NASA Astrophysics Data System (ADS)
Bai, Xiaolong; Ban, Boyuan; Li, Jingwei; Peng, Zhijian; Chen, Jian
2018-03-01
Distribution behavior of B and P during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys has been investigated. Macrostructure of the Al-Si alloy ingots and concentration profile of elements B and P reveal that the elements segregate to eutectic Al-Si melt during growth of primary Si flakes, and P gradually segregates to the top of the ingots during directional solidification. An apparent segregation coefficient, ka, is introduced to describe the segregation behavior of B and P between the primary Si and the Al-Si melt and compared with thermodynamic theoretical equilibrium coefficients. The apparent segregation coefficients of B and P decrease with increase of solidification temperature.
NASA Astrophysics Data System (ADS)
Sun, Qingzhu; Wang, Haibo; Yang, Cheng
2018-06-01
Al-27Si and Al-50Si were brazed by using a thin Cu interlayer. The metallurgical bonding without obvious defects is achieved, and a wide brazing seam consisting of fine eutectic structures and coarse Si particles is formed in the Al-27Si/Cu/Al-50Si joint. The deposition of Si element in the liquid phases during solidification results in the formation of the larger Si particles and ultra-small Si particles in the brazing seam. The shear strength of the joint reaches 63 MPa.
NASA Astrophysics Data System (ADS)
Sun, Qingzhu; Wang, Haibo; Yang, Cheng
2018-04-01
Al-27Si and Al-50Si were brazed by using a thin Cu interlayer. The metallurgical bonding without obvious defects is achieved, and a wide brazing seam consisting of fine eutectic structures and coarse Si particles is formed in the Al-27Si/Cu/Al-50Si joint. The deposition of Si element in the liquid phases during solidification results in the formation of the larger Si particles and ultra-small Si particles in the brazing seam. The shear strength of the joint reaches 63 MPa.
NASA Astrophysics Data System (ADS)
Allenou, J.; Tougait, O.; Pasturel, M.; Iltis, X.; Charollais, F.; Anselmet, M. C.; Lemoine, P.
2011-09-01
Si addition to Al is considered as a promising route to reduce (U,Mo)-Al interaction kinetics, due to its accumulation in the interaction layer, yielding the formation of silicide phases. The (U,Mo) alloy microstructure, and especially its homogenization state, could play a role on this accumulation process. The addition of a third element in γ(U,Mo) could also influence diffusion mechanisms of Al and Si. These two parameters were studied by means of diffusion couple experiments by joining γU based alloys with Al and (Al,Si) alloy. Chemical elements X added into γ(U,Mo) were thoroughly chosen on the following criteria: (i) the potential solubility of the alloying element into the γ(U,Mo) matrix, (ii) its capability to form the ternary aluminides based on the CeCr 2Al 20 and Ho 6Mo 4Al 43 - types, and (iii) the feasibility to control the microstructure of the alloys. On this basis, a test matrix is defined. It concerns γ(U80,Mo15,X5) alloys (in at.%) with X = Y, Cu, Zr, Ti or Cr. These alloys were homogenized and coupled with Al or (Al,Si) alloy. Results evidenced, first, the importance of the state of homogenization of the γ(U,Mo) binary alloy on interaction processes with (Al,Si) alloy, and the benefit on the diffusion of Si through the interaction layer, as observed on the elementary concentration profiles, when the third element X has some solubility into γ(U,Mo) alloy.
NASA Astrophysics Data System (ADS)
Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox
2018-05-01
The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.
Chen, Tijun; Gao, Min; Tong, Yunqi
2018-01-15
To prepare core-shell-structured Ti@compound particle (Ti@compound p ) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compound p was only achieved in the semisolid Al-Ti-Si system.
SiAlON ceramic compositions and methods of fabrication
O'Brien, M.H.; Park, B.H.
1994-05-31
A method of fabricating a SiAlON ceramic body includes: (a) combining quantities of Si[sub 3]N[sub 4], Al[sub 2]O[sub 3] and CeO[sub 2] to produce a mixture; (b) forming the mixture into a desired body shape; (c) heating the body to a densification temperature of from about 1,550 C to about 1,850 C; (d) maintaining the body at the densification temperature for a period of time effective to densify the body; (e) cooling the densified body to a devitrification temperature of from about 1,200 C to about 1,400 C; and (f) maintaining the densified body at the devitrification temperature for a period of time effective to produce a [beta][prime]-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the [beta][prime]-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: (a) an amorphous phase; and (b) a crystalline phase, the crystalline phase comprising [beta][prime]-SiAlON having lattice substituted elemental or compound form Ce.
Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.
Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L
2015-12-01
The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji
Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.
Sialon ceramic compositions and methods of fabrication
O'Brien, Michael H.; Park, Blair H.
1994-01-01
A method of fabricating a SiAlON ceramic body includes: a) combining quantities of Si.sub.3 N.sub.4, Al.sub.2 O.sub.3 and CeO.sub.2 to produce a mixture; b) forming the mixture into a desired body shape; c) heating the body to a densification temperature of from about 1550.degree. C. to about 1850.degree. C.; c) maintaining the body at the densification temperature for a period of time effective to densify the body; d) cooling the densified body to a devitrification temperature of from about 1200.degree. C. to about 1400.degree. C.; and e) maintaining the densified body at the devitrification temperature for a period of time effective to produce a .beta.'-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the .beta.'-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: a) an amorphous phase; and b) a crystalline phase, the crystalline phase comprising .beta.'-SiAlON having lattice substituted elemental or compound form Ce.
NASA Astrophysics Data System (ADS)
Li, Chenlin; Pan, Ye; Lu, Tao; Jing, Lijun; Pi, Jinhong
2018-03-01
The effects of Ti and La additions on the microstructures and mechanical properties of B-refined and Sr-modified Al-11Si alloys were investigated in the present work. The interactions among Ti, La, B and Sr elements were discussed employing microstructure observation, thermal analysis and tensile test, respectively. It was found that the addition of 0.05 wt% B induces a transformation of eutectic Si from finely fibrous to coarsely plate-like morphology in the Al-11Si alloy with 0.02 wt%Sr modification, owing to the poisoning of IIT mechanism, and the eutectic Si grows only with TPRE mechanism. Both titanium and lanthanum can neutralize the co-poisoning effect between Sr and B in the Al-11Si alloy, but the neutralizing effect of La is dependent on the addition sequence. The combinative addition of La and B elements promotes the effective refinement of α-Al grains, but an inhomogeneous modification of eutectic Si phases is also observed, leading to a slightly decrease in the elongation.
NASA Astrophysics Data System (ADS)
Ogawa, Yurie; Matsuda, Kenji; Kawabata, Tokimasa; Uetani, Yasuhiro; Ikeno, Susumu
It has been known that transition metals improve the mechanical property of Al-Mg-Si alloy. The thermo-mechanical treatment is also effective to improve the strength of Al-Mg-Si alloy. In this work, the aging behavior of deformed excess Mg-type Al-Mg-Si alloy including Ag,Cu,Pt was investigated by hardness test and TEM observation. The value of the maximum hardness increased and the aging time to the maximum hardness became shorter by increasing the amount of the deformation. The age-hardening ability (ΔHV) was decreased with increasing amount of the deformation. The effect of additional element on AHV was also similar to the result of the deformation described above. Comparing the value of the maximum hardness for the alloys aged at 423-523 K, the ex. Mg-Cu alloy was the highest, the ex. Mg-Ag alloy was middle, and the ex. Mg and ex. Mg-Pt alloys were the lowest because of total amounts of added elements.
Jia, Weili; Wang, Cuiping; Ma, Chuanxin; Wang, Jicheng; Sun, Hongwen
2018-06-01
Element migration and physiological response in Lactuca sativa upon co-exposure to tourmaline (T) and dissolved humic acids (DHAs) were investigated. Different fractions of DHA 1 and DHA 4 and three different doses of T were introduced into Hoagland's solution. The results indicated that T enhanced the contents of elements such as N and C, Si and Al in the roots and shoots. The correlation between TF values of Si and Al (R 2 = 0.7387) was higher than that of Si and Mn (R 2 = 0.4961) without the presence of DHAs. However, both DHA 1 and DHA 4 increased the correlation between Si and Mn, but decreased the one between Si and Al. CAT activities in T treatments were positively correlated to the contents of N and Al in the shoots, whose R 2 was 0.9994 and 0.9897, respectively. In the co-exposure of DHAs and tourmaline, DHA 4 exhibited more impacts on element uptake, CAT activities, as well as ABA contents in comparison with the presence of DHA 1 , regardless of the T exposure doses. These results suggested that DHAs have effects on mineral element behaviors and physiological response in Lactuca sativa upon exposure to tourmaline for the first time, which had great use in guiding soil remediation.
NASA Astrophysics Data System (ADS)
Cui, Tao
2018-01-01
After exploring migration laws of major elements in Laowashan bauxite of northern Guizhou Province by geochemical methods, it was found that: 1) Si was negatively correlated to Al and Ti; Al showed significant negative correlations with Si and Fe; Al was positively correlated to Ti. 2) The content of Si and Fe was low in the middle part, high at the top and the highest at the bottom. The content of Al and Ti is the highest in the middle, followed by the content at the top and the bottom successively. 3) Karst depressions are favorable for groundwater discharge through leaching, leading to heavy loss of Fe in ZK-CS1.
