1988-12-01
Department Campbell, Judy S., Principal Seedling Mile Elementary School Campbell, Kelly, Vice President International Services, Inc. Campbell, Larry...Agency #5 Coverdale, Miles , Principal Baxter Coveyou, Tony, Cowan, Ann, Education Specialist Hanford Science Center Cowan, Margaret, Cowan, Peggy...Science State Department of Education Ezell, James, No. 92 Elementary School Ezzell , Effie, No. 45 Elementary School 09/03/88 NSRC Elementary Science
ERIC Educational Resources Information Center
Center for the Future of Teaching and Learning at WestEd, 2011
2011-01-01
This report summarizes research findings on science education in California's elementary schools from multiple sources of data collected during 2010-11, specifically, surveys of district administrators, elementary school principals, and elementary school teachers; case studies of elementary schools; analysis of statewide secondary data sets; and…
An elective course to engage student pharmacists in elementary school science education.
Woodard, Lisa J; Wilson, Judith S; Blankenship, James; Quock, Raymond M; Lindsey, Marti; Kinsler, Janni J
2011-12-15
To develop and assess the impact of an elective course (HealthWISE) on student pharmacists' skills in communication and health promotion and elementary school students' knowledge of and attitudes toward science. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists' performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students.
ELEMENTARY SCIENCE OUTLINE, A GUIDE TO SUGGESTED CURRICULUM PRACTICES IN ELEMENTARY SCHOOL SCIENCE.
ERIC Educational Resources Information Center
KARTSOTIS, A. THOMAS; MESSERSCHMIDT, RALPH M.
THE COMMITTEE ON ELEMENTARY SCHOOL SCIENCE OF THE LEHIGH VALLEY SCHOOL STUDY COUNCIL REPORTS THEIR WORK ON SUGGESTED CURRICULUM FOR GRADES 1-6. THE BELIEF IS THAT SCIENCE IS A MAJOR STUDY AREA IN ELEMENTARY SCHOOL, AND SHOULD BE TAUGHT TO ALL PUPILS IN A PLANNED LEARNING SEQUENCE, WITH DUE CONSIDERATION BEING GIVEN TO THE MATURITY OF THE CHILD.…
Parental influences on students' self-concept, task value beliefs, and achievement in science.
Senler, Burcu; Sungur, Semra
2009-05-01
The aim of this study was twofold: firstly, to investigate the grade level (elementary and middle school) and gender effect on students' motivation in science (perceived academic science self-concept and task value) and perceived family involvement, and secondly to examine the relationship among family environment variables (fathers' educational level, mothers' educational level, and perceived family involvement), motivation, gender and science achievement in elementary and middle schools. Multivariate Analysis of Variance (MANOVA) showed that elementary school students have more positive science self-concept and task value beliefs compared to middle school students. Moreover, elementary school students appeared to perceive more family involvement in their schooling. Path analyses also suggested that family involvement was directly linked to elementary school students' task value and achievement. Also, in elementary school level, significant relationships were found among father educational level, science self-concept, task value and science achievement. On the other hand, in middle school level, family involvement, father educational level, and mother educational level were positively related to students' task value which is directly linked to students' science achievement. Moreover, mother educational level contributed to science achievement through its effect on self-concept.
ERIC Educational Resources Information Center
Malone, Mark R., Comp.
Mounting research evidence has shown that an activity centered approach to elementary and middle school science education can be quite effective. This sourcebook, developed for teachers by teachers, presents many activity oriented science lessons that could be done in any elementary or middle school classroom with minimal additional experience.…
An Elective Course to Engage Student Pharmacists in Elementary School Science Education
Wilson, Judith S.; Blankenship, James; Quock, Raymond M.; Lindsey, Marti; Kinsler, Janni J.
2011-01-01
Objective. To develop and assess the impact of an elective course (HealthWISE) on student pharmacists’ skills in communication and health promotion and elementary school students’ knowledge of and attitudes toward science. Design. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. Assessment. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists’ performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. Conclusions. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students. PMID:22345722
ERIC Educational Resources Information Center
Marco-Bujosa, Lisa M.; Levy, Abigail Jurist
2016-01-01
Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…
Preparing Perservice Teachers to Teach Elementary School Science
ERIC Educational Resources Information Center
Lewis, Amy D.
2017-01-01
The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in…
NASA Astrophysics Data System (ADS)
Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine
2018-01-01
Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.
Science for All: Empowering Elementary School Teachers
ERIC Educational Resources Information Center
Plonczak, Irene
2008-01-01
This article addresses issues that are related to the empowerment of elementary teachers through teaching and learning science in socially and culturally meaningful contexts. It is based on the analysis of the attitudes and relationship to science of 10 elementary school teachers from inner city schools in Caracas, Venezuela. In the context of a…
ERIC Educational Resources Information Center
Herwitz, Stanley R.; Guerra, Marion
1996-01-01
Describes a course teaching planetary science to elementary school students in collaboration with a university. Chronicles how a partnership between an elementary school teacher and a university-based research scientist effectively shaped the teacher's understanding of values and attitudes inherent in science education. Presents a model for…
NASA Astrophysics Data System (ADS)
Tsutsumi, Hirotaka; Nikkuni, Hiroyuki; Kitakoshi, Daisuke; Yasuda, Toshitaka; Kikuchi, Akira; Mitani, Tomoyo
Recently Colleges of technology as well as universities have some experience-oriented classes in sciences for elementary school students. These have proved to be successful as good motivation for students in the primary education to be engineers. This research has tried the PBL education, which combined the Support of Science Education in Elementary School and the improvement of students‧ practical competence in their careers. The support of science education in elementary school was carried out by using LEGO blocks, widely utilized in the educational researches of robots, and was conducted in the practical class with the autonomous robots. Finally, the method for the class was evaluated by the elementary school students on the basis of the questionnaire.
ERIC Educational Resources Information Center
Cartwright, Tina; Smith, Suzanne; Hallar, Brittan
2014-01-01
This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…
ERIC Educational Resources Information Center
Simpson, Ronald D.
1974-01-01
Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…
ERIC Educational Resources Information Center
Peoples, Shelagh M.; O'Dwyer, Laura M.; Wang, Yang; Brown, Jessica J.; Rosca, Camelia V.
2014-01-01
This article describes the development, validation and application of a Rasch-based instrument, the Elementary School Science Classroom Environment Scale (ESSCES), for measuring students' perceptions of constructivist practices within the elementary science classroom. The instrument, designed to complement the Reformed Teaching Observation…
Science for the Elementary School. Third Edition.
ERIC Educational Resources Information Center
Victor, Edward
This book has been revised to reflect changes that have taken place in elementary science and to present the latest thinking and philosophy for teaching science in the elementary school. The book is intended to be useful for both prospective and experienced teachers to organize and conduct meaningful science learning experiences in the elementary…
ERIC Educational Resources Information Center
Meier, Lori T.
2012-01-01
This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant…
ERIC Educational Resources Information Center
Diaconu, Dana Viorica; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn
2012-01-01
A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one…
ERIC Educational Resources Information Center
Solomon, Alan; Rachild, Bruce
Attitudes toward science of magnet school students were compared with those of their counterparts in two regular schools. This study attempted to replicate the findings of a 1988 study by A. Solomon and J. Wroblewski involving the same magnet school, the John Moffett Neighborhood Elementary Science Magnet School located in North Philadelphia…
Elementary Principals' Role in Science Instruction
ERIC Educational Resources Information Center
Casey, Patricia; Dunlap, Karen; Brown, Kristen; Davison, Michele
2012-01-01
This study explores the role elementary school principals play in science education. Specifically, the study employed an online survey of 16 elementary school principals at high-performing campuses in North Texas to explore their perceptions of how they influenced science education on their campuses. The survey used a combination of Likert-type…
Authentic Science Research in Elementary School After-School Science Clubs
ERIC Educational Resources Information Center
Feldman, Allan; Pirog, Kelly
2011-01-01
In this paper we report on teachers' and students' participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10-15 students who, by extension, were members…
NASA Astrophysics Data System (ADS)
Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso
2001-10-01
This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.
ERIC Educational Resources Information Center
Jacobson, Linda
2004-01-01
As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…
ERIC Educational Resources Information Center
Marshall, Karen Benn
2009-01-01
This study sought to explore qualitatively how participation in an informal science program might affect the following aspects of upper elementary school children's scientific thinking: conceptual understanding, epistemology of science, and the formation of their identity as science learners. A purposefully selected, maximum variation sample of…
Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium
ERIC Educational Resources Information Center
Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud
2013-01-01
This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…
ERIC Educational Resources Information Center
Aschbacher, Pamela R.; Ing, Marsha
2017-01-01
Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…
Exploring the Effects of Concreteness Fading across Grades in Elementary School Science Education
ERIC Educational Resources Information Center
Jaakkola, Tomi; Veermans, Koen
2018-01-01
The present study investigates the effects that concreteness fading has on learning and transfer across three grade levels (4-6) in elementary school science education in comparison to learning with constantly concrete representations. 127 9- to 12-years-old elementary school students studied electric circuits in a computer-based simulation…
Integrating E-Books into Science Teaching by Preservice Elementary School Teachers
ERIC Educational Resources Information Center
Lai, Ching-San
2016-01-01
This study aims to discuss the issues of integrating e-books into science teaching by preservice elementary school teachers. The study adopts both qualitative and quantitative research methods. In total, 24 preservice elementary school teachers participated in this study. The main sources of research data included e-books produced by preservice…
NASA Astrophysics Data System (ADS)
Lones, Joe J.; Maltseva, Nadezhda K.; Peterson, Kurt N.
2007-06-01
We seek methods of stimulating young school children to develop an interest in science and engineering through a natural curiosity for the reaction of light. Science learning now begins fully at middle school. Reading skills develop with activity at home and progress through the elementary school curriculum, and in a like manner, a curious interest in science also should begin at that stage of life. Within the ranks of educators, knowledge of optical science needs to be presented to elementary school students in an entertaining manner. One such program used by the authors is Doug Goodman's Optics Demonstrations With the Overhead Projector, co-published by and available from OSA (Optical Society of America) and SPIE-The International Society of Optical Engineering. These demonstrations have found their way into middle and high schools; however, as a special approach, the authors have presented selected Goodman demonstrations as a "Magic Show of Light" to elementary schools. Both students and faculty have found the show most entertaining! If optical knowledge is utilized to stimulate science learning in the coming generation at elementary school level, there's a good chance we can sow some fertile seeds of advancement for all future segments of the workforce. Students can enjoy what they are doing while building a foundation for contributing gainfully to society in any profession. We need to explore expanding exposure of the "Magic Show of Light" to elementary schools.
Changes in Student Science Interest from Elementary to Middle School
ERIC Educational Resources Information Center
Coutts, Trudi E.
2012-01-01
This study is a transcendental phenomenological study that described the experience of students' interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change…
ERIC Educational Resources Information Center
Bircher, Lisa S.; Sansenbaugher, Bonnie
2017-01-01
This article describes an elementary science summer day camp at East Palatine High School in East Palestine, Ohio, for students in grades K-4, aided by high school (grades 9-12) student mentors. The school's Outdoor Area for Studies in Science (OASIS) is used for formal and informal studies in science for an elementary science camp week. The camp…
ERIC Educational Resources Information Center
Al Sarhan, Khaled Ali; AlZboon, Saleem Odeh; Olimat, Khalaf Mufleh; Al-Zboon, Mohammad Saleem
2013-01-01
The study aims at introducing the features of the computerized educational games in sciences at the elementary school in Jordan according to the specialists in teaching science and computer subjects, through answering some questions such as: What are the features of the computerized educational games in sciences at the elementary schools in Jordan…
From inside the black box: Teacher perceptions of science instruction at the elementary level
NASA Astrophysics Data System (ADS)
Ferrini, Cynthia D.
Science education reform projects aimed at elementary school children arose in the 1960's. The most prevalent of these reforms utilized the inquiry, or hands-on, science method. Billions of dollars have been invested in these reforms. Yet, reports indicate that science is not being taught at the level one might expect in elementary schools. This research was an analysis of the problems and concerns teachers at one school district faced as they tried to implement and sustain elementary inquiry science instruction. The district chosen was a large suburban district in the Western United States. The population was ninety percent Caucasian with a slightly more ethnically diverse school population. This district was chosen because it had an elementary science program for over twenty years and had received national acclaim for that program. The district had a stable and homogeneous staff there was a low administrator and teacher turnover rate and the elementary teaching population was ninety percent Caucasian and ninety percent female. Interviews with administrators and teachers were conducted. Data were collected from focus groups of teachers and science partners. Observations of elementary science classroom instruction and professional development sessions were made. Results of this research indicated that one important key to elementary science reform rests in the hands of teachers. Once the door to the classroom is closed, the teacher can decide to teach or not to teach science. The findings of this research illustrate that teachers hold ideas about science and science instruction that are antithetical to some tenets of inquiry science. Until these ideas are addressed it will be difficult, if not impossible, to implement a systemic elementary inquiry science program. This study demonstrates that professional development for elementary teachers in science needs to change from a focus on the mechanical usage of individual units to a focus on teacher expectations for student achievement. Professional development for teachers in inquiry science must address the cognitive foundations for inquiry science and the benefits students derive from this educational approach. Institutions delivering pre-service training for elementary teachers in science must change the curriculum to reflect these needs.
ERIC Educational Resources Information Center
Shaver, Annis; Cuevas, Peggy; Lee, Okhee; Avalos, Mary
2007-01-01
This study asked elementary school teachers how educational policies affected their science instruction with a majority of English language learners. The study employed a questionnaire followed by focus group interviews with 43 third and fourth grade teachers from six elementary schools in a large urban school district with high populations of…
ERIC Educational Resources Information Center
Graeber, Mary
The typical approach to the teaching of an elementary school science methods course for undergraduate students was compared with an experimental approach based upon activities appearing in the Conceptually Oriented Program in Elementary Science (COPES) teacher's guides. The typical approach was characterized by a coverage of many topics and a…
Elementary Science Curriculum Implementation: As It Was and As It Should Be.
ERIC Educational Resources Information Center
Horn, Jerry G.; Marsh, Marilyn A.
School districts were identified that were involved in implementation of recent National Science Foundation (NSF) elementary school science curricula and in corresponding in-service work. Questionnaires sent to 6 school districts, selected somewhat randomly from across the 50 states and the District of Columbia, compiled information regarding…
Improving Science Education in Rural Elementary Schools: A New Approach.
ERIC Educational Resources Information Center
Dacus, Judy M.; Hutto, Nora
Rural elementary school teachers interested in improving science instruction are frequently hampered by inadequate training in science, lack of information on local natural history resources, and time and curriculum constraints. On the other hand, rural schools are usually located near meadows, forests, or undeveloped land, and rural students…
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2006-01-01
This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.
NASA Astrophysics Data System (ADS)
Wood, E. L.
2012-12-01
Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.
Your Science Classroom: Becoming an Elementary/Middle School Science Teacher
ERIC Educational Resources Information Center
Goldston, M. Jenice; Downey, Laura
2012-01-01
Designed around a practical "practice-what-you-teach" approach to methods instruction, "Your Science Classroom: Becoming an Elementary/Middle School Science Teacher" is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards. Written in a reader-friendly style, the…
ERIC Educational Resources Information Center
Yangin, Selami; Sidekli, Sabri
2016-01-01
The measurement of teacher self-efficacy has a history of more than 30 years. The purpose of this research is to evaluate the development and validation of a new scale to measure the science teaching self-efficacy of elementary school teachers. Therefore, a scale has been created to measure elementary teachers' science teaching self-efficacy and…
Bringing Science Public Outreach to Elementary Schools
NASA Astrophysics Data System (ADS)
Miller, Lucas; Speck, A.; Tinnin, A.
2012-01-01
Many science "museums” already offer fantastic programs for the general public, and even some aimed at elementary school kids. However, these venues are usually located in large cities and are only occasionally used as tools for enriching science education in public schools. Here we present preliminary work to establish exciting educational enrichment environments for public schools that do not easily have access to such facilities. This program is aimed at motivating children's interest in science beyond what they learn in the classroom setting. In this program, we use the experience and experiments/demonstrations developed at a large science museum (in this case, The St. Louis Science Center) and take them into a local elementary school. At the same time, students from the University of Missouri are getting trained on how to present these outreach materials and work with the local elementary schools. Our pilot study has started with implementation of presentations/demonstrations at Benton Elementary School within the Columbia Public School district, Missouri. The school has recently adopted a STEM (Science, Technology, Engineering, and Mathematics) centered learning system throughout all grade levels (K-5), and is therefore receptive to this effort. We have implemented a program in which we have given a series of scientific demonstrations at each grade level's lunch hour. Further enrichment ideas and plans include: addition demonstrations, hands-on experiments, and question and answer sessions. However, the application of these events would be to compliment the curriculum for the appropriate grade level at that time. The focus of this project is to develop public communications which links science museums, college students and local public schools with an emphasis on encouraging college science majors to share their knowledge and to strengthen their ability to work in a public environment.
NASA Astrophysics Data System (ADS)
White, Michael Robert
This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type of partnership influenced the types of teaching behaviors used by elementary teachers during science instruction. Especially significant is that neither questioning wait-time nor level of questions asked was affected by the partnership experience. Furthermore, the partnership did not lead to teachers exhibiting a more constructivist-oriented approach to science instruction. However, teacher members of both partnerships expressed a strong wish for the partnership activities to continue.
NASA Astrophysics Data System (ADS)
Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.
2017-12-01
In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing volunteer resources, (4) meeting new state curricular standards, (5) developing publicly available lesson plans for other teachers and outreach programs, (6) institutionalizing the outreach program within the DEEPS community, and (7) cultivating STEM retention at the grassroots level.
Pedestrian Crossings - USMES Teacher Resource Book. Fifth Edition. Trial Edition.
ERIC Educational Resources Information Center
Keskulla, Jean
This Unified Sciences and Mathematics for Elementary Schools (USMES) unit challenges students to improve the safety and convenience of a pedestrian crossing near a school. The challenge is general enough to apply to many problem-solving situations in mathematics, science, social science, and language arts at any elementary school level (grades…
Science in Elementary School: Generalist Genes and School Environments
ERIC Educational Resources Information Center
Haworth, Claire M. A.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert
2008-01-01
Using a genetically sensitive design, we investigated the etiology of academic performance in Science in elementary school, and its etiological links with other academic abilities and general cognitive ability ("g"). The sample consisted of over 2000 pairs of twins at 10 years of age from the Twins Early Development Study. Science performance, as…
Science Exhibitions Promote College and Community Interaction.
ERIC Educational Resources Information Center
Stout, Dorothy LaLonde
1991-01-01
Science exhibitions presented by college students at local elementary schools foster goodwill in the community; give college students an opportunity to share their science as role models; provide elementary school children with a positive, enjoyable approach to science; and can be organized rather easily following guidelines that outline…
NASA Astrophysics Data System (ADS)
Lewis, Felecia J.
The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.
Crowdfunding for Elementary Science Educators
ERIC Educational Resources Information Center
Reese, Jessica; Miller, Kurtz
2017-01-01
The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…
Third Grade Elementary Students' Perception of Science
ERIC Educational Resources Information Center
Demir, Metin
2015-01-01
The current study investigated which dimensions of scientific process are capitalized on by elementary school third graders to explain the concept of science at conceptual level. The study was conducted by using "Basic Qualitative Research", one of the qualitative research approaches with the participation of 225 elementary school third…
ERIC Educational Resources Information Center
Alarcon, Maricela H.
2012-01-01
Science education reform and state testing accountability call upon principals to become instructional leaders in science. Specifically, elementary school principals must take an active role in science instruction to effectively improve science education for all students including English Language Learners. As such, the research questioned posed…
Science FEST: Preservice Teachers link Math and Science in Astronomy Lessons
NASA Astrophysics Data System (ADS)
DeMuth, N. H.; Kasabian, J.; Hacking, P. B.
2005-12-01
Funded by the National Science Foundation and corporate sponsored by Northrop Grumman, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and secondary school teachers design a comprehensive module in astronomy that is inquiry-based and reflects national and state science standards. Project participants then teach their module in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The project's website can be found at www.science-fest.org.
ERIC Educational Resources Information Center
Kasot, Nazim; Özsezer, Mete
2015-01-01
A comprehensive study has yet to be carried out depending on the historical environment particular to the Elementary Schools in Northern Cyprus. The aim of this study is hence to determine whether the coverage of historical environment subjects in elementary school social sciences textbooks is absorbed or not by the 4th and 5th Grades in the…
Reach for Reference: Elementary-Middle School Science Reference Collections
ERIC Educational Resources Information Center
Safford, Barbara Ripp
2005-01-01
This article presents a brief review of some new school science reference works. Two of the sources are traditional, while one is considered experimental. The two traditional reference works reviewed are "The American Heritage Children's Science Dictionary" for upper elementary grades, and "The American Heritage Student Science Dictionary" for…
Teaching planetary sciences to elementary school teachers: Programs that work
NASA Technical Reports Server (NTRS)
Lebofsky, Larry A.; Lebofsky, Nancy R.
1993-01-01
Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are addressed in detail.
Impact of instructional Approaches to Teaching Elementary Science on Student Achievement
NASA Astrophysics Data System (ADS)
Kensinger, Seth H.
Strengthening our science education in the United States is essential to the future success of our country in the global marketplace. Immersing our elementary students with research-based quality science instruction is a critical component to build a strong foundation and motivate our students to become interested in science. The research for this study pertained to the type of elementary science instruction in correlation to academic achievement and gender. Through this study, the researcher answered the following questions: 1. What is the difference in achievement for elementary students who have been taught using one of the three science instructional approaches analyzed in this study: traditional science instruction, inquiry-based science instruction with little or no professional development and inquiry-based science instruction with high-quality professional development? 2. What is the difference in student achievement between inquiry-based instruction and non-inquiry based (traditional) instruction? 3. What is the difference in student achievement between inquiry with high quality professional development and inquiry with little or no professional development? 4. Do the three instructional approaches have differentiated effects across gender? The student achievement was measured using the 2010 fourth grade Pennsylvania System of School Assessment (PSSA) in Science. Data was collected from 15 elementary schools forming three main groupings of similar schools based on the results from the 2009 third grade PSSA in Mathematics and student and community demographics. In addition, five sub-group triads were formed to further analyze the data and each sub-group was composed of schools with matching demographic data. Each triad contained a school using a traditional approach to teaching science, a school utilizing an inquiry science approach with little or no professional development, and a school incorporating inquiry science instruction with high quality professional development. The five schools which provided its students with inquiry science and high quality professional development were Science Its Elementary (SIE) schools, as provided through a grant from the Pennsylvania Department of Education (PDE). The findings of the study indicated that there is evidence to suggest that elementary science achievement improves significantly when teachers have utilized inquiry instruction after receiving high-quality professional development. Specifically, the analysis of the whole group and the majority of the triad sub-groupings did result in a consistent trend to support science instruction utilizing inquiry with high-quality professional development compared to a traditional approach and an inquiry-based approach with little or no professional development. The gender analysis of this study focused on whether or not girls at the elementary school level would perform better than boys depending upon method of science instruction. The study revealed no relationship between approach to teaching science and achievement level based on gender. The whole group results and sub-group triads produced no significant findings for this part of the data analysis.
Looking back and moving forward: A mixed methods study of elementary science teacher preparation
NASA Astrophysics Data System (ADS)
Hulings, Melissa
This study sought to understand how science learning experiences, and their potential influence, had on preservice elementary teachers' self-efficacy and perceptions of science teaching and learning at the beginning of their science methods course. Following an explanatory sequential mixed methods design, this study first involved the collection of quantitative data and then the collection of more in-depth qualitative data. In the first phase, the quantitative data included the Draw-a-Science-Teacher-Test Checklist (DASTT-C) and the Science Teaching Efficacy Belief Instrument (STEBI-B) of preservice elementary teachers (n = 69). Findings from this phase indicated preservice elementary teachers had a higher level of belief in their abilities to teach science (PSTE subscale) than to affect student outcomes in science (STOE subscale). However, the STOE was not found to be a reliable measure for this group of preservice elementary teachers and was not included in any further analysis. Findings from the DASTT-C images indicated the majority of these drawings could not be classified as student-centered. In the second phase of this study, the researcher explored selected science autobiographies written by these same preservice elementary teachers (n = 19), based on extremely high or low scores on the PSTE subscale and DASTT-C. Analysis of the science autobiographies revealed commonalities and differences. Commonalities included (a) the difficulty in remembering science from elementary school; (b) a mixture of positive and negative experiences in secondary school and college science classes; (c) the descriptions of good science days and good science teachers; and (d) the descriptions of bad science days and bad science teachers. Differences included (a) the people who influenced their attitudes toward science; (b) the types of experiences, when remembered, from elementary school; and (c) visions of their future classrooms. Based on these findings, these preservice elementary teachers used their past experiences with science as a foundation for how they perceived science and its instruction in the elementary classroom. Overall, it appears preservice elementary teachers have a desire to make the elementary experience a positive one for their future students.
NASA Astrophysics Data System (ADS)
Alarcon, Maricela H.
Science education reform and state testing accountability call upon principals to become instructional leaders in science. Specifically, elementary school principals must take an active role in science instruction to effectively improve science education for all students including English Language Learners. As such, the research questioned posed in this study centered on How are elementary school principals addressing the academic needs of Latino Spanish-speaking English language learners within science education? This study employed a qualitative research design to identify the factors contributing to the exemplary performance in science, as measured by the Texas Assessment of Knowledge and Skills (TAKS), for English Language Learner students in three high poverty bilingual elementary schools based on a multiple case study. As part of the data collection process, interviews were conducted with three school principals, three science academic support teachers, and two 5th grade bilingual teachers. Additionally, observations were acquired through school principal shadowing. The findings revealed four attributes necessary for effective instructional leadership in science education. First, Positive School Culture was defined as the core that linked the other three instructional leadership attributes and thus increased their effectiveness. Second, Clear Goals and Expectations were set by making science a priority and ensuring that English language learners were transitioning from Spanish to English instruction by the fifth grade. Third, Critical Resourcing involved hiring a science academic support teacher, securing a science classroom on campus, and purchasing bilingual instructional materials. Fourth, principal led and supported Collaboration in which teachers met to discuss student performance based data in addition to curriculum and instruction. These research findings are vital because by implementing these best practices of elementary school principals, educators are positioned to lay the foundation for science needed for ELLs to continue their educational career with the tools needed to succeed in future science classes and in turn college, answering the call to effectively improve science within the educational system.
ERIC Educational Resources Information Center
Avery, Leanne M.; Meyer, Daniel Z.
2012-01-01
Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…
Elementary Preservice Teachers' Science Vocabulary: Knowledge and Application
ERIC Educational Resources Information Center
Carrier, Sarah J.
2013-01-01
Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in "J Res Sci Teach" 32(8):797-816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn…
Teaching Science in Elementary and Middle School: A Cognitive and Cultural Approach. Second Edition
ERIC Educational Resources Information Center
Buxton, Cory A.; Provenzo, Eugene F., Jr.
2010-01-01
Featuring an increased emphasis on the way today's changing science and technology is shaping our culture, this Second Edition of "Teaching Science in Elementary and Middle School" provides pre- and in-service teachers with an introduction to basic science concepts and methods of science instruction, as well as practical strategies for the…
Enhancement of Elementary School Students' Science Learning by Web-Quest Supported Science Writing
ERIC Educational Resources Information Center
Min-Hsiung, Chuang; Jeng-Fung, Hung; Quo-Cheng, Sung
2011-01-01
This study aimed to probe into the influence of implementing Web-quest supported science writing instruction on students' science learning and science writing. The subjects were 34 students in one class of grade six in an elementary school in Taiwan. The students participated in the instruction, which lasted for eight weeks. Data collection…
NASA Astrophysics Data System (ADS)
Lones, Joe J.; Maltseva, Nadezhda K.; Peterson, Kurt N.
2007-09-01
We seek methods of stimulating young school children to develop an interest in science and engineering through a natural curiosity for the reaction of light. Science learning now begins fully at middle school. Reading skills develop with activity at home and progress through the elementary school curriculum, and in a like manner, a curious interest in science also should begin at that stage of life. Within the ranks of educators, knowledge of optical science needs to be presented to elementary school students in an entertaining manner. One such program used by the authors is Doug Goodman's Optics Demonstrations With the Overhead Projector, co-published by and available from OSA (Optical Society of America) and SPIE-The International Society of Optical Engineering. These demonstrations have been presented in middle and high schools; however, as a special approach, the authors have developed selected Goodman demonstrations as a "Magic Show of Light" for elementary schools. Teachers in the U.S. are overloaded with classroom instruction specifically targeted at improving reading and math scores on the Standard Achievement Test (SAT); therefore, science is getting "short changed" in the education system. For the sake of our future, industry volunteers must come forward to promote interest in science beginning with K-6.
Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators
NASA Astrophysics Data System (ADS)
Carver, Cynthia G.
Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.
Implementing Elementary School Next Generation Science Standards
ERIC Educational Resources Information Center
Kennedy, Katheryn B.
2017-01-01
Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The…
NASA Astrophysics Data System (ADS)
Cartwright, T. J.; Hallar, B.
2018-02-01
In this study, we present the long-term influence of an after school science practicum associated with an elementary science methods course. The practicum or field experience could be considered a community-based service learning programme as it is situated both within and for the community. Study participants included eight third- and fifth-grade teachers who had participated in elementary science methods courses; four of these teachers participated in the after school teaching practicum while four participants experienced a more traditional observation-based elementary science practicum. All of these teachers were in their second or third year teaching which was 3-4 years after taking the methods course. Investigation methods included questionnaires, field observations and semi-structured, individual interviews. Teachers more regularly utilised reform-based teaching strategies and cited the after school teaching practicum as preparing them to use these strategies in their own classrooms. All teachers exhibited a growth mindset to some degree, but the after school practicum participants did demonstrate a wider use of reformed-based teaching strategies and a higher growth mindset. Elementary teachers perceive risk associated with these key aspects of instruction: (1) managing instruction and classroom management, (2) teaching science through guided inquiry, and (3) overcoming adoptions in other 'mandated' curriculum like math and reading.
ERIC Educational Resources Information Center
Wells, Nancy M.; Myers, Beth M.; Todd, Lauren E.; Barale, Karen; Gaolach, Brad; Ferenz, Gretchen; Aitken, Martha; Henderson, Charles R.; Tse, Caroline; Pattison, Karen Ostlie; Taylor, Cayla; Connerly, Laura; Carson, Janet B.; Gensemer, Alexandra Z.; Franz, Nancy K.; Falk, Elizabeth
2015-01-01
This randomized controlled trial or "true experiment" examines the effects of a school garden intervention on the science knowledge of elementary school children. Schools were randomly assigned to a group that received the garden intervention (n?=?25) or to a waitlist control group that received the garden intervention at the end of the…
Portsmouth Atmospheric Science School (PASS) Project
NASA Technical Reports Server (NTRS)
Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)
2002-01-01
The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).
Elementary Teacher Self-Efficacy in Engineering and Student Achievement in Math and Science
ERIC Educational Resources Information Center
Gorena, Jacquelyn L.
