ERIC Educational Resources Information Center
Bredderman, Ted
A quantitative synthesis of research findings on the effects of three major activity-based elementary science programs developed with National Science Foundation support was conducted. Controlled evaluation studies of the Elementary Science Study (ESS), Science-A Process Approach (SAPA), or The Science Curriculum Improvement Study (SCIS) were used…
1988-12-01
Department Campbell, Judy S., Principal Seedling Mile Elementary School Campbell, Kelly, Vice President International Services, Inc. Campbell, Larry...Agency #5 Coverdale, Miles , Principal Baxter Coveyou, Tony, Cowan, Ann, Education Specialist Hanford Science Center Cowan, Margaret, Cowan, Peggy...Science State Department of Education Ezell, James, No. 92 Elementary School Ezzell , Effie, No. 45 Elementary School 09/03/88 NSRC Elementary Science
Effective Programs for Elementary Science: A Best-Evidence Synthesis. Educator's Summary
ERIC Educational Resources Information Center
Center for Research and Reform in Education, 2012
2012-01-01
Which science programs have been proven to help elementary students to succeed? To find out, this review summarizes evidence on three types of programs designed to improve the science achievement of students in grades K-6: (1) Inquiry-oriented programs without science kits, such as Increasing Conceptual Challenge, Science IDEAS, and Collaborative…
Elementary Science Literature Review
ERIC Educational Resources Information Center
Gustafson, Brenda; MacDonald, Dougal; d'Entremont, Yvette
2007-01-01
This report presents a literature review of elementary science and design technology education research. The review is intended to provide direction to the elementary science working groups charged with the responsibility to revise the "Alberta Elementary Science Program" (1996) by reflecting current ideas reported in research…
Science: It's Elementary. Year Two Evaluation Report
ERIC Educational Resources Information Center
Banilower, Eric R.; Fulp, Sherri L.; Warren, Camille L.
2008-01-01
This report summarizes the activities and findings of the external evaluation of the "Science: It's Elementary" (SIE) program in the period June 2007 through May 2008. The SIE program is managed by ASSET Inc. and overseen by the Pennsylvania Department of Education. SIE is an initiative aimed at improving elementary science instruction…
Carroll County hands-on elementary science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herlocker, H.G.; Dunkleberger, G.L.
1994-12-31
Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and themore » type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.« less
Elementary Science Supplement to the Syllabus. Level I (Ages 4 through 7).
ERIC Educational Resources Information Center
New York State Education Dept., Albany.
Developed to complement existing elementary science programs, the materials in this first volume of New York's Elementary Science Supplement to the Syllabus emphasize a direct experience, hands-on approach for children of ages 4 through 7. Major sections include: (1) guidelines for program activities (explaining the organizational format of the…
NASA Astrophysics Data System (ADS)
Stein, Morton
Elementary school is a key time for students to develop their understanding of basic science concepts as well as their attitudes towards science and science learning. Yet many elementary teachers do not feel comfortable teaching science; as a result, they are likely to devote less time on that subject and to be less effective as science teachers. The literature suggests that weaknesses in elementary teachers' knowledge of science could be a main cause of this problem and, furthermore, that current elementary teacher preparation programs have contributed to this weakness. This study aims at gaining more knowledge about how elementary teachers who are successful in teaching science have acquired their science content knowledge and how such knowledge could be best acquired, with the ultimate goal of informing the design of more effective elementary teacher preparation programs. More specifically, this study addresses the following research questions: Which science learning experiences for elementary teachers seem most conducive to develop the kind of science content knowledge and pedagogical content knowledge needed to support the teaching of science as called for by the most recent national and state standards? Which of these experiences should be included in elementary teacher preparation programs, and how? The core of this study consists of case studies of eight elementary school teachers who were identified as successful in teaching science. These subjects were selected so as to ensure differences in their teacher preparation programs, as well as gender and years of teaching experience. Information about each teacher's self-efficacy and motivation with respect to teaching science, history of pre-service and in-service preparation with respect to science, and how his/her current science knowledge was acquired, was sought through a series of interviews with each subject and triangulated with data collected from other sources. A cross-case analysis revealed some interesting similarities and differences in how these successful elementary science teachers developed their science knowledge, and identified the following main sources of science learning opportunities: (a) science content courses; (b) methods courses; (c) student teaching; (d) in-service workshops; (e) opportunities to work with colleagues on the design and/or delivery of science units. Based on what was learned from these case studies, a preliminary set of recommendations to improve elementary teacher's science learning opportunities was identified. Two focus groups were held---one with elementary teachers and another with teacher educators---to share these preliminary recommendations and gather feedback and additional suggestions. Informed by the information gathered in these focus groups, a final set of recommendations to improve elementary teacher's preparation to teach science was articulated.
Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators
NASA Astrophysics Data System (ADS)
Carver, Cynthia G.
Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.
From inside the black box: Teacher perceptions of science instruction at the elementary level
NASA Astrophysics Data System (ADS)
Ferrini, Cynthia D.
Science education reform projects aimed at elementary school children arose in the 1960's. The most prevalent of these reforms utilized the inquiry, or hands-on, science method. Billions of dollars have been invested in these reforms. Yet, reports indicate that science is not being taught at the level one might expect in elementary schools. This research was an analysis of the problems and concerns teachers at one school district faced as they tried to implement and sustain elementary inquiry science instruction. The district chosen was a large suburban district in the Western United States. The population was ninety percent Caucasian with a slightly more ethnically diverse school population. This district was chosen because it had an elementary science program for over twenty years and had received national acclaim for that program. The district had a stable and homogeneous staff there was a low administrator and teacher turnover rate and the elementary teaching population was ninety percent Caucasian and ninety percent female. Interviews with administrators and teachers were conducted. Data were collected from focus groups of teachers and science partners. Observations of elementary science classroom instruction and professional development sessions were made. Results of this research indicated that one important key to elementary science reform rests in the hands of teachers. Once the door to the classroom is closed, the teacher can decide to teach or not to teach science. The findings of this research illustrate that teachers hold ideas about science and science instruction that are antithetical to some tenets of inquiry science. Until these ideas are addressed it will be difficult, if not impossible, to implement a systemic elementary inquiry science program. This study demonstrates that professional development for elementary teachers in science needs to change from a focus on the mechanical usage of individual units to a focus on teacher expectations for student achievement. Professional development for teachers in inquiry science must address the cognitive foundations for inquiry science and the benefits students derive from this educational approach. Institutions delivering pre-service training for elementary teachers in science must change the curriculum to reflect these needs.
ERIC Educational Resources Information Center
Hendrix, Rebecca; Eick, Charles; Shannon, David
2012-01-01
Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science…
Science: It's Elementary. Year Three Evaluation Report
ERIC Educational Resources Information Center
Fulp, Sherri L.; Warren, Camille L.; Banilower, Eric R.
2009-01-01
This report summarizes the activities and findings of the external evaluation of the "Science: It's Elementary" (SIE) program during the period from July 2008 through June 2009. The SIE program is managed by ASSET Inc. and overseen by the Pennsylvania Department of Education. SIE is an initiative aimed at improving elementary science…
With a New Lens: How Partnering Impacts Teachers' Views of and Approaches to Teaching Science.
ERIC Educational Resources Information Center
Bainer, Deborah L.
The Partnering for Elementary Environmental Science program provides a professional development model to improve elementary science education. The program pairs teachers with science content experts and instructs the partnership teams in the pedagogy essential for effective inquiry science. This paper reports a year-long qualitative study of nine…
Program Brings Science to Elementary Students.
ERIC Educational Resources Information Center
Worthy, Ward
1988-01-01
Describes "Parents and Children for Terrific Science (PACTS)" program sponsored by the American Chemical Society's Education Division for encouraging the development of family science projects at the elementary and intermediate school levels. Discusses some examples and the results of the project. (YP)
NASA Astrophysics Data System (ADS)
Renfrow, S.; Wood, E. L.
2011-12-01
Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.
Sisters in Science: A Model Program. Spotlight on Student Success, No. 201.
ERIC Educational Resources Information Center
Hammrich, Penny L.
In an effort to promote females' achievement in science, the Sisters in Science program was developed. Conducted in 2 schools in Philadelphia (Pennsylvania), the program's inaugural year involved 60 fourth-grade girls in 2 elementary schools, an intergenerational corps of 20 women volunteers, 150 undergraduate elementary education students, and 8…
An Inservice Program for Elementary Teachers: Components, Instructional Procedures, and Evaluation.
ERIC Educational Resources Information Center
Horak, Willis J.; And Others
A description and evaluation of a year-long science in-service program for elementary teachers is provided. Consisting of three components, the program was designed to expand teachers' understandings of physics and chemistry concepts and processes and to encourage more science teaching and science activities in their classrooms. The on-campus…
NASA Astrophysics Data System (ADS)
Wood, E. L.
2012-12-01
Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.
ERIC Educational Resources Information Center
Marshall, Karen Benn
2009-01-01
This study sought to explore qualitatively how participation in an informal science program might affect the following aspects of upper elementary school children's scientific thinking: conceptual understanding, epistemology of science, and the formation of their identity as science learners. A purposefully selected, maximum variation sample of…
Hybrid-Mentoring Programs for Beginning Elementary Science Teachers
ERIC Educational Resources Information Center
Bang, EunJin
2013-01-01
This study examines four induction models and teacher changes in science teaching practices, as a result of several mentoring programs. It explores three different computer-mediated mentoring programs, and a traditional offline induction program--in terms of interactivity, inquiry-based teaching, and topics of knowledge. Fifteen elementary science…
ERIC Educational Resources Information Center
Hall, Donald A.
One of the primary goals in many teacher education programs is to design and to implement specific courses, strategies, and methods that promote positive attitude toward science and science teaching among elementary education majors. This paper describes the effects of a biology content course, patterned after innovative elementary school science…
Preparing Elementary Mathematics-Science Teaching Specialists.
ERIC Educational Resources Information Center
Miller, L. Diane
1992-01-01
Describes a professional development program to train math/science specialists for the upper elementary school grades. Using results from an interest survey, 30 teachers were chosen to participate in a 3-year program to become math/science specialists. Presents the teaching model used and the advantages for teachers and students in having subject…
Preparing Perservice Teachers to Teach Elementary School Science
ERIC Educational Resources Information Center
Lewis, Amy D.
2017-01-01
The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in…
ERIC Educational Resources Information Center
Diaconu, Dana Viorica; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn
2012-01-01
A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one…
ERIC Educational Resources Information Center
Linn, Marcia C.; Kessel, Cathy; Lee, Kristen; Levenson, Janet; Spitulnik, Michelle; Slotta, James D.
This report offers guidance for those shaping policy and designing elementary and middle school science and mathematics courses that prepare students to be lifelong users of scientific and mathematical ideas. We have reviewed programs designed to improve elementary and middle school students' understanding of science and mathematics by…
NASA Astrophysics Data System (ADS)
Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.
2017-12-01
In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing volunteer resources, (4) meeting new state curricular standards, (5) developing publicly available lesson plans for other teachers and outreach programs, (6) institutionalizing the outreach program within the DEEPS community, and (7) cultivating STEM retention at the grassroots level.
The Effects of a STEM Intervention on Elementary Students' Science Knowledge and Skills
ERIC Educational Resources Information Center
Cotabish, Alicia; Dailey, Debbie; Robinson, Ann; Hughes, Gail
2013-01-01
The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of…
ERIC Educational Resources Information Center
Matson, Eric; DeLoach, Scott; Pauly, Robyn
2004-01-01
The "Robot Roadshow Program" is designed to increase the interest of elementary school children in technical disciplines, specifically math and science. The program focuses on children from schools categorized as rural or underserved, which often have limited access to advanced technical resources. We developed the program using robots…
ERIC Educational Resources Information Center
Sumen, Ozlem Ozcakir; Calisici, Hamza
2016-01-01
The aim of this study is to determine the associating abilities of elementary education pre-service teachers science education program acquisitions with engineering using STEM education. In the study which is a case study, firstly pre-service teachers were trained about the STEM education approach. Then "Elementary School Science Education…
ERIC Educational Resources Information Center
Sahin, Elif Adibelli; Deniz, Hasan
2016-01-01
This study explored how four elementary teachers assessed the developmental appropriateness and importance of nine nature of science (NOS) aspects after participating in a yearlong professional development program. A multiple-embedded case study design was employed. The primary data sources included (a) Views of Nature of Science Elementary School…
ERIC Educational Resources Information Center
Graeber, Mary
The typical approach to the teaching of an elementary school science methods course for undergraduate students was compared with an experimental approach based upon activities appearing in the Conceptually Oriented Program in Elementary Science (COPES) teacher's guides. The typical approach was characterized by a coverage of many topics and a…
Science Alive!: Connecting with Elementary Students through Science Exploration.
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-05-01
A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.
Tailoring Inservice Training in Science to Elementary Teachers' Needs.
ERIC Educational Resources Information Center
Bethel, Lowell J.
1982-01-01
Elementary school teachers feel inadequately prepared to teach science and spend little class time on science instruction. Until undergraduate science preparation improves, inservice training must take up the slack. An inservice program developed by the Science Education Center at the University of Texas' College of Education shows positive…
Sounds and Sense-Abilities: Science for All
ERIC Educational Resources Information Center
Plourde, Lee A.; Klemm, E. Barbara
2004-01-01
Activities-oriented instruction offers multi modal opportunities for learning science. How do college students in elementary pre-service teacher preparation programs describe science lab activities in terms of visual, kinesthetic, auditory and motor characteristics? Research with elementary science methods students shows that the Levels of…
Science: It's Elementary. Year Four Evaluation Report
ERIC Educational Resources Information Center
Banilower, Eric R.; Fulp, Sherri L.; Warren, Camille L.
2010-01-01
This report summarizes the activities and findings of the external evaluation of the "Science: It's Elementary" (SIE) program during the period from July 2009 through June 2010. The SIE program is managed by ASSET Inc. and overseen by the Pennsylvania Department of Education (PDE). SIE is an initiative aimed at improving elementary…
Sources of Efficacy Information in an Inservice Program for Elementary Teachers
ERIC Educational Resources Information Center
Palmer, David
2011-01-01
Low teacher self-efficacy is an important factor constraining the teaching of science at the elementary level. This study was designed to investigate the effectiveness of particular sources of efficacy information for enhancing the science teaching self-efficacy of practicing elementary teachers. Twelve teachers participated in an intervention…
The Integration of English Language Development and Science Instruction in Elementary Classrooms
NASA Astrophysics Data System (ADS)
Zwiep, Susan Gomez; Straits, William J.; Stone, Kristin R.; Beltran, Dolores D.; Furtado, Leena
2011-12-01
This paper explores one district's attempt to implement a blended science and English Language Development (ELD) elementary program, designed to provide English language learners opportunities to develop proficiency in English through participation in inquiry-based science. This process resulted in blended program that utilized a combined science/ELD lesson plan format to structure and guide teachers' efforts to use science as the context for language development. Data, collected throughout the first 2 years of the program, include teacher-generated lesson plans, observation notes, and interviews with teachers and principals. The process by which the blended program was developed, the initial implementation of the program, the resulting science/ELD lesson plan format, and teachers' perceptions about the program and its impact on their students are described.
Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?
ERIC Educational Resources Information Center
Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian
2016-01-01
This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…
Science Alive!: Connecting with Elementary Students through Science Exploration†
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-01-01
A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309
A program evaluation of Protovation Camp at an elementary school in North Carolina
NASA Astrophysics Data System (ADS)
Cavoly, Denise Y.
The purpose of this program evaluation was to investigate the impact over time teachers' self-efficacies and the outcome expectancies of those who participated in an inquiry-based, hands-on, constructivist professional development program to learn science content. The hope was that after active participation in this inquiry-based professional development program that provides science inquiry experiences, the teachers, graduate students and elementary students would gain content knowledge, increase self-efficacies, and provide the outcome expectancies of the learning development program that provides science inquiry experiences. The mixed-methods approach used quantitative and qualitative data for campers, which consisted of pre-test and post-test scores on the Test of Science-Related Attitudes (TOSRA), the Draw-A-Scientist Test, Science Process Skills Inventory (SPSI) and content tests based on the camp activities. Additionally, TOSRA scores, Teacher Sense of Efficacy Scale (TSES), and Thinking about Science Survey (TSSI) results for the graduate students and elementary teachers were used along with qualitative data collected from plusdelta charts and interviews to determine the impact of participation in Protovation Camp on teachers and students. Results of the program evaluation indicated that when students were taught inquiry-based lessons that ignite wonder, both their attitudes toward science and their knowledge about science improved. An implication for teacher preparation programs was that practicing inquiry-based lessons on actual elementary students was an important component for teachers and graduate students as they prepare to positively impact student learning in their own classrooms. The findings of this study suggest that it is not just the length of the professional development program that is crucial, but the need for an implementation period while teachers work to transfer the learning to the classroom to their own students is critical to the success of process.
NASA Astrophysics Data System (ADS)
Hendrix, Rebecca; Eick, Charles; Shannon, David
2012-11-01
Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science System™ (FOSS) modules of sound (fourth grade) and solar energy (fifth grade) with the integration of creative drama activities in treatment classes. A 2 × 2 × (2) Mixed ANOVA was used to examine differences in the learning outcomes and attitudes toward science between groups (drama and non-drama) and grade levels (4th and 5th grades) over time (pre/post). Learning was measured using the tests included with the FOSS modules. A shortened version of the Three Dimension Elementary Science Attitude Survey measured attitudes toward science. Students in the drama treatment group had significantly higher learning gains ( F = 160.2, p < 0.001) than students in the non-drama control group with students in grade four reporting significantly greater learning outcomes ( F = 14.3, p < 0.001) than grade five. There was a significantly statistical decrease in student attitudes toward science ( F = 7.5, p < 0.01), though a small change. Creative drama was an effective strategy to increase science conceptual learning in this group of diverse elementary enrichment students when used as an active extension to the pre-existing inquiry-based science curriculum.
The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks
ERIC Educational Resources Information Center
Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson
2017-01-01
The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…
Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program
NASA Astrophysics Data System (ADS)
Van Norden, Wendy; Wawro, Martha
2013-03-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.
Think Scientifically: The Solar Dynamics Observatory's Elementary Science Literacy Program
NASA Astrophysics Data System (ADS)
Van Norden, Wendy; Wawro; Martha
2012-03-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.
Bringing Science Public Outreach to Elementary Schools
NASA Astrophysics Data System (ADS)
Miller, Lucas; Speck, A.; Tinnin, A.
2012-01-01
Many science "museums” already offer fantastic programs for the general public, and even some aimed at elementary school kids. However, these venues are usually located in large cities and are only occasionally used as tools for enriching science education in public schools. Here we present preliminary work to establish exciting educational enrichment environments for public schools that do not easily have access to such facilities. This program is aimed at motivating children's interest in science beyond what they learn in the classroom setting. In this program, we use the experience and experiments/demonstrations developed at a large science museum (in this case, The St. Louis Science Center) and take them into a local elementary school. At the same time, students from the University of Missouri are getting trained on how to present these outreach materials and work with the local elementary schools. Our pilot study has started with implementation of presentations/demonstrations at Benton Elementary School within the Columbia Public School district, Missouri. The school has recently adopted a STEM (Science, Technology, Engineering, and Mathematics) centered learning system throughout all grade levels (K-5), and is therefore receptive to this effort. We have implemented a program in which we have given a series of scientific demonstrations at each grade level's lunch hour. Further enrichment ideas and plans include: addition demonstrations, hands-on experiments, and question and answer sessions. However, the application of these events would be to compliment the curriculum for the appropriate grade level at that time. The focus of this project is to develop public communications which links science museums, college students and local public schools with an emphasis on encouraging college science majors to share their knowledge and to strengthen their ability to work in a public environment.
ERIC Educational Resources Information Center
Magee, Paula A.; Flessner, Ryan
2012-01-01
This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…
ERIC Educational Resources Information Center
Whitla, Dean K.; Pinck, Dan C.
Presented is a summary of findings and recommendations provided by the Harvard Study Committee under the auspices of the Massachusetts Advisory Council on Education. The study is mainly concerned with the four National Science Foundation (NSF) programs: Elementary Science Study, Science Curriculum Improvement Study, Science - A Process Approach,…
NASA Astrophysics Data System (ADS)
Brown, Linda Lou
Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data-warehouse programs; teachers' applications of DIDM to modify lessons for differentiated science instruction, the numbers of years' teachers attended science PD, and teachers' influence on CILs staffing decisions. Yet CILs reported 14% of Texas elementary campuses had limited or no science education programs due to federal policy requirement for reading and mathematics. Three hypothesis components were supported and accepted from research data resulted in two models addressing elementary science, science education PD, and CILs impact for federal policy applications.
NASA Astrophysics Data System (ADS)
Voegel, Phillip D.; Quashnock, Kathryn A.; Heil, Katrina M.
2004-05-01
The Student-to-Student Chemistry Initiative is an outreach program started in the fall of 2001 at Midwestern State University (MSU). The oncampus program trains high school science students to perform a series of chemistry demonstrations and subsequently provides kits containing necessary supplies and reagents for the high school students to perform demonstration programs at elementary schools. The program focuses on improving student perception of science. The program's impact on high school student perception is evaluated through statistical analysis of paired preparticipation and postparticipation surveys. The surveys focus on four areas of student perception: general attitude toward science, interest in careers in science, science awareness, and interest in attending MSU for postsecondary education. Increased scores were observed in all evaluation areas including a statistically significant increase in science awareness following participation.
The Self-Efficacy of Preservice Elementary Teachers in Kuwaiti Science Programs
ERIC Educational Resources Information Center
Ebrahim, Ali H.
2012-01-01
This study examined educational factors that positively influenced the confidence of students training to be elementary science educators (self efficacy). Specifically, it compared the impacts of a science method course and a practicum teaching course on Kuwait University students. Using a pre/post design, The Science Teaching Efficacy Belief…
Experience the natural sciences: Programs for teachers at the University of Hawaii at Hilo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hapai, M.N.
1994-12-31
Since 1988, the University of Hawaii at Hilo Science and Education faculty have jointly created programs for pre- and in-service teachers, and to improve science teaching, to increase the number of science teachers, and to improve scientific literacy in the general population. The National Sciences major, approved in 1991, with both elementary and secondary teaching options, has gone from three degree seeking candidates in the fall of 1991 to fifty-nine in the spring of 1994. The major provides elementary teachers with a general science degree and teaching certification; and secondary teachers with a more intense general science degree, a specializedmore » minor, and teaching certification. Additionally, a new 18 credit Natural Sciences Certificate for in-service elementary teachers, designed to enhance their scientific background and classroom methodology, has already attracted over 250 teachers within the last year.« less
ERIC Educational Resources Information Center
Bergman, Daniel J.; Morphew, Jason
2015-01-01
The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…
ERIC Educational Resources Information Center
Frederick, Lynda R.; Shaw, Edward L., Jr.
This study examined several aspects of elementary science students' achievement, attitudes, and journal writing in conjunction with an Alabama Hands-on Activity Science Program (HASP) grant utilizing the Full Option Science System (FOSS) kit. The sample of 56 fourth grade students in two classes was administered a 15-item pretest and post-test.…
Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program
NASA Astrophysics Data System (ADS)
Van Norden, Wendy M.
2013-07-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.
The Assessment of Hands-On Elementary Science Programs.
ERIC Educational Resources Information Center
Hein, George, Ed.
This document contains 15 chapters on various topics related to elementary science assessment. A comprehensive description of efforts to introduce alternatives to multiple-choice, paper and pencil tests to assess science learning is provided. The monograph includes an analysis of assessment issues, descriptions of current practice, and suggestions…
ERIC Educational Resources Information Center
Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju
1999-01-01
Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)
Authentic Science Research in Elementary School After-School Science Clubs
ERIC Educational Resources Information Center
Feldman, Allan; Pirog, Kelly
2011-01-01
In this paper we report on teachers' and students' participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10-15 students who, by extension, were members…
Teaching K-6 Science in Small Schools on a Financial Shoestring. ERIC Digest.
ERIC Educational Resources Information Center
Votaw, Thom A.
There are ways in which elementary teachers in general and rural elementary teachers in particular can overcome inadequate science preparation and can upgrade the science program resources of their small schools. Parents and children should be involved in obtaining free and inexpensive science-related materials throughout the year. These can be…
ERIC Educational Resources Information Center
Crosby, Glenn; And Others
A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Webster, Gary
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Lutz, Julie H.; Orlich, Donald C.
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Astronomy block of the physical science courses developed by the group. Included are…
NASA Astrophysics Data System (ADS)
Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I.; Chen, Hui-Huang
2015-01-01
Background:Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in nanotechnology among schoolchildren. Purpose:The objective of this study was to evaluate the effectiveness of the Nanotechnology-based Popular Science Education Promotion and Teaching (NPSEPT) program through camp activity that was implemented in elementary schools in I-Lan City, Taiwan. Program description:To create a competitive advantage, a human resources development program was implemented as one of the nanotechnology incubation projects in Taiwan and focused on developing an appropriately-skilled professional workforce as well as promoting popular science education. Sample:The volunteer research participants were 323 sixth grade students in four elementary schools in I-Lan City, Taiwan, who were evaluated at the beginning and the end of the nanotechnology-based popular science promotion camp activity. Design and methods:A research tool called the 'NPSEPT test' was designed specifically for this study and was approved by experts who evaluated its content and face validity. The questionnaire was divided into three aspects: 'Nanophenomena in the natural world'; 'Nanomaterials and their scaling effects'; and 'Definition, characteristics, and applications of nanotechnology.' The effectiveness of learning among the students was analyzed using descriptive statistics, a paired sample t-test, analysis of variance (ANOVA) and a post hoc comparison. Results:The results of the three-part 'NPSEPT test' revealed that NPSEPT significantly advanced nanotechnology learning performance and outcomes among students in the four participating elementary schools. Of the 15 questions included in the NPSEPT test, positive change for more than 30% of students was achieved for eight questions related to nanotechnology concepts.
ERIC Educational Resources Information Center
Henson, Stanley
Three studies are reported for children participating in the Elementary Science Study (ESS) program. They are the cognitive and affective performances and the classroom learning environment. Three groups of ESS children were evaluated: nine-year-olds, ten-year-olds, and eleven-year-olds. Each age group contained 30 randomly selected subjects. The…
NASA Astrophysics Data System (ADS)
Cason, Maggie A.
This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with science proved important because the generally high comfort level experienced by elementary teacher candidates toward language arts may be extended to the teaching of science. Teacher candidates realize the benefits for both teaching and learning when the two subjects are integrated. Last, the study revealed the powerful effects of field experiences which include teaching science in the public schools and demonstrated the drawbacks of field experiences which do not include teaching science.
ERIC Educational Resources Information Center
Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Stevenson, Kathryn Tate
2014-01-01
In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students'…
NASA Astrophysics Data System (ADS)
Hilton, John Martin
This study investigates why physical therapy assistant majors engage and perform better than elementary education majors in an inquiry-based conceptual physics course at Mid-Atlantic Community College. The students from each major are demographically similar, both courses are similar in depth and structure, and each course supports the students' program. However, there is an observed difference in the levels of engagement with the curriculum and performance on writing-based assessments between the two groups. To explore possible explanations for the difference, I examine students' affinity for science, their beliefs about the nature of science and scientific knowledge in the classroom, and their perception of the usefulness of science to their program. During semi-structured interviews, students from both majors displayed nearly identical weak affinities for science, epistemological beliefs, and uncertainty about the usefulness of the class. However, the physical therapy majors' ability to see the relevance of the physics course experience to their program enhanced their interest and motivation. In contrast, the elementary education students do not see connections between the course and their program, and do not see a purpose for their learning of physics content. To improve the program, I propose a two-pronged approach - designing a faded-scaffolded-inquiry approach for both classes, and developing a field-based/seminar class for the elementary education majors. The scaffolded inquiry will help both groups develop better orientations toward lab activities, and the structured observations and reflection will help the elementary group connect the material to their program.
Science Alabama Course of Study. Bulletin 1988, No. 35.
ERIC Educational Resources Information Center
Alabama State Dept. of Education, Montgomery.
This document is an outline of concepts and skills that should be taught at each elementary grade level and for each secondary course in science. This document should be used in planning K-12 science curricula and should serve as a guide for teaching process skills. Separate formats are used for the Elementary Program in Science and the Secondary…
ERIC Educational Resources Information Center
Lee, Carole Kwan-Ping
2012-01-01
The science methods course is a requirement for the Bachelor of Science degree in elementary education licensure program in a mid-west state university in the U.S.A. In one semester, the author decided to evaluate the effectiveness of the science methods course in pedagogical content knowledge areas such as theory, planning and implementation.…
The Artistic Oceanographer Program
ERIC Educational Resources Information Center
Haley, Sheean T.; Dyhrman, Sonya T.
2009-01-01
The Artistic Oceanographer Program (AOP) was designed to engage elementary school students in ocean sciences and to illustrate basic fifth-grade science and art standards with ocean-based examples. The program combines short science lessons, hands-on observational science, and art, and focuses on phytoplankton, the tiny marine organisms that form…
Science Education Attuned to Social Issues: Challenge for the '80s.