Chen, Tijun; Gao, Min; Tong, Yunqi
2018-01-01
To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al–Ti–Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al3Ti phase to form to different degrees. The first-formed Al–Ti–Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)3Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)3Ti phase was larger than that in τ1 phase, but smaller than that in Al3Ti phase. So, the shells in the Al–Ti–Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al–Ti–Mg system and the reaction rate in the Al–Ti–Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al–Ti–Si system. PMID:29342946
NASA Astrophysics Data System (ADS)
Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.
1995-05-01
Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-01-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467
NASA Astrophysics Data System (ADS)
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-12-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field.
Synthesis of ternary Si clathrates in the A-Al-Si (A = Na and K) system
NASA Astrophysics Data System (ADS)
Imai, Motoharu; Singh, Shiva Kumar; Nishio, Mitsuaki; Yamada, Takahiro; Yamane, Hisanori
2015-07-01
With the aim of producing functional materials based on earth-abundant elements, we examined the synthesis of the ternary type-I clathrates A8AlxSi46-x (A = Na and K). The type-I Si clathrate K7.9(1)Al7.1(1)Si38.9(4), having a lattice parameter of 10.434(1) Å, was successfully synthesized via the direct reaction of K, Al, and Si by optimization of both the synthesis temperature and the molar ratios among the raw ingredients. K8Al7Si39 exhibited metallic conduction: its electrical resistivity increased with increasing temperature. The high pressure synthesis of Na8AlxSi46-x was also examined, using a belt-type apparatus and employing a mixture of NaSi, Al, and Si as the reagents. In this manner, the type-I Si clathrate Na8.7(9)Al0.5(1)Si45(2), having a lattice parameter of 10.211(1) Å, was synthesized at 5.5 GPa and 1570 K.
NASA Astrophysics Data System (ADS)
Wei, Kaya; Dong, Yongkwan; Nolas, George S.
2016-05-01
A new quaternary clathrate-II composition, Cs8Na16Al24Si112, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs8Na16Al24Si112 were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. V.; Pinzhin, Yu. P.
2016-10-01
Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.
The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements
NASA Technical Reports Server (NTRS)
Grutzeck, M.; Kridelbaugh, S.; Weill, D.
1974-01-01
Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-12-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.
DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1999-04-01
Models for the interaction of uranium silicide dispersion fuels with an aluminum matrix, for the resultant reaction product swelling, and for the calculation of the stress gradient within the fuel particles are described within the context of DART fission-gas-induced swelling models. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by comparing DART calculations with irradiation data for the swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al in variously designed dispersion fuel elements.
NASA Astrophysics Data System (ADS)
Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva
2018-02-01
Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.
Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger
2014-01-01
Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879
The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Oishi, Junya; Otomo, Junichiro; Oshima, Yoshito; Koyama, Michihisa
2015-03-01
It is known that the minor elements affect the performance of solid oxide fuel cell (SOFC). In this study, we focus on the influence of minor elements on the SOFC cathode properties. The Ca, Ba, Al, and Si, which originate from raw materials and production processes for SOFC cathodes, are investigated as minor elements that may have effect on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. To examine the effects of minor elements on the cathode properties, Ca, Ba, Al, and Si with a controlled concentration are added to the LSCF reference sample. Conductivity relaxation measurements are conducted to determine the chemical diffusion coefficient (Dchem) and surface exchange coefficient (ktr), which governs the overpotential characteristics of the LSCF cathode. The results show that Al and Si have negative effects on both Dchem and ktr while Ca and Ba do not alter Dchem and show weakly positive effects on ktr. The effects of Ca and Ba for the cathode properties are discussed on the basis of XPS measurements.
Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, D.F.; Primeau, M.F.; Buchanan, C.
1997-08-01
Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinationsmore » showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.« less
NASA Astrophysics Data System (ADS)
Jain, Syadwad
In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the presence of soluble cerium cations showed that of anodic and cathodic activity was not as strongly inhibited as was observed for chromate ions. Overall cerium conversion coating showed good performance on Al-Si (356) ally, but poor performance on Fe- and Cu-rich alloy (380).
Xu, Jing; Ding, Yi-hong
2015-03-05
Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never-ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate-Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, SiXnYm(q) (n + m = 4; q = 0, ±1, -2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, Li3SiAs(2-), HSiY3 (Y = Al/Ga), Ca3SiAl(-), Mg4Si(2-), C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H-atom is only bonded to the ptSi-center via a localized 2c-2e σ bond. This sharply contradicts the known pentaatomic planar-centered systems, in which the ligands are actively involved in the ligand-ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e-ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline-earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc.
He, Xiaodong; Shen, Hao; Chen, Zidan; Rong, Caicai; Ren, Minqin; Hou, Likun; Wu, Chunyan; Mao, Ling; Lu, Quan; Su, Bo
2017-12-01
Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO 2 ); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain. Copyright © 2017 the American Physiological Society.
Silicon carbide sintered products and a method for their manufacturing
NASA Technical Reports Server (NTRS)
Suzuki, K.
1986-01-01
SiC based sinters are produced by pressureless sintering from a SiC-AlN solid solution containing Al2 to 20, N 0.2 to 10, O 0.2 to 5, a Group IIIB element 0 to 15 percent, the remainder being Si and C. Thus, a 90:10 mixture of SiC and AlN powders were cold pressed at 2000 kg/sq cm and sintered for 5 hours at 2100 C in a nitrogen atmosphere. The resulting product had density of 3.11 g/cu cm and bending strength at ambient and 1400 C at 68.5 and 66.3 kg/sq mm.
Aslam, Muhammad Zubair; Jeoti, Varun; Karuppanan, Saravanan; Malik, Aamir Farooq; Iqbal, Asif
2018-05-24
A Finite Element Method (FEM) simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO₂/Si Surface Acoustic Wave (SAW) sensor to low concentrations of Volatile Organic Compounds (VOCs), that is, trichloromethane, trichloroethylene, carbon tetrachloride and tetrachloroethene. A Complimentary Metal-Oxide Semiconductor (CMOS) compatible AlN/SiO₂/Si based multilayer SAW resonator structure is taken into account for this purpose. In this study, first, the influence of AlN and SiO₂ layers’ thicknesses over phase velocities and electromechanical coupling coefficients ( k ²) of two SAW modes (i.e., Rayleigh and Sezawa) is analyzed and the optimal thicknesses of AlN and SiO₂ layers are opted for best propagation characteristics. Next, the study is further extended to analyze the mass loading effect on resonance frequencies of SAW modes by coating a thin Polyisobutylene (PIB) polymer film over the AlN surface. Finally, the sensitivity of the two SAW modes is examined for VOCs. This study concluded that the sensitivity of Sezawa wave mode for 1 ppm of selected volatile organic gases is twice that of the Rayleigh wave mode.
NASA Astrophysics Data System (ADS)
Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu
2018-04-01
Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.
Newly synthesized MgAl2Ge2: A first-principles comparison with its silicide and carbide counterparts
NASA Astrophysics Data System (ADS)
Tanveer Karim, A. M. M.; Hadi, M. A.; Alam, M. A.; Parvin, F.; Naqib, S. H.; Islam, A. K. M. A.
2018-06-01
Using plane-wave pseudopotential density functional theory (DFT), the first-principle calculations are performed to investigate the structural aspects, mechanical behaviors and electronic features of the newly synthesized CaAl2Si2-prototype intermetallic compound, MgAl2Ge2 for the first time and the results are compared with those calculated for its silicide and carbide counterparts MgAl2Si2 and MgAl2C2. The calculated lattice constants agree fairly well with their corresponding experimental values. The estimated elastic tensors satisfy the mechanical stability conditions for MgAl2Ge2 along with MgAl2Si2 and MgAl2C2. The level of elastic anisotropy increases following the sequence of X-elements Ge → Si → C. MgAl2Ge2 and MgAl2Si2 are expected to be ductile and damage tolerant, while MgAl2C2 is a brittle one. MgAl2Ge2 and MgAl2Si2 should exhibit better thermal shock resistance and low thermal conductivity and accordingly these can be used as thermal barrier coating (TBC) materials. The Debye temperature of MgAl2Ge2 is lowest among three intermetallic compounds. MgAl2Ge2 and MgAl2Si2 should exhibit metallic conductivity; while the dual characters of weak-metals and semiconductors are expected for MgAl2C2. The values of theoretical Vickers hardness for MgAl2Ge2, MgAl2Si2, and MgAl2C2 are 3.3, 2.7, and 7.7 GPa, respectively, indicating that these three intermetallics are soft and easily machinable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-06-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew
We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C–N and Mg–Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two mostmore » metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that {sup 28}Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.« less
NASA Astrophysics Data System (ADS)
Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew; Lucatello, Sara; Troup, Nicholas W.; Bovy, Jo; Cunha, Katia; García-Hernández, Domingo A.; Overbeek, Jamie C.; Allende Prieto, Carlos; Beers, Timothy C.; Frinchaboy, Peter M.; García Pérez, Ana E.; Hearty, Fred R.; Holtzman, Jon; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Schneider, Donald P.; Sobeck, Jennifer S.; Smith, Verne V.; Zamora, Olga; Zasowski, Gail
2015-05-01
We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C-N and Mg-Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that 28Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.
