide variety of insulating materials. The experimental properties of these tracks and track recorders are described. The mechanisms by which the tracks are produced are discussed. (Author/KR)
Sandia Simple Particle Tracking (Sandia SPT) v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, Stephen M.
2015-06-15
Sandia SPT is designed as software to accompany a book chapter being published a methods chapter which provides an introduction on how to label and track individual proteins. The Sandia Simple Particle Tracking code uses techniques common to the image processing community, where its value is that it facilitates implementing the methods described in the book chapter by providing the necessary open-source code. The code performs single particle spot detection (or segmentation and localization) followed by tracking (or connecting the detected particles into trajectories). The book chapter, which along with the headers in each file, constitutes the documentation for themore » code is: Anthony, S.M.; Carroll-Portillo, A.; Timlon, J.A., Dynamics and Interactions of Individual Proteins in the Membrane of Living Cells. In Anup K. Singh (Ed.) Single Cell Protein Analysis Methods in Molecular Biology. Springer« less
Investigation on microfluidic particles manipulation by holographic 3D tracking strategies
NASA Astrophysics Data System (ADS)
Cacace, Teresa; Paturzo, Melania; Memmolo, Pasquale; Vassalli, Massimo; Fraldi, Massimiliano; Mensitieri, Giuseppe; Ferraro, Pietro
2017-06-01
We demonstrate a 3D holographic tracking method to investigate particles motion in a microfluidic channel while unperturbed while inducing their migration through microfluidic manipulation. Digital holography (DH) in microscopy is a full-field, label-free imaging technique able to provide quantitative phase-contrast. The employed 3D tracking method is articulated in steps. First, the displacements along the optical axis are assessed by numerical refocusing criteria. In particular, an automatic refocusing method to recover the particles axial position is implemented employing a contrast-based refocusing criterion. Then, the transverse position of the in-focus object is evaluated through quantitative phase map segmentation methods and centroid-based 2D tracking strategy. The introduction of DH is thus suggested as a powerful approach for control of particles and biological samples manipulation, as well as a possible aid to precise design and implementation of advanced lab-on-chip microfluidic devices.
New color-based tracking algorithm for joints of the upper extremities
NASA Astrophysics Data System (ADS)
Wu, Xiangping; Chow, Daniel H. K.; Zheng, Xiaoxiang
2007-11-01
To track the joints of the upper limb of stroke sufferers for rehabilitation assessment, a new tracking algorithm which utilizes a developed color-based particle filter and a novel strategy for handling occlusions is proposed in this paper. Objects are represented by their color histogram models and particle filter is introduced to track the objects within a probability framework. Kalman filter, as a local optimizer, is integrated into the sampling stage of the particle filter that steers samples to a region with high likelihood and therefore fewer samples is required. A color clustering method and anatomic constraints are used in dealing with occlusion problem. Compared with the general basic particle filtering method, the experimental results show that the new algorithm has reduced the number of samples and hence the computational consumption, and has achieved better abilities of handling complete occlusion over a few frames.
Software manual for operating particle displacement tracking data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.
A particle filter for multi-target tracking in track before detect context
NASA Astrophysics Data System (ADS)
Amrouche, Naima; Khenchaf, Ali; Berkani, Daoud
2016-10-01
The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). This paper proposes the recursive PF-TBD approach to detect multiple targets in low-signal-to noise ratios (SNR). The algorithm's successful performance is demonstrated using a simulated two target example.
Scintillator-fiber charged-particle track-imaging detector
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Klarmann, J.
1983-01-01
A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
Inertial mass of an elementary particle from the holographic scenario
NASA Astrophysics Data System (ADS)
Giné, Jaume
2017-03-01
Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently, it has been proposed that this mechanism is as follows: when an object accelerates in one direction, a dynamical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always opposes the acceleration, just like inertia, although the masses predicted are twice those expected, see Ref. 17. In a later work, an error was corrected so that its prediction improves to within 26% of the Planck mass, see Ref. 10. In this paper, the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle.
Novel branching particle method for tracking
NASA Astrophysics Data System (ADS)
Ballantyne, David J.; Chan, Hubert Y.; Kouritzin, Michael A.
2000-07-01
Particle approximations are used to track a maneuvering signal given only a noisy, corrupted sequence of observations, as are encountered in target tracking and surveillance. The signal exhibits nonlinearities that preclude the optimal use of a Kalman filter. It obeys a stochastic differential equation (SDE) in a seven-dimensional state space, one dimension of which is a discrete maneuver type. The maneuver type switches as a Markov chain and each maneuver identifies a unique SDE for the propagation of the remaining six state parameters. Observations are constructed at discrete time intervals by projecting a polygon corresponding to the target state onto two dimensions and incorporating the noise. A new branching particle filter is introduced and compared with two existing particle filters. The filters simulate a large number of independent particles, each of which moves with the stochastic law of the target. Particles are weighted, redistributed, or branched, depending on the method of filtering, based on their accordance with the current observation from the sequence. Each filter provides an approximated probability distribution of the target state given all back observations. All three particle filters converge to the exact conditional distribution as the number of particles goes to infinity, but differ in how well they perform with a finite number of particles. Using the exactly known ground truth, the root-mean-squared (RMS) errors in target position of the estimated distributions from the three filters are compared. The relative tracking power of the filters is quantified for this target at varying sizes, particle counts, and levels of observation noise.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.
This publication contains descriptions of space science activities that can be conducted with simple equipment. There are activities suitable for both elementary and secondary school children. Activities are placed under the headings: Astronomy, Atmosphere, Universal Gravitation, Aerodynamics, Guidance and Propulsion, Tracking and Communications,…
NASA Technical Reports Server (NTRS)
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
ERIC Educational Resources Information Center
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2015-01-01
This study introduces a teaching concept based on the Standard Model of particle physics. It comprises two consecutive chapters--elementary particles and fundamental interactions. The rationale of this concept is that the fundamental principles of particle physics can run as the golden thread through the whole physics curriculum. The design…
NASA Astrophysics Data System (ADS)
Bodenschatz, Eberhard
2014-11-01
In my talk I shall present results from particle tracking experiments in turbulence. After a short review of the history of the field, I shall summarize the most recent technological advances that range form low and high-density particle tracking to direct measurements of the Lagrangian evolution of vorticity. I shall embark on a journey that describes the discoveries made possible by this new technology in the last 15 years. I present results that challenge our understanding of turbulence and show how Lagrangian particle tracking can help us ask questions on turbulent flows that so far were hidden. I shall show how Lagrangian particle tracking may provide important insights into the reversibility of turbulent flows, on vorticity generation, the energy cascade and turbulent mixing. I shall describe the consequences of inertial particle transport on rain formation and end with an outlook on how Lagrangian particle tracking experiments on non-stationary flows in real-world situations may provide high quality data that can support real world engineering problems. I am very thankful for the support by Cornell University, the National Science Foundation, the Research Corporation, the Alfred P. Sloan Foundation, the Kavli Institute for Theoretical Physics, the German Research Foundation, the European Union and the Max Planck Society. I very gratefully acknowledge the excellent partnership with many colleagues in the field of fluid mechanics and turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, M.L.
This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics atmore » very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references.« less
Quantitative nanoparticle tracking: applications to nanomedicine.
Huang, Feiran; Dempsey, Christopher; Chona, Daniela; Suh, Junghae
2011-06-01
Particle tracking is an invaluable technique to extract quantitative and qualitative information regarding the transport of nanomaterials through complex biological environments. This technique can be used to probe the dynamic behavior of nanoparticles as they interact with and navigate through intra- and extra-cellular barriers. In this article, we focus on the recent developments in the application of particle-tracking technology to nanomedicine, including the study of synthetic and virus-based materials designed for gene and drug delivery. Specifically, we cover research where mean square displacements of nanomaterial transport were explicitly determined in order to quantitatively assess the transport of nanoparticles through biological environments. Particle-tracking experiments can provide important insights that may help guide the design of more intelligent and effective diagnostic and therapeutic nanoparticles.
NASA Astrophysics Data System (ADS)
Grupen, Claus; Shwartz, Boris
2011-09-01
Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.
User guide for MODPATH version 6 - A particle-tracking model for MODFLOW
Pollock, David W.
2012-01-01
MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.
Robinson, H.P.
1960-06-01
An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.
NASA Astrophysics Data System (ADS)
Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.
2017-01-01
Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.
New Mexico Play Fairway Analysis: Particle Tracking ArcGIS Map Packages
Jeff Pepin
2015-11-15
These are map packages used to visualize geochemical particle-tracking analysis results in ArcGIS. It includes individual map packages for several regions of New Mexico including: Acoma, Rincon, Gila, Las Cruces, Socorro and Truth or Consequences.
2004-02-11
the general circulation of the middle atmosphere, Philos. Trans. R. Soc. London, Ser. A, 323, 693–705. Anton , H. (2000), Elementary Linear Algebra ...Because the saturated radiances may depend slightly on tangent height as the limb path length decreases, a linear trend (described by parameters a and b...track days and interpolated onto the same limb-track orbits. The color bar scale for radiance variance is linear . (b) Digital elevations of northern
Search for lightly ionizing particles with the MACRO detector
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Okada, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Vilela, E.; Walter, C. W.; Webb, R.
2000-09-01
A search for lightly ionizing particles has been performed with the MACRO detector. This search was sensitive to particles with charges between 15 e and close to the charge of an electron, with β between approximately 0.25 and 1.0. Unlike previous searches both single track events and tracks buried within high multiplicity muon showers were examined. In a period of approximately one year no candidates were observed. Assuming an isotropic flux, for the single track sample this corresponds to a 90% C.L. upper flux limit Φ<=9.2×10-15 cm-2 s-1 sr-1.
Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation
Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.
2013-01-01
The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509
NASA Astrophysics Data System (ADS)
Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain
2018-03-01
The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.
Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications
Moccia, Antonio
2014-01-01
Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue
Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistancemore » to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.« less
Curriculum Connection: Create a Classroom Community.
ERIC Educational Resources Information Center
Donlan, Leni
1991-01-01
One elementary teacher runs her classroom as a technology-based token economy. Students hold classroom jobs and use software to track money earned, manage checking accounts, and disburse classroom cash. The strategy boosts math and technology skills. A list of software programs is included. (SM)
Particle tracking experiments in match-index-refraction porous media.
Lachhab, Ahmed; Zhang, You-Kuan; Muste, Marian V I
2008-01-01
A low-cost, noninvasive, three-dimensional (3D), particle tracking velocimetry system was designed and built to investigate particle movement in match-index-refraction porous media. Both a uniform load of the glass beads of the same diameter and a binary load of the glass beads of two diameters were used. The purpose of the experiments is to study the effect of the two loads on the trajectories, velocity distribution, and spreading of small physical particles. A total of 35 particles were released and tracked in the uniform load and 46 in the binary load. The 3D trajectory of each particle was recorded with two video camcorders and analyzed. It is found that the particle's velocity, trajectory, and spreading are very sensitive to its initial location and that the smaller pore size or heterogeneity in the binary load increases the particles' velocity and enhances their spreading as compared with the uniform load. The experiments also verified the previous finding that the distribution of the particle velocities are lognormal in the longitudinal direction and Gaussian in two transverse directions and that the particle spreading is much larger along the longitudinal direction than along the traverse directions.
A grand unified model for liganded gold clusters
NASA Astrophysics Data System (ADS)
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-12-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.
Search for electroweak single top-quark production with the CDF II experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Svenja
2007-11-02
Understanding the world -- This aim drives humankind since the beginning of conscious thinking. Especially the nature of matter has been of major interest. Nowadays, we have a complex image of the constitution of matter. Atoms consist of electrons and nucleons. But even nucleons are not elementary. Their basic constituents are called quarks. Physicists developed a model describing the elementary components of matter as well as the forces between them: the standard model of elementary particle physics. The substructure of matter is only visible in scattering experiments. In high energy physics, these experiments are done at particle accelerators. The world'smore » highest energetic collider, the Tevatron, is hosted by the Fermi National Accelerator Laboratory (FNAL), also called Fermilab, in the vicinity of Chicago. The proton-antiproton collisions with a center-of-mass energy of {radical}s = 1.96 TeV are recorded by two multipurpose detectors, namely D0 and CDF II.« less
Emissions from Ships with respect to Their Effects on Clouds.
NASA Astrophysics Data System (ADS)
Hobbs, Peter V.; Garrett, Timothy J.; Ferek, Ronald J.; Strader, Scott R.; Hegg, Dean A.; Frick, Glendon M.; Hoppel, William A.; Gasparovic, Richard F.; Russell, Lynn M.; Johnson, Douglas W.; O'Dowd, Colin; Durkee, Philip A.; Nielsen, Kurt E.; Innis, George
2000-08-01
Emissions of particles, gases, heat, and water vapor from ships are discussed with respect to their potential for changing the microstructure of marine stratiform clouds and producing the phenomenon known as `ship tracks.' Airborne measurements are used to derive emission factors of SO2 and NO from diesel-powered and steam turbine-powered ships, burning low-grade marine fuel oil (MFO); they were 15-89 and 2-25 g kg1 of fuel burned, respectively. By contrast a steam turbine-powered ship burning high-grade navy distillate fuel had an SO2 emission factor of 6 g kg1.Various types of ships, burning both MFO and navy distillate fuel, emitted from 4 × 1015 to 2 × 1016 total particles per kilogram of fuel burned (4 × 1015-1.5 × 1016 particles per second). However, diesel-powered ships burning MFO emitted particles with a larger mode radius (0.03-0.05 m) and larger maximum sizes than those powered by steam turbines burning navy distillate fuel (mode radius 0.02 m). Consequently, if the particles have similar chemical compositions, those emitted by diesel ships burning MFO will serve as cloud condensation nuclei (CCN) at lower supersaturations (and will therefore be more likely to produce ship tracks) than the particles emitted by steam turbine ships burning distillate fuel. Since steam turbine-powered ships fueled by MFO emit particles with a mode radius similar to that of diesel-powered ships fueled by MFO, it appears that, for given ambient conditions, the type of fuel burned by a ship is more important than the type of ship engine in determining whether or not a ship will produce a ship track. However, more measurements are needed to test this hypothesis.The particles emitted from ships appear to be primarily organics, possibly combined with sulfuric acid produced by gas-to-particle conversion of SO2. Comparison of model results with measurements in ship tracks suggests that the particles from ships contain only about 10% water-soluble materials. Measurements of the total particles entering marine stratiform clouds from diesel-powered ships fueled by MFO, and increases in droplet concentrations produced by these particles, show that only about 12% of the particles serve as CCN.The fluxes of heat and water vapor from ships are estimated to be 2-22 MW and 0.5-1.5 kg s1, respectively. These emissions rarely produced measurable temperature perturbations, and never produced detectable perturbations in water vapor, in the plumes from ships. Nuclear-powered ships, which emit heat but negligible particles, do not produce ship tracks. Therefore, it is concluded that heat and water vapor emissions do not play a significant role in ship track formation and that particle emissions, particularly from those burning low-grade fuel oil, are responsible for ship track formation. Subsequent papers in this special issue discuss and test these hypotheses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toshito, T.; Kodama, K.; Yusa, K.
2006-05-10
We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsionmore » film to highly ionizing particles.« less
1988-12-01
individual particles. They mix the powders with water and perform tests with heat, iodine, and vinegar in order to gain additional information about the...illusions ; light ; fermentation ; chromatography ; moon ; astronomy AN SCIENCE - A PROCESS APPROACH, PART G focuses on experimentation, incorporating all...skills ; flowers plants astronomy ; animals ; sensory perception ; vision ; optical illusions ; eyes ; density ; viscosity ; fermentation ; moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Grout, Ray
2015-10-30
The load balancing strategies for hybrid solvers that involve grid based partial differential equation solution coupled with particle tracking are presented in this paper. A typical Message Passing Interface (MPI) based parallelization of grid based solves are done using a spatial domain decomposition while particle tracking is primarily done using either of the two techniques. One of the techniques is to distribute the particles to MPI ranks to whose grid they belong to while the other is to share the particles equally among all ranks, irrespective of their spatial location. The former technique provides spatial locality for field interpolation butmore » cannot assure load balance in terms of number of particles, which is achieved by the latter. The two techniques are compared for a case of particle tracking in a homogeneous isotropic turbulence box as well as a turbulent jet case. We performed a strong scaling study for more than 32,000 cores, which results in particle densities representative of anticipated exascale machines. The use of alternative implementations of MPI collectives and efficient load equalization strategies are studied to reduce data communication overheads.« less
Relative locality and the soccer ball problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amelino-Camelia, Giovanni; Freidel, Laurent; Smolin, Lee
We consider the behavior of macroscopic bodies within the framework of relative locality [G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1101.0931]. This is a recent proposal for Planck scale modifications of the relativistic dynamics of particles which are described as arising from deformations in the geometry of momentum space. We consider and resolve a common objection against such proposals, which is that, even if the corrections are small for elementary particles in current experiments, they are huge when applied to composite systems such as soccer balls, planets, and stars, with energies E{sub macro} much larger than M{sub P}.more » We show that this soccer ball problem does not arise within the framework of relative locality because the nonlinear effects for the dynamics of a composite system with N elementary particles appear at most of order E{sub macro}/N{center_dot}M{sub P}.« less
Godinez, William J; Rohr, Karl
2015-02-01
Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.
GEM Detector Performance Assessment in the BM@N Experiment
NASA Astrophysics Data System (ADS)
Kapishin, Mikhail; Karjavin, Vladimir; Kulish, Elena; Lenivenko, Vasilisa; Makankin, Alexander; Maksymchuk, Anna; Palichik, Vladimir; Vasiliev, Sergey
2018-02-01
The Gas Electron Multiplier (GEM) chambers are developed for modern purposes in the elementary particle physics. In the BM@N experiment, a GEM system is used for the reconstruction of the trajectories of the charged particles. The investigation of GEM performance (efficiency and spatial resolution) is presented.
Discriminative detection of deposited radon daughters on CR-39 track detectors using TRIAC II code
NASA Astrophysics Data System (ADS)
Patiris, D. L.; Ioannides, K. G.
2009-07-01
A method for detecting deposited 218Po and 214Po by a spectrometric study of CR-39 solid state nuclear track detectors is described. The method is based on the application of software imposed selection criteria, concerning the geometrical and optical properties of the tracks, which correspond to tracks created by alpha particles of specific energy falling on the detector at given angles of incidence. The selection criteria were based on a preliminary study of tracks' parameters (major and minor axes and mean value of brightness), using the TRIAC II code. Since no linear relation was found between the energy and the geometric characteristics of the tracks (major and minor axes), we resorted to the use of an additional parameter in order to classify the tracks according to the particles' energy. Since the brightness of tracks is associated with the tracks' depth, the mean value of brightness was chosen as the parameter of choice. To reduce the energy of the particles, which are emitted by deposited 218Po and 214Po into a quantifiable range, the detectors were covered with an aluminum absorber material. In this way, the discrimination of radon's daughters was finally accomplished by properly selecting amongst all registered tracks. This method could be applied as a low cost tool for the study of the radon's daughters behavior in air.
Nuclear particle detection using a track-recording solid
NASA Technical Reports Server (NTRS)
Weber, M.; Weber, D.