ERIC Educational Resources Information Center
Yager, Robert E.; And Others
1981-01-01
Provides rationale for interdisciplinary science curricula which emphasize decision-making skills. Includes examples of interdisciplinary curricula using an issue-centered approach: Unified Science and Mathematics for Elementary School (USMES), Health Activities Program (HAP), Human Sciences Program (HSP), Individualized Science Instructional…
Student memories: Insights for science reform
NASA Astrophysics Data System (ADS)
Chaillie, Jane Hall
The purpose of this study was to examine the recollections pre-service teachers majoring in elementary education have of their science experiences during their elementary years and to explore the recollections in the context of science education reform efforts. At the beginning of science methods course work, pre-service elementary teachers reflected on their memories of their own elementary education experiences. Themes from 102 reflective essays collected in two settings and time periods were identified and compared. The themes remained consistent over both settings and time frames studied and fall into three general categories: curriculum and instruction, teacher traits, and student traits. The pre-service teachers expressed difficulty in recalling elementary science experiences and attributed their limited memories to what they perceived as a low priority of science content in the elementary curriculum. Teaching strategies played a prominent role in the memories reported. Hands-on and active learning strategies produced positive memories, while lectures, reading textbooks, and completing worksheets resulted in more negative memories. Furthermore, pre-service teacher essays often failed to connect the learning activities with concept development or understanding. Pre-service teachers were split nearly equally between those who liked and those who disliked elementary science. The attributes of elementary teachers received the least attention in the categories and focused primarily on passion for teaching science. Implications for science reform leaders, teacher education preparation programs, and school administrators and curriculum directors are identified.
NASA Astrophysics Data System (ADS)
Kapetanis, Ana Cristina
The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project study took place in a small independent school in the southeastern United States that lacked a cohesive elementary science program and was looking to create a vertically aligned science curriculum based on constructivism. The research question asked what skills and concepts teachers believed should be included in an elementary science program in order for students to learn scientific inquiry to be better prepared for middle and upper school science subjects. Using focus groups, observations, and interviews of a small sample of 4 teachers, data were collected, transcribed, and categorized through open coding. Inductive analysis was employed to look for patterns and emerging themes that painted a picture of how teachers viewed the current science program and what attributes they felt were important in the creation of a new curriculum. The findings revealed that teachers felt there was lack of a vertically aligned science curriculum, availability of resources throughout the school, and consistent support to provide an effective science program. The recommendations called for developing an elementary science program that includes all strands proposed by the National Science Education Standards and would provide students with opportunities to engage in scientific inquiry, conduct detailed observations, and learn to support conclusions using data. The implications for positive social change include development of programs that result in integrated science learning.
Promoting Chemistry at the Elementary Level: A Low-Maintenance Program of Chemical Demonstrations.
ERIC Educational Resources Information Center
Louters, Larry L.; Huisman, Richard D.
1999-01-01
Presents a chemical demonstration program designed to support elementary science education in which fifth- and sixth-grade students visit a college campus to watch chemical demonstrations performed by a professor. Contains suggestions for program set-up and references for demonstrations to use. (WRM)
ERIC Educational Resources Information Center
Wally, Laura M.; Levinger, Nancy E.; Grainger, David W.
2005-01-01
A chemistry outreach program to enthuse students of elementary school levels through employing popular children's literature Harry Potter is presented. The outreach activity performance found the students discovering new skills, learning more about science, and participating enthusiastically in the program without any added incentive from their…
NASA Astrophysics Data System (ADS)
Lewis, Felecia J.
The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.
Elementary Science Curriculum, Grade 5.
ERIC Educational Resources Information Center
Stoneham Public Schools, MA.
This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…
ERIC Educational Resources Information Center
Henning, Mary Beth; Peterson, Barbara R.; King, Kenneth Paul
2011-01-01
In an effort to improve science and social studies instruction, preservice teachers developed original science, technology, and society units to teach in elementary and middle school classrooms during their clinical field experience. Data revealed that the preservice teachers fell into categories of being skeptics, open-minded instructors, or…
Elementary Science Curriculum, Grade 6.
ERIC Educational Resources Information Center
Stoneham Public Schools, MA.
This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…
NASA Astrophysics Data System (ADS)
Alegria, Adelina Victoria
The goal of this study was to explore bilingual and English-only elementary teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and their self-reported science instructional skills. In this study, a bilingual teacher was defined as a teacher who provides instruction in Spanish and English in core academic subjects and has completed and/or is completing a bilingual certification program. An English-only teacher was defined as a monolingual teacher that only speaks and instructs in English. The principal questions guiding this dissertation investigation were the following: How do bilingual elementary teachers differ from English-only elementary teachers in (a) their science knowledge, (b) their conceptions of the nature of science, (c) their attitude about teaching science, and (d) their self-reported science instructional skills? This dissertation study is a component of a three-year long Eisenhower Project granted to Hueneme School District and the University of California, Santa Barbara Southcoast Science Project. While the Project will last three years (1997--2000), this dissertation study was developed to answer only a subset of questions of the entire project and data was collected in 1998. The research design for this study consisted of a self-administered questionnaire that was given to Hueneme School District elementary teachers that teach science and was developed by reviewing the relevant literature about teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and the instructional strategies that support science learning. The findings showed that both the bilingual and the English-only respondents demonstrated a similar science knowledge base, which is suggested, by this researcher, to be limited. That both bilingual and English-only teacher respondents demonstrated similar positive attitudes about teaching science and both reported making use of similar instructional strategies, many of which are known to support science learning in the classroom (laboratory/hands-on activities, whole group discussion, questioning, and cooperative/small group activities). Concerning assessment strategies, both the bilingual and English-only groups reported very similar answers. They reported usually making use of students' projects, student's logs/journals/diaries, performance activities such as lab practicals and hands-on tests to assess science learning. They also reported seldom or never making use of paper/pencil quizzes nor end-of-chapter/unit tests. There was not enough clear information to decide whether bilingual and English-only elementary respondents hold similar or different views of science. This study's implications encompass two different areas: (a) changes that bilingual and elementary credentialing programs need to undergo and (b) further bilingual science teaching research. The findings concerned with science knowledge, that both bilingual and English-only elementary teachers possess a limited science knowledge base leads me to suggest, just as the science teaching literature has suggested, that elementary credentialing programs need to strengthen their candidates' science content by increasing the science content addressed in the science methodology courses and/or by requiring a greater number of science undergraduate courses (most liberal arts majors require no more than five courses, San Diego State University, 1999). (Abstract shortened by UMI.)
ERIC Educational Resources Information Center
Moore-Hart, Margaret A.; Liggit, Peggy; Daisey, Peggy
This paper presents a study investigating the effects of the Water Education Training (WET) program on students' performance in science. The WET Program is an after school program using an interdisciplinary approach which has three main objectives: improving science concept knowledge, writing performance, and attitudes toward science and writing.…
Trends in teachers' recommendations for changing elementary and junior-high school science programs
NASA Astrophysics Data System (ADS)
Stronck, David R.
Since 1978 many studies have called for changes in the practices of science teaching. These changes in instruction will occur only when the teachers decide to change their practices. This study uses surveys to consider the question of what were the trends in the teachers' recommendations for changes in elementary and junior-high school science programs between the years of 1978 and 1982. Large samples of teachers in British Columbia, Canada, responded anonymously to questionnaires in these years: 3040 teachers in 1978 and 1631 in 1982, with return rates ranging from 77.5% to 85%. These teachers described themselves as shifting their classroom practices toward ones that emphasize passive learning and memorization. The British Columbia Science Assessments recommend more inservice programs to stop this trend. There were very few differences in the teachers' recommendations for changes in the schools. The elementary-school teachers had major changes in their rankings of only two activities: they increased their ranking of activity-centered learning and reduced their ranking of outdoor education.
NASA Astrophysics Data System (ADS)
Arnold, J.; Wider-Lewis, F.; Miller-Jenkins, A.
2017-12-01
This poster is a description of the challenges and success of implementing climate studies lessons for pre-service teachers to engage student teaching pedagogy and content skill based learning. Edward Waters College is a historical black college with an elementary education teacher program focused on urban elementary school teaching and learning. Pre-Service Elementary Educator Students often have difficulty with science and mathematics content and pedagogy. This poster will highlight the barriers and successes of using climate studies lessons to develop and enhance pre-service teachers' knowledge of elementary science principles particularly related to climate studies, physical and earth space science.
ERIC Educational Resources Information Center
Lewis, Felecia J.
2017-01-01
The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotlib, L.; Bibby, E.; Cullen, B.
1994-12-31
Teams of local mentor teachers (assisted by college students in the NC Teaching Fellows Program) run week-long workshops for elementary teachers (at four sites in 1993, six in 1994). Major funding for the camps is provided through The Glaxo Foundation, supplemented with local funds. The workshops focus on hands-on science (using inexpensive materials) and provide familiarity and experience with the new NC science curriculum and assessment program. The use of local resources is stressed (including visiting scientists and readily available store-bought materials). Each camp has its own theme and provides teachers with a variety of resources to be used withmore » students of all abilities. The mentor teachers then run week-long, all expense paid, non-residential science camps for elementary students (open to all students, but with females and minorities as target groups). Students take part in long-and short-term projects, working individually and in groups. Pre and post participation surveys of all participants were conducted and analyzed, with favorable results for both the student and teacher weeks. Additional activities include parent nights, and follow-up workshops. Eighty-nine teachers and 208 students participated in 1993.« less
SCIENCE INTERPRETIVE PROGRAM--SPERMACETI COVE INTERPRETIVE CENTER.
ERIC Educational Resources Information Center
COLE, RICHARD C.
DESCRIBED IS THE OUTDOOR EDUCATION PROGRAM FOR THE MIDDLETOWN, NEW JERSEY ELEMENTARY SCHOOLS AT THE SPERMACETI COVE INTERPRETIVE CENTER IN SANDY HOOK STATE PARK. THE PROGRAM IS FUNDED UNDER PL89-10 OF THE ELEMENTARY AND SECONDARY EDUCATION ACT (ESEA). PHASE 1 (MARCH, 1966-JUNE, 1966) INVOLVED THE SELECTION OF NINE PUBLIC AND THREE PAROCHIAL FOURTH…
Elementary School Garden Programs Enhance Science Education for All Learners
ERIC Educational Resources Information Center
Rye, James A.; Selmer, Sarah J.; Pennington, Sara; Vanhorn, Laura; Fox, Sarah; Kane, Sarah
2012-01-01
A national movement is underway to establish elementary school gardens, which can serve both academic and social purposes. These gardens can positively impact students' science achievement and provide the thematic and hands-on approach especially conducive to learning for students with disabilities. Garden-based learning (GBL) broadens the scope…
The transfer of learning process: From an elementary science methods course to classroom instruction
NASA Astrophysics Data System (ADS)
Carter, Nina Leann
The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.
Living Organisms for the Elementary Classroom.
ERIC Educational Resources Information Center
Hampton, Carolyn H.; Hampton, Carol D.
This publication was prepared for elementary teachers and other local personnel responsible for providing, maintaining and using living organisms to enhance elementary science programs. The manual contains a foreword, general information, and an appendix. It gives information concerning equipment and supplies, establishing and maintaining an…
Investigating How Nontraditional Elementary Pre-service Teachers Negotiate the Teaching of Science
NASA Astrophysics Data System (ADS)
Shelton, Mythianne
This qualitative study was designed to investigate the influences on nontraditional preservice teachers as they negotiated the teaching of science in elementary school. Based upon a sociocultural theoretical framework with an identity-in-practice lens, these influences included beliefs about science teaching, life experiences, and the impact of the teacher preparation program. The study sample consisted of two nontraditional preservice teachers who were student teaching in an elementary classroom. Data, collected over a five-month period, included in-depth individual interviews, classroom observations, audio recordings, and reviews of documentations. Interviews focused on the participants' beliefs relating to the teaching of science, prior experiences, and their teacher preparation program experiences relating to the teaching of science. Classroom observations provided additional insights into the classroom setting, participants' teaching strategies, and participants' interactions with the students and cooperating teacher. A whole-text analysis of the interview transcripts, observational field notes, audio recordings and documents generated eight major categories: beliefs about science teaching, role of family, teaching science in the classroom, teacher identity, non-teacher identity, relationships with others, discourses of classroom teaching, and discourses of teachers. The following significant findings emerged from the data: (a) the identity of nontraditional student teachers as science teachers related to early life experiences in science classes; (b) the identity of nontraditional student teachers as science teachers was influenced by their role as parents; (c) nontraditional student teachers learned strategies that supported their beliefs about inquiry learning; and (d) nontraditional student teachers valued the teacher preparation program support system. The results from this qualitative study suggest that sociocultural theory with an identity-in-practice lens provides a theoretical framework for understanding the influences that affect why nontraditional preservice teachers select strategies to teach science in the elementary classroom.
Effectiveness of an Alternative Certification Program for the Preparation of Elementary Teachers
ERIC Educational Resources Information Center
Follo, Eric J.; Rivard, James J.
2009-01-01
This study focuses on the effectiveness of the alternative elementary teacher certification program at Oakland University in Rochester, Michigan. The program was developed in response to the projected teacher shortage, the need for teachers in subjects such as mathematics and science, the need for teachers in urban schools, and the need for…
GLOBE Program Teacher's Guide.
ERIC Educational Resources Information Center
1997
The GLOBE Program is a worldwide, hands-on educational program for elementary and secondary school students. GLOBE aims to increase student achievement in mathematics and science, awareness towards the environment, and improve science process skills through network technology. This teacher's guide provides an overview of the GLOBE program and…
Idea Cards for Water Flow. Elementary Science Study.
ERIC Educational Resources Information Center
Elementary Science Study, Newton, MA.
Presented are 29 activity cards designed for use with the Elementary Science Study (ESS) program. Each card describes an experiment on one aspect of water flow such as siphoning, methods of removing water from a container, aspirators, floats, and water behavior in various tubing linkups. Activities are intended for individual or small group study;…
Effective Programs for Elementary Science: A Best-Evidence Synthesis
ERIC Educational Resources Information Center
Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen
2012-01-01
This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…
Experimental Evaluations of Elementary Science Programs: A Best-Evidence Synthesis
ERIC Educational Resources Information Center
Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen
2014-01-01
This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…
Observing and Producing Sounds, Elementary School Science, Level Four, Teaching Manual.
ERIC Educational Resources Information Center
Hale, Helen E.
This pilot teaching unit is one of a series developed for use in elementary school science programs. This unit is designed to help children discover specific concepts which relate to sound, such as volume, pitch, and echo. The student activities employ important scientific processes, such as observation, communication, inference, classification,…
ERIC Educational Resources Information Center
Ensign, Todd I.; Rye, James A.; Luna, Melissa J.
2017-01-01
Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an…
Small Things Draw Big Interest
ERIC Educational Resources Information Center
Green, Susan; Smith III, Julian
2005-01-01
Although the microscope is a basic tool in both physical and biological sciences, it is notably absent from most elementary school science programs. One reason teachers find it challenging to introduce microscopy at the elementary level is because children can have a hard time connecting the image of an object seen through a microscope with what…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, D.H.
1997-01-01
The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less
Science Unlimited: Teacher's Guide to the Intermediate Lessons.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Div. of Arts and Sciences.
Science Unlimited (Pennsylvania Department of Education's elementary science effort) has developed a series of television programs for use in the primary and intermediate grades. These television programs form an integral part of science lessons which emphasize direct involvement of children with materials and ideas, provide for individual and…
Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations
NASA Astrophysics Data System (ADS)
Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.
2006-12-01
Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271
Elementary and middle school science improvement project
NASA Technical Reports Server (NTRS)
Mcguire, Saundra Yancy
1987-01-01
The Alabama A & M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted in response to a need to improve the ability of North Alabama teachers to teach science effectively using the experimental or hands-on approach. The major component of the project was a two-week workshop. Follow-up visits were made to the classrooms of many of the participating teachers to obtain information on how the program was being implemented in the classroom. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcomes are addressed.
Saturdays, Summer, and Science.
ERIC Educational Resources Information Center
Zielinski, Edward J.; And Others
1994-01-01
Describes a science program (Saturday Science) designed to provide learning experiences that are thematic and stress critical/creative thinking as well as development of science process skills for elementary, middle, and junior high students. (ZWH)
NASA Astrophysics Data System (ADS)
Johnson, Carla C.; Fargo, Jamison D.
2014-11-01
This paper reports the findings of a study of the impact of the transformative professional development (TPD) model on student achievement on state-mandated assessments of science in elementary school. Two schools (one intervention and one control) participated in the case study where teachers from one school received the TPD intervention across a 2-year period while teachers at the other school received no program and continued business as usual. The TPD program includes a focus on the core conceptual framework for effective professional development (Desimone in Educ Res 38:181-199, 2009) as well as an emphasis on culturally relevant pedagogy (CRP) and other effective science instructional strategies. Findings revealed that participation in TPD had a significant impact on student achievement for Burns Elementary with the percentage of proficient students growing from 25 % at baseline to 67 % at the end of the 2-year program, while the comparison school did not experience similar growth. Implications for future research and implementation of professional development programs to meet the needs of teachers in the realm of CRP in science are discussed.
Design Challenges Are "ELL-elementary"
ERIC Educational Resources Information Center
de Romero, Nancy Yocom; Slater, Pat; DeCristofano, Carolyn
2006-01-01
It has always been a challenge for elementary school teachers to help special needs students and English learners understand challenging, standards-based science content while their students are still developing English language skills. Through their work as pilot teachers for the Engineering is Elementary (EiE) program developed by the Museum of…
Computer Programming Effects in Elementary: Perceptions and Career Aspirations in STEM
ERIC Educational Resources Information Center
Tran, Yune
2018-01-01
The development of elementary-aged students' STEM and computer science (CS) literacy is critical in this evolving technological landscape, thus, promoting success for college, career, and STEM/CS professional paths. Research has suggested that elementary-aged students need developmentally appropriate STEM integrated opportunities in the classroom;…
Discovering Animal Ways, Elementary School Science, Level Three, Teaching Manual.
ERIC Educational Resources Information Center
Hale, Helen E.
This pilot teaching unit is one of a series developed for use in elementary school science programs. This unit is designed to promote children's natural curiosity and to help those who show a reluctance to work with animals to overcome some of their fears. The student activities employ important scientific processes, such as observation,…
Entelek Programmed Instruction Guide. Volume l: Elementary/High School. 3rd Edition.
ERIC Educational Resources Information Center
Entelek, Inc., Newburyport, MA.
Individualized instruction has become an important objective in schools. This programmed instruction guide provides information about the ENTELEK system for elementary and high schools. The data bank covers a variety of subject areas and is catalogued according to the Dewey Decimal System: library; psychology; logic; political science; economics;…
ERIC Educational Resources Information Center
Patchen, Amie K.; Zhang, Lin; Barnett, Michael
2017-01-01
This study examines an out-of-school time program targeting elementary-aged youth from populations that are typically underrepresented in science fields (primarily African-American, Hispanic, and/or English Language Learner participants). The program aimed to foster positive attitudes toward science among youth by engaging them in growing plants…
NASA Astrophysics Data System (ADS)
Viorica Diaconu, Dana; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn
2012-04-01
A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p < 0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p < 0.01, p < 0.001 and p < 0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.
Providing undergraduate science partners for elementary teachers: benefits and challenges.
Goebel, Camille A; Umoja, Aminata; DeHaan, Robert L
2009-01-01
Undergraduate college "science partners" provided content knowledge and a supportive atmosphere for K-5 teachers in a university-school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed "participatory reform"; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers' skills in inquiry-based science instruction. Here, we describe some of the program's successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children's science learning abilities to express more mature, positive views.
Providing Undergraduate Science Partners for Elementary Teachers: Benefits and Challenges
Goebel, Camille A.; Umoja, Aminata
2009-01-01
Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers' skills in inquiry-based science instruction. Here, we describe some of the program's successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children's science learning abilities to express more mature, positive views. PMID:19723818
Think Scientifically: Science Hidden in a Storybook
NASA Astrophysics Data System (ADS)
Van Norden, W. M.
2012-12-01
The Solar Dynamics Observatory's Think Scientifically (TS) program links literacy and science in the elementary classroom through an engaging storybook format and hands-on, inquiry based activities. TS consists of three illustrated storybooks, each addressing a different solar science concept. Accompanying each book is a hands-on science lesson plan that emphasizes the concepts addressed in the book, as well as math, reading, and language arts activities. Written by teachers, the books are designed to be extremely user-friendly and easy to implement in classroom instruction. The objectives of the program are: (1) to increase time spent on science in elementary school classrooms, (2) to assist educators in implementing hands-on science activities that reinforce concepts from the book, (3) to increase teacher capacity and comfort in teaching solar concepts, (4) to increase student awareness and interest in solar topics, especially students in under-served and under-represented communities. Our program meets these objectives through the National Science Standards-based content delivered in each story, the activities provided in the books, and the accompanying training that teachers are offered through the program.; ;
ERIC Educational Resources Information Center
Lee, Carole K.
2010-01-01
This study aims to understand the design and implementation of elementary methods classes focused in science instruction by teacher educators in the colleges and universities in the state of Arkansas. All 18 institutions with an Early Childhood Education program approved by the Arkansas Department of Education were reviewed with interviews, site…
Sisters in Science: Using Sports as a Vehicle for Science Learning.
ERIC Educational Resources Information Center
Hammrich, Penny L.; Richardson, Greer M.; Green, Tina Sloan; Livingston, Beverly
This paper describes a project for upper elementary and middle school minority girl students called the Sisters in Sport Science (SISS). The SISS program addresses the needs of urban girls in gaining access to equal education in science and mathematics by using athletics as a vehicle for learning. The program provides a non-competitive and…
ERIC Educational Resources Information Center
White, Edwin P.; Teumac, Karen
1984-01-01
Brief descriptions and addresses are provided for the following: four handbooks for elementary principals on science programs, a study on women in science, a renewal of National Science Foundation funding for precollege-level science teaching projects, and a report outlining proposals for educational improvement in science. (TE)
Ciencias en Espanol, 1995-96 (Sciences in Spanish, 1995-96). Research Report on Educational Grants.
ERIC Educational Resources Information Center
Houston Independent School District, TX. Dept. of Research and Evaluation.
An elementary science program was taught in Spanish for English-speaking children to give them the opportunity to acquire second language skills through hands-on science instruction. The program included 4 classes of approximately 22 students at kindergarten and first-grade levels in the gifted and talented program at the Gary Herod Elementary…
The Influence of RET's on Elementary and Secondary Grade Teachers' Views of Scientific Inquiry
ERIC Educational Resources Information Center
Bahbah, Sibel; Golden, Barry W.; Roseler, Katrina; Elderle, Patrick; Saka, Yavuz; Shoutherland, Sherry A.
2013-01-01
This study explores in-service elementary and secondary science teachers' conceptions of the Nature of Scientific Inquiry and the influence of participation in two different Research Experience for Teacher (RET) programs had on these conceptions. Participant teachers attended one of two six week RET programs in which they worked with scientists to…
NASA Astrophysics Data System (ADS)
Chin, Chi-Chin
2005-10-01
Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales—the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre-service programs.
Double TNT: Targeting New Teachers and Teaching by Novel Techniques.
ERIC Educational Resources Information Center
Williams-Robertson, Lydia
A program developed by the Austin (Texas) Independent School District under a 2-year grant from the National Science Foundation is described and evaluated. The primary objectives of the program were to: interest minority and female students in science; attract these groups to the teaching of science; enrich the elementary school science…
ERIC Educational Resources Information Center
Borman, Kathryn M.; Cotner, Bridget A.; Lee, Reginald S.; Boydston, Theodore L.; Lanehart, Rheta
2009-01-01
This study was designed to establish the efficacy of Teaching SMART (Teaching Science, Mathematics and Relevant Technologies); a science professional development program for teachers with students in grades 3 through 5. Teaching SMART promotes scientific inquiry and emphasizes the importance of equity, empowerment, exploration, and fun in the…
NASA Astrophysics Data System (ADS)
Wesley, Beth Eddinger; Krockover, Gerald H.; Devito, Alfred
The purpose of this study was to determine the effects of computer-assisted instruction (CAI) versus a text mode of programmed instruction (PI), and the cognitive style of locus of control, on preservice elementary teachers' achievement of the integrated science process skills. Eighty-one preservice elementary teachers in six sections of a science methods class were classified as internally or externally controlled. The sections were randomly assigned to receive instruction in the integrated science process skills via a microcomputer or printed text. The study used a pretest-posttest control group design. Before assessing main and interaction effects, analysis of covariance was used to adjust posttest scores using the pretest scores. Statistical analysis revealed that main effects were not significant. Additionally, no interaction effects between treatments and loci of control were demonstrated. The results suggest that printed PI and tutorial CAI are equally effective modes of instruction for teaching internally and externally oriented preservice elementary teachers the integrated science process skills.
45 CFR 605.32 - Location and notification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.32 Location and notification. A recipient that operates a public elementary or secondary education program shall annually: (a) Undertake to identify and...
45 CFR 605.35 - Evaluation and placement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.35 Evaluation and placement. (a) Preplacement evaluation. A recipient that operates a public elementary or secondary education program or activity shall...
45 CFR 605.36 - Procedural safeguards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a public elementary or secondary education program shall establish and implement, with respect to actions...
45 CFR 605.36 - Procedural safeguards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a public elementary or secondary education program shall establish and implement, with respect to actions...
45 CFR 605.36 - Procedural safeguards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a public elementary or secondary education program shall establish and implement, with respect to actions...
45 CFR 605.35 - Evaluation and placement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.35 Evaluation and placement. (a) Preplacement evaluation. A recipient that operates a public elementary or secondary education program or activity shall...
45 CFR 605.36 - Procedural safeguards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a public elementary or secondary education program shall establish and implement, with respect to actions...
45 CFR 605.32 - Location and notification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.32 Location and notification. A recipient that operates a public elementary or secondary education program shall annually: (a) Undertake to identify and...
45 CFR 605.32 - Location and notification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.32 Location and notification. A recipient that operates a public elementary or secondary education program shall annually: (a) Undertake to identify and...
45 CFR 605.32 - Location and notification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.32 Location and notification. A recipient that operates a public elementary or secondary education program shall annually: (a) Undertake to identify and...
45 CFR 605.35 - Evaluation and placement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.35 Evaluation and placement. (a) Preplacement evaluation. A recipient that operates a public elementary or secondary education program or activity shall...
45 CFR 605.35 - Evaluation and placement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.35 Evaluation and placement. (a) Preplacement evaluation. A recipient that operates a public elementary or secondary education program or activity shall...
An analysis of elementary teachers' perceptions of teaching science as inquiry
NASA Astrophysics Data System (ADS)
Domjan, Heather Nicole
The purpose of this study is to describe elementary school teachers' perceptions of science as inquiry in science instruction. A descriptive survey research design was used to collect data regarding elementary science teachers' knowledge and beliefs related to inquiry and its role in science education. The written section of the survey was analyzed and interpreted descriptively through phenomenological data and the constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985). The researcher used the constant comparative method to identify statements, perceptions, and impressions that occurred over time during the study (Janesick, 1994). Ninety-two elementary school teachers who teach science in a large suburban district southwest of Houston, Texas were administered a three part Understanding Science as Inquiry Survey (USAI) developed by the researcher. Participants communicated in writing personal definitions of inquiry in elementary science as well as determined to what extent inquiry was used in four elementary science classroom scenarios. The survey items were based on the following four components of inquiry described by Inquiry and the National Science Education Standards (2000): (1) conceptual knowledge, (2) process skills, (3) nature of science, and (4) affect. The study describes elementary school teachers' perceptions about science as inquiry. Conclusions for Part A of the USAI Survey indicate that participants define inquiry as: mostly process skills, some conceptual knowledge, and very little affect with no perception of the nature of science. The Likert scale ratings for the scenarios in Part B of the USAI Survey reveal that participants have varied perceptions regarding teaching science as inquiry. The written section of Part B reveals participants' perceptions to be similar to that of their Likert scale ratings except in scenario one. The researcher concludes that the participants in this study appear to have an incomplete understanding of teaching science as inquiry. This study suggests that elementary teachers might benefit from increased and sustained professional development programs centered on inquiry teaching strategies. Professional development activities on teaching science as inquiry create opportunities for teachers to confront and develop ways of thinking about inquiry and ultimately enhance inquiry-based teaching in their classrooms.
Portsmouth Atmospheric Science School (PASS) Project
NASA Technical Reports Server (NTRS)
Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)
2002-01-01
The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).
Simple Problems and Integrated Technology: Making Connections beyond the Curriculum
ERIC Educational Resources Information Center
Joseph, Roberto; Brooks, Jacqueline Grennon
2008-01-01
Last year, the Centennial Ave. Elementary School in Roosevelt, New York received a new shipment of the New York State Science 21 kits. The new science program from the previous year was out, and the new science program for this year was in. As consulting university professors, the authors' task was to help the third grade teachers bring Science 21…
Sustaining Reform-Based Science Teaching of Preservice and Inservice Elementary School Teachers
NASA Astrophysics Data System (ADS)
Sullivan-Watts, Barbara K.; Nowicki, Barbara L.; Shim, Minsuk K.; Young, Betty J.
2013-08-01
This study examined the influence of a professional development program based around commercially available inquiry science curricula on the teaching practices of 27 beginning elementary school teachers and their teacher mentors over a 2 year period. A quantitative rubric used to score inquiry elements and use of data in videotaped lessons indicated that education students assigned to inquiry-based classrooms during their methods course or student teaching year outperformed students without this experience. There was also a significant positive effect of multi-year access to the kit-based program on mentor teaching practice. Recent inclusion of a "writing in science" program in both preservice and inservice training has been used to address the lesson element that received lowest scores—evaluation of data and its use in scientific explanation.