Structural Evolution and Atom Clustering in β-SiAlON: β-Si 6–z Al z O z N 8–z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzan, Clayton; Griffith, Kent J.; Laurita, Geneva
2017-02-06
SiAlON ceramics, solid solutions based on the Si 3N 4 structure, are important, lightweight structural materials with intrinsically high strength, high hardness, and high thermal and chemical stability. Described by the chemical formula β-Si 6–zAl zO zN 8–z, from a compositional viewpoint, these materials can be regarded as solid solutions between Si 3N 4 and Al 3O 3N. A key aspect of the structural evolution with increasing Al and O (z in the formula) is to understand how these elements are distributed on the β-Si 3N 4 framework. The average and local structural evolution of highly phase-pure samples of β-Simore » 6–zAl zO zN 8–z with z = 0.050, 0.075, and 0.125 are studied here, using a combination of X-ray diffraction, NMR studies, and density functional theory calculations. Synchrotron X-ray diffraction establishes sample purity and indicates subtle changes in the average structure with increasing Al content in these compounds. Solid-state magic-angle-spinning 27Al NMR experiments, coupled with detailed ab initio calculations of NMR spectra of Al in different AlO qN 4–q tetrahedra (0 ≤ q ≤ 4), reveal a tendency of Al and O to cluster in these materials. Independently, the calculations suggest an energetic preference for Al–O bond formation, instead of a random distribution, in the β-SiAlON system.« less
The effect of silicon on the oxidation behavior of NiAlHf coating system
NASA Astrophysics Data System (ADS)
Dai, Pengchao; Wu, Qiong; Ma, Yue; Li, Shusuo; Gong, Shengkai
2013-04-01
Two types of NiAlHf coatings doped with different content of Si (1 at.% and 2 at.%) were deposited on a Ni3Al based single crystal superalloy IC32 by electron beam physical vapor deposition (EB-PVD) method, respectively. For comparison, NiAlHf coating with 0 at.% Si was also prepared. The oxidation tests were carried out at 1423 K in air. At the initial stage of oxidation, large amount of flake-like θ-Al2O3 was found on NiAlHf coating surface. However, no θ-Al2O3 was observed in 2 at.% Si doped NiAlHf coating except α-Al2O3. It revealed that the Si additions could contribute to the transformation from θ-Al2O3 to α-Al2O3. When oxidation time prolonged to 100 h, it was found that the degradation of NiAlHf coating was very severe with no residual β-phase, which was due to the serious inter-diffusion between the coating and substrate. In contrast, the inter-diffusion in Si-doped coating was reduced with some residual β-phase and R-Ni(Mo, Re) precipitates. The presence of Si could retard the inter-diffusion of elements between coating and substrate, indicating a barrier diffusion effect. As a result, the oxidation resistance of NiAlHf coating was improved significantly.
Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load
NASA Astrophysics Data System (ADS)
Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.
2018-04-01
In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.
NASA Technical Reports Server (NTRS)
Ming, D. W.; Yen, A. S.; Gellert, R.; Sutter, B.; Berger, J. A.; Thompson, L. M.; Schmidt, M. E.; Morris, R. V.; Treiman, A. H.
2016-01-01
The Mars Science Laboratory rover Curiosity has traversed up section through approximately 100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation unconformably overlies a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Unaltered Stimson sandstone has a basaltic composition similar to the average Mars crustal composition, but is more variable and ranges to lower K and higher Al. Fluids passing through alteration "halos" adjacent to fractures have altered the chemistry and mineralogy of the sandstone. Elemental mass gains and losses in the alteration halos were quantified using immobile element concentrations, i.e., Ti (taus). Alteration halos have elemental gains in Si, Ca, S, and P and large losses in Al, Fe, Mn, Mg, Na, K, Ni, and Zn. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes. The igneous phases were less abundant in the altered sandstone with a lower pyroxene/plagioclase feldspar. Large elemental losses suggest acidic fluids initially removed these elements (Al mobile under acid conditions). Enrichments in Si, Ca, and S suggest secondary fluids (possibly alkaline) passed through these fractures leaving behind X-ray amorphous Si and Ca-sulfates. The mechanism for the large elemental gains in P is unclear. The geochemistry and mineralogy of the altered sandstone suggests a complicated diagenetic history with multiple episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).
Alexandrova, Anastassia N.; Nayhouse, Michael J.; Huynh, Mioy T.; Kuo, Jonathan L.; Melkonian, Arek V.; Chavez, Gerardo; Hernando, Nina M.; Kowal, Matthew D.; Liu, Chi-Ping
2012-01-01
CAl4 2−/− (D4h, 1A1g) is a cluster ion that has been established to be planar, aromatic, and contain a tetracoordinate planar C atom. Valence isoelectronic substitution of C with Si and Ge in this cluster leads to a radical change of structure toward distorted pentagonal species. We find that this structural change goes together with the cluster acquiring partial covalency of bonding between Si/Ge and Al4, facilitated by hybridization of the atomic orbitals (AOs). Counter intuitively, for the AAl4 2−/− (A = C, Si, Ge) clusters, hybridization in the dopant atom is strengthened from C, to Si, and to Ge, even though typically AOs are more likely to hybridize if they are closer in energy (i.e. in earlier elements in the Periodic Table). The trend is explained by the better overlap of the hybrids of the heavier dopants with the orbitals of Al4. From the thus understood trend, it is inferred that covalency in such clusters can be switched off, by varying the relative sizes of the AOs of the main element and the dopant. Using this mechanism, we then successfully killed covalency in Si, and predicted a new aromatic cluster ion containing a tetracoordinate square planar Si, SiIn4 2−/−. PMID:22868353
Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition
NASA Astrophysics Data System (ADS)
Liu, Ying; Hirsch, Dietmar; Fechner, Renate; Hong, Yilin; Fu, Shaojun; Frost, Frank; Rauschenbach, Bernd
2018-01-01
The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO2). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar+ IBS with Al co-deposition was investigated on smooth SiO2, pre-rippled SiO2, and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO2, respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasi-blazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlOxFy compounds originating mainly from the Al source.
Nucleation of the diamond phase in aluminium-solid solutions
NASA Technical Reports Server (NTRS)
Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.
1993-01-01
Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).
Zhang, Ke; Du, Miao; Haoa, Lei; Meng, Jianping; Wang, Jining; Mi, Jing; Liu, Xiaopeng
2016-12-14
Highly corrosion resistant, layer-by-layer nanostructured Si 3 N 4 /Cr-CrN x /Si 3 N 4 coatings were deposited on aluminum substrate by DC/RF magnetron sputtering. Corrosion resistance experiments were performed in 0.5, 1.0, 3.0, and 5.0 wt % NaCl salt spray at 35 °C for 168 h. Properties of the coatings were comprehensively investigated in terms of optical property, surface morphology, microstructure, elemental valence state, element distribution, and potentiodynamic polarization. UV-vis-near-IR spectrophotometer and FTIR measurements show that the change process in optical properties of Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coatings can be divided into three stages: a rapid active degradation stage, a steady passivation stage, and a transpassivation degradation stage. With the increase in the concentration of NaCl salt spray, solar absorptance and thermal emittance experienced a slight degradation. SEM images reveal that there is an increase in surface defects, such as microcracks and holes and -cracks. XRD and TEM measurements indicate that the phase structure changed partially and the content of CrO x and Al 2 O 3 has increased. Auger electron spectroscopy shows that the elements of Cr, N, and O have undergone a minor diffusion. Electrochemical polarization curves show that the as-deposited Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coatings have excellent corrosion resistance of 3633.858 kΩ, while after corroding in 5.0 wt % NaCl salt spray for 168 h the corrosion resistance dropped to 13.759 kΩ. However, these coatings still have an outstanding performance of high solar absorptance of 0.924 and low thermal emittance of 0.090 after corroding in 3.0 wt % NaCl salt spray for 120 h. Thus, the Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coating is a good choice for solar absorber coatings applied in the high-saline environment.
Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy
Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos
2016-01-01
The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found. PMID:28773536
Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.
Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos
2016-05-25
The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.
Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xuexuan
2016-09-15
High quality AA6101 aluminum cables are critical to electrical industry to meet the energy consumption requests. In the present work, the influence of Mg/Si ratios on the electrical conductivity and mechanical properties of AA6101 aluminum alloy was investigated. Wheatstone Bridge method and tensile test were employed to characterize the mechanical properties. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were used to understand the morphology of the precipitation and the mechanism of age hardening. It is found that excessive Si benefits high strength and high conductivity while excessive Mg plays a negative role in the strengthmore » and the conductivity of AA6101 cables. Excessive Si elements promote both the precipitating rate and quantity of β″ phase therefore increase the tensile strength. Excessive Si elements also help with decreasing the lattice distortion, which contributes to the enhancement of the conductivity. Excessive Mg elements lead to more dissolved Mg after aging treatment, therefore increase lattice distortion of the matrix and promote the deposit of coarse Mg-enriched secondary phase. - Highlights: •A new available method to improve the mechanical and electrical properties of Al-Mg-Si alloy •Investigation on the role of various Mg/Si ratios in the changes of comprehensive performances •Discussions on the morphology of the precipitation phases and the mechanism of hardening.« less
Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.