2015-01-01
STEM education is a national priority, and more schools are implementing STEM K-12. Elementary teachers are prepared to teach science, mathematics, and technology, but teachers may not feel as prepared to teach engineering. Engineering is a new genre for elementary schools, and it is not typically a content area included in teacher preparation…
Development and Validation of Nature of Science Instrument for Elementary School Students
ERIC Educational Resources Information Center
Hacieminoglu, Esme; Yilmaz-Tüzün, Özgül; Ertepinar, Hamide
2014-01-01
The purposes of this study were to develop and validate an instrument for assessing elementary students' nature of science (NOS) views and to explain the elementary school students' NOS views, in terms of varying grade levels and gender. The sample included 782 students enrolled in sixth, seventh, and eighth grades. Exploratory factor analysis…
ERIC Educational Resources Information Center
Morse, Margaret; And Others
The appendix to the report of the minimum objective system of the Hinesburg Elementary School (Vermont) includes objectives for science, physical education, music, and library skills, from the kindergarten through grade 6 levels. Most objectives are presented in the format of condition (or task), student behavior, and criteria. Also included are…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Technology Enhanced Elementary and Middle School Science" ("TEEMSS") is a physical science curriculum for grades 3-8 that utilizes computers, sensors, and interactive models to support investigations of real-world phenomena. Through 15 inquiry-based instructional units, students interact with computers, gather and analyze…
ERIC Educational Resources Information Center
Wilcox, Jesse; Kruse, Jerrid; Clough, Michael
2017-01-01
Even though many educators are becoming increasingly aware of the importance of STEM (science, technology, engineering, and math), science often does not receive the attention in elementary school that it should. One way to ensure that elementary school children have the science experiences they need and deserve is to use it as a context to teach…
Targeted Courses in Inquiry Science for Future Elementary School Teachers
ERIC Educational Resources Information Center
Steinberg, Richard; Wyner, Yael; Borman, Greg; Salame, Issa I.
2015-01-01
This study reports on targeted science courses for undergraduate childhood education majors. We describe an inquiry-oriented, three-course sequence spanning physical, life, and environmental science. All three courses are hands-on and are designed to reflect the content and pedagogy most important to future elementary school teachers.
PD Pathways: Attending a Science Institute
ERIC Educational Resources Information Center
Ashmann, Scott; Marcou, Darcy; Lange, Melissa; Konitzer, Andrea
2010-01-01
For two weeks during Summer 2009, three elementary school teachers--Darcy Marcou, Melissa Lange, and Andrea Konitzer--participated in a science institute directed by Scott Ashmann, a science education professor at the University of Wisconsin-Green Bay. The purpose of this institute for elementary school teachers was to learn (a) more about Earth…
ScienceFEST: Preservice Teachers link Math and Science in Astronomy Lessons
NASA Astrophysics Data System (ADS)
DeMuth, N. H.; Kasabian, J.
2005-05-01
Funded by the National Science Foundation, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and middle school teachers design a comprehensive module in astronomy that is inquiry-based and reflects the national and state science standards. Project participants then teach their modules in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The session presenters will share some of the instructional materials developed by the college students and how their experiences in Science FEST have enhanced their pre-professional development. The project's website can be found at www.science-fest.org.
Teaching K-6 Science in Small Schools on a Financial Shoestring. ERIC Digest.
ERIC Educational Resources Information Center
Votaw, Thom A.
There are ways in which elementary teachers in general and rural elementary teachers in particular can overcome inadequate science preparation and can upgrade the science program resources of their small schools. Parents and children should be involved in obtaining free and inexpensive science-related materials throughout the year. These can be…
Science as Experience, Exploration, and Experiments: Elementary Teachers' Notions of "Doing Science"
ERIC Educational Resources Information Center
Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.
2017-01-01
Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science--both in and out of schools--throughout their lives. Our work uses…
Approximations of Practice in the Preparation of Prospective Elementary Science Teachers
ERIC Educational Resources Information Center
Nelson, Michele M.
2011-01-01
Elementary teacher education involves learning to teach science. Even in elementary school, teaching science is demanding work--teachers must orchestrate a complex set of teaching practices to support students' science learning. This dissertation examines the application of Grossman and colleagues' (2009) cross-professional learning framework,…
Wonder as a Tool to Engage Preservice Elementary Teachers in Science Learning and Teaching
ERIC Educational Resources Information Center
Gilbert, Andrew; Byers, Christie C.
2017-01-01
This exploratory project considers the use of "wonder" as a pedagogical tool with preservice elementary teachers (PSETs). An ongoing vexation facing science teacher educators is helping future elementary teachers overcome anxiety and negative associations with science due to their own school science experiences, while simultaneously…
NASA Astrophysics Data System (ADS)
Bouchelle, Henry Ellsworth Wirt, III
Science education in Delaware's public elementary and middle schools has experienced much change in recent years as a result of the adoption of state standards and, in particular, the adoption by school districts of the Smithsonian/National Science Resources Council-sponsored inquiry-based instruction modules as part of the "Elementary Science Initiative." As part of this adoption process, each participating elementary teacher and middle school science teacher receives extensive training in the use of several discrete science kits. The trainings include reinforcement and development of content knowledge, in addition to the modeling of and practice with complementary pedagogy. One measure of the effectiveness of the science kit training process (and perhaps the Initiative itself) is the teachers' levels of use of the Initiative. The purpose of this study was to determine the participating teachers' use of the science kit innovation through the use of the Concerns-based Adoption Model Levels of Use Questionnaire. Eight K--5 elementary classroom teachers who had completed at least three science kit trainings participated. The results of this study indicate that on the Overall Level of Use Rating Scale, teachers who had completed training in at least three science kits generally scored at the Routine (IVA) level. All of the teachers, regardless of the wide range in the number of years of experience, had achieved the Mechanical Use level in Overall (III) LoU, and 6 of the 8 participants (75%) were operating at no less than the Refinement (IVA) Overall LoU level.
Teaching Planetary Sciences in Bilingual Classrooms
NASA Astrophysics Data System (ADS)
Lebofsky, L. A.; Lebofsky, N. R.
1993-05-01
Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona.
ERIC Educational Resources Information Center
Hauck, Nancy
2012-01-01
The purpose of this study was to determine the extent to which sustained teacher professional development in science education affects the classroom instruction of elementary school teachers in third through sixth grade over a 3-year period. The teachers in the study were all elementary endorsed and prepared to be generalists in the content areas.…
Mathematics for the Elementary School, Unit 15, Addition and Linear Translations.
ERIC Educational Resources Information Center
Clark, Julia, Ed.; Myers, Donald E., Ed.
The Minnesota School Mathematics and Science Teaching (MINNEMAST) Project is characterized by its emphasis on the coordination of mathematics and science in the elementary school curriculum. Units are planned to provide children with activities in which they learn various concepts from both subject areas. Each subject is used to support and…
Transformation through Language Use: Children's Spontaneous Metaphors in Elementary School Science
ERIC Educational Resources Information Center
Jakobson, Britt; Wickman, Per-Olof
2007-01-01
This article examines the role elementary school children's spontaneous metaphors play in learning science. The data consists of tape recordings of about 25 h from five different schools. The material is analysed using a practical epistemology analysis and by using Dewey's ideas on the continuity and transformation of experience. The results show…
ERIC Educational Resources Information Center
Matson, Eric; DeLoach, Scott; Pauly, Robyn
2004-01-01
The "Robot Roadshow Program" is designed to increase the interest of elementary school children in technical disciplines, specifically math and science. The program focuses on children from schools categorized as rural or underserved, which often have limited access to advanced technical resources. We developed the program using robots…
NASA Astrophysics Data System (ADS)
Bursal, Murat
Four case studies in two American and two Turkish science methods classrooms were conducted to investigate the changes in preservice elementary teachers' personal science teaching efficacy (PSTE) beliefs during their course periods. The findings indicated that while Turkish preservice elementary teachers (TR sample) started the science methods course semester with higher PSTE than their American peers (US sample), due to a significant increase in the US sample's and an insignificant decline in the TR sample's PSTE scores, both groups completed the science methods course with similar PSTE levels. Consistent with Bandura's social cognitive theory, describing four major sources of self-efficacy, the inclusion of mastery experiences (inquiry activities and elementary school micro-teaching experiences) and vicarious experiences (observation of course instructor and supervisor elementary teacher) into the science methods course, providing positive social persuasion (positive appraisal from the instructor and classmates), and improving physiological states (reduced science anxiety and positive attitudes toward becoming elementary school teachers), were found to contribute to the significant enhancement of the US sample's PSTE beliefs. For the TR sample, although some of the above sources were present, the lack of student teaching experiences and inservice teacher observations, as well as the TR samples' negative attitudes toward becoming elementary school teachers and a lack of positive classroom support were found to make Turkish preservice teachers rely mostly on their mastery in science concepts, and therefore resulted in not benefiting from their science methods course, in terms of enhancing their PSTE beliefs. Calls for reforms in the Turkish education system that will include more mastery experiences in the science methods courses and provide more flexibility for students to choose their high school majors and college programs, and switch between them are made. In addition to the mastery experiences contributing to the PSTE beliefs, this study reported that preservice elementary teachers' unawareness of their science misconceptions also results in enhancing their self-efficacy, which is troublesome. Revisions in science content courses to employ inquiry activities, designed for addressing and correcting students' misconceptions, are recommended to overcome teacher candidates' lack of science competency and negative attitudes toward science.
THE READABILITY OF SCIENCE TEXTBOOKS FOR ELEMENTARY SCHOOL.
ERIC Educational Resources Information Center
NEWPORT, JOHN F.
AN INVESTIGATION WAS MADE OF THE READABILITY LEVELS OF NINE CONTINUOUS SERIES OF ELEMENTARY SCHOOL SCIENCE TEXTBOOKS, GRADES 1-6. THE FOLLOWING SCIENCE SERIES WERE EVALUATED--ALLYN AND BACON, AMERICAN BOOK COMPANY, GINN, HARPER AND ROW, HEATH, LYONS AND CARNAHAN, MACMILLAN, SINGER, AND WINSTON. THE SPACHE FORMULA (SAFIER METHOD) WAS APPLIED TO…
Traffic Flow - USMES Teacher Resource Book. Fourth Edition. Trial Edition.
ERIC Educational Resources Information Center
Keskulla, Jean
This Unified Sciences and Mathematics for Elementary Schools (USMES) unit challenges students to improve traffic flow at a problem location. The challenge is general enough to apply to many problem-solving situations in mathematics, science, social science, and language arts at any elementary school level (grades 1-8). The Teacher Resource Book…
ERIC Educational Resources Information Center
Good, Ron; And Others
1976-01-01
Studied classroom behaviors and conservation ability of elementary school science students taught by either Student-Structured Learning in Science (SSLS) or Teacher-Structured Learning in Science (TSLS). Reports on how behavior of conservers and nonconservers differs in SSLS and TSLS with respect to observing, following directions, and inventing…
ERIC Educational Resources Information Center
Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Stevenson, Kathryn Tate
2014-01-01
In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students'…
Earth-Space Science Activity Syllabus for Elementary and Junior High School Teachers of Science.
ERIC Educational Resources Information Center
Maier, Jack; And Others
This syllabus is a collection of earth-space science laboratory activities and demonstrations intended for use at the elementary and junior high school levels. The activities are grouped into eight subject sections: Astronomy, Light, Magnetism, Electricity, Geology, Weather, Sound, and Space. Each section begins with brief background information,…
The Use of Science Kits in the Professional Development of Rural Elementary School Teachers
ERIC Educational Resources Information Center
Sherman, Ann; MacDonald, A. Leo
2008-01-01
This study reports on a science professional development initiative with elementary school teachers in Canada. Grades 4 and 5 teachers were involved in the implementation and modification of science kits, together with corresponding professional development activities. Each kit was aligned to specific outcomes in the curriculum and provided a…
Sisters in Science: A Model Program. Spotlight on Student Success, No. 201.
ERIC Educational Resources Information Center
Hammrich, Penny L.
In an effort to promote females' achievement in science, the Sisters in Science program was developed. Conducted in 2 schools in Philadelphia (Pennsylvania), the program's inaugural year involved 60 fourth-grade girls in 2 elementary schools, an intergenerational corps of 20 women volunteers, 150 undergraduate elementary education students, and 8…
ERIC Educational Resources Information Center
Sakiz, Gönül
2015-01-01
The purpose of the current study was to investigate the roles that perceived teacher affective support (PTAS), perceived teacher mastery goal orientation (PTMGO), academic emotions, self-efficacy and behavioural engagement play on students' science achievement in elementary school science classrooms. The potential relations of different levels of…
ERIC Educational Resources Information Center
Linn, Marcia C.; Kessel, Cathy; Lee, Kristen; Levenson, Janet; Spitulnik, Michelle; Slotta, James D.
This report offers guidance for those shaping policy and designing elementary and middle school science and mathematics courses that prepare students to be lifelong users of scientific and mathematical ideas. We have reviewed programs designed to improve elementary and middle school students' understanding of science and mathematics by…
Manufacturing - USMES Teacher Resource Book. Second Edition. Trial Edition.
ERIC Educational Resources Information Center
Agro, Sally
This Unified Sciences and Mathematics for Elementary Schools (USMES) unit challenges students to find the best way to produce an item in quantities needed. The challenge is general enough to apply to many problem-solving situations in mathematics, science, social science, and language arts at any elementary school level (grades 1-8). The Teacher…
ERIC Educational Resources Information Center
Akarsu, Bayram
2007-01-01
This study investigates relationships between understanding of nature of science and four key factors elementary science teachers possess, which are: (1) Their specializations in different science areas (Physics, chemistry, and biology), (2) Gender issues, (3) How long they have been teaching in elementary school environments, (4) Their…
ERIC Educational Resources Information Center
Naidoo, Kara
2013-01-01
Elementary teachers are criticized for failing to incorporate meaningful science instruction in their classrooms or avoiding science instruction altogether. The lack of adequate science instruction in elementary schools is partially attributed to teacher candidates' anxiety, poor content and pedagogical preparation, and low science teaching…
Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration
NASA Astrophysics Data System (ADS)
Krall, Rebecca Mcnall; Lott, Kimberly H.; Wymer, Carol L.
2009-02-01
The purpose of this descriptive study was to investigate inservice elementary and middle school teachers’ conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was utilized to assess 76 inservice elementary and middle school teachers from the central Appalachian region. Outcomes from four tasks assessing photosynthesis and respiration concepts are discussed. Findings revealed similarities between non-scientific conceptions the teachers demonstrated and non-scientific conceptions reported in the research literature on elementary and middle school students’ understanding of the concepts. Findings also informed subsequent inservice teacher professional development efforts in life science and the development of a biology course for preservice elementary teachers.
NASA Astrophysics Data System (ADS)
Clark, Ian
The purpose of this study is to analyze the relationship between K-5 elementary school teachers' perceptions of principal instructional leadership and their science teaching efficacy. The influence of background variables on both leadership and efficacy is also analyzed. A sequential mixed methods approach was used in this study. The survey sample was comprised of teachers in the elementary divisions of schools from the nine international school regional associations. Teacher participation was obtained through an email containing an online survey link. Following the analysis of survey responses (N=356), in-depth interviews (N=17) were conducted. Reliability for the instructional leadership scale was found to be .94 (coefficient alpha) and .69 for the personal science teaching efficacy (PSTE) scale. The results show a significant correlation between elementary school teachers' perceptions of principal instructional leadership and their PSTE levels, with the most significant correlation that between the study of a science-related major or minor at college and higher PSTE scores. Strong correlations were also found between PSTE levels and having principals who discussed goals at faculty meetings, participated in science curricular review, supported recognition of student progress, encouraged new skills and concepts, discussed student progress with faculty, and used assessments to see science progress towards easily understood goals. PSTE levels were also higher in schools where principals had grade or school level science coordinators in place and where they supported the use of science kits.
ERIC Educational Resources Information Center
Dalvi, Tejaswini; Wendell, Kristen
2015-01-01
A team of science teacher educators working in collaboration with local elementary schools explored opportunities for science and engineering "learning by doing" in the particular context of urban elementary school communities. In this article, the authors present design task that helps students identify and find solutions to a…
NASA Astrophysics Data System (ADS)
Han, Alyson Kim
According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning strategy, constructivist learning strategy, learning cycle strategy, SCALE technique strategy, conceptual change strategy, inquiry-based strategy, cognitive academic language learning approach (CALLA) strategy, and learning from text strategy provide effective science teaching instruction to English learners. These science instructional strategies assist elementary science teachers by providing additional support to make science instruction more comprehensible for English learners.
NASA Astrophysics Data System (ADS)
LeGrand, Julie
The issue of female underrespresentation in science, mathematics, engineering, and technology careers and courses has been well researched over the last several decades. However, as gender gaps in achievement close and representation becomes more equitable in certain academic domains, research has turned to social and cultural factors to explain why fewer women persist in STEM studies and careers than men. The purpose of this study was to examine gender differences in science and math attitudes and interests from elementary school, to middle school, to high school. To examine possible gender-specific shifts in students' interest and attitudes in science and math, 136 students from a suburban, public school district were surveyed at the elementary school level (N=31), middle school level (N=54), and high school level (N=51) and various constructs were used to assess the responses in accordance with expectancy-value theory. Utilizing a mixed-methods approach, a random sample of students from each grade level then participated in focus groups, and corollary themes were identified. Results from a logistical regression analysis and Mann-Whitney Test indicated that significant gender differences exist for interest, efficacy, expectancy, and value within science domains (p<.05), although these differences are not the same at each grade level or for each scientific discipline. Significant gender differences in mathematics are present only at the elementary school level.
ERIC Educational Resources Information Center
Johnson, Carla C.; Fargo, Jamison D.
2014-01-01
This paper reports the findings of a study of the impact of the transformative professional development (TPD) model on student achievement on state-mandated assessments of science in elementary school. Two schools (one intervention and one control) participated in the case study where teachers from one school received the TPD intervention across a…
Departmentalize Elementary Schools
ERIC Educational Resources Information Center
Chan, Tak Cheung; Jarman, Delbert
2004-01-01
In elementary schools today, most students receive their education in a single classroom from one teacher who is responsible for teaching language arts, social studies, math, and science. The self-contained classroom organization is predicated on the assumption that an elementary school teacher is a Jack (or Jill)-of-all-trades who is equally…
ERIC Educational Resources Information Center
Doganay, Ahmet; Ozturk, Ayse
2011-01-01
This comparative case study aimed to investigate whether experienced elementary school teachers' science and technology teaching processes differed from inexperienced teachers' teaching processes in terms of using metacognitive strategies. 14 elementary school teachers, including 7 experienced and 7 inexperienced, participated in the study. The…
Preparing perservice teachers to teach elementary school science
NASA Astrophysics Data System (ADS)
Lewis, Amy D.
The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.
Designing for Human Proportions - USMES Teacher Resource Book. Fourth Edition. Trial Edition.
ERIC Educational Resources Information Center
Bussey, Margery Koo
Designing or making changes in things students use or wear is the challenge of this Unified Sciences and Mathematics for Elementary Schools (USMES) unit. The challenge is general enough to apply to many problem-solving situations in mathematics, science, social science, and language arts at any elementary school level (grades 1-8). The Teacher…
ERIC Educational Resources Information Center
Hu, Helen; Garimella, Uma
2017-01-01
This proceeding paper will report about a study that investigated how a group of elementary school teachers responded to a professional development training on Science and Technology as demonstrated in their perceived preparedness and comfort with teaching science, and their subsequent implementation with K-4 students. The results from the study…
Geology and Earth Sciences Sourcebook for Elementary and Secondary Schools, Second Edition.
ERIC Educational Resources Information Center
Heller, Robert L.
This earth science resource book, designed for use by elementary and secondary school teachers, presents aspects of earth science which illustrate the significance of matter, energy, forces, motion, time, and space in the dynamics and history of the earth. The major content of this resource manual consists of authoritative information about earth…
ERIC Educational Resources Information Center
Rodriguez, Karen Margaret
2012-01-01
This qualitative study centered on science instruction and learning that occurred in a Title I elementary school in a suburban district in southeast Texas. Twelve teachers were interviewed in order to understand their perceptions of their classroom practices in terms of science instruction and learning for English Language Learners (ELL). This…
ERIC Educational Resources Information Center
Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.
2012-01-01
The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…
ERIC Educational Resources Information Center
Wang, Tzu-Ling; Tseng, Yi-Kuan
2015-01-01
The purposes of this study were to explore the effects of thinking styles on science achievement and attitudes toward science class among Taiwanese elementary school students and to explore the differences between male and female students in their modes of thinking. Participants included 756 sixth-grade students from 28 classes in four elementary…
NASA Astrophysics Data System (ADS)
Cason, Maggie A.
This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with science proved important because the generally high comfort level experienced by elementary teacher candidates toward language arts may be extended to the teaching of science. Teacher candidates realize the benefits for both teaching and learning when the two subjects are integrated. Last, the study revealed the powerful effects of field experiences which include teaching science in the public schools and demonstrated the drawbacks of field experiences which do not include teaching science.
ERIC Educational Resources Information Center
Richard, Bertha Cookie
2013-01-01
The purpose of this study was to investigate elementary teacher perceptions of elementary principal instructional leadership and elementary teacher evaluation of self-efficacy at low and high performing low socio-economic elementary schools. These variables were examined to determine whether relationships with math and science academic achievement…
NASA Astrophysics Data System (ADS)
Meier, Lori T.
2012-11-01
This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant teachers were interviewed to explore their personal beliefs and values, teaching, access to materials, and views of the adopted integrated thematic curriculum model and magnet structure. The resulting data, triangulated with informal observation and artifact collection, were analyzed using a theoretical framework that emphasized five interdependent school culture indicators (values, beliefs, practices, materials, and problems). Findings suggest that the school's culture adversely influenced the treatment of science.
Parent involvement and science achievement: A latent growth curve analysis
NASA Astrophysics Data System (ADS)
Johnson, Ursula Yvette
This study examined science achievement growth across elementary and middle school and parent school involvement using the Early Childhood Longitudinal Study - Kindergarten Class of 1998--1999 (ECLS-K). The ECLS-K is a nationally representative kindergarten cohort of students from public and private schools who attended full-day or half-day kindergarten class in 1998--1999. The present study's sample (N = 8,070) was based on students that had a sampling weight available from the public-use data file. Students were assessed in science achievement at third, fifth, and eighth grades and parents of the students were surveyed at the same time points. Analyses using latent growth curve modeling with time invariant and varying covariates in an SEM framework revealed a positive relationship between science achievement and parent involvement at eighth grade. Furthermore, there were gender and racial/ethnic differences in parents' school involvement as a predictor of science achievement. Findings indicated that students with lower initial science achievement scores had a faster rate of growth across time. The achievement gap between low and high achievers in earth, space and life sciences lessened from elementary to middle school. Parents' involvement with school usually tapers off after elementary school, but due to parent school involvement being a significant predictor of eighth grade science achievement, later school involvement may need to be supported and better implemented in secondary schooling.
Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers
ERIC Educational Resources Information Center
More, Michelle B.
2007-01-01
A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.
ERIC Educational Resources Information Center
Annetta, Leonard A.; Minogue, James
2004-01-01
The first year of a 5 year professional development project for elementary teachers in two mid-western states integrated a bridge of two distinctly different distance education networks (T-1 and fiber optics) to provide science professional development for elementary school teachers in rural communities. "Interactive television" (ITV), the title…
Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry
NASA Astrophysics Data System (ADS)
Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.
2004-02-01
This article outlines a successful community service project that involved members of our undergraduate chemistry club and area elementary schools. Elementary school students from various science classes throughout the region collected drinking water samples and mailed them to the university for analysis. Chemistry club members analyzed the water samples for possible lead contamination using anodic stripping voltammetry. The results and experimental data were returned to the science teachers for use in a variety of class projects. Chemistry club members presented their work during our annual Environmental Chemistry Conference. All participating science classes were invited to the conference. Over the years, participation in this project has steadily increased to its current enrollment of 28 science classes throughout the region.
ERIC Educational Resources Information Center
Subali, Bambang; Paidi; Mariyam, Siti
2016-01-01
This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…
ERIC Educational Resources Information Center
Moore, Richard W.
The project described in this report is an attempt to develop scales to assess teachers' attitudes toward teaching elementary school science. The instrument produced, Science Teaching Attitude Scales, consists of six scales, each of which has a statement of the attitude to be assessed and five statements to determine the extent to which the…
ERIC Educational Resources Information Center
Wu, Ying-Tien; Tsai, Chin-Chung
2005-01-01
The main purpose of this study was to explore the effects of long-term constructivist-oriented science instruction on elementary school students' process of constructing cognitive structures. Furthermore, such effects on different science achievers were also investigated. The subjects of this study were 69 fifth graders in Taiwan, while they were…
ERIC Educational Resources Information Center
Sun, Koun-tem; Lin, Yuan-cheng; Yu, Chia-jui
2008-01-01
The purpose of this study is to explore the learning effect related to different learning styles in a Web-based virtual science laboratory for elementary school students. The online virtual lab allows teachers to integrate information and communication technology (ICT) into science lessons. The results of this experimental teaching method…
NASA Astrophysics Data System (ADS)
Tobias, Karen Marie
An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each individual criterion across the elementary, middle, and high school levels. The National Science Education Standards were created with the input of thousands of people and over twenty scientific and educational societies. The standards were tested in numerous classrooms and showed an increase in science literacy for the students. With the No Child Left Behind legislation and Project 2061, the attainment of a science literate society will be helped by the adoption of the NSES standards and the STS themes into the American classrooms.
Wanted: A Revolution in Elementary Science Teaching.
ERIC Educational Resources Information Center
Triangle Coalition for Science and Technology Education, College Park, MD.
Children come to school with a foundation for formal learning from their early experiences with interactions of the natural and technological world. Failure of elementary schools to build on this experience can discourage children, especially those who do not identify readily with the science establishment (girls, blacks, Hispanics, and the…
Aerospace Science Education, A Curriculum Guide.
ERIC Educational Resources Information Center
Hilburn, Paul
This curriculum guide was developed by the Alaska State Department of Education for the purpose of aiding elementary and secondary school teachers in incorporating elements of aerospace science in the classroom. The section of the guide designed for elementary school teachers includes chapters under the headings: Aircraft, Airports, Weather,…
Free Teaching Materials: Classroom and Curriculum Aids for Elementary School Science.
ERIC Educational Resources Information Center
Raimist, Roger J.; Mester, Rose A.
Free teaching materials suitable for elementary school science available from 168 agencies and companies are listed. Materials include booklets, teacher's source books and guides, charts and posters, and concrete materials such as mineral samples. Suggestions and materials for student activities range from experiments to song sheets. Topics…
The Sea, An Interdisciplinary Approach to Marine Science for Elementary School Children.
ERIC Educational Resources Information Center
Vaiuso, Frank
This teacher's guide develops an interdisciplinary approach to marine science for elementary school children. The lessons are concerned with food chains, interdependencies, physical characteristics, comparative dissections, and student involvement in political issues dealing with water and air pollution. For each activity suggestions are provided…
Elementary School Garden Programs Enhance Science Education for All Learners
ERIC Educational Resources Information Center
Rye, James A.; Selmer, Sarah J.; Pennington, Sara; Vanhorn, Laura; Fox, Sarah; Kane, Sarah
2012-01-01
A national movement is underway to establish elementary school gardens, which can serve both academic and social purposes. These gardens can positively impact students' science achievement and provide the thematic and hands-on approach especially conducive to learning for students with disabilities. Garden-based learning (GBL) broadens the scope…
Teaching Experimental Design to Elementary School Pupils in Greece
ERIC Educational Resources Information Center
Karampelas, Konstantinos
2016-01-01
This research is a study about the possibility to promote experimental design skills to elementary school pupils. Experimental design and the experiment process are foundational elements in current approaches to Science Teaching, as they provide learners with profound understanding about knowledge construction and science inquiry. The research was…
Elementary Children's Retrodictive Reasoning about Earth Science
ERIC Educational Resources Information Center
Libarkin, Julie C.; Schneps, Matthew H.
2012-01-01
We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…
Structure and Form. Elementary Science Activity Series, Volume 2.
ERIC Educational Resources Information Center
Blackwell, Frank F.
This book is number 2 of a series of elementary science books that presents a wealth of ideas for science activities for the elementary school teacher. Each activity includes a standard set of information designed to help teachers determine the activity's appropriateness for their students, plan its implementation, and help children focus on a…
ERIC Educational Resources Information Center
Flores, Ingrid M.
2015-01-01
Thirty preservice teachers enrolled in a field-based science methods course were placed at a public elementary school for coursework and for teaching practice with elementary students. Candidates focused on building conceptual understanding of science content and pedagogical methods through innovative curriculum development and other course…
ERIC Educational Resources Information Center
Thomson, Margareta Maria; Kaufmann, Elisha
2013-01-01
This study explored primarily the elementary teachers' motivations and expectations for engagement in a science professional development. Participants (N=20) were elementary teachers in two public schools from the United States and were enrolled in a yearlong science professional development; however, due to various factors teachers did not…
NASA Astrophysics Data System (ADS)
King, Ken; Shumow, Lee; Lietz, Stephanie
2001-03-01
Through a case study approach, the state of science education in an urban elementary school was examined in detail. Observations made from the perspective of a science education specialist, an educational psychologist, and an expert elementary teacher were triangulated to provide a set of perspectives from which elementary science instruction could be examined. Findings revealed that teachers were more poorly prepared than had been anticipated, both in terms of science content knowledge and instructional skills, but also with respect to the quality of classroom pedagogical and management skills. Particularly significant, from a science education perspective, was the inconsistency between how they perceived their teaching practice (a hands-on, inquiry-based approach) and the investigator-observed expository nature of the lessons. Lessons were typically expository in nature, with little higher-level interaction of significance. Implications for practice and the associated needs for staff development among urban elementary teachers is discussed within the context of these findings.
ERIC Educational Resources Information Center
Adibelli-Sahin, Elif; Deniz, Hasan
2017-01-01
This qualitative study explored elementary teachers' perceptions about the effective features of explicit-reflective nature of science (NOS) instruction. Our participants were four elementary teachers from a public charter school located in the Southwestern U.S.A. The four elementary teachers participated in an academic year-long professional…
NASA Astrophysics Data System (ADS)
Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Tate Stevenson, Kathryn
2014-09-01
In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students' science and outdoor views and activity choices along with those of adults (teachers, parents, and principals). Significant differences were found between pre- and posttest measures along with gender and ethnic differences with respect to students' science knowledge and environmental attitudes. Interview data exposed limitations of outdoor learning at both schools including standardized test pressures, teachers' views of science instruction, and desultory connections of alternative learning settings to 'school' science.
The use of Banyumas traditional art as analog sources of elementary school science materials
NASA Astrophysics Data System (ADS)
Handayani, L.; Nugroho, S. E.; Rohidi, T. R.; Wiyanto
2018-03-01
All various traditional arts of Banyumas area support this area to be one famous region located in the periphery of West and Central Java with its unique cultural identity. In science learning, these traditional arts are very important aspect which can be implemented as a source of analog by students thinking a science concept analogically. This paper discusses a kind of Banyumas traditional art: the ebeg, and its cultural characteristics which can play a significant role in supporting elementary school students’ analogical thinking of a science material. The method used were literature and documentary studies. It is concluded that the ebeg provides many cultural characteristics which can be used as analog of elementary school science material, in terms of its music player’s motion, kinds of musical instruments played and its dancer motion.
Professional development in inquiry-based science for elementary teachers of diverse student groups
NASA Astrophysics Data System (ADS)
Lee, Okhee; Hart, Juliet E.; Cuevas, Peggy; Enders, Craig
2004-12-01
As part of a larger project aimed at promoting science and literacy for culturally and linguistically diverse elementary students, this study has two objectives: (a) to describe teachers' initial beliefs and practices about inquiry-based science and (b) to examine the impact of the professional development intervention (primarily through instructional units and teacher workshops) on teachers' beliefs and practices related to inquiry-based science. The research involved 53 third- and fourth-grade teachers at six elementary schools in a large urban school district. At the end of the school year, teachers reported enhanced knowledge of science content and stronger beliefs about the importance of science instruction with diverse student groups, although their actual practices did not change significantly. Based on the results of this first year of implementation as part of a 3-year longitudinal design, implications for professional development and further research are discussed.
Elementary and middle school science improvement project
NASA Technical Reports Server (NTRS)
Mcguire, Saundra Y.
1989-01-01
The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.
ERIC Educational Resources Information Center
Cartwright, T. J.; Hallar, B.