NASA Astrophysics Data System (ADS)
Bursal, Murat
Four case studies in two American and two Turkish science methods classrooms were conducted to investigate the changes in preservice elementary teachers' personal science teaching efficacy (PSTE) beliefs during their course periods. The findings indicated that while Turkish preservice elementary teachers (TR sample) started the science methods course semester with higher PSTE than their American peers (US sample), due to a significant increase in the US sample's and an insignificant decline in the TR sample's PSTE scores, both groups completed the science methods course with similar PSTE levels. Consistent with Bandura's social cognitive theory, describing four major sources of self-efficacy, the inclusion of mastery experiences (inquiry activities and elementary school micro-teaching experiences) and vicarious experiences (observation of course instructor and supervisor elementary teacher) into the science methods course, providing positive social persuasion (positive appraisal from the instructor and classmates), and improving physiological states (reduced science anxiety and positive attitudes toward becoming elementary school teachers), were found to contribute to the significant enhancement of the US sample's PSTE beliefs. For the TR sample, although some of the above sources were present, the lack of student teaching experiences and inservice teacher observations, as well as the TR samples' negative attitudes toward becoming elementary school teachers and a lack of positive classroom support were found to make Turkish preservice teachers rely mostly on their mastery in science concepts, and therefore resulted in not benefiting from their science methods course, in terms of enhancing their PSTE beliefs. Calls for reforms in the Turkish education system that will include more mastery experiences in the science methods courses and provide more flexibility for students to choose their high school majors and college programs, and switch between them are made. In addition to the mastery experiences contributing to the PSTE beliefs, this study reported that preservice elementary teachers' unawareness of their science misconceptions also results in enhancing their self-efficacy, which is troublesome. Revisions in science content courses to employ inquiry activities, designed for addressing and correcting students' misconceptions, are recommended to overcome teacher candidates' lack of science competency and negative attitudes toward science.
NASA Astrophysics Data System (ADS)
Rice, Tony E.
The purpose of this survey was to describe and analyze the perceptions of elementary school teachers' in a Midwestern state concerning their use of a science kit program, including to what extent a school's state science assessment scores can be predicated from the level of science kit usage. Prior research indicates that elementary school teachers lack the confidence in teaching science primarily because of their weak undergraduate training in inquiry-based instruction and the lack of a strong science background. Authors such as Dickerson et al. (2006) and Riggs and Enochs (2006) argued that science kits and the materials included in them are valuable in increasing teacher confidence. The teacher perceptions I collected matched the literature quite closely as far as what the teachers found to be of the most value and use. Teachers perceptions of the science kits were positive including: (a) student engagement in using the science kits, (b) use of most of the instructional items included in the kits, (c) the amount of teacher confidence in using them, (d) the support from the math and science center for using them, (e) and the professional development provided. Teachers liked using many components of the kits, especially the experiments. Their main complaint concerned time: time to teach science and time to complete the kit lessons. I used multiple regression to understand the components of the kit program that had a significant correlation to the state test scores. The following variables could explain a high proportion of the variance (.796): (a) teacher confidence, (b) student science learning success, (c) teacher beliefs about science education and (d) the percentage of students eligible for the National School Lunch Program. These findings might lead to school principals and teachers increasing their 5th grade state science exam scores by using the findings to identify which components of the kit program are most important in this endeavor.
45 CFR 605.31 - Application of this subpart.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.31 Application of this subpart. Subpart D applies to preschool, elementary, secondary, and adult education programs or activities that receive or benefit from...
45 CFR 605.31 - Application of this subpart.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.31 Application of this subpart. Subpart D applies to preschool, elementary, secondary, and adult education programs or activities that receive or benefit from...
45 CFR 605.31 - Application of this subpart.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.31 Application of this subpart. Subpart D applies to preschool, elementary, secondary, and adult education programs or activities that receive or benefit from...
45 CFR 605.31 - Application of this subpart.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.31 Application of this subpart. Subpart D applies to preschool, elementary, secondary, and adult education programs or activities that receive or benefit from...
Elementary and middle school science improvement project
NASA Technical Reports Server (NTRS)
Mcguire, Saundra Y.
1989-01-01
The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.
ERIC Educational Resources Information Center
Smith, Nancy N.; Stahl, Robert J.
1981-01-01
Outlines objectives for an elementary science camping program and summarizes general operational procedures. Campsite activities related to such topics as microorganisms, eye and sight, nature trails, bees, carpentry, and astronomy are described. (DS)
Summer Science: A Teacher's Handbook for a Summertime Program in Elementary Electricity.
ERIC Educational Resources Information Center
McVoy, K. W.
This publication was designed to serve as a teacher's handbook for a four week "shop" adventure in elementary electricity for 12- or 13-year-old boys who would ordinarily not take an interest in electrical things. These projects could easily be adapted to aid any elementary physics treatment of electronics. Projects were designed to meet two main…
ERIC Educational Resources Information Center
Carrejo, David J.; Reinhartz, Judy
2012-01-01
Thirty-five elementary teachers participated in a yearlong professional development (PD) program whose goal was to foster science content learning while promoting language literacy for English Language Learners (ELL). The researchers utilized an explanatory design methodology to determine the degree to which science and language literacy…
Experience of the Neophyte Science Teachers: Through Their Eyes
ERIC Educational Resources Information Center
Thornton, David
2017-01-01
A variety of lenses were used to examine the world of the novice science teacher. A degree of agency was provided by looking through the eyes of the beginning teacher. Previous studies focused on researcher or program's orientation, the successes of various educator preparation programs, or were limited in scope to elementary teachers of science.…
Using Creative Dramatics to Foster Conceptual Learning in a Science Enrichment Program
ERIC Educational Resources Information Center
Hendrix, Rebecca Compton
2011-01-01
This study made analysis of how the integration of creative drama into a science enrichment program enhanced the learning of elementary school students' understanding of sound physics and solar energy. The study also sought to determine if student attitudes toward science could be improved with the inclusion of creative drama as an extension…
What Are Some Alternatives for Working Within a Regionally Adopted Science Framework?
ERIC Educational Resources Information Center
Perkes, Victor A.
Alternatives for working within a regionally adopted framework for selecting an elementary school science program are considered in this paper. The alternatives are ranked on a scale from 0 to 5 in increasing levels of modifying a set instructional pattern: Level 0, typified by indifference to any consistent program in science; Level 1, a complete…
ERIC Educational Resources Information Center
Helgeson, Stanley L.; Howe, Robert W.
Many school staff and their client communities are concerned about pupil achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…
ERIC Educational Resources Information Center
Lawlor, Francis X.
Reported is a study of the attitudes of elementary school students toward science as a school subject. This study was undertaken in order to determine the effects of an in-service teacher training program in the use of the Science Curriculum Improvement Study (SCIS) program. Children in grades two through six (N-1941) from four suburban (85…
Program Objectives for Science. Revised.
ERIC Educational Resources Information Center
Bednarczyk, Angela; And Others
The guide lists program objectives for science instruction of hearing impaired students at Kendall Demonstration Elementary School. The curriculum, it is explained, is based on theories of J. Piaget. Objectives are stated in terms of process skills within four Piagetian stages of development: pre-operational, transition to concrete, concrete, and…
Penicillin for Education: How Cognitive Science Can Contribute to Education.
ERIC Educational Resources Information Center
Bruer, John T.
1995-01-01
Education can benefit from knowledge derived from cognitive and developmental psychology. Family demographics have actually improved between 1970 and 90 and so have NAEP scores. Three innovative programs demonstrating cognitive science applications include the Teaching Number Sense elementary math program, reciprocal teaching (reading strategy),…
Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev
ERIC Educational Resources Information Center
Park, Hyoung Seo
2006-01-01
The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…
ERIC Educational Resources Information Center
Pike, Lisa
2017-01-01
In this article, the author describes how a partnership was established to bring science and education majors together with elementary school children in an after-school STEM program. This partnership allowed preservice teachers and science majors to have fun with science and to learn science informally, in a nonclassroom, low-stress…
Preparing perservice teachers to teach elementary school science
NASA Astrophysics Data System (ADS)
Lewis, Amy D.
The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.
Fun Science: The Use of Variable Manipulation to Avoid Content Instruction
NASA Astrophysics Data System (ADS)
Peters-Burton, Erin E.; Hiller, Suzanne E.
2013-02-01
This study examined the beliefs and rationale pre-service elementary teachers used to choose activities for upper-elementary students in a 1-week intensive science camp. Six undergraduate elementary pre-service teachers were observed as they took a semester-long science methods class that culminated in a 1-week science camp. This qualitative, phenomenological study found that counselors chose activities with the possibility of fun being a priority rather than teaching content, even after they were confronted with campers who demanded more content. Additionally, all six of the counselors agreed that activities involving variable manipulation were the most successful, even though content knowledge was not required to complete the activities. The counselors felt the variable manipulation activities were successful because students were constructing products and therefore getting to the end of the activity. Implications include building an awareness of the complexity of self-efficacy of science teaching and outcome expectancy to improve teacher education programs.
Children's Attitudes and Classroom Interaction in an Intergenerational Education Program
ERIC Educational Resources Information Center
Dunham, Charlotte Chorn; Casadonte, Dominick
2009-01-01
This research reports findings from an intergenerational science program, Project Serve, which placed senior volunteers in elementary and junior high science classrooms to assist teachers and augment instruction. Items from the Children's View of Aging survey (Newman, 1997; Newman & Faux, 1997) were administered before and after the project with…
ERIC Educational Resources Information Center
Burk, Sandy
2006-01-01
Science trade books can spark real-life involvement in saving a threatened fish. A successful science program at the Westbrook Elementary School, in Bethesda, Maryland, does just that. The program--in which students participate in watershed restoration projects as part of a yearlong study of the local Chesapeake Bay and the Potomac River…
A Primary Grade (K-3) Earth Science Program
ERIC Educational Resources Information Center
Schwartz, Maurice L.; Slesnick, Irwin L.
1973-01-01
Describes the rationale and structure of a newly developed earth science program for elementary school children (K-3). The activities involve pre-operational and concrete operational stages, progressing from one to the other. Children show sustained interest and enthusiasm as they investigate landforms, the moon, fossils, and weather phenomena.…
An Ungraded Primary Level Science Program, Levels One Through Three (Grades 1-2-3).
ERIC Educational Resources Information Center
Dickinson Public Schools, ND. Instructional Media Center.
This curriculum guide is intended for use in an ungraded science program encompassing grades one, two and three in public elementary schools in southwestern North Dakota. Five major units in the biological, physical and earth sciences and in health education are included. In each unit major concepts to be studied are stated. For each concept,…
A Space Science Teacher Professional Development Program
NASA Astrophysics Data System (ADS)
Limaye, Sanjay S.; Pertzborn, Rosalyn A.
Recent adoption of state/national science education standards by school districts in the US has created a need for effective teacher professional development in space science at elementary middle and high school level. Particularly at the elementary and middle school levels majority of teachers teaching the Astronomy/Space Science content have had little education in the area regardless of when they obtained their certification. To meet this growing need the Office of Space Science Education has developed a program to offer teachers background content knowledge through summer workshops and periodic school year meetings for a small number of teachers from Wisconsin and Illinois. The program has included lectures by experts tours of observatories (professional and amateur) science museums and planetariums and on-line learning. A highlight of the program has been introducing teachers to hands-on observing through remotely accessible telescopes. Another aspect has been to make them aware of the many resources available to them through NASA missions. The most significant benefit for the teachers however has been the creation of a peer group and the support it offers in sharing curriculum and lesson plans. This effort has been supported by a NASA/IDEAS grant
Teaching planetary sciences to elementary school teachers: Programs that work
NASA Technical Reports Server (NTRS)
Lebofsky, Larry A.; Lebofsky, Nancy R.
1993-01-01
Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are addressed in detail.
NASA Astrophysics Data System (ADS)
Boyer, Elisebeth
2016-12-01
The research reported in this study examines the very first time the participants planned for and enacted science instruction within a "best-case scenario" teacher preparation program. Evidence from this study indicates that, within this context, preservice teachers are capable of implementing several of the discursive practices of science called for in standards documents including engaging students in science investigations and constructing evidence-based explanations. The participants designed experiences that allowed their students to interact with natural phenomena, gather evidence, and craft explanations of natural phenomenon. The study contends that the participants were able to achieve such successes due to their participation in a teacher education program and field placement, which were designed using a comprehensive, conceptual framework. Video of the participant's teaching and annotated self-analysis videos served as the primary data for this study. Implications for future research and elementary science teacher education are discussed.
ERIC Educational Resources Information Center
Helgeson, Stanley L.; And Others
This document contains 36 programs and/or material listings that were nominated by at least three persons and for which there was evidence of the quality of the program or materials. Reviewers looked for positive evaluation data on the impact of the materials on students, or other information that assessed the quality of the program or materials,…
NASA Astrophysics Data System (ADS)
Libidinsky, Lisa Jill
2002-09-01
There are many demands on the elementary classroom teacher today, such that teachers often do not have the time and resources to instruct in a meaningful manner that would produce effective, real instruction. Subjects are often disjointed and not significant. When teachers instruct using an integrated approach, students learn more efficiently as they see connections in the subjects. Science and language arts, when combined to produce an integrated approach, show positive associations that can enable students to learn real-life connections. In addition, with the onset of technology and the increased usage of technological programs in the schools, teachers can use technology to support an integrated curriculum. When teachers use a combined instructional focus of science, language arts, and technology to produce lessons, students are able to gain knowledge of concepts and skills necessary for appropriate academic growth and development. Given that there are many software programs available to teachers for classroom use, it is imperative that quality software is used for instruction. Using criteria based upon an intensive literature review of integrated instruction in the areas of science and language arts, this study examines science and language arts software programs to determine whether there are science and language arts integrated themes in the software analyzed. Also, this study examines whether more science and language arts integrated themes are present in science or language arts software programs. Overall, this study finds a significant difference between language arts software and science software when looking at integrated themes. This study shows that science software shows integrated themes with language arts more often than does language arts software with science. The findings in this study can serve as a reference point for educators when selecting software that is meaningful and effective in the elementary classroom. Based on this study, it is apparent that there is a need to evaluate software for appropriate use in the classroom in order to promote effective education.
NASA Astrophysics Data System (ADS)
Lones, Joe J.; Maltseva, Nadezhda K.; Peterson, Kurt N.
2007-06-01
We seek methods of stimulating young school children to develop an interest in science and engineering through a natural curiosity for the reaction of light. Science learning now begins fully at middle school. Reading skills develop with activity at home and progress through the elementary school curriculum, and in a like manner, a curious interest in science also should begin at that stage of life. Within the ranks of educators, knowledge of optical science needs to be presented to elementary school students in an entertaining manner. One such program used by the authors is Doug Goodman's Optics Demonstrations With the Overhead Projector, co-published by and available from OSA (Optical Society of America) and SPIE-The International Society of Optical Engineering. These demonstrations have found their way into middle and high schools; however, as a special approach, the authors have presented selected Goodman demonstrations as a "Magic Show of Light" to elementary schools. Both students and faculty have found the show most entertaining! If optical knowledge is utilized to stimulate science learning in the coming generation at elementary school level, there's a good chance we can sow some fertile seeds of advancement for all future segments of the workforce. Students can enjoy what they are doing while building a foundation for contributing gainfully to society in any profession. We need to explore expanding exposure of the "Magic Show of Light" to elementary schools.
NASA Astrophysics Data System (ADS)
Dashoush, Nermeen
This dissertation reports on an ethnographic study to examine and detail emerging practices in a community of practice comprised of an elementary teacher and a scientist (microbiologist). The study was conducted in order to design a model for professional development. It also aimed to contribute to the limited research involving elementary educators and their work with scientists. Furthermore, extra attention was given to understanding how both the elementary teacher and the scientist benefitted from their participation in the community of practice created from working together in teaching and learning science as a form of professional development. This was in accordance with a community of practice framework, which details that a healthy community is one without a perception of hierarchy among members (Wenger, 1998). The elementary teacher and scientist as participants collaborated in the creation of a science unit for an afterschool program. A wide variety of data was collected, including: interviews, transcribed meetings, and online journals from both participants. The data was coded for reoccurring themes surrounding practices and shifts in perception about science teaching and learning that emerged from this community of practice as professional development. The findings have implications for practices that could be used as a foundational structure in future collaborations involving elementary teachers and scientists for elementary science professional development.
Nepal: Vocational Educator's Role in Elementary Education
ERIC Educational Resources Information Center
Stitt, Thomas R.
1974-01-01
The innovative vocational education program of the elementary grades in the developing country of Nepal focuses on "self-help" within the "practical arts" (agriculture, trade and industrial, and home science fields) and emphasizes application of subject matter to students' daily lives, integration of skills into the curriculum,…
It's 1984 and Robots Are in the Classroom.
ERIC Educational Resources Information Center
Howe, Samuel F.
1984-01-01
Describes the features of TOPO, HERO, RB5X, and Tasman Turtle, personal robots used in elementary and secondary schools and colleges to introduce concepts of artificial intelligence, advanced high school and college computer science, and elementary level programming. Mechanical arms are also briefly mentioned. (MBR)
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?
NASA Astrophysics Data System (ADS)
Milford, Todd M.; Tippett, Christine D.
2013-06-01
This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by preservice teachers reflected the stereotype of a scientist as a man with a wild hairdo who wears a lab coat and glasses while working in a laboratory setting. However, results indicated statistically significant differences in stereotypical components of representations of scientists depending on preservice teachers' program and previous science experiences. Post degree students in secondary science methods courses created images of scientists with fewer stereotypical elements than drawings created by students in the regular elementary program.
NASA Astrophysics Data System (ADS)
Pearson, Roxanne N.
In 2010, the President's Council of Advisors on Science and Technology recommended that eight hundred new STEM focused elementary and middle schools be established. Unfortunately, districts may be slow to implement STEM at the elementary level because they do not understand how to do so effectively (Zimny, 2017). School administrators need a framework for decision-making and supervisory feedback related to the process of managing these programs (Zimny, 2017). To support administrators in implementing elementary STEM immersion programs, this project explored three questions: What criteria are common among existing STEM immersion program rubrics? What criteria should be included in a comprehensive rubric for managing elementary STEM immersion programs at the district level? What do district documents show about how elementary STEM immersion programs develop, implement, and evaluate those programs? The team developed a comprehensive STEM program review instrument including criteria for effective elementary STEM curriculum and the professional development and administrative support necessary to implement such curriculum. These criteria were organized into three stages, including the planning and development of elementary STEM immersion programs, the implementation of these programs, and the evaluation of these programs after they had been implemented for a significant period of time. The team synthesized best practice indicators relevant to elementary STEM programs from existing K-12 guides, then validated those indicators against current best practice research and feedback from STEM education experts. District documents from seven elementary STEM immersion programs in Missouri and Colorado were examined using the team's rubric. Scores were higher in the areas of program planning, content alignment, and ongoing refinement of curriculum, and lower in the areas of professional development for professional skills and STEM-specific pedagogy, two-way communication with stakeholders, and data collection for program refinement. Scores were lowest for those schools with inadequate documentation of their program management processes. The team recommended districts institute a more rigorous documentation process for managing innovative programs such as STEM immersion. Communication plans should include procedures for two-way communication with all stakeholders. Data collection and refinement efforts should increase, as should professional development opportunities related to professional skills and STEM-specific pedagogy; this should include administrators.
Fort Benton Science Curriculum Outline.
ERIC Educational Resources Information Center
Fort Benton Public Schools, MT.
The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…
Teachers' Voices on Integrating Metacognition into Science Education
ERIC Educational Resources Information Center
Ben-David, Adi; Orion, Nir
2013-01-01
This study is an attempt to gain new insight, on behalf of science teachers, into the integration of metacognition (MC) into science education. Participants were 44 elementary school science teachers attending an in-service teacher-training (INST) program. Data collection was carried out by several data sources: recordings of all verbal…
NASA Astrophysics Data System (ADS)
Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Tate Stevenson, Kathryn
2014-09-01
In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students' science and outdoor views and activity choices along with those of adults (teachers, parents, and principals). Significant differences were found between pre- and posttest measures along with gender and ethnic differences with respect to students' science knowledge and environmental attitudes. Interview data exposed limitations of outdoor learning at both schools including standardized test pressures, teachers' views of science instruction, and desultory connections of alternative learning settings to 'school' science.
NASA Astrophysics Data System (ADS)
Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.
2015-12-01
The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.
Enhancing Elementary Teacher Practice through Technological/Engineering Design Based Learning
ERIC Educational Resources Information Center
Deck, Anita S.
2016-01-01
As widespread as Science, Technology, Engineering, and Math (STEM) initiatives and reforms are today in education, a rudimentary problem with these endeavors is being overlooked. In general, education programs and school districts are failing to ensure that elementary teachers who provide children's early academic experiences have the appropriate…
Tornadoes & Hurricanes. The Natural Disaster Series. Grades 4-8.
ERIC Educational Resources Information Center
Deery, Ruth
The topics of tornadoes and hurricanes are important to children but are often missing from elementary textbooks. This document is a part of "The Natural Disaster Series" and is an attempt to supplement elementary science and social studies programs with lessons and student activities. Reasoning skills are emphasized throughout the…
Developing Creative Behavior in Elementary School Students with Robotics
ERIC Educational Resources Information Center
Nemiro, Jill; Larriva, Cesar; Jawaharlal, Mariappan
2017-01-01
The School Robotics Initiative (SRI), a problem-based robotics program for elementary school students, was developed with the objective of reaching students early on to instill an interest in Science, Technology, Engineering, and Math disciplines. The purpose of this exploratory, observational study was to examine how the SRI fosters student…
ERIC Educational Resources Information Center
Wulfson, Stephen, Ed.
1987-01-01
Provides reviews of six computer software programs designed for use in elementary science education programs. Provides the title, publisher, grade level, and descriptions of courseware on ant farms, drugs, genetics, beachcombing, matter, and test generation. (TW)
Teachers' voices: A comparison of two secondary science teacher preparation programs
NASA Astrophysics Data System (ADS)
Kohlhaas Labuda, Kathryn
This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers' perceptions of the philosophy of their program revolved about research based teaching. S-teachers reported more research experiences. S-teachers perceived better student-science faculty relationship, while M-teachers reported stronger student-education faculty relationships. Teachers from both programs recommended more field experiences that resembled more closely the real life situations of teachers. They recommended smaller classes in both science and education courses. They suggested eliminating or altering courses that were not beneficial.
Get-Up-And Go: A Science Museum's Approach to Teaching Children About Energy
ERIC Educational Resources Information Center
Bell, Lawrence; Connelly, Dorothy M.
1978-01-01
Describes the energy education program given for elementary school groups at the Museum of Science in Boston. Several energy machines or demonstrations are described and their use in this energy education program is outlined. Also some other suggestions to illustrate the use, storage, and transformation of energy are presented. (MDR)
Learning with Otis. A Conservation Education Activities Book, Grade 3.
ERIC Educational Resources Information Center
Haley-Oliphant, Ann; Behrens, Larry
The Learning with Otis program is designed to provide elementary school teachers with practical conservation education activities which should be infused into the existing curriculum on a regular basis. Although many of these activities are science-oriented, the program is not, and should not be considered a science curriculum exclusively. This…
Pre-Service Science and Technology Teachers' Mental Images of Science Teaching
ERIC Educational Resources Information Center
Duban, Nil Yildiz
2013-01-01
Problem Statement: The constructivist reorganization of the elementary education programs in Turkey has revealed the importance of training skilled teachers who are familiar with both constructivist theory and the educational programs. In this way, teachers can adapt to their new roles, learn how to guide students, and prepare the best learning…
NASA Astrophysics Data System (ADS)
Jaipal-Jamani, Kamini; Angeli, Charoula
2017-04-01
The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' ( n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science methods course. Data collection methods included pretests and posttests on science content, prequestionnaires and postquestionnaires for interest and self-efficacy, and four programming assignments. Statistical results showed that preservice teachers' interest and self-efficacy with robotics increased. There was a statistically significant difference between preknowledge and postknowledge scores, and preservice teachers did show gains in learning how to write algorithms and debug programs over repeated programming tasks. The findings suggest that the robotics activity was an effective instructional strategy to enhance interest in robotics, increase self-efficacy to teach with robotics, develop understandings of science concepts, and promote the development of computational thinking skills. Study findings contribute quantitative evidence to the STEM literature on how robotics develops preservice teachers' self-efficacy, science knowledge, and computational thinking skills in higher education science classroom contexts.
Think Scientifically: Hiding Science in a Storybook
NASA Astrophysics Data System (ADS)
Van Norden, W. M.; Wawro, M.
2013-12-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.
NASA Astrophysics Data System (ADS)
Moldwin, M. B.; Fiello, D.; Harter, E.; Holman, G.; Nagumo, N.; Pryharski, A.; Takunaga, C.
2008-12-01
An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... competitive preference priority. Absolute Priority 1: Promoting Science, Technology, Engineering, and... applications that meet these priorities. These priorities are: Absolute Priority 1: Promoting Science... participation in the core academic areas of English, mathematics, and science; (4) Involving business and...
Meanings teachers make of teaching science outdoors as they explore citizen science
NASA Astrophysics Data System (ADS)
Benavides, Aerin Benavides
This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.
NASA Astrophysics Data System (ADS)
Koehler, Birgit G.; Park, Lee Y.; Kaplan, Lawrence J.
1999-11-01
For a number of years we have been organizing and teaching a special outreach course during our Winter Study Program (the month of January). College students plan, develop, and present hands-on workshops to fourth-grade students and their parents, with faculty providing logistical support and pedagogical advice. Recent topics have been "Forensic Science", "Electricity and Magnetism", "Chemistry and Cooking", "Waves", "Natural Disasters", "Liquids", "Pressure", "Color and Light", "Momentum and Inertia", "Illusions", and "The Senses". The two-hour workshops, held one weekend on campus, emphasize hands-on experiments involving both the kids and the parents. Handouts for each workshop give instructions for doing several experiments at home. This program has been a great success for all involved: the college students gain insight into an aspect of science and what it takes to develop and teach that topic, the elementary school students participate in an exciting and challenging scientific exploration, and the parents have a chance to learn some science while spending time working on projects with their children. We provide an overview of the pedagogical aims of our current approach and a sense of the time-line for putting together such a program in a month.
NASA Astrophysics Data System (ADS)
Cooke-Nieves, Natasha Anika
Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal professional development in elementary science reform are offered. It is suggested that researchers investigate collaborative coaching through the lenses of organizational learning network theory, and develop professional learning communities with formal and informal educators; and that professional developers in city school systems and informal science institutions work in concert to produce more effective elementary teachers who not only love science but love teaching it.
The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction
NASA Astrophysics Data System (ADS)
Reif, C.; Oechel, W.
2003-12-01
The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz, Mexico where there are SDSU climate research stations. San Diego and Alaska scientists travel to Barrow twice a year to participate in an intense, month-long science instruction partnership. PISCES collects a variety of data including student work, science attitude surveys, interviews with students and teachers, video, as well as science content knowledge. The students find themselves enjoying science and are deeply impacted by the presence of an actual scientist in their classroom. As PISCES enters its fifth year, it is evident that the combination of continuous support inside and outside of the classroom is successful in developing teacher engagement in science instruction.
NASA Astrophysics Data System (ADS)
Sewart, Bethany Bianca
Teacher education knowledge, skills, and dispositions have recently become a well-discussed topic among education scholars around the nation, mainly due to its attention by the National Council for Accreditation of Teacher Education (NCATE) over the past few years. Accrediting agencies, such as NCATE and the Interstate New Teacher and Assessment and Support Consortium (INTASC), have sought to improve the quality of teacher education programs by examining knowledge, skills, and dispositions as factors in preparing highly-qualified teachers. There is a paucity of research examining these factors for elementary science teachers. Because these factors influence instruction, and students are behind in scientific and mathematical knowledge, elementary science teachers should be studied. Teacher knowledge, skills, and dispositions should be further researched in order to ultimately increase the quality of teachers and teacher education programs. In this particular case, by determining what schools of education and public schools deem important knowledge, skills, and dispositions needed to teach science, higher education institutions and schools can collaborate to further educate these students and foster the necessary qualities needed to teach effectively. The study of knowledge, skills, and dispositions is crucial to nurturing effective teaching within the classroom. Results from this study demonstrated that there were prominent knowledge, skills, and dispositions identified by teachers, administrators, and science teacher educators as important for effective teaching of elementary science. These characteristics included: a willingness to learn, or open-mindedness; content knowledge; planning, organization, and preparation; significance of teaching science; and science-related assessment strategies. Interestingly, administrators in the study responded differently than their counterparts in the following areas: their self-evaluation of teacher effectiveness; how the teaching of science is valued; the best approach to science teaching; and planning for science instruction. When asked of their teaching effectiveness while teaching science, principals referred to enjoying science teaching and improving their practice, while teachers and science teacher educators discussed content knowledge. Administrators valued conducting experiments and hands-on science while teaching science, while their educational counterparts valued creating student connections and providing real-life applications to science for students. In their professional opinions, administrators preferred a hands-on approach to science teaching. Teachers and science teacher educators stated that they view scientific inquiry, exploration, and discovery as effective approaches to teaching within their classrooms. Administrators predicted that teachers would state that lack of resources affects their lesson planning in science. However, teachers and science teacher educators asserted that taking time to plan for science instruction was most important.
NASA Astrophysics Data System (ADS)
Lones, Joe J.; Maltseva, Nadezhda K.; Peterson, Kurt N.
2007-09-01
We seek methods of stimulating young school children to develop an interest in science and engineering through a natural curiosity for the reaction of light. Science learning now begins fully at middle school. Reading skills develop with activity at home and progress through the elementary school curriculum, and in a like manner, a curious interest in science also should begin at that stage of life. Within the ranks of educators, knowledge of optical science needs to be presented to elementary school students in an entertaining manner. One such program used by the authors is Doug Goodman's Optics Demonstrations With the Overhead Projector, co-published by and available from OSA (Optical Society of America) and SPIE-The International Society of Optical Engineering. These demonstrations have been presented in middle and high schools; however, as a special approach, the authors have developed selected Goodman demonstrations as a "Magic Show of Light" for elementary schools. Teachers in the U.S. are overloaded with classroom instruction specifically targeted at improving reading and math scores on the Standard Achievement Test (SAT); therefore, science is getting "short changed" in the education system. For the sake of our future, industry volunteers must come forward to promote interest in science beginning with K-6.