1984-01-01
The design of the nuclear particle detector located in Purdue University's Get Away Special package which was flown aboard STS-7 is detailed. The experiment consisted of a stack of particle-detecting polymer sheets. The sheets show positive results of tracks throughout the block. A slide of each sheet was made for further analysis. Recommendations for similar experiments performed in the future are discussed.
Integrable particle systems vs solutions to the KP and 2D Toda equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruijsenaars, S.N.
Starting from the relation between integrable relativistic N-particle systems with hyperbolic interactions and elementary N-soliton solutions to the KP and 2D Toda equations, we show how fusion properties of the soliton solutions are mirrored by fusion properties of the Poisson commuting particle dynamics. We also obtain previously known relations between elliptic solutions and integrable N-particle systems with elliptic interactions, without invoking finite-gap integration theory. {copyright} 1997 Academic Press, Inc.
Hinkle, S.R.; Kauffman, L.J.; Thomas, M.A.; Brown, C.J.; McCarthy, K.A.; Eberts, S.M.; Rosen, Michael R.; Katz, B.G.
2009-01-01
Flow-model particle-tracking results and geochemical data from seven study areas across the United States were analyzed using three statistical methods to test the hypothesis that these variables can successfully be used to assess public supply well vulnerability to arsenic and uranium. Principal components analysis indicated that arsenic and uranium concentrations were associated with particle-tracking variables that simulate time of travel and water fluxes through aquifer systems and also through specific redox and pH zones within aquifers. Time-of-travel variables are important because many geochemical reactions are kinetically limited, and geochemical zonation can account for different modes of mobilization and fate. Spearman correlation analysis established statistical significance for correlations of arsenic and uranium concentrations with variables derived using the particle-tracking routines. Correlations between uranium concentrations and particle-tracking variables were generally strongest for variables computed for distinct redox zones. Classification tree analysis on arsenic concentrations yielded a quantitative categorical model using time-of-travel variables and solid-phase-arsenic concentrations. The classification tree model accuracy on the learning data subset was 70%, and on the testing data subset, 79%, demonstrating one application in which particle-tracking variables can be used predictively in a quantitative screening-level assessment of public supply well vulnerability. Ground-water management actions that are based on avoidance of young ground water, reflecting the premise that young ground water is more vulnerable to anthropogenic contaminants than is old ground water, may inadvertently lead to increased vulnerability to natural contaminants due to the tendency for concentrations of many natural contaminants to increase with increasing ground-water residence time.
Shock dynamics of two-lane driven lattice gases
NASA Astrophysics Data System (ADS)
Schiffmann, Christoph; Appert-Rolland, Cécile; Santen, Ludger
2010-06-01
Driven lattice gases such as those of the ASEP model are useful tools for the modelling of various stochastic transport processes carried out by self-driven particles, such as molecular motors or vehicles in road traffic. Often these processes take place in one-dimensional systems offering several tracks to the particles, and in many cases the particles are able to change track with a given rate. In this work we consider the case of strong coupling where the rate of hopping along the tracks and the exchange rates are of the same order, and show how a phenomenological approach based on a domain wall theory can be used to describe the dynamics of the system. In particular, the domain walls on the different tracks form pairs, whose dynamics dominate the behaviour of the system.
A Special Report on Middle Schools.
ERIC Educational Resources Information Center
Hollifield, John H.
1988-01-01
The first Center for Research on Elementary and Middle Schools (CREM) report describes the structures and practices currently used at all school levels for staffing, grouping, and scheduling. The report assesses the effects of departmentalization, tracking, ability grouping, and grade spans on student learning and development. (MLH)
All Aboard! For a Lesson on Magnetic Levitated Trains.
ERIC Educational Resources Information Center
Moore, Virginia S.; Kaszas, William J.
1995-01-01
Presents an activity that explores the operation of Maglev trains. Demonstrates that elementary students can master cutting-edge technology through creating and racing magnetic vehicles on a specially designed track, researching the history of rail transportation, and exploring a current science issue. (NB)
Aerosol mass spectrometry systems and methods
Fergenson, David P.; Gard, Eric E.
2013-08-20
A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.
NASA Astrophysics Data System (ADS)
Hanasaki, Itsuo; Ooi, Yuto
2018-06-01
We propose a technique to evaluate the field of diffusion coefficient for particle dispersion where the Brownian motion is heterogeneous in space and single particle tracking (SPT) analysis is hindered by high concentration of the particles and/or their small size. We realize this "particle image diffusometry" by the principle of the differential dynamic microscopy (DDM). We extend the DDM by introducing the automated objective decision of the scaling regime itself. Label-free evaluation of spatially non-uniform diffusion coefficients without SPT is useful in the diverse applications including crystal nucleation and glass transition where non-invasive observation is desired.
Single file diffusion into a semi-infinite tube.
Farrell, Spencer G; Brown, Aidan I; Rutenberg, Andrew D
2015-11-23
We investigate single file diffusion (SFD) of large particles entering a semi-infinite tube, such as luminal diffusion of proteins into microtubules or flagella. While single-file effects have no impact on the evolution of particle density, we report significant single-file effects for individually tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0, tracked particles are initially super-diffusive after entering the system, but asymptotically diffusive at later times. For finite time intervals, the ratio of the net displacement of individual single-file particles to the average displacement of untracked particles is reduced at early times and enhanced at later times. When each particle is numbered, from the first to enter (n = 1) to the most recent (n = N), we find good scaling collapse of this distance ratio for all n. Experimental techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching of fluorescently tagged proteins, should be able to observe these single-file effects. However, biological phenomena that depend on local concentration, such as flagellar extension or luminal enzymatic activity, should not exhibit single-file effects.
Flow and Jamming of Granular Materials in a Two-dimensional Hopper
NASA Astrophysics Data System (ADS)
Tang, Junyao
Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.
1996-01-01
A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of public-supply wells in Clark County may be receiving a component of water that recharged in areas that are more conducive to contaminant entry. The aquifer sensitivity maps illustrate a critical deficiency in the DRASTIC methodology: the failure to account for the dynamics of the ground-water flow system. DRASTIC indices calculated for a particular location thus do not necessarily reflect the conditions of the ground-water resources at the recharge areas to that particular location. Each hydrogeologic unit was also mapped to highlight those areas that will eventually receive flow from recharge areas with on-site waste-disposal systems. Most public-supply wells in southern Clark County may eventually receive a component of water that was recharged from on-site waste-disposal systems.Traveltimes from particle tracking were used to estimate the minimum and maximum age of ground water within each model-grid cell. Chlorofluorocarbon (CFC)-age dating of ground water from 51 wells was used to calibrate effective porosity values used for the particle- tracking program by comparison of ground-water ages determined through the use of the CFC-age dating with those calculated by the particle- tracking program. There was a 76 percent agreement in predicting the presence of modern water in the 51 wells as determined using CFCs and calculated by the particle-tracking program. Maps showing the age of ground water were prepared for all the hydrogeologic units. Areas with the youngest ground-water ages are expected to be at greatest risk for contamination from anthropogenic sources. Comparison of these maps with maps of public- supply wells in Clark County indicates that most of these wells may withdraw ground water that is, in part, less than 100 years old, and in many instances less than 10 years old. Results of the analysis showed that a single particle-tracking analysis simulating advective transport can be used to evaluate ground-water vulnerability for any part of a ground-wate
Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Yuan, J; Moses, G A; McKenty, P W
2005-10-01
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
Faint Debris Detection by Particle Based Track-Before-Detect Method
NASA Astrophysics Data System (ADS)
Uetsuhara, M.; Ikoma, N.
2014-09-01
This study proposes a particle method to detect faint debris, which is hardly seen in single frame, from an image sequence based on the concept of track-before-detect (TBD). The most widely used detection method is detect-before-track (DBT), which firstly detects signals of targets from single frame by distinguishing difference of intensity between foreground and background then associate the signals for each target between frames. DBT is capable of tracking bright targets but limited. DBT is necessary to consider presence of false signals and is difficult to recover from false association. On the other hand, TBD methods try to track targets without explicitly detecting the signals followed by evaluation of goodness of each track and obtaining detection results. TBD has an advantage over DBT in detecting weak signals around background level in single frame. However, conventional TBD methods for debris detection apply brute-force search over candidate tracks then manually select true one from the candidates. To reduce those significant drawbacks of brute-force search and not-fully automated process, this study proposes a faint debris detection algorithm by a particle based TBD method consisting of sequential update of target state and heuristic search of initial state. The state consists of position, velocity direction and magnitude, and size of debris over the image at a single frame. The sequential update process is implemented by a particle filter (PF). PF is an optimal filtering technique that requires initial distribution of target state as a prior knowledge. An evolutional algorithm (EA) is utilized to search the initial distribution. The EA iteratively applies propagation and likelihood evaluation of particles for the same image sequences and resulting set of particles is used as an initial distribution of PF. This paper describes the algorithm of the proposed faint debris detection method. The algorithm demonstrates performance on image sequences acquired during observation campaigns dedicated to GEO breakup fragments, which would contain a sufficient number of faint debris images. The results indicate the proposed method is capable of tracking faint debris with moderate computational costs at operational level.
Probabilistic track coverage in cooperative sensor networks.
Ferrari, Silvia; Zhang, Guoxian; Wettergren, Thomas A
2010-12-01
The quality of service of a network performing cooperative track detection is represented by the probability of obtaining multiple elementary detections over time along a target track. Recently, two different lines of research, namely, distributed-search theory and geometric transversals, have been used in the literature for deriving the probability of track detection as a function of random and deterministic sensors' positions, respectively. In this paper, we prove that these two approaches are equivalent under the same problem formulation. Also, we present a new performance function that is derived by extending the geometric-transversal approach to the case of random sensors' positions using Poisson flats. As a result, a unified approach for addressing track detection in both deterministic and probabilistic sensor networks is obtained. The new performance function is validated through numerical simulations and is shown to bring about considerable computational savings for both deterministic and probabilistic sensor networks.
Reduced Noise UV Enhancement of Etch Rates for Nuclear Tracks in CR-39
NASA Astrophysics Data System (ADS)
Sheets, Rebecca; Clarkson, David; Ume, Rubab; Regan, Sean; Sangster, Craig; Padalino, Stephen; McLean, James
2016-10-01
The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C for 6 hours, producing micron-scale signal pits at the nuclear track sites. Using CR-39 irradiated with 5.4 MeV alpha particles and 1.0 MeV protons, we show that exposing the CR-39 to high intensity UV light before etching, with wavelengths between 240 nm and 350 nm, speeds the etch process. Elevated temperatures during UV exposure amplifies this effect, with etch rates up to 50% greater than unprocessed conditions. CR-39 pieces exposed to UV light and heat can also exhibit heightened levels of etch-induced noise (surface features not caused by nuclear particles). By illuminating the CR-39 from the side opposite to the tracks, a similar level of etch enhancement was obtained with little to no noise. The effective wavelength range is reduced, due to strong attenuation of shorter wavelengths. Funded in part by a LLE contract through the DOE.
Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua
2013-12-01
This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.
Restrepo, John F; Garcia-Sucerquia, Jorge
2012-02-15
We present an automatic procedure for 3D tracking of micrometer-sized particles with high-NA digital lensless holographic microscopy. The method uses a two-feature approach to search for the best focal planes and to distinguish particles from artifacts or other elements on the reconstructed stream of the holograms. A set of reconstructed images is axially projected onto a single image. From the projected image, the centers of mass of all the reconstructed elements are identified. Starting from the centers of mass, the morphology of the profile of the maximum intensity along the reconstruction direction allows for the distinguishing of particles from others elements. The method is tested with modeled holograms and applied to automatically track micrometer-sized bubbles in a sample of 4 mm3 of soda.
Track structure in biological models.
Curtis, S B
1986-01-01
High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.
An Integrated Approach to Indoor and Outdoor Localization
2017-04-17
localization estimate, followed by particle filter based tracking. Initial localization is performed using WiFi and image observations. For tracking we...source. A two-step process is proposed that performs an initial localization es-timate, followed by particle filter based t racking. Initial...mapped, it is possible to use them for localization [20, 21, 22]. Haverinen et al. show that these fields could be used with a particle filter to
Elementary process and meteor train spectra
NASA Technical Reports Server (NTRS)
Ovezgeldyev, O. G.
1987-01-01
Mechanisms of excitation of individual spectral line radiation were studied experimentally and theoretically and it was demonstrated that such processes as oxidation, resonant charge exchange, dissociative recombination and others play an important part in the chemistry of excited particles. The foundation was laid toward simulating the elementary processes of meteor physics. Having a number of advantages and possibilities, this method is sure to find a wide use in the future.
TrackMate: An open and extensible platform for single-particle tracking.
Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W
2017-02-15
We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows
NASA Astrophysics Data System (ADS)
Cardwell, Nicholas D.; Vlachos, Pavlos P.; Thole, Karen A.
2011-10-01
Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas-solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of instantaneous particle slip velocities, illustrating the algorithm's strength to robustly and accurately resolve polydispersed MPFs.
Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic
NASA Astrophysics Data System (ADS)
Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2002-03-01
The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.
Dark matter reflection of particle symmetry
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
2017-05-01
In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.
Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P
2016-01-01
In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.
NASA Astrophysics Data System (ADS)
Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, L.; Poggi, L. A.; Ciparisse, J. F.; Salgado, L.; Richetta, M.; Gaudio, P.
2016-01-01
In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.
Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments
NASA Astrophysics Data System (ADS)
Ingenito, Francesco; Andreoli, Pierluigi; Batani, Dimitri; Bonasera, Aldo; Boutoux, Guillaume; Burgy, Frederic; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; Di Giorgio, Giorgio; Ducret, Jean Eric; Giulietti, Danilo; Jakubowska, Katarzyna
2018-01-01
There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
NASA Astrophysics Data System (ADS)
Moreno-Casas, P. A.; Bombardelli, F. A.
2015-12-01
A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.
Using Curriculum-Based Measurement To Monitor Kindergarteners' Mathematics Development
ERIC Educational Resources Information Center
Seethaler, Pamela M.; Fuchs, Lynn S.
2011-01-01
The purpose of this study was to examine technical and instructional features of a kindergarten curriculum-based measurement (CBM) tool designed to track students' mathematics progress in terms of computational concepts, procedures, and counting strategies. Students in 10 kindergarten classrooms in three elementary schools completed alternate…
Martinus Veltman, the Electroweak Theory, and Elementary Particle Physics
Particle Physics Resources with Additional Information Martinus Veltman Courtesy University of Michigan Martinus J.G. Veltman, the John D. MacArthur Professor Emeritus of Physics at the University of Michigan , was awarded the 1999 Nobel Prize in physics "for elucidating the quantum structure of electroweak
Nonthermal Supermassive Dark Matter
NASA Technical Reports Server (NTRS)
Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio
1999-01-01
We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.
Nanodosimetric track structure in homogeneous extended beams.
Conte, V; Moro, D; Colautti, P; Grosswendt, B
2015-09-01
Physical aspects of particle track structure are important in determining the induction of clustered damage in relevant subcellular structures like the DNA and higher-order genomic structures. The direct measurement of track-structure properties of ionising radiation is feasible today by counting the number of ionisations produced inside a small gas volume. In particular, the so-called track-nanodosimeter, installed at the TANDEM-ALPI accelerator complex of LNL, measures ionisation cluster-size distributions in a simulated subcellular structure of dimensions 20 nm, corresponding approximately to the diameter of the chromatin fibre. The target volume is irradiated by pencil beams of primary particles passing at specified impact parameter. To directly relate these measured track-structure data to radiobiological measurements performed in broad homogeneous particle beams, these data can be integrated over the impact parameter. This procedure was successfully applied to 240 MeV carbon ions and compared with Monte Carlo simulations for extended fields. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking
Farquar, George
2018-01-16
A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.
2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farquar, George
A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilationmore » and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.« less
Track-before-detect labeled multi-bernoulli particle filter with label switching
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, Angel F.
2016-10-01
This paper presents a multitarget tracking particle filter (PF) for general track-before-detect measurement models. The PF is presented in the random finite set framework and uses a labelled multi-Bernoulli approximation. We also present a label switching improvement algorithm based on Markov chain Monte Carlo that is expected to increase filter performance if targets get in close proximity for a sufficiently long time. The PF is tested in two challenging numerical examples.
Calibrations for Charged Particle Tracking with the GlueX Detector
NASA Astrophysics Data System (ADS)
Staib, Michael; GlueX Collaboration
2015-10-01
Two gas detectors comprise the tracking system for the GlueX experiment, the Central Drift Chamber (CDC) and the Forward Drift Chamber (FDC). The CDC is a cylindrical straw-tube detector covering polar angles between 6° and 168°, delivering spatial resolution of ~150 μm. The FDC is a Cathode Strip Chamber consisting of four packages, each with six alternating layers of anode wires and cathode strips. The FDC is designed to track forward-going charged particles with polar angles between 1° and 20° with a spatial resolution of ~200 μm. Both tracking detectors record timing information and energy loss measurements useful for particle identification. During Fall 2014 and Spring 2015, the first photon beam was delivered on target for commissioning of the GlueX detector in Hall-D at Jefferson Lab. These data are currently being used in a large effort to calibrate the individual detector subsystems to achieve design performance. Methods and results for calibrations of each of the tracking detectors are presented. Techniques for alignment of the tracking system using a combination of cosmic rays and beam data is discussed. Finally, some early results of physics measurements including charged final-state particles are presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.
NASA Astrophysics Data System (ADS)
Durkee, P. A.; Noone, K. J.; Ferek, R. J.; Johnson, D. W.; Taylor, J. P.; Garrett, T. J.; Hobbs, P. V.; Hudson, J. G.; Bretherton, C. S.; Innis, G.; Frick, G. M.; Hoppel, W. A.; O'Dowd, C. D.; Russell, L. M.; Gasparovic, R.; Nielsen, K. E.; Tessmer, S. A.; Öström, E.; Osborne, S. R.; Flagan, R. C.; Seinfeld, J. H.; Rand, H.
2000-08-01
Anomalously high reflectivity tracks in stratus and stratocumulus sheets associated with ships (known as ship tracks) are commonly seen in visible and near-infrared satellite imagery. Until now there have been only a limited number of in situ measurements made in ship tracks. The Monterey Area Ship Track (MAST) experiment, which was conducted off the coast of California in June 1994, provided a substantial dataset on ship emissions and their effects on boundary layer clouds. Several platforms, including the University of Washington C-131A aircraft, the Meteorological Research Flight C-130 aircraft, the National Aeronautics and Space Administration ER-2 aircraft, the Naval Research Laboratory airship, the Research Vessel Glorita, and dedicated U.S. Navy ships, participated in MAST in order to study processes governing the formation and maintenance of ship tracks.This paper tests the hypotheses that the cloud microphysical changes that produce ship tracks are due to (a) particulate emission from the ship's stack and/or (b) sea-salt particles from the ship's wake. It was found that ships powered by diesel propulsion units that emitted high concentrations of aerosols in the accumulation mode produced ship tracks. Ships that produced few particles (such as nuclear ships), or ships that produced high concentrations of particles but at sizes too small to be activated as cloud drops in typical stratocumulus (such as gas turbine and some steam-powered ships), did not produce ship tracks. Statistics and case studies, combined with model simulations, show that provided a cloud layer is susceptible to an aerosol perturbation, and the atmospheric stability enables aerosol to be mixed throughout the boundary layer, the direct emissions of cloud condensation nuclei from the stack of a diesel-powered ship is the most likely, if not the only, cause of the formation of ship tracks. There was no evidence that salt particles from ship wakes cause ship tracks.