2018-01-01
In this study, we present the long-term influence of an after school science practicum associated with an elementary science methods course. The practicum or field experience could be considered a community-based service learning programme as it is situated both within and for the community. Study participants included eight third- and fifth-grade…
ERIC Educational Resources Information Center
Sukiniarti
2016-01-01
On global era todays, as the professional teacher should be improving their pedagogic competency, including to improve their science pedagogy quality. This study is aimed to identify: (1) Process skill approach which has been used by Elementary School Teacher in science learning; (2) Teacher's opinion that process skill can motivate the student to…
What do primary students know about science, scientists and how they do their work?
NASA Astrophysics Data System (ADS)
Bartels, Selina L.
The teaching of scientific literacy is the primary goal of elementary science education. Scientific literacy is composed of the overall understanding of what science is and how scientific knowledge is developed. The purpose of this study was to see if elementary students' understandings of science, scientists and how scientists do their work changes from grade one to grade five of elementary school. Furthermore, the study attempts to determine whether there is a difference in scientific literacy between students taught using a textbook curriculum versus a kit-based curriculum. The study draws on a sample of 338 students from 18 different classrooms situated in six different schools in both urban and suburban areas of a large Midwestern city. Students' understandings of science, scientists and how they do their work was measured through a valid and reliable oral protocol entitled Young Children's Views of Science (YCVS) (Lederman, J., Bartels, Lederman, & Ganankkan, 2014). The YCVS assesses students' understandings of the aspects of scientific inquiry (SI) and the nature of science (NOS) that young elementary students are able to understand. These aspects are; science, scientists, multiple methods, observation/inference, begins with a question, empirical, subjectivity, tentativeness and creativity. The YCVS was administered orally for grade one students, and a paper-and-pencil version was given to grades three and five. Results indicated that there are very few gains in NOS and SI understandings between grades one and five in the schools included in this study. None of the schools in this study made significant gains for all of the nine aspects measured in this study. Examining curriculum's affect on NOS and SI understandings, understanding of only one aspect was significantly impacted by curriculum differences. Subjectivity understanding was impacted by kit-based instruction. Overall, students' understandings of science, scientists and how they do their work did not significantly change from grade one to grade five regardless of what type of curriculum they followed. This study shows that students' scientific literacy is not being developed throughout elementary school. Therefore, the teaching of scientific literacy in an explicit and reflective manner should be the focus of preservice elementary school education.
NASA Astrophysics Data System (ADS)
Voegel, Phillip D.; Quashnock, Kathryn A.; Heil, Katrina M.
2004-05-01
The Student-to-Student Chemistry Initiative is an outreach program started in the fall of 2001 at Midwestern State University (MSU). The oncampus program trains high school science students to perform a series of chemistry demonstrations and subsequently provides kits containing necessary supplies and reagents for the high school students to perform demonstration programs at elementary schools. The program focuses on improving student perception of science. The program's impact on high school student perception is evaluated through statistical analysis of paired preparticipation and postparticipation surveys. The surveys focus on four areas of student perception: general attitude toward science, interest in careers in science, science awareness, and interest in attending MSU for postsecondary education. Increased scores were observed in all evaluation areas including a statistically significant increase in science awareness following participation.
An analysis of elementary teachers' perceptions of teaching science as inquiry
NASA Astrophysics Data System (ADS)
Domjan, Heather Nicole
The purpose of this study is to describe elementary school teachers' perceptions of science as inquiry in science instruction. A descriptive survey research design was used to collect data regarding elementary science teachers' knowledge and beliefs related to inquiry and its role in science education. The written section of the survey was analyzed and interpreted descriptively through phenomenological data and the constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985). The researcher used the constant comparative method to identify statements, perceptions, and impressions that occurred over time during the study (Janesick, 1994). Ninety-two elementary school teachers who teach science in a large suburban district southwest of Houston, Texas were administered a three part Understanding Science as Inquiry Survey (USAI) developed by the researcher. Participants communicated in writing personal definitions of inquiry in elementary science as well as determined to what extent inquiry was used in four elementary science classroom scenarios. The survey items were based on the following four components of inquiry described by Inquiry and the National Science Education Standards (2000): (1) conceptual knowledge, (2) process skills, (3) nature of science, and (4) affect. The study describes elementary school teachers' perceptions about science as inquiry. Conclusions for Part A of the USAI Survey indicate that participants define inquiry as: mostly process skills, some conceptual knowledge, and very little affect with no perception of the nature of science. The Likert scale ratings for the scenarios in Part B of the USAI Survey reveal that participants have varied perceptions regarding teaching science as inquiry. The written section of Part B reveals participants' perceptions to be similar to that of their Likert scale ratings except in scenario one. The researcher concludes that the participants in this study appear to have an incomplete understanding of teaching science as inquiry. This study suggests that elementary teachers might benefit from increased and sustained professional development programs centered on inquiry teaching strategies. Professional development activities on teaching science as inquiry create opportunities for teachers to confront and develop ways of thinking about inquiry and ultimately enhance inquiry-based teaching in their classrooms.
Schools in the Age of Technology: Ideas for Instructional Innovation.
ERIC Educational Resources Information Center
McGraw, James H., IV; Frank, Charlotte K.
This document profiles five schools that were selected as winners of the "Fifth Annual Business Week Awards for Instructional Innovation: Schools in the Age of Technology": Bailey's Elementary School for the Arts and Sciences (Falls Church, Virginia); Hunterdon Central Regional High School (Flemington, New Jersey); John Muir Elementary School…
ERIC Educational Resources Information Center
Lester, Benjamin T.; Ma, Li; Lee, Okhee; Lambert, Julie
2006-01-01
As part of a large-scale instructional intervention research, this study examined elementary students' science knowledge and awareness of social activism with regard to an increased greenhouse effect and global warming. The study involved fifth-grade students from five elementary schools of varying demographic makeup in a large urban school…
ERIC Educational Resources Information Center
Hug, J. William
2010-01-01
This article is an auto-ethnographic account of the development of a children's literature book critique assignment by a science teacher educator sharing instructional dilemmas and pedagogical responses. Prospective elementary teachers enrolled in an elementary school science teaching methods course in the US selected and evaluated children's…
ERIC Educational Resources Information Center
Shugrue, Sylvia K., Comp.; Lamberton, Berenice, Comp.
Included in this document are a selection of articles reprinted from SCIENCE AND CHILDREN. They focus on environmental education in the elementary school, and present a number of environmental perspectives. Those concerning general or background information are: an examination of environmental education: children's attitudes about the environment;…
Observing and Producing Sounds, Elementary School Science, Level Four, Teaching Manual.
ERIC Educational Resources Information Center
Hale, Helen E.
This pilot teaching unit is one of a series developed for use in elementary school science programs. This unit is designed to help children discover specific concepts which relate to sound, such as volume, pitch, and echo. The student activities employ important scientific processes, such as observation, communication, inference, classification,…
Newspapers in Science Education: A Study Involving Sixth Grade Students
ERIC Educational Resources Information Center
Lai, Ching-San; Wang, Yun-Fei
2016-01-01
The purpose of this study was to explore the learning performance of sixth grade elementary school students using newspapers in science teaching. A quasi-experimental design with a single group was used in this study. Thirty-three sixth grade elementary school students participated in this study. The research instruments consisted of three…
Tailoring Inservice Training in Science to Elementary Teachers' Needs.
ERIC Educational Resources Information Center
Bethel, Lowell J.
1982-01-01
Elementary school teachers feel inadequately prepared to teach science and spend little class time on science instruction. Until undergraduate science preparation improves, inservice training must take up the slack. An inservice program developed by the Science Education Center at the University of Texas' College of Education shows positive…
Science Alive!: Connecting with Elementary Students through Science Exploration.
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-05-01
A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.
ERIC Educational Resources Information Center
Lu, Chow-Chin; Chen, Yueh-Yun; Chen, Chen-Wei
2011-01-01
The central focus of this study was the development, use and evaluation of CD-ROM picture books in elementary school science teaching. Three CD-ROM picture books based on the Campus Insects unit from the new elementary school science curriculum in Taiwan were developed. A quasi-experimental method was used to compare the use of the CD-ROMs and…
NASA Astrophysics Data System (ADS)
Kumar, David D.; Morris, John D.
2005-12-01
A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.
NASA Astrophysics Data System (ADS)
Winn, Kathleen Mary
The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.
NASA Astrophysics Data System (ADS)
Pringle, Rose M.; Martin, Sarah Carrier
2005-09-01
In 1983, the National Commission on Excellence in Education in the United States issued a report called A Nation at Risk: The Imperative for Educational Reform. This report and other policy initiatives such as the No Child Left Behind Legislation recommended that the individual states institute assessments to hold schools accountable. This research explored the potential impact of impending standardised testing on teaching science in elementary schools in one school district in Florida. We explored the teachers' concerns about the upcoming high-stakes tests in science, possible impact on their curriculum and what changes, if any, will be made in the approach to science teaching and learning in their classrooms. As the teachers look toward the implementation of high-stakes testing in science, they have recognised the need to teach science. This recognition is not borne out of the importance of science learning for elementary school children, but rather out of fear of failure and the effects of tangible rewards or punishments that accompany high-stakes testing. In anticipation, the teachers are preparing to align their teaching to the science standards while aggressively searching for test preparatory materials. Schools are also involved in professional development and structural changes to facilitate teaching of science.
Urban Elementary Teachers' Perspectives on Teaching Science to English Language Learners
ERIC Educational Resources Information Center
Lee, Okhee; Maerten-Rivera, Jaime; Buxton, Cory; Penfield, Randall; Secada, Walter G.
2009-01-01
This descriptive study examined urban elementary school teachers' perceptions of their science content knowledge, science teaching practices, and support for language development of English language learners. Also examined were teachers' perceptions of organizational supports and barriers associated with teaching science to nonmainstream students.…
Introducing Technology Education at the Elementary Level
ERIC Educational Resources Information Center
McKnight, Sean
2012-01-01
Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…
ERIC Educational Resources Information Center
Turkmen, Lutfullah; Darcin, Emine Selcen
2007-01-01
The purpose of this study was to determine the knowledge levels of popular biotechnological issues of Turkish science and elementary teacher candidates. A questionnaire was administered during 2006-2007 school term to 336 students pursuing their education in the departments of science and elementary education in two Turkish universities. The…
Program Brings Science to Elementary Students.
ERIC Educational Resources Information Center
Worthy, Ward
1988-01-01
Describes "Parents and Children for Terrific Science (PACTS)" program sponsored by the American Chemical Society's Education Division for encouraging the development of family science projects at the elementary and intermediate school levels. Discusses some examples and the results of the project. (YP)
NASA Astrophysics Data System (ADS)
Price, Robert John
The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and understood. This investigation recommends that teachers' personal understanding of science, as revealed through narrative inquiry, becomes a focus in developing new educational opportunities for elementary school teachers. This study further recommends challenging a hegemony related to positivism that exists in science curricula, and the addition of the valued voice of elementary teachers to the discourse of science education.
ERIC Educational Resources Information Center
Yoon, So Yoon; Dyehouse, Melissa; Lucietto, Anne M.; Diefes-Dux, Heidi A.; Capobianco, Brenda M.
2014-01-01
This study examines the effects of integrated science, technology, and engineering (STE) education on second-, third-, and fourth-grade students' STE content knowledge and aspirations concerning engineering after validation of the measures. During the 2009-2010 school year, 59 elementary school teachers, who attended a week-long engineering…
ERIC Educational Resources Information Center
Watt, Lois B.; And Others
This is an annotated bibliography of science and mathematics textbooks and juvenile trade books received in the Educational Materials Center between January, 1969 and February, 1970. The contents are divided into two major sections: Juvenile Literature, and Textbooks for Elementary and Secondary Schools. The first section includes only those books…
ERIC Educational Resources Information Center
Lee, Okhee; Buxton, Cory; Lewis, Scott; LeRoy, Kathryn
2006-01-01
This study examines elementary students' abilities to conduct science inquiry through their participation in an instructional intervention over a school year. The study involved 25 third and fourth grade students from six elementary schools representing diverse linguistic and cultural groups. Prior to and at the completion of the intervention, the…
A Rural Math, Science, and Technology Elementary School Tangled up in Global Networks of Practice
ERIC Educational Resources Information Center
Carlone, Heidi B.; Kimmel, Sue; Tschida, Christina
2010-01-01
This is an ethnographic study of a newly created math, science, and technology elementary magnet school in a rural community fiercely committed to cultural preservation while facing unprecedented economic instability brought on by massive loss of manufacturing jobs. Our goal was to understand global- and community-level contexts that influenced…
ERIC Educational Resources Information Center
Havu-Nuutinen, Sari
2017-01-01
This study aims to develop team teaching approach at elementary school science by piloting the created model of teachers' collaboration in three different stages. In the research the model of team teaching is seen as teachers' collaboration in which university teachers, elementary school teachers and teacher students are working towards…
ERIC Educational Resources Information Center
Boaventura, Diana; Faria, Claudia; Chagas, Isabel; Galvao, Cecilia
2013-01-01
The purposes of the study were to analyse the promotion of scientific literacy through practical research activities and to identify children's conceptions about scientists and how they do science. Elementary school children were engaged in two scientific experiments in a marine biology research laboratory. A total of 136 students answered a…
Discovering Animal Ways, Elementary School Science, Level Three, Teaching Manual.
ERIC Educational Resources Information Center
Hale, Helen E.
This pilot teaching unit is one of a series developed for use in elementary school science programs. This unit is designed to promote children's natural curiosity and to help those who show a reluctance to work with animals to overcome some of their fears. The student activities employ important scientific processes, such as observation,…
ERIC Educational Resources Information Center
Tillman, Daniel
2012-01-01
The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics…
NASA Astrophysics Data System (ADS)
Pinner, Pascale Creek
Conderman and Sheldon Woods (2008) suggest that although science plays a central role in our world today, science instruction seems to be minimized particularly at the elementary grade levels. Research has investigated the construct of efficacy (Bandura, 1977, 2006a; Riggs & Enochs, 1990; Ramey-Gassert, Shroyer & Staver, 1996; Tschannen-Moran, Hoy & Hoy, 1998, 2001). Professional and conceptual development in teachers has also been explored (Gordon, 1990; Sheerer, 1997; Skaalvik & Skaalvik, 2007). The purpose of this research was to describe the changes in efficacy elementary teachers experience as they participated in science professional development. Data from a Math/Science Partnership (MSP) grant sample suggested significant changes in science self-efficacy and improved pedagogy. Mixed methods revealed connections resulting in a multi-faceted Progression of Efficacy Growth flowchart. The results suggest that utilizing the Teacher-to-Teacher (T2T) professional development model has created a pathway for more science teaching across the Hilo elementary schools.
The Really Useful Elementary Science Book
ERIC Educational Resources Information Center
Bloom, Jeffrey W.
2010-01-01
Amongst the challenges that elementary teachers may often face as they introduce their students to science is the need to maintain a solid understanding of the many scientific concepts and details themselves. This indispensible resource, intended for pre- and in-service elementary school teachers, provides concise and comprehensible explanation of…
A Collaborative Approach for Elementary Science
ERIC Educational Resources Information Center
Nelson, George D.; Landel, Carolyn C.
2007-01-01
The authors question whether elementary students will have access to effective science and mathematics instruction within the current structure of elementary schools, in which each classroom teachers is expected to possess the expertise to teach all subjects well. They review research showing that good teachers are the key to student achievement…
Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?
ERIC Educational Resources Information Center
Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian
2016-01-01
This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…
Science Language Accommodation in Elementary School Read-Alouds
ERIC Educational Resources Information Center
Glass, Rory; Oliveira, Alandeom W.
2014-01-01
This study examines the pedagogical functions of accommodation (i.e. provision of simplified science speech) in science read-aloud sessions facilitated by five elementary teachers. We conceive of read-alouds as communicative events wherein teachers, faced with the task of orally delivering a science text of relatively high linguistic complexity,…
NASA Astrophysics Data System (ADS)
Foster, Donald Carey
The purpose of this case study was to identify barriers that limit the effectiveness of elementary teachers in the teaching of science. It is of the utmost urgency that barriers be first identified, so that possible solutions can be explored to bring about the improvement of elementary science education. This urgency has been imposed by the scheduled national testing of students in science by 2007, as mandated by the No Child Left Behind Act of 2001. Using qualitative case study methods, the researcher conducted interviews with 8 elementary teachers from two schools within one school district who taught 3rd, 4th, and 5th grade. These interviews were designed to gain insight into barriers these elementary teachers perceived as factors limiting their effectiveness in teaching science and preparing students for high-stakes testing. Barriers in the areas of teacher background, typical teaching day, curriculum, inservices, and legislative influences were explored. This study concluded that the barriers explored do have a substantial negative affect on the teaching and learning of science in the elementary grades. Specifically, the barriers revealed in this study include the limited science background of elementary teachers, inadequate class time devoted to science, non-comprehensive curriculum, ineffective or lack of inservice training, and pressures from legislated mandates. But it is also clear that these barriers are so intertwined that one cannot remove these barriers one at a time. It will take a collective effort from all involved, including legislators, administrators, teachers, parents, and students, to alleviate these barriers and discover effective solutions to improve elementary science education.
NASA Astrophysics Data System (ADS)
Matsumoto, I.
2011-12-01
The importance of learning at field has been increasing in the elementary and the junior high school in Japan. And, an environmental education is one of the important subjects even in the school education, too. It was important, as for science education, understanding with actual feeling and learning were specified as for the Teaching outlines (the Japanese Ministry of Education, Culture, Sports, Science and Technology) of the new science textbook of the elementary and the junior high school as well. However, It is a little actual situation that there is in an opportunity for the field learning enforced in the school lesson by the investigation of JST (Japan Science and Tecnology Agency). This tendency is strong as much as school of the city and that circumference. I have this cause think that there are a few suitable places for learning to observe geological and biological field near school. In addition, below two is pointed out as a big problem to obstruct the execution of field learning. 1) A natural experience isn't being done sufficient as much as a teacher can teach to the student. 2) It doesn't have the confidence that a teacher teaches a student geology and biology at the field. I introduce the practical example of geological field learning at the public elementary school of the Shimane prefecture by this research. Though it is the place where nature is comparatively rich even in Japan, it can't be said that field learning is popular in Shimane prefecture. A school teacher has to learning experience at field, and he must settle confidence to guide a student at the field. A specialist in the university and the museum must support continuous learning for that to the school teacher.
ERIC Educational Resources Information Center
Harding-DeKam, Jenni L.; Reinsvold, Lori; Olmos, Antonio; Song, Youngjin; Franklin, Elizabeth; Enríquez, Mariana; Higgins, Teresa
2014-01-01
The MAST-EL University and School Partnership supports a strategic infrastructure for preparing preservice and in-service teachers ensuring high quality mathematics and science instruction for English learners (ELs). The partnership in its second year consists of thirty-two in-service elementary teachers, three instructional coaches, thirty…
Cognitive Structures of Elementary School Students: What Is Science?
ERIC Educational Resources Information Center
Armagan, Fulya Öner
2015-01-01
The aim of this study is to examine the change in the cognitive structures of elementary school students in respect to the concept of science through word association test in a constructivist approach based project. The study was conducted with 50 students attending to 6th and 7th grades. Students were applied a 90-minute activity in scope of the…
ERIC Educational Resources Information Center
Aseeri, Mohammed Mofreh Yahya
2015-01-01
This study aimed to identify the practice extent of mathematics and science teachers of professional development activities, its sources and obstacles at elementary schools in Najran, and its relationship with specialty, gender, number of training courses. To achieve the study aims, the research questionnaire was prepared and consisted of (70)…
ERIC Educational Resources Information Center
Ugwu, Romanus Iroabuchi
2012-01-01
The purpose of this mixed-methods study was to describe the perceptions of elementary teachers from an urban school district in Southern California regarding their inquiry-based science instructional practices, assessment methods and professional development. The district's inquiry professional development called the California Mathematics and…
What Difference Does Art Make in Science? A Comparative Study of Meaning-Making at Elementary School
ERIC Educational Resources Information Center
Jakobson, Britt; Wickman, Per-Olof
2015-01-01
Here we examine the role art activities play in aesthetic experience and learning of science. We compare recordings of two sequential occurrences in an elementary school class. The purpose of the first sequence was scientific and involved the children in observing leaves with magnifiers. The second sequence had an artistic purpose, where the…
ERIC Educational Resources Information Center
Epstein, Diana; Miller, Raegen T.
2011-01-01
One can't throw a stone without hitting a STEM initiative these days, but most science, technology, engineering, and math initiatives--thus the STEM acronym--overlook a fundamental problem. In general, the workforce pipeline of elementary school teachers fails to ensure that the teachers who inform children's early academic trajectories have the…
Lillie Burney Elementary School
NASA Technical Reports Server (NTRS)
2006-01-01
Mississippi Rep. Percy Watson (left) talks with first-graders Savannah Jones and Levi Meyers, and Astronaut Lee Morin on Sept. 8 during the NASA Explorer School kickoff event at the Lillie Burney Elementary School in Hattiesburg, Miss. NASA Explorer Schools help promote student achievement in mathematics and science through activities using the excitement of NASA research, discoveries and missions.
Lillie Burney Elementary School
2006-09-08
Mississippi Rep. Percy Watson (left) talks with first-graders Savannah Jones and Levi Meyers, and Astronaut Lee Morin on Sept. 8 during the NASA Explorer School kickoff event at the Lillie Burney Elementary School in Hattiesburg, Miss. NASA Explorer Schools help promote student achievement in mathematics and science through activities using the excitement of NASA research, discoveries and missions.
Online Software Applications for Learning: Observations from an Elementary School
ERIC Educational Resources Information Center
Tay, Lee Yong; Lim, Cher Ping; Nair, Shanthi Suraj; Lim, Siew Khiaw
2014-01-01
This exploratory case study research describes the integration of Information Communication Technology (ICT) into the teaching and learning of English, mathematics and science in an elementary school in Singapore. The school in this case study research is one of the first primary-level future schools that was set up under the…
ERIC Educational Resources Information Center
An, Song A.
2017-01-01
The purpose of the study is to explore how elementary preservice teachers' mathematics-science integrated teaching strategies changed as a result of participating in exemplary interdisciplinary activities with multiple themes across school curricula. The participating elementary preservice teachers (n = 28) were recruited for this study from the…
Science Alive!: Connecting with Elementary Students through Science Exploration†
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-01-01
A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309
Trends in teachers' recommendations for changing elementary and junior-high school science programs
NASA Astrophysics Data System (ADS)
Stronck, David R.
Since 1978 many studies have called for changes in the practices of science teaching. These changes in instruction will occur only when the teachers decide to change their practices. This study uses surveys to consider the question of what were the trends in the teachers' recommendations for changes in elementary and junior-high school science programs between the years of 1978 and 1982. Large samples of teachers in British Columbia, Canada, responded anonymously to questionnaires in these years: 3040 teachers in 1978 and 1631 in 1982, with return rates ranging from 77.5% to 85%. These teachers described themselves as shifting their classroom practices toward ones that emphasize passive learning and memorization. The British Columbia Science Assessments recommend more inservice programs to stop this trend. There were very few differences in the teachers' recommendations for changes in the schools. The elementary-school teachers had major changes in their rankings of only two activities: they increased their ranking of activity-centered learning and reduced their ranking of outdoor education.
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.
2015-01-01
The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…
NASA Astrophysics Data System (ADS)
Upadhyay, Bhaskar; Calabrese Barton, Angela; Zahur, Rubina
2005-09-01
In this paper, we draw from a narrative life history approach to report in depth on the experiences of one teacher, Shagufta, in a high-poverty urban elementary school in Lahore, Pakistan. The purpose of reporting Shagufta's story is twofold. First, we want to make sense of her role as a science teacher - what should the children in her school learn in science, and why, if these children are expected by Pakistani society to leave formal education before the eighth grade? Second, what core tensions mark Shagufta's story as she has tried to craft her science teaching practice?
Oakland County Science Safety Series: Reference Guide for Elementary Science.
ERIC Educational Resources Information Center
Crowder, Betty Pogue; And Others
This reference guide is designed to organize and suggest acceptable practices and procedures for dealing with safety in elementary science instruction. It is intended as a reference for teachers, administrators, and other school staff in planning for science activities and in making daily safety decisions. Topics covered in the guide include: (1)…
Digital Science Notebooks: Perspectives from an Elementary Classroom Teacher
ERIC Educational Resources Information Center
Paek, Seungoh; Fulton, Lori A.
2017-01-01
This study investigates how tablet-based note-taking applications can be integrated into elementary science classes as digital science notebooks. A teacher with 20 students in Grades 4-5 from a public charter school in Hawaii participated in the study. The participating science teacher introduced a tablet-based note taking application (TNA) to her…
ERIC Educational Resources Information Center
Rule, Audrey C.; Sallis, Derek A.; Donaldson, J. Ana
2008-01-01
Elementary school science is an often-neglected subject in the current literacy-focused political atmosphere. However, reading informational trade books about science in literacy class can help children increase their science knowledge. Incorporating humor through content-related cartoons is an effective way to engage students in deeper…
The Influence of Education Major: How Diverse Preservice Teachers View Pseudoscience Topics
NASA Astrophysics Data System (ADS)
Losh, Susan Carol; Nzekwe, Brandon
2011-10-01
Pseudoscience beliefs (e.g., astrology, ghosts or UFOs) are rife in American society. Most research examines creation/evolution among liberal arts majors, general public adults, or, infrequently, middle or high school science teachers. Thus, research truncates the range of ersatz science thinking and the samples it studies. We examined diverse beliefs, e.g., extraterrestrials, magic, Biblical creation, and evolution, among 540 female and 123 male future teachers, including 325 elementary education majors. We study how these cognitions related to education major and, because popular media often present pseudoscience "information", student media use. Future elementary educators most often rejected evolution and endorsed "creationism" or Intelligent Design. Education majors held similar beliefs about astrology, UFO landings, or magic. Compared with other education students, elementary education majors watched less news or science television and read fewer popular science magazines. However, religious and media variables explained more variation in creation/evolution beliefs than education major. We discuss implications of our findings for elementary school science education and how teacher educators may be able to affect pseudoscience beliefs among their elementary education students.
NASA Astrophysics Data System (ADS)
Hoover, Barbara Grambo
Many factors influence teacher choices concerning the frequency, instructional methods, and content of science teaching. Although the role of gender in science learning has been studied extensively, the gender of elementary teachers as it intersects their teaching of science has not been investigated. In this ethnographic study, I focused on five male preservice elementary teachers as they experienced their student teaching internship, aiming to understand their underlying beliefs about science and science teaching and how those beliefs influenced their practice. In an attempt to illuminate the complex interplay of personality, experience, interests, and gender in the professional lives of these men, this study emphasized the importance of context in the formation and expression of their science beliefs and pedagogy. For this reason, I collected data from a number of sources. From September, 2001 to May, 2002, I observed my participants in their science methods courses and on multiple occasions as they taught science in elementary classrooms in a suburban school district. I reviewed journal entries required for the science methods class and examined documents such as handouts, readings and teacher guides from their elementary teaching experience. I conducted semi-structured and informal interviews. I analyzed data from these sources using grounded theory methodology. Although these five men had many similarities, they differed in their love of science, their exposure to science, their avocational interests, and their views of science pedagogy. This study, however, revealed a unifying theme: each participant had his own set of personal and academic resources that he carried into the classroom and used to construct a distinctive science learning environment. Some of these resources intersect with gender. For example, several men had science-related avocational interests. There was a common emphasis on creating a relaxed, enjoyable, hands-on teaching environment as reported in other studies of male elementary teachers. These findings have implications for elementary school science teaching and recruitment goals for elementary teachers that should be further explored in additional studies.
Developing Creative Behavior in Elementary School Students with Robotics
ERIC Educational Resources Information Center
Nemiro, Jill; Larriva, Cesar; Jawaharlal, Mariappan
2017-01-01
The School Robotics Initiative (SRI), a problem-based robotics program for elementary school students, was developed with the objective of reaching students early on to instill an interest in Science, Technology, Engineering, and Math disciplines. The purpose of this exploratory, observational study was to examine how the SRI fosters student…
ERIC Educational Resources Information Center
Sun, Letao
2015-01-01
Transitioning from elementary school to middle school can be a difficult time for many adolescents. It is a period often correlated with a decline in students' academic achievement, perceptions of performance, potential, and value in schooling. Research has shown evidence that parents' involvement in their children's education significantly…
ERIC Educational Resources Information Center
Gijlers, Hannie; Weinberger, Armin; van Dijk, Alieke Mattia; Bollen, Lars; van Joolingen, Wouter
2013-01-01
Creating shared representations can foster knowledge acquisition by elementary school students by promoting active integration and translation of new information. In this study, we investigate to what extent awareness support and scripting facilitate knowledge construction and discourse quality of elementary school students (n?=?94) in a…
Using Smart Boards and Manipulatives in the Elementary Science Classroom
ERIC Educational Resources Information Center
Martin, Susan F.; Shaw, Edward L., Jr.; Daughenbaugh, Lynda
2014-01-01
This study summarizes the results of a survey administered to 48 elementary schools in the largest school district in a southeastern U.S. state, conducted by university faculty to evaluate the use of SMART Boards and hands-on experiences, the objectives of which were to identify preparedness of elementary classroom teachers in teaching elementary…
NASA Astrophysics Data System (ADS)
Koc, Isil
The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of alternative conceptions regarding earth/space science, physical science, and life science have a relatively high personal science teaching efficacy. Overall, the results of the study regarding self-efficacy beliefs propose that consideration be given to identification and modification of preservice elementary teachers' science alternative conceptions if they are expected to teach science effectively.
NASA Astrophysics Data System (ADS)
Stein, Morton
Elementary school is a key time for students to develop their understanding of basic science concepts as well as their attitudes towards science and science learning. Yet many elementary teachers do not feel comfortable teaching science; as a result, they are likely to devote less time on that subject and to be less effective as science teachers. The literature suggests that weaknesses in elementary teachers' knowledge of science could be a main cause of this problem and, furthermore, that current elementary teacher preparation programs have contributed to this weakness. This study aims at gaining more knowledge about how elementary teachers who are successful in teaching science have acquired their science content knowledge and how such knowledge could be best acquired, with the ultimate goal of informing the design of more effective elementary teacher preparation programs. More specifically, this study addresses the following research questions: Which science learning experiences for elementary teachers seem most conducive to develop the kind of science content knowledge and pedagogical content knowledge needed to support the teaching of science as called for by the most recent national and state standards? Which of these experiences should be included in elementary teacher preparation programs, and how? The core of this study consists of case studies of eight elementary school teachers who were identified as successful in teaching science. These subjects were selected so as to ensure differences in their teacher preparation programs, as well as gender and years of teaching experience. Information about each teacher's self-efficacy and motivation with respect to teaching science, history of pre-service and in-service preparation with respect to science, and how his/her current science knowledge was acquired, was sought through a series of interviews with each subject and triangulated with data collected from other sources. A cross-case analysis revealed some interesting similarities and differences in how these successful elementary science teachers developed their science knowledge, and identified the following main sources of science learning opportunities: (a) science content courses; (b) methods courses; (c) student teaching; (d) in-service workshops; (e) opportunities to work with colleagues on the design and/or delivery of science units. Based on what was learned from these case studies, a preliminary set of recommendations to improve elementary teacher's science learning opportunities was identified. Two focus groups were held---one with elementary teachers and another with teacher educators---to share these preliminary recommendations and gather feedback and additional suggestions. Informed by the information gathered in these focus groups, a final set of recommendations to improve elementary teacher's preparation to teach science was articulated.
NASA Astrophysics Data System (ADS)
Roberts, Sara Hayes
The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.
Creating contextually authentic science in a low-performing urban elementary school
NASA Astrophysics Data System (ADS)
Buxton, Cory A.