NASA Astrophysics Data System (ADS)
Mills, Jada Jamerson
There is a need for STEM (science, technology, engineering, and mathematics) education to be taught effectively in elementary schools. In order to achieve this, teacher preparation programs should graduate confident, content strong teachers to convey knowledge to elementary students. This study used interdisciplinary collaboration between the School of Education and the College of Liberal Arts through a Learning-by-Teaching method (LdL): Lernen durch Lernen in German. Pre-service teacher (PST) achievement levels of understanding science concepts based on pretest and posttest data, quality of lesson plans developed, and enjoyment of the class based on the collaboration with science students. The PSTs enrolled in two treatment sections of EDEL 404: Science in the Elementary Classroom collaborated with science students enrolled in BISC 327: Introductory Neuroscience to enhance their science skills and create case-based lesson plans on neurothology topics: echolocation, electrosensory reception, steroid hormones, and vocal learning. The PSTs enrolled in the single control section of EDEL 404 collaborated with fellow elementary education majors to develop lesson plans also based on the same selected topics. Qualitative interviews of education faculty, science faculty, and PSTs provided depth to the quantitative findings. Upon lesson plan completion, in-service teachers also graded the two best and two worst plans for the treatment and control sections and a science reviewer graded the plans for scientific accuracy. Statistical analyses were conducted for hypotheses, and one significant hypothesis found that PSTs who collaborated with science students had more positive science lesson plan writing attitudes than those who did not. Despite overall insignificant statistical analyses, all PSTs responded as more confident after collaboration. Additionally, interviews provided meaning and understanding to the insignificant statistical results as well as scientific accuracy of the lesson plans.
GLOBE Hydrology Workshop SEIP program
NASA Technical Reports Server (NTRS)
2005-01-01
Matt Krigbaum (left), a teacher at Mitchell Elementary in Ann Arbor, Mich., pours water from the Pearl River into a turbidity tube to measure the river's light penetration. Krigbaum, along with Lois Williams, principal at Elizabeth Courville Elementary in Detroit, Mich.; and Carolyn Martin and Arlene Wittmer, teachers at Elizabeth Courville Elementary; conducted the experiment during a GLOBE (Global Learning and Observations to Benefit the Environment) hydrology workshop. GLOBE is a worldwide, hands-on science education program in which teachers can become certified to implement the program at their schools after taking hydrology, land cover/biology, atmosphere/climate and soil protocol workshops. Twelve teachers from across the country attended the recent weeklong GLOBE training at SSC, offered through its Educator Resource Center and the NASA Explorer Schools program. All workshops are free and offer continuing education units.
GLOBE Hydrology Workshop SEIP program
2005-06-30
Matt Krigbaum (left), a teacher at Mitchell Elementary in Ann Arbor, Mich., pours water from the Pearl River into a turbidity tube to measure the river's light penetration. Krigbaum, along with Lois Williams, principal at Elizabeth Courville Elementary in Detroit, Mich.; and Carolyn Martin and Arlene Wittmer, teachers at Elizabeth Courville Elementary; conducted the experiment during a GLOBE (Global Learning and Observations to Benefit the Environment) hydrology workshop. GLOBE is a worldwide, hands-on science education program in which teachers can become certified to implement the program at their schools after taking hydrology, land cover/biology, atmosphere/climate and soil protocol workshops. Twelve teachers from across the country attended the recent weeklong GLOBE training at SSC, offered through its Educator Resource Center and the NASA Explorer Schools program. All workshops are free and offer continuing education units.
NASA Astrophysics Data System (ADS)
Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.
2016-07-01
This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results indicated teachers used a one-to-one student-to-computer ratio most often either during class-wide individual computer use or during a rotating station structure. Worksheets, general support, and peer collaboration were the most common forms of instructional support. The least common instructional support forms included lesson pacing, initial play, and a closure discussion. Students' simulation use was supported in the fewest ways during a rotating station structure. Results suggest that simulation professional development with elementary teachers needs to explicitly focus on implementation structures and instructional support to enhance participants' pedagogical knowledge and improve instructional simulation use. In addition, research is needed to provide theoretical explanations for the observed patterns that should subsequently be addressed in supporting teachers' instructional simulation use during professional development or in teacher preparation programs.
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
Science 2. De Soto Parish Curriculum Guide.
ERIC Educational Resources Information Center
Brown, Emmagene L.; And Others
This guide is designed to provide teachers (grade 2) with a ready resource for planning, organizing, and teaching science to the elementary child. Many suggested activities will provide an enriched science program. Each unit lists estimated time, content, concepts or "understandings," problems to deal with, activities, suggestions for…
The Learning Cycle and College Science Teaching.
ERIC Educational Resources Information Center
Barman, Charles R.; Allard, David W.
Originally developed in an elementary science program called the Science Curriculum Improvement Study, the learning cycle (LC) teaching approach involves students in an active learning process modeled on four elements of Jean Piaget's theory of cognitive development: physical experience, referring to the biological growth of the central nervous…
Scientific Literacy in Nigeria: The Role of Science Education Programmes.
ERIC Educational Resources Information Center
Olorundare, Solomon A.
1988-01-01
Delineates a concept of scientific literacy as it relates to the Nigerian situation. Examines the relevance and implications of scientific literacy to the educational system and national security. Suggests how scientific literacy can be encouraged through science programs, especially in elementary science education. (YP)
ERIC Educational Resources Information Center
Gray, Kyle
2017-01-01
Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…
1992-10-01
science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools ...corporate sponsors. curriculum and instruction in school mathematics For further information about the project or for were developed in a comprehensive... students develop critical thinking skills and to enhance their ability to solve problems through hands-on activities. The staff and participants were most
ERIC Educational Resources Information Center
Johansen, Barry-Craig P.; And Others
Spanish translations of 19 of the Minneapolis (Minnesota) Public Schools' elementary school science units are presented. The materials were translated for use in a partial immersion program. Unit topics include, among others: magnets, organisms (grade 1), seeds and plants (grade 1), butterflies (grade 2), electricity (grade 3), the food chain…
Connecting Urban Students with Engineering Design: Community-Focused, Student-Driven Projects
ERIC Educational Resources Information Center
Parker, Carolyn; Kruchten, Catherine; Moshfeghian, Audrey
2017-01-01
The STEM Achievement in Baltimore Elementary Schools (SABES) program is a community partnership initiative that includes both in-school and afterschool STEM education for grades 3-5. It was designed to broaden participation and achievement in STEM education by bringing science and engineering to the lives of low-income urban elementary school…
Teaching Conceptually Oriented Social Science Education Programs in the Elementary School.
ERIC Educational Resources Information Center
Mahlios, Marc C.
Approaches to elementary social studies education that focus on concept and inquiry learning are outlined. The basic goal of the teacher in concept teaching is to aid the student in developing relationships among factual learning, conceptualization, and personal behavior. Learning activities should focus on the process concept (i.e., one that is…
EDUCATIONAL TELEVISION IN THE SMALL SCHOOL.
ERIC Educational Resources Information Center
LEDFORD, LOWELL E.
HENSLEY ELEMENTARY SCHOOL, CONSISTING OF 72 STUDENTS AND 3 TEACHERS, HAS INCORPORATED 12 EDUCATIONAL TELEVISION PROGRAMS AS A REGULAR PART OF THE CURRICULUM IN THE FIRST 6 GRADES. GRADES 1 AND 2 VIEWED PROGRAMS IN SCIENCE, SPEECH, ART, MUSIC, AND STORY TIME. GRADES 3 AND 4 VIEWED SERIES IN MUSIC, SCIENCE, ART, AND SPEECH, WHILE GRADES 5 AND 6 WERE…
Developing Elementary Math and Science Process Skills Through Engineering Design Instruction
NASA Astrophysics Data System (ADS)
Strong, Matthew G.
This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.
The Not-So-Rocky Road to Earth Science: Some Geologists Show the Way.
ERIC Educational Resources Information Center
Blueford, Joyce R.; Gordon, Leslie C.
1984-01-01
Discusses summer workshops designed to help elementary teachers develop an earth science program for their schools. Includes descriptions of three lessons and related instructional strategies on rocks and minerals, topographic maps, and fossils. (BC)
Development of The Science Processes Test.
ERIC Educational Resources Information Center
Ludeman, Robert R.
Presented is a description and copy of a test manual developed to include items in the test on the basis of children's performance; each item correlated highly with performance on an external criterion. The external criterion was the Individual Competency Measures of the elementary science program Science - A Process Approach (SAPA). The test…
"Celebrate Science" Has Formula for Hands-On Learning
ERIC Educational Resources Information Center
Brydolf, Carol
2012-01-01
Cost-effective, easily replicated program is a win-win situation for high schoolers who teach science and for their elementary students. The thank-you letter from Leslie, a grade-schooler in San Diego County's Ramona Unified School District, speaks volumes about the excitement generated by "Celebrate Science"--an innovative,…
Investigative Primary Science: A Problem-Based Learning Approach
ERIC Educational Resources Information Center
Etherington, Matthew B.
2011-01-01
This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…
NASA Astrophysics Data System (ADS)
Adibelli, Elif
This qualitative study aimed to explore the changes in elementary science teachers' conceptions of nature of science (NOS) and their beliefs about the developmental appropriateness and importance of NOS after participating in an academic, year-long professional development program (PDP) as well as the factors facilitating these changes. The PDP consisted of two phases. In the first phase, the participants received NOS training designed with an explicit-reflective instructional approach. In the second phase, the participants implemented several NOS training activities in their classrooms. Four elementary science teachers who volunteered and completed all components of the PDP (i.e., the NOS training and the NOS teaching) comprised the participants of the present study. A multiple-embedded case study design was employed to explore the changes in the elementary science teachers' conceptions of NOS and their beliefs about the developmental appropriateness and importance of NOS. The study data were collected from multiple sources. The primary data sources included (a) Views of Nature of Science Elementary School Version 2 (VNOS-D2) questionnaire (Lederman & Khishfe, 2002), (b) Ideas about Science for Early Elementary (K-4) Students questionnaire (Sweeney, 2010), and (c) follow-up semi-structured interviews. The secondary data sources included videotaping of meetings with teachers, reflective field notes, and artifacts produced by teachers and their students. Data were analyzed using Yin's (1994, 2003) analytic tactics of pattern matching, explanation building, and cross-case synthesis. The findings of the study revealed that the elementary science teachers showed gradual, but substantial changes in their conceptions, and beliefs about the developmental appropriateness and importance of the NOS aspects over the course of participation in the PDP. Moreover, the participants identified nine components in the PDP that facilitated these changes in their conceptions, and beliefs about the developmental appropriateness and importance of the NOS aspects. These components were (a) specific focus on the NOS content, (b) participation in hands-on activities on NOS, (c) educational readings on NOS, (d) multiple types/ formats of reflection, (e) multiple exposure to the NOS content, (f) structural consistency in the presentation of the NOS content, (g) the evaluation of secondary student data, (h) the analysis of national and state science standards in terms of NOS, and (i) the implementation of the NOS activities in the classroom. Based on the findings of this study, it may be concluded that explicit-reflective NOS instruction coupled with NOS teaching is sufficient to evolve and crystallize teachers' conceptions and beliefs about the developmental appropriateness and importance of the NOS aspects.
NASA Astrophysics Data System (ADS)
Sandholtz, Judith Haymore; Ringstaff, Cathy
2014-10-01
This longitudinal study examined the extent to which teachers' participation in a 3-year professional development program enhanced their self-efficacy and prompted changes in science instruction in the early elementary grades. The study used a mixed-methods design, and included 39 teachers who taught in kindergarten, first grade, or second grade classrooms in rural school districts. Data sources, administered pre-program and at the end of each year, included a self-efficacy assessment and teacher survey. Interviews and classroom observations provided corroborating data about teachers' beliefs and science instruction. Results showed significant increases in teachers' overall self-efficacy in teaching science, personal efficacy, and outcome expectancy efficacy during the 3 years. Gains in self-efficacy were correlated with changes in reported instructional practices, particularly student participation activities. However, changes in self-efficacy tended not to be correlated with changes in instructional time. Contextual factors beyond teachers' direct control, such as curricular and testing requirements in mathematics and language arts influenced time allotted to science instruction.
ERIC Educational Resources Information Center
Andrews, Sheila Briskin; Kirschenbaum, Audrey
This guide contains teacher background information and activities for students which deal with space travel and is designed to encourage elementary school students to take a greater interest in mathematics and science. The activities in this guide are to be used with grades 4 to 6 and cover the topics of food, clothing, health, housing,…
ERIC Educational Resources Information Center
Andrews, Sheila Briskin; Kirschenbaum, Audrey
This guide contains teacher background information and activities for students that relate to space travel and is designed to encourage elementary school students to take a greater interest in mathematics and science. The activities in this guide are to be used with grades 1 to 3 and cover the topics of food, clothing, health, housing,…
NASA Astrophysics Data System (ADS)
Mayo, M.; Williams, C.; Rodriguez, T.; Greely, T.; Pyrtle, A. J.; Rivera-Rentas, A. L.; Vilches, M.
2004-12-01
The National Science Foundation's Graduate Teaching Fellows in K-12 Education (GK-12) Program has enabled science, technology, engineering and mathematics (STEM) graduate schools across the country to become more active in local area K-12 schools. An overview of a graduate student's experiences, insights gained and lessons learned as a Fellow in the 2003-2004 Universidad Metropolitana's (UMET) environmental science and the 2004-2005 University of South Florida's (USF) ocean science GK-12 Programs is presented. The major goals of the 2003-2004 UMET GK-12 Program were 1) to enrich environmental science teaching and learning via a thematic approach in eight local public schools and 2) to provide UMET graduate students with exposure to teaching methodologies and practical teaching experience. Utilizing examples from local environments in and nearby Carolina, Puerto Rico to teach key science principles at Escuela de la Comunidad Juana Rodriguez Mundo provided numerous opportunities to relate science topics to students' daily life experiences. By 2004, the UMET GK-12 Program had successfully engaged the entire student body (primarily comprised of bilingual minority kindergarten to sixth graders), teachers and school administrators in environment-focused teaching and learning activities. Examples of such activities include tree planting projects to minimize local erosion, conducting a science fair for the first time in many years, and numerous opportunities to experience what "real scientists do" while conducting environmental science investigations. During the 2004-2005 academic year, skills, insights and lessons learned as a UMET GK-12 Fellow are being further enhanced through participation in the USF GK-12 OCEANS Program. The overall objectives of the 2004-2005 USF GK-12 OCEANS assignment at Madeira Beach Elementary School in Saint Petersburg, Florida are to 1) engage students from various ethnic backgrounds and cultures in hands-on science activities, 2) enhance the school's third grade ocean science education curriculum, and 3) foster dialog between students at Madeira Beach Elementary School and Escuela de la Comunidad Juana Rodriguez Mundo, via exchange of pictures, video recordings, letters and emails related to environment-focused learning activities being undertaken at the two schools. In addition to these objectives, during the 2004-2005 academic year several ocean science-focused activities, the majority of which were adapted and/or identified from either the UMET GK-12 or USF OCEAN GK-12 Programs, will be utilized to further stimulate Madeira Beach Elementary School third graders' critical thinking skills. Examples of such activities, including hands-on exercises, case studies, games and field trips are highlighted in this presentation.
NASA Astrophysics Data System (ADS)
Hazari, Alan A.
The purpose of the study was to determine the status of individualized science instruction in Tennessee teacher education institutions. Specifically, the study sought to investigate the extent of teaching about and/or use of 31 strategies for individualizing instruction in elementary science teaching methods courses. The individualized instruction frameworks, with strategies for individualizing instruction, were developed by Rowell, et al. in the College of Education at the University of Tennessee, Knoxville. A review of the literature on the preparation of preservice elementary science teachers for individualized instruction in K-8 classrooms revealed very limited research. This investigation sought to identify how the elementary science teacher educators prepared their preservice elementary science teachers to (1) learn about the children they will teach, (2) determine differences among learners, (3) plan for individualized science instruction in the elementary school classroom, and (4) help attend to individual student differences. The researcher prepared and used a 31-item survey to poll elementary science teacher educators in Tennessee. The participants included K-8 educators from 40 state-approved teacher education institutions. The high teacher education institution response rate (72.5%) brought input from institutions of varying sizes, operated privately or publicly across the state of Tennessee. In general, Tennessee elementary science teacher educators reported that they tended to teach about and/or use a fair number of the 31 individualized instruction strategies that involve both learning about K-8 students and their differences. On the other hand, many of these educators provided preservice teachers with quite a bit of the strategies that lead to planning for individualized science instruction and to attending to individual student differences. The two strategies that were the most taught about and/or used in elementary science methods by Tennessee educators were planning for and maintaining an interactive classroom and implementing cooperative learning groups. The two strategies with the lowest rating were using a computer-tracking system to keep student profiles and using commercial tests to determine student placement. Almost 42% of the strategies in the survey were rated high to very high. This indicated that Tennessee educators do regularly include many of these 31 strategies in their elementary science methods courses. Examples include hands-on approach, cooperative learning, thematic and project teaching, learning centers, and the use of the Tennessee Instructional Model. The study also showed that Tennessee science teacher educators in church-related institutions appeared to utilize more of the 31 strategies for individualizing instruction in K-8 classrooms than do the educators in non-church-related institutions. Tennessee K-8 teachers could be better prepared if exposed to as many different and effective pedagogical tools and practices as possible during their education and preparation. A strong science program rich in content and a variety of instructional strategies (including individualized instruction) is needed to help maximize the science learning opportunities for all Tennessee students.
Evaluation of the Howard Hughes Science Grant Project, Year One
ERIC Educational Resources Information Center
Wolanin, Natalie; Wade, Julie
2015-01-01
The goal of the Howard Hughes Science Institute (HHMI) supported science program is to train one staff member to become a science lead within each of the elementary schools in the Montgomery County (Maryland) Public Schools (MCPS) district. The specific objectives of the first year of HHMI grant project were to: (1) provide approximately 20…
ERIC Educational Resources Information Center
Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy
2013-01-01
In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…
Strengthening STEM Education through Community Partnerships
Lopez, Colleen A.; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R.; Mothé, Bianca R.
2017-01-01
California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest. PMID:28725512
Strengthening STEM Education through Community Partnerships.
Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R
2016-01-01
California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.
National Geographic Society Kids Network: Report on 1994 teacher participants
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1994, National Geographic Society Kids Network, a computer/telecommunications-based science curriculum, was presented to elementary and middle school teachers through summer programs sponsored by NGS and US DOE. The network program assists teachers in understanding the process of doing science; understanding the role of computers and telecommunications in the study of science, math, and engineering; and utilizing computers and telecommunications appropriately in the classroom. The program enables teacher to integrate science, math, and technology with other subjects with the ultimate goal of encouraging students of all abilities to pursue careers in science/math/engineering. This report assesses the impact of the networkmore » program on participating teachers.« less
NASA Technical Reports Server (NTRS)
Brown, Robert W.
1990-01-01
The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.
ERIC Educational Resources Information Center
Magee, Paula A.; Leeth, Jane H.
2015-01-01
In this article, we examine the use of transmediation as a means of reading comprehension across content areas in an elementary teacher education program. The use of transmediation (moving from one sign system to another), coupled with the use of social issue/critical issue texts, supports the idea of connecting with text to develop deeper…
ERIC Educational Resources Information Center
Carrier, Sarah J.
2011-01-01
Teacher preparation programs have been under attack by policy makers in the last decade, and teacher educators are constantly striving to improve their programs. Yet, there are several research-based practices that have been shown to be effective for developing teachers. In this article, the author summarizes a study in one science methods course…
An Evaluation of the Program To Improve Elementary Science (PIES).
ERIC Educational Resources Information Center
Zielinski, Edward J.; Smith, Bruce G.
The purposes of this study were to determine (1) whether or not the participants of the program demonstrated significant gains in knowledge and attitudes as a result of the courses; (2) whether the gains persisted over time; and (3) if there was an associated increase in the participants' proclivity to do science which was also stable over time.…
ERIC Educational Resources Information Center
Connors, James J., Ed.; Murphy, Tim H., Ed.
The following are among the 51 papers and 7 poster sessions included: "Agriculture in the Classroom" (Hillison); "Effects of an Elementary Agri-Science Program on Student Perceptions of and Performance in Agriculture and Science" (Howell); "Current Status of Preservice Teacher Education Programs in Agriculture" (Swortzel); "Problems and Challenges…
ERIC Educational Resources Information Center
Camasso, Michael J.; Jagannathan, Radha
2018-01-01
In this article we describe the development, implementation, and some of the early impacts of Nurture thru Nature (NtN), an American after-school and summer program designed to introduce elementary school students in disadvantaged, urban public schools to natural science and environmental education. The program, which began operations in 2010 as a…
NASA Astrophysics Data System (ADS)
White, Michael Robert
This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type of partnership influenced the types of teaching behaviors used by elementary teachers during science instruction. Especially significant is that neither questioning wait-time nor level of questions asked was affected by the partnership experience. Furthermore, the partnership did not lead to teachers exhibiting a more constructivist-oriented approach to science instruction. However, teacher members of both partnerships expressed a strong wish for the partnership activities to continue.
NASA's Earth Science Enterprise: 1998 Education Catalog
NASA Technical Reports Server (NTRS)
1998-01-01
The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.
NASA's Elementary and Secondary Education Program: Review and Critique
ERIC Educational Resources Information Center
Feder, Michael A., Ed.; Schweingruber, Heidi A., Ed.; Quinn, Helen R., Ed.
2008-01-01
The federal role in precollege science, technology, engineering, and mathematics (STEM) education is receiving increasing attention in light of the need to support public understanding of science and to develop a strong scientific and technical workforce in a competitive global economy. Federal science agencies, such as the National Aeronautics…
Beyond the Transcript: Factors Influencing the Pursuit of Science and Mathematics Coursework
ERIC Educational Resources Information Center
Haag, Susan; Megowan, Colleen
2012-01-01
The nation's middle schools suffer from a shortage of qualified science and mathematics teachers. To address this need, one university in the southwest has developed the Modeling Institute, a master's degree program for in-service elementary educators interested in teaching science and mathematics at the middle school level. Identifying the…
ERIC Educational Resources Information Center
Bainer, Deb; Barron, Pat; Cantrell, Diane
Sciencing with Watersheds, Environmental Education, and Partnerships (SWEEP) is a professional development program designed to help elementary teachers improve the way they teach science using partnerships among teachers and resource professionals. SWEEP follows a thematic approach using watersheds as the core concept of an integrated elementary…
Integrating Science and Language Arts: A Sourcebook for K-6 Teachers.
ERIC Educational Resources Information Center
Shaw, Donna Gail; Dybdahl, Claudia S.
The purpose of this sourcebook is to provide elementary classroom teachers with meaningful ideas and activities for supplementing their science and language arts programs. Five general topics encompassing the earth, life, and physical science have been selected as units and further subdivided into chapters. Each chapter contains a multitude of…
41 CFR 109-43.4701 - Performance reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Science Education Programs, using the following format, will include data for all personal property... elementary and secondary schools and non-profit organizations under initiatives to support science and mathematics education. (2) Field office feeder reports shall not include data for contractor inventory which...
41 CFR 109-43.4701 - Performance reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Science Education Programs, using the following format, will include data for all personal property... elementary and secondary schools and non-profit organizations under initiatives to support science and mathematics education. (2) Field office feeder reports shall not include data for contractor inventory which...
41 CFR 109-43.4701 - Performance reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Science Education Programs, using the following format, will include data for all personal property... elementary and secondary schools and non-profit organizations under initiatives to support science and mathematics education. (2) Field office feeder reports shall not include data for contractor inventory which...
41 CFR 109-43.4701 - Performance reports.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Science Education Programs, using the following format, will include data for all personal property... elementary and secondary schools and non-profit organizations under initiatives to support science and mathematics education. (2) Field office feeder reports shall not include data for contractor inventory which...
NASA's Earth Science Enterprise: 1998 Education Catalog
NASA Technical Reports Server (NTRS)
1998-01-01
This catalog presents a reference guide to NASA Earth science education programs and products. The topics include: 1) Student Support (Elementary and Secondary, Undergraduate and Graduate, Postgraduate, and Postdoctorate); 2) Teacher/Faculty Preparation and Enhancement; 3) Systemic Change; 4) Curriculum Support; and 5) Resources.
41 CFR 109-43.4701 - Performance reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Science Education Programs, using the following format, will include data for all personal property... elementary and secondary schools and non-profit organizations under initiatives to support science and mathematics education. (2) Field office feeder reports shall not include data for contractor inventory which...
COURSE AND CURRICULUM IMPROVEMENT PROFECTS--MATHEMATICS, SCIENCE, ENGINEERING.
ERIC Educational Resources Information Center
FONTAINE, THOMAS D.
ELEMENTARY, SECONDARY, AND COLLEGE LEVEL SCIENCE COURSE IMPROVEMENT PROJECTS ARE DESCRIBED. INDIVIDUAL PROJECTS ARE CLASSIFIED ACCORDING TO INSTITUTIONAL LEVEL AND ACADEMIC DISCIPLINE. MANY OF THE PROJECTS REPRESENT COMPLETE EDUCATIONAL PROGRAMS AND INCLUDE SUCH MATERIALS AS STUDENT TEXTBOOKS, LABORATORY MANUALS, SUPPLEMENTARY READINGS, TEACHER…
NASA Astrophysics Data System (ADS)
Novak, Elena; Wisdom, Sonya
2018-05-01
3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.
NASA Astrophysics Data System (ADS)
Akura, Okong'o. Gabriel
This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.
NASA Astrophysics Data System (ADS)
Yoon, Hye-Gyoung; Joung, Yong Jae; Kim, Mijung
2012-06-01
In the context of the emphasis on inquiry teaching in science education, this study looks into how pre-service elementary teachers understand and practise science inquiry teaching during field experience. By examining inquiry lesson preparation, practice, and reflections of pre-service elementary teachers, we attempt to understand the difficulties they encounter and what could result from those difficulties in their practice. A total of 16 seniors (fourth-year students) in an elementary teacher education program participated in this study. In our findings, we highlight three difficulties `on the lesson' that are related to teaching practices that were missing in the classrooms: (1) developing children's own ideas and curiosity, (2) guiding children in designing valid experiments for their hypotheses, (3) scaffolding children's data interpretation and discussion and another three difficulties `under the lesson' that are related to problems with the pre-service teachers' conceptualization of the task: (4) tension between guided and open inquiry, (5) incomplete understanding of hypothesis, and (6) lack of confidence in science content knowledge. Based on these findings, we discuss how these difficulties are complexly related in the pre-service teachers' understandings and action. Several suggestions for science teacher education for inquiry teaching, especially hypothesis-based inquiry teaching, are then explored.
ERIC Educational Resources Information Center
Bozdogan, Aykut Emre; Yalcin, Necati
2009-01-01
This research aimed to examine the effects of visiting exhibitions and participating in the activities offered by science centers on raising the interest of second level students of primary education in science and improving their academic achievements. Thirty one 8th grade students chosen randomly from primary schools participated in the research…
NASA Astrophysics Data System (ADS)
Brogdon, Lori-Anne Stelmark
This research is a case study on the perceptions and attitudes of administrators in the area of elementary science and how their responses reflect agreement or dissonance with the perceptions of elementary teachers on the subject of science within the same district. The study used Likert-type surveys and interviews from both administrators and teachers on five key areas: 1) Attitudes towards science and teaching 2) Attitudes towards teaching science 3) Attitudes towards administrators 4) Time teaching science and 5) Attitudes about policy and standards. Survey data was analyzed within and across areas to identify similarity and difference within each group. The medians from the administrative and teacher surveys were then crossed referenced through the use of a Mann Whitney test to identify areas of similarity. Interview data was coded around three major themes: 1) Standards 2) Classroom Instruction and 3) Conversations. The findings show that even though administrators' perceptions favor the inclusion of science in the elementary classroom, both administrators and teachers in this study reported limited involvement from, and conversation with, each other on the topic of science education. Heavy reliance by the administrators was placed on the use of consultants to provide professional development in the area of science instruction and to review the use of state standards, resulting in limited conversation between administrators and teachers about science. Teachers reported a heavy reliance upon their colleagues in the area of science instruction and curriculum planning. In addition, both administrators and teachers reported a greater focus on math and English for classroom instruction. Findings in this research support implications that more focus should be placed on the role of administrators in the implementation of science instruction. Administrators can play a crucial role in the success of science programs at the building, district and state levels. Recommendations for further study include expanding upon the number of individuals surveyed and interviewed to develop a greater understanding of administrators' and teachers' perspectives of science, as well as a focus on the possible influences of the Common Core and Next Generation Science Standards in the elementary classroom.
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.
NASA Astrophysics Data System (ADS)
Giglio, Kathleen Rose Fitzgerald
This is an in depth study of two elementary school teachers, who are generalists because they teach multiple subjects to their classes, in addition to science, respectively in grade 3 and grade 6. The teachers taught and their students learned using a contemporary understanding of the nature of science (NOS), which they learned by actually doing science investigations, rather than being explicitly told about NOS (contrary to what some scholars claim). Neither teacher completed any formal/informal science training/experiences, especially connected to the construct NOS. Even though the teachers did not explicitly reference NOS in the classroom, their teaching about NOS was made possible through their implementation of the FOSS ( Full Option Science System) curriculum. Although their students enthusiastically demonstrated competence in both science process and content, as prescribed by the FOSS curriculum, the teachers' felt undermined by the state mandated assessments and the inclusion of student performance as a criterion for the state teacher evaluation system. This research was designed to answer the following questions: (1) What are elementary teachers' conceptions about NOS? (2) How are the teachers' NOS views manifested in their implementation of the FOSS program and their choices of instructional methods/materials? (3) What factors may have enhanced or hindered how the teachers sustained their NOS conceptions as they implemented the FOSS program? To explicate the relationship between teachers' views of NOS and the extent to which constructivist practices were employed in their science instruction, a multiple research methodology using grounded theory as the foundation and employing both quantitative and qualitative measures, was needed. Sources of quantitative data were written survey results using the Student Understanding of Science and Scientific Inquiry Questionnaire (SUSSI; Liang et al., 2008) Likert scale responses and constructed responses. Face validity was determined through correlation of teachers' NOS conceptions from their written responses with their verbal responses during semi-structured interviews. Sources of qualitative data were coding of field notes (audiotapes of interviews and classroom observations) and artifacts (instructional materials and student work). Following qualitative analysis, data were compared and validated through triagulation, and the results were summarized. The results indicate that teachers may develop contemporary NOS conceptions without explicit instruction and may fortify such perceptions in their students by teaching science using FOSS investigations without explicitly mentioning NOS (also contrary to what some scholars claim). These results have important implications for the successful implementation of the Next Generation Science Standards and future elementary science teacher education programs.