Accuracy Assessment for the Auxillary Tracking System
1991-09-01
Auxiliary Tracking System (ATS), paper prepared for evaluation of ATS design review, 28 June, 1990. Anton , H., and Rorres, C., Elementary Linear Algebra with...are linearized around the trial value (XT6, YT,, Zro), shown in Equation 3.16, where 10 means evaluated at point "o". The OR1aI * YaT- I T.) ZR (ZT...3.16) partial derivatives are listed in Equations 3.17 through 3.19. 8XR.[ o 7.-OR1 [ .XT-XL (3.17) aOR., ZTo-Z 1 (3.19) aZTIo R. The linearized
Vehicular air pollution, playgrounds, and youth athletic fields.
Rundell, Kenneth W; Caviston, Renee; Hollenbach, Amanda M; Murphy, Kerri
2006-07-01
In spite of epidemiological evidence concerning vehicular air pollution and adverse respiratory/cardiovascular health, many athletic fields and school playgrounds are adjacent to high traffic roadways and could present long-term health risks for exercising children and young adults. Particulate matter (PM(1),0.02-1.0 microm diameter) number counts were taken serially at four elementary school athletic/playground fields and at one university soccer field. Elementary school PM1 measurements were taken over 17 days; measurements at the university soccer field were taken over 62 days. The high-traffic-location elementary school field demonstrated higher 17-day [PM1] than the moderate and 2 low traffic elementary school fields (48,890 +/- 34,260, 16,730 +/- 10,550, 11,960 +/- 6680, 10,030 +/- 6280, respective mean counts; p < .05). The 62-day mean PM1 values at the university soccer field ranged from 115,000 to 134,000 particles cm(-3). Lowest mean values were recorded at measurement sites furthest from the highway (approximately 34,000 particles cm(-3)) and followed a second-order logarithmic decay (R2 = .999) with distance away from the highway. Mean NO2 and SO2 levels were below 100 ppb, mean CO was 0.33 +/- 1.87 ppm, and mean O3 was 106 +/- 47 ppb. Ozone increased with rising temperature and was highest in the warmer afternoon hours (R = .61). Although the consequence of daily recess play and athletic activities by school children and young athletes in high ambient [PM1] conditions has not yet been clearly defined, this study is a critical component to evaluating functional effects of chronic combustion-derived PM exposure on these exercising schoolchildren and young adults. Future studies should examine threshold limits and mechanistic actions of real-world particle exposure.
SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators
Luo, Yun
2015-08-29
SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yun
2015-06-24
SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
Fish tracking by combining motion based segmentation and particle filtering
NASA Astrophysics Data System (ADS)
Bichot, E.; Mascarilla, L.; Courtellemont, P.
2006-01-01
In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.
Modeling Natural Variation through Distribution
ERIC Educational Resources Information Center
Lehrer, Richard; Schauble, Leona
2004-01-01
This design study tracks the development of student thinking about natural variation as late elementary grade students learned about distribution in the context of modeling plant growth at the population level. The data-modeling approach assisted children in coordinating their understanding of particular cases with an evolving notion of data as an…
The Fast Track to Sustainable Turnaround
ERIC Educational Resources Information Center
Fullan, Michael; Pinchot, Michelle
2018-01-01
School change expert Michael Fullan and principal Michelle Pinchot collaborated on an experiment: As Pinchot tackled her first years turning around the culture of Heritage Elementary School in California--using ideas Fullan has promoted about school culture and leveraging teachers' power--she and Fullan checked in every few months on how the work…
ERIC Educational Resources Information Center
Armstrong, Michelle Hine; Piercey, Victor I.; Greene-Hunley, Stephanie
2015-01-01
This article describes two different projects using the stock market as a context for learning. For both projects, students "bought" shares in individual companies, tracked stock prices for a period of time, and then "sold" their shares at a gain or loss. The projects are adaptable for students in late elementary school through…
Sports Skills and Conditioning: Grades K-6.
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
The activities and terminology used in this course of study are intended to establish a more uniform and meaningful approach to the teaching of sports skills to elementary school children in the Montgomery County Public Schools. Areas of activity concentration specifically relate to soccer, volleyball, softball, and track and field. A sequential…
Appropriating Quantified Self Technologies to Support Elementary Statistical Teaching and Learning
ERIC Educational Resources Information Center
Lee, Victor R.; Drake, Joel R.; Thayne, Jeffrey L.
2016-01-01
Wearable activity tracking devices associated with the Quantified Self movement have potential benefit for educational settings because they produce authentic and granular data about activities and experiences already familiar to youth. This article explores how that potential could be realized through explicit acknowledgment of and response to…
Longitudinal Study of Obesity and Athletic Competence.
ERIC Educational Resources Information Center
Bale, David B.; And Others
1994-01-01
Reports a study that tracked the fatness of elementary students over two years using current fitness test standards, assessing the athletic competence of obese and nonobese children. Children who were obese at the beginning of the study were likely to remain so. The study's findings regarding athletic competence were equivocal. (SM)
ERIC Educational Resources Information Center
Mickelson, Roslyn Arlin
2015-01-01
Middle schools are important because they launch students on trajectories that they are likely to follow throughout their formal educations. This study explored the relationship of first-generation segregation (elementary and middle school racial composition) and second-generation segregation (racially correlated academic tracks) to reading and…
High resolution particle tracking method by suppressing the wavefront aberrations
NASA Astrophysics Data System (ADS)
Chang, Xinyu; Yang, Yuan; Kou, Li; Jin, Lei; Lu, Junsheng; Hu, Xiaodong
2018-01-01
Digital in-line holographic microscopy is one of the most efficient methods for particle tracking as it can precisely measure the axial position of particles. However, imaging systems are often limited by detector noise, image distortions and human operator misjudgment making the particles hard to locate. A general method is used to solve this problem. The normalized holograms of particles were reconstructed to the pupil plane and then fit to a linear superposition of the Zernike polynomial functions to suppress the aberrations. Relative experiments were implemented to validate the method and the results show that nanometer scale resolution was achieved even when the holograms were poorly recorded.
Earth observations taken during STS-136
1995-07-04
STS071-745-006 (27 June-7 July 1995) --- This view shows a ship track, probably in the northern Pacific Ocean, where a ship has caused clouds to form more thickly directly above the path of this ship. This track is therefore visible even though the ship itself is not. Ship tracks are thought to be caused by particles thrown up into the air by the ship, from smokestack emissions and from water particles generated by the ship moving through the sea. Under favorable weather conditions, water condenses around these particles to form clouds, in this case thicker "popcorn" clouds than already exists in the area. Ongoing studies are attempting to understand this phenomenon better.
Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.
Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre
2018-03-01
We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.
Unitarity limits on the mass and radius of dark matter particles
NASA Technical Reports Server (NTRS)
Griest, Kim; Kamionkowski, Marc
1989-01-01
Using partial wave unitarity and the observed density of the Universe, it is show that a stable elementary particle which was once in thermal equilibrium cannot have a mass greater than 340 TeV. An extended object which was once in thermal equilibrium cannot have a radius less than 7.5 x 10(exp -7) fm. A lower limit to the relic abundance of such particles is also found.
Moving Particles Through a Finite Element Mesh
Peskin, Adele P.; Hardin, Gary R.
1998-01-01
We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B; Georgia Institute of Technology, Atlanta, GA; Wang, C
Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities.more » These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell survival curves for high-LET radiation.« less
A grand unified model for liganded gold clusters
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-01-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours' (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design. PMID:27910848
Understanding the masses of elementary particles: a step towards understanding the massless photon?
NASA Astrophysics Data System (ADS)
Greulich, K. O.
2011-09-01
A so far unnoticed simple explanation of elementary particle masses is given by m = N * melectron/α, where alpha (=1/137) is the fine structure constant. On the other hand photons can be described by two oppositely oscillating clouds of e / √α elementary charges. Such a model describes a number of features of the photon in a quantitatively correct manner. For example, the energy of the oscillating clouds is E = h ν, the spin is 1 and the spatial dimension is λ / 2 π. When the charge e / √α is assigned to the Planck mass mPl, the resulting charge density is e / (mPl√α) = 8,62 * 10-11 Cb / kg. This is identical to √ (G / ko) where G is the gravitational constant and ko the Coulomb constant. When one assigns this very small charge density to any matter, gravitation can be completely described as Coulomb interaction between such charges of the corresponding masses. Thus, there is a tight quantitative connection between the photon, nonzero rest masses and gravitation / Coulomb interaction.
Online Simulation of Radiation Track Structure Project
NASA Technical Reports Server (NTRS)
Plante, Ianik
2015-01-01
Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.
USDA-ARS?s Scientific Manuscript database
A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The principle of MPT technique is to monitor the thermally driven motion of inert micro-spheres, which...
Using the Image Analysis Method for Describing Soil Detachment by a Single Water Drop Impact
Ryżak, Magdalena; Bieganowski, Andrzej
2012-01-01
The aim of the present work was to develop a method based on image analysis for describing soil detachment caused by the impact of a single water drop. The method consisted of recording tracks made by splashed particles on blotting paper under an optical microscope. The analysis facilitated division of the recorded particle tracks on the paper into drops, “comets” and single particles. Additionally, the following relationships were determined: (i) the distances of splash; (ii) the surface areas of splash tracks into relation to distance; (iii) the surface areas of the solid phase transported over a given distance; and (iv) the ratio of the solid phase to the splash track area in relation to distance. Furthermore, the proposed method allowed estimation of the weight of soil transported by a single water drop splash in relation to the distance of the water drop impact. It was concluded that the method of image analysis of splashed particles facilitated analysing the results at very low water drop energy and generated by single water drops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Herrera, J., E-mail: jimmy06@mit.edu; Rinderknecht, H. G.; Zylstra, A. B.
The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K{sub α} and K{sub β} x-rays. The CR-39 detectors were then exposed to 1–5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those notmore » exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less
NASA Astrophysics Data System (ADS)
Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.
2017-05-01
Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2.
Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albicocco, P; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Arce, A T H; Ardell, R E; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beermann, T A; Begalli, M; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Benoit, M; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernardi, G; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Beyer, J; Bianchi, R M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bittrich, C; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bolz, A E; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Briglin, D L; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burch, T J; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrá, S; Carrillo-Montoya, G D; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castelijn, R; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Celebi, E; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, W S; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chiu, Y H; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Christodoulou, V; Chromek-Burckhart, D; Chu, M C; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Creager, R A; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cukierman, A R; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'eramo, L; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daneri, M F; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Daubney, T; Davey, W; David, C; Davidek, T; Davies, M; Davis, D R; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vasconcelos Corga, K; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Prete, T Del; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delporte, C; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Devesa, M R; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Bello, F A; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Dubreuil, A; Duchovni, E; Duckeck, G; Ducourthial, A; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dumitriu, A E; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Kosseifi, R El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, M; Errede, S; Escalier, M; Escobar, C; Esposito, B; Estrada Pastor, O; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenton, M J; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Förster, F A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Freund, B; Froidevaux, D; Frost, J A; Fukunaga, C; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geisen, J; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Geßner, G; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gkountoumis, P; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Gottardo, C A; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, C; Gray, H M; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Grummer, A; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Guzik, M P; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havener, L B; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Held, A; Hellman, S; Helsens, C; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herr, H; Herten, G; Hertenberger, R; Hervas, L; Herwig, T C; Hesketh, G G; Hessey, N P; Hetherly, J W; Higashino, S; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hils, M; Hinchliffe, I; Hirose, M; Hirschbuehl, D; Hiti, B; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hrdinka, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Isacson, M F; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, P; Jacobs, R M; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jelinskas, A; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, R W L; Jones, S D; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kay, E F; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kendrick, J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khodinov, A; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; Kirchmeier, D; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitali, V; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klingl, T; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kourlitis, E; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Krauss, D; Kremer, J A; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kulinich, Y P; Kuna, M; Kunigo, T; Kupco, A; Kupfer, T; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Langenberg, R J; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapertosa, A; Laplace, S; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, G R; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Li, B; Li, H; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, H; Liu, H; Liu, J K K; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo, C Y; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loesle, A; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Mateos, D; Lopez Paz, I; Solis, A Lopez; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lu, Y J; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A S; Magerl, V; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majersky, O; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchese, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Martensson, M U F; Marti-Garcia, S; Martin, C B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Goldrick, G Mc; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McNamara, P C; McPherson, R A; Meehan, S; Megy, T J; Mehlhase, S; Mehta, A; Meideck, T; Meier, K; Meirose, B; Melini, D; Mellado Garcia, B R; Mellenthin, J D; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mkrtchyan, T; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, M E; Nemecek, S; Nemethy, P; Nessi, M; Neubauer, M S; Neumann, M; Newman, P R; Ng, T Y; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nishu, N; Nisius, R; Nitsche, I; Nobe, T; Noguchi, Y; Nomachi, M; Nomidis, I; Nomura, M A; Nooney, T; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'connor, K; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oppen, H; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasner, J M; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pataraia, S; Pater, J R; Pauly, T; Pearson, B; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, F H; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Podberezko, P; Poettgen, R; Poggi, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Ponomarenko, D; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Poulard, G; Poulsen, T; Poveda, J; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proklova, N; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puri, A; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rangel-Smith, C; Rashid, T; Raspopov, S; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravinovich, I; Rawling, J H; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rettie, S; Reynolds, E; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ripellino, G; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocco, E; Roda, C; Rodina, Y; Rodriguez Bosca, S; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salazar Loyola, J E; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sampsonidou, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sander, C O; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schildgen, L K; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Sciandra, A; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Senkin, S; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Shen, Y; Sherafati, N; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shipsey, I P J; Shirabe, S; Shiyakova, M; Shlomi, J; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smiesko, J; Smirnov, N; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Søgaard, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Sopczak, A; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanitzki, M M; Stapf, B S; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultan, Dms; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Tahirovic, E; Taiblum, N; Takai, H; Takashima, R; Takasugi, E H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teixeira-Dias, P; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Treado, C J; Trefzger, T; Tresoldi, F; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsang, K W; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Vadla, K O H; Vaidya, A; Valderanis, C; Valdes Santurio, E; Valente, M; Valentinetti, S; Valero, A; Valéry, L; Valkar, S; Vallier, A; Valls Ferrer, J A; Van Den Wollenberg, W; van der Graaf, H; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varni, C; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, A T; Vermeulen, J C; Vetterli, M C; Viaux Maira, N; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wagner-Kuhr, J; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, Q; Wang, R; Wang, S M; Wang, T; Wang, W; Wang, W; Wang, Z; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, A F; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weirich, M; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Weston, T D; Whalen, K; Whallon, N L; Wharton, A M; White, A S; White, A; White, M J; White, R; Whiteson, D; Whitmore, B W; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winkels, E; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Wong, V W S; Worm, S D; Wosiek, B K; Wotschack, J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xia, L; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamatani, M; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yigitbasi, E; Yildirim, E; Yorita, K; Yoshihara, K; Young, C; Young, C J S; Yu, J; Yu, J; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanzi, D; Zeitnitz, C; Zemaityte, G; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, P; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhou, B; Zhou, C; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zou, R; Zur Nedden, M; Zwalinski, L
2017-01-01
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 [Formula: see text] for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb[Formula: see text] of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 [Formula: see text]. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 [Formula: see text] is quantified using a novel, data-driven, method. The method uses the energy loss, [Formula: see text], to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is [Formula: see text] and [Formula: see text] for jet transverse momenta of 200-400 [Formula: see text] and 1400-1600 [Formula: see text], respectively.
Rosin-Rammler Distributions in ANSYS Fluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, Ryan Q.
In Health Physics monitoring, particles need to be collected and tracked. One method is to predict the motion of potential health hazards with computer models. Particles released from various sources within a glove box can become a respirable health hazard if released into the area surrounding a glove box. The goal of modeling the aerosols in a glove box is to reduce the hazards associated with a leak in the glove box system. ANSYS Fluent provides a number of tools for modeling this type of environment. Particles can be released using injections into the flow path with turbulent properties. Themore » models of particle tracks can then be used to predict paths and concentrations of particles within the flow. An attempt to understand and predict the handling of data by Fluent was made, and results iteratively tracked. Trends in data were studied to comprehend the final results. The purpose of the study was to allow a better understanding of the operation of Fluent for aerosol modeling for future application in many fields.« less
Electrically tunable lens speeds up 3D orbital tracking
Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico
2015-01-01
3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037
ERIC Educational Resources Information Center
Yayon, Malka; Scherz, Zahava
2008-01-01
"If protons, quarks, and other elementary particles are too small to be seen, how do scientists know they exist? And if these particles do exist, how can one estimate their size, structure, and or their arrangement in atoms?" These are some of the most frequently asked questions by students who study atomic theory. Atomic structure is an important…
Energy levels for Ac-212 (Actinium-212)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope Ac-212 (actinium, atomic number Z = 89, mass number A = 212).
Unity of elementary particles and forces in higher dimensions.
Gogoladze, Ilia; Mimura, Yukihiro; Nandi, S
2003-10-03
The idea of unifying all the gauge and Yukawa forces as well as the gauge, Higgs, and fermionic matter particles naturally leads us to a simple gauge symmetry in higher dimensions with supersymmetry. We present a model in which, for the first time, such a unification is achieved in the framework of quantum field theory.
Donald Glaser, the Bubble Chamber, and Elementary Particles
Effects of Ionizing Radiation on the Formation of Bubbles in Liquids Physical Review, Vol. 87, Issue 4 , 665, August 15, 1952 Characteristics of Bubble Chambers Physical Review, Vol. 97, Issue 2, 474-479 Chambers Physical Review, Vol. 102, Issue 6, 1653-1658, June 15, 1956 Methods of Particle Detection for
Antonello, M.; Baibussinov, B.; Benetti, P.; ...
2013-01-15
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.
The Higgs mechanism and the origin of mass
NASA Astrophysics Data System (ADS)
Djouadi, Abdelhak
2012-06-01
The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which describes in a unified framework the electromagnetic, weak and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.
The Higgs Mechanism and the Orogin of Mass
NASA Astrophysics Data System (ADS)
Djouadi, Abdelhak
The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which, describes in a unified framework the electromagnetic, weak, and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.
The Million-Body Problem: Particle Simulations in Astrophysics
Rasio, Fred
2018-05-21
Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.
Diffusion rate limitations in actin-based propulsion of hard and deformable particles.
Dickinson, Richard B; Purich, Daniel L
2006-08-15
The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.
Clustering of low-valence particles: structure and kinetics.
Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François
2014-08-01
We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.