2006-09-01
This article reports on a 2-year collaborate project to reform the teaching and learning of science in the context of Mae Jemison Elementary, the lowest performing elementary school in the state of Louisiana. I outline a taxonomy of authentic science inquiry experiences and then use the resulting framework to focus on how project participants interpreted and enacted ideas about collaboration and authenticity. The resulting contextually authentic science inquiry model links the strengths of a canonically authentic model of science inquiry (grounded in the Western scientific canon) with the strengths of a youth-centered model of authenticity (grounded in student-generated inquiry), thus bringing together relevant content standards and topics with critical social relevance. I address the question of how such enactments may or may not promote doing science together and consider the implications of this model for urban science education.
ERIC Educational Resources Information Center
Artayasa, I. Putu; Susilo, Herawati; Lestari, Umie; Indriwati, Sri Endah
2018-01-01
This research aims to compare the effect of the implementation of three levels of inquiry: level 2 (structured inquiry), level 3 (guided inquiry), and level 4 (open inquiry) toward science concept understanding of elementary school teacher candidates. This is a quasi experiment research with pre-test post-test nonequivalent control group design.…
ERIC Educational Resources Information Center
Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre
2016-01-01
This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…
NASA Astrophysics Data System (ADS)
Gibbons, Beatrice Lowney
2002-01-01
The purpose of this study was to develop an evaluation instrument to be used by elementary school administrators in the promotion of constructivist teaching of elementary science for English Learners using a qualitative and quantitative design that identified effective instructional strategies to be included on the evaluation instrument. This study was conducted in fifth grade classrooms of predominately English Learners whose teachers are CLAD-certified, tenured teachers with at least three years of teaching experience. The classroom observations took place within a multicultural school district with predominantly Hispanic and Filipino students in the Southern San Joaquin Valley of California. The evaluation instrument was used to observe these teachers teach elementary science lessons to classrooms of predominately English Learners. The frequency of the use of the ELD/SDAIE instructional strategies were noted on the evaluation instrument with a check mark, indicating the fact that an instructional technique was employed by the teacher. These observation visits revealed what type of instructional strategies were being utilized in the teaching of science to fifth grade English Learners, whether these CLAD-certified teachers were using ELD strategies, and whether the incidence of ELD/SDAIE constructivist instructional techniques increased with the repeated use of the evaluation instrument. As a result of this study, an evaluation instrument to be utilized by school administrators in the evaluation of elementary science instruction to English Learners was developed. The repeated use of this evaluation instrument coupled with preobservation and postobservation conferences may result in the increase in frequency of ELD/SDAIE methodology and constructivist strategies listed on the evaluation instrument in the elementary science classroom.
NASA Astrophysics Data System (ADS)
Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I.; Chen, Hui-Huang
2015-01-01
Background:Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in nanotechnology among schoolchildren. Purpose:The objective of this study was to evaluate the effectiveness of the Nanotechnology-based Popular Science Education Promotion and Teaching (NPSEPT) program through camp activity that was implemented in elementary schools in I-Lan City, Taiwan. Program description:To create a competitive advantage, a human resources development program was implemented as one of the nanotechnology incubation projects in Taiwan and focused on developing an appropriately-skilled professional workforce as well as promoting popular science education. Sample:The volunteer research participants were 323 sixth grade students in four elementary schools in I-Lan City, Taiwan, who were evaluated at the beginning and the end of the nanotechnology-based popular science promotion camp activity. Design and methods:A research tool called the 'NPSEPT test' was designed specifically for this study and was approved by experts who evaluated its content and face validity. The questionnaire was divided into three aspects: 'Nanophenomena in the natural world'; 'Nanomaterials and their scaling effects'; and 'Definition, characteristics, and applications of nanotechnology.' The effectiveness of learning among the students was analyzed using descriptive statistics, a paired sample t-test, analysis of variance (ANOVA) and a post hoc comparison. Results:The results of the three-part 'NPSEPT test' revealed that NPSEPT significantly advanced nanotechnology learning performance and outcomes among students in the four participating elementary schools. Of the 15 questions included in the NPSEPT test, positive change for more than 30% of students was achieved for eight questions related to nanotechnology concepts.
Self-Efficacy, an Oriental Twist
ERIC Educational Resources Information Center
Jack, Brady M.; Liu, Chia-Ju; Chiu, Hoan-Lin
2005-01-01
This paper presents the results of a case study involving Taiwanese elementary teachers who teach science at the elementary grade school level. It advocates the position that a teacher's personal science efficacy belief influences his or her science teaching outcome expectations. It also points to an important metamorphosis that is taking place…
The Elementary Institute of Science 1964-1970
ERIC Educational Resources Information Center
Watts, Thomas H.
1970-01-01
Describes an elementary science institute intended to provide children with scientific training in such a way that science becomes a worthwhile and significant pursuit. The institute is financed by local donations, is staffed mostly by parents, and serves approximately 70 children four days a week after school and on Saturday. (BR)
Ivestigating Earth Science in Urban Schoolyards
ERIC Educational Resources Information Center
Endreny, Anna; Siegel, Donald I.
2009-01-01
The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…
Preparing Elementary Mathematics-Science Teaching Specialists.
ERIC Educational Resources Information Center
Miller, L. Diane
1992-01-01
Describes a professional development program to train math/science specialists for the upper elementary school grades. Using results from an interest survey, 30 teachers were chosen to participate in a 3-year program to become math/science specialists. Presents the teaching model used and the advantages for teachers and students in having subject…
An Investigation into Upper Elementary Students' Attitudes towards Science
ERIC Educational Resources Information Center
Kaya, Hasan
2012-01-01
Science and technology course that helps to improve cognitive aspects and enhance the creativity of the individuals is an important part of elementary school education as a core course. Students may gain scientific knowledge, scientific process skills, and attitudes during their science learning process. This study aimed to determine upper…
ERIC Educational Resources Information Center
Norman, Patricia J.; Nordine, Jeffrey
2016-01-01
The challenges of teaching elementary mathematics and science, particularly in urban settings, have been well documented. While evidence exists that sustained professional development in mathematics and science can promote inquiry-oriented instruction and bolster student achievement, little has been written about the particular challenges…
ERIC Educational Resources Information Center
Hall, Donald A.
One of the primary goals in many teacher education programs is to design and to implement specific courses, strategies, and methods that promote positive attitude toward science and science teaching among elementary education majors. This paper describes the effects of a biology content course, patterned after innovative elementary school science…
NASA Astrophysics Data System (ADS)
Kinsler, Angela V.
The purpose of this study was to describe the perceived impact of No Child Left Behind on elementary science classrooms in 3 Northeast Tennessee school districts. Quantitative descriptive methodology was used to document how No Child Left Behind impacts instructional methodology, professional development, administrative support, materials and resources, and assessment in 3rd through 5th grades. Data were collected using a survey developed by the researcher. The survey consisted of a demographic section, 28 statements, and 2 open-ended questions. The 51 participants included elementary-school science teachers in 8 schools in 3 upper East Tennessee school districts. Data analysis was based on the following demographics: differing levels of teaching experience, No Child Left Behind school status, and small and large schools. Findings included: The 3 greatest concerns of the impact of the No Child Left Behind Act were the pressures felt by teachers to increase test scores, the manner in which it impacted at-risk or disadvantaged students, and the lack of inservice, specifically for science. Findings also revealed that low-scoring schools or grades were receiving extra assistance and teachers reported they feel that their school or district fosters and supports change. An analysis of the open-ended questions emphasized the stress teachers reported feeling along with the loss of science instruction time to math and language arts.
A rural math, science, and technology elementary school tangled up in global networks of practice
NASA Astrophysics Data System (ADS)
Carlone, Heidi B.; Kimmel, Sue; Tschida, Christina
2010-06-01
This is an ethnographic study of a newly created math, science, and technology elementary magnet school in a rural community fiercely committed to cultural preservation while facing unprecedented economic instability brought on by massive loss of manufacturing jobs. Our goal was to understand global- and community-level contexts that influenced the school's science curriculum, the ways the school promoted itself to the community, and the implicit meanings of science held by school staff, parents and community members. Main sources of data were the county's newspaper articles from 2003 to 2006, the school's, town's, and business leaders' promotional materials, and interviews with school staff, parents, and community members. A key finding was the school's dual promotion of science education and character education. We make sense of this "science with character" curriculum by unpacking the school and community's entanglements with historical (cultural preservation), political (conservative politics, concerns for youth depravity), and economic (globalization) networks. We describe the ways those entanglements enabled certain reproductive meanings of school science (as add-on, suspect, and elitist) and other novel meanings of science (empathetic, nurturing, place-based). This study highlights the school as a site of struggle, entangled in multiple networks of practice that influence in positive, negative, and unpredictable ways, the enacted science curriculum.
NASA Astrophysics Data System (ADS)
Cooke-Nieves, Natasha Anika
Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal professional development in elementary science reform are offered. It is suggested that researchers investigate collaborative coaching through the lenses of organizational learning network theory, and develop professional learning communities with formal and informal educators; and that professional developers in city school systems and informal science institutions work in concert to produce more effective elementary teachers who not only love science but love teaching it.
ERIC Educational Resources Information Center
Chittenden, Edward A.
1970-01-01
Describes the intellectual development stages ascribed to children by Jean Piaget. Characteristics and examples are given for sensori-motor, preoperational, concrete operational, and formal operational thinking periods. Implications are given for elementary school science education, including (1) formal instruction does not accelerate acquisition…
Changes in Student Science Interest from Elementary to Middle School
NASA Astrophysics Data System (ADS)
Coutts, Trudi E.
This study is a transcendental phenomenological study that described the experience of students’ interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change in interest seems to modulate student motivation, which ultimately leads to fewer children choosing not only science classes in the future but science careers. Research studies have identified numerous factors that affect student interest in science; however, this study incorporated the lived experience of the child and looked at this interest in science through the lens of the child. The study design was a collective cross-case study that was multi-site based. This study utilized a sample of children in fifth grade classes of three different elementary schools, two distinct seventh grade classes of different middle schools, and ninth grade children from one high school in the State of Illinois. The phenomenon was investigated through student interviews. The use of one-on-one semi-structured interviews limited to 45 minutes in length provided the researcher with data of each child’s description of science interest. All interviews were audio- recorded and transcribed verbatim. The data was collected and analyzed in order to identify themes, and finally checked for validity. The most significant findings of this study, and possible factors contributing to science interest in children as they progress from elementary to high school, were those findings relating to hands-on activities, the degree to which a student was challenged, the offering of new versus previously studied topics in the curriculum, the perceived relevance of the curricular materials to personal life, and the empowerment children felt when they were allowed to make choices related to their learning experiences. This study’s possible implications for practitioners, specifically the findings of this study’s relation to the 2011 National Research Council Science Framework and the forthcoming Common Core Science Standards, were examined. This study concluded with discussion of its limitations, a summary of the results, and recommendations for additional areas of investigation of the subject matter.
NASA Astrophysics Data System (ADS)
Johnson, Carla C.; Fargo, Jamison D.
2014-11-01
This paper reports the findings of a study of the impact of the transformative professional development (TPD) model on student achievement on state-mandated assessments of science in elementary school. Two schools (one intervention and one control) participated in the case study where teachers from one school received the TPD intervention across a 2-year period while teachers at the other school received no program and continued business as usual. The TPD program includes a focus on the core conceptual framework for effective professional development (Desimone in Educ Res 38:181-199, 2009) as well as an emphasis on culturally relevant pedagogy (CRP) and other effective science instructional strategies. Findings revealed that participation in TPD had a significant impact on student achievement for Burns Elementary with the percentage of proficient students growing from 25 % at baseline to 67 % at the end of the 2-year program, while the comparison school did not experience similar growth. Implications for future research and implementation of professional development programs to meet the needs of teachers in the realm of CRP in science are discussed.
ERIC Educational Resources Information Center
Kyle, William C.; And Others
In anticipation of House Bill 246 (now Texas Administrative Code Chapter 75) which requires an inquiry-based, process-approach to the teaching of science, the Richardson Independent School District established the Elementary Science Pilot Project and adopted the Science Curriculum Improvement Study (SCIS) as part of their new K-6 Science through…
Learning from the best: Overcoming barriers to reforms-based elementary science teaching
NASA Astrophysics Data System (ADS)
Banchi, Heather May
This study explored the characteristics of elementary science teachers who employ reforms-based practices. Particular attention was paid to the consistency of teachers' practices and their beliefs, the impact of professional development experiences on practices, and how teachers mitigated barriers to reforms-based instruction. Understanding how successful elementary science teachers develop fills a gap in the science reforms literature. Participants included 7 upper elementary science teachers from six different schools. All schools were located within two suburban school districts in the south-Atlantic United States and data was collected during the spring of 2008. Data collection included use of the Reformed Teaching Observation Protocol (RTOP) to evaluate the level of reforms-based instruction, as well as 35 hours of classroom observation field notes and 21 hours of audio-taped teacher interviews. The variety of data sources allowed for triangulation of evidence. The RTOP was analyzed using descriptive statistics and classroom observations and interview data were analyzed using Erickson's (1986) guidelines for analytic induction. Findings indicated (a) reforms-based elementary science teaching was attainable, (b) beliefs and practices were consistent and both reflected reforms-based philosophies and practices, (c) formal professional development experiences were limited and did not foster reforms-based practices, (d) informal professional development pursued by teachers had a positive impact on practices, (e) barriers to reforms-based instruction were present but mitigated by strong beliefs and practical strategies like curriculum integration. These findings suggest that there are common, salient characteristics of reforms-based teachers' beliefs, practices, and professional development experiences. These commonalities contribute to an understanding of how reforms-based teachers develop, and inform efforts to move all elementary teachers in the direction of reforms-based science teaching.
ERIC Educational Resources Information Center
Marks, Jamar Terry
2017-01-01
The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…
ERIC Educational Resources Information Center
Dorph, R.; Shields, P.; Tiffany-Morales, J.; Hartry, A.; McCaffrey, T.
2011-01-01
This report addresses how well California is doing to prepare its young people for the evolving economy and societal challenges. Specifically, it describes the status of science teaching and learning in California public elementary schools. This study was conducted in support of "Strengthening Science Education in California," a…
ERIC Educational Resources Information Center
Crosby, Glenn; And Others
A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Vick, Raymond
The implications of space science terminology and concepts for elementary science teaching are explored. Twenty-two concepts were identified which elementary and junior high school teachers were invited to introduce in their teaching. Booklets explaining the concepts were distributed together with report forms for teacher feedback. The numbers of…
ERIC Educational Resources Information Center
Korur, Fikret; Vargas, Rocío Vargas; Torres Serrano, Noemí
2016-01-01
Elementary school teachers' having a positive attitude toward science teaching might encourage students to develop positive attitudes toward science learning. This cross-cultural study aimed to validate the seven-factor structure of the Dimensions of Attitude toward Science (DAS) scale by applying it in two countries. Moreover, it aimed to…
ERIC Educational Resources Information Center
Webster, Gary
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Lutz, Julie H.; Orlich, Donald C.
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Astronomy block of the physical science courses developed by the group. Included are…
ENRICHMENT - CLASSROOM CHALLENGE.
ERIC Educational Resources Information Center
GIBBONY, HAZEL L.
SUGGESTIONS FOR ENRICHMENT TEACHING ARE PRESENTED. THE SUGGESTIONS ARE DIVIDED UNDER ELEMENTARY CLASSROOM AND SECONDARY SCHOOL SUBJECTS. SOME OF THE SUGGESTIONS FOR ELEMENTARY SCHOOL ARE BULLETIN BOARDS, FIELD TRIPS, INDIVIDUAL PROJECTS, AND DISCUSSIONS. THESE SUGGESTIONS APPLY TO LANGUAGE ARTS, SOCIAL STUDIES, SCIENCE, ARITHMETIC AND FOREIGN…
NASA Astrophysics Data System (ADS)
Renfrow, S.; Wood, E. L.
2011-12-01
Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.
NASA Astrophysics Data System (ADS)
Coggins, Porter E.
2015-04-01
The purpose of this paper is (1) to present how general education elementary school age students constructed computer passwords using digital root sums and second-order arithmetic sequences, (2) argue that computer password construction can be used as an engaging introduction to generate interest in elementary school students to study mathematics related to computer science, and (3) share additional mathematical ideas accessible to elementary school students that can be used to create computer passwords. This paper serves to fill a current gap in the literature regarding the integration of mathematical content accessible to upper elementary school students and aspects of computer science in general, and computer password construction in particular. In addition, the protocols presented here can serve as a hook to generate further interest in mathematics and computer science. Students learned to create a random-looking computer password by using biometric measurements of their shoe size, height, and age in months and to create a second-order arithmetic sequence, then converted the resulting numbers into characters that become their computer passwords. This password protocol can be used to introduce students to good computer password habits that can serve a foundation for a life-long awareness of data security. A refinement of the password protocol is also presented.
Science Facilities for Mississippi Schools, Grades 1-12.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Div. of Instruction.
Prepared to assist those planning the construction of new science facilities on the elementary, intermediate, or secondary school level. Standards are outlined and specifications detailed. A statement of fifteen general pricniples for planning science facilities in secondary schools precedes a discussion of--(1) special facilities for different…
NASA Astrophysics Data System (ADS)
Tomoyuki, U.; Matsumoto, I.
2012-12-01
The importance of field learning has been increasing at elementary school and junior high school in Japan. However, In Japan, it is little actual situation that there is in an opportunity for the field learning enforced in the school science lesson. This tendency is strong as much as school of the city and that circumference. I think that this cause is that there are few suitable places for educational tool to observe geological field near the school. Children learn about "Function of running water" in Grade 5 of elementary school in Japan. Therefore, In this study, We remark the river called "Hiikawa-river" which flow in Izumo city, Shimane prefecture as the science teaching materials. Hiikawa is the river which flowing through the granitic rock district. Therefore We can observe granitic rock from in the upper stream, midstream, to the down stream. That is, we can observe the function of running water and diameter (size) of granitic boulders. It is mean that Hiikawa is the one of good educational tool for Children to learn the function of running water. Though it is the place where nature is comparatively rich even in Japan, it can't be said that field learning is relatively popular in Shimane prefecture. I think that teacher has to learning experience at field, because teacher should settle confidence to guide to the student at the field. That is, if it is not, you can not teach children with truly important of curriculum view point of natural and field science. In this research, we introduce practice of geological field learning at the public elementary school of the Shimane prefecture by using of Hiikawa as educational tool which children learn about the function of running water in grade 5, elementary school. In addition, we hope that this study contribute to teachers teaching method and to children natural science literacy.
Entelek Programmed Instruction Guide. Volume l: Elementary/High School. 3rd Edition.
ERIC Educational Resources Information Center
Entelek, Inc., Newburyport, MA.
Individualized instruction has become an important objective in schools. This programmed instruction guide provides information about the ENTELEK system for elementary and high schools. The data bank covers a variety of subject areas and is catalogued according to the Dewey Decimal System: library; psychology; logic; political science; economics;…
Effects of Academic Coaching on Elementary and Secondary School Students.
ERIC Educational Resources Information Center
Kenny, Dianna T.; Faunce, Gavin
2004-01-01
The authors assessed the effects of out-of-school hours academic coaching on students' (at academic performance on end-of-year examinations in English, mathematics, and science; (b) attainment of academic scholarships; and (c) acceptance to Gifted and Talented (GT) classes and selective high schools. Participants were 1,724 elementary and…
Boys' and girls' involvement in science learning and their self-efficacy in Taiwan.
Hong, Zuway-R; Lin, Huann-shyang
2013-01-01
This cross-sectional study investigated the significant differences in students' self-efficacy and their involvement in learning science. Nine hundred and twenty-two elementary school fifth graders, 499 junior high school eighth graders, and 1455 senior or vocational high school eleventh graders completed the students' questionnaire. Analyses of variance (ANOVAs) and independent t-tests compared the significant similarities and differences across school levels and genders. The initial findings were as follows: A sharp decline in boys' and girls' self-efficacy scores from elementary to secondary school levels; boys have significantly higher self-efficacy scores than girls at vocational and senior high school levels; students with more involvement in science learning presented significantly higher self-efficacy scores than those with less involvement. The significant discrepancies in terms of gender and age in students' self-efficacy and involvement in learning science need to be addressed. Implications and limitations are provided.
ERIC Educational Resources Information Center
Hendrix, Rebecca; Eick, Charles; Shannon, David
2012-01-01
Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science…
Elementary Science Guide -- 6th Grade.
ERIC Educational Resources Information Center
Wieland, Anne; And Others
Presented is a resource book to be used with instructional kits for elementary school science students, grade 6. The individual units at this grade level are based on curriculum which has been developed by the National Science Foundation in the 1960s and revised to meet student and teacher identified needs in Anchorage, Alaska. Six units are…
Safety in the Elementary Science Classroom.
ERIC Educational Resources Information Center
Dean, Robert A.; And Others
This safety guide for elementary school science teachers who plan science activities or laboratories for their students, presents information in the form of a flip chart that can be posted in the classroom and referred to in an emergency. Space is provided for emergency telephone numbers. A safety checklist is given for the teacher. Topics…
Conditions and Decisions of Urban Elementary Teachers Regarding Instruction of STEM Curriculum
ERIC Educational Resources Information Center
Smith, Erica L.; Parker, Carolyn A.; McKinney, David; Grigg, Jeffrey
2018-01-01
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision-making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their…
Brain-Based Learning and Standards-Based Elementary Science.
ERIC Educational Resources Information Center
Konecki, Loretta R.; Schiller, Ellen
This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…
Elementary Science Guide -- 1st Grade.
ERIC Educational Resources Information Center
Wieland, Anne; And Others
Presented is a resource book to be used with instructional kits for elementary school science students, grade 1. The individual units at this grade level are based on curriculum which has been developed by the National Science Foundation in the 1960s and revised to meet student and teacher identified needs in Anchorage, Alaska. Four units are…
Protecting Property - USMES Teacher Resource Book. First Edition. Trial Edition.
ERIC Educational Resources Information Center
Bussey, Margery Koo
This Unified Sciences and Mathematics for Elementary Schools (USMES) unit challenges students to find good ways to protect property (property in desks or lockers; animals; bicycles; tools). The challenge is general enough to apply to many problem-solving situations in mathematics, science, social science, and language arts at any elementary school…
Urban Elementary Science Teacher Leaders: Responsibilities, Supports, and Needs
ERIC Educational Resources Information Center
Wenner, Julianne A.
2017-01-01
The challenge of science achievement gaps is one that scholars have struggled to solve. Teacher leadership holds great promise in closing those gaps. Therefore, the purpose of the research reported here was to explore the responsibilities and supports of formally designated science teacher leaders (STLs) in urban elementary schools that have been…
Integrating Science Methods with Professional Development
ERIC Educational Resources Information Center
Vick, Matthew
2017-01-01
Learning to teach elementary science well is not only a goal for preservice teachers. This article describes a partnership that has led to an on-site science methods course in an elementary school library that blends pedagogical instruction with practical classroom time to the benefit of inservice and preservice teachers. In the course, both sets…
ERIC Educational Resources Information Center
National Science Teachers Association, Arlington, VA.
This compendium of articles from "Science and Children", the elementary school journal of the National Science Teachers Association (NSTA), aims to help teachers build connections in their students' minds. The articles describe lessons and units that are interdisciplinary, both integrated and interdisciplinary, or thematic. Each article is…
A Cross Age Study of Elementary Students' Motivation towards Science Learning
ERIC Educational Resources Information Center
Guvercin, Ozge; Tekkaya, Ceren; Sungur, Semra
2010-01-01
The purpose of this study was to investigate the effect of grade level and gender on elementary school students' motivation towards science learning. A total of 2231 sixth and eight grade students participated in the study. Data were collected through Students' Motivation towards Science Learning Questionnaire. Two-way Multivariate Analysis of…
ERIC Educational Resources Information Center
Andrews, Sheila Briskin; Kirschenbaum, Audrey
This guide contains teacher background information and activities for students which deal with space travel and is designed to encourage elementary school students to take a greater interest in mathematics and science. The activities in this guide are to be used with grades 4 to 6 and cover the topics of food, clothing, health, housing,…
ERIC Educational Resources Information Center
Andrews, Sheila Briskin; Kirschenbaum, Audrey
This guide contains teacher background information and activities for students that relate to space travel and is designed to encourage elementary school students to take a greater interest in mathematics and science. The activities in this guide are to be used with grades 1 to 3 and cover the topics of food, clothing, health, housing,…
Geotechnical Engineering in US Elementary Schools
ERIC Educational Resources Information Center
Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan
2013-01-01
This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data…
ERIC Educational Resources Information Center
Sindel, Kasey D.
2010-01-01
This study was prompted by the growing amount of research that is in support of science reform and from this researcher's personal experience and concern that science instructions is no longer a top priority in elementary schools nor are young scientists given the opportunities to act as scientists in a real world setting. This study uses…
ERIC Educational Resources Information Center
Lin, Sheau-Wen; Liu, Yu; Chen, Shin-Feng; Wang, Jing-Ru; Kao, Huey-Lien
2016-01-01
The purpose of this study was to develop a computer-based measure of elementary students' science talk and to report students' benchmarks. The development procedure had three steps: defining the framework of the test, collecting and identifying key reference sets of science talk, and developing and verifying the science talk instrument. The…
Science 101: How Do We Use Calculus in Science?
ERIC Educational Resources Information Center
Robertson, Bill
2014-01-01
How is calculus used in science? That might seem like an odd question to answer in a magazine intended primarily for elementary school teachers. After all, how much calculus gets used in elementary science? Here the author guesses that quite a few readers of this column do not know a whole lot about calculus and have not taken a course in…
What's in Your Refrigerator? Easy Ways to Spark a Love for Science at Home
ERIC Educational Resources Information Center
Dailey, Debbie
2014-01-01
The enthusiasm for science displayed by students in early elementary grades is unparalleled. If not nurtured in elementary school, the spark for learning science diminishes. Unfortunately, the amount of time spent on science in Grades 1-4 has steadily declined since the passage of the No Child Left Behind Act of 2001. In 2012, the National…
ERIC Educational Resources Information Center
Craddock, Jennifer Lovejoy
2017-01-01
The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse…
ERIC Educational Resources Information Center
Pike, Lisa
2017-01-01
In this article, the author describes how a partnership was established to bring science and education majors together with elementary school children in an after-school STEM program. This partnership allowed preservice teachers and science majors to have fun with science and to learn science informally, in a nonclassroom, low-stress…
Language of poverty strategies: Implemented in the urban elementary science classroom
NASA Astrophysics Data System (ADS)
Jeanpierre, Bobby Jo
2000-08-01
This research study reports the results of school-based staff development models used at three urban elementary schools that had liaison teachers assisting classroom teachers in implementing instructional strategies in science teaching from "Language of Poverty," a curriculum framework designed to address the academic needs of disadvantaged students. The case study of two urban elementary schools and six classroom teachers, and survey and interview data results of a third school, uncovered insights into several areas of science teaching in urban settings. One conclusion is that in spite of substantial allocation of resources and assistance, teachers did not translate instructional strategies from "Language of Poverty" curriculum into their classroom practices in a way that would foster urban disadvantaged students' understanding of "big science concepts." A second conclusion is that the school-based staff development models were limited in their ability to address the diverse professional needs of all of its staff. Third, as it relates to students, discipline issues occurred in these urban classrooms across ethnicity and gender. And in addition to teachers being knowledgeable of relevant social and cultural group norms' application of this knowledge in an appropriate and consistent manner is needed to effectively address discipline concerns.
Inquire Learning Effects to Elementary School Students' Nanotechnology Instructions
ERIC Educational Resources Information Center
Chen, Yueh-Yun; Lu, Chow-Chin; Sung, Chia-Chi
2012-01-01
Nanotechnology is an emerging science that involved in different fields. This research inquired elementary school students' learning effect by using quasi-experiment, expositive-teaching and experiential-teaching methods for nanotechnology in the microcosmic world. By utilized the pretest "Nanotechnology Situational Questionnaire (NSQ)",…
Science as experience, exploration, and experiments: elementary teachers' notions of `doing science'
NASA Astrophysics Data System (ADS)
Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.
2017-11-01
Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science - both in and out of schools - throughout their lives. Our work uses identity as a lens to examine the complexities of elementary teachers' narrative accounts of their experiences with science over the course of their lives. Our findings identify components of teachers' science-related experiences in order to lay the groundwork for making connections between teachers' personal experiences and professional practice. This work demonstrates that teachers' storied lives are important for educational researchers and teacher educators, as they reveal elements of teaching knowledge that may be productive and resourceful for refining teachers' science practice.
ERIC Educational Resources Information Center
Perie, Marianne; And Others
The proportion of time that elementary school teachers use to teach core academic subjects (English/reading/language arts, mathematics, social studies, science) is an important aspect of instruction. Spending a large proportion of time teaching core curriculum subjects may be important not only in terms of school quality, but also in terms of…
The Effects of Using Space to Teach Standard Elementary School Curriculum
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1996-01-01
This brief report and recommendation for further research brings to a formal close this effort, the original purpose of which is described in detail in The effects of using space to teach standard elementary school curriculum, Volume 1, included here as the Appendix. Volume 1 describes the project as a 3-year research program to determine the effectiveness of using space to teach. The research design is quasi experimental using standardized test data on students from Aldrin Elementary School and a District-identified 'control' school, which shall be referred to as 'School B.' Students now in fourth through sixth grades will be compared now (after one year at Aldrin) and tracked at least until the present sixth graders are through the eighth grade. Appropriate statistical tests will be applied to standardized test scores to see if Aldrin students are 'better' than School B students in areas such as: Overall academic performance; Performance in math/science; and Enrollments in math/science in middle school.
ERIC Educational Resources Information Center
Chen, Ho-Yuan; Jang, Syh-Jong
2013-01-01
This study highlights trends and features of E-books and their versatility of this tool in elementary educational settings. There has been little quantitative research employed to examine teachers' reasons for using or not using E-books. The purpose of this study was to examine elementary school mathematics and science teachers' reasons for using…
ERIC Educational Resources Information Center
Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee
2018-01-01
The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…
Elementary Students Using a Tablet-Based Note-Taking Application in the Science Classroom
ERIC Educational Resources Information Center
Paek, Seungoh; Fulton, Lori A.
2016-01-01
This exploratory study investigates the potential of a tablet-based note-taking application (TbNA) to serve as a digital notebook in support of students' classroom science practices. An elementary teacher (Grades 4-5) from a public charter school integrated a TbNA into her science class for one semester while participating in professional…
Elementary Science Curriculum, Grade 5.
ERIC Educational Resources Information Center
Stoneham Public Schools, MA.
This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…
ERIC Educational Resources Information Center
Sumen, Ozlem Ozcakir; Calisici, Hamza
2016-01-01
The aim of this study is to determine the associating abilities of elementary education pre-service teachers science education program acquisitions with engineering using STEM education. In the study which is a case study, firstly pre-service teachers were trained about the STEM education approach. Then "Elementary School Science Education…
ERIC Educational Resources Information Center
Hayes, Kathryn N.; Trexler, Cary J.
2016-01-01
Many resources have been committed to research on science teaching pedagogies, resulting in a robust understanding of best instructional practices. Yet, exposure to excellent science instruction in elementary school is haphazard at best and often inequitable. Although the research community has attended to the role of teacher traits, such as…
ERIC Educational Resources Information Center
Henning, Mary Beth; Peterson, Barbara R.; King, Kenneth Paul
2011-01-01
In an effort to improve science and social studies instruction, preservice teachers developed original science, technology, and society units to teach in elementary and middle school classrooms during their clinical field experience. Data revealed that the preservice teachers fell into categories of being skeptics, open-minded instructors, or…
Elementary Science Curriculum, Grade 6.
ERIC Educational Resources Information Center
Stoneham Public Schools, MA.
This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…
How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?
ERIC Educational Resources Information Center
Aslan, Oktay
2015-01-01
An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In…
It's 1984 and Robots Are in the Classroom.