UTILIZATION OF THE REGENTS EDUCATIONAL TELEVISION BROADCAST PROGRAMS.
ERIC Educational Resources Information Center
LENIHAN, KENNETH J.; AND OTHERS
A SURVEY WAS TAKEN OF THE AUDIENCE OF THE REGENTS EDUCATIONAL TELEVISION PROJECTS PROGRAMS. RESULTS INDICATED THAT "TIME FOR SCIENCE" WAS THE MOST POPULAR TELEVISION PROGRAM, WITH "TELL ME A STORY" IN SECOND PLACE. ONLY 19 PERCENT OF THE HIGH SCHOOLS USED THE PROGRAMS COMPARED TO 45 PERCENT OF THE ELEMENTARY SCHOOLS. PAROCHIAL…
School Science Comes Alive. Phase Three
NASA Technical Reports Server (NTRS)
Hartline, Frederick F.
1997-01-01
Phase 3 of the School Science Comes Alive Program (S(sup 2)CAP) created an exciting, science - enrichment experience for third, fourth and fifth graders and their teachers and enhanced the science-teaching skills of teacher teams at each of four participating elementary schools on Virginia's Peninsula. The schools involved enroll a majority of Black students, many of whom are from economically disadvantaged households. Designed to build on the highly successful S(sup 2)CAP program of the preceding two years, this project brought college faculty together with classroom teachers and trained volunteers in a cooperative effort to make a lasting difference in the quality of science education at the four schools. In total, this program touched approximately 1000 the school children, more than half of whom are black, giving them direct and indirect exposure to the spirit of inquiry and adventure of the world-wide science community. In S(sup 2)CAP Phase 3, a large measure of responsibility was placed on the classroom teachers, thus creating a more sustainable partnership between college faculty and grade school teacher. Our college physics professors coached and supported teams of teachers from each school at intensive training workshops. A volunteer program provided each teacher with one or more trained volunteers to assist in class with the hands-on activities that have been central to the S2CAP program. Most of the equipment for these activities was constructed during the workshops by the teachers and volunteers from low cost materials provided by the program. Two types of volunteers were enlisted: science smart black college students and technically trained retirees (many of whom are ex-NASA employees). One goal of this program was to increase the numbers of minority students who see science as an interesting and exciting subject, to make the science period a time which students look forward to in the school day. Such an attitude is expected to translate naturally into a higher interest in science and engineering as a career for these students. A second goal was to create a sustainable improvement in the way science is taught at the elementary level. By the end of the program we expected that our teachers would be significantly more self reliant in using hands-on-activities as a part of their science curricula than they were prior to their involvement with S2CAP. In summary, S2CAP Phase 3 offered intensive training workshops for teachers and supporting volunteers followed by stimulating hands-on activities in the classroom for the children. These components combined to amplify the experience, enthusiasm, and ideas of our scientists in a way that complements the normal elementary school curriculum in each of the two school systems involved.
Lemons, Mealworms, and the Giant Amoeba: A Eureka Trip through School Science.
ERIC Educational Resources Information Center
McCormack, Alan J.
1980-01-01
Outlines teaching methods that emphasize the use of the right hemisphere of the brain. Argues that most productive thinking requires both modes of thinking and that any good elementary science program should include activities designed to develop both modes. (Author/IRT)
ERIC Educational Resources Information Center
Winokur, Jeff; And Others
1992-01-01
The article helps elementary teachers develop science programs geared to their students, emphasizing the appropriateness of hands-on activities and developmental learning. It presents three Earth Day water projects on rain and puddles, water drops and surface tension, and water purification that can be tailored for specific classes. (SM)
PCK: How Teachers Transform Subject Matter Knowledge.
ERIC Educational Resources Information Center
Veal, William R.; van Driel, Jan; Hulshof, Hans
2001-01-01
Review of book on the concept of pedagogical content knowledge (PCK), including chapters reviewing an extensive body of research on the knowledge base for teaching, especially science, and the application of PCK to the design of elementary and secondary school science teacher-education programs. (PKP)
75 FR 63865 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: Michigan State University Site Visit in Physics (1208). Date and Time... Reidy, Program Director for Elementary Particle Physics, National Science Foundation, 4201 Wilson Blvd...
75 FR 63865 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: University of Chicago Site Visit in Physics (1208). Date and Time..., Program Director for Elementary Particle Physics, National Science Foundation, 4201 Wilson Blvd...
ERIC Educational Resources Information Center
Gerstman, M. Linda
This curriculum unit is for use in an elementary school foreign language immersion program in Montgomery County, Maryland. The unit is geared toward the second grade science classroom. It includes instructional and performance objectives, vocabulary lists, optional language structure sections, illustrations, activities, evaluation suggestions, and…
ERIC Educational Resources Information Center
Sandholtz, Judith Haymore; Ringstaff, Cathy
2013-01-01
This study examined the extent to which significant changes after one year of a longitudinal, state-funded teacher professional development program were sustained during the second year. Participants taught in elementary schools located in small, rural school districts in the state of California in the United States. The research examined changes…
ERIC Educational Resources Information Center
Schmidt, Matthew; Fulton, Lori
2017-01-01
Preparing students with 21st Century Skills through STEM related teaching is needed, especially at the elementary level. However, most teacher education preparation programs do not focus on STEM education. To provide an exemplary STEM unit, we transformed an inquiry-based unit on moon phases from a traditional science activity into a…
ERIC Educational Resources Information Center
DiFrancesca, Daniell; Lee, Carrie; McIntyre, Ellen
2014-01-01
Science, Technology, Engineering, and Mathematics (STEM) education initiatives in the United States have surged as the demand for high-quality STEM education has escalated (Nadelson, Callahan, Pyke, Hay, & Schrader, 2009; Parry, 2011). The goal of this article is to present a description of how one STEM-focused elementary teacher preparation…
NASA Astrophysics Data System (ADS)
Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.
2013-12-01
The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF's STEP Center in the geosciences. The module goals are: 1) Pre-service teachers will apply classification methods, testing procedures and interdisciplinary systems thinking to analyze and evaluate a relevant societal issue in the context of soils, 2) Pre-service teachers will design, develop, and facilitate a standards-based K-8 soils unit, incorporating a relevant broader societal issue that applies authentic geoscientific data, and incorporates geoscientific habits of mind. In addition, pre-service teachers will look toward the NGSS and align activities with content standards, systems thinking, and science and engineering practices. This poster will provide an overview of module development to date as well as a summary of pre-semester survey results indicating pre-service elementary teachers' ideas (beliefs, attitudes, preconceptions, and content knowledge) about teaching soils, and making science relevant in a K-8 classroom.
Portfolio as a Teaching Method: A Capstone Project to Promote Recognition of Professional Growth
ERIC Educational Resources Information Center
Wolffe, Robert; Crowe, Helja Antola; Evens, Wayne; McConnaughay, Kelly
2013-01-01
A reflective portfolio as a capstone assignment was selected to accomplish recognition by teachers completing a science, technology, mathematics, engineering master's program for elementary teachers about their professional and personal changes and to provide program evaluators additional qualitative data regarding attainment of program goals. As…
ERIC Educational Resources Information Center
Instructor, 1981
1981-01-01
Describes the winners of the Space Traveler Project, a contest jointly sponsored by Rockwell International, NASA, and this magazine to identify worthwhile elementary science programs relating to the Space Shuttle. (SJL)
Developing Science and Mathematics Teacher Leaders through a Math, Science & Technology Initiative
ERIC Educational Resources Information Center
Green, André M.; Kent, Andrea M.
2016-01-01
This study explores the effects of a professional development teacher leadership training program on the pedagogical and content development of math and science teacher leaders at the elementary level. The study is qualitative in nature, and the authors collected data using the online survey instrument Survey Monkey. The major implications of the…
ERIC Educational Resources Information Center
Hanuscin, Deborah L.; Zangori, Laura
2016-01-01
Just as the "Next Generation Science Standards" (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary…
Collaboration in teacher workshops and citizen science
NASA Astrophysics Data System (ADS)
Gibbs, M. G.; Buxner, S.; Gay, P.; Crown, D. A.; Bracey, G.; Gugliucci, N.; Costello, K.; Reilly, E.
2013-12-01
The Moon and Earth system is an important topic for elementary and middle school science classrooms. Elementary and middle school teachers are challenged to keep current in science. The Planetary Science Institute created a program titled Workshops in Science Education and Resources (WISER): Planetary Perspectives to assist in-service K-12 teachers with their knowledge in earth and space science, using up-to-date science and inquiry activities to assist them in engaging their students. To augment the science and add a new aspect for teacher professional development, PSI is working in a new partnership collaborating with the Cosmoquest project in engaging teachers in authentic inquiry of the Moon. Teachers now learn about the Moon from PSI scientists and education staff and then engage in inquiry of the Moon using CosmoQuest's online citizen science project MoonMappers and its accompanying classroom curriculum TerraLuna. Through MoonMappers, teachers and students explore the lunar surface by viewing high-resolution pictures from the Lunar Reconnaissance Orbiter and marking craters and other interesting features. In addition, TerraLuna provides a unit of inquiry-based activities that bring MoonMappers and its science content into the classroom. This program addresses standards teachers need to teach and helps them not only teach about the Moon but also engage their students in authentic inquiry of the lunar surface.
NASA Astrophysics Data System (ADS)
Roberts, Sara Hayes
The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.
Earth Science: Rocks. Grade 4. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Anchorage School District, AK.
This unit contains six lessons on rocks for fourth graders. It describes materials, supplementary materials (including films, units, and books) schedule, unit introduction, and background information for teachers. Lessons include: (1) "Rocks Are Everywhere"; (2) "Chart Making"; (3) "Things Are Breaking Up"; (4)…
ERIC Educational Resources Information Center
Aschbacher, Pamela; Li, Erika; Hammon, Art
2008-01-01
"Reading, Writing, and Rings!" was created by a team of elementary teachers, literacy experts, and scientists in order to integrate science and literacy. These free units bring students inside NASA's Cassini-Huygens mission to Saturn. The authors--a science teacher and education outreach specialist and two evaluators of educational programs--have…
Getting a Jump on the Science Fair.
ERIC Educational Resources Information Center
Fort, Deborah C.
1985-01-01
Success of the Murch Elementary School (Washington, DC) science fair is due to many factors which are applicable to other schools. Suggestions, ideas, and hints are given in this description of the school's program. Projects with an electrocardiogram, water weeds, and preserving ice are also discussed. (DH)
34 CFR 682.216 - Teacher loan forgiveness program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics or science to secondary school students; or (ii) At... in reading, writing, mathematics, and other areas of the elementary school curriculum, as certified...
DOT National Transportation Integrated Search
2011-01-01
Building on 75 years of experience, the FAAs : aviation and space education outreach : program is earning an A+ for encouraging elementary, : secondary, and even college students to study math, : science, technology, engineering, and a host of : o...
Peer Assessment of Elementary Science Teaching Skills
ERIC Educational Resources Information Center
Kilic, Gulsen Bagci; Cakan, Mehtap
2007-01-01
In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…
Incorporating Formative Assessment and Science Content into Elementary Science Methods--A Case Study
ERIC Educational Resources Information Center
Brower, Derek John
2012-01-01
Just as elementary students enter the science classroom with prior knowledge and experiences, so do preservice elementary teachers who enter the science methods classroom. Elementary science methods instructors recognize the challenges associated with preparing teachers for the science classroom. Two of these challenges include overcoming limited…
A case study of systemic curricular reform: A forty-year history
NASA Astrophysics Data System (ADS)
Laubach, Timothy Alan
What follows is a description of the development of a particular inquiry-based elementary school science curriculum program and how its theoretical underpinnings positively influenced a school district's (K-12) science program and also impacted district- and state-wide curriculum reform initiatives. The district's science program has evolved since the inception of the inquiry-based elementary school science curriculum reform forty years ago. Therefore, a historical case study, which incorporated grounded theory methodology, was used to convey the forty-year development of a science curriculum reform effort and its systemic influences. Data for this study were collected primarily through artifacts, such as technical and non-technical documents, and supported and augmented with interviews. Fifteen people comprised the interview consortium with professional responsibilities including (a) administrative roles, such as superintendents, assistant superintendents, principals, and curriculum consultants/coordinators; (b) classroom roles, such as elementary and secondary school teachers who taught science; (c) partnership roles, such as university faculty who collaborated with those in administrative and classroom positions within the district; and (d) the co-director of SCIS who worked with the SCIS trial center director. Data were analyzed and coded using the constant comparative method. The analysis of data uncovered five categories or levels in which the curriculum reform evolved throughout its duration. These themes are Initiation, Education, Implementation, Confirmation, and Continuation. These five categories lead to several working hypotheses that supported the sustaining and continuing of a K-12 science curriculum reform effort. These components are a committed visionary; a theory base of education; forums promoting the education of the theory base components; shared-decision making; a university-school partnership; a core group of committed educators and teachers; evidences of success; national and state reform initiatives; a core group of administrators; longevity of the science program; district support (philosophical, financial, and emotional); and community support all contributed to the initiation, education, implementation, confirmation, and the continuation of the systemic curricular reform. The underlying component, or grounded theory generated by the study, that ties these experiences together is the "theory base" that concurrently evolved in the local school district and in a nearby university.
ERIC Educational Resources Information Center
Liu, Wei
2012-01-01
This is an evaluative research study of a NSF-funded, DRK-12 cyber-enabled teacher professional development program in elementary engineering education. The finding shows the significant impact of the program on students' science and engineering knowledge in the second year of the program's implementation. However, student learning gain…
ERIC Educational Resources Information Center
SHORE, ROBERT E.
THE SAN RAFAEL MORE ABLE LEARNER CURRICULUM WAS GEARED TO A SELECT GROUP OF ELEMENTARY SCHOOL STUDENTS. IT ATTEMPTED "TO DEEPEN APPRECIATIONS, ATTITUDES, AND UNDERSTANDINGS THROUGH INCREASED KNOWLEDGE OF THE ARTS AND SCIENCES, AND TO DEVELOP PROFICIENCIES AND SKILLS IN SELECTED AREAS IN THE ARTS AND SCIENCES." THE CURRICULUM OFFERED A…
ERIC Educational Resources Information Center
Senger, Graciela
This curriculum unit, developed by the Montgomery County Public Schools, Maryland, was designed for use in the elementary level foreign language immersion program. It is geared toward the first grade science classroom. The unit includes instructional and performance objectives, necessary vocabulary lists, optional language structure sections,…
ERIC Educational Resources Information Center
McIntyre, Patrick Joseph
The purpose of this study was to determine the relative effectiveness of three different types of visual devices in an instructional program designed to teach an understanding of selected theoretical science concepts to elementary school children. The visual devices were prepared using Bruner's three modes of representation (enactive, iconic, and…
ERIC Educational Resources Information Center
Schmidt, Matthew; Fulton, Lori
2016-01-01
The need to prepare students with twenty-first-century skills through STEM-related teaching is strong, especially at the elementary level. However, most teacher education preparation programs do not focus on STEM education. In an attempt to provide an exemplary model of a STEM unit, we used a rapid prototyping approach to transform an…
A Regression Analysis of Elementary Students' ICT Usage vis-à-vis Access to Technology in Singapore
ERIC Educational Resources Information Center
Tay, Lee Yong; Nair, Shanthi Suraj; Lim, Cher Ping
2017-01-01
This paper explores the relationship among ICT infrastructure (i.e., computing devices and Internet), one-to-one computing program and student ICT activities in school. It also looks into the differences of how ICT is being used in the teaching of English, mathematics and science at the elementary school level in relation to the availability of…
Natural Science of Alaska Handbook. Revised. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Oliver, Valerie Smith; Sumner, Jim
This handbook is a collection of printed materials that are available to students about the geology, weather, plants, animals and people of Alaska. Topics included are: (1) "Alaska History Line"; (2) "Geography of Alaska" (including maps, rivers, and islands); (3) "Geologic Time"; (4) "Geology" (including…
ERIC Educational Resources Information Center
Buffie, Edward G.
The Block Program is one of five major options at Indiana University, Bloomington, for students preparing to become elementary teachers. The project emphasizes team approach to instruction; flexibility of program; carefully articulated work with respect to preparation in language arts, mathematics, science, and social studies; carefully…
NASA Astrophysics Data System (ADS)
Courville, Z.; Haynes, R.; DeFrancis, G.; Koh, S.; Ringelberg, D.
2012-12-01
Outreach informed by scientific research plays an important role in fostering interest in science by making science and scientists accessible, fun, and interesting. Developing an interest in science in young, elementary-aged students through outreach is a rewarding endeavor for researchers, in that audiences are usually receptive, requirements for broader impacts are met, and bonds are formed between researchers and members of their local and surrounding communities. Promoting such interest among young students is imperative not only for an individual researcher's own self interest, but also for the strength of American science and innovation moving forward, and is the responsibility of the current generation of scientists. Developing genuine and successful inquiry-based, hands-on activities for elementary-aged students is outside the expertise of many researchers. Partnering with an informal education learning center (i.e. science museum or after-school program) provides researchers with the expertise they might be lacking in such endeavors. Here, we present a series of polar-, engineering- and microbiology-themed hands-on activities that have been developed by researchers at a government lab in partnership with a local science museum. Through a series of workshops, the science education staff at the museum provided researchers with background and instruction on inquiry and hands-on activities, and then collaborated with the researchers to develop activities which were later demonstrated at the museum to museum-goers. Education staff provided feedback about the presentation of the activities for further refinement. The program provided an opportunity for researchers to develop fun, on-target and age-appropriate science activities for elementary-aged students, an audience for outreach, and enabled general public audiences the chance to interact with researchers and scientists in an informal setting.
Integrative Discovery Doing Science.
ERIC Educational Resources Information Center
Harry, Vickie; Belzer, William
1990-01-01
The article details a program in which gifted upper elementary grade students used videomicroscopy in a study of microscopic life in pond water. Each child produced a narrated videotape of a specific species studied. Program evaluation confirmed the motivational benefits of early opportunities with scientific instrumentation and methodology. (DB)
ERIC Educational Resources Information Center
Miller, Penny Folley
1982-01-01
Describes a guinea pig (cavy) breeding and management program developed as part of an elementary school science curriculum. Includes comments on show competitions (sponsored by the American Rabbit Breeders Association) to measure the success of the breeding program and to enable children to experience the business world. (Author/JN)
ERIC Educational Resources Information Center
Aydogdu, Cemil; Idin, Sahin
2015-01-01
The aim of this study is to analyze the learning activities covered in 5th grade elementary science textbooks which depend on 2005 and 2013 elementary science curricula. Two elementary science textbooks depends on 2005 science curriculum and two elementary science textbooks depend on 2013 science curriculum were researched. The study is a…
ERIC Educational Resources Information Center
Aydogdu, Cemil; Idin, Sahin
2015-01-01
The aim of this study is to analyze the learning activities covered in 5th grade elementary science textbooks which depend on 2005 and 2013 elementary science curricula. Two elementary science textbooks [which] depend on 2005 science curriculum and two elementary science textbooks [which] depend on 2013 science curriculum were researched. The…
The Effect of Thinking Maps on Fifth Grade Science Achievement
NASA Astrophysics Data System (ADS)
Hudson, Darlene
Informational texts, such as those found in science education, have historically been reserved for secondary students. With the increased emphasis on elementary students' academic accountability, these high impact instructional strategies must also be utilized to support subject matter comprehension for younger students. This causal-comparative study, grounded in cognitive learning theory, sought to discover if 2 years of implementation and use of Thinking Maps, a visual tool program, had an effect on student achievement in elementary science as measured by Georgia's statewide assessment known as the Criterion-Referenced Competency Test (CRCT). Achievement data of 2 groups that received Thinking Maps instruction for 2 years was compared to 1 group that did not. An analysis of covariance was used to analyze the assessment data. The findings suggest that the students who did not use Thinking Maps performed significantly better than those who did use Thinking Maps, even though both groups showed positive mean score gains from 2010 to 2012 on the science portion of the CRCT. Limitations of the study, such as the lack of randomization and manipulation of the independent variable, suggest that further research is needed to fairly evaluate the program and its effectiveness. Also, the instructional setting and amount of time used for science instruction in the elementary classroom warrants additional investigation. Findings related to the implementation and use of graphic tools such as Thinking Maps will help school systems choose professional learning opportunities and effective instructional strategies to develop content literacy.
ERIC Educational Resources Information Center
Forbes, Cory T.
2011-01-01
Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…
ERIC Educational Resources Information Center
Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura
2015-01-01
To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…
ERIC Educational Resources Information Center
Metz, Kathleen E.
2009-01-01
This article examines teachers' perspectives on the challenges of using a science reform curriculum, as well as their learning in interaction with the curriculum and parallel professional development program. As case studies, I selected 4 veteran teachers of 2nd or 3rd grade, with varying science backgrounds (including 2 with essentially none).…
Perspectives on learning, learning to teach and teaching elementary science
NASA Astrophysics Data System (ADS)
Avraamidou, Lucy
The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first-year elementary teacher's specialized knowledge and practices for giving priority to evidence in science teaching. The findings of this study indicated that Jean not only articulated, but also enacted, a student-centered approach to teaching science, which emphasized giving priority to evidence in the construction of scientific explanations. It also became evident through data analysis that Jean's practices were for the most part consistent with her knowledge and beliefs. This contradicts the findings of previous studies that indicate a mismatch between beginning teachers' knowledge and practices. Furthermore, the findings of this study illustrated that critical experiences during teacher preparation and specific university coursework acted as sources through which this aspect of pedagogical content knowledge was generated. The third manuscript proposes new directions for teaching science in elementary schools in Cyprus and makes recommendations to improve the current teacher preparation program in light of the need for a reform. This manuscript is built upon contemporary perspectives of learning and cognition, and is informed by current trends in science education in the United States and United Kingdom. Issues of teaching and learning science as inquiry, engaging in scientific argumentation, and the use of software scaffolds in support of learning and learning to teach science are discussed with special attention to the unique educational setting of Cyprus.
Ocean FEST (Families Exploring Science Together)
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Wiener, C. S.
2009-12-01
Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In addition, we are currently conducting a series of pilot events at the middle school level at underserved schools at neighbor islands, funded through the Hawaii Innovation Initiative (Act 111). Themes addressed include community outreach, capacity building, teacher preparation, and use of technology.
NASA Astrophysics Data System (ADS)
Buldu, Nihal
Preservice elementary teachers' attitudes toward science have been the subject of investigation by science educators for decades. Many of the recent attempts pertaining to preservice elementary teachers by science educators have focused on the effects of science method courses on the attitudes and relationships between attitudes and other variables. The research literature lacks studies that compare attitudes of preservice elementary teachers toward science across two or more nations. The current study investigated the attitudes of preservice elementary teachers toward science in the U.S. and Turkey in order to see if there is a difference between the U.S. and Turkish preservice elementary teachers' attitudes toward science, and to investigate whether variables such as gender and the grade the preservice teachers wish to teach make a difference in preservice elementary teachers' attitudes towards science. The sample consisted of 1144 preservice elementary teachers. Of the 1144 preservice elementary teachers for whom complete information is available, it is known that 371 preservice elementary teachers were from the U.S. and 773 were from Turkey. The attitudes of preservice elementary teachers in the U.S. and Turkey were assessed by the data gathered using Turkish and American Preservice Elementary Teachers Attitude Scale (TAPETAS). This scale is a revised version of the Modified Fennema Sherman Attitude Scale (Doepken, Lawsky, and Padwa, 1999). Results of the current study indicated that both U.S. and Turkish preservice elementary teachers had positive attitudes toward science. However, U.S. preservice elementary teachers had more confidence in science. They found science more useful than their Turkish peers. They had more positive attitudes towards their previous science teachers and were less likely to stereotype science as a male domain. There were not any significant differences between the U.S. preservice elementary teachers due to gender and the grade they wanted to teach. There were significant differences between the Turkish preservice teachers due to gender. Discussion of the findings, implications of the study and recommendations for further research were presented.
NASA Astrophysics Data System (ADS)
Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.
2017-06-01
In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.
Problem Solving on a Monorail.
ERIC Educational Resources Information Center
Barrow, Lloyd H.; And Others
1994-01-01
This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)
Science beyond the Classroom: Hands-On Optics and the Boys and Girls Club
NASA Astrophysics Data System (ADS)
Dokter, Erin F.; Walker, C.; Peruta, C.; Ubach, C.; Sparks, R.; Pompea, S.
2006-12-01
In Summer and Fall 2006, the Hands-On Optics program of the National Optical Astronomy Observatory (NOAO) teamed up with two local Boys and Girls Clubs in the Tucson area to conduct informal education programs for elementary and middle school aged children. Hands-On Optics (HOO) is a collaborative program funded by NSF to create and sustain a unique, national, informal science education program to excite students about science by actively engaging them in optics activities. The program was designed especially to reach underserved students. In this talk, the successes and challenges of implementing these programs will be discussed, as well as the lessons learned in the process, which may be applied to other partnerships between EPO providers and informal learning venues.
NASA Astrophysics Data System (ADS)
Brooks, Clare M.
1998-12-01
This naturalistic case study documents a year long Teacher Professional Development Program (TPDP) initiated by an elementary school staff in British Columbia. The TPDP was designed to enable the teachers to meet their objective of making science instruction more frequent, more active, and more student-centered in all classrooms in the school. This case study addresses two research questions: (1) What attributes of the Teacher Professional Development Program supported the school's "objective" for improved science instruction? (2) How did the outcomes of the Teacher Professional Development Program relate to the achievement of the school's educational objective? The site for the research was a kindergarten--Grade 7 school. A university professor and the researcher were invited to visit the school on a bi-weekly basis during one school year (1993--94) to facilitate a series of science workshops involving the entire teaching staff and to provide classroom support to teachers. Teachers were offered university course credit for their participation. This case study draws on qualitative data including: audio recordings of planning/debriefing sessions, workshop discussions, and interviews with participants; field notes and written observations; a survey of teachers' opinions about the TPDP; and documents relating to the school accreditation process in 1994--95. The results of the study show that teachers, administrators, and parents were satisfied that the school's objective for science instruction was met, and that the TPDP contributed significantly to this outcome. The study identifies TPDP attributes which supported the school's objective with reference to the teachers and their context, the planning process, and the organizational context, that is, the school. This study contributes to our understanding of teacher professional development by examining an alternative to more common approaches to elementary teacher science inservice in British Columbia, which are typically short-term, designed by inservice providers with little input from participants, and removed physically and conceptually from the classroom. Such inservice experiences often lack administrative and collegial support for the teacher who attempts classroom implementation. While this study relates to science; the discussion is relevant to other curriculum areas such as fine arts or physical education.
NASA Astrophysics Data System (ADS)
Menon, Deepika
Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.
ERIC Educational Resources Information Center
Zangori, Laura; Forbes, Cory T.; Biggers, Mandy
2013-01-01
While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…
ERIC Educational Resources Information Center
Avery, Leanne M.; Meyer, Daniel Z.
2012-01-01
Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…
Teaching Planetary Sciences in Bilingual Classrooms
NASA Astrophysics Data System (ADS)
Lebofsky, L. A.; Lebofsky, N. R.
1993-05-01
Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona.
Looking back and moving forward: A mixed methods study of elementary science teacher preparation
NASA Astrophysics Data System (ADS)
Hulings, Melissa
This study sought to understand how science learning experiences, and their potential influence, had on preservice elementary teachers' self-efficacy and perceptions of science teaching and learning at the beginning of their science methods course. Following an explanatory sequential mixed methods design, this study first involved the collection of quantitative data and then the collection of more in-depth qualitative data. In the first phase, the quantitative data included the Draw-a-Science-Teacher-Test Checklist (DASTT-C) and the Science Teaching Efficacy Belief Instrument (STEBI-B) of preservice elementary teachers (n = 69). Findings from this phase indicated preservice elementary teachers had a higher level of belief in their abilities to teach science (PSTE subscale) than to affect student outcomes in science (STOE subscale). However, the STOE was not found to be a reliable measure for this group of preservice elementary teachers and was not included in any further analysis. Findings from the DASTT-C images indicated the majority of these drawings could not be classified as student-centered. In the second phase of this study, the researcher explored selected science autobiographies written by these same preservice elementary teachers (n = 19), based on extremely high or low scores on the PSTE subscale and DASTT-C. Analysis of the science autobiographies revealed commonalities and differences. Commonalities included (a) the difficulty in remembering science from elementary school; (b) a mixture of positive and negative experiences in secondary school and college science classes; (c) the descriptions of good science days and good science teachers; and (d) the descriptions of bad science days and bad science teachers. Differences included (a) the people who influenced their attitudes toward science; (b) the types of experiences, when remembered, from elementary school; and (c) visions of their future classrooms. Based on these findings, these preservice elementary teachers used their past experiences with science as a foundation for how they perceived science and its instruction in the elementary classroom. Overall, it appears preservice elementary teachers have a desire to make the elementary experience a positive one for their future students.