1977-01-01
Gamma-ray and X-ray spectrometers carried in the service modules of the Apollo 15 and Apollo 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristic energy distribution of gamma rays and X-rays emitted from the lunar surface. A large-scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. Analyses of the results have indicated (1) that the Al/Si ratios are highest in the lunar highlands and considerably lower in the maria, and (2) that the Mg/Si concentrations generally show the opposite relationship. The objective of the gamma-ray experiment was to measure the natural and cosmic-ray-induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions. Regions of relatively high natural radioactivity were found in the Mare Imbrium and Oceanus Procellarum regions.
Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys
Tsakiropoulos, Panos
2018-01-01
The oxidation of Nb–silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB2 Laves and A15-A3X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and −0.503 < ∆χ < −0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr2, the VEC decreased and ∆χ increased in Nb(Cr,Si)2, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb3X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb3Sn, the ∆χ and hardness of Nb3(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb3(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and the hardness was unchanged. The better creep of Nb(Cr,Si)2 compared with the unalloyed Laves phase was related to the decrease in the VEC and ∆χ parameters. PMID:29518920
Alloying and Properties of C14-NbCr₂ and A15-Nb₃X (X = Al, Ge, Si, Sn) in Nb-Silicide-Based Alloys.
Tsakiropoulos, Panos
2018-03-07
The oxidation of Nb-silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB₂ Laves and A15-A₃X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and -0.503 < ∆χ < -0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr₂, the VEC decreased and ∆χ increased in Nb(Cr,Si)₂, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb₃X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb₃Sn, the ∆χ and hardness of Nb₃(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb₃(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and the hardness was unchanged. The better creep of Nb(Cr,Si)₂ compared with the unalloyed Laves phase was related to the decrease in the VEC and ∆χ parameters.
Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE
Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.
1997-01-01
The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Liang, Dong; Yan, Zhiming; Lv, Xuewei; Zhang, Jie; Bai, Chenguang
2017-02-01
To determine the effect of Al2O3 content and Al2O3/SiO2 mass ratio on the structure of molten aluminosilicate systems, CaO-SiO2-Al2O3-MgO-TiO2 systems were investigated by conducting molecular dynamics (MD) simulation and Raman spectroscopy. The capabilities of different elements to attract O on the basis of bond length are ranked as follows: Si > Al > Ca. The CNSi-O (approximately 4) and the average CNAl-O (approximately 4.09) demonstrate that the [AlO4] tetrahedron is not as stable as the [SiO4] tetrahedron and that some highly coordinated Al units exist in the slags. Non-bridging oxygen prefers to be coordinated with Si, and Al tends to be localized in polymerized environments as a network intermediate phase. In addition, Ca2+ is more energetically active than Mg2+ as the charge compensation ion. MD results and Raman analysis show that an increase in Al2O3 content complicates the structure at a fixed CaO/SiO2 ratio. In addition, the viscosity of the sample may increase with increasing Al2O3 content but is also influenced by polymerization strength. The substitution of Al2O3 for SiO2 simplifies the structure of the slag at a fixed CaO concentration when Al2O3/SiO2 is less than 0.92, as indicated by the (Q4 + Q3)/(Q2 + Q1) ratio of Al and the structure complexity. The results of MD and Raman analysis agree with those of viscosity measurement.
Wear Resistance Enhancement of Ti-6Al-4 V Alloy by Applying Zr-Modified Silicide Coatings
NASA Astrophysics Data System (ADS)
Li, Xuan; Hu, Guangzhong; Tian, Jin; Tian, Wei; Xie, Wenling; Li, Xiulan
2018-03-01
Zr-modified silicide coatings were prepared on Ti-6Al-4 V alloy by pack cementation process to enhance its wear resistance. The microstructure and wear properties of the substrate and the coatings were comparatively investigated using GCr15 and Al2O3 as the counterparts under different sliding loads. The obtained Zr-modified silicide coating had a multilayer structure, consisting of a thick (Ti, X)Si2 (X represents Al, Zr and V elements) outer layer, a TiSi middle layer and a Ti5Si4 + Ti5Si3 inner layer. The micro-hardness of the coating was much higher than the substrate and displayed a decrease tendency from the coating surface to the interior. Sliding against either GCr15 or Al2O3 balls, the coatings showed superior anti-friction property to the Ti-6Al-4 V alloy, as confirmed by its much lower wear rate under each employed sliding condition.
NASA Astrophysics Data System (ADS)
Laubier, M.; Langmuir, C. H.
2008-12-01
On mid-ocean ridges, the influential work by Sobolev and Shimizu (Nature, 1993) and Sobolev (Petrology, 1996) has inferred fractional melting during polybaric upwelling by showing that olivine-hosted inclusions were formed over a range of pressures. However melt inclusion studies have often concerned single MORB samples and may be seen as anecdotal in the sense that they are neither repeated nor globally verified. Recent modeling and experimental results also suggest the importance of post-entrapment processes for major and trace elements. This study presents major and trace element data in 300 olivine-hosted melt inclusions from 11 samples from the FAMOUS segment on the Mid-Atlantic Ridge. Published data from Shimizu (Phys. Earth Planet. Int., 1998) and Kamenetsky (EPSL, 1996; spinel-hosted inclusions) are also reported. In parallel, major and trace element measurements were performed in 150 glasses of the segment in order to have consistent datasets. Melt inclusions, trapped in olivine phenocrysts Mg#85-92, display complex trends in major element plots and can be divided into three groups. Group 1, the largest, is characterized by high MgO (9.4-13.4 wt.%), intermediate SiO2 and Al2O3 contents. Group 2 displays distinctively high Al2O3 (up to 18.4 wt.%), low SiO2 (as low as 46.5 wt.%) and high MgO (10.5-12.8 wt.%) contents, along with low CaO and variable TiO2, K2O and incompatible element concentrations. Group 3 consists of the melt inclusions trapped in less primitive olivines (Mg#<88.5) and displays higher SiO2, CaO and trace element contents. In the lava population, two groups can be distinguished. A small subset, that shares many features with the group 2 melt inclusions, displays high MgO and Al2O3 and low SiO2 and incompatible element contents. This type of lava - high-Al, low-Si and high-Mg - has been previously reported for various mid-ocean ridges (e.g., le Roux et al., Contrib. Min. Petrol., 2002; Eason and Sinton, EPSL, 2008). The second group plots along liquid lines of descent at low pressure starting from the compositions of the group 1 melt inclusions. Modeling of continuous polybaric melting and crystallization shows that the different inclusion groups are derived from melts formed at various pressures in the melting column (~12-6 kbar). After segregation from the mantle, the three batches of melts are fractionated at distinct pressures. The group 2 melt inclusions are consistent with the highest pressure of melt formation and a major role of cpx+olivine fractionation at high pressure (8 kbar), whereas group 3 results indicate the lowest pressure of extraction and entrapment (1kbar). An important observation is that high-Al, low-Si lavas contain melt inclusions from both the low-Si, high-Al group 2 and normal compositions (groups 1 and 3). These lavas can be reproduced by mixing between these two populations of inclusions, followed by some extent of differentiation. Therefore, this study shows that lavas represent averages of melts differentiated from the melt inclusions, and that the major element variability among inclusions can be explained by the combined effects of polybaric melting and crystallization at variable pressure. Trace element compositions of group 1 and 2 melt inclusions show large variations; incompatible element ratios (Ba/La, Rb/Nb, etc) suggest local source heterogeneity. Further modeling will be carried out in order to distinguish between the effects of partial melting and source composition.
Ejaz, Sohail; Camer, Gerry Amor; Anwar, Khaleeq; Ashraf, Muhammad
2014-04-01
Environmental toxicants invariably affect all biological organisms resulting to sufferings ranging from subclinical to debilitating clinical conditions. This novel research aimed to determine the toxic burdens of increased environmental elements in some vital organs/tissues of the wild animals (starling, owl, crow and pigeon), exposed to air polluted environment were assessed using particle induced X-ray emission and histopathological approaches. The presence of significantly elevated amounts of elemental toxicants namely: Aluminum (Al), Chlorine (Cl), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Silicon (Si) and Vanadium (V) from the skin, muscle, lungs, liver and kidney of sampled animals were in concurrence with the observed histopathological changes. The skin of sampled starling, owl, pigeon and crow spotlighted highly significant increase (P < 0.001) in Al, Cl, Mg and Si. Muscle samples with myodegenerative lesions and mineral depositions highlighted substantial augmentation (P < 0.001) in the amount of Al, Fe, Mn, Si and V. The lungs of starling, owl, and pigeon were severely intoxicated (P < 0.001) with increased amount of Al, Fe, K, Mn and Si producing pulmonary lesions of congestion, edema, pneumonitis and mineral debris depositions. Liver samples revealed that the sampled animals were laden with Cl, Fe, Mg, Mn and V with histopathological profound degenerative changes and hepatic necrosis. Kidney sections presented severe tubular degenerative and necrotic changes that may be attributed to increased amounts of Cl and Fe. These current findings implied that the environmental/elemental toxicants and the accompanying lesions that were discerned in the organs/tissues of sampled birds may as well be afflicting people living within the polluted area. Further assessment to more conclusively demonstrate correlations of current findings to those of the populace within the area is encouraged.
NASA Astrophysics Data System (ADS)
Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan
2016-12-01
A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.
Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites
NASA Astrophysics Data System (ADS)
Huo, Shiyan; Xie, Lijing; Xiang, Junfeng; Pang, Siqin; Hu, Fang; Umer, Usama
2018-02-01
Molecular dynamics (MD) models for the study on the mechanical properties of β-SiC particles-reinforced aluminum matrix nano-composites (Al/SiC nano-composites) are established. The nano-composites in the model are fabricated by a powder metallurgy (P/M) process, followed by a hot isostatic pressing and then annealing to room temperature. The fabricated nano-composites have dense and even distributions of reinforced particles. Then representative volume elements (RVEs) of the fabricated nano-composites are built by adding periodic boundary conditions (PBCs). In this way, RVEs with different volume fractions and particle sizes of SiC are produced and put into the simulation of tension tests. The elasticity and strength in single axial tension obtained from MD analysis are in good agreement with those calculated according to the rule of mixture. It is found that the dispersion of SiC particles into the Al matrix leads to a significant enhancement in the strength of nano-composites compared to pure Al, which is also dramatically affected by both the volume fraction and particle size. Additionally, the Al/SiC nano-composites with finer SiC particles get greater enhancement in the mechanical behavior than those with coarser ones. MD analysis clearly shows the contributions of load-transfer effect, thermal mismatch strengthening and Orowan strengthening to the strengthening of Al/SiC nano-composites.
NASA Technical Reports Server (NTRS)
Pike, W. T.; George, T.; Khan, M. A.; Kuznia, J. N.
1994-01-01
The potential of wide-band-gap III-V nitrides as ultraviolet sensors and light emitters has prompted an increasing amount of work recently, including the fabrication of the first UV sensors from as-deposited single crystal GaN. We have used high resolution transmission electron microscopy (TEM) to study the microstructure of two novel developments of wide-band-gap III-V nitrides: the growth of ultra-short period GaN/AlN superlattices; and the incorporation of SiC layers into Al(sub x)Ga(sub 1-x)N structures. By varying the relative periods in a GaN/AlN superlattice, the band gap of the composite can be tailored to lie between the elemental values of 365 nm for GaN and 200 nm for AlN. The group IV semiconductor, SiC, has a wide band-gap and has a close lattice match (less than 3 %) to Al(sub x)Ga(sub 1-x)N for growth on the basal plane. Demonstration of epitaxial growth for Al(sub x)Ga(sub 1-x)N/SiC multilayers would introduce a wide band-gap analog to the already existing family of III-V and Si(sub 1-x)Ge(sub x) heteroepitaxial growth systems. Although good quality growth of GaN on SiC substrates has been demonstrated, Al(sub x)Ga(sub 1-x)N/SiC multilayer structures have never been grown and the interfacial structure is unknown.
Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com
Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.
Solubility of hydrogen in metals and its effect of pore-formation and embrittlement. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Shahani, H. R.
1984-01-01
The effect of alloying elements on hydrogen solubility were determined by evaluating solubility equations and interaction coefficients. The solubility of dry hydrogen at one atmosphere was investigated in liquid aluminum, Al-Ti, Al-Si, Al-Fe, liquid gold, Au-Cu, and Au-Pd. The design of rapid heating and high pressure casting furnaces used in meta foam experiments is discussed as well as the mechanism of precipitation of pores in melts, and the effect of hydrogen on the shrinkage porosity of Al-Cu and Al-Si alloys. Hydrogen embrittlement in iron base alloys is also examined.
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1991-01-01
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.
A long-term ultrahigh temperature application of layered silicide coated Nb alloy in air
NASA Astrophysics Data System (ADS)
Sun, Jia; Fu, Qian-Gang; Li, Tao; Wang, Chen; Huo, Cai-Xia; Zhou, Hong; Yang, Guan-Jun; Sun, Le
2018-05-01
Nb-based alloy possessed limited application service life at ultrahigh temperature (>1400 °C) in air even taking the effective protective coating strategy into consideration for last decades. In this work a long duration of above 128 h at 1500 °C in air was successfully achieved on Nb-based alloy thanked to multi-layered silicide coating. Through optimizing interfaces, the MoSi2/NbSi2 silicide coating with Al2O3-adsorbed-particles layer exhibited three-times higher of oxidation resistance capacity than the one without it. In MoSi2-Al2O3-NbSi2 multilayer coating, the Al2O3-adsorbed-particles layer playing as an element-diffusion barrier role, as well as the formed porous Nb5Si3 layer as a stress transition zone, contributed to the significant improvement.
NASA Astrophysics Data System (ADS)
Bongale, Arunkumar M.; Kumar, Satish
2018-03-01
Nano Metal Matrix Composites were fabricated by a novel approach by combining powder metallurgy and equal channel angular pressing (ECAP) using aluminium alloy 6061 (Al6061) as matrix phase and 2, 4 and 6 wt% of silicon carbide nanoparticles (SiCnp) as reinforcements. Alloying elements of Al6061 in their elemental form are blended together using high energy planetary ball mill and calculated wt% of SiCnp were mixed with it. Thus formed composite powder mixture is compacted in a uniaxial compaction die and then subjected to ECAP up to three passes. Density and porosity of samples were estimated using Archimedes’ principle. Pin on disc setup is used to evaluate the wear properties of the composites under different speed and loading conditions. Tests revealed that increase in wt% of SiCnp reduces the wear rate of the composites whereas increasing the load and speed increases wear rate of the composite samples. SEM micrographs of worn surfaces indicated different types of wear mechanism responsible for wear of the specimens under different testing conditions. Also, wt% of SiCnp and the number of passes through ECAP were found to increase the hardness value of the composite material.
Crystallography of the NiHfSi Phase in a NiAl (0.5 Hf) Single-Crystal Alloy
NASA Technical Reports Server (NTRS)
Garg, A.; Noebe, R. D.; Darolia, R.
1996-01-01
Small additions of Hf to conventionally processed NiAl single crystals result in the precipitation of a high density of cuboidal G-phase along with a newly identified silicide phase. Both of these phases form in the presence of Si which is not an intentional alloying addition but is a contaminant resulting from contact with the ceramic shell molds during directional solidification of the single-crystal ingots. The morphology, crystal structure and Orientation Relationship (OR) of the silicide phase in a NiAl (0.5 at.%Hf) single-crystal alloy have been determined using transmission electron microscopy, electron microdiffraction and energy dispersive X-ray spectroscopy. Qualitative elemental analysis and indexing of the electron microdiffraction patterns from the new phase indicate that it is an orthorhombic NiHfSi phase with unit cell parameters, a = 0.639 nm, b = 0.389 nm and c = 0.72 nm, and space group Pnma. The NiHfSi phase forms as thin rectangular plates on NiAl/111/ planes with an OR that is given by NiHfSi(100))(parallel) NiAl(111) and NiHfSi zone axes(010) (parallel) NiAl zone axes (101). Twelve variants of the NiHfSi phase were observed in the alloy and the number of variants and rectangular morphology of NiHfSi plates are consistent with symmetry requirements. Quenching experiments indicate that nucleation of the NiHfSi phase in NiAI(Hf) alloys is aided by the formation of NiAl group of zone axes (111) vacancy loops that form on the NiAl /111/ planes.
NASA Astrophysics Data System (ADS)
Hosch, Timothy Al
Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings often contain additions of heavier elements, such as zinc, zirconium, and rare earth elements, which significantly improve high temperature performance. However, additions of these elements can lead to macrosegregational effects in castings, which are detectable by radiographic scans. The effect of these flow-line indications on alloy mechanical properties is not well quantified. An examination of these flow-line indications and their effects on mechanical properties in three magnesiumbased casting alloys was performed here in order to determine the best practice for dealing with affected castings. Preliminary results suggest the flow-lines do not measurably impact bulk material properties. Three additional methods of characterizing three-dimensional material structures are also presented: a minimum spanning tree analysis is utilized to quantify local structure in Cu-Zr liquid phase simulations obtained from molecular dynamics; the radial distribution function is applied to directionally solidified Al-Si structures in an attempt to extract local spacing data; and the critical diameter measurement is also defined and applied to irregular eutectic Al-Si structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Kaya; Dong, Yongkwan; Nolas, George S., E-mail: gnolas@usf.edu
A new quaternary clathrate–II composition, Cs{sub 8}Na{sub 16}Al{sub 24}Si{sub 112}, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs{sub 8}Na{sub 16}Al{sub 24}Si{sub 112} were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques. - Graphical abstract: Quaternary Cs{sub 8}Na{sub 16}Al{sub 24}S{submore » 112} clathrate–II was synthesized for the first time by kinetically controlled thermal decomposition (KCTD) employing a NaSi+NaAlSi precursor mixture with CsCl as the reactive flux, and the structural and transport properties were investigated. Our approach demonstrates a new synthetic pathway for the synthesis of multinary inorganic compounds. This work reports the exploration of a new clathrate composition as this class of materials continues to be of interest for thermoelectrics and other energy-related applications.« less
Influence of alloying elements on the oxidation behavior of NbAl3
NASA Technical Reports Server (NTRS)
Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.
1988-01-01
NbAL3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al2O3 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAlY coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.
NASA Astrophysics Data System (ADS)
Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela
2017-06-01
CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.