ERIC Educational Resources Information Center
Howe, Samuel F.
1984-01-01
Describes the features of TOPO, HERO, RB5X, and Tasman Turtle, personal robots used in elementary and secondary schools and colleges to introduce concepts of artificial intelligence, advanced high school and college computer science, and elementary level programming. Mechanical arms are also briefly mentioned. (MBR)
Health Science Education in Elementary Schools.
ERIC Educational Resources Information Center
Stier, William F., Jr.
Concern surrounding the status of health education in elementary schools centers around (1) a lack of agreement concerning content, scope, and sequence, (2) its interdisciplinary character, (3) poor teacher preparation, and (4) reliance on incidental teaching and learning situations. Improvement depends upon: (1) defining the areas of concern for…
1988-12-01
individual particles. They mix the powders with water and perform tests with heat, iodine, and vinegar in order to gain additional information about the...illusions ; light ; fermentation ; chromatography ; moon ; astronomy AN SCIENCE - A PROCESS APPROACH, PART G focuses on experimentation, incorporating all...skills ; flowers plants astronomy ; animals ; sensory perception ; vision ; optical illusions ; eyes ; density ; viscosity ; fermentation ; moon
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Six new experiments are described for use in elementary school classrooms. Phenomena explored include friction, mass of air, kinetic energy, air condensers, and hot-air balloons. Instructions are explicit. (PS)
ERIC Educational Resources Information Center
Carlone, Heidi B.; Scott, Catherine M.; Lowder, Cassi
2014-01-01
Students' declining science interest in middle school is often attributed to psychological factors like shifts of motivational values, decrease in self-efficacy, or doubts about the utility of schooling in general. This paper adds to accounts of the middle school science problem through an ethnographic, longitudinal case study of three…
Science Interests of Urban Seventh Graders.
ERIC Educational Resources Information Center
Anderson, Bernice Taylor; And Others
At the middle and elementary school levels, cultivating an interest in science has been considered an important goal. The primary aim should be to foster a desire for participation in science courses and activities. Research results suggest that schools do not provide a curriculum that supports science interests, and student attitudes toward…
Project LEO Studies of Science Learning Environments and Outcomes, 1968-1981.
ERIC Educational Resources Information Center
Matthews, Charles; And Others
Presented is a summary of the 1977-80 Project LEO studies, which focused on science teaching strategies and learning outcomes for disruptive elementary school children and on more refined application of the "student-structured learning in science" (SSLS) teacher behavioral pattern in secondary school science classrooms. Included within…
Science in the Elementary School Classroom: Portraits of Action Research.
ERIC Educational Resources Information Center
McDonald, Jane B., Ed.; Gilmer, Penny J., Ed.
Teacher knowledge and skills are critical elements in the student learning process. Action research serves as an increasingly popular technique to engage teachers in educational change in classrooms. This document focuses on action research reports of elementary school teachers. Chapters include: (1) "First Graders' Beliefs and Perceptions of…
ERIC Educational Resources Information Center
Wally, Laura M.; Levinger, Nancy E.; Grainger, David W.
2005-01-01
A chemistry outreach program to enthuse students of elementary school levels through employing popular children's literature Harry Potter is presented. The outreach activity performance found the students discovering new skills, learning more about science, and participating enthusiastically in the program without any added incentive from their…
Think3d!: Improving Mathematics Learning through Embodied Spatial Training
ERIC Educational Resources Information Center
Burte, Heather; Gardony, Aaron L.; Hutton, Allyson; Taylor, Holly A.
2017-01-01
Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a…
Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration
ERIC Educational Resources Information Center
Krall, Rebecca McNall; Lott, Kimberly H.; Wymer, Carol L.
2009-01-01
The purpose of this descriptive study was to investigate inservice elementary and middle school teachers' conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was…
The Perceptions of Elementary STEM Schools in Missouri
ERIC Educational Resources Information Center
Alumbaugh, Kelli Michelle
2015-01-01
Science, technology, engineering, and mathematics education, or STEM, is an area that is currently growing in popularity with educators (Becker & Park, 2011). A qualitative study consisting of interviews was conducted and data were gathered from three leaders in professional STEM organizations, four principals from elementary STEM schools, and…
Conflicts in Developing an Elementary STEM Magnet School
ERIC Educational Resources Information Center
Sikma, Lynn; Osborne, Margery
2014-01-01
Elementary schools in the United States have been the terrain of a highly politicized push for improved reading and mathematics attainment, as well as calls for increased importance to be given to science, technology, engineering, and mathematics (STEM). With priorities placed on basic skills, however, instructional time in subjects such as…
ERIC Educational Resources Information Center
Sandholtz, Judith Haymore; Ringstaff, Cathy
2013-01-01
This study examined the extent to which significant changes after one year of a longitudinal, state-funded teacher professional development program were sustained during the second year. Participants taught in elementary schools located in small, rural school districts in the state of California in the United States. The research examined changes…
ERIC Educational Resources Information Center
Nariman, Nahid; Chrispeels, Janet
2016-01-01
We explore teachers' efforts to implement problem-based learning (PBL) in an elementary school serving predominantly English learners. Teachers had an opportunity to implement the Next Generation Science Standards (NGSS) using PBL in a summer school setting with no test-pressures. To understand the challenges and benefits of PBL implementation, a…
Dancing through the School Day: How Dance Catapults Learning in Elementary Education
ERIC Educational Resources Information Center
Becker, Kelly Mancini
2013-01-01
The necessity for engaging the body in learning, the need for students to move throughout the school day, and the positive effects that dance has on students' development are all good reasons for dance to be included in the elementary curriculum. There are many ways for teachers to integrate movement into the school day, using math, science,…
"Project NEO": A Video Game to Promote STEM Competency for Preservice Elementary Teachers
ERIC Educational Resources Information Center
Van Eck, Richard N.; Guy, Mark; Young, Timothy; Winger, Austin T.; Brewster, Scott
2015-01-01
The need for science, technology, engineering, and mathematics majors for our future workforce is growing, yet fewer students are choosing to major in science, technology, engineering, and mathematics areas, and many are underprepared, in part because elementary school preservice teachers are also underprepared. This National Science…
The Computational Estimation and Instructional Perspectives of Elementary School Teachers
ERIC Educational Resources Information Center
Tsao, Yea-Ling; Pan, Ting-Rung
2013-01-01
The purpose of this study is to investigate teachers' understanding and knowledge of computational estimation, and teaching practice toward to computational estimation. There are six fifth-grade elementary teachers who participated in this study; three teachers with mathematics/ science major and three teachers with non-mathematics/science major.…
Children's Environmental Identity and the Elementary Science Classroom
ERIC Educational Resources Information Center
Tugurian, Linda P.; Carrier, Sarah J.
2017-01-01
This qualitative research explores children's environmental identity by describing how fifth grade children view their relationship with the natural world alongside their experience of elementary school science. Qualitative analysis of in-depth interviews with 17 grade 5 children was supported with a survey that included responses to open-ended…
Running an Elementary School Astronomy Club: Engaging Children in the Wonders of Space
NASA Astrophysics Data System (ADS)
Mayo, L.; Odenwald, S.; Lundberg, C.; Dimarco, A.
2000-10-01
``At the elementary school level, children are motivated by two things, dinosaurs and space" (Dr. Harold Williams, Montgomery College Planetarium Director). Yet, many elementary school science objectives include only the most basic astronomical concepts. Some ignore the subject all together in favor of more traditional courses (e.g. math and reading) or Earth science based curricula such as weather and local ecosystems. In addition, most elementary school teachers are unfamiliar with astronomical concepts and are poorly equipped to teach the subject. With teacher requirements increasing due to increasing class sizes, state competency exams, and a back to basics political climate, there is often little room to capitalize on the natural sense of curiosity children have about the universe during the normal school day. An after school astronomy club can provide a solution. In this paper, we present a model for setting up and running an after school astronomy club for students in grades 3-6. Our model was developed at two Maryland schools, Sligo Creek Elementary and Holy Redeemer Elementary/Middle School and incorporates national education standards as well as NASA OSS guidelines for effective education outreach programs. We propose here, a Community Based Learning (CBL) approach with the goal of engaging multiple elements of the community in the learning process including local amateur astronomy clubs, industry, community colleges, parents, and teachers. Methods for using astronomy as a basis for teaching reading, writing, math, and presentation skills are introduced. Resources, teaching methods, preparation guidelines, discipline, and safety are discussed and a list of grade appropriate, hands-on astronomy activities is presented along with procedures and expected outcomes.
Keeping Pace: Science Trade Books in Spanish.
ERIC Educational Resources Information Center
Schon, Isabel
1985-01-01
Describes elementary school science trade books written in Spanish. Topics considered in these books include: animal life; astronomy; biology; earth sciences; mathematics; general science; and general technology. (DH)
Influence of Joyful Learning on Elementary School Students’ Attitudes Toward Science
NASA Astrophysics Data System (ADS)
Anggoro, S.; Sopandi, W.; Sholehuddin, M.
2017-02-01
This study investigated the effects of joyful learning approach on elementary school students’ attitudes toward science. The method used is quasy experiment with the participants were divided into two groups. Thirty three of 4th grade students volunteered as an experimental group, and the other forty two act as a control group. The data was collected by questionnaire that are given before and after the lesson, observation sheet, and interview. The effect of joyful learning on students’ attitude was obtained by determining the n-gain and independent t-test. Observation and interview results were used to triangulate and support the quantitative findings. The data showed that the gain scores of the experimental group students’ attitudes toward science were significantly higher than the gain scores of control group. In addition, the experimental group made significantly greater progress in their cognitive, affective and conative experiences. Interviews and observations indicated that their attitude toward science changed over the intervention. This indicated that joyful learning approach can enhance the elementary school students’ attitudes toward science. According to these findings, it can be concluded that joyful learning approach can be used as an alternative approach to improve student’s attitude toward science.
ERIC Educational Resources Information Center
Pinner, Pascale Creek
2012-01-01
Conderman and Sheldon Woods (2008) suggest that although science plays a central role in our world today, science instruction seems to be minimized particularly at the elementary grade levels. Research has investigated the construct of efficacy (Bandura, 1977, 2006a; Riggs & Enochs, 1990; Ramey-Gassert, Shroyer & Staver, 1996;…
ERIC Educational Resources Information Center
Lewis, Felecia J.
2017-01-01
The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted…
ERIC Educational Resources Information Center
Boyer, Elisebeth C.
2012-01-01
This research investigates how three preservice elementary teachers were prepared to teach science using a Discursive Model of Meaning Making. The research is divided into two parts. The first consists of the nature of the participants' learning experiences in a science methods course within a school-university Professional Development School…
ERIC Educational Resources Information Center
Bulunuz, Nermin; Jarrett, Olga S.
2010-01-01
Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…
ERIC Educational Resources Information Center
Adams, Caralee
2011-01-01
This article features five schools (John P. Oldham Elementary, Norwood, Massachusetts; R. J. Richey Elementary, Burnet, Texas; Pittsburgh Carmalt Science and Technology Academy, Pittsburgh, Pennsylvania; John D. Shaw Elementary, Wasilla, Alaska; and Springville K-8, Portland Oregon) that offer five promising practices. From fourth graders learning…
NASA Astrophysics Data System (ADS)
Gurel, Derya Kaltakci
2016-03-01
In the scope of this study, pre-service science teachers (PSST) developed and carried out science demonstrations with everyday materials for elementary school students as a community service activity. 17 PSST enrolled in the community services practices course at Kocaeli University comprised the sample of the present study. Community service practices aim to develop consciousness of social responsibility and professional skills, as well as to gain awareness of social and community problems and find solutions for pre-service teachers. With this aim, each PSST developed five science demonstration activities and their brochures during a semester. At the end of the semester, a total of 85 demonstrations were carried out at public elementary schools, which are especially located in socioeconomically poor districts of Kocaeli, Turkey. In the present case study, the effect of developing and carrying out science demonstrations for elementary school students on six of the PSST' teaching practices on density and buoyancy concept was investigated. 30-minute interviews conducted with each PSST, videos recorded during their demonstration performances, brochures they prepared for their demonstration activities, and reflection papers were used as data collection tools of the study. The results showed that community service practices with science demonstrations had positive effects on PSST' science content knowledge and pedagogical content knowledge.
A Wake-Up Call for U.S. Educators: The Third International Mathematics and Science Study.
ERIC Educational Resources Information Center
Cochrane, Douglas
1999-01-01
This issue of "Policy Forum" compares the mathematics and science achievement of students midway through elementary school, midway through lower secondary school, and at the end of upper secondary school. The Third International Mathematics and Science Study (TIMSS), conducted in 1995-96, is the largest international education study ever…
An Investigation of Students' Personality Traits and Attitudes toward Science
NASA Astrophysics Data System (ADS)
Hong, Zuway-R.; Lin, Huann-shyang
2011-05-01
The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan's students' personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty-two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students' scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students' attitudes toward science. Implications of these findings for classroom instruction are discussed.
Teaching science as argument: Prospective elementary teachers' knowledge
NASA Astrophysics Data System (ADS)
Barreto-Espino, Reizelie
For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry processes. (4) Scaffolded protocols positively influenced participants' attention to having students construct evidence-based explanations during science planning and teaching. (5) Teachers' beliefs about children's science capabilities influence their attention to and adoption of practices associated with teaching science as argument. Findings are discussed in terms of their implications for teacher education, such as the use of coherent conceptual frameworks to guide coursework and field experiences and the development of video-based cases that represent "images of the possible" associated with challenging reform-oriented teaching practices.
Rees-Punia, Erika; Holloway, Alicia; Knauft, David; Schmidt, Michael D
2017-12-01
Recess and physical education time continue to diminish, creating a need for additional physical activity opportunities within the school environment. The use of school gardens as a teaching tool in elementary science and math classes has the potential to increase the proportion of time spent active throughout the school day. Teachers from 4 elementary schools agreed to teach 1 math or science lesson per week in the school garden. Student physical activity time was measured with ActiGraph GT3X accelerometers on 3 garden days and 3 no-garden days at each school. Direct observation was used to quantify the specific garden-related tasks during class. The proportion of time spent active and sedentary was compared on garden and no-garden days. Seventy-four children wore accelerometers, and 75 were observed (86% participation). Children spent a significantly larger proportion of time active on garden days than no-garden days at 3 of the 4 schools. The proportion of time spent sedentary and active differed significantly across the 4 schools. Teaching lessons in the school garden may increase children's physical activity and decrease sedentary time throughout the school day and may be a strategy to promote both health and learning.
NASA Astrophysics Data System (ADS)
Rodgers, Pamela England
This qualitative, narrative study centered on the effects of the implementation of the science portion of the fifth grade Texas Assessment of Knowledge and Skills (TAKS) on the instruction of science at the elementary level, grades one through five. Fourteen teachers and five administrators were interviewed at two elementary schools (kindergarten through grade four) and one middle school (grades five and six). Classroom observations of each of the teachers were also conducted. The study focused on the effect of the implementation of the science TAKS on the amount of time spent on science as well as the instructional methods utilized in the elementary science classroom. Lower grade levels were found to have changed little in these areas unless strong administrative leadership---emphasizing curriculum alignment, providing adequate materials and facilities, and encouraging sustained, content-based professional development in science---was present in the school. At the fifth grade level, however, the amount of time spent on science had increased significantly, although the instructional methods utilized by the teachers were focused more often upon increasing ratings on the test rather than providing the research-based best practice methods of hands-on, inquiry-based science instruction. In addition, the study also explored the teachers' and administrators' perceptions of the state and local mandates concerning science instruction and preparation for the TAKS. Other topics that came to light during the course of the study included the teachers' views on accountability and the effects of the state assessments on children in their classrooms. It was found that most teachers readily accept accountability for themselves, but are opposed to one-shot high-stakes tests which they feel are damaging for their students emotionally and academically---adversely affecting their love of learning science.
NASA Astrophysics Data System (ADS)
Goebel, Camille A.
This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated that the experience validated their science and science-related career choices. Results imply that these changes have the potential to strengthen the undergraduate pursuit of science-related careers and will contribute positive influences to our education system and society at large.
NASA Astrophysics Data System (ADS)
Lee, Okhee; Buxton, Cory; Lewis, Scott; Leroy, Kathryn
2006-09-01
This study examines elementary students' abilities to conduct science inquiry through their participation in an instructional intervention over a school year. The study involved 25 third and fourth grade students from six elementary schools representing diverse linguistic and cultural groups. Prior to and at the completion of the intervention, the students participated in elicitation sessions as they conducted a semistructured inquiry task on evaporation. The results indicate that students demonstrated enhanced abilities with some aspects of the inquiry task, but continued to have difficulties with other aspects of the task even after instruction. Although students from all demographic subgroups showed substantial gains, students from non-mainstream and less privileged backgrounds in science showed greater gains in inquiry abilities than their more privileged counterparts. The results contribute to the emerging literature on designing learning environments that foster science inquiry of elementary students from diverse backgrounds.
NASA Astrophysics Data System (ADS)
Sewart, Bethany Bianca
Teacher education knowledge, skills, and dispositions have recently become a well-discussed topic among education scholars around the nation, mainly due to its attention by the National Council for Accreditation of Teacher Education (NCATE) over the past few years. Accrediting agencies, such as NCATE and the Interstate New Teacher and Assessment and Support Consortium (INTASC), have sought to improve the quality of teacher education programs by examining knowledge, skills, and dispositions as factors in preparing highly-qualified teachers. There is a paucity of research examining these factors for elementary science teachers. Because these factors influence instruction, and students are behind in scientific and mathematical knowledge, elementary science teachers should be studied. Teacher knowledge, skills, and dispositions should be further researched in order to ultimately increase the quality of teachers and teacher education programs. In this particular case, by determining what schools of education and public schools deem important knowledge, skills, and dispositions needed to teach science, higher education institutions and schools can collaborate to further educate these students and foster the necessary qualities needed to teach effectively. The study of knowledge, skills, and dispositions is crucial to nurturing effective teaching within the classroom. Results from this study demonstrated that there were prominent knowledge, skills, and dispositions identified by teachers, administrators, and science teacher educators as important for effective teaching of elementary science. These characteristics included: a willingness to learn, or open-mindedness; content knowledge; planning, organization, and preparation; significance of teaching science; and science-related assessment strategies. Interestingly, administrators in the study responded differently than their counterparts in the following areas: their self-evaluation of teacher effectiveness; how the teaching of science is valued; the best approach to science teaching; and planning for science instruction. When asked of their teaching effectiveness while teaching science, principals referred to enjoying science teaching and improving their practice, while teachers and science teacher educators discussed content knowledge. Administrators valued conducting experiments and hands-on science while teaching science, while their educational counterparts valued creating student connections and providing real-life applications to science for students. In their professional opinions, administrators preferred a hands-on approach to science teaching. Teachers and science teacher educators stated that they view scientific inquiry, exploration, and discovery as effective approaches to teaching within their classrooms. Administrators predicted that teachers would state that lack of resources affects their lesson planning in science. However, teachers and science teacher educators asserted that taking time to plan for science instruction was most important.
2012-03-08
About 170 high school and elementary girls from area schools participated in a Girls Excited about Math and Science event at Stennis Space Center on March 8, 2012. The event was designed to promote studies in science and mathematics.
Elementary and middle school science improvement project
NASA Technical Reports Server (NTRS)
Mcguire, Saundra Yancy
1987-01-01
The Alabama A & M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted in response to a need to improve the ability of North Alabama teachers to teach science effectively using the experimental or hands-on approach. The major component of the project was a two-week workshop. Follow-up visits were made to the classrooms of many of the participating teachers to obtain information on how the program was being implemented in the classroom. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcomes are addressed.
Getting a Jump on the Science Fair.
ERIC Educational Resources Information Center
Fort, Deborah C.
1985-01-01
Success of the Murch Elementary School (Washington, DC) science fair is due to many factors which are applicable to other schools. Suggestions, ideas, and hints are given in this description of the school's program. Projects with an electrocardiogram, water weeds, and preserving ice are also discussed. (DH)
34 CFR 682.216 - Teacher loan forgiveness program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics or science to secondary school students; or (ii) At... in reading, writing, mathematics, and other areas of the elementary school curriculum, as certified...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, D.H.
1997-01-01
The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less
ERIC Educational Resources Information Center
Johansen, Barry-Craig P.; And Others
Spanish translations of 19 of the Minneapolis (Minnesota) Public Schools' elementary school science units are presented. The materials were translated for use in a partial immersion program. Unit topics include, among others: magnets, organisms (grade 1), seeds and plants (grade 1), butterflies (grade 2), electricity (grade 3), the food chain…
High School and College Student Perceptions of the Ozone Depletion Problem.
ERIC Educational Resources Information Center
Groves, Fred; Pugh, Ava
This paper examines the knowledge of high school biology students (n=107), undergraduate elementary education majors (n=42), and graduate students in an advanced elementary science methods course (n=22) about ozone depletion. The questionnaire used contained 30 items pertaining to ozone depletion which were divided into three subscales: (1)…
In-Service Training Argumentation Application for Elementary School Teachers: Pilot Study
ERIC Educational Resources Information Center
Alkis-Küçükaydin, Mensure; Uluçinar Sagir, Safak; Kösterelioglu, Ilker
2016-01-01
Science Course Curriculum was revised in Turkey in 2013 and some methods and strategies were suggested to be included such as argumentation. This study includes the evaluation of in-service training applied as pilot study for introducing argumentation to elementary school teachers. The study consists of applying needs analysis, preparing and…
Connecting Urban Students with Engineering Design: Community-Focused, Student-Driven Projects
ERIC Educational Resources Information Center
Parker, Carolyn; Kruchten, Catherine; Moshfeghian, Audrey
2017-01-01
The STEM Achievement in Baltimore Elementary Schools (SABES) program is a community partnership initiative that includes both in-school and afterschool STEM education for grades 3-5. It was designed to broaden participation and achievement in STEM education by bringing science and engineering to the lives of low-income urban elementary school…
ERIC Educational Resources Information Center
Newman, Je-Nata Kennedy
2017-01-01
The purpose of this quantitative correlational study was to examine the relationship between principals' perceptions of their transformational leadership behaviors and academic achievement in the areas of reading, math, science, and social studies in South Carolina public elementary schools. The theoretical framework for this research was provided…
ERIC Educational Resources Information Center
Alpaslan, Muhammet Mustafa
2017-01-01
The purpose of the study was to determine the level of the relationship among Turkish elementary school students' personal epistemologies, motivation, learning strategies, and achievements in science. A total of 322 fifth-grade students participated in the study. Results from the structural equation modeling showed that students' personal…
Teaching English as a Second Language in the Elementary School. No. 63.
ERIC Educational Resources Information Center
Folkes, Florence; And Others
In addition to discussions on language structure, lesson structure, sentence patterns, and oral pattern drills, this curriculum guide presents specific lesson plans for various subject areas--social studies, mathematics, science, music, and culture--for English as a Second Language (ESL) in elementary schools. The guide begins with a section on…
ERIC Educational Resources Information Center
Lin, Jing-Wen
2017-01-01
This study investigated the differences between Taiwanese experienced and preservice elementary school science teachers' content knowledge (CK) about electric circuits and their ability to predict students' preconceptions about electric circuits as an indicator of their pedagogical content knowledge (PCK). An innovative web-based recruitment and…
NASA Astrophysics Data System (ADS)
Arnold, J.; Wider-Lewis, F.; Miller-Jenkins, A.
2017-12-01
This poster is a description of the challenges and success of implementing climate studies lessons for pre-service teachers to engage student teaching pedagogy and content skill based learning. Edward Waters College is a historical black college with an elementary education teacher program focused on urban elementary school teaching and learning. Pre-Service Elementary Educator Students often have difficulty with science and mathematics content and pedagogy. This poster will highlight the barriers and successes of using climate studies lessons to develop and enhance pre-service teachers' knowledge of elementary science principles particularly related to climate studies, physical and earth space science.
NASA Astrophysics Data System (ADS)
van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam
2013-06-01
The ability to listen closely, speak clearly, write coherently, read with comprehension, and to create and critique media offerings in science contexts is essential for effective science teaching. How might instructors develop such abilities in a physics course for prospective elementary and middle school teachers? We describe here such a course, involving collaboration among physics, science education, and literacy faculty members and two graduate assistants. Meeting twice a week for 10 weeks, the course emphasized questioning, predicting, exploring, observing, discussing, writing, and reading in physical science contexts. We report common themes about aspects that fostered or hindered science and literacy learning, changes in views about science teaching and learning, and positive shifts in interest in science and intended teaching practices.
NASA Astrophysics Data System (ADS)
Pujianto; Prabowo; Wasis
2018-04-01
This study examined the profile of science' teacher instruction in Disaster Risk Reduction (DRR), as a feature of instructional quality, on students’ learning experiences. A qualitative study was done to observe teacher activities in teaching of disaster preparedness. Science teacher and 14 students at grade 4 of SDN (elementary school) Kiyaran 2 are involved as the subject of this study. Teacher’ instruction was coded with regard to preparation, action, and evaluation using observation sheets and documentation. Data analysis results showed a positive significant effect of the readiness during preparation on learning process of disaster risk reduction and an indirect effect of teacher’ action on students’ learning experiences. There is a lack of teaching materials about volcano disaster in the elementary school. Teacher found difficulties on evaluation of student achievement in disaster preparedness. These findings highlight the importance of DRR in uphold science teachers’ education. Items of teachers’ skill in preparing of DRR may be used to offer model of concrete instruction situation during university workshop for maintain teacher education.
Enhancing Self-Efficacy in Elementary Science Teaching with Professional Learning Communities
ERIC Educational Resources Information Center
Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew
2013-01-01
Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in…
Safety in the Elementary Science Classroom.
ERIC Educational Resources Information Center
National Science Teachers Association, Arlington, VA.
This guide gives elementary school teachers suggestions for providing a safe environment for their students and covers general safety concerns in the science classroom. Information is printed in a flip chart format for easy reference. Safety areas covered include: (1) In Case of Accident; (2) Eye Protection; (3) Plants in the Classroom; (4) First…
Using Blogs to Improve Elementary School Students' Environmental Literacy in Science Class
ERIC Educational Resources Information Center
Saltan, Fatih; Divarci, Omer Faruk
2017-01-01
The purpose of this study is to examine the effects of blog activities on elementary students' environmental literacy in science class. The relationships between students' environmental literacy levels, their parents' interest in environmental activities and the frequency of outdoor activities they do have also been also examined. Pre-test…
Effective Programs for Elementary Science: A Best-Evidence Synthesis
ERIC Educational Resources Information Center
Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen
2012-01-01
This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…
Experimental Evaluations of Elementary Science Programs: A Best-Evidence Synthesis
ERIC Educational Resources Information Center
Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen
2014-01-01
This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…
From Metacognition to Whole Language: The Spectrum of Literacy in Elementary School Science.
ERIC Educational Resources Information Center
Balajthy, Ernest
This paper considers the integration of reading and writing into elementary science teaching by way of the implications of two leading theories pertaining to literacy: metacognitive theory and whole language theory. Discussion of the implications of metacognition includes attention to the issue of helping to overcome readers' nonscientific…
ERIC Educational Resources Information Center
Brophy, Jere
For this study, professors representing eight disciplines--science, mathematics, political science, music, literature, history, geography, and the visual arts--were asked first to review historical trends and current thinking in their disciplines and then to prepare papers about the ways in which the disciplines should be represented in the…
Small Things Draw Big Interest
ERIC Educational Resources Information Center
Green, Susan; Smith III, Julian
2005-01-01
Although the microscope is a basic tool in both physical and biological sciences, it is notably absent from most elementary school science programs. One reason teachers find it challenging to introduce microscopy at the elementary level is because children can have a hard time connecting the image of an object seen through a microscope with what…
Rockets: A Teaching Guide for an Elementary Science Unit on Rocketry.
ERIC Educational Resources Information Center
Vogt, Gregory L.
Utilizing simple and inexpensive equipment, elementary and middle school science teachers can conduct interesting, exciting, and productive units on rockets, the oldest form of self-contained vehicles in existence. This teaching guide contains the following: (1) a brief history of experimentation and research on rockets and rocket propulsion from…
ERIC Educational Resources Information Center
Berg, Alissa; Mensah, Felicia Moore
2014-01-01
This study identifies and explores the dilemmas experienced by three first-grade teachers in teaching elementary school science. The impact of coaching and teachers' career stages on how teachers reconcile their dilemmas was examined. Results of this comparative case study indicate teachers perceived tensions between focusing instructional…
4-H Participation and Science Interest in Youth
ERIC Educational Resources Information Center
Heck, Katherine; Carlos, Ramona M.; Barnett, Cynthia; Smith, Martin H.
2012-01-01
The study reported here investigated the impacts of participation in 4-H on young people's interest and participation in science. Survey data were collected from relatively large and ethnically diverse samples of elementary and high school-aged students in California. Results indicated that although elementary-grade 4-H members are not more…
Student memories: Insights for science reform
NASA Astrophysics Data System (ADS)
Chaillie, Jane Hall
The purpose of this study was to examine the recollections pre-service teachers majoring in elementary education have of their science experiences during their elementary years and to explore the recollections in the context of science education reform efforts. At the beginning of science methods course work, pre-service elementary teachers reflected on their memories of their own elementary education experiences. Themes from 102 reflective essays collected in two settings and time periods were identified and compared. The themes remained consistent over both settings and time frames studied and fall into three general categories: curriculum and instruction, teacher traits, and student traits. The pre-service teachers expressed difficulty in recalling elementary science experiences and attributed their limited memories to what they perceived as a low priority of science content in the elementary curriculum. Teaching strategies played a prominent role in the memories reported. Hands-on and active learning strategies produced positive memories, while lectures, reading textbooks, and completing worksheets resulted in more negative memories. Furthermore, pre-service teacher essays often failed to connect the learning activities with concept development or understanding. Pre-service teachers were split nearly equally between those who liked and those who disliked elementary science. The attributes of elementary teachers received the least attention in the categories and focused primarily on passion for teaching science. Implications for science reform leaders, teacher education preparation programs, and school administrators and curriculum directors are identified.
ERIC Educational Resources Information Center
Rich, Peter Jacob; Jones, Brian; Belikov, Olga; Yoshikawa, Emily; Perkins, McKay
2017-01-01
STEM, the integration of Science, Technology, Engineering, and Mathematics is increasingly being promoted in elementary education. However, elementary educators are largely untrained in the 21st century skills of computing (a subset of technology) and engineering. The purpose of this study was to better understand elementary teachers'…
ERIC Educational Resources Information Center
LeDee, Olivia; Mosser, Anna; Gamble, Tony; Childs, Greg; Oberhauser, Karen
2007-01-01
The after-school science club at Galtier Math, Science, and Technology Elementary Magnet School in St. Paul, Minnesota, learned some valuable lessons when they took newfound knowledge about pollution into their homes. After learning about the effects of various contaminants on health and what informed citizens can do about it, students tested…
Earth Science Activities: A Guide to Effective Elementary School Science Teaching.
ERIC Educational Resources Information Center
Kanis, Ira B.; Yasso, Warren E.
The primary emphasis of this book is on new or revised earth science activities that promote concept development rather than mere verification of concepts learned by passive means. Chapter 2 describes philosophies, strategies, methods, and techniques to guide preservice and inservice teachers, school building administrators, and curriculum…
Science Fare: An Illustrated Guide and Catalog of Toys, Books, and Activities for Kids.
ERIC Educational Resources Information Center
Saul, Wendy; Newman, Alan R.