NASA Astrophysics Data System (ADS)
Gado, Issaou
The Republic of Benin (West Africa) undertook a nationwide curriculum reform that put an emphasis on inquiry-based instructional practices. Little, if any, research has been conducted to explore factors that could be related to teachers' orientation toward inquiry instructional practices. The purpose of this research study was to investigate factors and concerns that determine Benin elementary school teachers' orientation toward the use of inquiry-based instruction in the teaching of science. The study followed a naturalistic inquiry methodology combining a correlational ex post facto design and an observational case-study design. The theory of Planned Behavior was the conceptual framework used to design the study. Two hundred (N = 200) elementary school teachers and three (n = 3) case study participants were purposively selected. Data was gathered via the Revised Science Attitude Scale (Thompson & Shrigley, 1986), the Science Teachers' Ideological Preference Scale (Jones & Harty, 1978), open-ended questions, interviews, and classroom observations using audiorecorders, videorecorders, and the researcher-contextualized version of the Observational System for the Analysis of Classroom Instruction (Hough, 1966). Qualitative and quantitative data provided a deeper understanding of participants' responses. Quantitative measures indicated that Benin elementary school teachers have positive attitudes toward school science, significant positive orientation toward both inquiry-based instruction and traditional non inquiry-based instruction, and higher orientation toward inquiry-based instruction than traditional non inquiry-based instruction. Attitude toward handling materials for investigations was found to significantly contribute to the prediction of participants' inquiry orientation. Qualitative analyses of participants' responses indicated that the expectations of educational leaders, individual motivation to comply with the program, a perceived control of the performance of inquiry-based activities, students' inquiry outcome expectancy or likelihood of occurrence in the classroom, the pedagogical structure of the program, and the student-centeredness of the program were potential motivational factors that could explain participants' orientation toward inquiry-based instruction. Four major concerns---lack of materials for teaching, lack of training in the process and strategy of inquiry, overloaded curriculum content, students' linguistic difficulties---were perceived obstacles in implementing inquiry-based instruction. Implications for transformative curriculum practices are discussed.
ERIC Educational Resources Information Center
Leonard, Jacqueline
2002-01-01
Introduces a weekend science program for early childhood and elementary school students. Uses kites to teach about lightening as a source of electricity and aerodynamics. Includes directions on how to make a kite. (YDS)
NASA Astrophysics Data System (ADS)
Ensign, Todd I.; Rye, James A.; Luna, Melissa J.
2017-12-01
Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.
ERIC Educational Resources Information Center
Utz, Jenifer C.; Rausch, Candice M.; Fruth, Laurie; Thomas, Megan E.; van Breukelen, Frank
2007-01-01
Outreach efforts by faculty members are oftentimes limited in scope due to hectic schedules. We developed a program to enhance science literacy in elementary school children that allows experts to reach a tremendous audience while minimizing their time commitment. The foundation of the program is a television series entitled "Desert Survivors."…
Science, Levels 7-12. Secondary Core Curriculum Standards.
ERIC Educational Resources Information Center
Utah State Board of Education, Salt Lake City. Div. of Curriculum and Instruction.
This document presents the core science curriculum standards which must be completed by all students as a requisite for graduation from Utah's secondary schools. Contained within are the elementary and secondary school program of studies and high school graduation requirements. Each course entry for grades 7-12 contains: course title, unit of…
Enhancing Preservice Teacher Education Students' Sense of Science Teaching Self Efficacy.
ERIC Educational Resources Information Center
Watters, James J.; And Others
This paper reports on the effects of an intervention program designed to develop cognitive and affective skills for the study of science by students undertaking a preservice elementary teacher education course. Previous research has indicated that a high proportion of students coming into this course have had negative experience in their previous…
Capsela Scientific: Hands-On Physical Science Curriculum for Grades 3-9.
ERIC Educational Resources Information Center
Swartz, Clifford; Friedman, Madeleine
Many educators feel that elementary school science programs should concentrate on phenomena and concepts that are literally tangible. This document serves as the teaching manual which accompanies the Capsela modular system of manipulative and motorized models. The experiments in the manual are intended to provide a structured approach to using the…
Integrating Data Base into the Elementary School Science Program.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document describes seven science activities that combine scientific principles and computers. The objectives for the activities are to show students how the computer can be used as a tool to store and arrange scientific data, provide students with experience using the computer as a tool to manage scientific data, and provide students with…
Ciencia: Nivel A (Science: Level A).
ERIC Educational Resources Information Center
Duron, Dolores; And Others
A teacher's manual was developed for an elementary level science course in Spanish as part of an immersion program for English speaking children. The Level A manual is designed for kindergarten and grade 1 pupils. The five units cover the basic concepts of the weather, colors, animals, plants, and the five senses. Each unit includes vocabulary,…
ERIC Educational Resources Information Center
Boyer, Elisebeth
2016-01-01
The research reported in this study examines the very first time the participants planned for and enacted science instruction within a "best-case scenario" teacher preparation program. Evidence from this study indicates that, within this context, preservice teachers are capable of implementing several of the discursive practices of…
Transformative Multicultural Science Curriculum: A Case Study of Middle School Robotics
ERIC Educational Resources Information Center
Grimes, Mary Katheryn
2012-01-01
Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a…
ERIC Educational Resources Information Center
Witherspoon, Eben B.; Schunn, Christian D.; Higashi, Ross M.; Baehr, Emily C.
2016-01-01
Background: Robotics competitions are increasingly popular and potentially provide an on-ramp to computer science, which is currently highly gender imbalanced. However, within competitive robotics teams, student participation in programming is not universal. This study gathered surveys from over 500 elementary, middle, and high school robotics…
Practitioner Inquiry with Early Program Teacher Candidates
ERIC Educational Resources Information Center
Koomen, Michele Hollingsworth
2016-01-01
This meta-analysis reports on the use of practitioner inquiry (PI) with early program teacher candidates in conjunction with elementary science and math methods courses using cognitive load theory as a theoretical framework. The findings suggest that the teacher candidates enhanced their knowledge of practice within practice across 5 dimensions of…
Looking beyond One's Self through SKILL.
ERIC Educational Resources Information Center
Winds of Change, 1996
1996-01-01
Scientific Knowledge for Indian Learning and Leadership (SKILL) was implemented by South Dakota School of Mines and Technology in 1990 to improve the college readiness of American Indian students in math and science. Over 2,000 Indian students have participated in SKILL's academic-year programs, elementary summer programs, 4-week residential…
ERIC Educational Resources Information Center
McGinnis, J. Randy; Watanabe, Tad
This research employs a mixed theoretical perspective drawing on elements from interactionism and social constructivism. In this study, a discourse analysis is performed on conversations among intra- and inter-institutional mathematics and science teaching faculty participating in reforming content classes for teacher candidates in the Maryland…
ERIC Educational Resources Information Center
Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca
2015-01-01
GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old…
Magnets and Electricity. Seychelles Integrated Science [Teacher and Pupil Booklets]. Unit 8.
ERIC Educational Resources Information Center
Brophy, M.; Fryars, M.
Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) elementary concepts in magnetic theory and the role magnets and magnetism play in…
Different Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets.] Unit 5.
ERIC Educational Resources Information Center
Brophy, M.; Fryars, M.
Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) help students develop an elementary understanding of how living things can be…
ERIC Educational Resources Information Center
McCarthy, Deborah; Bellina, Joseph J., Jr.
2003-01-01
In 1988 Saint Mary's College received a grant from Lilly Endowment, Inc. to create a program to improve the quality of science education in the local public and private schools. As part of applying that grant we created one-week summer work-shops for elementary and middle school teachers (K-8) based on guided inquiry methods of education. Each…
An elective course to engage student pharmacists in elementary school science education.
Woodard, Lisa J; Wilson, Judith S; Blankenship, James; Quock, Raymond M; Lindsey, Marti; Kinsler, Janni J
2011-12-15
To develop and assess the impact of an elective course (HealthWISE) on student pharmacists' skills in communication and health promotion and elementary school students' knowledge of and attitudes toward science. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists' performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students.
Women in science: What keeps them interested?
NASA Astrophysics Data System (ADS)
Orloff, Teresa Lynn
The goal of this study was to investigate the importance of five factors on the interest and persistence of females in science. The five factors were: (1) science teachers; (2) parents; (3) one-on-one mentoring; (4) summer and extracurricular science programs; and (5) the media (television, movies, radio, computers). Data was collected through 201 questionnaires distributed equally to three groups of scientists: (1) science teachers; (2) research faculty; and (3) community professionals. Data analysis consisted of nonparametric statistical tests of significance to determine which of the five factors are the most influential. The results of the data analysis revealed the relative order of importance of the five factors on the interest and persistence of females in science as: (1) Science teachers and (2) parents. (3) Summer/extracurricular science programs. (4) Mentors. (5) Media. Three conclusions were derived from this study. First, females are influenced more by people than programs. Unlike males, females define themselves in relation to other people. The people who have the most influence in young females are those people such as teachers and parents who have the most contact with young girls. Females feel safe in such relationships and with a sense of trust comes a feeling of confidence to pursue desires and interests. Second, females place importance on lasting relationships. The relationships that have the most influence on young females are those where trust and confidence have a chance to form over time. Women in the position of long term relationships with young girls such as teachers and parents, need to become active mentors in helping girls choose careers. Third, elementary teachers are not influential towards the interest and persistence of females in science. Many elementary teachers are not comfortable teaching science and therefore spend little time teaching science to their classes. Stronger emphasis in teacher education programs on science and science content needs to occur.
Living in space, book 2, levels D, E, F
NASA Technical Reports Server (NTRS)
Andrews, Sheila Briskin; Kirschenbaum, Audrey
1987-01-01
In June 1984, President Reagan announced a new NASA program, Operation Liftoff. For more than 25 years NASA has pioneered on the cutting edge of science and technology and has stimulated our young people to strive for excellence in all they do. This program is designed to encourage pupils in the nation's elementary schools to take a greater interest in mathematics and science. Areas addressed include: food, clothing, health, housing, communication, and working in space.
Interacting with Elementary Interns about Their Perceptions of Science Teaching.
ERIC Educational Resources Information Center
Carnes, G. Nathan; Shull, Tiffany A.; Brown, Shanise N.; Munn, Wesley G.
This research investigated three elementary preservice teachers' perceptions of elementary science teachers. Three questions guided this investigation. What images did elementary Masters of Arts in Teaching (M.A.T.) interns have of science teaching at the beginning and end of science methods courses? What changes, if any, did they make in their…
Overview of the Education and Public Outreach (EPO) program of the Caltech Tectonics Observatory
NASA Astrophysics Data System (ADS)
Kovalenko, L.; Jain, K.; Maloney, J.
2009-12-01
The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past year, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries and advancements, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools. We have hosted local high school students and teachers to provide them with research experience (as part of Caltech’s “Summer Research Connection”); participated in teacher training workshops (organized by the local school district); hosted tours for local elementary school students; and brought hands-on activities into local elementary and middle school classrooms, science clubs, and science nights. We have also led local school students and teachers on geology field trips through nearby parks. In addition, we have developed education modules for undergraduate classes (as part of MARGINS program), and have written educational web articles on TO research (http://www.tectonics.caltech.edu/outreach). The presentation will give an overview of these activities and their impact on our educational program.
Reading, Writing & Rings: Science Literacy for K-4 Students
NASA Astrophysics Data System (ADS)
McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.
2007-12-01
Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.
ERIC Educational Resources Information Center
School Science Review, 1984
1984-01-01
Presents (1) suggestions on teaching volume and density in the elementary school; (2) ideas for teaching about floating and sinking; (3) a simple computer program on color addition; and (4) an illustration of Newton's second law of motion. (JN)
NASA Astrophysics Data System (ADS)
Haefner, Leigh Boardman
2001-10-01
This study examined prospective elementary teachers' learning about science inquiry in the context of an innovative life science course that engaged them in an original science investigation. Eleven elementary education majors participated in the study. A multiple case study approach that was descriptive, interpretive, and framed by grounded theory was employed. Primary data sources included transcripts of semi-structured interviews, text associated with online threaded discussions, and course project documents, such as lesson plans and written reflections. Secondary data sources included videotaped class sessions and field notes. Data were analyzed using analytical induction techniques, and trustworthiness was developed through the use of multiple data sources, triangulation of data, and the use of counterexamples to the assertions. Three major findings emerged from the cross-case analysis. First, engaging in an original science investigation assisted prospective teachers in becoming more attentive to the processes of science and developing more elaborated and data-driven explanations of how science is practiced. Second, when prospective teachers struggled with particular aspects of their investigations, those aspects became foci of change in their thinking about science and doing science. Third, as prospective teachers came to place a greater emphasis on questions, observations, and experimentation as fundamental aspects of doing science, they became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include the need to re-conceptualize teacher preparation programs to include multiple opportunities to engage prospective teachers in learning science as inquiry, and attend to connections among subject matter knowledge, subject-specific pedagogy and experiences with children.
ERIC Educational Resources Information Center
Center for the Future of Teaching and Learning at WestEd, 2011
2011-01-01
This report summarizes research findings on science education in California's elementary schools from multiple sources of data collected during 2010-11, specifically, surveys of district administrators, elementary school principals, and elementary school teachers; case studies of elementary schools; analysis of statewide secondary data sets; and…
NASA Astrophysics Data System (ADS)
Caliendo, Julia C.
Problem-based learning in clinical practice has become an integral part of many professional preparation programs. This quasi-experimental study compared the effect of a specialized 90-hour field placement on elementary pre-service teachers' scientific reasoning and attitudes towards teaching STEM (science, technology, engineering, and math) subjects. A cohort of 53 undergraduate elementary education majors, concurrent to their enrollment in science and math methods classes, were placed into one of two clinical practice experiences: (a) a university-based, problem-based learning (PBL), STEM classroom, or (b) a traditional public school classroom. Group gain scores on the Classroom Test of Scientific Reasoning (CTSR) and the Teacher Efficacy and Attitudes Toward STEM Survey-Elementary Teachers (T-STEM) survey were calculated. A MANCOVA revealed that there was a significant difference in gain scores between the treatment and comparison groups' scientific reasoning (p = .011) and attitudes towards teaching STEM subjects (p = .004). The results support the hypothesis that the pre-service elementary teachers who experienced STEM mentoring in a PBL setting will have an increase in their scientific reasoning and produce positive attitudes towards teaching STEM subjects. In addition, the results add to the existing research suggesting that elementary pre-service teachers require significant academic preparation and mentored support in STEM content.
NASA Astrophysics Data System (ADS)
Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.
2017-12-01
Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)
Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project
NASA Astrophysics Data System (ADS)
Soeffing, C.; Pierson, R.
2017-12-01
Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a successful implementation and measurable learning outcomes. We will report on the Fall 2017 pilot metrics of success, along with a discussion of multi partner collaborations, project scale-up and sustainability.
Impacting university physics students through participation in informal science
NASA Astrophysics Data System (ADS)
Hinko, Kathleen; Finkelstein, Noah D.
2013-01-01
Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.
ERIC Educational Resources Information Center
Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca
2011-01-01
We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…
ERIC Educational Resources Information Center
Forbes, Cory T.
2013-01-01
In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…
ERIC Educational Resources Information Center
Lewis, Elizabeth; Dema, Oxana; Harshbarger, Dena
2014-01-01
Despite historical national efforts to improve elementary science education, science instruction continues to be marginalized, varying by state. This study was designed to address the ongoing challenge of educating elementary preservice teachers (PSTs) to teach science. Elementary PSTs are one of the science education community's major links…
Crowdfunding for Elementary Science Educators
ERIC Educational Resources Information Center
Reese, Jessica; Miller, Kurtz
2017-01-01
The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…
Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons
ERIC Educational Resources Information Center
Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert
2013-01-01
Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This…
ERIC Educational Resources Information Center
Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I; Chen, Hui-Huang
2015-01-01
Background: Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in…
ERIC Educational Resources Information Center
Carrejo, David J.; Reinhartz, Judy
2014-01-01
Thirty-five elementary teachers participated in a yearlong professional development (PD) program that was designed to foster a culture of on-going teacher learning to promote the co-development of science and language literacy for English language learners (ELL). An explanatory design methodology was used to determine the degree to which science…
ERIC Educational Resources Information Center
Bueno de Mesquita, Paul; Dean, Ross F.; Young, Betty J.
2010-01-01
Advances in digital video technology create opportunities for more detailed qualitative analyses of actual teaching practice in science and other subject areas. User-friendly digital cameras and highly developed, flexible video-analysis software programs have made the tasks of video capture, editing, transcription, and subsequent data analysis…
ERIC Educational Resources Information Center
Oh, Jun-Young; Lee, Hyonyong; Lee, Sung-Soon
2017-01-01
Background: Kuhn's model of science has been widely influential, but in this paper, it is argued that it is more appropriate to consider constructivist learning within science education as a research program in the sense used by Lakatos. Purpose/Hypothesis: This study offers teaching strategies and their corresponding instructional sequences based…
Effectiveness of Using Programmed Learning Materials in the Teaching of Map Marking in History
ERIC Educational Resources Information Center
Bhavana, A. R.
2010-01-01
The National Council for Social studies defines Social sciences as the "integrated study of the social sciences and humanities to promote civic competence". At the elementary school level, social studies generally focuses on the local community and family. By middle and high school level, the social studies curriculum becomes more…
The Use of Lego Technologies in Elementary Teacher Preparation
ERIC Educational Resources Information Center
Hadjiachilleos, Stella; Avraamidou, Lucy; Papastavrou, Stavros
2013-01-01
The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in "J Res Sci Teach" 36:121-140, 1999; Bryan and Atwater in "Sci Educ" 8(6):821-839, 2002; Harrington and Hathaway in "J Teach Educ" 46(4):275-284, 1995). Science teachers are charged with the responsibility of…
Aviation. Fifth Grade. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Defendorf, Jean, Ed.
This unit of study is designed to teach the science of flight to students in the intermediate grades. Included are a list of materials for the unit, a discussion of the use of process skills, a list of unit objectives, vocabulary, teacher background information, 12 lessons, 5 quizzes, math problems, and a unit test. Lessons are oriented toward…
Institutional Research Productivity in Science Education for the 1990s: Top 30 Rankings
NASA Astrophysics Data System (ADS)
Barrow, Lloyd H.; Settlage, John; Germann, Paul J.
2008-08-01
The purpose of this study was to identify the major science education programs in the United States, where the science education researchers published their research. This research is the first study of the scholarly productivity of science education programs at domestic institutions of higher education. Each issue of the eight research journals ( Journal of Research in Science Teaching, Science Education, International Journal of Science Education, Journal of Science Teacher Education, School Science and Mathematics, Journal of Computers in Math and Science Teaching, Journal of Science Education and Technology, and Journal of Elementary Science Education) published in the 1990s provided the author(s) and their institutional affiliation. The resultant ranking of raw and weighted counts for the top 30 science educations programs shows variation in journals where research was published. Overall, regardless whether the total number of publications (raw) or weighted rating there was 90% agreement among top 10 and 70% agreement among the bottom 10. Potential explanations for variations and uses for rankings are discussed.
STEM after school programming: The effect on student achievement and attitude
NASA Astrophysics Data System (ADS)
Ashford, Vanessa Dale
Science, technology, engineering and math (STEM) curriculum has become a major component in to 21st century teaching and learning. STEM skills and STEM careers are in demand globally. Disadvantaged and minority students continue to have an achievement gap in STEM classes. They do not perform well in elementary and middle school and frequently do not pursue STEM-based studies in high school or careers in the field. One innovation in STEM education is after-school programming to increase student interest, attitudes, and achievement. This mixed-methods study examines the Discovery Place After-School STEM Program to compare the achievement levels of participants to non-participants in the program and provides recommendations for STEM after-school programming across the district. As part of the study, teachers were interviewed to examine attitudes and perceptions about the program. This study was conducted at an elementary school in a large urban school district in the southeastern United States which has a unique STEM-based after-school program. Student performance data indicated a significant difference in achievement between participants and non-participants in the program as measured by fifth grade science End-of-Grade test. Data from the seven units of study in the program showed significant achievement for three of the seven units.
ERIC Educational Resources Information Center
Bodzin, Alec M.
2008-01-01
The author describes an after-school science club program for urban 4th-grade students that integrated instructional technologies to investigate a pond ecosystem in the local schoolyard. The author conducted a design-based evaluation study to examine the effectiveness of the program in promoting environmental attitudes and understandings of the…
ERIC Educational Resources Information Center
Brevard County School Board, Cocoa, FL.
This environmental education program consists of two levels: primary and intermediate. The learning materials are activity based and incorporate process and subject area skills with knowledge and concern for the environment. The program is also interdisciplinary including activities and skills from art, language arts, mathematics, music, science,…
Supporting the K-12 Classroom through University Outreach
ERIC Educational Resources Information Center
Moskal, Barbara; Skokan, Catherine
2011-01-01
This article provides a field-based example of a series of outreach programs that have been designed in response to current recommendations found in the K-12 outreach literature. These programs begin with university mathematics and science faculty members teaching a 10-day summer workshop to elementary and middle school teachers. Following this…
Tradition and Technology. A Magnet School-Museum Partnership.
ERIC Educational Resources Information Center
Judd, Michael; Judd, Elizabeth
1996-01-01
Presents a case study of an educational partnership between an Albuquerque magnet elementary school and the New Mexico Museum of Natural History and Science. Descriptions of the school and museum are provided as well as the program's goals, current activities and products, outcomes, and future directions. The Proyecto Futuro program, a multiyear…
ERIC Educational Resources Information Center
Dahl, Rene Fukuhara
This paper investigates the elementary school principal's role in helping to sustain implementation of a complex math and science program designed to foster the development of higher order thinking skills, particularly for language minority students. The study predicted a positive relationship between coordination and program continuation; if the…
An Elective Course to Engage Student Pharmacists in Elementary School Science Education
Wilson, Judith S.; Blankenship, James; Quock, Raymond M.; Lindsey, Marti; Kinsler, Janni J.
2011-01-01
Objective. To develop and assess the impact of an elective course (HealthWISE) on student pharmacists’ skills in communication and health promotion and elementary school students’ knowledge of and attitudes toward science. Design. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. Assessment. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists’ performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. Conclusions. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students. PMID:22345722
Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers
Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; Labrake, Cynthia; Kopp, Sacha
2016-01-01
Due to their potential impact on students' cognitive and non-cognitive outcomes, the negative attitudes towards science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of pre-service elementary teachers with the goal of improving their attitudes before they begin their professional lives as classroom teachers. Specifically, this study builds on a small body of research to examine whether exposure to inquiry-based science content courses that actively involve students in the collaborative process of learning and discovery can promote a positive change in attitudes towards science across several different dimensions. To examine this issue, surveys and administrative data were collected from over 200 students enrolled in the Hands on Science (HoS) program for pre-service teachers at the University of Texas at Austin, as well as more than 200 students in a comparison group enrolled in traditional lecture-style classes. Quantitative analyses reveal that after participating in HoS courses, pre-service teachers significantly increased their scores on scales measuring confidence, enjoyment, anxiety, and perceptions of relevance, while those in the comparison group experienced a decline in favorable attitudes to science. These patterns offer empirical support for the attitudinal benefits of inquiry-based instruction and have implications for the future learning opportunities available to students at all education levels. PMID:27667862
NASA Astrophysics Data System (ADS)
Newman, William J., Jr.
In this study, I examined how three first-year elementary teachers constructed and used classroom discourse during science instruction. The three participants, though graduates from different universities, learned to teach science through similar science methods courses, which stressed the importance of inquiry-based science instruction. The participants taught different grade levels, and two of them taught at the same school. Data sources included field notes, videotapes, audiotapes, and semi-structured teacher interviews. While monologic and dialogic discourse existed in all three classrooms, monologic discourse was more prominent, especially when the discourse was teacher controlled. Dialogic discourse occurred most often during student-centered activities. The teachers constructed discourse with authoritative function to present science content and determine student comprehension. Generative function was most likely during student-based small group discussions. Monologic character often aligned with authoritative function, and dialogic character often aligned with generative function. However, monologic/generative and dialogic/authoritative discourse events did occur, contributing to the development of a discourse theory model. The teacher explanations for discourse included classroom control, inadequate planning, time constraints, life experiences, science education standards, and assessment. The teachers relied on their texts, kits, and state science standards to determine the content and methods for science instruction. They rarely reported that their science methods courses influenced how they taught science. The observed lessons rarely aligned with science education reform descriptions of appropriate science instruction. Implications include the need for in-service programs for beginning science teachers, curricular reform for science texts and kits, and explicit instruction of discourse strategies in science methods courses and in-service programs.
ERIC Educational Resources Information Center
Malone, Mark R., Comp.
Mounting research evidence has shown that an activity centered approach to elementary and middle school science education can be quite effective. This sourcebook, developed for teachers by teachers, presents many activity oriented science lessons that could be done in any elementary or middle school classroom with minimal additional experience.…
NASA Astrophysics Data System (ADS)
Hanuscin, Deborah L.; Zangori, Laura
2016-12-01
Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers' practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.
New Community Education Program on Oceans and Global Climate Change: Results from Our Pilot Year
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Wiener, C.
2010-12-01
Ocean FEST (Families Exploring Science Together) engages elementary school students and their parents and teachers in hands-on science. Through this evening program, we educate participants about ocean and earth science issues that are relevant to their local communities. In the process, we hope to inspire more underrepresented students, including Native Hawaiians, Pacific Islanders and girls, to pursue careers in the ocean and earth sciences. Hawaii and the Pacific Islands will be disproportionately affected by the impacts of global climate change, including rising sea levels, coastal erosion, coral reef degradation and ocean acidification. It is therefore critically important to train ocean and earth scientists within these communities. This two-hour program explores ocean properties and timely environmental topics through six hands-on science activities. Activities are designed so students can see how globally important issues (e.g., climate change and ocean acidification) have local effects (e.g., sea level rise, coastal erosion, coral bleaching) which are particularly relevant to island communities. The Ocean FEST program ends with a career component, drawing parallel between the program activities and the activities done by "real scientists" in their jobs. The take-home message is that we are all scientists, we do science every day, and we can choose to do this as a career. Ocean FEST just completed our pilot year. During the 2009-2010 academic year, we conducted 20 events, including 16 formal events held at elementary schools and 4 informal outreach events. Evaluation data were collected at all formal events. Formative feedback from adult participants (parents, teachers, administrators and volunteers) was solicited through written questionnaires. Students were invited to respond to a survey of five questions both before and after the program to see if there were any changes in content knowledge and career attitudes. In our presentation, we will present our evaluation results from the first year and discuss how our program has been informed by this feedback.
Dark Skies, Bright Kids Year 9
NASA Astrophysics Data System (ADS)
Burkhardt, Andrew Michael; Matthews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest
2018-01-01
We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.
NASA Astrophysics Data System (ADS)
Schlang, Jodi A.
One of the most important factors for developing science literacy for all students is teacher knowledge of science content and pedagogy. This study was designed to evaluate the impact of professional development on teacher learning, changes in teacher behavior, and student learning. The goal was to develop a deeper understanding of how the Elementary Science Teaching and Learning (ESTL) program affected teacher learning and changed teacher behavior in the classroom. This study also provided insight into the effect of the ESTL program on student learning during the first year of the professional development. This mixed method case study was used to examine the link between participation in the ESTL program, teacher learning, changes in teacher classroom behavior, and student learning. Qualitative observations and videotaped sessions provided rich description of the professional development and implementation of inquiry-oriented strategies in participant's classrooms. Artifacts and interviews provided evidence of teacher learning and changes in teacher behaviors. Quantitative data included self-report survey data examining changes in teacher behavior and the measurement of student learning used both science district assessment scores and CSAP writing scores. Key findings include: (1) teacher learning was reported in the areas of questioning and scope and sequence of the curriculum occurred; (2) statistically significant changes teacher behavior were reported and were noted in teacher interviews; (3) participation in the ESTL program did not positively impact student learning; (4) unanticipated findings include the role of camaraderie in professional development and the role of additional training in teacher's confidence in both their own teaching and in helping others; and, (5) teacher's perceptions identified the role of inquiry-based science curriculum as providing the rich experiences necessary for improved student writing. Overall participation in the ESTL program increased the implementation of inquiry-oriented strategies and it strengthened teacher inquiry-based science teaching in the classroom even though no increases were found in student test scores.
NASA Astrophysics Data System (ADS)
Haefner, Leigh Ann; Zembal-Saul, Carla
This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.
The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers
ERIC Educational Resources Information Center
Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu
2013-01-01
We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers' developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The…
Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms
ERIC Educational Resources Information Center
Zhai, Junqing; Tan, Aik-Ling
2015-01-01
This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…
ERIC Educational Resources Information Center
Turkmen, Lutfullah
2013-01-01
The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…
ELEMENTARY SCIENCE OUTLINE, A GUIDE TO SUGGESTED CURRICULUM PRACTICES IN ELEMENTARY SCHOOL SCIENCE.
ERIC Educational Resources Information Center
KARTSOTIS, A. THOMAS; MESSERSCHMIDT, RALPH M.
THE COMMITTEE ON ELEMENTARY SCHOOL SCIENCE OF THE LEHIGH VALLEY SCHOOL STUDY COUNCIL REPORTS THEIR WORK ON SUGGESTED CURRICULUM FOR GRADES 1-6. THE BELIEF IS THAT SCIENCE IS A MAJOR STUDY AREA IN ELEMENTARY SCHOOL, AND SHOULD BE TAUGHT TO ALL PUPILS IN A PLANNED LEARNING SEQUENCE, WITH DUE CONSIDERATION BEING GIVEN TO THE MATURITY OF THE CHILD.…
ERIC Educational Resources Information Center
Akerson, Valarie L.; Weiland, Ingrid; Rogers, Meredith Park; Pongsanon, Khemmawaddee; Bilican, Kader
2014-01-01
We explored adaptations to an elementary science methods course to determine how varied contexts could improve elementary preservice teachers' conceptions of NOS as well as their ideas for teaching NOS to elementary students. The contexts were (a) NOS Theme in which the course focused on the teaching of science through the consistent teaching…
Science as Experience, Exploration, and Experiments: Elementary Teachers' Notions of "Doing Science"
ERIC Educational Resources Information Center
Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.