NASA Astrophysics Data System (ADS)
Akerson, Valarie L.; Pongsanon, Khemmawadee; Weiland, Ingrid S.; Nargund-Joshi, Vanashri
2014-08-01
This study explores the development of professional identity as a teacher of nature of science (NOS). Our research question was 'How can a teacher develop a professional identity as an elementary teacher of NOS?' Through a researcher log, videotaped lessons, and collection of student work, we were able to track efforts in teaching NOS as part of regular classroom practice. A team of four researchers interpreted the data through the Beijaard et al. professional identity framework and found that it was not as simple and straightforward to teach NOS as we predicted. Development of professional identity as a teacher of NOS was influenced by contextual factors such as students, administration, and time, as well as personal struggles that were fraught with emotion. Development took place through an interpretation and reinterpretation of self through external factors and others' perceptions, as well as the influence of sub-identities.
NASA Astrophysics Data System (ADS)
Aumont, B.; Camredon, M.; Isaacman-VanWertz, G. A.; Karam, C.; Valorso, R.; Madronich, S.; Kroll, J. H.
2016-12-01
Gas phase oxidation of VOC is a gradual process leading to the formation of multifunctional organic compounds, i.e., typically species with higher oxidation state, high water solubility and low volatility. These species contribute to the formation of secondary organic aerosols (SOA) viamultiphase processes involving a myriad of organic species that evolve through thousands of reactions and gas/particle mass exchanges. Explicit chemical mechanisms reflect the understanding of these multigenerational oxidation steps. These mechanisms rely directly on elementary reactions to describe the chemical evolution and track the identity of organic carbon through various phases down to ultimate oxidation products. The development, assessment and improvement of such explicit schemes is a key issue, as major uncertainties remain on the chemical pathways involved during atmospheric oxidation of organic matter. An array of mass spectrometric techniques (CIMS, PTRMS, AMS) was recently used to track the composition of organic species during α-pinene oxidation in the MIT environmental chamber, providing an experimental database to evaluate and improve explicit mechanisms. In this study, the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to generate fully explicit oxidation schemes for α-pinene multiphase oxidation simulating the MIT experiment. The ability of the GECKO-A chemical scheme to explain the organic molecular composition in the gas and the condensed phases is explored. First results of this model/observation comparison at the molecular level will be presented.
NASA Astrophysics Data System (ADS)
Xiao, Qiran; Chen, Yanping; Bereau, Tristan; Shi, Yunfeng
2016-08-01
The paradox of biomimetic research is to perform bio-functionality, usually associated with sophisticated structures optimized by nature, with minimal structural complexity for the ease of fabrication. Here we show that a three-particle trimer can exhibit kinesin-like autonomous walk on a track via reactive molecular dynamics simulations. The autonomous motion is due to imbalanced transitions resulting from exothermic catalytic reactions, and the spatial asymmetry from the track. This molecular design can be realized by reproducing the particle-particle interactions in functionalized nano- or colloidal particles. Our results open up the possibility of fabricating bio-mimetic nano-systems in a minimalist approach.
NASA Astrophysics Data System (ADS)
Buchmann, N. A.; Cierpka, C.; Kähler, C. J.; Soria, J.
2014-11-01
The paper demonstrates ultra-high-speed three-component, three-dimensional (3C3D) velocity measurements of micron-sized particles suspended in a supersonic impinging jet flow. Understanding the dynamics of individual particles in such flows is important for the design of particle impactors for drug delivery or cold gas dynamic spray processing. The underexpanded jet flow is produced via a converging nozzle, and micron-sized particles ( d p = 110 μm) are introduced into the gas flow. The supersonic jet impinges onto a flat surface, and the particle impact velocity and particle impact angle are studied for a range of flow conditions and impingement distances. The imaging system consists of an ultra-high-speed digital camera (Shimadzu HPV-1) capable of recording rates of up to 1 Mfps. Astigmatism particle tracking velocimetry (APTV) is used to measure the 3D particle position (Cierpka et al., Meas Sci Technol 21(045401):13, 2010) by coding the particle depth location in the 2D images by adding a cylindrical lens to the high-speed imaging system. Based on the reconstructed 3D particle positions, the particle trajectories are obtained via a higher-order tracking scheme that takes advantage of the high temporal resolution to increase robustness and accuracy of the measurement. It is shown that the particle velocity and impingement angle are affected by the gas flow in a manner depending on the nozzle pressure ratio and stand-off distance where higher pressure ratios and stand-off distances lead to higher impact velocities and larger impact angles.
NASA Astrophysics Data System (ADS)
Buaria, D.; Yeung, P. K.
2017-12-01
A new parallel algorithm utilizing a partitioned global address space (PGAS) programming model to achieve high scalability is reported for particle tracking in direct numerical simulations of turbulent fluid flow. The work is motivated by the desire to obtain Lagrangian information necessary for the study of turbulent dispersion at the largest problem sizes feasible on current and next-generation multi-petaflop supercomputers. A large population of fluid particles is distributed among parallel processes dynamically, based on instantaneous particle positions such that all of the interpolation information needed for each particle is available either locally on its host process or neighboring processes holding adjacent sub-domains of the velocity field. With cubic splines as the preferred interpolation method, the new algorithm is designed to minimize the need for communication, by transferring between adjacent processes only those spline coefficients determined to be necessary for specific particles. This transfer is implemented very efficiently as a one-sided communication, using Co-Array Fortran (CAF) features which facilitate small data movements between different local partitions of a large global array. The cost of monitoring transfer of particle properties between adjacent processes for particles migrating across sub-domain boundaries is found to be small. Detailed benchmarks are obtained on the Cray petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign. For operations on the particles in a 81923 simulation (0.55 trillion grid points) on 262,144 Cray XE6 cores, the new algorithm is found to be orders of magnitude faster relative to a prior algorithm in which each particle is tracked by the same parallel process at all times. This large speedup reduces the additional cost of tracking of order 300 million particles to just over 50% of the cost of computing the Eulerian velocity field at this scale. Improving support of PGAS models on major compilers suggests that this algorithm will be of wider applicability on most upcoming supercomputers.
Villa, Carlo E.; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe
2010-01-01
The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done. PMID:20808918
Villa, Carlo E; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe
2010-08-17
The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.
Controlling alpha tracks registration in Makrofol DE 1-1 detector
NASA Astrophysics Data System (ADS)
Hassan, N. M.; Hanafy, M. S.; Naguib, A.; El-Saftawy, A. A.
2017-09-01
Makrofol DE 1-1 is a recent type of solid state nuclear track detectors could be used to measure radon concentration in the environment throughout the detection of α-particles emitted from radon decay. Thus, studying the physical parameters that control the formation of alpha tracks is vital for environmental radiation protection. Makrofol DE 1-1 polycarbonate detector was irradiated by α-particles of energies varied from 2 to 5 MeV emitted from the 241Am source of α-particle energy of 5.5 MeV. Then, the detector was etched in an optimum etching solution of mixed ethyl alcohol in KOH aqueous solution of (85% (Vol.) of 6 M KOH + 15% (Vol.) C2H5OH) at 50 °C for 3 h. Afterward, the bulk etch rate, etching sensitivity, and the registration efficiency of the detector, which control the tracks registration, were measured. The bulk etch rate of Makrofol detector was found to be 3.71 ± 0.71 μm h-1. The etching sensitivity and the detector registration efficiency were decreased exponentially with α-particles' energies following Bragg curve. A precise registration of α-particle was presented in this study. Therefore, Makrofol DE 1-1 can be applied as a radiation dosimeter as well as radon and thoron monitors.
Timepix Device Efficiency for Pattern Recognition of Tracks Generated by Ionizing Radiation
NASA Astrophysics Data System (ADS)
Leroy, Claude; Asbah, Nedaa; Gagnon, Louis-Guilaume; Larochelle, Jean-Simon; Pospisil, Stanislav; Soueid, Paul
2014-06-01
A hybrid silicon pixelated TIMEPIX detector (256 × 256 pixels with 55 μm pitch) operated in Time Over Threshold (TOT) mode was exposed to radioactive sources (241Am, 106Ru, 137Cs), protons and alpha-particles after Rutherford Backscattering on a thin gold foil of protons and alpha-particles beams delivered by the Tandem Accelerator of Montreal University. Measurements were also performed with different mixed radiation fields of heavy charged particles (protons and alpha-particles), photons and electrons produced by simultaneous exposure of TIMEPIX to the radioactive sources and to protons beams on top of the radioactive sources. All measurements were performed in vacuum. The TOT mode of operation has allowed the direct measurement of the energy deposited in each pixel. The efficiency of track recognition with this device was tested by comparing the experimental activities (determined from number of tracks measurements) of the radioactive sources with their expected activities. The efficiency of track recognition of incident protons and alpha-particles of different energies as a function of the incidence angle was measured. The operation of TIMEPIX in TOT mode has allowed a 3D mapping of the charge sharing effect in the whole volume of the silicon sensor. The effect of the bias voltage on charge sharing was investigated as the level of charge sharing is related to the local profile of the electric field in the sensor. The results of the present measurements demonstrate the TIMEPIX capability of differentiating between different types of particles species from mixed radiation fields and measuring their energy deposition. Single track analysis gives a good precision (significantly better than the 55 μm size of one detector pixel) on the coordinates of the impact point of protons interacting in the TIMEPIX silicon layer.
Virtanen, Otto L J; Purohit, Ashvini; Brugnoni, Monia; Wöll, Dominik; Richtering, Walter
2016-09-08
Stimuli-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have various prospective practical applications and uses in fundamental research. In this work, we use single particle tracking of fluorescently labeled PNIPAM microgels as a showcase for tuning microgel size by a rapid non-stirred precipitation polymerization procedure. This approach is well suited for prototyping new reaction compositions and conditions or for applications that do not require large amounts of product. Microgel synthesis, particle size and structure determination by dynamic and static light scattering are detailed in the protocol. It is shown that the addition of functional comonomers can have a large influence on the particle nucleation and structure. Single particle tracking by wide-field fluorescence microscopy allows for an investigation of the diffusion of labeled tracer microgels in a concentrated matrix of non-labeled microgels, a system not easily investigated by other methods such as dynamic light scattering.
NASA Technical Reports Server (NTRS)
Benton, E. V.; Gruhn, T. A.; Andrus, C. H.
1973-01-01
Aqueous sodium hydroxide is widely used to develop charged particle tracks in polycarbonate film, particularly Lexan. The chemical nature of the etching process for this system has been determined. A method employing ultra-violet absorbance was developed for monitoring the concentration of the etch products in solution. Using this method it was possible to study the formation of the etching solution saturated in etch products. It was found that the system super-saturates to a significant extent before precipitation occurs. It was also learned that the system approaches its equilibrium state rather slowly. It is felt that both these phenomena may be due to the presence of surfactant in the solution. In light of these findings, suggestions are given regarding the preparation and maintenance of the saturated etch solution. Two additional research projects, involving automated techniques for particle track analysis and particle identification using AgCl crystals, are briefly summarized.
Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S
2001-08-01
A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik, E-mail: erik.trell@gmail.com
2014-12-10
Santilli’s revolutionary iso-, geno- and hypermathematics have provided the original straight line Lie groups and algebras with a span and coherence in all dimensions, and thus already at the infinitesimal level an extension in the Cartesian sense, allowing a continuous self-similar cyclical realization of matter from the elementary particle threshold level via the atomic to molecular and visible scale where it meets and marries with modern nanotechnology in the form of an isotropic vector matrix of space-filling octahedron-tetrahedron composition. This is distributed as an electron transition matrix with Bohr shell model stratified signature and is here directly outlining a new,more » centrally coordinated organic composition and chart of the periodic system as specifically exemplified by the noble gases.« less
Electroscavenging and Inferred Effects on Precipitation Efficiency
NASA Astrophysics Data System (ADS)
Tinsley, B. A.
2002-12-01
The evaporation of charged droplets leaves charged aerosol particles that can act as cloud condensation nuclei and ice forming nuclei. New calculations of scavenging of such charged particles by droplets have been made, that now include the effects of inertia and variable particle density, and variable cloud altitudes ranging into the stratosphere. They show that the Greenfield Gap closes for particles of low density, or for high altitude clouds, or for a few hundred elementary charges on the particles. A few tens of elementary charges on the particles gives collision efficiencies typically an order of magnitude greater than that due to phoretic forces alone. The numerical integrations show that electroscavenging of ice forming nuclei leading to contact ice nucleation is competitive with deposition ice nucleation, for cloud top temperatures in the range 0§C to -15§C and droplet size distributions extending past 10-15 mm radius. This implies that for marine stratocumulus or nimbostratus clouds with tops just below freezing temperature, where precipitation is initiated by the Wegener-Bergeron-Findeisen process, the precipitation efficiency can be affected by the amount of charge on the ice-forming nuclei. This in turn depends on the extent of the (weak) electrification of the cloud. Similarly, electroscavenging of condensation nuclei can increase the average droplet size in successive cycles of cloud evaporation and formation, and can also affect precipitation efficiency.
Tracking of multiple targets using online learning for reference model adaptation.
Pernkopf, Franz
2008-12-01
Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.
From the necessary to the possible: the genesis of the spin-statistics theorem
NASA Astrophysics Data System (ADS)
Blum, Alexander
2014-12-01
The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.
Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.
The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.
Three-dimensional particle tracking via tunable color-encoded multiplexing.
Duocastella, Martí; Theriault, Christian; Arnold, Craig B
2016-03-01
We present a novel 3D tracking approach capable of locating single particles with nanometric precision over wide axial ranges. Our method uses a fast acousto-optic liquid lens implemented in a bright field microscope to multiplex light based on color into different and selectable focal planes. By separating the red, green, and blue channels from an image captured with a color camera, information from up to three focal planes can be retrieved. Multiplane information from the particle diffraction rings enables precisely locating and tracking individual objects up to an axial range about 5 times larger than conventional single-plane approaches. We apply our method to the 3D visualization of the well-known coffee-stain phenomenon in evaporating water droplets.
Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials
Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.
2004-01-01
Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896
Kawaguchi, Yuko; Sugino, Tomohiro; Tabata, Makoto; Okudaira, Kyoko; Imai, Eichi; Yano, Hajime; Hasegawa, Sunao; Hashimoto, Hirofumi; Yabuta, Hikaru; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Yamagishi, Akihiko
2014-02-01
We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.
BOOK REVIEW: Modern Supersymmetry
NASA Astrophysics Data System (ADS)
Kulish, Petr P.
2006-12-01
We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the AdS/CFT correspondence. The author explains clearly most of the arguments in discussions and refers for further details to original papers (with corresponding arXiv numbers), selected lists of which appear at the end of each chapter (there are more than 300 references in the book). Considered as a whole the book covers primers on quantum fields, Feynman diagrams, renormalization procedure and renormalization groups, as well as the representation theory of classical linear Lie algebras. Some necessary information on irreducible representations of su(N), so(N) and sp(2N) is given in an appendix. There are in the text short historical and biographical notes concerning those scientists who made important contributions to the subject of the monograph: S Coleman, Yu Golfand, E Witten and others. Most of the seventeen chapters contain a few exercises to check the reader's understanding of the corresponding material. This monograph will be useful for graduate students and researchers in the field of elementary particles.
Hurwitz Algebras and the Octonion Algebra
NASA Astrophysics Data System (ADS)
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
@anl.gov Ahmed Ismail Research Associate at the ANL High Energy Physics Theory Group and UIC ELEMENTARY PARTICLE PHYSICS THEORY High Energy Phenomenology Updated October 2013 aismail@anl.gov
The role of multivalency in the association kinetics of patchy particle complexes.
Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G
2017-06-21
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
The role of multivalency in the association kinetics of patchy particle complexes
NASA Astrophysics Data System (ADS)
Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.
2017-06-01
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
Investigations of lunar materials
NASA Technical Reports Server (NTRS)
Comstock, G. M.; Fvwaraye, A. O.; Fleischer, R. L.; Hart, H. R., Jr.
1972-01-01
The investigations were directed at determining the radiation history and surface chronology of lunar materials using the etched particle track technique. The major lunar materials studied are the igneous rocks and double core from Apollo 12, the breccia and soil samples from Apollo 14, and the core samples from Luna 16. In the course of this work two new and potentially important observations were made: (1) Cosmic ray-induced spallation-recoil tracks were identified. The density of such tracks, when compared with the density of tracks induced by a known flux of accelerator protons, yields the time of exposure of a sample within the top meter or two of moon's surface. (2) Natural, fine scale plastic deformation was found to have fragmented pre-existing charged particle tracks, allowing the dating of the mechanical event causing the deformation.
NASA Technical Reports Server (NTRS)
Maxwell, B. R.
1975-01-01
A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.
ERIC Educational Resources Information Center
Rabiner, David L.; Godwin, Jennifer; Dodge, Kenneth A.
2016-01-01
Research predicting academic achievement from early academic, attention, and socioemotional skills has largely focused on elementary school outcomes and rarely included peer assessments of social competence. We examined associations between these early child characteristics and academic outcomes into young adulthood using the Fast Track normative…
When a School Burns, Cool Heads and Quick Action Keep Education on Track.
ERIC Educational Resources Information Center
Parry, Robert; Burris, Carol
1988-01-01
A fire destroyed an elementary school in the East Rockaway (New York) school system. A substitute facility, furniture, and textbooks were secured and classes opened, missing only four school days. Future precautions include insurance to cover actual reconstruction costs, smoke detectors, and a computerized inventory system. (MLF)
Trends in Chicago's Schools across Three Eras of Reform
ERIC Educational Resources Information Center
Luppescu, Stuart; Allensworth, Elaine M.; Moore, Paul; de la Torre, Marisa; Murphy, James
2011-01-01
"Trends in Chicago's Schools Across Three Eras of Reform" finds that Chicago Public Schools has experienced tremendous growth in graduation rates over the past 20 years, but learning gains have been modest. The report tracks elementary and high school test scores and graduation rates in Chicago since 1988, when U.S. Secretary of…
ERIC Educational Resources Information Center
Levine-Brown, Linda S.
This report describes the implementation of a data-based program to reduce unacceptable student behaviors and decrease the number of administrative interventions with 21 students with severe emotional disturbances. A computerized database was developed to track classroom and transportation discipline infractions. Students met monthly to review…
ERIC Educational Resources Information Center
Daane, Abigail R.; McKagan, Sarah B.; Vokos, Stamatis; Scherr, Rachel E.
2015-01-01
Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in…
Artificial Intelligence Applications to Fire Management
Don J. Latham
1987-01-01
Artificial intelligence could be used in Forest Service fire management and land-use planning to a larger degree than is now done. Robots, for example, could be programmed to monitor for fire and insect activity, to keep track of wildlife, and to do elementary thinking about the environment. Catching up with the fast-changing technology is imperative.
Financing Higher Education in Kenya: Student Perceptions and Experiences
ERIC Educational Resources Information Center
Ngolovoi, Mary S.
2008-01-01
In response to declining governmental funding, cost-sharing in higher education and dual-track tuition policies were introduced in the 1990s in Kenya. The decline of government funding in higher education was a result of slow economic growth, competing public needs (such as health, elementary education, and infrastructure), and pressure to reduce…
Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK
NASA Astrophysics Data System (ADS)
Konstantinova, O. Tanaka
2017-03-01
High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.
High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wei; Shabbir, Faizan; Gong, Chao
2015-04-13
We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less
NASA Technical Reports Server (NTRS)
Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.
1995-01-01
We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.
Committor of elementary reactions on multistate systems
NASA Astrophysics Data System (ADS)
Király, Péter; Kiss, Dóra Judit; Tóth, Gergely
2018-04-01
In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.