This book addresses some of the methods by which science can be made accessible to children, both in school and non-school settings. It contains information on effective science education for elementary school age children, and includes a catalog of books and other materials. Topics discussed in the book include: (1) planning; (2) approaches to…
NASA Astrophysics Data System (ADS)
Pollock, Lindsey
The purpose of this phenomenological study was to examine the perceptions of Texas public Montessori school principals as instructional leaders in science. Twelve public Montessori school principals were interviewed for this study. Two research questions were used: How do public Montessori principals perceive Texas science standards in public Montessori Elementary classrooms? How do principals view their role as an instructional leader in elementary science related to teachers' effectiveness and student outcomes? Research question one resulted in the following themes: (a) aligning curricula to the Texas Essential Knowledge and Skills (TEKS), (b) engaging science instruction as integrated and hands-on lessons, (c) emphasizing required district and state assessments, and (d) incorporating traditional teaching methodologies to support Montessori instruction. Research question two yielded common themes: (a) balancing Montessori methodologies and philosophies in public school settings with competing demands, (b) monitoring assessment scores as the determination of student success, (c) working in collaboration to support teacher effectiveness, and (d) providing resources and support to teachers. Implications for Montessori practitioners: paradox of Montessori education in a public school setting, strong support for science in classrooms from the principal and a need for continued research around Montessori education in public school settings.
NASA Astrophysics Data System (ADS)
Brown, Linda Lou
Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data-warehouse programs; teachers' applications of DIDM to modify lessons for differentiated science instruction, the numbers of years' teachers attended science PD, and teachers' influence on CILs staffing decisions. Yet CILs reported 14% of Texas elementary campuses had limited or no science education programs due to federal policy requirement for reading and mathematics. Three hypothesis components were supported and accepted from research data resulted in two models addressing elementary science, science education PD, and CILs impact for federal policy applications.
NASA Astrophysics Data System (ADS)
Avraamidou, Lucy
2018-02-01
The aim of this multiple case study was to uncover a series of critical events and experiences related to the formation of the science identities of four beginning elementary female teachers, through a life-history approach and a conceptualization of teacher identity as lived experience. Grounded within the theoretical framework of Figured Worlds, the study used qualitative, interpretive methods for data collection (interviews, biographies, teaching philosophies) and analysis. The analysis shed light on the ways in which various experiences situated within different Figured Worlds (science, family and childhood, schooling, out-of-school, university, professional) impacted the participants' identity trajectories. The findings provided three main insights that contribute to science identity research and have implications for elementary teacher preparation: (a) science teacher identity is multidimensional and extends beyond cognitive domains of becoming to include affective dimensions; (b) science teacher identity is relational, linked and shaped by various other constructs or sub-identities; (c) place and time, defined as a space with meaning created by experiences, and science teacher identity are inextricably bound to one another.
2012-03-08
NASA Human Resources Specialist Ashley Speed speaks to a group of high school students from area schools during a Girls Excited about Math and Science event at Stennis Space Center on March 8, 2012. About 170 high school and elementary girls from area schools visited Stennis to participate in a day of activities designed to promote studies in science and mathematics.
ERIC Educational Resources Information Center
Settlage, John; Butler, Malcolm B.; Wenner, Julianne; Smetana, Lara K.; McCoach, Betsy
2015-01-01
There is the tendency to explain away successful urban schools as indicative of the heroic efforts by a tireless individual, effectively blaming schools that underperform for a lack of grit and dedication. This study reports the development of a research instrument (School Science Infrastructure, or SSI) and then applying that tool to an…
Atoms, Strings, Apples, and Gravity: What the Average American Science Teacher Does Not Teach
ERIC Educational Resources Information Center
Berube, Clair
2008-01-01
American science teachers in elementary and middle school face a dilemma as they prepare students for high school physics and advanced placement classes. The dilemma lies in ensuring that these students are equipped with the high-level science content they need to thrive in such classes. Aside from life sciences and chemistry sciences, how are our…
NASA Astrophysics Data System (ADS)
Sicardi-Segade, A.; Campos-Mejía, A.; Solano, C.
2016-09-01
Innovation through science and technology will be essential to solve important challenges humanity will have to face in the years to come, regarding clean energies, food quality, medicine, communications, etc. To deal with these important issues, it is necessary to promote STEM (Science, Technology, Engineering and Mathematics) education in children. In this work, we present the results of the strategies that we have implemented to increase the elementary and middle school students interest in science and technology by means of activities that allow them to use and develop their creativity, team work, critical thinking, and the use of the scientific method and the engineering design process.
NASA Astrophysics Data System (ADS)
Rice, Tony E.
The purpose of this survey was to describe and analyze the perceptions of elementary school teachers' in a Midwestern state concerning their use of a science kit program, including to what extent a school's state science assessment scores can be predicated from the level of science kit usage. Prior research indicates that elementary school teachers lack the confidence in teaching science primarily because of their weak undergraduate training in inquiry-based instruction and the lack of a strong science background. Authors such as Dickerson et al. (2006) and Riggs and Enochs (2006) argued that science kits and the materials included in them are valuable in increasing teacher confidence. The teacher perceptions I collected matched the literature quite closely as far as what the teachers found to be of the most value and use. Teachers perceptions of the science kits were positive including: (a) student engagement in using the science kits, (b) use of most of the instructional items included in the kits, (c) the amount of teacher confidence in using them, (d) the support from the math and science center for using them, (e) and the professional development provided. Teachers liked using many components of the kits, especially the experiments. Their main complaint concerned time: time to teach science and time to complete the kit lessons. I used multiple regression to understand the components of the kit program that had a significant correlation to the state test scores. The following variables could explain a high proportion of the variance (.796): (a) teacher confidence, (b) student science learning success, (c) teacher beliefs about science education and (d) the percentage of students eligible for the National School Lunch Program. These findings might lead to school principals and teachers increasing their 5th grade state science exam scores by using the findings to identify which components of the kit program are most important in this endeavor.
Evaluation of the Howard Hughes Science Grant Project, Year One
ERIC Educational Resources Information Center
Wolanin, Natalie; Wade, Julie
2015-01-01
The goal of the Howard Hughes Science Institute (HHMI) supported science program is to train one staff member to become a science lead within each of the elementary schools in the Montgomery County (Maryland) Public Schools (MCPS) district. The specific objectives of the first year of HHMI grant project were to: (1) provide approximately 20…
2012 National Survey of Science and Mathematics Education: Status of Elementary School Science
ERIC Educational Resources Information Center
Trygstad, Peggy J.
2013-01-01
The 2012 National Survey of Science and Mathematics Education was designed to provide up-to-date information and to identify trends in the areas of teacher background and experience, curriculum and instruction, and the availability and use of instructional resources. A total of 7,752 science and mathematics teachers in schools across the United…
Why So Few? Women in Science, Technology, Engineering, and Mathematics
ERIC Educational Resources Information Center
Hill, Catherine; Corbett, Christianne; St. Rose, Andresse
2010-01-01
The number of women in science and engineering is growing, yet men continue to outnumber women, especially at the upper levels of these professions. In elementary, middle, and high school, girls and boys take math and science courses in roughly equal numbers, and about as many girls as boys leave high school prepared to pursue science and…
NASA Astrophysics Data System (ADS)
Craddock, Jennifer Lovejoy
The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse for making meaning of science ideas and b) moving students' conceptual development towards a more scientific understanding of the natural world. Based on those foundations, the three research questions that guided this study examined the value elementary teachers place on student-to-student discourse, the various approaches teachers employ to promote the use of student-to-student discourse for learning science, and the factors and conditions that promote and inhibit the use of student-to-student discourse as an effective pedagogical strategy in elementary science. Data were gathered from 23 elementary teachers in a single district using an on-line survey and follow-up interviews with 8 teachers. All data were analyzed and evolving themes led to the following findings: (1) elementary teachers value student-to-student discourse in science, (2) teachers desire to increase time using student-to-student discourse, (3) teachers use a limited number of student-to-student discourse strategies to increase student learning in science, (4) teachers use student-to-student discourse as formative assessment to determine student learning in science, (5) professional development focusing on approaches to student-to-student discourse develops teachers' capacity for effective implementation, (6) teachers perceive school administrators' knowledge of and support for student-to-student discourse as beneficial, (7) time and scheduling constraints limit the use of student-to-student discourse in science. Implications of this study included the necessity of school districts to focus on student-to-student discourse in science, provide teacher and administrator professional development regarding student-to-student discourse instructional strategies, and promote collaboration across disciplines. This study suggests that future research be conducted regarding the role of administrators in fostering student-to-student discourse, the perspectives of secondary teachers implementing student-to-student discourse, the use of student-to-student discourse in other subjects, and leadership approaches to broadening the study across districts.
ERIC Educational Resources Information Center
Dündar, Sahin; Güvendir, Meltem Acar; Kocabiyik, Oya Onat; Papatga, Erdal
2014-01-01
The present study was conducted first to identify which school subjects were most liked, most important, and most difficult, as well as least liked, least important and easiest as perceived by elementary school students and second to explore the reasons why students most/least liked, considered as most/least important, and considered as most…
NASA Astrophysics Data System (ADS)
Mills, Jada Jamerson
There is a need for STEM (science, technology, engineering, and mathematics) education to be taught effectively in elementary schools. In order to achieve this, teacher preparation programs should graduate confident, content strong teachers to convey knowledge to elementary students. This study used interdisciplinary collaboration between the School of Education and the College of Liberal Arts through a Learning-by-Teaching method (LdL): Lernen durch Lernen in German. Pre-service teacher (PST) achievement levels of understanding science concepts based on pretest and posttest data, quality of lesson plans developed, and enjoyment of the class based on the collaboration with science students. The PSTs enrolled in two treatment sections of EDEL 404: Science in the Elementary Classroom collaborated with science students enrolled in BISC 327: Introductory Neuroscience to enhance their science skills and create case-based lesson plans on neurothology topics: echolocation, electrosensory reception, steroid hormones, and vocal learning. The PSTs enrolled in the single control section of EDEL 404 collaborated with fellow elementary education majors to develop lesson plans also based on the same selected topics. Qualitative interviews of education faculty, science faculty, and PSTs provided depth to the quantitative findings. Upon lesson plan completion, in-service teachers also graded the two best and two worst plans for the treatment and control sections and a science reviewer graded the plans for scientific accuracy. Statistical analyses were conducted for hypotheses, and one significant hypothesis found that PSTs who collaborated with science students had more positive science lesson plan writing attitudes than those who did not. Despite overall insignificant statistical analyses, all PSTs responded as more confident after collaboration. Additionally, interviews provided meaning and understanding to the insignificant statistical results as well as scientific accuracy of the lesson plans.
ERIC Educational Resources Information Center
Wendell, Kristen Bethke
2014-01-01
The incorporation of engineering practices and core ideas into the "Next Generation Science Standards" at the elementary school level provides exciting opportunities but also raises important questions about the preparation of new elementary teachers. Both the teacher education and engineering education communities have a limited…
Design Challenges Are "ELL-elementary"
ERIC Educational Resources Information Center
de Romero, Nancy Yocom; Slater, Pat; DeCristofano, Carolyn
2006-01-01
It has always been a challenge for elementary school teachers to help special needs students and English learners understand challenging, standards-based science content while their students are still developing English language skills. Through their work as pilot teachers for the Engineering is Elementary (EiE) program developed by the Museum of…
ERIC Educational Resources Information Center
Laherto, Antti; Laherto, Jussi
2018-01-01
Addressing the widely reported deficiencies in elementary teachers' competence in technology use and in inquiry-based science instruction, we present and assess a novel teaching experiment conducted in a university-school collaboration. Preservice elementary teachers planned and produced teaching videos in which they gave instructions on…
NASA Astrophysics Data System (ADS)
Brooks, Clare M.
1998-12-01
This naturalistic case study documents a year long Teacher Professional Development Program (TPDP) initiated by an elementary school staff in British Columbia. The TPDP was designed to enable the teachers to meet their objective of making science instruction more frequent, more active, and more student-centered in all classrooms in the school. This case study addresses two research questions: (1) What attributes of the Teacher Professional Development Program supported the school's "objective" for improved science instruction? (2) How did the outcomes of the Teacher Professional Development Program relate to the achievement of the school's educational objective? The site for the research was a kindergarten--Grade 7 school. A university professor and the researcher were invited to visit the school on a bi-weekly basis during one school year (1993--94) to facilitate a series of science workshops involving the entire teaching staff and to provide classroom support to teachers. Teachers were offered university course credit for their participation. This case study draws on qualitative data including: audio recordings of planning/debriefing sessions, workshop discussions, and interviews with participants; field notes and written observations; a survey of teachers' opinions about the TPDP; and documents relating to the school accreditation process in 1994--95. The results of the study show that teachers, administrators, and parents were satisfied that the school's objective for science instruction was met, and that the TPDP contributed significantly to this outcome. The study identifies TPDP attributes which supported the school's objective with reference to the teachers and their context, the planning process, and the organizational context, that is, the school. This study contributes to our understanding of teacher professional development by examining an alternative to more common approaches to elementary teacher science inservice in British Columbia, which are typically short-term, designed by inservice providers with little input from participants, and removed physically and conceptually from the classroom. Such inservice experiences often lack administrative and collegial support for the teacher who attempts classroom implementation. While this study relates to science; the discussion is relevant to other curriculum areas such as fine arts or physical education.
Strengthening STEM Education through Community Partnerships
Lopez, Colleen A.; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R.; Mothé, Bianca R.
2017-01-01
California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest. PMID:28725512
Strengthening STEM Education through Community Partnerships.
Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R
2016-01-01
California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.
NASA Astrophysics Data System (ADS)
Stanitski, D.; Hatheway, B.; Gardiner, L. S.; Taylor, J.; Chambers, L. H.
2016-12-01
Much of the focus on climate literacy in K-12 occurs in middle and high school, where teachers and students can dig into the science in some depth. It is important, however, to introduce this topic at an early age, building on a child's natural curiosity about the world around them - but without overwhelming them with frightening climate change impacts. In some U.S. school systems, a recent focus on standardized testing has crowded out science instruction in order to bring up literacy scores. To give teachers a resource to maintain some science instruction under these conditions, a series of Elementary GLOBE books have been developed. These fictional stories describe sound science and engineering practices that are essential for students to learn the process of science while expanding literacy skills, strongly encouraged in the Next Generation Science Standards (NGSS). The main concepts developed in a new Elementary GLOBE book on climate, titled "What in the World Is Happening to Our Climate?", will be introduced in this presentation. This book complements six other Earth System Science modules within the Elementary GLOBE curriculum and is freely available on the GLOBE website (www.globe.gov/elementaryglobe). The book discusses the concept that climate is changing in different ways and places around the world, and what happens to the climate in one place affects other locations across the globe. Supporting ideas clarify the difference between weather and climate, introduce climate science concepts, reveal the impacts of sea level rise, and help students understand that, while humans are contributing to climate change, they can also participate in solutions that address this challenge. Accompanying teacher's notes and companion classroom activities will be described to help elementary school teachers understand how to approach the subject of climate change with their students.
NASA Astrophysics Data System (ADS)
Jones, Kathleen M.
Inquiry science, including a focus on evidence-based discourse, is essential to spark interest in science education in the early grades and maintain that interest throughout children's schooling. The researcher was interested in two broad areas: inquiry science in the elementary classroom and the need/desire for professional development opportunities for elementary teachers related to science education, and specifically professional development focused on inquiry science. A cross sectional survey design was prepared and distributed in May 2005 and usable responses were received from 228 elementary teachers from the south-central area of Pennsylvania which was a representative sample of socio-economical and geographical factors. Areas of particular interest in the results section include: (1) The use of Science Kits which is popular, but may not have the desired impact since they are "adjusted" by teachers often removing the opportunity for evidence-based discourse by the students. This may be partly based on the lack of time dedicated to science instruction and, secondly, the teachers' lack of comfort with the science topics. Another issue arising from science kits is the amount of preparation time required to utilize them. (2) Teachers demonstrated understanding of the high qualities of professional development but, when it came to science content professional development, they were more inclined to opt for short-term opportunities as opposed to long-term learning opportunities. Since elementary teachers are generalists and most schools are not focusing on science, the lack of attention to a subject where they are least comfortable is understandable, but disappointing. (3) There is a great need for more training in evidence--based discourse so teachers can implement this needed skill and increase students' understanding of science content so they are more able to compete in the international science and math measurements. (4) Professional development, especially in the science area, needs to be a long-term, grass-roots effort in all schools. We need to dedicate funding, and make time available for teachers to participate in long-term collaborative learning opportunities. Teachers want to observe each other and collaborate on lessons but, unless it becomes a priority of the school, it will not happen. Time must be dedicated throughout the day that allows small groups of teachers across the board to get together and share, learn, attempt new approaches, reflect and revise. Various forms of professional learning are available, and each school must choose the one that works for them. (5) The principal as the educational leader in the school needs to be more fully engaged with the learning process of the teachers and the students. The principal should not be viewed only as the evaluator of teachers, but as a collaborator of learning and teaching. Suggestions for further research include longitudinal studies of the impact on students of long term professional development of the teachers that specifically targets science content, inquiry and evidence--based discourse.
Graduate Student Outreach: Model of a One-Day "Chemistry Camp" for Elementary School Students
ERIC Educational Resources Information Center
Houck, Joseph D.; Machamer, Natalie K.; Erickson, Karla A.
2014-01-01
One-day chemistry camps, managed by graduate students from the Departments of Chemistry at the Universities of Virginia (UVA) and Vermont (UVM), have proven successful as an outreach initiative. The camp model engages kindergarten through fifth grade elementary school students in hands-on, inquiry-based science experiments to educate and excite…
The Role of Model Building in Problem Solving and Conceptual Change
ERIC Educational Resources Information Center
Lee, Chwee Beng; Jonassen, David; Teo, Timothy
2011-01-01
This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…
Methods and Strategies: It's Child's Play
ERIC Educational Resources Information Center
Leach, Jenay Sharp
2012-01-01
After a few years of teaching high school physics to juniors and seniors, the author decided it was time for a new challenge. That was when she serendipitously saw the opening for an elementary "science resource teacher." Teaching elementary school was going to be messy, in every possible sense. The author realized that what worked for the big…
ERIC Educational Resources Information Center
Hennessey, Eden J. V.; Mueller, Julie; Beckett, Danielle; Fisher, Peter A.
2017-01-01
Given a growing digital economy with complex problems, demands are being made for education to address computational thinking (CT)--an approach to problem solving that draws on the tenets of computer science. We conducted a comprehensive content analysis of the Ontario elementary school curriculum documents for 44 CT-related terms to examine the…
ERIC Educational Resources Information Center
Cho, Younsoon; Chung, Hye Young; Choi, Kyoulee; Seo, Choyoung; Baek, Eunjoo
2013-01-01
This research explores the emergence of student creativity in classroom settings, specifically within two content areas: science and social studies. Fourteen classrooms in three elementary schools in Korea were observed, and the teachers and students were interviewed. The three types of student creativity emerging in the teaching and learning…
ERIC Educational Resources Information Center
McIntyre, Patrick J.
1974-01-01
Reported is a study to verify the pattern of bias associated with the Model Identification Test and to determine its source. This instrument is a limited verbal science test designed to determine the knowledge possessed by elementary school children of selected concepts related to "the particle nature of matter." (PEB)
ERIC Educational Resources Information Center
Regional Educational Laboratory Mid-Atlantic, 2013
2013-01-01
This event focused on the Institute of Education Sciences' practice guide, "Teaching Elementary School Students to Be Effective Writers" (2012) (see ED533112). Dr. Natalie Olinghouse and Alisha Bollinger presented effective strategies for teaching writing while familiarizing attendees with the recommendations and methods described in the…
An Evaluation of Health and Sexuality Education in Turkish Elementary School Curricula
ERIC Educational Resources Information Center
Bikmaz, Fatma Hazir; Guler, Duygu S.
2007-01-01
Research was undertaken to evaluate whether and to what extent the health-related domains, including sexuality education, specified by the Development of Health Awareness in Adolescent Project Science Committee overlapped with the goals and objectives of the 2002/03 elementary school curricula (grades one to eight; ages 7-14 years) in Turkey. For…
ERIC Educational Resources Information Center
Yilmaz, Ramazan; Kilic-Cakmak, Ebru
2012-01-01
This study examined the impacts of educational interface agents with different attributes on achievement, attitude and retention of elementary school students in their science and technology courses. The study was implemented in four different eighth- grade classes (aged 13-14) of an elementary school. Four different types of educational software,…
ERIC Educational Resources Information Center
Horii, Sachiko Yokoi
2012-01-01
In 2008, a new language education policy called "Gaikokugo Katsudou" [Foreign Language Activities] was issued by the Ministry of Education, Culture, Sport, Science, and Technology (MEXT) in Japan. Effective 2011, foreign language education became mandatory in all Japanese public elementary schools for the first time. With this dramatic…
ERIC Educational Resources Information Center
Ohtani, Chie
2010-01-01
In 2001, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) released the "Rainbow Plan" as the educational reform plan for the twenty-first century. As part of the plan, MEXT will make English education activities compulsory at Japanese public elementary schools beginning in 2011. The purpose of the Rainbow Plan…
NASA Technical Reports Server (NTRS)
2007-01-01
Randall Hicks (right), Jacobs Technology's Education Services manager at NASA John C. Stennis Space Center, answers questions about the playing field for FIRST (For Inspiration and Recognition of Science and Technology) LEGO League's 2007 Challenge, `Power Puzzle.' More than 140 teachers, mentors, parents and students from 15 schools attended the Sept. 15 FLL season kickoff at StenniSphere, the visitor center at SSC. The teams from southern and central Mississippi and Mobile, Ala., who came to SSC heard rules for and asked questions about `Power Puzzle,' and saw robot demonstrations by Gulfport and Picayune high schools' past FIRST Robotics competitions. Using LEGO Mindstorms NXT kits, FLL teams of children ages 9-14 will spend the next three months building and programming robots to perform 'Power Puzzle's' challenge tasks, then pit them in competitions. They also will submit a research project about how energy choices impact the environment and the economy. The season will culminate at the Mississippi Championship Tournament on Dec. 8 at the Mississippi Gulf Coast Community College. FLL, considered the `little league' of the FIRST Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation. NASA recognizes FIRST activities as an excellent hands-on method to increase student knowledge of science, engineering, technology and mathematics. Schools represented in this year's kickoff were: Madison Avenue Upper Elementary, the Mississippi Band of Choctaw Indians' Conehatta Elementary, Hattiesburg's Lillie Burney Elementary, Pearl Upper Elementary, Long Beach Middle, Oktibehha Elementary, d'Iberville Middle, Saucier's West Wortham Middle, Picayune's Nicholson Elementary and Roseland Park Baptist Church Academy, Bay St. Louis' St. Stanislaus College and Mobile's Davidson High, as well as two home-school groups from the Jackson area.
2007-09-15
Randall Hicks (right), Jacobs Technology's Education Services manager at NASA John C. Stennis Space Center, answers questions about the playing field for FIRST (For Inspiration and Recognition of Science and Technology) LEGO League's 2007 Challenge, `Power Puzzle.' More than 140 teachers, mentors, parents and students from 15 schools attended the Sept. 15 FLL season kickoff at StenniSphere, the visitor center at SSC. The teams from southern and central Mississippi and Mobile, Ala., who came to SSC heard rules for and asked questions about `Power Puzzle,' and saw robot demonstrations by Gulfport and Picayune high schools' past FIRST Robotics competitions. Using LEGO Mindstorms NXT kits, FLL teams of children ages 9-14 will spend the next three months building and programming robots to perform 'Power Puzzle's' challenge tasks, then pit them in competitions. They also will submit a research project about how energy choices impact the environment and the economy. The season will culminate at the Mississippi Championship Tournament on Dec. 8 at the Mississippi Gulf Coast Community College. FLL, considered the `little league' of the FIRST Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation. NASA recognizes FIRST activities as an excellent hands-on method to increase student knowledge of science, engineering, technology and mathematics. Schools represented in this year's kickoff were: Madison Avenue Upper Elementary, the Mississippi Band of Choctaw Indians' Conehatta Elementary, Hattiesburg's Lillie Burney Elementary, Pearl Upper Elementary, Long Beach Middle, Oktibehha Elementary, d'Iberville Middle, Saucier's West Wortham Middle, Picayune's Nicholson Elementary and Roseland Park Baptist Church Academy, Bay St. Louis' St. Stanislaus College and Mobile's Davidson High, as well as two home-school groups from the Jackson area.
NASA Astrophysics Data System (ADS)
Hamadeh, Linda
In order for science-based inquiry instruction to happen on a large scale in elementary classrooms across the country, evidence must be provided that implementing this reform can be realistic and practical, despite the challenges and obstacles teachers may face. This study sought to examine elementary teachers' knowledge and understanding of, attitudes toward, and overall perceptions of inquiry-based science instruction, and how these beliefs influenced their inquiry practice in the classroom. It offered a description and analysis of the approaches elementary science teachers in Islamic schools reported using to promote inquiry within the context of their science classrooms, and addressed the challenges the participating teachers faced when implementing scientific inquiry strategies in their instruction. The research followed a mixed method approach, best described as a sequential two-strand design (Teddlie & Tashakkori, 2006). Sequential mixed designs develop two methodological strands that occur chronologically, and in the case of this research, QUAN→QUAL. Findings from the study supported the notion that the school and/or classroom environment could be a contextual factor that influenced some teachers' classroom beliefs about the feasibility of implementing science inquiry. Moreover, although teacher beliefs are influential, they are malleable and adaptable and influenced primarily by their own personal direct experiences with inquiry instruction or lack of.
NASA Astrophysics Data System (ADS)
Marks, Jamar Terry
The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction with traditional science classroom instruction as compared to when instructed using solely traditional science classroom instruction. The targeted sample population consisted of fourth-grade students enrolled in a public elementary school located in the southeastern region of the United States. The convenience sample size consisted of 115 fourth-grade students enrolled in science classes. The pretest and posttest academic achievement data collected consisted of the science segment from the Spring 2015, and Spring 2016 state standardized assessments. Pretest and posttest academic achievement data were analyzed using an ANCOVA statistical procedure to test for differences, and the researcher reported the results of the statistical analysis. The results of the study show no significant difference in science academic achievement between treatment and control groups. An interpretation of the results and recommendations for future research were provided by the researcher upon completion of the statistical analysis.
Science: Model Curriculum Guide, Kindergarten through Grade Eight.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This guide was developed with the intention of helping teachers and school site administrators in California review the elementary science curriculum and compare it to an idealized model that is presented in the document. Part I of the guide provides a summary of a number of characteristics considered to be important to a strong elementary science…
ERIC Educational Resources Information Center
Erdogan, Mehmet; Kostova, Zdravka; Marcinkowski, Thomas
2009-01-01
The purpose of this study was to analyze the extent to which science education objectives in elementary schools addressed to the six basic components of environmental literacy (EL), and how this attention differed from Bulgaria to Turkey. The main method in the study involved comparative content analysis of these objectives. The courses sampled…
ERIC Educational Resources Information Center
Lin, Feng; Chan, Carol K. K.
2018-01-01
This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…
ERIC Educational Resources Information Center
Morgan, Myra J.
This annotated bibliography reviews marine science curriculum projects and other educational resource materials. The items are listed in a concise form for value to both elementary and secondary teachers, as well as students. It includes about 40 publishers--industries, school systems and governmental agencies--with entries from 14 of the 21 ocean…
Science, Levels 7-12. Secondary Core Curriculum Standards.
ERIC Educational Resources Information Center
Utah State Board of Education, Salt Lake City. Div. of Curriculum and Instruction.
This document presents the core science curriculum standards which must be completed by all students as a requisite for graduation from Utah's secondary schools. Contained within are the elementary and secondary school program of studies and high school graduation requirements. Each course entry for grades 7-12 contains: course title, unit of…
Parent Involvement and Science Achievement: A Latent Growth Curve Analysis
ERIC Educational Resources Information Center
Johnson, Ursula Yvette
2011-01-01
This study examined science achievement growth across elementary and middle school and parent school involvement using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 (ECLS-K). The ECLS-K is a nationally representative kindergarten cohort of students from public and private schools who attended full-day or half-day…
Transformative Multicultural Science Curriculum: A Case Study of Middle School Robotics
ERIC Educational Resources Information Center
Grimes, Mary Katheryn
2012-01-01
Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a…
Science Books, A Quarterly Review, Volume 7 Number 4.
ERIC Educational Resources Information Center
American Association for the Advancement of Science, Washington, DC.
"Science Books" is published quarterly to review trade books, textbooks, and reference works in the pure and applied sciences for students in the elementary school, secondary school, and first two years of college. It includes selected advanced and professional books useful for reference by students and faculty members. The approximately 200…
Science Books, A Quarterly Review, Volume 7 Number 2.
ERIC Educational Resources Information Center
Science Books A Quarterly Review, 1971
1971-01-01
Science Books is published quarterly to review trade books, textbooks, and reference works in the pure and applied sciences for students in the elementary school, secondary school, and first two years of college. It includes selected advanced and professional books useful for reference by students and faculty members. The approximately 234 titles…
Science Books, A Quarterly Review, Volume 7 Number 3.
ERIC Educational Resources Information Center
American Association for the Advancement of Science, Washington, DC.
"Science Books" is published quarterly to review trade books, textbooks, and reference works in the pure and applied sciences for students in the elementary school, secondary school, and first two years of college. It includes selected advanced and professional books useful for reference by students and faculty members. The approximately 240…
4-H Chickquest: Connecting Agri-Science with STEM Standards in Urban Schools
ERIC Educational Resources Information Center
Horton, Robert L.; Krieger, Jackie; Halasa, Katrina
2013-01-01
While young students are more capable of scientific inquiry than previously believed, elementary school teachers are often inexperienced in and lack confidence with teaching science. ChickQuest is a 4-H-created embryology curriculum for third-graders that meets Ohio state science standards, teaches STEM skills, and promotes ongoing interaction…
Double TNT: Targeting New Teachers and Teaching by Novel Techniques.
ERIC Educational Resources Information Center
Williams-Robertson, Lydia
A program developed by the Austin (Texas) Independent School District under a 2-year grant from the National Science Foundation is described and evaluated. The primary objectives of the program were to: interest minority and female students in science; attract these groups to the teaching of science; enrich the elementary school science…
Beyond the Transcript: Factors Influencing the Pursuit of Science and Mathematics Coursework
ERIC Educational Resources Information Center
Haag, Susan; Megowan, Colleen
2012-01-01
The nation's middle schools suffer from a shortage of qualified science and mathematics teachers. To address this need, one university in the southwest has developed the Modeling Institute, a master's degree program for in-service elementary educators interested in teaching science and mathematics at the middle school level. Identifying the…
Understanding Science Achievement Gaps by Race/Ethnicity and Gender in Kindergarten and First Grade
ERIC Educational Resources Information Center
Curran, F. Chris; Kellogg, Ann T.
2016-01-01
Disparities in science achievement across race and gender have been well documented in secondary and postsecondary school; however, the science achievement gap in the early years of elementary school remains understudied. We present findings from the recently released Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011 that…
Systems and Variables. Basic Edition. Science for Micronesia.
ERIC Educational Resources Information Center
Trust Territory of the Pacific Islands Dept. of Education, Saipan.
This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the schools of the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation…
Cultivating Primary Students' Scientific Thinking through Sustained Teacher Professional Development
ERIC Educational Resources Information Center
Miller, Roxanne Greitz; Curwen, Margaret Sauceda; White-Smith, Kimberly A.; Calfee, Robert C.
2015-01-01
While the United States' National Research Council (NRC 2012) and Next Generation Science Standards (NGSS 2013) advocate children's engagement in active science learning, elementary school teachers in the US indicate lack of time to teach science regularly because of (1) school and district pressure to focus on English language arts and…
Do science coaches promote inquiry-based instruction in the elementary science classroom?
NASA Astrophysics Data System (ADS)
Wicker, Rosemary Knight
The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.