2017-01-01
Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science--both in and out of schools--throughout their lives. Our work uses…
The effect of site-based preservice experiences on elementary science teaching self-efficacy beliefs
NASA Astrophysics Data System (ADS)
Wingfield, Mary E.
Current reform in science education has focused on the need for improvement of preservice teacher training (National Science Education Standards, 1996). As a situation specific construct (Bandura, 1977), self-efficacy studies have been conducted to investigate factors that impact preservice teachers' sense of confidence as it relates to their ability to become successful science teachers. This descriptive study identified factors in the site based experiences that affected preservice elementary teachers' self-efficacy as measured by the Science Teaching Efficacy Belief Instrument (STEBL-B) (Enochs and Riggs, 1990). The sample consisted of the entire population of undergraduate elementary preservice teachers in the site based teacher education program during the fall semester of 1997 at a large south central urban university. The 131 paired, pretest posttests of the entire STEBL-B and the two constructs were analyzed for significance in mean score gains. Results of the paired t test yielded a t value of 11.52 which was significant at p <.001. An analysis of covariance using the pretest as the covariate yielded an F value of 6.41 which was statistically significant at p <.001. These quantitative results were supported by interviews and by written comments on questionnaires that determined ratings for the extent of impact on self-efficacy from site based experiences. Results of this study indicate that the experiences of the site based program has a significant positive impact on the preservice teachers' self-efficacy. The implication for teacher educators is that this specific affective dimension can be significantly enhanced. The site based program can provide the four factors Bandura identified as sources of information used to determine self-efficacy. These include performance accomplishments through authentic teaching experiences, vicarious experiences through observation of the site based teachers, and verbal persuasion and physiological states from feedback given by the university coordinators. The majority of these preservice teachers started the semester with a negative attitude toward teaching science, but ended the semester with a positive view of themselves as effective science teachers in the future.
Case-based pedagogy as a context for collaborative inquiry in the Philippines
NASA Astrophysics Data System (ADS)
Arellano, Elvira L.; Barcenal, Tessie L.; Bilbao, Purita P.; Castellano, Merilin A.; Nichols, Sharon; Tippins, Deborah J.
2001-05-01
The purpose of this study was to investigate the potential for using case-based pedagogy as a context for collaborative inquiry into the teaching and learning of elementary science. The context for this study was the elementary science teacher preparation program at West Visayas State University on the the island of Panay in Iloilo City, the Philippines. In this context, triple linguistic conventions involving the interactions of the local Ilonggo dialect, the national language of Philipino (predominantly Tagalog) and English create unique challenges for science teachers. Participants in the study included six elementary student teachers, their respective critic teachers and a research team composed of four Filipino and two U.S. science teacher educators. Two teacher-generated case narratives serve as the centerpiece for deliberation, around which we highlight key tensions that reflect both the struggles and positive aspects of teacher learning that took place. Theoretical perspectives drawn from assumptions underlying the use of case-based pedagogy and scholarship surrounding the community metaphor as a referent for science education curriculum inquiry influenced our understanding of tensions at the intersection of re-presentation of science, authority of knowledge, and professional practice, at the intersection of not shared language, explicit moral codes, and indigenization, and at the intersection of identity and dilemmas in science teaching. Implications of this study are discussed with respect to the building of science teacher learning communities in both local and global contexts of reform.
ERIC Educational Resources Information Center
Rawson, Casey H.
2015-01-01
Numerous authors in the library and information science (LIS) field have called for more authentic collaborative experiences for students in school librarian education programs, particularly experiences that partner school library students with pre-service teachers to collaboratively design instruction. The first-iteration, design-based study…
ERIC Educational Resources Information Center
Hughes-McDonnell, Fiona
2009-01-01
A teacher educator and student of Duckworth's critical exploration approach to teaching shares three episodes taken from science methods courses she teaches for preservice teachers in graduate and undergraduate programs in elementary education. The episodes reveal the pedagogy of critical exploration to be particularly well suited to the…
A SCIENCE PROGRAM FOR THE ELEMENTARY SCHOOLS OF LOWER MERION SCHOOL DISTRICT.
ERIC Educational Resources Information Center
Lower Merion Township School District, Ardmore, PA.
AFTER AN EVALUATION MADE BY THE TEACHERS OF KINDERGARTEN THROUGH GRADE 6, THE FOLLOWING AREAS OF CLARIFICATION, REWRITING, OR ADDITIONS WERE INDICATED--THE PURPOSE AND USE OF THE SCIENCE GUIDE, EVALUATION OF THE UNITS BY GRADES, ADDITIONAL MATERIALS FOR THE UNITS, A REWRITING OF PARTICULAR UNITS, HEALTH UNITS FOR GRADES 1 THROUGH 5, THE USE OF…
ERIC Educational Resources Information Center
Saylor, Laura Lackner; Johnson, Carla C.
2014-01-01
Meaningful and effective training and professional development programs for teachers are key to the improvement of teaching practices in our schools. In this paper, the authors offer a meta-synthesis of the literature on the role of reflection for mathematics and science teachers within the context of professional development. The authors frame…
ERIC Educational Resources Information Center
Suter, Larry E.
2016-01-01
Elementary and secondary students spend more hours outside of class than in formal school and thus have more time for interaction with everyday science. However, evidence from a large international survey, Program of International Student Assessment (PISA) (OECD 2012), found a negative relationship between number of hours attending after-school…
ERIC Educational Resources Information Center
Posner, Michael I.
This paper reviews the aspects of cognitive science that relate best to using electrical and magnetic recording to understand the function of brain systems. It outlines a framework for relating cognitive activities of daily life (typing, reading) to underlying neural systems. The framework uses five levels of analysis: task, elementary operations,…
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC.
This teacher's guide provides elementary teachers (grades 2-6) with supplementary learning activities centered around the subject of aviation, which may be used to enrich their regular programs. The guide is divided into the following five subject areas: communication arts, science, social studies, health, and careers in aviation. The guides vary…
Using Citizen Science to Engage Preservice Elementary Educators in Scientific Fieldwork
ERIC Educational Resources Information Center
Scott, Catherine M.
2016-01-01
Preservice elementary teachers' lack of confidence in teaching science is an ongoing concern. Only 29% of elementary teachers in the field felt "very well prepared to teach life science," according to the National Survey of Science and Mathematics Education. Research has suggested that bridging informal and formal science education can…
ERIC Educational Resources Information Center
Kelly, Janet
2000-01-01
Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…
The implementation of a discovery-oriented science education program in a rural elementary school
NASA Astrophysics Data System (ADS)
Liddell, Martha Sue
2000-10-01
This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine statistical significance. Teachers, students, and parents responding to the attitudinal survey concerning science education at the school were asked to mark each of four statements in one of three ways: "Agree," "Unsure," or "Disagree." Teachers, students, and parents were also given the opportunity to make comments. The results of the 1998 attitudinal surveys administered to teachers, students, and parents at the school indicated that teachers at the school generally held negative perceptions about the science education program in place at the school. Students were also generally negative in their opinions about science education at the school and parents were somewhat neutral in their opinions. After the Science and Technology for Children program was implemented at the school site, opinions concerning science education at the school changed. The 1999 attitudinal surveys indicated that teachers, students, and parents at the school expressed more positive than negative responses concerning science education.
Implementing Elementary School Next Generation Science Standards
ERIC Educational Resources Information Center
Kennedy, Katheryn B.
2017-01-01
Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The…
ERIC Educational Resources Information Center
Dock, Alan W.; And Others
This report describes the development process of a distance education program in Sri Lanka run by the Institute of Distance Education for nongraduate teachers inservice, and presents results of the program's evaluation. Two teacher education courses--an elementary education course and a combined science/mathematics course--were offered. The…
Contextually Authentic Science for Young Children: A Study of Two Summer Herpetology Programs
ERIC Educational Resources Information Center
Scott, Catherine Marie
2012-01-01
The purpose of this study was to examine the knowledge, skills, and dispositions enabled for elementary school participants in two summer herpetology programs, one in North Carolina and one in Florida. An additional purpose of this study was to examine the normative scientific practices in which participants engaged and to describe how these…
Can Music in Schools Live up to Its Promise?
ERIC Educational Resources Information Center
Whyte, Ingrid; Mould, Norman
2011-01-01
Music helps to bring out the best in young people. It nourishes self-esteem and keeps them engaged. The starting point for any good school program is the teacher, whether that program teaches English, math, science, history, arts--or music. So why is it that, at the elementary level, we have so many generalist classroom teachers--with no…
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.P.
1991-01-01
This paper reports that science education has long been a critical element in the U.S. Department of Energy's (DOE) Civilian Radioactive Waste Management Program. OCRWM has developed educational programs aimed at improving the science literacy of students from kindergarten through college and post-graduate levels, enhancing the skills of teachers, encouraging careers in science and engineering, and developing a keener awareness of science issues among the general population. Activities include interaction with educators in the development of curricula material; workshops for elementary and secondary students; cooperative agreements and projects with universities; OCRWM exhibit showings at technical and non-technical meetings and atmore » national and regional teacher/educator conferences; the OCRWM Fellowship Program; and support for Historically Black Colleges and Universities.« less
ERIC Educational Resources Information Center
Ruby, Allen; Doolittle, Emily
2010-01-01
The Institute of Education Sciences (IES) and the Division of Violence Prevention in the National Center for Injury Prevention and Control, Centers for Disease Control and Prevention (CDC) collaborated to conduct a rigorous impact evaluation of programs aimed at improving students' behavior. For this evaluation, such programs were termed Social…
The earthquake educational institute at San Francisco State University
Sullivan, R.; Pestrong, R.; Strongin, H.
1980-01-01
The Earthquake Educational Institute was established in 1978 at San Francisco State University under a grant from the U.S National Science Foundation. The goal of the Institute is to develop earthquake-related curricula for use in elementary and secondary schools in the hope that, by educating students about earthquakes, they will be better prepared for the disruptions associated with a major quake. To date, about 140 elementary and secondary school teachers and administrators have enrolled in the program.
NASA Astrophysics Data System (ADS)
Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.
2001-05-01
In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult concepts, make connections between class activities, and launch and wrap-up PBL problems. Labs will include activities from elementary science kits as launching points for in-depth investigations that demonstrate the continuity of science concepts and pedagogies across age levels. In the methods course, students will critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. Field placements in elementary classrooms will allow students to ground their studies of science and pedagogy in actual practice.
NASA Astrophysics Data System (ADS)
Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine
2018-01-01
Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.
The Use of Lego Technologies in Elementary Teacher Preparation
NASA Astrophysics Data System (ADS)
Hadjiachilleos, Stella; Avraamidou, Lucy; Papastavrou, Stavros
2013-10-01
The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in J Res Sci Teach 36:121-140, 1999; Bryan and Atwater in Sci Educ 8(6):821-839, 2002; Harrington and Hathaway in J Teach Educ 46(4):275-284, 1995). Science teachers are charged with the responsibility of incorporating both cognitive and non-cognitive parameters in their everyday teaching practices. This often results in their reluctance to teach science because they often lack disciplinary and/or pedagogical expertise required to promote science learning. The purpose of this study is to propose an alternative instructional approach in which Lego vehicles were used as a tool to promote pre-service elementary teachers' development and to examine whether there are non-cognitive parameters that promote or obstruct them from using Lego Technologies as a teaching tool. The context of the study was defined by a teacher preparation program of a private university in a small Mediterranean country. A sample of 28 pre-service elementary teachers, working in five 5-6-member groups were involved in scientific inquiries, during which they had to use vehicles in order to solve scientific problems related to concepts such as gear functioning, force, and motion. The nature of their cognitive engagement in the scientific inquiry process, non-cognitive parameters contributing to their cognitive engagement, and the impact of their involvement in the process on their development were examined through qualitative analysis of pre- and post-inquiry interviews, presentations of their solutions to the scientific problems and of their personal reflective journals.
ERIC Educational Resources Information Center
Akarsu, Bayram
2007-01-01
This study investigates relationships between understanding of nature of science and four key factors elementary science teachers possess, which are: (1) Their specializations in different science areas (Physics, chemistry, and biology), (2) Gender issues, (3) How long they have been teaching in elementary school environments, (4) Their…
Improving Elementary Science Education in a Developing Country: A Case Study From Fiji
ERIC Educational Resources Information Center
Taylor, Neil; Maiwaikatakata, Tema; Biukoto, Emele; Suluma, Wili; Coll, Richard K.
2008-01-01
Improved science education is seen as an important goal for many developing countries. The role of elementary science is of particular importance, given that research has shown a high correlation between economic growth and the time spent on elementary science education. However, the teaching of science in many developing countries is dominated by…
ERIC Educational Resources Information Center
Naidoo, Kara
2013-01-01
Elementary teachers are criticized for failing to incorporate meaningful science instruction in their classrooms or avoiding science instruction altogether. The lack of adequate science instruction in elementary schools is partially attributed to teacher candidates' anxiety, poor content and pedagogical preparation, and low science teaching…
ERIC Educational Resources Information Center
Cartwright, Tina; Smith, Suzanne; Hallar, Brittan
2014-01-01
This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…
ERIC Educational Resources Information Center
Marco-Bujosa, Lisa M.; Levy, Abigail Jurist
2016-01-01
Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…
ERIC Educational Resources Information Center
Simpson, Ronald D.
1974-01-01
Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…
ERIC Educational Resources Information Center
Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.
2016-01-01
This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…
Approximations of Practice in the Preparation of Prospective Elementary Science Teachers
ERIC Educational Resources Information Center
Nelson, Michele M.
2011-01-01
Elementary teacher education involves learning to teach science. Even in elementary school, teaching science is demanding work--teachers must orchestrate a complex set of teaching practices to support students' science learning. This dissertation examines the application of Grossman and colleagues' (2009) cross-professional learning framework,…
Wonder as a Tool to Engage Preservice Elementary Teachers in Science Learning and Teaching
ERIC Educational Resources Information Center
Gilbert, Andrew; Byers, Christie C.
2017-01-01
This exploratory project considers the use of "wonder" as a pedagogical tool with preservice elementary teachers (PSETs). An ongoing vexation facing science teacher educators is helping future elementary teachers overcome anxiety and negative associations with science due to their own school science experiences, while simultaneously…
ERIC Educational Resources Information Center
Stetson, Emily
1991-01-01
Thanks to two enterprising teachers, a basement greenhouse has energized an inner-city elementary school in Brooklyn, New York. Though the basement jungle is the most visible part of the science program, students tend outdoor plants and integrate horticulture into all curriculum areas. (MLH)
NASA Astrophysics Data System (ADS)
Koc, Isil
The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of alternative conceptions regarding earth/space science, physical science, and life science have a relatively high personal science teaching efficacy. Overall, the results of the study regarding self-efficacy beliefs propose that consideration be given to identification and modification of preservice elementary teachers' science alternative conceptions if they are expected to teach science effectively.
Seeing things through science eyes: A case study of an exemplary elementary teacher
NASA Astrophysics Data System (ADS)
Foster, Andrea Susan
Science-eyed elementary teachers exhibit relentless passions for replacing traditional teaching with realistic, integrated, responsible instruction with science at its core. The purpose of this study was to explore an exemplary elementary teacher's thinking about science and how it serves as a vehicle for the learning that occurs in her primary classroom. Two research questions were investigated in this study. First, what does it mean for an exemplary elementary teacher to view all learning with science eyes? Second, in what ways does the science-oriented elementary teacher use her knowledge of science content, pedagogy, and practical experience to structure her students' learning and her classroom teaching? A naturalistic methodology was employed in this research effort. Classroom observations, teacher interviews, documents, and selected artifacts were analyzed using a constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985) and the analysis tools of HyperRESEARCH (1994) in an effort to unravel the complex, intuitive knowledge of a nationally recognized first grade teacher. Data analyses provided insightful information about this exceptional teacher and how she organizes, plans, and implements effective lessons that integrate science with all subject areas. Four direct observation themes, Best Practice, Just Like a Scientist, Integrating Curriculum - A Balancing Act, and Expert Pedagogy, and six interview themes, Curriculum - What to Teach?, Instruction - How to Teach, Knowing Students, Getting Stuff, Professionalism, and Reflective Practitioner, emerged from independent analyses of two data sets. Three overall themes, Head, Heart, and Hands of an Exemplary Science Elementary Teacher, emerged from a convergent content analysis. The themes provide the foundation for a proposed model of an expert science pedagogue. Ten portrait-like, impressionistic, vignettes are included in this unique study to capture the spirit of the science-eyed elementary teacher's outstanding work in her first-grade classroom. Conclusions indicate that an in-depth knowledge and genuine passion for science, students, and teaching drives science-eyed teachers. The science-eyed elementary teacher organizes curriculum and instruction with scientific principles and skills of inquiry in mind. She improvises lessons to meet students' needs and interests in science. The science-eyed elementary teacher seeks out other science-eyed teachers. She is unique, inventive, and self aware.
NASA Technical Reports Server (NTRS)
2007-01-01
Randall Hicks (right), Jacobs Technology's Education Services manager at NASA John C. Stennis Space Center, answers questions about the playing field for FIRST (For Inspiration and Recognition of Science and Technology) LEGO League's 2007 Challenge, `Power Puzzle.' More than 140 teachers, mentors, parents and students from 15 schools attended the Sept. 15 FLL season kickoff at StenniSphere, the visitor center at SSC. The teams from southern and central Mississippi and Mobile, Ala., who came to SSC heard rules for and asked questions about `Power Puzzle,' and saw robot demonstrations by Gulfport and Picayune high schools' past FIRST Robotics competitions. Using LEGO Mindstorms NXT kits, FLL teams of children ages 9-14 will spend the next three months building and programming robots to perform 'Power Puzzle's' challenge tasks, then pit them in competitions. They also will submit a research project about how energy choices impact the environment and the economy. The season will culminate at the Mississippi Championship Tournament on Dec. 8 at the Mississippi Gulf Coast Community College. FLL, considered the `little league' of the FIRST Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation. NASA recognizes FIRST activities as an excellent hands-on method to increase student knowledge of science, engineering, technology and mathematics. Schools represented in this year's kickoff were: Madison Avenue Upper Elementary, the Mississippi Band of Choctaw Indians' Conehatta Elementary, Hattiesburg's Lillie Burney Elementary, Pearl Upper Elementary, Long Beach Middle, Oktibehha Elementary, d'Iberville Middle, Saucier's West Wortham Middle, Picayune's Nicholson Elementary and Roseland Park Baptist Church Academy, Bay St. Louis' St. Stanislaus College and Mobile's Davidson High, as well as two home-school groups from the Jackson area.
2007-09-15
Randall Hicks (right), Jacobs Technology's Education Services manager at NASA John C. Stennis Space Center, answers questions about the playing field for FIRST (For Inspiration and Recognition of Science and Technology) LEGO League's 2007 Challenge, `Power Puzzle.' More than 140 teachers, mentors, parents and students from 15 schools attended the Sept. 15 FLL season kickoff at StenniSphere, the visitor center at SSC. The teams from southern and central Mississippi and Mobile, Ala., who came to SSC heard rules for and asked questions about `Power Puzzle,' and saw robot demonstrations by Gulfport and Picayune high schools' past FIRST Robotics competitions. Using LEGO Mindstorms NXT kits, FLL teams of children ages 9-14 will spend the next three months building and programming robots to perform 'Power Puzzle's' challenge tasks, then pit them in competitions. They also will submit a research project about how energy choices impact the environment and the economy. The season will culminate at the Mississippi Championship Tournament on Dec. 8 at the Mississippi Gulf Coast Community College. FLL, considered the `little league' of the FIRST Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation. NASA recognizes FIRST activities as an excellent hands-on method to increase student knowledge of science, engineering, technology and mathematics. Schools represented in this year's kickoff were: Madison Avenue Upper Elementary, the Mississippi Band of Choctaw Indians' Conehatta Elementary, Hattiesburg's Lillie Burney Elementary, Pearl Upper Elementary, Long Beach Middle, Oktibehha Elementary, d'Iberville Middle, Saucier's West Wortham Middle, Picayune's Nicholson Elementary and Roseland Park Baptist Church Academy, Bay St. Louis' St. Stanislaus College and Mobile's Davidson High, as well as two home-school groups from the Jackson area.
ERIC Educational Resources Information Center
Isabelle, Aaron D.
2017-01-01
For students to achieve the goals of the Next Generation Science Standards (NGSS) by Grade 12, thinking and acting like scientists and engineers must begin in the elementary grades. However, elementary teachers may find this challenging -because language arts and mathematics still dominate many classrooms--often at the expense of science. This…
ERIC Educational Resources Information Center
Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.
2012-01-01
The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…
ERIC Educational Resources Information Center
Akerson, Valarie L.; Townsend, J. Scott; Donnelly, Lisa A.; Hanson, Deborah L.; Tira, Praweena; White, Orvil
2009-01-01
This paper summarizes the findings from a K-6 professional development program that emphasized scientific inquiry and nature of science within the theme of scientific modeling. During the 2-week summer workshop and follow up school year workshops, the instruction modeled a 5-E learning cycle approach. Pre and posttesting measured teachers' views…
An optics education program designed around experiments with small telescopes
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.; Dokter, Erin F. C.
2010-08-01
The National Optical Astronomy Observatory has led the development of a new telescope kit for kids as part of a strategic plan to interest young children in science. This telescope has been assembled by tens of thousands of children nationwide, who are now using this high-quality telescope to conduct optics experiments and to make astronomical observations. The Galileoscope telescope kit and its associated educational program are an outgrowth of the NSF sponsored "Hands-On Optics" (HOO) project, a collaboration of the SPIE, the Optical Society of America, and NOAO. This project developed optics kits and activities for upper elementary students and has reached over 20,000 middle school kids in afterschool programs. HOO is a highly flexible educational program and was featured as an exemplary informal science program by the National Science Teachers Association. Our new "Teaching with Telescopes" program builds on HOO, the Galileoscope and other successful optical education projects.
ERIC Educational Resources Information Center
Peoples, Shelagh M.; O'Dwyer, Laura M.; Wang, Yang; Brown, Jessica J.; Rosca, Camelia V.
2014-01-01
This article describes the development, validation and application of a Rasch-based instrument, the Elementary School Science Classroom Environment Scale (ESSCES), for measuring students' perceptions of constructivist practices within the elementary science classroom. The instrument, designed to complement the Reformed Teaching Observation…
Developing a Reform-Minded Science Teaching Identity: The Role of Informal Science Environments
ERIC Educational Resources Information Center
Avraamidou, Lucy
2014-01-01
Recommendations for reform in science education around the world set high goals for beginning elementary teachers. Concurrently, existing literature indicates a number of challenges that beginning elementary teachers face. In this paper an argument is put forward about the integration of informal science environments in elementary teacher…
Science for the Elementary School. Third Edition.
ERIC Educational Resources Information Center
Victor, Edward
This book has been revised to reflect changes that have taken place in elementary science and to present the latest thinking and philosophy for teaching science in the elementary school. The book is intended to be useful for both prospective and experienced teachers to organize and conduct meaningful science learning experiences in the elementary…
Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons
NASA Astrophysics Data System (ADS)
Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert
2013-06-01
Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.
NASA Astrophysics Data System (ADS)
Winn, Kathleen Mary
The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.
NASA Astrophysics Data System (ADS)
Hoover, Barbara Grambo
Many factors influence teacher choices concerning the frequency, instructional methods, and content of science teaching. Although the role of gender in science learning has been studied extensively, the gender of elementary teachers as it intersects their teaching of science has not been investigated. In this ethnographic study, I focused on five male preservice elementary teachers as they experienced their student teaching internship, aiming to understand their underlying beliefs about science and science teaching and how those beliefs influenced their practice. In an attempt to illuminate the complex interplay of personality, experience, interests, and gender in the professional lives of these men, this study emphasized the importance of context in the formation and expression of their science beliefs and pedagogy. For this reason, I collected data from a number of sources. From September, 2001 to May, 2002, I observed my participants in their science methods courses and on multiple occasions as they taught science in elementary classrooms in a suburban school district. I reviewed journal entries required for the science methods class and examined documents such as handouts, readings and teacher guides from their elementary teaching experience. I conducted semi-structured and informal interviews. I analyzed data from these sources using grounded theory methodology. Although these five men had many similarities, they differed in their love of science, their exposure to science, their avocational interests, and their views of science pedagogy. This study, however, revealed a unifying theme: each participant had his own set of personal and academic resources that he carried into the classroom and used to construct a distinctive science learning environment. Some of these resources intersect with gender. For example, several men had science-related avocational interests. There was a common emphasis on creating a relaxed, enjoyable, hands-on teaching environment as reported in other studies of male elementary teachers. These findings have implications for elementary school science teaching and recruitment goals for elementary teachers that should be further explored in additional studies.
Improving science literacy and education through space life sciences
NASA Astrophysics Data System (ADS)
MacLeish, Marlene Y.; Moreno, Nancy P.; Tharp, Barbara Z.; Denton, Jon J.; Jessup, George; Clipper, Milton C.
2001-08-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institutions—Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University—are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students—especially those from underrepresented groups—to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.
Armadillos, Boatbills & Crocodiles.
ERIC Educational Resources Information Center
Berkovits, Annette; Greenblatt, Esther
1980-01-01
Recounts the unique partnership in science instruction developed between Nassau and Suffolk County (New York) schools and the Bronx Zoo to provide educational experiences for handicapped and mentally retarded students. Discussion focuses on a five-phase program developed for 200 elementary secondary students from Rosemary Kennedy Center through…
Soweto Curriculum Extension Programme.
ERIC Educational Resources Information Center
Murray, Chris
1992-01-01
A Saturday enrichment program for gifted black children in Soweto townships (South Africa) is described, including development of basic numeracy and literacy skills for elementary students; work in English, mathematics, and science/biology for high school students; creative activities and excursions; interracial activities; and cross-cultural…
NASA Astrophysics Data System (ADS)
Tillman, Daniel
The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital fabrication activities. Based upon analysis of the data collected, two main results were determined to have justifiable supporting empirical evidence: (1) After the instructional technology course featuring digital fabrication activities, the participants reported statistically significant overall gains in science teaching efficacy beliefs. (2) When asked to describe their future plans for using three instructional technologies in their teaching, the top five most mentioned instructional technologies were: interactive whiteboards, video, class website, interactive online timeline, and digital fabrication. Of the participants that mentioned digital fabrication, the specific content areas mentioned were: history (four out of eight students mentioned), social studies (two out of eight), and science, math, engineering, and technology were each mentioned once. Article three assessed the impact of a series of lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students who had been recognized as advanced in mathematics. The main dependent variables studied were the students' knowledge of science content from the Virginia Standards of Learning, attitude towards science, and student reported likes and dislikes about the project. Based upon analysis of the data collected, three main results were presented: (1) Students demonstrated significant positive gains in correct answers to questions on the topic of "Force, Matter, Energy, & Motion" from pretest to posttest. (2) There were nonsignificant gains reported by students on the attitude survey questions about attitude towards science, but this was chiefly because of one question that was significantly impacted in a negative direction. (3) Students articulated five main categories of likes and six main categories of dislikes of the experience, thereby providing insight into their own perception of some of the affordances and constraints of the educational activities. The five topics mentioned most often by students as self-reported likes about the experience included: hands-on activities including building, making, or designing (18 of 29 students mentioned; 62.1%), experimenting (9 of 29; 31.0%), presenting (9 of 29; 31.0%), drawing (6 of 29; 20.7%), and working in groups (6 of 29; 20.7%). The six topics most mentioned by students as self-reported dislikes about the experience included: taking tests (13 of 29 students mentioned; 44.8%), drawing (7 of 29; 24.1%), confusing / too fast (4 of 29; 13.8%), class discussions (4 of 29; 13.8%), reviewing (4 of 29; 13.8%), and attitude surveys (4 of 29; 13.8%). Cumulatively these three articles aim to contribute to the body of research studying the impact of digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education. This goal is described in greater detail in the "Manuscript Theme" section that begins on the next page. Keywords: STEM, digital fabrication, upper elementary science education, contextual mathematics, modeling-based science instruction, transmedia books, performance assessment, preservice elementary teacher education, science teaching efficacy beliefs
ERIC Educational Resources Information Center
Wilson, Rachel E.; Kittleson, Julie M.
2012-01-01
Science education researchers are concerned with preparing pre-service elementary teachers (PSETs) to teach in ways that support students to learn science in a meaningful way. Preparing elementary teachers to teach science is complicated given that they tend to be generalists and may not have the same experience with science as secondary teachers.…
Generation of Graphite Particles by Abrasion and Their Characterization
NASA Astrophysics Data System (ADS)
Troy, Raymond Steven
Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.
Parental influences on students' self-concept, task value beliefs, and achievement in science.
Senler, Burcu; Sungur, Semra
2009-05-01
The aim of this study was twofold: firstly, to investigate the grade level (elementary and middle school) and gender effect on students' motivation in science (perceived academic science self-concept and task value) and perceived family involvement, and secondly to examine the relationship among family environment variables (fathers' educational level, mothers' educational level, and perceived family involvement), motivation, gender and science achievement in elementary and middle schools. Multivariate Analysis of Variance (MANOVA) showed that elementary school students have more positive science self-concept and task value beliefs compared to middle school students. Moreover, elementary school students appeared to perceive more family involvement in their schooling. Path analyses also suggested that family involvement was directly linked to elementary school students' task value and achievement. Also, in elementary school level, significant relationships were found among father educational level, science self-concept, task value and science achievement. On the other hand, in middle school level, family involvement, father educational level, and mother educational level were positively related to students' task value which is directly linked to students' science achievement. Moreover, mother educational level contributed to science achievement through its effect on self-concept.