NASA Astrophysics Data System (ADS)
Kowalski, Piotr; Kasina, Monika; Michalik, Marek
2017-04-01
Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively 70%, 15% and 5% of the total amount of fragments. Fe occurred mainly as component of metallic inclusions and separate grains. Al was mostly present in metallic fragments on grains boundaries and also and as separate grains (often oxidised), moreover Al was important component of aluminosilicates and amorphous phase. Zn-rich metallic fragments were mostly in the form of separate grains. In complex composition of metallic fragments some regularities in elements co-occurrences were observed: Fe often co-existed with Si, Ca, P, Al and Ti; Al co-occurred with Fe, Si and Ca; Zn co-existed with Ca, Al and Si. Forms and composition of metallic fragments allows to evaluate them as potential polymetallic resource, however an economically reasonable extraction techniques must be applied. Acknowledgment Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171. Reference Kowalski, P.R., Kasina, M. and Michalik M.: Metallic elements fractionation in municipal solid waste incineration residues, Energy Procedia, 97, 31-36, doi: 10.1016/j.egypro.2016.10.013, 2016.
Deformation behaviour of Rheocast A356 Al alloy at microlevel considering approximated RVEs
NASA Astrophysics Data System (ADS)
Islam, Sk. Tanbir; Das, Prosenjit; Das, Santanu
2015-03-01
A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.
Influence of alloying elements on the oxidation behavior of NbAl3
NASA Technical Reports Server (NTRS)
Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.
1989-01-01
NbAl3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al203 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAly coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.
Atomistic modeling and simulation of the role of Be and Bi in Al diffusion in U-Mo fuel
NASA Astrophysics Data System (ADS)
Hofman, G. L.; Bozzolo, G.; Mosca, H. O.; Yacout, A. M.
2011-07-01
Within the RERTR program, previous experimental and modeling studies identified Si as the alloying addition to the Al cladding responsible for inhibiting Al interdiffusion in the UMo fuel. However, difficulties with reprocessing have rendered this choice inappropriate, leading to the need to study alternative elements. In this work, we discuss the results of an atomistic modeling effort which allows for the systematic study of several possible alloying additions. Based on the behavior observed in the phase diagrams, beryllium or bismuth additions suggest themselves as possible options to replace Si. The results of temperature-dependent simulations using the Bozzolo-Ferrante-Smith (BFS) method for the energetics for varying concentrations of either element are shown, indicating that Be could have a substantial effect in stopping Al interdiffusion, while Bi does not. Details of the calculations and the dependence of the role of each alloying addition as a function of temperature and concentration (of beryllium or bismuth in Al) are shown.
Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials
NASA Astrophysics Data System (ADS)
Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang
2015-10-01
Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.
NASA Astrophysics Data System (ADS)
Koltsov, Alexey; Cretteur, Laurent
2018-03-01
The laser brazing process is successfully applied in automotive industry for joining of roofs and hatchbacks of vehicles. The bad wetting of the brazing alloy during the process can lead to the formation of random external porosities which are not allowed on visible parts. This paper describes the wettability and reactivity mechanisms at short contact time of Cu and Al matrix brazing alloys with different reactive elements (Si, Sn) on different steel products such as hot-dip galvanized steels, galvannealed steel and bare steel. Wetting experiments were carried out by the dispensed drop technique. The effects of alloying elements and brazing alloy matrix on interfacial reactivity are discussed. It was found that Cu matrix containing 3 wt.% Si is the most favorable for short time liquid/solid adhesion relatively to the other studied brazing alloy compositions. The brazing ability of different steel products is well correlated with the wettability and interfacial reactivity results.
Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.
1974-01-01
Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.
Heusler Alloyed Electrodes Integrated in Magnetic Tunnel-Junctions
NASA Astrophysics Data System (ADS)
Hütten, Andreas; Kämmerer, Sven; Schmalhorst, Jan; Reiss, Günter
As a consequence of the growing theoretically predictions of 100% spin polarized half- and full-Heusler compounds over the past 6 years, Heusler alloys are among the most promising materials class for future magnetoelectronic and spintronic applications. We have integrated Co2MnSi as a representative of the full-Heusler compound family as one magnetic electrode into technological relevant magnetic tunnel junctions. The resulting tunnel magnetoresistance at 20 K was determined to be 95% corresponding to a Co2MnSi spin polarization of 66% in combination with an AlOx barrier thickness of 1.8 nm. For magnetic tunnel junctions prepared with an initially larger Al layer prior to oxidation the tunnel magnetoresistance at 20 K increases to about 108% associated with a Co2MnSi spin polarization of 72% clearly proving that Co2MnSi is already superior to 3d-based magnetic elements or their alloys. The corresponding room temperature values of the tunnel magnetoresistance are 33% and 41%, respectively. Structural and magnetic properties of the Co2MnSi AlOx - barrier interface have been studied with X-ray diffraction, electron and X-ray absorption spectroscopy and X-ray magnetic circular dichroism and it is shown that the ferromagnetic order of Mn and Co spins at this interface is only induced in optimally annealed Co2MnSi layer. The underlying atomic ordering mechanism responsible for achieving about its theoretical magnetic moment could be assigned to the elimination of Co-Si antisite defects whereas the reduction of Co-Mn antisite defects results in large tunnel magnetoresistance. The presence of a step like tunnel barrier which is already created during plasma oxidation while preparing the AlOx tunnel barrier has been identified as the current limitation to achieve larger tunnel magnetoresistance and hence larger spin polarization and is a direct consequence of the oxygen affinity of the Co2MnSi - Heusler elements Mn and Si.
Hydrothermal Synthesis and Characterization of Ni-Al Montmorillonite-Like Phyllosilicates
Reinholdt, Marc X.; Brendlé, Jocelyne; Tuilier, Marie-Hélène; Kaliaguine, Serge; Ambroise, Emmanuelle
2013-01-01
This work describes the first hydrothermal synthesis in fluoride medium of Ni-Al montmorillonite-like phyllosilicates, in which the only metallic elements in the octahedral sheet are Ni and Al. X-ray diffraction , chemical analysis, thermogravimetric and differential thermal analysis, scanning electron microscopy and transmission electron microscopy confirm that the synthesized samples are montmorillonite-like phyllosilicates having the expected chemical composition. The specific surface areas of the samples are relatively large (>100 m2 g−1) compared to naturally occurring montmorillonites. 29Si and 27Al nuclear magnetic resonance (NMR) indicate substitutions of Al for Si in the tetrahedral sheet. 19F NMR and Ni K-edge extended X-ray absorption fine structure (EXAFS) local probes highlight a clustering of the metal elements and of the vacancies in the octahedral sheet of the samples. These Ni-Al phyllosilicates exhibit a higher local order than in previously synthesized Zn-Al phyllosilicates. Unlike natural montmorillonites, where the distribution of transition metal cations ensures a charge equilibrium allowing a stability of the framework, synthetic montmorillonites entail clustering and instability of the lattice when the content of divalent element in the octahedral sheet exceeds ca. 20%. Synthesis of Ni-Al montmorillonite-like phyllosilicates, was successfully achieved for the first time. These new synthetic materials may find potential applications as catalysts or as materials with magnetic, optical or staining properties. PMID:28348321
Simulation and Experimental Study on Surface Formation Mechanism in Machining of SiCp/Al Composites
NASA Astrophysics Data System (ADS)
Du, Jinguang; Zhang, Haizhen; He, Wenbin; Ma, Jun; Ming, Wuyi; Cao, Yang
2018-03-01
To intuitively reveal the surface formation mechanism in machining of SiCp/Al composites, in this paper the removal mode of reinforced particle and aluminum matrix, and their influence on surface formation mechanism were analyzed by single diamond grit cutting simulation and single diamond grit scratch experiment. Simulation and experiment results show that when the depth of cut is small, the scratched surface of the workpiece is relatively smooth; however, there are also irregular pits on the machined surface. When increasing the depth of cut, there are many obvious laminar structures on the scratched surface, and the surface appearance becomes coarser. When the cutting speed is small, the squeezing action of abrasive grit on SiC particles plays a dominant role in the extrusion of SiC particles. When increasing the cutting speed, SiC particles also occur broken or fractured; but the machined surface becomes smooth. When machining SiCp/Al composites, the SiC may happen in such removal ways, such as fracture, debonding, broken, sheared, pulled into and pulled out, etc. By means of reasonably developing micro cutting finite element simulation model of SiCp/Al composites could be used to analyze the surface formation process and particle removal way in different machining conditions.
Indentation-Induced Shear Band Formation in Thin-Film Multilayers
NASA Astrophysics Data System (ADS)
Bigelow, Shannon; Shen, Yu-Lin
2017-08-01
We report an exploratory investigation into the cause of shear band formation in multilayer thin-films subject to nanoindentation. The material system considered here is composed of alternating aluminum (Al) and silicon carbide (SiC) nanolayers, atop a silicon (Si) substrate. Finite element models are developed in an attempt to reproduce the shear banding phenomenon observed experimentally. By introducing strain softening into the material model for the hard SiC layers, shear bands can be seen to emerge from the indentation site in the finite element analysis. Broad implications, along with possible directions for future work, are discussed.
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Gerlach, David C.; Russ III, G. Price; Jones, David L.
1992-01-01
Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 ≥ 98 wt%. This contrast in SiO2 (and SiAl">SiAl) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and SiAl">SiAl ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert.The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnOAl2O3">MnOAl2O3 ratios that no longer record the depositional signal of the precursor sediment.REE data indicate only subtle diagenetic fractionation across the rare earth series. CeCe∗">CeCe* values do not change significantly during diagenesis of either Monterey or DSDP chert. EuEu∗">EuEu* decreases slightly during formation of DSDP chert. LanYbn">LanYbn is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REEAl">REEAl ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.