NASA Astrophysics Data System (ADS)
Wilcox, Dawn Renee
This dissertation examined elementary teachers' beliefs and perceptions of effective science instruction and documents how these teachers interpret and implement a model for Inquiry-Based (I-B) science in their classrooms. The study chronicles a group of teachers working in a large public school division and documents how these teachers interpret and implement reform-based science methods after participating in a professional development course on I-B science methods administered by the researcher. I-B science teaching and its implementation is discussed as an example of one potential method to address the current call for national education reform to meet the increasing needs of all students to achieve scientific literacy and the role of teachers in that effort. The conviction in science reform efforts is that all students are able to learn science and consequently must be given the crucial opportunities in the right environment that permits optimal science learning in our nation's schools. Following this group of teachers as they attempted to deliver I-B science teaching revealed challenges elementary science teachers face and the professional supports necessary for them to effectively meet science standards. This dissertation serves as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Education at George Mason University.
Equity in Elementary Science Education: A Study of Institutional and Policy Factors
NASA Astrophysics Data System (ADS)
Hayes, Kathryn N.
Despite recognition that the foundation for interest in science is laid down at the elementary level (Tai, et al., 2006), in the last ten years elementary science instruction time has declined in K-6 schooling (Center on Education Policy, 2007). A lack of access to excellent science education is exacerbated for low-income students, prompting significant questions regarding inequities within the science education pipeline (Maulucci, 2010). The critical factors needed to address these inequities include teacher preparation, access to resources, and instructional leadership, as well as a supportive policy and institutional milieu. However, although the former three have been studied extensively, the role of policy and institutions in creating the conditions for equity in science education are little understood despite their likely significant role (Lemke, 2001). This mixed methods study addressed this gap by examining the role the policy and institutional milieu play in constraining or supporting equitable elementary science education. Institutional theory provides the framework for understanding how various institutional logics and regulatory pressures permeate schools and districts across contexts, influencing science education implementation (Scott, 2014). Two distinct approaches were used to first quantitatively examine the predictors of differentiation in elementary science education instructional time and methods, and second qualitatively analyze the nature and process by which these mechanisms exert influence. Data for the first two papers was derived from a case study of a purposively sampled district, including surveys of 200 teachers and embedded case studies of four schools. Analysis consisted of multi-level models of teacher attributes and school and policy factors in predicting differential distribution of science education instructional time and methods (Raudenbush & Bryk, 2002). Data for the third paper arose out of a series of principal, administrator, and teacher focus group interviews across three additional districts, purposefully selected to represent a broad range of income level and Academic Performance Index scores. Analysis consisted of a mixed-methods approach: theory generation through an iterative coding process (Eisenhardt, 1989) and subsequent testing through descriptive analysis of code frequency across contexts (Creswell & Clark, 2007). Results indicated that on average, lower income, underrepresented students received substantially less science education than higher income students across sampled schools in the focal district. Socio-economic context and accountability pressures accounted for substantive variance in science instructional time and methods; whereas teacher factors such as professional development, experience, degree and attitude were largely insignificant in the models and accounted for negligible variance. Specifically, students at high accountability pressure schools received only one quarter the amount of hands-on science instruction (on average, 10 minutes per week) as students at lower accountability pressure schools. The second part of this dissertation addressed the need to examine how incentives for science education were differentially structured related to community income level and program improvement status of schools. Mixed-methods data analysis revealed that at high poverty schools, science education was often displaced by a constellation of other pressures, including accountability and accompanying scripted teaching and intervention systems, as well as English Language Learner needs and perceptions that the students needed greater literacy skills before learning science. Although teachers, principals and administrators often expressed resistance to the mandates of accountability, regulatory pressures and resource dependency, in interaction with perceptions of student needs, resulted in a response pattern characterized by cognitive overload and freneticism. These in turn reduced school staff's sense of agency in negotiating for science education goals, and their ability to creatively incorporate science education. Conversely, schools and districts in lower poverty contexts were able to leverage the active interest of parents and other external and internal resources to resist the pressures of accountability and create compromise strategies that supported science education. As implementation of Common Core and the Next Generation Science Standards proceeds, restructuring should take into account the results of this study and others like it, as research and national priorities have historically been focused primarily on teacher development. Although it may be the case, as Milner et al. (2012) claim, that teacher beliefs and attitudes are a key to instructional reform, or that well-targeted professional development can make a great difference in science education implementation (Murphy et al., 2007), without addressing the policy and contextual milieu such efforts may not be efficacious. Moreover, as found in other studies (Malen & Rice, 2004), strengthening school capacity in terms of leadership, teacher retention, and innovative school culture may hold more promise for enhancing the quality of elementary science education than simply increasing the pressures of accountability through high stakes tests.
1992-10-01
science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools ...corporate sponsors. curriculum and instruction in school mathematics For further information about the project or for were developed in a comprehensive... students develop critical thinking skills and to enhance their ability to solve problems through hands-on activities. The staff and participants were most
Meanings teachers make of teaching science outdoors as they explore citizen science
NASA Astrophysics Data System (ADS)
Benavides, Aerin Benavides
This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.
NASA Astrophysics Data System (ADS)
Harlow, Danielle B.
2014-02-01
This paper reports the results of an investigation of how a professional development content course based on the Physics and Everyday Thinking (PET) curriculum affected the teaching practices of five case study elementary school teachers. The findings of this study highlight different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. The range of transfer is explained by considering how each teacher interacted with the learning context (the PET curriculum) and their initial ideas about teaching science.
Ecological literacy materials for use in elementary schools: A critical analysis
NASA Astrophysics Data System (ADS)
Chambers, Joan Maureen
My research is a critical examination of environmental science education resources for use in Alberta schools. I examine both the resources and the processes by which these resources are developed by diverse groups. My inquiry is guided by the following question: What is the nature of the discourse of ecological literacy in the promotion and content of teaching materials in elementary schools in Alberta? This critical analysis centres on the discourses, language, and perspectives (both hidden and overt) of these resources and processes; the manifestation of political agendas; existing relations; and the inclusion or exclusion of alternate views. Framed within critical theory and an ecosocial construct, my methodology employs critical discourse analysis and hermeneutic interpretation. I analyse selected environmental science resources produced for the elementary classroom by government and nongovernment organizations. I also interview the producers and/or writers of these instructional resources to provide the perspectives of some of the developers of these materials. The findings illustrate how the discursive management of the view of nature, human-nature relationships, uncertainty, multiple perspectives, and dimensions of ecological literacy in materials for schools offer students a particular perspective. These ecological and science discourses act to shape their personal relationships with nature and notions of environmental responsibility and consciousness. This research is necessary because, particularly in Alberta, corporate interests have the potential to impact school curricula. The study points to a need for a critical appraisal of resources for schools produced by the environmental science community.
Cultural Astronomy in Elementary and Secondary School
NASA Astrophysics Data System (ADS)
Jafelice, Luiz Carlos
2015-07-01
This work is addressed to educators and geography, science, biology and physics teachers who deal with elementary, middle and high school education. It discusses the importance of adopting the anthropological perspective regarding issues that are considered within the astronomy area. It also presents practical proposals for those who intend to introduce cultural astronomy in elementary, middle and high school education - from the beginning of the 1st grade in Elementary school to the end of the 3rd grade in Secondary school, in formal as well as in informal education. This work is proposed within the context of the holistic and transdisciplinary environmental education. Our approach values above all the experience and aims at a humanistic education that includes epistemological and cultural diversities. The suggested practical proposals can be also beneficially used to address works that include contents related to Brazilian indigenous and Afro-descent cultures in the school curriculum, as the new law requires. The guidelines presented here were tested in real school situations.
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271
Hopes and Goals Survey for Use in STEM Elementary Education
ERIC Educational Resources Information Center
Douglas, K. Anna; Strobel, Johannes
2015-01-01
This study reports the development and validation studies of the Hopes and Goals Survey, an assessment designed to measure the level of hope of elementary students from diverse backgrounds, and its relation to science, technology, engineering, and math (STEM) studies and career. Data collected from students attending urban elementary schools were…
Strategies for Teaching Elementary and Junior High Students.
ERIC Educational Resources Information Center
Consuegra, Gerard F.
1980-01-01
Discusses the applications of Piaget's theory of cognitive development to elementary and junior high school science teaching. Topics include planning concrete experiences, inductive and hypothetical deductive reasoning, measurement concepts, combinatorial logic, scientific experimentation and reflexive thinking. (SA)
ERIC Educational Resources Information Center
Türk, Cumhur; Kalkan, Hüseyin; Iskeleli', Nazan Ocak; Kiroglu, Kasim
2016-01-01
The purpose of this study is to examine the effects of an astronomy summer project implemented in different learning activities on elementary school students, pre-service elementary teachers and in-service teachers' astronomy achievement and their attitudes to astronomy field. This study is the result of a five-day, three-stage, science school,…
ERIC Educational Resources Information Center
Chu, Hui-Chun; Hung, Chun-Ming
2015-01-01
In this study, the game-based development approach is proposed for improving the learning motivation, problem solving skills, and learning achievement of students. An experiment was conducted on a learning activity of an elementary school science course to evaluate the performance of the proposed approach. A total of 59 sixth graders from two…
A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools
ERIC Educational Resources Information Center
Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min
2010-01-01
The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…
A Circuit Board Using a Sheet of Thick Paper and Aluminium Tape
ERIC Educational Resources Information Center
Kamata, Masahiro; Honda, Motoshi
2003-01-01
We have developed a circuit board using materials that are inexpensive and familiar to elementary school students. Most of the responses from students who made this board were relatively positive and we observed them enjoy making the boards at a Science Festival in Japan and in elementary school. As an application, we also developed a tiny torch…
ERIC Educational Resources Information Center
Paik, Seoung-Hey
2015-01-01
The purpose of this study was to explore how examples used in teaching may influence elementary school students' conceptions of evaporation and boiling. To this end, the examples traditionally used to explain evaporation and boiling in Korean 4th grade science textbooks were analyzed. The functions of these published examples were explanation…
ERIC Educational Resources Information Center
Butler, Linda Ann
2010-01-01
The purpose of this study was to examine student achievement as a function of principal personality and assistant principal personality in an elementary school setting. Student achievement, the dependent variable, was fifth grade campus mean scale scores on the Texas Assessment of Academic Skills test for reading, math, and science. Holland's…
ERIC Educational Resources Information Center
Poon, Chew-Leng; Lee, Yew-Jin; Tan, Aik-Ling; Lim, Shirley S. L.
2012-01-01
In this paper, we characterize the inquiry practices of four elementary school teachers by means of a pedagogical framework. Our study revealed core components of inquiry found in theoretically-driven models as well as practices that were regarded as integral to the success of day-to-day science teaching in Singapore. This approach towards…
2012-03-08
About 170 high school and elementary girls from area schools participated in a Girls Excited about Math and Science event at Stennis Space Center on March 8, 2012. The event featured various workshops and presentations designed to promote studies in science and mathematics, as well as other activities.
Japanese Educational Patterns in Science and Engineering
ERIC Educational Resources Information Center
Birnbaum, Henry
1973-01-01
Describes the Japanese educational system, and outlines some of the obstacles faced by students in progressing through successive levels from elementary school to university. Emphasizes undergraduate education, especially in science and engineering. The organization of the Japanese school system is schematically presented in a diagram. (JR)
Report of decontamination at Tominari Elementary School.
Katsumi, S
2016-12-01
On 19 April 2011, the Ministry of Education, Culture, Sports, Science, and Technology designated 13 elementary schools, including Tominari Elementary School in Date city, as high-dose schools that needed to restrict outdoor activities due to the effects of the accident at Fukushima Daiichi nuclear power plant. Approximately 1 week later, the municipal government took action to remove the topsoil from the school grounds, and the prohibition of outdoor activities at Tominari Elementary School was lifted. The school staff continued to work on decontaminating the surrounding areas using high-pressure washers and brushes. There were certain positive outcomes, but a more effective decontamination method was required. In July 2011, the municipal government started an environmental remediation project, both inside and outside the school buildings, with researchers and decontamination workers at Tominari Elementary School, involving members of the Parent-Teacher Association (PTA), local communities, and volunteers using various effective and specialised forms of decontamination. As a result, Tominari Elementary School was able to recommence swimming lessons at the end of the first semester, which had been thought to be impossible. This article will provide information about the importance of 'dialogue' for decontamination, how engagement of the experts gave members of the PTA and the local community a feeling of 'security and safety', and how the decontamination work was an ever-expanding collaborative work of a large number of people.
Integrating Astronomy with Elementary Non-Science Curricula
NASA Astrophysics Data System (ADS)
Bobrowsky, M.
1996-05-01
A workshop was developed for elementary school teachers to enhance students' understanding of astronomy during the formative years of elementary school by incorporating astronomy into various non-science curricula. Educational material was compiled for teachers and students and training was provided for the teachers in the form of a workshop where both information and hands-on activities were disseminated. In addition, we are producing a video tape from the workshop which will be available not only to those who attended the workshop but to other teachers as well. A useful ``multiplier effect" in this project came from our focus on a school that was hosting a group of teachers in training. After these teachers receive certification, they will end up working in all different schools, thereby reaching large numbers of students for many years. The non-scientific subjects that we will connect to astronomy include history, music, art, language arts, social studies, and mathematics, as well as incidental subjects such as health and public safety. Support for this work was provided by NASA through grant number ED90024.01-94A from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronomy Inc. under NASA Contract NAS5-26555.
ERIC Educational Resources Information Center
Rice, Diane
2016-01-01
In Grades 3 to 5 at a suburban southeastern elementary school, the percentage of students with disabilities (SWDs) who do not meet state standards in science and social studies is greater than that of their nondisabled peers. To address this disparity, district administrators required that proficiency ratings increase for SWDs without providing…
ERIC Educational Resources Information Center
Penick, John E.; And Others
The effects of two patterns of teacher behavior on student behavior were investigated, using eight elementary teachers (grades 1-5) and their 250 students. The teacher behavior was conceptualized in terms of the amount of restriction placed on the activities of science students. Fifty students were randomly assigned, with equalizing restrictions…
ERIC Educational Resources Information Center
McGregor, Debra
2014-01-01
This article reports on an innovative pedagogical approach devised to re-envigorate primary (elementary) teachers' practice in the United Kingdom for older children. Learning science in elementary schools for 8-11 year olds (Key Stage 2 in England) has been constrained for several decades while teachers prepared them for national tests. The recent…
ERIC Educational Resources Information Center
Bulunuz, Nermin; Jarrett, Olga S.
2009-01-01
This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…
NASA Astrophysics Data System (ADS)
Viorica Diaconu, Dana; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn
2012-04-01
A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p < 0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p < 0.01, p < 0.001 and p < 0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.
ERIC Educational Resources Information Center
Mumba, F.; Banda, A.; Chabalengula, V. M.
2015-01-01
Studies on inquiry-based instruction in inclusive science teaching have mainly focused on elementary and middle school levels. Little is known about inquiry-based instruction in high school inclusive science classes. Yet, such classes have become the norm in high schools, fulfilling the instructional needs of students with mild disabilities. This…
NASA Astrophysics Data System (ADS)
Mlenga, Francis Howard
The purpose of the study was to determine factors affecting elementary female student teachers' choice of science as a major at college level in Zimbabwe. The study was conducted at one of the Primary School Teachers' Colleges in Zimbabwe. A sample of two hundred and thirty-eight female student teachers was used in the study. Of these one hundred and forty-two were non-science majors who had been randomly selected, forty-one were science majors and forty-five were math majors. Both science and math majors were a convenient sample because the total enrollment of the two groups was small. All the subjects completed a survey questionnaire that had sixty-eight items. Ten students from the non-science majors were selected for individual interviews and the same was done for the science majors. A further eighteen were selected from the non-science majors and divided into three groups of six each for focus group interviews. The same was done for the science majors. The interviews were audio taped and transcribed. Data from the survey questionnaires were analyzed using Binary Logistic Regression which predicted factors that affected students' choice of science as a major. The transcribed interview data were analyzed used using domain, taxonomic and componential analyses. Results of the study indicated that elementary female students' choice of science as a major at college level is affected by students' attitudes toward science, teacher behavior, out-of-school experiences, role models, gender stereotyping, parental influence, peer influence, in-school experiences, and societal expectations, namely cultural and social expectations.
Pre-service elementary teachers' understanding of scientific inquiry and its role in school science
NASA Astrophysics Data System (ADS)
Macaroglu, Esra
The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.
Science Books, A Quarterly Review, Volume 8 Number 2.
ERIC Educational Resources Information Center
American Association for the Advancement of Science, Washington, DC.
This quarterly journal reviews books in different science fields which could be used by teachers in elementary school, secondary school, and in the first two years of college. Not only are the textbooks reviewed, but trade books and reference works in pure and applied sciences are included. Annotations are listed in order of Dewey Decimal…
2012 National Survey of Science and Mathematics Education: Status of Elementary School Mathematics
ERIC Educational Resources Information Center
Malzahn, Kristen A.
2013-01-01
The 2012 National Survey of Science and Mathematics Education was designed to provide up-to-date information and to identify trends in the areas of teacher background and experience, curriculum and instruction, and the availability and use of instructional resources. A total of 7,752 science and mathematics teachers in schools across the United…
Disciplined knowledge: Differentiating and binding the elementary science curriculum
NASA Astrophysics Data System (ADS)
Hayes, Michael Thomas
The purpose of this research was to investigate elementary science curriculum differentiation at two schools with widely divergent student demographics. Historically, elementary school students of ethnic-minority and low-socioeconomic backgrounds have not performed on traditional assessments of academic achievement and progress in science education at the same level as their White and more affluent peers. This inequality has long been of interest to the proponents of science education reform who are concerned with the ability of students to participate successfully in a democratic society and in the labor market. Differentiating the curriculum such that students, because of their socioeconomic, ethnic, or racial backgrounds, receive different knowledge, skills, and experiences is a key component of school activity that supports social inequality. Participants in the study included the teachers and students of four classrooms in two schools with student populations that differed in their socioeconomic and ethnic demographics. Qualitative research methods, including fieldnotes, audiorecordings, and interviews, were utilized to gather data. The collection and analysis of data were articulated in a developmental research process in which theories and interpretations were continuously constructed and tested for validity. The results of this research show that the science curricula at the two schools were different, with differences being understood in terms of the populations served. The particular form of differentiation observed in this study was closely correlated to elements of social discipline, knowledge segmentation and reconfiguration, time and pacing, control of bodies, and testing. The elementary science curriculum at the two schools differed in the formality and intensity with which the curriculum was constructed in adherence to these elements of discipline. Such differences cannot be understood in traditional terms as supporting White middle-class students' academic and social progress while retarding that of students from low-socioeconomic and ethnic-minority backgrounds. Curriculum differentiation, when considered on a theory of discipline, is not simply a matter of placing students into inequitable social and educational positions. Instead, the curriculum is implicated in the construction of a stratified social system that at once constrained and provided for educational, social, and economic possibility.
Emotions and elementary school science teaching: Postmodernism in practice
NASA Astrophysics Data System (ADS)
Zembylas, Michalinos
This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?
The Magic of Janice VanCleave.
ERIC Educational Resources Information Center
Winarski, Diana L.
1995-01-01
Profiles the author of 28 science books for children, teachers, and parents. Most of the books focus on science fair projects, teaching science to elementary school students, and fun science activities that parents and teachers can use with students. (MDM)
ERIC Educational Resources Information Center
Helgeson, Stanley L.; Howe, Robert W.
Many school staff and their client communities are concerned about pupil achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…
Science Education Attuned to Social Issues: Challenge for the '80s.
ERIC Educational Resources Information Center
Yager, Robert E.; And Others
1981-01-01
Provides rationale for interdisciplinary science curricula which emphasize decision-making skills. Includes examples of interdisciplinary curricula using an issue-centered approach: Unified Science and Mathematics for Elementary School (USMES), Health Activities Program (HAP), Human Sciences Program (HSP), Individualized Science Instructional…
NASA Astrophysics Data System (ADS)
Kapetanis, Ana Cristina
The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project study took place in a small independent school in the southeastern United States that lacked a cohesive elementary science program and was looking to create a vertically aligned science curriculum based on constructivism. The research question asked what skills and concepts teachers believed should be included in an elementary science program in order for students to learn scientific inquiry to be better prepared for middle and upper school science subjects. Using focus groups, observations, and interviews of a small sample of 4 teachers, data were collected, transcribed, and categorized through open coding. Inductive analysis was employed to look for patterns and emerging themes that painted a picture of how teachers viewed the current science program and what attributes they felt were important in the creation of a new curriculum. The findings revealed that teachers felt there was lack of a vertically aligned science curriculum, availability of resources throughout the school, and consistent support to provide an effective science program. The recommendations called for developing an elementary science program that includes all strands proposed by the National Science Education Standards and would provide students with opportunities to engage in scientific inquiry, conduct detailed observations, and learn to support conclusions using data. The implications for positive social change include development of programs that result in integrated science learning.
NASA Astrophysics Data System (ADS)
Lowery, Maye Norene Vail
1998-12-01
The purposes of this study were to further the understanding of how preservice teacher construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science and to determine the extent of that knowledge in a school-based setting. Preservice teachers, university instructors, inservice teachers, and other school personnel were involved in this context-specific study. Evidence of the preservice teachers' knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. Collected data included individual and group interviews, course documents, artifacts, and preservice teaching portfolios. Innovative aspects of this integrated mathematics and science elementary methods course included standards-based instruction with immediate access to field experiences. Grade-level teams of preservice and inservice teachers planned and implemented lessons in mathematics and science for elementary students. An on-site, portable classroom building served as a mathematics and science teaching and learning laboratory. A four-stage analysis was performed, revealing significant patterns of learning. An ecosystem of learning within a constructivist learning environment was identified to contain three systems: the university system; the school system; and the cohort of learners system. A mega system for the construction of teacher knowledge was revealed in the final analysis. Learning venues were discovered to be the conduits of learning in a situated learning context. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge through identified learning components. Patience, flexibility, and communication were identified as necessities for successful teaching. Learning components included: collaboration with inservice teachers; implementation of discovery learning and hands-on/minds-on learning; small groupwork; lesson planning; classroom management; and application of standards-based instruction. Prolonged, extensive classroom involvement provided familiarity with the ability levels of elementary students. Gains in positive attitudes and confidence in teaching mathematics and science were identified as direct results of this experience. This may be attributed to the immersion in the school-based setting (hands-on) and the standards-based approach (minds-on) methods course. The results are written in case study form using thick description with an emphasis on preservice teachers.
CMA Announces the 1996 Responsible Care Catalyst Awards Winners
NASA Astrophysics Data System (ADS)
1996-06-01
Eighteen exceptional teachers of science, chemical technology, chemistry, and chemical engineering have been selected to receive a Responsible Care Chemical Manufacturers Association's 1996 Catalyst Award. The Responsible Care Catalyst Awards Program honors individuals who have the ability to inspire students toward careers in chemistry and science-related fields through their excellent teaching ability in and out of the classroom. The program also seeks to draw public attention to the importance of quality chemistry and science teaching at the undergraduate level. Since the award was established in 1957, 502 teachers of science, chemistry, and chemical engineering have been honored. Winners are selected from a wide range of nominations submitted by colleagues, friends, and administrators. All pre-high school, high school, two and four-year college, or university teachers in the United States and Canada are eligible. Each award winner will be presented with a medal and citation. National award winners receive 5,000; regional award winners receive 2,500. National Winners. Martin N. Ackermann, Oberlin College, Oberlin, OH Kenneth R. Jolls, Iowa State University, Ames, IA Suzanne Zobrist Kelly, Warren H. Meeker Elementary School, Ames, IA John V. Kenkel, Southeast Community College, Lincoln, NE George C. Lisensky, Beloit College, Beloit, WI James M. McBride, Yale University, New Haven, CT Marie C. Sherman, Ursuline Academy, St. Louis, MO Dwight D. Sieggreen, Cooke Middle School, Northville, MI Regional Winners Two-Year College. East-Georgianna Whipple-VanPatter, Central Community College, Hastings, NE West-David N. Barkan, Northwest College, Powell, WY High School. East-John Hnatow, Jr., Emmaus High School, Northampton, PA South-Carole Bennett, Gaither High School, Tampa, FL Midwest-Kenneth J. Spengler, Palatine High School, Palatine, IL West-Ruth Rand, Albuquerque, Albuquerque, NM Middle School. East-Thomas P. Kelly, Grandville Public Schools, Grandville, NH West-Denise McCarthy, Ben Franklin Junior High School, Fargo, ND Elementary School. East-Margaret Sadeghpur-Kramer, North Cedar Middle School, Martelle, IA West-Michelle Marie Barone, Fulton Elementary School, Aurora, CO
Dark Skies, Bright Kids! Year 4
NASA Astrophysics Data System (ADS)
Sokal, Kimberly R.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Borish, J.; Crawford, S. B.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Jackson, L.; Liss, S.; Oza, A.; Peacock, S.; Prager, B.; Romero, C.; Sivakoff, G. R.; Walker, L.; Whelan, D. G.; Zucker, C.
2013-01-01
Aiming to engage young children's natural excitement and curiosity, the outreach group Dark Skies, Bright Kids (DSBK) brings a hands-on approach to astronomy to elementary schools in Virginia. We hope to enhance children's view and understanding of science while exploring the Universe using fun activities. DSBK focuses on rural and underserved schools in Albemarle County and offers a semester-long astronomy club for third through fifth grade students. We believe regular interactions foster personal relationships between students and volunteers that encourage a life-long interest in science. In our fourth year of hosting clubs, we returned to Ivy Creek Elementary School, where we saw wonderful responses from a special group of students with `low-incidence' disabilities. DSBK has grown to realize a broader reach beyond local astronomy clubs; we hope to ignite a spark of interest in astronomy and science more widely- in more children, their families, and their teachers. We also hosted the Second Annual Central Virginia Star Party with an open invitation to the community to encourage families to enjoy astronomy together. Throughout the year, DSBK now holds 'one-off' programs (akin to astronomy field days) for elementary schools and children's groups throughout Virginia. Furthermore, we are in the final stages of a project to create two bilingual astronomy books called "Snapshots of the Universe", in Spanish and French with English translations. This art book will be made available online and we are working to get a copy in every elementary school in the state. DSBK has begun to reach out to elementary school teachers in order to provide them with useful and engaging classroom material. We have adapted our volunteer-created activities into useful and ready-to-use lessons, available online. After improvements based on research through interactions and feedback from teachers, we have explicitly identified the learning goals in terms of Virginia's Standards of Learning (SOL) and the materials necessary to run each activity.
ERIC Educational Resources Information Center
Greca, Ileana M.
2016-01-01
Several international reports promote the use of the inquiry teaching methodology for improvements in science education at elementary school. Nevertheless, research indicates that pre-service elementary teachers have insufficient experience with this methodology and when they try to implement it, the theory they learnt in their university…
ERIC Educational Resources Information Center
McIntyre, Patrick Joseph
The purpose of this study was to determine the relative effectiveness of three different types of visual devices in an instructional program designed to teach an understanding of selected theoretical science concepts to elementary school children. The visual devices were prepared using Bruner's three modes of representation (enactive, iconic, and…
A Regression Analysis of Elementary Students' ICT Usage vis-à-vis Access to Technology in Singapore
ERIC Educational Resources Information Center
Tay, Lee Yong; Nair, Shanthi Suraj; Lim, Cher Ping
2017-01-01
This paper explores the relationship among ICT infrastructure (i.e., computing devices and Internet), one-to-one computing program and student ICT activities in school. It also looks into the differences of how ICT is being used in the teaching of English, mathematics and science at the elementary school level in relation to the availability of…
ERIC Educational Resources Information Center
Richardson, Rayman Paul
Reported is a study to develop and test an instrument designed to measure the scientific curiosity and science interests of elementary school students. The inventory was administered to 545 students, grades six through nine, in Columbus, Ohio and 1,050 students, grades six and eight, in Portland, Oregon. Total test-retest reliability of the major…
ERIC Educational Resources Information Center
Breidenbaugh, Barry Ellis
The purpose of this study was to investigate the effects of the Material Objects Unit of the Science Curriculum Improvement Study (SCIS) on the cognitive operations and academic achievement of elementary school children. The Material Objects Unit was designed to give experiences and explorations in the mental operations of classification,…
Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry
NASA Astrophysics Data System (ADS)
Assiri, Yahya Ibrahim
This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was the level of teaching experience between groups: (6-10) years and (11-15) years, and (16- more) and (11-15) years. In addition, the implications and suggestions for future research were provided to enhance teaching science through inquiry.
Evaluation of Bacterial & Fungal Culture Practices in School Classrooms
ERIC Educational Resources Information Center
Weese, J. Scott
2009-01-01
A wide range of activities may be undertaken in elementary and secondary school science laboratories as part of regular curricular activities or optional classroom activities, including science fair projects. Among these is the culturing of microorganisms such as bacteria or fungi. There are various potential educational opportunities associated…
Science Books: A Quarterly Review, Volume 5 Number 3.
ERIC Educational Resources Information Center
Deason, Hilary J.
This publication reviews tradebooks, textbooks, and reference works in the pure and applied sciences for students in the elementary schools, secondary schools, and in the first two years of college. Included are selected advanced and professional books useful for reference by students and faculty members. Evaluations and annotations of books…
Science Books: A Quarterly Review, Volume 8, Number 4.
ERIC Educational Resources Information Center
American Association for the Advancement of Science, Washington, DC.
This quarterly journal reviews trade books, textbooks, and reference works in the pure and applied sciences for students in kindergartens, elementary schools, secondary schools, and in the first two years of college. Also included are selected advanced and professional books useful for reference by students and faculty members. Annotations are…
A Safety Handbook for Science Teachers.
ERIC Educational Resources Information Center
Everett, K.; Jenkins, E. W.
This publication is a safety handbook designed for science teachers of elementary and secondary schools. In an effort to insure prevention of accidents in school laboratories, it advocates careful planning, adequate experimental design, and the acquisition of correct laboratory techinques on the part of the teacher. The handbook gives instructions…
Learning Science-Based Fitness Knowledge in Constructivist Physical Education
ERIC Educational Resources Information Center
Sun, Haichun; Chen, Ang; Zhu, Xihe; Ennis, Catherine D.
2012-01-01
Teaching fitness-related knowledge has become critical in developing children's healthful living behavior. The purpose of this study was to examine the effects of a science-based, constructivist physical education curriculum on learning fitness knowledge critical to healthful living in elementary school students. The schools (N = 30) were randomly…
ERIC Educational Resources Information Center
Kim, Seong-un; Lim, Sung-man; Kim, Eun-ae; Yang, Il-ho
2016-01-01
This study is for the implication of editorial design in science textbooks which are designed for student-centered instruction, when the elements of the editorial design are different, we focus on how the students' eye movement and cognitive load change. For this, we produced a new book for 5th grade students in elementary school that is modified…
NASA Astrophysics Data System (ADS)
Hayden, L. B.; Johnson, D.
2012-12-01
In 1995, the Virginia Department of Education approved a federal mandate for No Child Left Behind 2001 Education Act implementing the Standards of Learning (SOL) in four content areas: Mathematics, Science, English, and History and Social Sciences. These new guidelines set forth learning and achievement expectations for content areas for grades K-12 in Virginia's Public Schools. Given the SOL mandates, Virginia's elementary teachers and school leaders utilized research for specific teaching methods intended to encourage score improvements on end of year mathematics tests. In 2001, the concept of the Math Sprint Competition was introduced to Camelot Elementary School in Chesapeake Virginia, by researchers at Elizabeth City State University of Elizabeth City, North Carolina. Camelot Elementary, a K-5 school, is a Title I school nestled in a lower middle class neighborhood and houses a high number of minority students. On average, these students achieve lower test score gains than students in higher socioeconomic status district schools. Defined as a test-review based in relay format that utilizes released SOL test items, Math Sprint promotes mathematical skills outlined in Virginia SOL's and encourages competition among students that motivated them to quickly pick up on new material and retain the old material in order to out-do the others. Research identified was based on specific relationships between student competition and statewide testing results in mathematics for grades three, four, and five at Camelot Elementary. Data was compiled from results of the Math Sprint Competition and research focused on methods for motivating students encouraged by the use of a math sprint competition. Individual Pearson Product Moment Correlations were conducted to determine which variables possess strong and statistically significant relationships. Significantly, positive results came from 2005 to 2010 math sprints data from which students participated.