NASA Astrophysics Data System (ADS)
van Gent, P. L.; Michaelis, D.; van Oudheusden, B. W.; Weiss, P.-É.; de Kat, R.; Laskari, A.; Jeon, Y. J.; David, L.; Schanz, D.; Huhn, F.; Gesemann, S.; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, D. E.; Schneiders, J. F. G.; Schrijer, F. F. J.
2017-04-01
A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences of four subsequent particle images (representing multi-pulse data) as well as continuous time-resolved data which can realistically only be obtained for low-speed flows. Particle images were processed using tomographic PIV processing as well as the LPT algorithm `Shake-The-Box' (STB). Multiple pressure field reconstruction techniques have subsequently been applied to the PIV results (Eulerian approach, iterative least-square pseudo-tracking, Taylor's hypothesis approach, and instantaneous Vortex-in-Cell) and LPT results (FlowFit, Vortex-in-Cell-plus, Voronoi-based pressure evaluation, and iterative least-square pseudo-tracking). All methods were able to reconstruct the main features of the instantaneous pressure fields, including methods that reconstruct pressure from a single PIV velocity snapshot. Highly accurate reconstructed pressure fields could be obtained using LPT approaches in combination with more advanced techniques. In general, the use of longer series of time-resolved input data, when available, allows more accurate pressure field reconstruction. Noise in the input data typically reduces the accuracy of the reconstructed pressure fields, but none of the techniques proved to be critically sensitive to the amount of noise added in the present test case.
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
Elementary Particle Spectroscopy in Regular Solid Rewrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology andmore » neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each other fuse into atomic honeycombs of periodic table signature.« less
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas
Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; ...
2015-03-01
The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K α and K β x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those notmore » exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-10-11
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less
Physical Models for Particle Tracking Simulations in the RF Gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishlo, Andrei P.; Holmes, Jeffrey A.
2015-06-01
This document describes the algorithms that are used in the PyORBIT code to track the particles accelerated in the Radio-Frequency cavities. It gives the mathematical description of the algorithms and the assumptions made in each case. The derived formulas have been implemented in the PyORBIT code. The necessary data for each algorithm are described in detail.
4D tracking with ultra-fast silicon detectors
NASA Astrophysics Data System (ADS)
F-W Sadrozinski, Hartmut; Seiden, Abraham; Cartiglia, Nicolò
2018-02-01
The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high-tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This enhancement of the present silicon detector paradigm is enabled by the inclusion of controlled low gain in the detector response, therefore increasing the detector output signal sufficiently to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for both sensor and readout electronics in order to achieve 4D tracking. In the last section, we present the experimental results, demonstrating the validity of our research path.
Real-time image processing for particle tracking velocimetry
NASA Astrophysics Data System (ADS)
Kreizer, Mark; Ratner, David; Liberzon, Alex
2010-01-01
We present a novel high-speed particle tracking velocimetry (PTV) experimental system. Its novelty is due to the FPGA-based, real-time image processing "on camera". Instead of an image, the camera transfers to the computer using a network card, only the relevant information of the identified flow tracers. Therefore, the system is ideal for the remote particle tracking systems in research and industrial applications, while the camera can be controlled and data can be transferred over any high-bandwidth network. We present the hardware and the open source software aspects of the PTV experiments. The tracking results of the new experimental system has been compared to the flow visualization and particle image velocimetry measurements. The canonical flow in the central cross section of a a cubic cavity (1:1:1 aspect ratio) in our lid-driven cavity apparatus is used for validation purposes. The downstream secondary eddy (DSE) is the sensitive portion of this flow and its size was measured with increasing Reynolds number (via increasing belt velocity). The size of DSE estimated from the flow visualization, PIV and compressed PTV is shown to agree within the experimental uncertainty of the methods applied.
Single Charged Particle Identification in Nuclear Emulsion Using Multiple Coulomb Scattering Method
NASA Astrophysics Data System (ADS)
Tint, Khin T.; Endo, Yoko; Hoshino, Kaoru; Ito, Hiroki; Itonaga, Kazunori; Kinbara, Shinji; Kobayashi, Hidetaka; Mishina, Akihiro; Soe, Myint K.; Yoshida, Junya; Nakazawa, Kazuma
Development of particle identification technique for single charged particles such as Ξ- hyperon, proton, K- and π- mesons is on-going by measuring multiple Coulomb scattering in nuclear emulsion. We generated several thousands of tracks of the single charged particles in nuclear emulsion stacks with GEANT 4 simulation and obtained second difference in constant Sagitta Method. We found that recognition of Ξ- hyperon from π- mesons is well satisfied, although that from K- and proton are a little difficult. On the other hand, the consistency of second difference of real Ξ- hyperon and pi meson tracks and simulation results were also confirmed.
Bayesian approach to analyzing holograms of colloidal particles.
Dimiduk, Thomas G; Manoharan, Vinothan N
2016-10-17
We demonstrate a Bayesian approach to tracking and characterizing colloidal particles from in-line digital holograms. We model the formation of the hologram using Lorenz-Mie theory. We then use a tempered Markov-chain Monte Carlo method to sample the posterior probability distributions of the model parameters: particle position, size, and refractive index. Compared to least-squares fitting, our approach allows us to more easily incorporate prior information about the parameters and to obtain more accurate uncertainties, which are critical for both particle tracking and characterization experiments. Our approach also eliminates the need to supply accurate initial guesses for the parameters, so it requires little tuning.
ERIC Educational Resources Information Center
Veltman, Martinus J. G.
1986-01-01
Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)
Kassiopeia: a modern, extensible C++ particle tracking package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furse, Daniel; Groh, Stefan; Trost, Nikolaus
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less
Hall, Elise M; Thurow, Brian S; Guildenbecher, Daniel R
2016-08-10
Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.
Kassiopeia: a modern, extensible C++ particle tracking package
Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...
2017-05-16
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Pline, Alexander D.
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.
Tracking Debris Shed by a Space-Shuttle Launch Vehicle
NASA Technical Reports Server (NTRS)
Stuart, Phillip C.; Rogers, Stuart E.
2009-01-01
The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Pline, Alexander D.
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.
Autoradiography imaging in targeted alpha therapy with Timepix detector.
A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.
Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector
AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285
NASA Astrophysics Data System (ADS)
Nasawasd, T.; Simantathammakul, T.; Herold, C.; Stockmanns, T.; Ritman, J.; Kobdaj, C.
2018-02-01
To classify clusters of hits in the electromagnetic calorimeter (EMC) of bar PANDA (antiProton ANnihilation at DArmstadt), one has to match these EMC clusters with tracks of charged particles reconstructed from hits in the tracking system. Therefore the tracks are propagated to the surface of the EMC and associated with EMC clusters which are nearby and below a cut parameter. In this work, we propose a helix propagator to extrapolate the track from the Straw Tube Tracker (STT) to the inner surface of the EMC instead of the GEANE propagator which is already embedded within the PandaRoot computational framework. The results for both propagation methods show a similar quality, with a 30% gain in CPU time when using the helix propagator. We use Monte-Carlo truth information to compare the particle ID of the EMC clusters with the ID of the extrapolated points, thus deciding upon the correctness of the matches. By varying the cut parameter as a function of transverse momentum and particle type, our simulations show that the purity can be increased by 3-5% compared to the default value which is a constant cut in the bar PANDA simulation framework PandaRoot.
Triple tracks in CR-39 as the result of Pd-D Co-deposition: evidence of energetic neutrons.
Mosier-Boss, Pamela A; Szpak, Stanislaw; Gordon, Frank E; Forsley, Lawrence P G
2009-01-01
Since the announcement by Fleischmann and Pons that the excess enthalpy generated in the negatively polarized Pd-D-D(2)O system was attributable to nuclear reactions occurring inside the Pd lattice, there have been reports of other manifestations of nuclear activities in this system. In particular, there have been reports of tritium and helium-4 production; emission of energetic particles, gamma or X-rays, and neutrons; as well as the transmutation of elements. In this communication, the results of Pd-D co-deposition experiments conducted with the cathode in close contact with CR-39, a solid-state nuclear etch detector, are reported. Among the solitary tracks due to individual energetic particles, triple tracks are observed. Microscopic examination of the bottom of the triple track pit shows that the three lobes of the track are splitting apart from a center point. The presence of three alpha-particle tracks outgoing from a single point is diagnostic of the (12)C(n,n')3alpha carbon breakup reaction and suggests that DT reactions that produce > or = 9.6 MeV neutrons are occurring inside the Pd lattice. To our knowledge, this is the first report of the production of energetic (> or = 9.6 MeV) neutrons in the Pd-D system.
NASA Astrophysics Data System (ADS)
Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You
2017-02-01
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.
Tomographic Aperture-Encoded Particle Tracking Velocimetry: A New Approach to Volumetric PIV
NASA Astrophysics Data System (ADS)
Troolin, Dan; Boomsma, Aaron; Lai, Wing; Pothos, Stamatios; Fluid Mechanics Research Instruments Team
2016-11-01
Volumetric velocity fields are useful in a wide variety of fluid mechanics applications. Several types of three-dimensional imaging methods have been used in the past to varying degrees of success, for example, 3D PTV (Maas et al., 1993), DDPIV (Peireira et al., 2006), Tomographic PIV (Elsinga, 2006), and V3V (Troolin and Longmire, 2009), among others. Each of these techniques has shown advantages and disadvantages in different areas. With the advent of higher resolution and lower noise cameras with higher stability levels, new techniques are emerging that combine the advantages of the existing techniques. This talk describes a new technique called Tomographic Aperture-Encoded Particle Tracking Velocimetry (TAPTV), in which segmented triangulation and diameter tolerance are used to achieve three-dimensional particle tracking with extremely high particle densities (on the order of ppp = 0.2 or higher) without the drawbacks normally associated with ghost particles (for example in TomoPIV). The results are highly spatially-resolved data with very fast processing times. A detailed explanation of the technique as well as plots, movies, and experimental considerations will be discussed.
Symplectic multi-particle tracking on GPUs
NASA Astrophysics Data System (ADS)
Liu, Zhicong; Qiang, Ji
2018-05-01
A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.
Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector.
Seimetz, M; Bellido, P; García, P; Mur, P; Iborra, A; Soriano, A; Hülber, T; García López, J; Jiménez-Ramos, M C; Lera, R; Ruiz-de la Cruz, A; Sánchez, I; Zaffino, R; Roso, L; Benlloch, J M
2018-02-01
CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV.
Charged particle tracking through electrostatic wire meshes using the finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk
Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed.more » The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.« less
Sedimentation patterns caused by scallop dredging in a physically dynamic environment.
Dale, A C; Boulcott, P; Sherwin, T J
2011-11-01
Scallop dredging grounds in the Firth of Lorn, western Scotland, are juxtaposed with rocky reef habitats raising concerns that reef communities may be impacted by sediment disturbed by nearby scallop dredging. A particle-tracking model of sediment transport and settling is applied at two scales. In the near-field, a suspension of typical sand/gravel-dominated bed sediment is subjected to a steady current across the dredge track. In the far-field, silt particles, which may persist in suspension for multiple tidal cycles, are tracked in the context of a regional model of tidally-driven flow. The principal sedimentary risk to reef habitats is predicted to come from settling sand particles when dredge tracks approach within tens of metres of a reef. The cumulative effect of dredging at the relatively low intensities recorded in this region is not expected to have a significant long-term impact on suspended silt concentrations and settlement in this highly dispersive environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bouchami, J.; Gutiérrez, A.; Holy, T.; Houdayer, A.; Jakůbek, J.; Lebel, C.; Leroy, C.; Macana, J.; Martin, J.-P.; Pospíšil, S.; Prak, S.; Sabella, P.; Teyssier, C.; CERN Medipix Collaboration
2011-05-01
Several experiments were performed to establish the Medipix2 device capabilities for track recognition and its efficiency at measuring fluxes. A Medipix2 device was exposed to 241Am, 106Ru and 137Cs radioactive sources, separately and simultaneously. It was also exposed to heavy particle beams (protons and alpha-particles), recoiled on a gold foil to reduce the incoming flux and allow the study of the detector response struck by incoming particles at different incidence angles. For three proton beams (400 keV, 4 and 10 MeV), the device was exposed to the radioactive sources on top of beam, giving a mixed radiation field. To test the reliability of track recognition with this device, the activities of the radioactive sources were extracted from the experimental data and compared to the expected activities. Rotation of the Medipix2 device allowed the test of the heavy tracks recognition at different incidence angles.
Yunos, Mohd Amirul Syafiq Mohd; Hussain, Siti Aslina; Yusoff, Hamdan Mohamed; Abdullah, Jaafar
2014-09-01
Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles
Ichimura, Taro; Jin, Takashi; Fujita, Hideaki; Higuchi, Hideo; Watanabe, Tomonobu M.
2014-01-01
Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies. PMID:25120488
Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*
Nakhmani, Arie; Tannenbaum, Allen
2012-01-01
Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088
Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies
NASA Astrophysics Data System (ADS)
Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning
2013-10-01
The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d
The Handedness of the Universe.
ERIC Educational Resources Information Center
Hegstrom, Roger A.; Kondepudi, Dilip K.
1990-01-01
Discusses how handedness at one level may give rise to handedness at another. Presents examples from plants and animals, molecules, atoms, to elementary particles. Examines the chiral symmetry in life and when it starts. (YP)
Theory of type 3b solar radio bursts. [plasma interaction and electron beams
NASA Technical Reports Server (NTRS)
Smith, R. A.; Delanoee, J.
1975-01-01
During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.
A parameterization of nuclear track profiles in CR-39 detector
NASA Astrophysics Data System (ADS)
Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.
2012-11-01
In this work, the empirical parameterization describing the alpha particles’ track depth in CR-39 detectors is extended to describe longitudinal track profiles against etching time for protons and alpha particles. MATLAB based software is developed for this purpose. The software calculates and plots the depth, diameter, range, residual range, saturation time, and etch rate versus etching time. The software predictions are compared with other experimental data and with results of calculations using the original software, TRACK_TEST, developed for alpha track calculations. The software related to this work is freely downloadable and performs calculations for protons in addition to alpha particles. Program summary Program title: CR39 Catalog identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Copyright (c) 2011, Aasim Azooz Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met • Redistributions of source code must retain the above copyright, this list of conditions and the following disclaimer. • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution This software is provided by the copyright holders and contributors “as is” and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. No. of lines in distributed program, including test data, etc.: 15598 No. of bytes in distributed program, including test data, etc.: 3933244 Distribution format: tar.gz Programming language: MATLAB. Computer: Any Desktop or Laptop. Operating system: Windows 1998 or above (with MATLAB R13 or above installed). RAM: 512 Megabytes or higher Classification: 17.5. Nature of problem: A new semispherical parameterization of charged particle tracks in CR-39 SSNTD is carried out in a previous paper. This parameterization is developed here into a MATLAB based software to calculate the track length and track profile for any proton or alpha particle energy or etching time. This software is intended to compete with the TRACK_TEST [1] and TRACK_VISION [2] software currently in use by all people working in the field of SSNTD. Solution method: Based on fitting of experimental results of protons and alpha particles track lengths for various energies and etching times to a new semispherical formula with four free fitting parameters, the best set of energy independent parameters were found. These parameters are introduced into the software and the software is programmed to solve the set of equations to calculate the track depth, track etching rate as a function of both time and residual range for particles of normal and oblique incidence, the track longitudinal profile at both normal and oblique incidence, and the three dimensional track profile at normal incidence. Running time: 1-8 s on Pentium (4) 2 GHz CPU, 3 GB of RAM depending on the etching time value References: [1] ADWT_v1_0 Track_Test Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials. D. Nikezic, K.N. Yu Comput. Phys. Commun. 174(2006)160 [2] AEAF_v1_0 TRACK_VISION Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors. D. Nikezic, K.N. Yu Comput. Phys. Commun. 178(2008)591
Optimum Value of Original Events on the Pept Technique
NASA Astrophysics Data System (ADS)
Sadremomtaz, Alireza; Taherparvar, Payvand
2011-12-01
Do Positron emission particle tracking (PEPT) has been used to track the motion of a single radioactively labeled tracer particle within a bed of similar particles. In this paper, the effect of the original event fraction on the results precise in two experiments has been reviewed. Results showed that the algorithm can no longer distinguish some corrupt trajectories, in addition to; further iteration reduces the statistical significance of the sample without improving its quality. Results show that the optimum value of trajectories depends on the type of experiment.
An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilie, Ioana M.; Briels, Wim J.; MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede
2015-03-21
Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed.
Let’s have a coffee with the Standard Model of particle physics!
NASA Astrophysics Data System (ADS)
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-05-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called ‘Lagrangian’, which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only rarely makes it into the physics classroom. Therefore, to support high school teachers in their challenging endeavour of introducing particle physics in the classroom, we provide a qualitative explanation of the terms of the Lagrangian and discuss their interpretation based on associated Feynman diagrams.
Correlation energy for elementary bosons: Physics of the singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw; Combescot, Monique; Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw
2016-04-15
We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary bosonmore » approaches, which hide this physics, being inappropriate to do so.« less
Seasonal characteristics of water exchange in Beibu Gulf based on a particle tracking model
NASA Astrophysics Data System (ADS)
Wang, L.; Pan, W.; Yan, X.
2016-12-01
A lagrangian particle tracking model coupled with a three-dimensional Marine Environmental Committee Ocean Model (MEC) is used to study the transport and seasonal characteristics of water exchange in Beibu Gulf. The hydrodynamic model (MEC), which is forced with the daily surface and lateral boundary fluxes, as well as tidal harmonics and monthly climatological river discharges, is applied to simulate the flow field in the gulf during 2014. Using these results, particle tracking method which includes tidal advection and random walk in the horizontal is used to determine the residence times of sub regions within the gulf in response of winter and summer wind forcing. The result shows water exchange processes in the gulf have a similar tendency with seasonal circulation structure. During the sourthwestly prevailing wind in summer, water particles are traped within the gulf that considerably increases the residence time of each sub region. On the contrary, the presence of strong northeastly prevailing wind in winter drives particles to move cyclonicly leading to shorter residence times and rather active water exchanges among sub regions. Similarly, particle tracking is applied to investigate the water transport in Beibu Gulf. As Qiongzhou Strait and the wide opening in the south of the gulf are two significant channels connecting with the open ocean, continuous particle releases are simulated to quantify the influence range and the pathways of these sources water flowing into Beibu Gulf. The results show that water particles originated from Qiongzhou Strait are moving westward due to the year-round strong westward flow transportation. Influencing range in the north of the Beibu Gulf is enlarged by winter northeastly wind, however, it is blocked to the Leizhou Peninsula coastal region by summer westly wind. In the south opening, water particles are transported northward into the gulf along Hainan Island and flushed from Vietnam coastal region to the ocean rapidly by the longshore currents.
NASA Astrophysics Data System (ADS)
Bouaynaya, N.; Schonfeld, Dan
2005-03-01
Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.
Multiple hypothesis tracking for cluttered biological image sequences.
Chenouard, Nicolas; Bloch, Isabelle; Olivo-Marin, Jean-Christophe
2013-11-01
In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.
Déliot, Frédéric; Hadley, Nicholas; Parke, Stephen; ...