Study of the effect of common infusions on glass ionomers using the PIXE and RBS techniques
NASA Astrophysics Data System (ADS)
Verón, María Gisela; Pérez, Pablo Daniel; Suárez, Sergio Gabriel; Prado, Miguel Oscar
2017-12-01
The effect of four commonly consumed beverages as mineral water, coffee, tea and mate tea on the elemental composition of a commercial glass ionomer was studied using Particle Induced X-ray Emission (PIXE) and Rutherford backscattering (RBS) techniques. We found that after immersion in acidic media, some elements as Al, Si and Na are lost from the glass-ionomer whereas others heavier, as K, Ca and La, increase their concentration at the surface. Although the concentration profiles of Al and Si are different in different media, in all of them the Al:Si ratio was close to unity and remained constant for different periods of immersion in all media. The incorporation of K, Mg and Fe to the surface is found for common infusions while for mineral water the glass-ionomer mainly loses F and Na.The RBS technique showed that immersion in different media produced a modification of the density of the glass ionomer surface layer due to the increment of the concentration of heavier elements at the surface. The thickness of the modified surface layer extends up to 3 μm when the immersion time is seven days and more than 6 μm after 33 days of immersion.
NASA Astrophysics Data System (ADS)
Schiekel, T.; Rosel, R.; Herpers, U.; Bodemann, R.; Michel, R.; Dittrich, B.; Hofmann, H. J.; Suter, M.; Wolfli, W.; Holmqvist, B.; Conde, H.; Malmborg, P.
1992-07-01
Integral excitation functions for the production of residual nuclides by proton-induced reactions are the basic data for an accurate modelling of the interactions of solar cosmic ray (SCR) particles with extraterrestrial matter. Due to the relatively low energies (<200 MeV/A) of SCR particles the production of nuclear active secondary particles can be widely neglected and theoretical production rate depth profiles can be calculated by simply folding the depth dependent SCR spectra with thin target cross sections of the underlying nuclear reactions. The accuracy of such calculations exclusively depends on the quality of the available cross sections. For many nuclides, in particular for long-lived radionuclides and stable rare gas isotopes, the exis- ting cross section database is neither comprehensive nor reliable. Therefore, we started a series of experiments to improve this situation. Eighteen elements (C, N as Si3N4, O as SiO2, Mg, Al, Si, Ti, V, Mn as Mn/Ni-alloy, Fe, Co, Ni, Cu, Zr, Nb, Rh, Ba as Ba-contai- ning glass, and Au) were irradiated with 94 and 99 MeV protons at the external beam of the TSL-cyclotron at Uppsala. Cross sections were determined using the stacked foil technique. Beam monitoring was done by investigating the production of ^22Na from Al, for which evaluated cross sections exist. Residual nuclides were measured by X-, gamma- and accelerator-mass spectrometry. In order to check the quality of our experimental procedure some target elements (22 <= Z <= 28) were included in the new exper- iments, which had been formerly irradiated at Julich, at Louvain La Neuve, and at IPN Orsay. Comparisons between the earlier measurements (1,2) and the new cross sections showed excellent agreement. Up to now, cross sections were measured for more than 120 different reactions. Here, we report on the results obtained for the target elements C, N, O, Mg, Al, and Si. The status of experimental excitation functions for the production of some radionuclides relevant for SCR interactions with terrestrial and extraterrestrial matter, i.e., ^7Be and ^10Be from C, N, O, Mg, Al, and Si and ^22Na and ^26Al from Mg, Al, and Si, is discussed in detail. In order to investigate whether theoretical calculations can be used to supply the necessary cross sections for SCR model calcu- lations, a theoretical analysis of the experimental data is given on the basis of model calculations of equilibrium and pre-equilibrium reactions for light target elements. The new data are applied to model calculations of the production of SCR-produced nuclides in lunar surface materials and in meteorites. Acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft and by the Swiss National Science Foundation. References: (1) Michel et al. (1984) J. Geophys Res. 89, B673- B684. (2) Michel R. et al. (1985) Nucl. Phys. A441, 617-639.
Ultrahigh-density sub-10 nm nanowire array formation via surface-controlled phase separation.
Tian, Yuan; Mukherjee, Pinaki; Jayaraman, Tanjore V; Xu, Zhanping; Yu, Yongsheng; Tan, Li; Sellmyer, David J; Shield, Jeffrey E
2014-08-13
We present simple, self-assembled, and robust fabrication of ultrahigh density cobalt nanowire arrays. The binary Co-Al and Co-Si systems phase-separate during physical vapor deposition, resulting in Co nanowire arrays with average diameter as small as 4.9 nm and nanowire density on the order of 10(16)/m(2). The nanowire diameters were controlled by moderating the surface diffusivity, which affected the lateral diffusion lengths. High resolution transmission electron microscopy reveals that the Co nanowires formed in the face-centered cubic structure. Elemental mapping showed that in both systems the nanowires consisted of Co with undetectable Al or Si and that the matrix consisted of Al with no distinguishable Co in the Co-Al system and a mixture of Si and Co in the Co-Si system. Magnetic measurements clearly indicate anisotropic behavior consistent with shape anisotropy. The dynamics of nanowire growth, simulated using an Ising model, is consistent with the experimental phase and geometry of the nanowires.
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Reed, Mark H.; Rose, William I.
1992-02-01
Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.
NASA Technical Reports Server (NTRS)
Hashimoto, Akihiko
1992-01-01
The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.
A volatile-rich Earth's core inferred from melting temperature of core materials
NASA Astrophysics Data System (ADS)
Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.
2016-12-01
Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. McDonough, W. F. Treatise in Geochemistry 2, 547-568 (2003). 7. Anzellini, S., et al Science 340, 464-6 (2013). 8. Morard, G. et al. Phys. Chem. Miner. 38, 767-776 (2011). 9. Badro, J., et al Proc. Natl. Acad. Sci. U. S. A. 111, 7542-5 (2014).
Elemental analysis with external-beam PIXE
NASA Astrophysics Data System (ADS)
Lin, E. K.; Wang, C. W.; Teng, P. K.; Huang, Y. M.; Chen, C. Y.
1992-05-01
A beamline system and experimental setup has been established for elemental analysis using PIXE with an external beam. Experiments for the study of the elemental composition of ancient Chinese potsherds (the Min and Ching ages) were performed. Continuum X-ray spectra from the samples bombarded by 3 MeV protons have been measured with a Si(Li) detector. From the analysis of PIXE data, the concentration of the main elements (Al, Si, K, and Ca) and of more than ten trace elements in the matrices and glazed surfaces were determined. Results for two different potsherds are presented, and those obtained from the glaze colorants are compared with the results of measurements on a Ching blue-and-white porcelain vase.
Elemental Composition of 433 Eros: New Calibration of the NEAR-Shoemaker XRS Data
NASA Technical Reports Server (NTRS)
Lim, Lucy F.; Nittler, Larry R.
2009-01-01
We present a new calibration of the elemental-abundance data for Asteroid 433 Fros taken by the X-ray spectrometer (XRS) aboard the NEAR-Shoemaker spacecraft. (NEAR is an acronym for "Near-Earth Asteroid Rendezvous,") Quintification of the asteroid surface elemental abundance ratios depends critically on accurate knowledge of the incident solar X-ray spectrum, which was monitored simultaneously with asteroid observations. Previously published results suffered from incompletely characterized systematic uncertainties due to an imperfect ground calibrations of the NEAR gas solar monitor. The solar monitor response function and associated uncertainties have now been characterized by cross-calibration of a large sample of NEAR solar monitor flight data against. contemporary broadband solar X-ray data from the Earth-orbiting GOES-8 (Geostationary Operational Environmental Satellite). The results have been used to analyze XRS spectra acquired from Eros during eight major solar flares (including three that have not previously been reported). The end product of this analysis is a revised set of Eros surface elemental abundance ratios with new error estimates that more accurately reflect the remaining uncertainties in the solar flare spectra: Mg/Si=.753 +0.078/-0.055, Al/Si=0.069 +/-0.055, S/Si=0.005+/-0.008, Ca/Si=0.060+0.023/-0.024, and Fe/Si= 1.578+0.338/-0.320. These revised abundance ratios are consitent within cited uncertainties with the results of Nittler et al. [Nittler, L.R., and 14 colleagues, 2001. Meteorit Planet. Sci 36, 1673-1695] and thus support the prior conclusions that 433 Eros has major-element composition simular to ordinary chondrites with the exception of a stong depletoin in sulfur, most likely caused by space weathering.