The Balloons Go Up for Science.
ERIC Educational Resources Information Center
Fayle, Maureen
1998-01-01
Describes the planning and implementation of a science week intended to raise the awareness of science in an elementary school. Educational requirements included exciting science happenings and concentrated science teaching of a high standard. The week included demonstrations, guest speakers, and schoolwide assemblies. Demonstrations included the…
ERIC Educational Resources Information Center
Rawson, Casey H.
2015-01-01
Numerous authors in the library and information science (LIS) field have called for more authentic collaborative experiences for students in school librarian education programs, particularly experiences that partner school library students with pre-service teachers to collaboratively design instruction. The first-iteration, design-based study…
ERIC Educational Resources Information Center
Regional Laboratory for Educational Improvement of the Northeast & Islands, Andover, MA.
This packet includes reprints of journal articles and other resources concerning the assessment of science and math in small, rural elementary schools. Articles include: (1) "Standards, Assessment, and Educational Quality" (Lauren B. Resnick); (2) "A True Test: Toward More Authentic and Equitable Assessment" (Grant Wiggins); (3) "How World-Class…
ERIC Educational Resources Information Center
Camasso, Michael J.; Jagannathan, Radha
2018-01-01
In this article we describe the development, implementation, and some of the early impacts of Nurture thru Nature (NtN), an American after-school and summer program designed to introduce elementary school students in disadvantaged, urban public schools to natural science and environmental education. The program, which began operations in 2010 as a…
Adolescents' and Emerging Adults' Implicit Attitudes about STEM Careers: "Science Is Not Creative"
ERIC Educational Resources Information Center
Valenti, S. S.; Masnick, A. M.; Cox, B. D.; Osman, C. J.
2016-01-01
Although interest in science and math is often high in the elementary grades, interest in choosing science and math careers drops off beginning in junior high school for both genders, but especially for girls. By high school, a shift towards increased rigor is often accompanied by a lack of creativity in the way that scientific disciplines are…
A Space Science Teacher Professional Development Program
NASA Astrophysics Data System (ADS)
Limaye, Sanjay S.; Pertzborn, Rosalyn A.
Recent adoption of state/national science education standards by school districts in the US has created a need for effective teacher professional development in space science at elementary middle and high school level. Particularly at the elementary and middle school levels majority of teachers teaching the Astronomy/Space Science content have had little education in the area regardless of when they obtained their certification. To meet this growing need the Office of Space Science Education has developed a program to offer teachers background content knowledge through summer workshops and periodic school year meetings for a small number of teachers from Wisconsin and Illinois. The program has included lectures by experts tours of observatories (professional and amateur) science museums and planetariums and on-line learning. A highlight of the program has been introducing teachers to hands-on observing through remotely accessible telescopes. Another aspect has been to make them aware of the many resources available to them through NASA missions. The most significant benefit for the teachers however has been the creation of a peer group and the support it offers in sharing curriculum and lesson plans. This effort has been supported by a NASA/IDEAS grant
The development of elementary teacher identities as teachers of science
NASA Astrophysics Data System (ADS)
Carrier, Sarah J.; Whitehead, Ashley N.; Walkowiak, Temple A.; Luginbuhl, Sarah C.; Thomson, Margareta M.
2017-09-01
The purpose of this qualitative study was to investigate the contributions of pre-service teachers' memories of science and science education, combined with their experiences in a STEM-focused teacher preparation programme, to their developing identities as elementary school teachers of science. Data collected over three years include a series of interviews and observations of science teaching during elementary teacher preparation and the first year of teaching. Grounded within a theoretical framework of identity and using a case-study research design, we examined experiences that contributed to the participants' identity development, focusing on key themes from teacher interviews: memories of science and science instruction, STEM-focused teacher preparation programme, field experiences, first year of teaching, and views of effective science instruction. Findings indicate the importance of exposure to reform strategies during teacher preparation and are summarised in main assertions and discussed along with implications for teacher preparation and research.
ERIC Educational Resources Information Center
Cambridge Conference on School Mathematics, Newton, MA.
This is The Report of the 1967 Cambridge Conference on the Correlation of Science and Mathematics in the Schools. It is addressed to professionals in education, and is designed to stimulate dialogue among them concerning the mathematics-science curriculum. The report is organized in five chapters, each dealing respectively with (1) educational…
NASA Astrophysics Data System (ADS)
Borger, Laurie Landon
The National Research Council's most recent report Taking Science to School: Learning and Teaching Science in Grades K-8, (2007) has suggested a redefinition of science proficiency. "This framework rests on a view of science as both a body of knowledge and an evidence-based, model building enterprise that continually extends, refines, and revises knowledge" (p.2). Therefore embedding argumentation discourse within inquiry teaching includes educating students to voice their own evidence based explanations and justifications for acceptance, refinement, or possible rejection by their peers. This new perspective will require elementary teachers to challenge their own knowledge, beliefs, and practices about science proficiency. It will necessitate the creation of professional development opportunities that are specific to the needs of the teachers who are facilitating the reform during a time period when the NCLB (2001) legislation requires 100% proficiency for all students in reading and math. This intrinsic case study involved the purposive sampling of 30 regular elementary education teachers in one rural school district in Pennsylvania. A grounded theory perspective was used to examine the elementary teachers' beliefs, practices, and barriers as a means to specify the necessary supports needed to accept the challenges associated with the redefinition of science proficiency. Data was collected through a survey, observational inventory, checklist, and interviews. Using constant comparison analysis, this researcher and the district's Science Department Head, identified and refined emerging trends into the following four essential themes: equity and accountability, teacher's beliefs, isolation, and curriculum rigor. Each theme influenced instructional practices. Most notably the implementation of the teacher evaluation plan encouraged teachers to view science as a lower priority and hindered their desire to improve it. Isolation kept teachers' science knowledge and pedagogical content knowledge stagnate, including their beliefs surrounding the ultimate goal of elementary science. The science curriculum did not include explanation or argumentation as a top level goal for instruction consequently instructional practices were limited. Eight specific components for professional development are delineated.
NASA Astrophysics Data System (ADS)
Wang, Tzu-Ling; Berlin, Donna
2010-12-01
The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.
ERIC Educational Resources Information Center
Aydeniz, Mehmet; Brown, Clara Lee
2010-01-01
This study explored the impact of a reflective teaching method on pre-service elementary teachers' conceptual understanding of the lunar phases, reasons for seasons, and simple electric circuits. Data were collected from 40 pre-service elementary teachers about their conceptual understanding of the lunar phases, reasons for seasons and day…
ERIC Educational Resources Information Center
Her Many Horses, Ian
2016-01-01
The world, and especially our own country, is in dire need of a larger and more diverse population of computer scientists. While many organizations have approached this problem of too few computer scientists in various ways, a promising, and I believe necessary, path is to expose elementary students to authentic practices of the discipline.…
NASA Astrophysics Data System (ADS)
Mayo, M.; Williams, C.; Rodriguez, T.; Greely, T.; Pyrtle, A. J.; Rivera-Rentas, A. L.; Vilches, M.
2004-12-01
The National Science Foundation's Graduate Teaching Fellows in K-12 Education (GK-12) Program has enabled science, technology, engineering and mathematics (STEM) graduate schools across the country to become more active in local area K-12 schools. An overview of a graduate student's experiences, insights gained and lessons learned as a Fellow in the 2003-2004 Universidad Metropolitana's (UMET) environmental science and the 2004-2005 University of South Florida's (USF) ocean science GK-12 Programs is presented. The major goals of the 2003-2004 UMET GK-12 Program were 1) to enrich environmental science teaching and learning via a thematic approach in eight local public schools and 2) to provide UMET graduate students with exposure to teaching methodologies and practical teaching experience. Utilizing examples from local environments in and nearby Carolina, Puerto Rico to teach key science principles at Escuela de la Comunidad Juana Rodriguez Mundo provided numerous opportunities to relate science topics to students' daily life experiences. By 2004, the UMET GK-12 Program had successfully engaged the entire student body (primarily comprised of bilingual minority kindergarten to sixth graders), teachers and school administrators in environment-focused teaching and learning activities. Examples of such activities include tree planting projects to minimize local erosion, conducting a science fair for the first time in many years, and numerous opportunities to experience what "real scientists do" while conducting environmental science investigations. During the 2004-2005 academic year, skills, insights and lessons learned as a UMET GK-12 Fellow are being further enhanced through participation in the USF GK-12 OCEANS Program. The overall objectives of the 2004-2005 USF GK-12 OCEANS assignment at Madeira Beach Elementary School in Saint Petersburg, Florida are to 1) engage students from various ethnic backgrounds and cultures in hands-on science activities, 2) enhance the school's third grade ocean science education curriculum, and 3) foster dialog between students at Madeira Beach Elementary School and Escuela de la Comunidad Juana Rodriguez Mundo, via exchange of pictures, video recordings, letters and emails related to environment-focused learning activities being undertaken at the two schools. In addition to these objectives, during the 2004-2005 academic year several ocean science-focused activities, the majority of which were adapted and/or identified from either the UMET GK-12 or USF OCEAN GK-12 Programs, will be utilized to further stimulate Madeira Beach Elementary School third graders' critical thinking skills. Examples of such activities, including hands-on exercises, case studies, games and field trips are highlighted in this presentation.
NASA Astrophysics Data System (ADS)
Logerwell, Mollianne G.
The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences that are based on best-practices research and coupled with methodological instruction.
"Shool Biotope" as science and environment educational tools in Japan
NASA Astrophysics Data System (ADS)
Yoshida, K.; Matsumoto, I.
2011-12-01
We have very small artificial pond in elementary school and junior high school in Japan. There are small fish, aquatic insect, and plant, and we can easily check and study. Recently, this type very small artificial pond that we call "Biotope" has been reconsidered as educational tool for study about biology and ecology. We introduce the some cases of the elementary school in Shimane Prefecture, Japan. And then, we pick up some important good educational materials and methods and their problems. Shimane prefecture is the place where relatively much nature is left even in Japan, and children are favored in the opportunity which usually touches nature and study it. It thought about use for Biotope in the inside of school of such from the viewpoint of science and environment education. It is possible with Biotope in the inside of school that a fish, aquatic insect, and plant in Biotope and that's environment are observed for every day and for a long time. As for the teacher of the elementary and junior high schools, it is important to make a plan of Biotope corresponding to the subject and those contents of learning through the year. We define School-Biotope as a thing that a teacher recognizes that educational importance and to make the most of as an education subject intentionally.
ERIC Educational Resources Information Center
Constantine, Angelina; Rózowa, Paula; Szostkowski, Alaina; Ellis, Joshua; Roehrig, Gillian
2017-01-01
In the age of STEM education, teachers consistently struggle to understand the nature of technology and how to integrate it. This multiple-case study uses the TPACK framework to explore the beliefs and practices of three elementary science and engineering teachers from an urban school district with a recently implemented 1:1 iPad policy. All three…
ERIC Educational Resources Information Center
Nesmith, Suzanne; Cooper, Sandi; Schwarz, Gretchen; Walker, Amanda
2016-01-01
Often the stakeholders most affected by curriculum change are uninvolved in the change process, leading to curriculum reforms that fail. Thus, a group of university researchers conducted a small-scale study to explore the thoughts and opinions of parents and elementary students on the use of mathematics and science graphic novels to support the…
Science Books, A Quarterly Review, Volume 7 Number 1.
ERIC Educational Resources Information Center
Deason, Hilary J., Ed.
Approximately 200 trade books, and reference works in the pure and applied sciences for students in the elementary school, in secondary school and in the first two years of college, including selected advanced and professional books useful for reference by students and faculty members, are reviewed in this issue of the quarterly publication. The…
Science Books, A Quarterly Review, Volume 8 Number 1.
ERIC Educational Resources Information Center
American Association for the Advancement of Science, Washington, DC.
This quarterly journal reviews trade books, textbooks, and reference works in the pure and applied sciences for students in the elementary schools, in secondary school and in the first two years of college. Included are selected advanced and professional books useful for reference by students and faculty members. Annotations are listed in order of…
Improving Academic Outcomes in Poor Urban Schools through Nature-Based Learning
ERIC Educational Resources Information Center
Camasso, Michael J.; Jagannathan, Radha
2018-01-01
This paper presents results from the evaluation of the Nurture thru Nature (NtN) programme, a natural science and environmental education intervention designed to help elementary school children from disadvantaged backgrounds increase their knowledge of science and strengthen overall academic performance. Using an experimental design the pilot NtN…
ERIC Educational Resources Information Center
Buxton, Cory A.; Salinas, Alejandra; Mahotiere, Margarette; Lee, Okhee; Secada, Walter G.
2013-01-01
Grounded in teacher professional development addressing the intersection of student diversity and content area instruction, this study examined school teachers' pedagogical reasoning complexity as they reflected on their second language learners' science problem solving abilities using both home and school contexts. Teachers responded to interview…
NASA Astrophysics Data System (ADS)
Wells, Nancy M.; Myers, Beth M.; Todd, Lauren E.; Barale, Karen; Gaolach, Brad; Ferenz, Gretchen; Aitken, Martha; Henderson, Charles R., , Jr.; Tse, Caroline; Pattison, Karen Ostlie; Taylor, Cayla; Connerly, Laura; Carson, Janet B.; Gensemer, Alexandra Z.; Franz, Nancy K.; Falk, Elizabeth
2015-11-01
This randomized controlled trial or 'true experiment' examines the effects of a school garden intervention on the science knowledge of elementary school children. Schools were randomly assigned to a group that received the garden intervention (n = 25) or to a waitlist control group that received the garden intervention at the end of the study (n = 24). The garden intervention consisted of both raised-bed garden kits and a series of 19 lessons. Schools, located in the US states of Arkansas, Iowa, Washington, and New York, were all low-income as defined by having 50% or more children qualifying for the federal school lunch program. Participants were students in second, fourth, and fifth grade (ages 6-12) at baseline (n = 3,061). Science knowledge was measured using a 7-item questionnaire focused on nutritional science and plant science. The survey was administered at baseline (Fall 2011) and at three time points during the intervention (Spring 2012, Fall 2012, and Spring 2013). Garden intervention fidelity (GIF) captured the robustness or fidelity of the intervention delivered in each classroom based on both lessons delivered and garden activities. Analyses were conducted using general linear mixed models. Survey data indicated that among children in the garden intervention, science knowledge increased from baseline to follow-up more than among control group children. However, science knowledge scores were uniformly poor and gains were very modest. GIF, which takes into account the robustness of the intervention, revealed a dose-response relation with science knowledge: more robust or substantial intervention implementations corresponded to stronger treatment effects.
Analyzing the attributes of Indiana's STEM schools
NASA Astrophysics Data System (ADS)
Eltz, Jeremy
"Primary and secondary schools do not seem able to produce enough students with the interest, motivation, knowledge, and skills they will need to compete and prosper in the emerging world" (National Academy of Sciences [NAS], 2007a, p. 94). This quote indicated that there are changing expectations for today's students which have ultimately led to new models of education, such as charters, online and blended programs, career and technical centers, and for the purposes of this research, STEM schools. STEM education as defined in this study is a non-traditional model of teaching and learning intended to "equip them [students] with critical thinking, problem solving, creative and collaborative skills, and ultimately establishes connections between the school, work place, community and the global economy" (Science Foundation Arizona, 2014, p. 1). Focusing on science, technology, engineering, and math (STEM) education is believed by many educational stakeholders to be the solution for the deficits many students hold as they move on to college and careers. The National Governors Association (NGA; 2011) believes that building STEM skills in the nation's students will lead to the ability to compete globally with a new workforce that has the capacity to innovate and will in turn spur economic growth. In order to accomplish the STEM model of education, a group of educators and business leaders from Indiana developed a comprehensive plan for STEM education as an option for schools to use in order to close this gap. This plan has been promoted by the Indiana Department of Education (IDOE, 2014a) with the goal of increasing STEM schools throughout Indiana. To determine what Indiana's elementary STEM schools are doing, this study analyzed two of the elementary schools that were certified STEM by the IDOE. This qualitative case study described the findings and themes from two elementary STEM schools. Specifically, the research looked at the vital components to accomplish STEM education in an elementary school setting. Through use of the interviews, observations, and document analysis, information was gained about the characteristics of each of these two distinct schools. Analysis of all this evidence emerged eight distinct themes common to both STEM schools.
ERIC Educational Resources Information Center
Gerstman, M. Linda
This curriculum unit is for use in an elementary school foreign language immersion program in Montgomery County, Maryland. The unit is geared toward the second grade science classroom. It includes instructional and performance objectives, vocabulary lists, optional language structure sections, illustrations, activities, evaluation suggestions, and…
NASA Astrophysics Data System (ADS)
Klemmer, Cynthia Davis
Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that gardening was a successful teaching method for raising science achievement scores for boys in 3rd, 4 th, and 5th grades, and for girls in the 5th grade. The finding for girls may be important because it mediated a trend of decreasing scores in the control group at an age just prior to the onset of adolescence, when achievement and interest in science typically decrease.
Teaching Children Science. Second Edition.
ERIC Educational Resources Information Center
Abruscato, Joseph
This book focuses on science teaching at the elementary school level. It includes chapters dealing with various science content areas and teaching processes including: (1) what is science; (2) why teach science; (3) process skills as a foundation for unit and lesson planning; (4) how to plan learning units, daily lessons, and assessment…
ERIC Educational Resources Information Center
School Science Review, 1973
1973-01-01
Ideas for elementary school teachers are proposed. Demonstration experiments include thermal conductivity of gases, wetting power of detergents, external pressure effects on boiling point of water, frequency-wavelength relations, density of hot and cold water. Other useful tips are given for protecting wall charts and making descriptive labels.…
Learning to teach science for all in the elementary grades: What do preservice teachers bring?
NASA Astrophysics Data System (ADS)
Howes, Elaine V.
2002-11-01
Implicit in the goal of recent reforms is the question: What does it mean to prepare teachers to teach science for all? Through a teacher research study, I have encountered characteristics that may assist prospective elementary teachers in developing effective, inclusive science instruction. I describe these strengths, link them to requirements for teaching, and suggest how science teacher educators might draw on the strengths of their own students to support teaching practices aimed at universal scientific literacy. My conceptual framework is constructed from scholarship concerning best practice in elementary science education, as well as that which describes the dispositions of successful teachers of diverse learners. This study is based on a model of teacher research framed by the concept of research as praxis and phenomenological research methodology. The findings describe the research participants' strengths thematically as propensity for inquiry, attention to children, and awareness of school/society relationships. I view these as potentially productive aspects of knowledge and dispositions about science and about children that I could draw on to further students' development as elementary science teachers.
ERIC Educational Resources Information Center
Vedder-Weiss, Dana; Fortus, David
2018-01-01
Employing achievement goal theory (Ames "Journal of Educational psychology," 84(3), 261-271, 1992), we explored science teachers' instruction and its relation to students' motivation for science learning and school culture. Based on the TARGETS framework (Patrick et al. "The Elementary School Journal," 102(1), 35-58, 2001) and…
ERIC Educational Resources Information Center
Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca
2015-01-01
GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old…
A Problem-Based Learning Scenario That Can Be Used in Science Teacher Education
ERIC Educational Resources Information Center
Sezgin Selçuk, Gamze
2015-01-01
The purpose of this study is to introduce a problem-based learning (PBL) scenario that elementary school science teachers in middle school (5th-8th grades) can use in their in-service training. The scenario treats the subjects of heat, temperature and thermal expansion within the scope of the 5th and 6th grade science course syllabi and has been…
ERIC Educational Resources Information Center
Holden, Trudy G.; Yore, Larry D.
This study explores the learner dimension in learning biological science topics in five elementary school classrooms instructed by different teachers using a common course of study and outcome measures. Specifically, the study addressed the associations among conceptual, metacognitive, cognitive, stylistic, and affective characteristics and…
ERIC Educational Resources Information Center
McCarthy, Deborah; Bellina, Joseph J., Jr.
2003-01-01
In 1988 Saint Mary's College received a grant from Lilly Endowment, Inc. to create a program to improve the quality of science education in the local public and private schools. As part of applying that grant we created one-week summer work-shops for elementary and middle school teachers (K-8) based on guided inquiry methods of education. Each…
NASA Astrophysics Data System (ADS)
Khan, Uzma Zafar
The aim of this quantitative study was to investigate elementary principals' beliefs about reformed science teaching and learning, science subject matter knowledge, and how these factors relate to fourth grade students' superior science outcomes. Online survey methodology was used for data collection and included a demographic questionnaire and two survey instruments: the K-4 Physical Science Misconceptions Oriented Science Assessment Resources for Teachers (MOSART) and the Beliefs About Reformed Science Teaching and Learning (BARSTL). Hierarchical multiple regression analysis was used to assess the separate and collective contributions of background variables such as principals' personal and school characteristics, principals' science teaching and learning beliefs, and principals' science knowledge on students' superior science outcomes. Mediation analysis was also used to explore whether principals' science knowledge mediated the relationship between their beliefs about science teaching and learning and students' science outcomes. Findings indicated that principals' science beliefs and knowledge do not contribute to predicting students' superior science scores. Fifty-two percent of the variance in percentage of students with superior science scores was explained by school characteristics with free or reduced price lunch and school type as the only significant individual predictors. Furthermore, principals' science knowledge did not mediate the relationship between their science beliefs and students' science outcomes. There was no statistically significant variation among the variables. The data failed to support the proposed mediation model of the study. Implications for future research are discussed.
How the nature of science is presented to elementary students in science read-alouds
NASA Astrophysics Data System (ADS)
Rivera, Seema
Students as early as elementary school age are capable of learning the aspects of the nature of science (NOS), and the National Benchmarks incorporate the NOS as part of the learning objectives for K--2 students. Learning more about elementary science instruction can aid in understanding how the NOS can be taught or potentially integrated into current teaching methods. Although many teaching methods exist, this study will focus on read-alouds because they are recommended for and are very common in elementary schools. The read-aloud practice is particularly helpful to young students because most of these students have a higher listening comprehension than reading comprehension. One of the main components of the read-aloud practice is the discourse that takes place about the trade book. Both explicit and implicit messages are communicated to students by teachers' language and discussion that takes place in the classroom. Therefore, six multisite naturalistic case studies were conducted to understand elementary teachers' understanding of the NOS, students' understandings of the NOS, trade book representations of the NOS, and read-aloud practices and understandings in upstate New York. The findings of the study revealed that teachers and students held mostly naive and mixed understandings of the NOS. The trade books that had explicit connections to the NOS helped teachers discuss NOS related issues, even when the teachers did not hold strong NOS views. Teachers who held more informed NOS views were able to ask students NOS related questions. All teachers showed they need guidance on how to translate their NOS views into discussion and see the significance of the NOS in their classroom. Explicit NOS instruction can improve student understanding of the NOS, however the focus should be not only on teachers and their NOS understanding but also on the books used. These results show that quality trade books with explicit connections to the NOS are a useful instructional tool in elementary science classrooms. The results of the study encourage more science education research in the science read-aloud practice. Keywords: NOS, read-aloud, elementary
NASA Astrophysics Data System (ADS)
Fisher-Maltese, Carley B.
Recently, schools nationwide have expressed a renewed interest in school gardens (California School Garden Network, 2010), viewing them as innovative educational tools. Most of the scant studies on these settings investigate the health/nutritional impacts, environmental attitudes, or emotional dispositions of students. However, few studies examine the science learning potential of a school garden from an informal learning perspective. Those studies that do examine learning emphasize individual learning of traditional school content (math, science, etc.) (Blaire, 2009; Dirks & Orvis, 2005; Klemmer, Waliczek & Zajicek, 2005a & b; Smith & Mostenbocker, 2005). My study sought to demonstrate the value of school garden learning through a focus on measures of learning typically associated with traditional learning environments, as well as informal learning environments. Grounded in situated, experiential, and contextual model of learning theories, the purpose of this case study was to examine the impacts of a school garden program at a K-3 elementary school. Results from pre/post tests, pre/post surveys, interviews, recorded student conversations, and student work reveal a number of affordances, including science learning, cross-curricular lessons in an authentic setting, a sense of school community, and positive shifts in attitude toward nature and working collaboratively with other students. I also analyzed this garden-based unit as a type curriculum reform in one school in an effort to explore issues of implementing effective practices in schools. Facilitators and barriers to implementing a garden-based science curriculum at a K-3 elementary school are discussed. Participants reported a number of implementation processes necessary for success: leadership, vision, and material, human, and social resources. However, in spite of facilitators, teachers reported barriers to implementing the garden-based curriculum, specifically lack of time and content knowledge.
NASA Astrophysics Data System (ADS)
Whittington, Kayla Lee
This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
NASA Astrophysics Data System (ADS)
Kaya, Ebru
2017-11-01
In this review essay I respond to issues raised in Mijung Kim and Wolff-Michael Roth's paper titled "Dialogical argumentation in elementary science classrooms", which presents a study dealing with dialogical argumentation in early elementary school classrooms. Since there is very limited research on lower primary school students' argumentation in school science, their paper makes a contribution to research on children's argumentation skills. In this response, I focus on two main issues to extend the discussion in Kim and Roth's paper: (a) methodological issues including conducting a quantitative study on children's argumentation levels and focusing on children's written argumentation in addition to their dialogical argumentation, and (b) investigating children's conceptual understanding along with their argumentation levels. Kim and Roth emphasize the difficulty in determining the level of children's argumentation through the Toulmin's Argument Pattern and lack of high level arguments by children due to their difficulties in writing texts. Regarding these methodological issues, I suggest designing quantitative research on coding children's argument levels because such research could potentially provide important findings on children's argumentation. Furthermore, I discuss alternative written products including posters, figures, or pictures generated by children in order to trace children's arguments, and finally articulating argumentation and conceptual understanding of children.
School Science Comes Alive. Phase Three
NASA Technical Reports Server (NTRS)
Hartline, Frederick F.
1997-01-01
Phase 3 of the School Science Comes Alive Program (S(sup 2)CAP) created an exciting, science - enrichment experience for third, fourth and fifth graders and their teachers and enhanced the science-teaching skills of teacher teams at each of four participating elementary schools on Virginia's Peninsula. The schools involved enroll a majority of Black students, many of whom are from economically disadvantaged households. Designed to build on the highly successful S(sup 2)CAP program of the preceding two years, this project brought college faculty together with classroom teachers and trained volunteers in a cooperative effort to make a lasting difference in the quality of science education at the four schools. In total, this program touched approximately 1000 the school children, more than half of whom are black, giving them direct and indirect exposure to the spirit of inquiry and adventure of the world-wide science community. In S(sup 2)CAP Phase 3, a large measure of responsibility was placed on the classroom teachers, thus creating a more sustainable partnership between college faculty and grade school teacher. Our college physics professors coached and supported teams of teachers from each school at intensive training workshops. A volunteer program provided each teacher with one or more trained volunteers to assist in class with the hands-on activities that have been central to the S2CAP program. Most of the equipment for these activities was constructed during the workshops by the teachers and volunteers from low cost materials provided by the program. Two types of volunteers were enlisted: science smart black college students and technically trained retirees (many of whom are ex-NASA employees). One goal of this program was to increase the numbers of minority students who see science as an interesting and exciting subject, to make the science period a time which students look forward to in the school day. Such an attitude is expected to translate naturally into a higher interest in science and engineering as a career for these students. A second goal was to create a sustainable improvement in the way science is taught at the elementary level. By the end of the program we expected that our teachers would be significantly more self reliant in using hands-on-activities as a part of their science curricula than they were prior to their involvement with S2CAP. In summary, S2CAP Phase 3 offered intensive training workshops for teachers and supporting volunteers followed by stimulating hands-on activities in the classroom for the children. These components combined to amplify the experience, enthusiasm, and ideas of our scientists in a way that complements the normal elementary school curriculum in each of the two school systems involved.
NASA Astrophysics Data System (ADS)
Moldwin, M. B.; Fiello, D.; Harter, E.; Holman, G.; Nagumo, N.; Pryharski, A.; Takunaga, C.
2008-12-01
An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.
The Artistic Oceanographer Program
ERIC Educational Resources Information Center
Haley, Sheean T.; Dyhrman, Sonya T.
2009-01-01
The Artistic Oceanographer Program (AOP) was designed to engage elementary school students in ocean sciences and to illustrate basic fifth-grade science and art standards with ocean-based examples. The program combines short science lessons, hands-on observational science, and art, and focuses on phytoplankton, the tiny marine organisms that form…
Career and Technology Center Guides Students in Real-Life Careers | Poster
By Carolynne Keenan, Contributing Writer Frederick County Public School students have a unique opportunity—a chance to get a real-world, hands-on experience in biomedical science and biotechnology before they even graduate from high school, thanks to the Frederick County Career and Technology Center (CTC). Several years ago, the CTC established its biomedical sciences program with a curriculum from Project Lead the Way (PLTW), a nonprofit, nationwide developer of science, technology, engineering, and mathematics (STEM) education in elementary, middle, and high schools.
NASA Astrophysics Data System (ADS)
Alegria, Adelina Victoria
The goal of this study was to explore bilingual and English-only elementary teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and their self-reported science instructional skills. In this study, a bilingual teacher was defined as a teacher who provides instruction in Spanish and English in core academic subjects and has completed and/or is completing a bilingual certification program. An English-only teacher was defined as a monolingual teacher that only speaks and instructs in English. The principal questions guiding this dissertation investigation were the following: How do bilingual elementary teachers differ from English-only elementary teachers in (a) their science knowledge, (b) their conceptions of the nature of science, (c) their attitude about teaching science, and (d) their self-reported science instructional skills? This dissertation study is a component of a three-year long Eisenhower Project granted to Hueneme School District and the University of California, Santa Barbara Southcoast Science Project. While the Project will last three years (1997--2000), this dissertation study was developed to answer only a subset of questions of the entire project and data was collected in 1998. The research design for this study consisted of a self-administered questionnaire that was given to Hueneme School District elementary teachers that teach science and was developed by reviewing the relevant literature about teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and the instructional strategies that support science learning. The findings showed that both the bilingual and the English-only respondents demonstrated a similar science knowledge base, which is suggested, by this researcher, to be limited. That both bilingual and English-only teacher respondents demonstrated similar positive attitudes about teaching science and both reported making use of similar instructional strategies, many of which are known to support science learning in the classroom (laboratory/hands-on activities, whole group discussion, questioning, and cooperative/small group activities). Concerning assessment strategies, both the bilingual and English-only groups reported very similar answers. They reported usually making use of students' projects, student's logs/journals/diaries, performance activities such as lab practicals and hands-on tests to assess science learning. They also reported seldom or never making use of paper/pencil quizzes nor end-of-chapter/unit tests. There was not enough clear information to decide whether bilingual and English-only elementary respondents hold similar or different views of science. This study's implications encompass two different areas: (a) changes that bilingual and elementary credentialing programs need to undergo and (b) further bilingual science teaching research. The findings concerned with science knowledge, that both bilingual and English-only elementary teachers possess a limited science knowledge base leads me to suggest, just as the science teaching literature has suggested, that elementary credentialing programs need to strengthen their candidates' science content by increasing the science content addressed in the science methodology courses and/or by requiring a greater number of science undergraduate courses (most liberal arts majors require no more than five courses, San Diego State University, 1999). (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.
2015-04-01
The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.
Reach for Reference. Four Recent Reference Books
ERIC Educational Resources Information Center
Safford, Barbara Ripp
2004-01-01
This article provides descriptions of four new science and technology encyclopedias that are appropriate for inclusion in upper elementary and/or middle school reference collections. "The Macmillan Encyclopedia of Weather" (Stern, Macmillan Reference/Gale), a one-volume encyclopedia for upper elementary and middle level students, is a…