2014-10-19
We report that the top quark is the heaviest known elementary particle, and it is often seen as a window to search for new physics processes in particle physics. A large program to study the top-quark properties has been performed both at the Tevatron and LHC colliders by the D0, CDF, ATLAS and CMS experiments. The most recent results are discussed here in this article.
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
NASA Astrophysics Data System (ADS)
Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.
2018-03-01
Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.
ERIC Educational Resources Information Center
PELLA, MILTON O.; ZIEGLER, ROBERT E.
THE RELATIVE EFFECTIVENESS OF TWO TYPES OF MECHANICAL MODELS FOR TEACHING ELEMENTARY SCHOOL STUDENTS TO USE THE PARTICLE IDEA OF MATTER TO EXPLAIN CERTAIN PHYSICAL PHENOMENA WAS INVESTIGATED. SUBJECTS WERE RANDOMLY SELECTED FROM STUDENTS ENROLLED IN GRADES TWO THROUGH SIX IN A SCHOOL SYSTEM. A SERIES OF DEMONSTRATIONS AND RELATED QUESTIONS WERE…
ERIC Educational Resources Information Center
Belenky, Daniel; Ringenberg, Michael; Olsen, Jennifer; Aleven, Vincent; Rummel, Nikol
2014-01-01
As learning technologies proliferate, it is important for research to address how to best align instruction to educational goals. For example, recent evidence indicates that working collaboratively may have unique benefits for facilitating the acquisition of conceptual understanding, as opposed to procedural fluency (Mullins, Rummel & Spada,…
ERIC Educational Resources Information Center
Sander, Wesley F.
2005-01-01
This article talks about how a teacher from Rail Road Flat Elementary School, Randall Youngblood, handles his class of 4th, 5th, and 6th graders through discipline. Discipline and the kind of teach-to-the-test learning that has become endemic in the era of No Child Left Behind has kept his students' energy channeled. Such rote learning often gets…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... increase student engagement and achievement or increase teacher effectiveness. Program Requirements... below grade level or who are not on track to becoming college- or career-ready by graduation, who have... path that the SEA will take to achieve these goals with the support of its LEAs (8 points). (iii) How...
Do High-School Teachers Really Matter? NBER Working Paper No. 17722
ERIC Educational Resources Information Center
Jackson, C. Kirabo
2012-01-01
Unlike in elementary schools, high school teacher effects may be confounded with unobserved track-level treatments (such as the AVID program) that are correlated with individual teachers. I present a strategy that exploits detailed course-taking information to credibly estimate the effects of 9th grade Algebra and English teachers on test scores.…
ERIC Educational Resources Information Center
Clark, Sarah K.; Jones, Cindy D.; Reutzel, D. Ray; Andreasen, Lindi
2013-01-01
In this study, we tracked elementary preservice teachers' (N = 41) perceived ability to teach reading as they moved through their teacher preparation program. After graduation, we conducted follow-up teaching observations and interviews with five of these novice teachers to explore their perceptions about their ability to teach reading. An…
ERIC Educational Resources Information Center
Sun, Zhong; Jiang, Yuzhen
2015-01-01
Digital textbooks that offer multimedia features, interactive controls, e-annotation and learning process tracking are gaining increasing attention in today's mobile learning era, particularly with the rapid development of mobile learning terminals such as Apple's iPad series and Android-based models. Accordingly, this study explores how…
ERIC Educational Resources Information Center
Bartolome, Sarah J.
2017-01-01
The purpose of this longitudinal study was to examine preservice and first-year music educators' perspectives on fieldwork activities embedded within a music teacher preparation program. One cohort of students was tracked for 2.5 years as they participated in an elementary teaching practicum, fulfilled the student teaching internship, and…
Tri-track: free software for large-scale particle tracking.
Vallotton, Pascal; Olivier, Sandra
2013-04-01
The ability to correctly track objects in time-lapse sequences is important in many applications of microscopy. Individual object motions typically display a level of dynamic regularity reflecting the existence of an underlying physics or biology. Best results are obtained when this local information is exploited. Additionally, if the particle number is known to be approximately constant, a large number of tracking scenarios may be rejected on the basis that they are not compatible with a known maximum particle velocity. This represents information of a global nature, which should ideally be exploited too. Some time ago, we devised an efficient algorithm that exploited both types of information. The tracking task was reduced to a max-flow min-cost problem instance through a novel graph structure that comprised vertices representing objects from three consecutive image frames. The algorithm is explained here for the first time. A user-friendly implementation is provided, and the specific relaxation mechanism responsible for the method's effectiveness is uncovered. The software is particularly competitive for complex dynamics such as dense antiparallel flows, or in situations where object displacements are considerable. As an application, we characterize a remarkable vortex structure formed by bacteria engaged in interstitial motility.
Statistical and sampling issues when using multiple particle tracking
NASA Astrophysics Data System (ADS)
Savin, Thierry; Doyle, Patrick S.
2007-08-01
Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.
2005-11-03
In an experiment using a special air gun, particles are shot into aerogel at high velocities. Closeup of particles leaving a carrot-shaped trail in the aerogel are shown here. Aerogel was used on NASA Stardust spacecraft.
Single nanoparticle tracking spectroscopic microscope
Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA
2011-07-19
A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.
PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yildiz, Ahmet
2016-02-01
Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.
Wilson, David R; Green, Jordan J
2017-01-01
Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.
NASA Technical Reports Server (NTRS)
2004-01-01
Scientists have found clues about the nature of martian soil through analyzing wheel marks from the Mars Exploration Rover Spirit in this image. The image was taken by Spirit's rear hazard-identification camera just after the rover drove approximately 1 meter (3 feet) northwest off the Columbia Memorial Station (lander platform) early Thursday morning. That the wheel tracks are shallow indicates the soil has plenty of strength to support the moving rover. The well-defined track characteristics suggest the presence of very fine particles in the martian soil (along with larger particles). Scientists also think the soil may have some cohesive properties.
Spinor Structure and Internal Symmetries
NASA Astrophysics Data System (ADS)
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy
NASA Astrophysics Data System (ADS)
Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido
2015-02-01
The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.
NASA Astrophysics Data System (ADS)
Garcia, M. H.
2016-12-01
Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos, (2011), Lagrangian model of bed-load transport in turbulent junction flows, Journal of Fluid Mechanics, 666,36-76. Niño and García, (1994), Gravel saltation: 2. Modeling, Water Resources Research, 30(6),1915-1924. Niño et al., (1994), Gravel saltation: 1. Experiments, Water Resources Research, 30(6), 1907-1914.
Out-of-Equilibrium Dynamics of Colloidal Particles at Interfaces
NASA Astrophysics Data System (ADS)
Wang, Anna
It is widely assumed that when colloidal particles adsorb to a fluid-fluid interface, they reach equilibrium rapidly. Recently, however, Kaz et al. [Nature Materials, 11, 138-142 (2012)] found that a variety of functionalised latex microspheres breaching an aqueous phase-oil interface relax logarithmically with time toward equilibrium. The relaxation is so slow that the time projected for the particles to reach the equilibrium contact angle of 110° is months--far longer than typical experimental timescales. In this thesis, we seek to understand the out-of-equilibrium behaviour of particles near interfaces. Because contact line pinning is likely an extra source of dissipation at interfaces, we start with experiments to elucidate the origins of contact-line pinning and find that polymer hairs on aqueous dispersed polymer particles strongly pin the contact-line. For particles without polymer hairs, nanoscale surface roughness can also pin the contact-line, though with a lower energy. We then extend our digital holography capabilities to track non-spherical particles. We demonstrate that we can track the centre-of-mass of a colloidal spherocylinder to a precision of 35 nm in all three dimensions and its orientation to a precision of 1.5°. Furthermore, the measured translational and rotational diffusion coefficients for the spherocylinders agree with hydrodynamic predictions to within 0.3%. This new functionality enables us to track colloidal ellipsoids and spherocylinders as they breach interfaces. By comparing the adsorption trajectories of the non-spherical particles to what is predicted from energy minimisation, we learn that contact-line pinning affects not just the timescales of breaching, but also the pathway to equilibrium. In fact, a particle's path to equilibrium can have complications even before the particle breaches the interface. Some particles are attracted to the interface, but stay within a few nanometers without ever breaching. We refer to this binding-mode as 'non-capillary binding', and we investigate when this binding mode is present, what causes it, and how interparticle interactions depend on the binding mode. The last few chapters in this thesis are extensions of ideas developed in the first part. We track the run and tumble of E.coli to demonstrate the potential of digital holographic microscopy as an imaging tool for active particles. Taking all of the particle-interface literature into account, we also outline some simple design principles for making particle-stabilised Pickering emulsions.
Observed aerosol effects on marine cloud nucleation and supersaturation
NASA Astrophysics Data System (ADS)
Russell, Lynn M.; Sorooshian, Armin; Seinfeld, John H.; Albrecht, Bruce A.; Nenes, Athanasios; Leaitch, W. Richard; Macdonald, Anne Marie; Ahlm, Lars; Chen, Yi-Chun; Coggon, Matthew; Corrigan, Ashley; Craven, Jill S.; Flagan, Richard C.; Frossard, Amanda A.; Hawkins, Lelia N.; Jonsson, Haflidi; Jung, Eunsil; Lin, Jack J.; Metcalf, Andrew R.; Modini, Robin; Mülmenstädt, Johannes; Roberts, Greg C.; Shingler, Taylor; Song, Siwon; Wang, Zhen; Wonaschütz, Anna
2013-05-01
Aerosol particles in the marine boundary layer include primary organic and salt particles from sea spray and combustion-derived particles from ships and coastal cities. These particle types serve as nuclei for marine cloud droplet activation, although the particles that activate depend on the particle size and composition as well as the supersaturation that results from cloud updraft velocities. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) 2011 was a targeted aircraft campaign to assess how different particle types nucleate cloud droplets. As part of E-PEACE 2011, we studied the role of marine particles as cloud droplet nuclei and used emitted particle sources to separate particle-induced feedbacks from dynamical variability. The emitted particle sources included shipboard smoke-generated particles with 0.05-1 μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke) and combustion particles from container ships with 0.05-0.2 μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components) [1]. Three central aspects of the collaborative E-PEACE results are: (1) the size and chemical composition of the emitted smoke particles compared to ship-track-forming cargo ship emissions as well as background marine particles, with particular attention to the role of organic particles, (2) the characteristics of cloud track formation for smoke and cargo ships, as well as the role of multi-layered low clouds, and (3) the implications of these findings for quantifying aerosol indirect effects. For comparison with the E-PEACE results, the preliminary results of the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) 2012 provided evidence of the cloud-nucleating roles of both marine organic particles and coastal urban pollution, with simultaneous measurements of the effective supersaturations of the clouds in the California coastal region.
Gauge Bosons--The Ties That Bind.
ERIC Educational Resources Information Center
Hill, Christopher T.
1982-01-01
Discusses four basic forces/interactions in nature (strong force, weak force, electromagnetic force and gravity), associated with elementary particles. Focuses on "gauge bosons" (for example, photons), thought to account for strong, weak, and electromagnetic forces. (Author/JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levay, Peter; Nagy, Szilvia; Pipek, Janos
An elementary formula for the von Neumann and Renyi entropies describing quantum correlations in two-fermionic systems having four single-particle states is presented. An interesting geometric structure of fermionic entanglement is revealed. A connection with the generalized Pauli principle is established.
The Quark's Model and Confinement
ERIC Educational Resources Information Center
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
The top quark, 20 years after its discovery
Denisov, Dmitri; Vellidis, Costas
2015-04-01
In this article, the heaviest of nature’s elementary particles plays an outsized role in many fundamental processes. But because the top quark is so massive, it eluded experimental detection for nearly two decades.
Chekmarev, Sergei F
2013-03-01
The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of the flow to find this state.
Performance analysis of a new positron camera geometry for high speed, fine particle tracking
NASA Astrophysics Data System (ADS)
Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.
2017-09-01
A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (<10-2 MBq), the error was more sensitive to increases in speed, increasing to 28 mm (at 4 m · s-1), indicating that at these conditions a reliable trajectory is not possible. These results expanded on, but correlated well with, previous literature that only contained location errors for tracer speeds up to 1.5 m · s-1. The camera was also used to track directly activated mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a -212 + 106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.
NASA Astrophysics Data System (ADS)
Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.
2018-04-01
One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.
NASA Astrophysics Data System (ADS)
Klise, K. A.; Weissmann, G. S.; McKenna, S. A.; Tidwell, V. C.; Frechette, J. D.; Wawrzyniec, T. F.
2007-12-01
Solute plumes are believed to disperse in a non-Fickian manner due to small-scale heterogeneity and variable velocities that create preferential pathways. In order to accurately predict dispersion in naturally complex geologic media, the connection between heterogeneity and dispersion must be better understood. Since aquifer properties can not be measured at every location, it is common to simulate small-scale heterogeneity with random field generators based on a two-point covariance (e.g., through use of sequential simulation algorithms). While these random fields can produce preferential flow pathways, it is unknown how well the results simulate solute dispersion through natural heterogeneous media. To evaluate the influence that complex heterogeneity has on dispersion, we utilize high-resolution terrestrial lidar to identify and model lithofacies from outcrop for application in particle tracking solute transport simulations using RWHet. The lidar scan data are used to produce a lab (meter) scale two-dimensional model that captures 2-8 mm scale natural heterogeneity. Numerical simulations utilize various methods to populate the outcrop structure captured by the lidar-based image with reasonable hydraulic conductivity values. The particle tracking simulations result in residence time distributions used to evaluate the nature of dispersion through complex media. Particle tracking simulations through conductivity fields produced from the lidar images are then compared to particle tracking simulations through hydraulic conductivity fields produced from sequential simulation algorithms. Based on this comparison, the study aims to quantify the difference in dispersion when using realistic and simplified representations of aquifer heterogeneity. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The constant displacement scheme for tracking particles in heterogeneous aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, X.H.; Gomez-Hernandez, J.J.
1996-01-01
Simulation of mass transport by particle tracking or random walk in highly heterogeneous media may be inefficient from a computational point of view if the traditional constant time step scheme is used. A new scheme which adjusts automatically the time step for each particle according to the local pore velocity, so that each particle always travels a constant distance, is shown to be computationally faster for the same degree of accuracy than the constant time step method. Using the constant displacement scheme, transport calculations in a 2-D aquifer model, with nature log-transmissivity variance of 4, can be 8.6 times fastermore » than using the constant time step scheme.« less
Real time tracking by LOPF algorithm with mixture model
NASA Astrophysics Data System (ADS)
Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo
2007-11-01
A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.
Automated Track Recognition and Event Reconstruction in Nuclear Emulsion
NASA Technical Reports Server (NTRS)
Deines-Jones, P.; Cherry, M. L.; Dabrowska, A.; Holynski, R.; Jones, W. V.; Kolganova, E. D.; Kudzia, D.; Nilsen, B. S.; Olszewski, A.; Pozharova, E. A.;
1998-01-01
The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject back- ground and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities approx. 1100) produced by the 158 GeV/c per nucleon Pb-208 beam at CERN. Automatically reconstructed track lists agree with our best manual measurements to 3%. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki
2007-02-01
We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontallymore » placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, Roger L.
The Revised Eolus Grid Library (REGL) is a mesh-tracking library that was developed for use with the MCNP6TM computer code so that (radiation) particles can track on an unstructured mesh. The unstructured mesh is a finite element representation of any geometric solid model created with a state-of-the-art CAE/CAD tool. The mesh-tracking library is written using modern Fortran and programming standards; the library is Fortran 2003 compliant. The library was created with a defined application programmer interface (API) so that it could easily integrate with other particle tracking/transport codes. The library does not handle parallel processing via the message passing interfacemore » (mpi), but has been used successfully where the host code handles the mpi calls. The library is thread-safe and supports the OpenMP paradigm. As a library, all features are available through the API and overall a tight coupling between it and the host code is required. Features of the library are summarized with the following list: Can accommodate first and second order 4, 5, and 6-sided polyhedra; any combination of element types may appear in a single geometry model; parts may not contain tetrahedra mixed with other element types; pentahedra and hexahedra can be together in the same part; robust handling of overlaps and gaps; tracks element-to-element to produce path length results at the element level; finds element numbers for a given mesh location; finds intersection points on element faces for the particle tracks; produce a data file for post processing results analysis; reads Abaqus .inp input (ASCII) files to obtain information for the global mesh-model; supports parallel input processing via mpi; and support parallel particle transport by both mpi and OpenMP.« less
Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios
2011-10-05
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Effects of Using Space to Teach Standard Elementary School Curriculum
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1996-01-01
This brief report and recommendation for further research brings to a formal close this effort, the original purpose of which is described in detail in The effects of using space to teach standard elementary school curriculum, Volume 1, included here as the Appendix. Volume 1 describes the project as a 3-year research program to determine the effectiveness of using space to teach. The research design is quasi experimental using standardized test data on students from Aldrin Elementary School and a District-identified 'control' school, which shall be referred to as 'School B.' Students now in fourth through sixth grades will be compared now (after one year at Aldrin) and tracked at least until the present sixth graders are through the eighth grade. Appropriate statistical tests will be applied to standardized test scores to see if Aldrin students are 'better' than School B students in areas such as: Overall academic performance; Performance in math/science; and Enrollments in math/science in middle school.
NASA Astrophysics Data System (ADS)
Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin
2014-01-01
Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.
Hall, Elise M.; Thurow, Brian S.; Guildenbecher, Daniel R.
2016-08-08
Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. Furthermore, this includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. Formore » the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1–2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.« less
NASA Technical Reports Server (NTRS)
George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.
2011-01-01
Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.
Eberts, S.M.; Böhlke, J.K.; Kauffman, L.J.; Jurgens, B.C.
2012-01-01
Environmental age tracers have been used in various ways to help assess vulnerability of drinking-water production wells to contamination. The most appropriate approach will depend on the information that is available and that which is desired. To understand how the well will respond to changing nonpoint-source contaminant inputs at the water table, some representation of the distribution of groundwater ages in the well is needed. Such information for production wells is sparse and difficult to obtain, especially in areas lacking detailed field studies. In this study, age distributions derived from detailed groundwater-flow models with advective particle tracking were compared with those generated from lumped-parameter models to examine conditions in which estimates from simpler, less resource-intensive lumped-parameter models could be used in place of estimates from particle-tracking models. In each of four contrasting hydrogeologic settings in the USA, particle-tracking and lumped-parameter models yielded roughly similar age distributions and largely indistinguishable contaminant trends when based on similar conceptual models and calibrated to similar tracer data. Although model calibrations and predictions were variably affected by tracer limitations and conceptual ambiguities, results illustrated the importance of full age distributions, rather than apparent tracer ages or model mean ages, for trend analysis and forecasting.
Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715
Online multi-modal robust non-negative dictionary learning for visual tracking.
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.
Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morelli, D.; Imme, G.; Catalano, R.
2011-12-13
Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less
Vapor etching of nuclear tracks in dielectric materials
Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.
2000-01-01
A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.
Gauge Invariance and the Goldstone Theorem
NASA Astrophysics Data System (ADS)
Guralnik, Gerald S.