The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers
NASA Astrophysics Data System (ADS)
Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu
2013-10-01
We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.
ERIC Educational Resources Information Center
Knecht, Paul S.
The Children's Lab at Northern State University (South Dakota) is a science concept development laboratory for use by students in a physical science course for preservice elementary teachers. Its function is to develop science content knowledge in preservice elementary teachers, with the ultimate goal of developing science literacy in children.…
ERIC Educational Resources Information Center
Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami
2016-01-01
The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…
Reconceptualizing Elementary Teacher Preparation: A Case for Informal Science Education
ERIC Educational Resources Information Center
Avraamidou, Lucy
2015-01-01
The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and…
NASA Astrophysics Data System (ADS)
Klemmer, Cynthia Davis
Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that gardening was a successful teaching method for raising science achievement scores for boys in 3rd, 4 th, and 5th grades, and for girls in the 5th grade. The finding for girls may be important because it mediated a trend of decreasing scores in the control group at an age just prior to the onset of adolescence, when achievement and interest in science typically decrease.
The Effects of Using Space to Teach Standard Elementary School Curriculum
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1996-01-01
This brief report and recommendation for further research brings to a formal close this effort, the original purpose of which is described in detail in The effects of using space to teach standard elementary school curriculum, Volume 1, included here as the Appendix. Volume 1 describes the project as a 3-year research program to determine the effectiveness of using space to teach. The research design is quasi experimental using standardized test data on students from Aldrin Elementary School and a District-identified 'control' school, which shall be referred to as 'School B.' Students now in fourth through sixth grades will be compared now (after one year at Aldrin) and tracked at least until the present sixth graders are through the eighth grade. Appropriate statistical tests will be applied to standardized test scores to see if Aldrin students are 'better' than School B students in areas such as: Overall academic performance; Performance in math/science; and Enrollments in math/science in middle school.
NASA Astrophysics Data System (ADS)
Acre, Andrea M.
This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of high-stakes tests is of the upmost importance given that science is being eliminated from the elementary curriculum and it is during the elementary years that students' nurture and develop their interest in science. Additionally, the United States is failing to produce enough college graduates in STEM areas to fill the thousands of STEM jobs each year. Through a review of the literature, the past trends and current trends of elementary science education were explored as well as teacher training. Furthermore, the literature reviewed inquiry teaching which is considered to be the most effective teaching method when teaching science at any level. Using John Dewey's Interest and Effort Relationship Theory and the Self-Determination Motivation Theory to guide this study, there were five prominent themes which emerged from the reconstructed stories of the four teachers: positive experiences with science, neutral/negative experiences with science, seeks meaningful professional development, influence and support from others, and regret/wants to do more.
ERIC Educational Resources Information Center
Richard, Bertha Cookie
2013-01-01
The purpose of this study was to investigate elementary teacher perceptions of elementary principal instructional leadership and elementary teacher evaluation of self-efficacy at low and high performing low socio-economic elementary schools. These variables were examined to determine whether relationships with math and science academic achievement…
Career and Technology Center Guides Students in Real-Life Careers | Poster
By Carolynne Keenan, Contributing Writer Frederick County Public School students have a unique opportunity—a chance to get a real-world, hands-on experience in biomedical science and biotechnology before they even graduate from high school, thanks to the Frederick County Career and Technology Center (CTC). Several years ago, the CTC established its biomedical sciences program with a curriculum from Project Lead the Way (PLTW), a nonprofit, nationwide developer of science, technology, engineering, and mathematics (STEM) education in elementary, middle, and high schools.
ERIC Educational Resources Information Center
Gillen, Rose; And Others
1995-01-01
Presents six curriculum guides for elementary and secondary education. Subjects include interdisciplinary instruction, music, reading/language arts, science, and social studies. Each guide provides library media skills objectives, curriculum objectives, grade levels, resources, instructional roles, activity and procedures for completion, a…
ERIC Educational Resources Information Center
Kim, Dongryeul
2017-01-01
The purpose of this study was to develop a "Water strider" Inquiry Learning Program for improved inquiry learning, and to analyze the validity of the "Water strider." The Inquiry Learning Program's goal was to create an application for finding out an on-site applicability for the "Water strider" Inquiry Learning…
2010-06-09
Jet Propulsion Laboratory Manager of Elementary and Secondary Education David Seidel motivates teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)
Using insects for STEM outreach: Development and evaluation of the UA Insect Discovery Program
NASA Astrophysics Data System (ADS)
Beal, Benjamin D.
Science and technology impact most aspects of modern daily life. It is therefore important to create a scientifically literate society. Since the majority of Americans do not take college-level science courses, strong K-12 science education is essential. At the K-5 level, however, many teachers lack the time, resources and background for effective science teaching. Elementary teachers and students may benefit from scientist-led outreach programs created by Cooperative Extension or other institutions. One example is the University of Arizona Insect Discovery Program, which provides short-duration programing that uses insects to support science content learning, teach critical thinking and spark interest in science. We conducted evaluations of the Insect Discovery programming to determine whether the activities offered were accomplishing program goals. Pre-post tests, post program questionnaires for teachers, and novel assessments of children's drawings were used as assessment tools. Assessments were complicated by the short duration of the program interactions with the children as well as their limited literacy. In spite of these difficulties, results of the pre-post tests indicated a significant impact on content knowledge and critical thinking skills. Based on post-program teacher questionnaires, positive impacts on interest in science learning were noted as much as a month after the children participated in the program. New programming and resources developed to widen the potential for impact are also described.
"Dinosaurs." Kindergarten. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Herminghaus, Trisha, Ed.
This unit contains 15 lessons on dinosaurs for kindergarten children. It provides a materials list, supplementary materials list, use of process skill terminology, unit objectives, vocabulary, six major dinosaurs, and background information. Lessons are: (1) "Webbing"; (2) "Introduction to the Big Six"; (3) "Paleontology…
Newspaper Activities for Elementary Children.
ERIC Educational Resources Information Center
Pinellas County District School Board, Clearwater, FL.
"How to Begin" instructions are given in this teachers guide followed by illustrated sections on using the newspaper in the Language Arts, Mathematics, Social Studies, Science, and Art programs. The activities in Language Arts include: word study and spelling, speaking and listening, composition and handwriting, comprehension, critical thinking…
ERIC Educational Resources Information Center
McDuffie, Thomas
2007-01-01
Although weather, including its role in the water cycle, is included in most elementary science programs, any further examination of raindrops and snowflakes is rare. Together rain and snow make up most of the precipitation that replenishes Earth's life-sustaining fresh water supply. When viewed individually, raindrops and snowflakes are quite…
Research Out of the Shadows: A Reply to Rist.
ERIC Educational Resources Information Center
Barone, Thomas E.
1987-01-01
Replies to Rist's unfavorable evaluation of Barone's own article critiquing the arts program of a black elementary school. Argues that quantitative social science research has unsuccessfully modeled itself on scientific methodology, but camouflages its subjectivity and fictionalizes the entire research undertaking. Crafting an educational…
ESS/Special Education Teacher's Guide.
ERIC Educational Resources Information Center
Ball, Daniel W.
This teacher's guide provides Elementary Science Study (ESS) units that can be used with students in grades 1-12 in special education programs. The ESS units represent an interdisciplinary approach to learning and emphasize "hands-on" activities. Activities include Mirror Cards, Pattern Blocks, Clay Boats, Mapping, Earthworms, and…
45 CFR 605.35 - Evaluation and placement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 3 2010-10-01 2010-10-01 false Evaluation and placement. 605.35 Section 605.35 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... evaluation. A recipient that operates a public elementary or secondary education program or activity shall...
NASA Astrophysics Data System (ADS)
Foster, Donald Carey
The purpose of this case study was to identify barriers that limit the effectiveness of elementary teachers in the teaching of science. It is of the utmost urgency that barriers be first identified, so that possible solutions can be explored to bring about the improvement of elementary science education. This urgency has been imposed by the scheduled national testing of students in science by 2007, as mandated by the No Child Left Behind Act of 2001. Using qualitative case study methods, the researcher conducted interviews with 8 elementary teachers from two schools within one school district who taught 3rd, 4th, and 5th grade. These interviews were designed to gain insight into barriers these elementary teachers perceived as factors limiting their effectiveness in teaching science and preparing students for high-stakes testing. Barriers in the areas of teacher background, typical teaching day, curriculum, inservices, and legislative influences were explored. This study concluded that the barriers explored do have a substantial negative affect on the teaching and learning of science in the elementary grades. Specifically, the barriers revealed in this study include the limited science background of elementary teachers, inadequate class time devoted to science, non-comprehensive curriculum, ineffective or lack of inservice training, and pressures from legislated mandates. But it is also clear that these barriers are so intertwined that one cannot remove these barriers one at a time. It will take a collective effort from all involved, including legislators, administrators, teachers, parents, and students, to alleviate these barriers and discover effective solutions to improve elementary science education.
Training Elementary Teachers to Prepare Students for High School Authentic Scientific Research
NASA Astrophysics Data System (ADS)
Danch, J. M.
2017-12-01
The Woodbridge Township New Jersey School District has a 4-year high school Science Research program that depends on the enrollment of students with the prerequisite skills to conduct authentic scientific research at the high school level. A multifaceted approach to training elementary teachers in the methods of scientific investigation, data collection and analysis and communication of results was undertaken in 2017. Teachers of predominately grades 4 and 5 participated in hands on workshops at a Summer Tech Academy, an EdCamp, a District Inservice Day and a series of in-class workshops for teachers and students together. Aspects of the instruction for each of these activities was facilitated by high school students currently enrolled in the High School Science Research Program. Much of the training activities centered around a "Learning With Students" model where teachers and their students simultaneously learn to perform inquiry activities and conduct scientific research fostering inquiry as it is meant to be: where participants produce original data are not merely working to obtain previously determined results.
ERIC Educational Resources Information Center
Al Sarhan, Khaled Ali; AlZboon, Saleem Odeh; Olimat, Khalaf Mufleh; Al-Zboon, Mohammad Saleem
2013-01-01
The study aims at introducing the features of the computerized educational games in sciences at the elementary school in Jordan according to the specialists in teaching science and computer subjects, through answering some questions such as: What are the features of the computerized educational games in sciences at the elementary schools in Jordan…
ERIC Educational Resources Information Center
Busch, Phyllis S.
Contained are some of the instructional materials developed by the Science Project Related to Upgrading Conservation Education. Outdoor activities for elementary school children, suitable for use in camps, parks, playgrounds or sanctuaries are described. Programs are designed for one-day (K-4), two-day (grade 5), and three-day (grade 6) camps, and…
NASA Astrophysics Data System (ADS)
Haden, C.; Styers, M.; Asplund, S.
2015-12-01
Music and the performing arts can be a powerful way to engage students in learning about science. Research suggests that content-rich songs enhance student understanding of science concepts by helping students develop content-based vocabulary, by providing examples and explanations of concepts, and connecting to personal and situational interest in a topic. Building on the role of music in engaging students in learning, and on best practices in out-of-school time learning, the NASA Discovery and New Frontiers program in association with Jet Propulsion Laboratory, Marshall Space Flight Center, and KidTribe developed Space School Musical. Space School Musical consists of a set of nine songs and 36 educational activities to teach elementary and middle school learners about the solar system and space science through an engaging storyline and the opportunity for active learning. In 2014, NASA's Jet Propulsion Laboratory contracted with Magnolia Consulting, LLC to conduct an evaluation of Space School Musical. Evaluators used a mixed methods approach to address evaluation questions related to educator professional development experiences, program implementation and perceptions, and impacts on participating students. Measures included a professional development feedback survey, facilitator follow-up survey, facilitator interviews, and a student survey. Evaluation results showed that educators were able to use the program in a variety of contexts and in different ways to best meet their instructional needs. They noted that the program worked well for diverse learners and helped to build excitement for science through engaging all learners in the musical. Students and educators reported positive personal and academic benefits to participating students. We present findings from the evaluation and lessons learned about integration of the arts into STEM education.
ERIC Educational Resources Information Center
Jacobson, Linda
2004-01-01
As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…
Preservice Teachers' Alternative Conceptions in Elementary Science Concepts
ERIC Educational Resources Information Center
Koc, Isil; Yager, Robert E.
2016-01-01
This study was conducted to investigate the extent to which preservice teachers held alternative conceptions in elementary science concepts. Eighty-six preservice elementary teachers participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions…
Elementary Principals' Role in Science Instruction
ERIC Educational Resources Information Center
Casey, Patricia; Dunlap, Karen; Brown, Kristen; Davison, Michele
2012-01-01
This study explores the role elementary school principals play in science education. Specifically, the study employed an online survey of 16 elementary school principals at high-performing campuses in North Texas to explore their perceptions of how they influenced science education on their campuses. The survey used a combination of Likert-type…
Differential Use of Elementary Science Kits
ERIC Educational Resources Information Center
Jones, Gail; Robertson, Laura; Gardner, Grant E.; Dotger, Sharon; Blanchard, Margaret R.
2012-01-01
The use of kits in elementary science classes is a growing trend in some countries. Kits provide materials and inquiry lessons in a ready-to-teach format for teachers to use in their science instruction. This study examined elementary teachers' instructional strategies, classroom practices, and assessment types in relation to the frequency of…
Investigation of preservice elementary teachers' thinking about science
NASA Astrophysics Data System (ADS)
Cobern, William W.; Loving, Cathleen C.
2002-12-01
It is not uncommon to find media reports on the failures of science education, nor uncommon to hear prestigious scientists publicly lament the rise of antiscience attitudes. Given the position elementary teachers have in influencing children, antiscience sentiment among them would be a significant concern. Hence, this article reports on an investigation in which preservice elementary teachers responded to the Thinking about Science survey instrument. This newly developed instrument addresses the broadrelationship of science to nine important areas of society and culture and is intended to reveal the extent of views being consistent with or disagreeing with a commonly held worldview of science portrayed in the media and in popular science and science education literature. Results indicate that elementary teachers discriminate with respect to different aspects of culture and science but they are not antiscience.
Studies of ARO-Relevant Fuels using Shock Tube/Laser Absorption Methods
2017-08-19
elementary reaction rate constants. These experimental methods are the mainstay of this ARO research program at Stanford. The primary scientific... methods and able to pursue careers as leaders in science and engineering in the United States. Results Dissemination: Descriptions of the research have...constants. These experimental methods are the mainstay of this ARO research program at Stanford. The primary scientific problem that this research
2004-09-21
KENNEDY SPACE CENTER, FLA. - Shawn McCollough, principal of Gainesville Elementary School, a NASA Explorer School (NES) in Gainesville, Ga., and a teacher sign a Memorandum of Understanding between KSC and the school for the NES program. Schools from across the country are eligible to apply online for an opportunity to partner with NASA in a program designed to bring engaging mathematics, science and technology learning to educators, students and families.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Shawn McCollough, principal of Gainesville Elementary School, a NASA Explorer School (NES) in Gainesville, Ga., and a teacher sign a Memorandum of Understanding between KSC and the school for the NES program. Schools from across the country are eligible to apply online for an opportunity to partner with NASA in a program designed to bring engaging mathematics, science and technology learning to educators, students and families.
Is This Your Year to Inspire a Child? | Poster
By Julie Hartman, Guest Writer The Elementary Outreach Program (EOP) is looking for volunteers for the 2013–2014 school year. This program is designed to bring science into the classrooms of Frederick County students in grades 1 through 5. You’ll have a chance to work with small groups of children, presenting hands-on lessons that are coordinated with the school curriculum.
ERIC Educational Resources Information Center
Lynch, Joanne
Cognitive Academic Language Learning Approach (Project CALLA) was a federally funded program serving 960 limited-English-proficient students in 10 Manhattan (New York) elementary schools in 1992-93 its third year of operation. The project provided instruction in English as a Second Language (ESL), mathematics, science, and social studies in…
A Teacher's Guide to the Energy 80 Student Booklet for the 1981-82 School Year.
ERIC Educational Resources Information Center
Lord, John, Ed.
This teaching guide was developed for use with Energy 80 program student booklets. Although the program was designed for junior high/middle school students in science/social studies classes, it is indicated that the materials are suitable for use at higher grades and, to a lesser extent, in upper elementary grades. The first 80 pages of the guide…
Mathematics for the Student Scientist
NASA Astrophysics Data System (ADS)
Lauten, A. Darien; Lauten, Gary N.
1998-03-01
The Earth Day:Forest Watch Program, introduces elementary, middle, and secondary students to field laboratory, and satellite-data analysis methods for assessing the health of Eastern White Pine ( Pinus strobus). In this Student-Scientist Partnership program, mathematics, as envisioned in the NCTM Standards, arises naturally and provides opportunities for science-mathematics interdisciplinary student learning. School mathematics becomes the vehicle for students to quantify, represent, analyze, and interpret meaningful, real data.
Science as experience, exploration, and experiments: elementary teachers' notions of `doing science'
NASA Astrophysics Data System (ADS)
Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.
2017-11-01
Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science - both in and out of schools - throughout their lives. Our work uses identity as a lens to examine the complexities of elementary teachers' narrative accounts of their experiences with science over the course of their lives. Our findings identify components of teachers' science-related experiences in order to lay the groundwork for making connections between teachers' personal experiences and professional practice. This work demonstrates that teachers' storied lives are important for educational researchers and teacher educators, as they reveal elements of teaching knowledge that may be productive and resourceful for refining teachers' science practice.
ERIC Educational Resources Information Center
Acre, Andrea M.
2014-01-01
This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of…
The National Space Grant College and Fellowship Program
NASA Technical Reports Server (NTRS)
Schwartz, Elaine T.; Keffer, Lynne
1991-01-01
This paper outlines the development of NASA's National Space Grant College and Fellowship Program. The program was introduced by Senator Bentsen (D-TX) and passed into law on October 30, 1987. NASA consulted with professional higher education associations in translating the law's provisions into program objectives. The objectives include the establishment of a national network of universities with interests and capabilities in aeronautics, space and related fields; the formation of cooperative programs among universities, aerospace industry, and federal, state and local governments; the broadening of interdisciplinary training, research and public-service programs related to aerospace; the recruiting and training of professionals, especially women and underrepresented minorities, for careers in aerospace science, and technology and allied fields; and, the development of a strong science, mathematics and technology base from elementary school through university levels.
Improving science literacy and education through space life sciences.
MacLeish, M Y; Moreno, N P; Tharp, B Z; Denton, J J; Jessup, G; Clipper, M C
2001-01-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.
Improving science literacy and education through space life sciences
NASA Technical Reports Server (NTRS)
MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.
2001-01-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.
Dancing Lights: Creating the Aurora Story
NASA Astrophysics Data System (ADS)
Wood, E. L.; Cobabe-Ammann, E. A.
2009-12-01
Science tells a story about our world, our existence, our history, and the larger environment our planet occupies. Bearing this in mind, we created a series of lessons for 3rd-5th grades using a cross-disciplinary approach to teaching about the aurora by incorporating stories, photos, movies, and geography into the science in order to paint a broad picture and answer the question, “why do we care?” The fundamental backbone of the program is literacy. Students write and illustrate fiction and non-fiction work, poetry, and brochures that solidify both language arts skills and science content. In a time when elementary teachers relegate science to less than one hour per week, we have developed a novel science program that can be easily integrated with other topics during the typical school day to increase the amount of science taught in a school year. We are inspiring students to take an interest in the natural world with this program, a stepping-stone for larger things.
A narrative study of novice elementary teachers' perceptions of science instruction
NASA Astrophysics Data System (ADS)
Harrell, Roberta
It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).
Learning To Teach at the Elbows: The Tao of Teaching.
ERIC Educational Resources Information Center
MacKinnon, Allan
1996-01-01
The dialogical relationship between Confucianism and Taoism serves as a framework for examining the interplay between learning as socioculturally mediated activity and critical reflection in preservice teacher education. Article highlights a summer elementary school science program that involves preservice teachers, university faculty, and a local…
Project Success for the SLD Child, Curriculum Modification.
ERIC Educational Resources Information Center
Owens, Jean
The curriculum modification guide, developed by project success (Nebraska) through a Title III grant for language disabled elementary level students, contains suggested activities and instructional materials to be used in units of art, health, mathematics, music, science, and social studies. Explained are program planning, criteria for selecting…
25 CFR 36.22 - Standard VII-Elementary instructional program.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Mathematics. (3) Social studies. (4) Sciences. (5) Fine arts. (6) Physical education. (b) Each school shall... Section 36.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Minimum...
Scientific Research in Education
ERIC Educational Resources Information Center
Shavelson, Richard J., Ed.; Towne, Lisa, Ed.
2002-01-01
Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in education now codified in the federal law that authorizes the bulk of elementary and secondary education programs have brought a new sense…
25 CFR 36.22 - Standard VII-Elementary instructional program.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Mathematics. (3) Social studies. (4) Sciences. (5) Fine arts. (6) Physical education. (b) Each school shall... Section 36.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Minimum...
Annual Evaluation Report. Title I ESEA 1974-75.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Education, Oklahoma City.
A description and evaluation of Elementary and Secondary Education Act Title I-funded programs for the state of Oklahoma are reviewed in this report. The project components include the following: remedial reading, speech therapy, learning disabilities, underachievers, remedial math, remedial language arts, remedial science, special education, and…
ERIC Educational Resources Information Center
Santau, Alexandra O.; Maerten-Rivera, Jaime L.; Bovis, Stephanie; Orend, Jacob
2014-01-01
Since the beginning of the reform movement in science education, there has been concern that elementary teachers lack the science content knowledge (SCK) needed to engage students in authentic scientific inquiry. This study included 19 preservice elementary teachers and examined the development of their SCK within the context of a uniquely…
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.
2016-12-01
To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).
Mathematics Anxiety and Preservice Elementary Teachers' Confidence to Teach Mathematics and Science
ERIC Educational Resources Information Center
Bursal, Murat; Paznokas, Lynda
2006-01-01
Sixty-five preservice elementary teachers' math anxiety levels and confidence levels to teach elementary mathematics and science were measured. The confidence scores of subjects in different math anxiety groups were compared and the relationships between their math anxiety levels and confidence levels to teach mathematics and science were…
Science for All: Empowering Elementary School Teachers
ERIC Educational Resources Information Center
Plonczak, Irene
2008-01-01
This article addresses issues that are related to the empowerment of elementary teachers through teaching and learning science in socially and culturally meaningful contexts. It is based on the analysis of the attitudes and relationship to science of 10 elementary school teachers from inner city schools in Caracas, Venezuela. In the context of a…
Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers
ERIC Educational Resources Information Center
Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; LaBrake, Cynthis; Kopp, Sacha
2015-01-01
Owing to their potential impact on students' cognitive and noncognitive outcomes, the negative attitudes toward science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of preservice elementary teachers with the goal of improving their attitudes "before" they…
Elementary Children's Retrodictive Reasoning about Earth Science
ERIC Educational Resources Information Center
Libarkin, Julie C.; Schneps, Matthew H.
2012-01-01
We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…
ERIC Educational Resources Information Center
Biggers, Mandy; Forbes, Cory T.
2012-01-01
Using the National Research Council's inquiry continuum framework, we use a multiple-case study research design to investigate the teacher- and student-directedness of elementary preservice teachers' planned and enacted science lessons and their pedagogical reasoning about science instruction during a semester-long science methods course. Our…
Structure and Form. Elementary Science Activity Series, Volume 2.
ERIC Educational Resources Information Center
Blackwell, Frank F.
This book is number 2 of a series of elementary science books that presents a wealth of ideas for science activities for the elementary school teacher. Each activity includes a standard set of information designed to help teachers determine the activity's appropriateness for their students, plan its implementation, and help children focus on a…
The Effect on Elementary Science Education Based on Student's Pre-Inquiry
ERIC Educational Resources Information Center
Kang, Houn Tae; Noh, Suk Goo
2017-01-01
In this research, after extracting the pre-inquiries (student-level question) for which students had curiosity in the elementary science and analyzing their correlation with the elementary science curriculum, highly correlated inquiries (meaningful pre-inquiries) were selected and applied in class. After organizing an experiment group and a…
ERIC Educational Resources Information Center
Flores, Ingrid M.
2015-01-01
Thirty preservice teachers enrolled in a field-based science methods course were placed at a public elementary school for coursework and for teaching practice with elementary students. Candidates focused on building conceptual understanding of science content and pedagogical methods through innovative curriculum development and other course…
ERIC Educational Resources Information Center
Thomson, Margareta Maria; Kaufmann, Elisha
2013-01-01
This study explored primarily the elementary teachers' motivations and expectations for engagement in a science professional development. Participants (N=20) were elementary teachers in two public schools from the United States and were enrolled in a yearlong science professional development; however, due to various factors teachers did not…
ERIC Educational Resources Information Center
Bell, Randy L.; Matkins, Juanita Jo; Gansneder, Bruce M.
2011-01-01
This mixed-methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional…
ERIC Educational Resources Information Center
Herwitz, Stanley R.; Guerra, Marion
1996-01-01
Describes a course teaching planetary science to elementary school students in collaboration with a university. Chronicles how a partnership between an elementary school teacher and a university-based research scientist effectively shaped the teacher's understanding of values and attitudes inherent in science education. Presents a model for…
Exploring Exemplary Elementary Teachers' Conceptions and Implementation of Inquiry Science
ERIC Educational Resources Information Center
Morrison, Judith A.
2013-01-01
This study was an exploration of the conceptions of inquiry science held by exemplary elementary teachers. The origins of these conceptions were explored in order to establish how best to improve elementary teachers' understanding and implementation of inquiry science teaching. Four focus group sessions were held as well as classroom observations.…
Teacher experiences in the use of the "Zoology Zone" multimedia resource in elementary science
NASA Astrophysics Data System (ADS)
Paradis, Lynne Darlene
This interpretive research study explored the experiences of teachers with the use of the Zoology Zone multimedia resource in teaching grade three science. Four generalist teachers used the multimedia resource in the teaching of the Animal Life Cycle topic from the Alberta grade three science program. The experiences of the teachers were examined through individual interviews, classroom visits and group interviews. Three dimensions of the study, as they related to elementary science teaching using the Zoology Zone multimedia resource were examined: (a) technology as a teaching resource, (b) science education and constructivist theory, and (c) teacher learning. In the area of planning for instruction, the teachers found that using the multimedia resource demanded more time and effort than using non-computer resources because of the dependence teachers had on others for ensuring access to computer labs and setting up the multimedia resource to run on school computers. The teachers felt there was value in giving students the opportunity to independently explore the multimedia resource because it captured their attention, included appropriate content, and was designed so that students could navigate through the teaming activities easily and make choices about how to proceed with their own learning. Despite the opportunities for student directed learning, the teachers found that it was also necessary to include some teacher directed learning to ensure that students were learning the mandated curriculum. As the study progressed, it became evident that the teachers valued the social dimensions of learning by making it a priority to include lessons that encouraged student to student interaction, student to teacher interaction, small group and whole class discussion, and peer teaching. When students were engaged with the multimedia resource, the teacher facilitated learning by circulating to each student and discussing student findings. Teachers focussed primarily on the content components of the Alberta science program of studies. They stated that the time allotted for science instruction was insufficient to effectively address the teaching of skills for science inquiry and of the 'big' ideas in science. The teachers stated that they valued inquiry teaching, constructivist teaching and the integration of the Information and Communication Technology (ICT) outcomes but that utilizing these teaching approaches was challenging because of the depth and breadth of the mandated curriculum. It became apparent that science instruction did not meet all the expectations of the mandated science curriculum and that the teachers did not plan for the integration of the ICT outcomes. The teachers in the study stated that they felt that multimedia resources did have a place in the elementary science curriculum and that the ICT outcomes could be achieved as part of science instruction using the Zoology Zone multimedia resource. The study concludes with some implications for teachers, educational policy makers and school administration, related to the use of multimedia resources in the teaching of elementary science and in the teaching of the ICT outcomes.
ERIC Educational Resources Information Center
Adibelli-Sahin, Elif; Deniz, Hasan
2017-01-01
This qualitative study explored elementary teachers' perceptions about the effective features of explicit-reflective nature of science (NOS) instruction. Our participants were four elementary teachers from a public charter school located in the Southwestern U.S.A. The four elementary teachers participated in an academic year-long professional…
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.
2011-12-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved) where the best models from each school or group are brought together for a celebratory showcase exhibit and judging. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning.
Experiences of Redesigning an Elementary Education Program
ERIC Educational Resources Information Center
Chang, Sau Hou
2016-01-01
This paper aims to share the experiences of redesigning an elementary education program. Steps of redesigning the elementary education program were enumerated. Challenges in the redesign of the elementary education program were discussed. The new elementary education program was described. Lessons learned from the redesign of the elementary…
ERIC Educational Resources Information Center
Balajthy, Ernest
A study examined a new collaborative consultation process to enhance the classroom implementation of whole language science units that make use of computers and multimedia resources. The overall program was divided into three projects, two at the fifth-grade level and one at the third grade level. Each project was staffed by a team of one…
NASA Technical Reports Server (NTRS)
1996-01-01
NEWEST, or NASA Educational Workshops for Elementary School Teachers, is a two-week honors program for teachers, sponsored by NASA, the National Science Teachers Association, the National Council of Teachers of Mathematics and the International Technology Education-Association. A total of 25 teachers from the United States and U.S. State Department schools in Europe are chosen to work with NASA and other federal agency science and engineering professionals. Pictured, participants make hot air balloons as part of their activities.