This paper was originally created for and printed in the "Proceedings of seminar on unified theories of elementary particles" held in Feldafing, Germany from July 5 to 16, 1965 under the auspices of the Max-Planck-Institute for Physics and Astrophysics in Munich. It details and expands upon the 1964 Guralnik, Hagen, and Kibble paper demonstrating that the Goldstone theorem does not require physical zero mass particles in gauge theories.
Current status of direct dark matter detection experiments
NASA Astrophysics Data System (ADS)
Liu, Jianglai; Chen, Xun; Ji, Xiangdong
2017-03-01
Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
From lepton protoplasm to the genesis of hadrons
NASA Astrophysics Data System (ADS)
Eliseev, S. M.; Kosmachev, O. S.
2016-01-01
Theory of matter under extreme conditions opens a new stage in particle physics. It is necessary here to combine Dirac's elementary particle physics with Prigogine's dynamics of nonequilibrium systems. In the article we discuss the problem of the hierarchy of complexity. What can be considered as the lowest level of the organization of extreme matter on the basis of which the self-organization of the complex form occur?
Time reversibility in the quantum frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masot-Conde, Fátima
2014-12-04
Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.
Autoignition of hydrogen in shear flows
NASA Astrophysics Data System (ADS)
Kalbhor, Abhijit; Chaudhuri, Swetaprovo; Chitilappilly, Lazar
2018-05-01
In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.
NASA Technical Reports Server (NTRS)
Price, P. B.; Sullivan, J. D.
1972-01-01
Tracks of 1000 solar particles with charge Z not less than 10 and tracks of about 150 particles with Z equal to 8 have been analyzed in a stack of plastic detectors exposed in a rocket during the solar flare of Jan. 25, 1971. The energy spectra peak at about 1.5 MeV/nuc, with the flux falling to zero at about 0.4 MeV/nuc. Fe, Si, and O appear to have similar energy spectra for energies between 2 and 12 MeV/nuc.
Lineage mapper: A versatile cell and particle tracker
NASA Astrophysics Data System (ADS)
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary
2016-11-01
The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1986-01-01
Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.
The Model Identification Test: A Limited Verbal Science Test
ERIC Educational Resources Information Center
McIntyre, P. J.
1972-01-01
Describes the production of a test with a low verbal load for use with elementary school science students. Animated films were used to present appropriate and inappropriate models of the behavior of particles of matter. (AL)
ELECTRON AS A FUNDAMENTAL ELEMENTARY PARTICLE. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, U.
1962-12-01
Elementary particles may be nothing but an electron existing under a certain condition, or a group of electrons that are formed to a certain combined state. Therefore, the knowledge of the electron structure is the starting point of our investigation about matter. To obtain the structure, the electron in an absolutely statical state is considered first and is studied by use of the gage- transformation defined in a modified way. This leads to the discovery oi a revised expression for the electromagnetic energy-tensor inside the electron as well as the wave equation for the electron formally similar to the Schrodingermore » equation for the hydrogen atom. However, our wave equation is interpreted as indicating the mode of energy distribution in the electron. To linearize the wave equation, a complex Riemannian geometry has been developed with results promising to be serviceable for further studies. (auth)« less
Goldstone mode and pair-breaking excitations in atomic Fermi superfluids
NASA Astrophysics Data System (ADS)
Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.
2017-10-01
Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.
Matysik, Artur; Kraut, Rachel S
2014-05-01
Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.
Using Light Scattering to Track, Characterize and Manipulate Colloids
NASA Astrophysics Data System (ADS)
van Oostrum, P. D. J.
2011-03-01
A new technique is developed to analyze in-line Digital Holographic Microscopy images, making it possible to characterize, and track colloidal particles in three dimensions at unprecedented accuracy. We took digital snapshots of the interference pattern between the light scattered by micrometer particles and the unaltered portion of a laser beam that was used to illuminate dilute colloidal dispersions on a light microscope in transmission mode. We numerically fit Mie-theory for the light-scattering by micrometer sized particles to these experimental in-line holograms. The fit values give the position in three dimensions with an accuracy of a few nanometers in the lateral directions and several tens of nanometers in the axial direction. The individual particles radii and refractive indices could be determined to within tens of nanometers and a few hundredths respectively. By using a fast CCD camera, we can track particles with millisecond resolution in time which allows us to study dynamical properties such as the hydrodynamic radius and the sedimentation coefficient. The scattering behavior of the particles that we use to track and characterize colloidal particles makes it possible to exert pico-Newton forces on them close to a diffraction limited focus. When these effects are used to confine colloids in space, this technique is called Optical Tweezers. Both by numerical calculations and by experiments, we explore the possibilities of optical tweezers in soft condensed matter research. Using optical tweezers we placed multiple particles in interesting configurations to measure the interaction forces between them. The interaction forces were Yukawa-like screened charge repulsions. Careful timing of the blinking of time-shared optical tweezers and of the recording of holographic snapshots, we were able to measure interaction forces with femto-Newton accuracy from an analysis of (driven) Brownian motion. Forces exerted by external fields such as electric fields and gravity were measured as well. We induced electric dipoles in colloidal particles by applying radio frequency electric fields. Dipole induced strings of particles were formed and made permanent by van der Waals attractions or thermal annealing. Such colloidal strings form colloidal analogues of charged and un-charged (bio-) polymers. The diffusion and bending behavior of such strings was probed using DHM and optical tweezers.
Kassiopeia: a modern, extensible C++ particle tracking package
NASA Astrophysics Data System (ADS)
Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael
2017-05-01
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyn, Rodney K.; Department of Chemistry, University of Ottawa, Ottawa; Kennedy, David C.
Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV coremore » proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.« less
Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2017-04-01
Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.
ERIC Educational Resources Information Center
Sandoval, Anna; Turner, Lindsey; Nicholson, Lisa; Chriqui, Jamie; Tortorelli, Megan; Chaloupka, Frank J.
2012-01-01
Background: School-based measurement of children's body mass index (BMI) is a useful tool for tracking childhood obesity rates, and may be an effective intervention strategy for reducing the increasing trends in obesity. This article examines the relationship between state law, district policy, and school-level BMI measurement practices.…
ERIC Educational Resources Information Center
Sanchez, Monika
2014-01-01
This report is a longitudinal examination of "Preschool for All" (PFA) participants, tracking students' experiences across their first four years in elementary school. It builds upon a 2009 study that found that PFA graduates in San Mateo County were better prepared for kindergarten than their classmates who had not attended preschool…
ERIC Educational Resources Information Center
Hardcastle, Joseph; Herrmann-Abell, Cari F.; DeBoer, George E.
2017-01-01
Energy is a critically important topic in the K-12 science curriculum, with many applications in the earth, physical, and life sciences and in engineering and technology. To meet the challenges associated with teaching energy, new tools and assessment instruments are needed. In this work we describe the development of a three-tier assessment…
EdTrAc Teacher Education Program: First-Year Implementation Evaluation (2005-2006)
ERIC Educational Resources Information Center
Pittman, Brian; Shelton, Ellen
2006-01-01
The Educational Training Academy (EdTrAc) is an NSF-funded project of Normandale Community College to increase the number, diversity, and skills of students preparing to be elementary and middle school teachers with a specialty in math and science. Overall, this evaluation indicates that the EdTrAc implementation is on track after its first year…
ERIC Educational Resources Information Center
Wang, Hsiao-shen; Chen, Yi-Ting; Lin, Chih-Hung
2014-01-01
In this study, we examined the spatial abilities of students using eye-movement tracking devices to identify and analyze their characteristics. For this research, 12 students aged 11-12 years participated as novices and 4 mathematics students participated as experts. A comparison of the visual-spatial abilities of each group showed key factors of…
How Well Do Vivaldi Students Succeed after Elementary School? (Unit 8888)
ERIC Educational Resources Information Center
Miller, Shazia Rafiullah; Luppescu, Stuart; Correa, Macarena
2003-01-01
This school report follows Vivaldi students in two ways. First, it tracks for five year members of the eighth-grade class of 1997 who enrolled in Chicago Public Schools (CPS) high schools or Academic Preparatory Centers (APCs). Second, it follows members of the eighth grade classes of 1997 to 2001 for one year to show their achievement during…
Fifty Years Later: A Chance to Get ESEA Back on Track
ERIC Educational Resources Information Center
Bishop, Joseph P.; Jackson, John H.
2015-01-01
Looking at the evolution of the Elementary and Secondary Education Act (ESEA) over the last 50 years, this paper argues that many of the racial, social, and economic inequities of 1965 that President Johnson was hoping to address have only been accelerated. It's not only time for a modern rethink on educational equity, but also a much broader set…
School Officials and the Courts: Update 2001. ERS Monograph.
ERIC Educational Resources Information Center
Thompson, David P.; Hartmeister, Fredric J.
This is the 22nd in a series of yearly updates of judicial decision summaries for case law related to elementary and secondary education issues. One can use previous and future editions to track decisions on appeal or to see trends in case law. With few exceptions, the cases were selected from court decisions found in federal and regional…
School Officials and the Courts: Update 2002. ERS Monograph.
ERIC Educational Resources Information Center
Thompson, David P.; Hartmeister, Fredric J.
This is the 23rd in a series of yearly updates of judicial decision summaries for case law related to elementary- and secondary-education issues. One can use previous and future editions to track decisions on appeal or to spot trends in case law. With few exceptions, the cases were selected from court decisions found in federal and regional…
Genovesio, Auguste; Liedl, Tim; Emiliani, Valentina; Parak, Wolfgang J; Coppey-Moisan, Maité; Olivo-Marin, Jean-Christophe
2006-05-01
We propose a method to detect and track multiple moving biological spot-like particles showing different kinds of dynamics in image sequences acquired through multidimensional fluorescence microscopy. It enables the extraction and analysis of information such as number, position, speed, movement, and diffusion phases of, e.g., endosomal particles. The method consists of several stages. After a detection stage performed by a three-dimensional (3-D) undecimated wavelet transform, we compute, for each detected spot, several predictions of its future state in the next frame. This is accomplished thanks to an interacting multiple model (IMM) algorithm which includes several models corresponding to different biologically realistic movement types. Tracks are constructed, thereafter, by a data association algorithm based on the maximization of the likelihood of each IMM. The last stage consists of updating the IMM filters in order to compute final estimations for the present image and to improve predictions for the next image. The performances of the method are validated on synthetic image data and used to characterize the 3-D movement of endocytic vesicles containing quantum dots.
Motion-compensated speckle tracking via particle filtering
NASA Astrophysics Data System (ADS)
Liu, Lixin; Yagi, Shin-ichi; Bian, Hongyu
2015-07-01
Recently, an improved motion compensation method that uses the sum of absolute differences (SAD) has been applied to frame persistence utilized in conventional ultrasonic imaging because of its high accuracy and relative simplicity in implementation. However, high time consumption is still a significant drawback of this space-domain method. To seek for a more accelerated motion compensation method and verify if it is possible to eliminate conventional traversal correlation, motion-compensated speckle tracking between two temporally adjacent B-mode frames based on particle filtering is discussed. The optimal initial density of particles, the least number of iterations, and the optimal transition radius of the second iteration are analyzed from simulation results for the sake of evaluating the proposed method quantitatively. The speckle tracking results obtained using the optimized parameters indicate that the proposed method is capable of tracking the micromotion of speckle throughout the region of interest (ROI) that is superposed with global motion. The computational cost of the proposed method is reduced by 25% compared with that of the previous algorithm and further improvement is necessary.
Simultaneous measurements of jellyfish bell kinematics and flow fields using PTV and PIV
NASA Astrophysics Data System (ADS)
Xu, Nicole; Dabiri, John
2016-11-01
A better understanding of jellyfish swimming can potentially improve the energy efficiency of aquatic vehicles or create biomimetic robots for ocean monitoring. Aurelia aurita is a simple oblate invertebrate composed of a flexible bell and coronal muscle, which contracts to eject water from the subumbrellar volume. Jellyfish locomotion can be studied by obtaining body kinematics or by examining the resulting fluid velocity fields using particle image velocimetry (PIV). Typically, swim kinematics are obtained by semi-manually tracking points of interest (POI) along the bell in video post-processing; simultaneous measurements of kinematics and flows involve using this semi-manual tracking method on PIV videos. However, we show that both the kinematics and flow fields can be directly visualized in 3D space by embedding phosphorescent particles in animals free-swimming in seeded environments. Particle tracking velocimetry (PTV) can then be used to calculate bell kinematics, such as pulse frequency, bell deformation, swim trajectories, and propulsive efficiency. By simultaneously tracking POI within the bell and collecting PIV data, we can further study the jellyfish's natural locomotive control mechanisms in conjunction with flow measurements. NSF GRFP.
Monte Carlo N-Particle Tracking of Ultrafine Particle Flow in Bent Micro-Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Andrew M.; Loyalka, Sudarsham K.
2016-02-16
The problem of large pressure-differential driven laminar convective-diffusive ultrafine aerosol flow through bent micro-tubes is of interest in several contemporary research areas including; release of contents from pressurized containment vessels, aerosol sampling equipment, advanced scientific instruments, gas-phase micro-heat exchangers, and microfluidic devices. In each of these areas, the predominant problem is the determination of the fraction of particles entering the micro-tube that is deposited within the tube and the fraction that is transmitted through. Due to the extensive parameter restrictions of this class of problems, a Lagrangian particle tracking method making use of the coupling of the analytical stream linemore » solutions of Dean and the simplified Langevin equation is quite a useful tool in problem characterization. This method is a direct analog to the Monte Carlo N-Particle method of particle transport extensively used in nuclear physics and engineering. In this work, 10 nm diameter particles with a density of 1 g/cm3 are tracked within micro-tubes with toroidal bends with pressure differentials ranging between 0.2175 and 0.87 atmospheres. The tubes have radii of 25 microns and 50 microns and the radius of curvature is between 1 m and 0.3183 cm. The carrier gas is helium, and temperatures of 298 K and 558 K are considered. Numerical convergence is considered as a function of time step size and of the number of particles per simulation. Particle transmission rates and deposition patterns within the bent micro-tubes are calculated.« less
The Simpsons program 6-D phase space tracking with acceleration
NASA Astrophysics Data System (ADS)
Machida, S.
1993-12-01
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
Preventing Serious Conduct Problems in School-Age Youths: The Fast Track Program
Slough, Nancy M.; McMahon, Robert J.; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Foster, E. Michael; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen E.
2009-01-01
Children with early-starting conduct Problems have a very poor prognosis and exact a high cost to society. The Fast Track project is a multisite, collaborative research project investigating the efficacy of a comprehensive, long-term, multicomponent intervention designed to prevent the development of serious conduct problems in high-risk children. In this article, we (a) provide an overview of the development model that serves as the conceptual foundation for the Fast Track intervention and describe its integration into the intervention model; (b) outline the research design and intervention model, with an emphasis on the elementary school phase of the intervention; and (c) summarize findings to dale concerning intervention outcomes. We then provide a case illustration, and conclude with a discussion of guidelines for practitioners who work with children with conduct problems. PMID:19890487
Extended micro objects as dark matter particles
NASA Astrophysics Data System (ADS)
Belotsky, K.; Rubin, S.; Svadkovsky, I.
2017-05-01
Models of various forms of composite dark matter (DM) predicted by particle theory and the DM constituents formed by gravity that are not reduced to new elementary particle candidates are discussed. Main attention is paid to a gravitational origin of the DM. The influence of extended mass spectrum of primordial black holes on observational limits is considered. It is shown that non-uniformly deformed extra space can be considered as point-like masses which possess only gravitational interaction with each other and with the ordinary particles. The recently discussed six-dimensional stable wormholes could contribute to the DM. The contribution of dark atoms is also considered.
NASA Technical Reports Server (NTRS)
Lee, David; Ge, Yi; Cha, Soyoung Stephen; Ramachandran, Narayanan; Rose, M. Franklin (Technical Monitor)
2001-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. It has great freedom in illuminating and observing volumetric fields from arbitrary directions. STV is based on stereoscopic observation of particles-Seeded in a flow by CCD sensors. In the approach, part of the individual particle images that provide data points is likely to be lost or cause errors when their images overlap and crisscross each other especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle overlap decomposition, the back propagation neural network is utilized because of its ability in pattern recognition with pertinent particle image feature parameters. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. As an initial assessment of the diagnostic technology performance, laminar water jets with and without pulsation are measured. The jet tip velocity profiles are in good agreement with analytical predictions. Finally, for testing in material processing applications, a simple directional solidification apparatus is built for experimenting with a metal analog of succinonitrile. Its 3-D velocity field at the liquid phase is then measured to be compared with those from numerical computation. Our theoretical, numerical, and experimental investigations have proven STV to be a viable candidate for reliably measuring 3-D flow velocities. With current activities are focused on further improving the processing efficiency, overall accuracy, and automation, the eventual efforts of broad experimental applications and concurrent numerical modeling validation will be vital to many areas in fluid flow and materials processing.
Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter
NASA Astrophysics Data System (ADS)
Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio
2012-01-01
Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.
Human tracking in thermal images using adaptive particle filters with online random forest learning
NASA Astrophysics Data System (ADS)
Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal
2013-11-01
This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.
PARTICLE BEAM TRACKING CIRCUIT
Anderson, O.A.
1959-05-01
>A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)
Application of a novel new multispectral nanoparticle tracking technique
NASA Astrophysics Data System (ADS)
McElfresh, Cameron; Harrington, Tyler; Vecchio, Kenneth S.
2018-06-01
Fast, reliable, and accurate particle size analysis techniques must meet the demands of evolving industrial and academic research in areas of functionalized nanoparticle synthesis, advanced materials development, and other nanoscale enabled technologies. In this study a new multispectral particle tracking analysis (m-PTA) technique enabled by the ViewSizer™ 3000 (MANTA Instruments, USA) was evaluated using solutions of monomodal and multimodal gold and polystyrene latex nanoparticles, as well as a spark eroded polydisperse 316L stainless steel nanopowder, and large (non-Brownian) borosilicate particles. It was found that m-PTA performed comparably to the DLS in evaluation of monomodal particle size distributions. When measuring bimodal, trimodal and polydisperse solutions, the m-PTA technique overwhelmingly outperformed traditional dynamic light scattering (DLS) in both peak detection and relative particle concentration analysis. It was also observed that the m-PTA technique is less susceptible to large particle overexpression errors. The ViewSizer™ 3000 was also found to be successful in accurately evaluating sizes and concentrations of monomodal and bimodal sinking borosilicate particles.
Fluorescent image tracking velocimeter
Shaffer, Franklin D.
1994-01-01
A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.
Positron emission particle tracking using a modular positron camera
NASA Astrophysics Data System (ADS)
Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.
2009-06-01
The technique of positron emission particle tracking (PEPT), developed at Birmingham in the early 1990s, enables a radioactively labelled tracer particle to be accurately tracked as it moves between the detectors of a "positron camera". In 1999 the original Birmingham positron camera, which consisted of a pair of MWPCs, was replaced by a system comprising two NaI(Tl) gamma camera heads operating in coincidence. This system has been successfully used for PEPT studies of a wide range of granular and fluid flow processes. More recently a modular positron camera has been developed using a number of the bismuth germanate (BGO) block detectors from standard PET scanners (CTI ECAT 930 and 950 series). This camera has flexible geometry, is transportable, and is capable of delivering high data rates. This paper presents simple models of its performance, and initial experience of its use in a range of geometries and applications.
NASA Astrophysics Data System (ADS)
Daniel, Jonathan; Godin, Antoine G.; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent; Blanchard-Desce, Mireille
2016-03-01
Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking.
Effects of etching time on alpha tracks in solid state nuclear track detectors.
Gillmore, Gavin; Wertheim, David; Crust, Simon
2017-01-01
Solid State Nuclear Track Detectors (SSNTDs) are used extensively for monitoring alpha particle radiation, neutron flux and cosmic ray radiation. Radon gas inhalation is regarded as being a significant contributory factor to lung cancer deaths in the UK each year. Gas concentrations are often monitored using CR39 based SSNTDs as the natural decay of radon results in alpha particles which form tracks in these detectors. Such tracks are normally etched for about 4h to enable microscopic analysis. This study examined the effect of etching time on the appearance of alpha tracks in SSNTDs by collecting 2D and 3D image datasets using laser confocal microscope imaging techniques. Etching times of 2 to 4h were compared and marked differences were noted in resultant track area. The median equivalent diameters of tracks were 20.2, 30.2 and 38.9μm for etching at 2, 3 and 4h respectively. Our results indicate that modern microscope imaging can detect and image the smaller size tracks seen for example at 3h etching time. Shorter etching times may give rise to fewer coalescing tracks although there is a balance to consider as smaller track sizes may be more difficult to image. Thus etching for periods of less than 4h clearly merits further investigation as this approach has the potential to improve accuracy in assessing the number of tracks. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion
NASA Astrophysics Data System (ADS)
Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.
2016-02-01
Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.
A New Method for Tracking Individual Particles During Bed Load Transport in a Gravel-Bed River
NASA Astrophysics Data System (ADS)
Tremblay, M.; Marquis, G. A.; Roy, A. G.; Chaire de Recherche Du Canada En Dynamique Fluviale
2010-12-01
Many particle tracers (passive or active) have been developed to study gravel movement in rivers. It remains difficult, however, to document resting and moving periods and to know how particles travel from one deposition site to another. Our new tracking method uses the Hobo Pendant G acceleration Data Logger to quantitatively describe the motion of individual particles from the initiation of movement, through the displacement and to the rest, in a natural gravel river. The Hobo measures the acceleration in three dimensions at a chosen temporal frequency. The Hobo was inserted into 11 artificial rocks. The rocks were seeded in Ruisseau Béard, a small gravel-bed river in the Yamaska drainage basin (Québec) where the hydraulics, particle sizes and bed characteristics are well known. The signals recorded during eight floods (Summer and Fall 2008-2009) allowed us to develop an algorithm which classifies the periods of rest and motion. We can differentiate two types of motion: sliding and rolling. The particles can also vibrate while remaining in the same position. The examination of the movement and vibration periods with respect to the hydraulic conditions (discharge, shear stress, stream power) showed that vibration occurred mostly before the rise of hydrograph and allowed us to establish movement threshold and response times. In all cases, particle movements occurred during floods but not always in direct response to increased bed shear stress and stream power. This method offers great potential to track individual particles and to establish a spatiotemporal sequence of the intermittent transport of the particle during a flood and to test theories concerning the resting periods of particles on a gravel bed.
Two moment dust and water ice in the MarsWRF GCM
NASA Astrophysics Data System (ADS)
Lee, Christopher; Richardson, Mark I.; Newman, Claire E.; Mischna, Michael A.
2016-10-01
A new two moment dust and water ice microphysics scheme has been developed for the MarsWRF General Circulation Model based on the Morrison and Gettelman (2008) scheme, and includes temperature dependent nucleation processes and energetically constrained condensation and evaporation. Dust consumed in the formation of water ice is also tracked by the model.The two moment dust scheme simulates dust particles in the Martian atmosphere using a Gamma distribution with fixed radius for lifted particles. Within the atmosphere the particle distribution is advected and sedimented within the two moment framework, obviating the requirement for lossy conversion between the continuous Gamma distribution and discritized bins found in some Mars microphysics schemes. Water ice is simulated using the same Gamma distribution and advected and sedimented in the same way. Water ice nucleation occurs heterogeneously onto dust particles with temperature dependent contact parameters (e.g. Trainer et al., 2009) and condensation and evaporation follows energetic constraints (e.g. Pruppacher and Klett, 1980; Montmessin et al., 2002) allowing water ice particles to grow in size where necessary. Dust particles are tracked within the ice cores as nucleation occurs, and dust cores advect and sediment along with their parent ice particle distributions. Radiative properties of dust and water particles are calculated as a function of the effective radius of the particles and the distribution width. The new microphysics scheme requires 5 tracers to be tracked as the moments of the dust, water ice, and ice core. All microphysical processes are simulated entirely within the two moment framework without any discretization of particle sizes.The effect of this new microphysics scheme on dust and water ice cloud distribution will be discussed and compared with observations from TES and MCS.
NASA Astrophysics Data System (ADS)
Park, Y. J.; Lee, M. H.; Pyo, H. Y.; Kim, H. A.; Sohn, S. C.; Jee, K. Y.; Kim, W. H.
2005-06-01
Uranium-adsorbed silica particles were prepared as a reference material for the fission track analysis (FTA) of swipe samples. A modified instrumental setup for particle generation, based on a commercial vibrating orifice aerosol generator to produce various sizes of droplets from a SiO 2 solution, is described. The droplets were transferred into a weak acidic solution bath to produce spherical solid silica particles. The classification of the silica particles in the range from 5 to 20 μm was carried out by the gravitational sedimentation method. The size distribution and morphology of the classified silica particles were investigated by scanning electron microscopy. The physicochemical properties of the classified silica particles such as the surface area, pore size and pore volume were measured. After an adsorption of 5% 235U on the silica particles in a solution adjusted to pH 4.5, the uranium-adsorbed silica particles were calcined up to 950 °C in a furnace to fix the uranium strongly onto the silica particles. The various sizes of uranium-adsorbed silica particles were applied to the FTA for use as a reference material.
Experimental investigation of clogging dynamics in homogeneous porous medium
NASA Astrophysics Data System (ADS)
Shen, Jikang; Ni, Rui
2017-03-01
A 3-D refractive-index matching Lagrangian particle tracking (3D-RIM-LPT) system was developed to study the filtration and the clogging process inside a homogeneous porous medium. A small subset of particles flowing through the porous medium was dyed and tracked. As this subset was randomly chosen, its dynamics is representative of all the rest. The statistics of particle locations, number, and velocity were obtained as functions of different volumetric concentrations. It is found that in our system the clogging time decays with the particle concentration following a power law relationship. As the concentration increases, there is a transition from depth filtration to cake filtration. At high concentration, more clogged pores lead to frequent flow redirections and more transverse migrations of particles. In addition, the velocity distribution in the transverse direction is symmetrical around zero, and it is slightly more intermittent than the random Gaussian curve due to particle-particle and particle-grain interactions. In contrast, as clogging develops, the longitudinal velocity of particles along the mean flow direction peaks near zero because of many trapped particles. But at the same time, the remaining open pores will experience larger pressure and, as a result, particles through those pores tend to have larger longitudinal velocities.
Patton's tracks in the Mojave Desert, USA: An ecological legacy
Belnap, Jayne; Warren, Steven D.
2002-01-01
Recovery of soil properties from World War II-era military training exercises in the Mojave Desert was measured approximately 55 years following disturbance. Tracks from military vehicles were still visible, particularly in areas of desert pavement. Soil penetrability was much lower in visible tracks than outside the tracks. Soils in tracks had fewer rocks in the top 10cm of the soil profile than adjacent untracked soils. Larger particles (> 4.8mm) formed a moderately well-developed pavement outside of the tracks, while smaller, loose particles ( h 4.8mm) dominated the surface of the tracks. The time required to restore the desert pavement is likely to be measured in centuries. Based on biomass estimates, the cyanobacterial component of biological soil crusts had recovered 46-65% in tracks, compared to outside the tracks. Overall recovery of lichen cover has been much slower. Under plant canopies, cover of Collema tenax was not significantly different between areas inside and outside the tracks; however, recovery of Catapyrenium squamulosum was only 36%. In plant interspaces with less favorable moisture and temperature conditions, C. tenax showed a 6% recovery and C. squamulosum a 3% recovery. Assuming recovery of the biological soil crust is linear, and complete only when the most sensitive species (C. squamulosum) has fully recovered in the most limiting microhabitats (plant interspaces), it may require almost two millennia for full recovery of these areas.
Vassal, J-P; Orgéas, L; Favier, D; Auriault, J-L; Le Corre, S
2008-01-01
In paper I [Vassal, Phys. Rev. E77, 011302 (2008)] of this contribution, the effective diffusion properties of particulate media with highly conductive particles and particle-particle interfacial barriers have been investigated with the homogenization method with multiple scale asymptotic expansions. Three different macroscopic models have been proposed depending on the quality of contacts between particles. However, depending on the nature and the geometry of particles contained in representative elementary volumes of the considered media, localization problems to be solved to compute the effective conductivity of the two first models can rapidly become cumbersome, time and memory consuming. In this second paper, the above problem is simplified and applied to networks made of slender, wavy and entangled fibers. For these types of media, discrete formulations of localization problems for all macroscopic models can be obtained leading to very efficient numerical calculations. Semianalytical expressions of the effective conductivity tensors are also proposed under simplifying assumptions. The case of straight monodisperse and homogeneously distributed slender fibers with a circular cross section is further explored. Compact semianalytical and analytical estimations are obtained when fiber-fiber contacts are perfect or very poor. Moreover, two discrete element codes have been developed and used to solve localization problems on representative elementary volumes for the same types of contacts. Numerical results underline the significant roles of the fiber content, the orientation of fibers as well as the relative position and orientation of contacting fibers on the effective conductivity tensors. Semianalytical and analytical predictions are discussed and compared with numerical results.
Particle tracking velocimetry using echocardiographic data resolves flow in the left ventricle
NASA Astrophysics Data System (ADS)
Sampath, Kaushik; Abd, Thura T.; George, Richard T.; Katz, Joseph
2015-11-01
Two dimensional contrast echocardiography was performed on patients with a history of left ventricular (LV) thrombus. The 636 x 434 pixels electrocardiograms were recorded using a GE Vivid 9E system with (M5S-D and 4V-D) probes in a 2-D mode at a magnification of 0.3 mm/pix. The concentration of 2-4.5 micron seed bubbles was adjusted to obtain individually discernable traces, and a data acquisition rate of 60-90 fps kept the inter-frame displacements suitable for matching traces, and calculating vectors, but yet low enough to allow a scanning depth and width of upto 13 cm and 60 degrees respectively. Particle tracking velocimetry (PTV) guided by initial particle image velocimetry (PIV) was used to obtain the velocity distributions inside the LV with vector spacing of 3-5 mm. The data quality was greatly enhanced by implementing an iterative particle specific enhancement and tracking algorithm. Data covering 20 heart beats facilitated phase averaging. The results elucidated blood flow in the intra-ventricular septal region, lateral wall region, the apex of the LV and the mitral valve region.
NASA Technical Reports Server (NTRS)
Walker, R. M.
1974-01-01
The major scientific accomplishments through 1971 are reported for the particle track studies of lunar samples. Results are discussed of nuclear track measurements by optical and electron microscopy, thermoluminescence, X-ray diffraction, and differential thermal analysis.
Particle Filter Based Tracking in a Detection Sparse Discrete Event Simulation Environment
2007-03-01
obtained by disqualifying a large number of particles. 52 (a) (b) ( c ) Figure 31. Particle Disqualification via Sanitization b...1 B. RESEARCH APPROACH..............................................................................5 C . THESIS ORGANIZATION...38 b. Detection Distribution Sampling............................................43 c . Estimated Position Calculation
Action of Penetrating Radiation on Radio Parts,
1984-05-24
the formation of the pair of particles the electron - positron . This process is called the effect of the formation of electron- positron pairs. Pair...formation can occur during the absorption 7-quantum with the energy, greater than total rest energy of electron and positron (more than the doubled...rest energy of electron, equal to 2mc 2=!.02 MeV). Positron (unstable elementary DOC - 83167601 PAGE 9 particle) in turn interacts with the electron of
Statistical Physics Experiments Using Dusty Plasmas
NASA Astrophysics Data System (ADS)
Goree, John
2016-10-01
Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states. Third, we performed the first experimental test of a statistical physics theory (the Green-Kubo model) that is widely used by physical chemists to compute viscosity coefficients, and we found that it fails. Work supported by the U.S. Department of Energy, NSF, and NASA.
NASA Astrophysics Data System (ADS)
Maas, Grayson Ford
This dissertation is an investigation into the American public education system at the elementary school level. It highlights important factors that shape the organizational structure of schools and classrooms, and in turn, how they engender disparities in the ways students experience education, namely, in the opportunities made available to them to achieve and succeed at a high level. This dissertation operates at the confluence of notions about class, gender, language, and race, especially as they revolve around public education and the hegemonic meritocratic discourse on which it is founded. This dissertation engages and contributes to scholarship within the following areas: The political economy of education; discourse and the dialectical relationship between agency and structure; cultural perspectives on identity, voice, and learning; and, Latinas/os in science education. The data that serve as the basis for the findings presented in this dissertation were collected throughout a three-phase yearlong ethnographic study of the two tracked fifth-grade classrooms at Amblen Elementary School, serving a socioeconomically disadvantaged Latina/o student population in Santa Barbara, California. In classrooms all across the nation, while it remains true that Latina/o students disproportionally take up space in the lower-tracked courses and not in the higher ones, this study does not examine inequality in tracking assignments made along ethnic/racial lines (as 100% of the students that participated in this research identify as Latina/o), rather, it investigates the consequences of what happens when Latina/o students are tracked according to symbolic markers of their ethnic/racial identity, that is, their varying levels of English language competency. Using data from participant observation, semi-structured interviews, students' drawings, as well as free-list and rank-order exercises, I was able to answer the following central research questions: In what ways do the division of students into groups (based on academic ability [i.e., English language proficiency] and behavior) impact: (a) the number and types of opportunities for Latinas/os to succeed in school science? (b) how Latinas/os negotiate the concept of 'success' in school science? And (c) the ways in which Latinas/os claim and perform successful school science identities? During my time with the fifth-grade youth of Amblen Elementary School, I found that not all students were necessarily expected to succeed in the same ways and with the same frequency. I also found that while there existed considerable overlaps, what it meant to be a "good" science student in one classroom was qualitatively different from what it meant in the other. Importantly, these differences in classroom expectations helped to mold (or inhibit) students' individual understandings of self as capable and/or "smart" students. This dissertation endeavors to tell their story.
Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.
2013-06-27
The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less
The artificial retina for track reconstruction at the LHC crossing rate
NASA Astrophysics Data System (ADS)
Abba, A.; Bedeschi, F.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M. J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.
2016-04-01
We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.
Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2017-08-01
For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.
Higgs Boson: god particle or divine comedy?
NASA Astrophysics Data System (ADS)
Rangacharyulu, Chary
2013-10-01
While particle physicists around the world rejoice the announcement of discovery of Higgs particle as a momentous event, it is also an opportune moment to assess the physicists' conception of nature. Particle theorists, in their ingenious efforts to unravel mysteries of the physical universe at a very fundamental level, resort to macroscopic many body theoretical methods of solid state physicists. Their efforts render the universe a superconductor of correlated quasi-particle pairs. Experimentalists, devoted to ascertain the elementary constituents and symmetries, depend heavily on numerical simulations based on those models and conform to theoretical slang in planning and interpretation of measurements . It is to the extent that the boundaries between theory/modeling and experiment are blurred. Is it possible that they are meandering in Dante's Inferno?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forest, E.; Hirata, Kohji
A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them asmore » approximate quantities which are valid in certain limiting cases.« less
NASA Astrophysics Data System (ADS)
Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon
2017-03-01
As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.
NASA Astrophysics Data System (ADS)
Boscolo, D.; Krämer, M.; Durante, M.; Fuss, M. C.; Scifoni, E.
2018-04-01
The production, diffusion, and interaction of particle beam induced water-derived radicals is studied with the a pre-chemical and chemical module of the Monte Carlo particle track structure code TRAX, based on a step by step approach. After a description of the model implemented, the chemical evolution of the most important products of water radiolysis is studied for electron, proton, helium, and carbon ion radiation at different energies. The validity of the model is verified by comparing the calculated time and LET dependent yield with experimental data from literature and other simulation approaches.
Objective comparison of particle tracking methods.
Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R; Godinez, William J; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E G; Jaldén, Joakim; Blau, Helen M; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P; Dan, Han-Wei; Tsai, Yuh-Show; Ortiz de Solórzano, Carlos; Olivo-Marin, Jean-Christophe; Meijering, Erik
2014-03-01
Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.
NASA Astrophysics Data System (ADS)
Afik, Eldad
2015-09-01
Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.
NASA Astrophysics Data System (ADS)
Roberts, John
2005-11-01
The rapid advancements in micro/nano biotechnology demand quantitative tools for characterizing microfluidic flows in lab-on-a-chip applications, validation of computational results for fully 3D flows in complex micro-devices, and efficient observation of cellular dynamics in 3D. We present a novel 3D micron-scale DPTV (defocused particle tracking velocimetry) that is capable of mapping out 3D Lagrangian, as well as 3D Eulerian velocity flow fields at sub-micron resolution and with one camera. The main part of the imaging system is an epi-fluorescent microscope (Olympus IX 51), and the seeding particles are fluorescent particles with diameter range 300nm - 10um. A software package has been developed for identifying (x,y,z,t) coordinates of the particles using the defocused images. Using the imaging system, we successfully mapped the pressure driven flow fields in microfluidic channels. In particular, we measured the Laglangian flow fields in a microfluidic channel with a herring bone pattern at the bottom, the later is used to enhance fluid mixing in lateral directions. The 3D particle tracks revealed the flow structure that has only been seen in numerical computation. This work is supported by the National Science Foundation (CTS - 0514443), the Nanobiotechnology Center at Cornell, and The New York State Center for Life Science Enterprise.
Heavy ion action on single cells: Cellular inactivation capability of single accelerated heavy ions
NASA Technical Reports Server (NTRS)
Kost, M.; Pross, H.-D.; Russmann, C.; Schneider, E.; Kiefer, J.; Kraft, G.; Lenz, G.; Becher, W.
1994-01-01
Heavy ions (HZE-particles) constitute an important part of radiation in space. Although their number is small the high amount of energy transferred by individual particles may cause severe biological effects. Their investigation requires special techniques which were tested by experiments performed at the UNILAC at the GSI (Darmstadt). Diploid yeast was used which is a suitable eucaryotic test system because of its resistance to extreme conditions like dryness and vacuum. Cells were placed on nuclear track detector foils and exposed to ions of different atomic number and energy. To assess the action of one single ion on an individual cell, track parameters and the respective colony forming abilities (CFA) were determined with the help of computer aided image analysis. There is mounting evidence that not only the amount of energy deposited along the particle path, commonly given by the LET, is of importance but also the spatial problem of energy deposition at a submicroscopical scale. It is virtually impossible to investigate track structure effects in detail with whole cell populations and (globally applied) high particle fluences. It is, therefore, necessary to detect the action of simple ions in individual cells. The results show that the biological action depends on atomic number and specific energy of the impinging ions, which can be compared with model calculations of recent track structure models.