NASA Astrophysics Data System (ADS)
Chen, Biqiang; Zhang, Guifeng; Zhang, Linjie; Xu, Tingting
2017-10-01
In order to broaden the application of SiC particle-reinforced aluminum matrix composite in electronics packaging, newly developed ZnAlGaMgTi filler with a low melting point of 418-441 °C was utilized as filler metal for active soldering of aluminum matrix composites (70 vol.%, SiCp/Al-MMCs) for the first time. The effect of loading pressure on joint properties of ZnAlGaMgTi active filler was investigated. The experimental results indicated that novel filler could successfully solder Al-MMCs, and the presence of Mg in the filler enhanced the penetration of Zn, while the forming of Zn-rich barrier layer influenced the active element MPD (melting point depressant) diffusion into parent composite, and the bulk-like (Mg-Si)-rich phase and Ti-containing phase were readily observed at the interface and bond seam. With the increase in loading pressure, the runout phenomenon appeared more significant, and the filler foil thickness and the Zn penetration depth varied pronouncedly. Sound joints with maximum shear strength of 29.6 MPa were produced at 480 °C at 1 MPa, and the crack occurred adjacent to the boundary of SiC particle and then propagated along the interface. A novel model describing the significant mutual diffusion of Al and Zn atoms between the parent material and solder was proposed.
Land use change affects biogenic silica pool distribution in a subtropical soil toposequence
NASA Astrophysics Data System (ADS)
Unzué-Belmonte, Dácil; Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Cornelis, Jean-Thomas; Barão, Lúcia; Minella, Jean; Meire, Patrick; Struyf, Eric
2017-07-01
Land use change (deforestation) has several negative consequences for the soil system. It is known to increase erosion rates, which affect the distribution of elements in soils. In this context, the crucial nutrient Si has received little attention, especially in a tropical context. Therefore, we studied the effect of land conversion and erosion intensity on the biogenic silica pools in a subtropical soil in the south of Brazil. Biogenic silica (BSi) was determined using a novel alkaline continuous extraction where Si / Al ratios of the fractions extracted are used to distinguish BSi and other soluble fractions: Si / Al > 5 for the biogenic AlkExSi (alkaline-extractable Si) and Si / Al < 5 for the non-biogenic AlkExSi. Our study shows that deforestation can rapidly (< 50 years) deplete the biogenic AlkExSi pool in soils depending on the slope of the study site (10-53 %), with faster depletion in steeper sites. We show that higher erosion in steeper sites implies increased accumulation of biogenic Si in deposition zones near the bottom of the slope, where rapid burial can cause removal of BSi from biologically active zones. Our study highlights the interaction of erosion strength and land use for BSi redistribution and depletion in a soil toposequence, with implications for basin-scale Si cycling.
Silicon Isotope Variations in Giant Spicules of the Deep-sea Sponge Monorhaphis chuni
NASA Astrophysics Data System (ADS)
Jochum, K. P.; Schuessler, J. A.; Wang, X.; Müller, W. E.; Andreae, M. O.
2012-12-01
The astonishing longevity of the deep-sea sponge Monorhaphis chuni and the stability of their spicules (Wang et al. 2009) provide the potential that single giant basal spicules can be used as paleoenvironmental archives spanning the entire Holocene (Jochum et al. 2012). According to Wille et al. (2010), the Si isotope fractionation is influenced by seawater Si concentration with lower values associated with sponges collected from waters high in Si. In order to track possible secular variations during the last 10000 years in the deep sea, we have therefore determined Si isotope ratios and trace element ratios along center-to-surface sections at a high resolution by femtosecond LA-(MC)-ICP-MS. Samples came from different locations of the East and South China Sea as well as the South Pacific Ocean (near New Caledonia) and were collected at depths between 1100 m and 2100 m. The external reproducibility of the fs LA-(MC)-ICP-MS method was found to be 0.14 ‰ and 0.27 ‰ (2 SD) for δ29Si and δ30Si, respectively. The relative uncertainty on trace element abundance ratios, such as Mg/Ca, is about 5 % (RSD). Significant variations in Si isotope ratios were observed in the giant spicules Q-B and SCS-4 from the East and South China Sea, respectively. The δ30Si values for the largest spicule collected so far (SCS-4, 2.5 m long) from a depth of 2100 m in the South China Sea, span a large range from -1.9 to -3.7 ‰. No obvious trend in Si isotope variability outside external reproducibility could be identified in smaller and presumably younger spicules; average δ30Si values of 4 different segments of the spicule MC from the South China Sea are about -1.3 ‰. Low δ30Si values of about -0.88 ‰ are found in the giant spicule V from the South Pacific. Mg/Ca ratios of most spicules show small, but significant trends from higher values at the rim to lower values in the core, which can be interpreted as an increase in seawater temperature of several degrees Celsius during the lifespan of the sponges. The different Si isotopic compositions in the deep sea may be caused by regional and vertical differences of dissolved Si controlled by biological productivity and ocean circulation. Submarine weathering at sea floor hydrothermal areas provides additional silicic acid in the deep reservoir. Jochum et al. (2012), Chem. Geol. 300-301, 143-151 Wang et al. (2009), Int. Rev. Cell. Mol. Biol. 273, 69-115 Wille et al. (2010), Earth Planet. Sci. Lett. 292, 281-289
Bousios, Alexandros; Diez, Concepcion M; Takuno, Shohei; Bystry, Vojtech; Darzentas, Nikos; Gaut, Brandon S
2016-02-01
Transposable elements (TEs) proliferate within the genome of their host, which responds by silencing them epigenetically. Much is known about the mechanisms of silencing in plants, particularly the role of siRNAs in guiding DNA methylation. In contrast, little is known about siRNA targeting patterns along the length of TEs, yet this information may provide crucial insights into the dynamics between hosts and TEs. By focusing on 6456 carefully annotated, full-length Sirevirus LTR retrotransposons in maize, we show that their silencing associates with underlying characteristics of the TE sequence and also uncover three features of the host-TE interaction. First, siRNA mapping varies among families and among elements, but particularly along the length of elements. Within the cis-regulatory portion of the LTRs, a complex palindrome-rich region acts as a hotspot of both siRNA matching and sequence evolution. These patterns are consistent across leaf, tassel, and immature ear libraries, but particularly emphasized for floral tissues and 21- to 22-nt siRNAs. Second, this region has the ability to form hairpins, making it a potential template for the production of miRNA-like, hairpin-derived small RNAs. Third, Sireviruses are targeted by siRNAs as a decreasing function of their age, but the oldest elements remain highly targeted, partially by siRNAs that cross-map to the youngest elements. We show that the targeting of older Sireviruses reflects their conserved palindromes. Altogether, we hypothesize that the palindromes aid the silencing of active elements and influence transposition potential, siRNA targeting levels, and ultimately the fate of an element within the genome. © 2016 Bousios et al.; Published by Cold Spring Harbor Laboratory Press.
Overview Of 100 Sols Of Chemcam Operations At Gale Crater
NASA Astrophysics Data System (ADS)
Maurice, Sylvestre; Wiens, Roger; MSL Science Team
2013-04-01
The Curiosity rover carries the ChemCam instrument suite, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument that can analyze the chemical composition of geological samples at distances up to 7 meters from the rover, and a high resolution camera for context imaging (RMI). In the first 100 sols after landing, ChemCam performed 343 single point measurements on approximately 50 different rocks or soil areas, for over 12,000 laser shots. Each time at least two RMI images are acquired before and after the laser shots to visualize the area of investigation and the geological context. LIBS lines are identified using primarily a martian dedicated database; to date, ChemCam has detected unambiguously major elements (Si, Al, Fe, Mg, Ca, Na, K, O), minor/trace elements of interest (Li, Cr, Mn, Rb, Sr, Ba, Ti, S, C, H). These observations allow a qualitative/quantitative assessment of the presence of dust (first few shots), the sample surface composition and chemical heterogeneity with depth. Several techniques have been developed to analyze ChemCam's data: (1) Univariate analysis refers to peak height studies of well-chosen LIBS lines and a training dataset to build calibration curves. Peak ratios K/Si, Na/Si, Al/Si, Fe+Mg/Si, or Mg/Mg+Fe have been calculated from the onboard calibration targets. The technique also applies to minor and trace elements which yield low intensity emission lines, such as Lin, Rb, H, C. (2) Multivariate methods give better results in terms of elemental composition, since they examine simultaneously and statistically several peaks of the same elements. A Partial Least Squares (PLS) regression algorithm is used for rapid major-element abundance determination. (3) Composition trends, clusters and end-members can also be identified using component analysis methods. Independent Component Analysis (ICA) identifies components that are directly related to Chemical elements: Al, Ca, Fe, H, K, Mg, Na, O, Si, Ti, but also mixture like a "soil" component. On top of this classification, clustering methods such as k-means and hierarchical clustering allow the differentiation and filation of different geochemical populations encountered so far at Mars. The ChemCam instruments are performing very well. The 100-sol dataset is rich of thousands of spectra and hundreds of images. We will present a status of the data set acquired during that period, a review of the analysis techniques and an introduction to the results which have been obtained so far.
NASA Astrophysics Data System (ADS)
Fong, S. W.; Sood, A.; Chen, L.; Kumari, N.; Asheghi, M.; Goodson, K. E.; Gibson, G. A.; Wong, H.-S. P.
2016-07-01
In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO2/Al2O3 and SiO2/Si3N4. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100-500 K), show that amorphous thin-film multilayer SiO2/Si3N4 and SiO2/Al2O3 exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO2/Al2O3, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 1028 m-3 for SiO2 and 10.2 → 8.27 × 1028 m-3 for Al2O3) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m2 K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.
NASA Astrophysics Data System (ADS)
Ivanov, S. Yu.; Karkhin, V. A.; Mikhailov, V. G.; Martikainen, J.; Hiltunen, E.
2018-03-01
The microstructure and the distribution of chemical elements in laser-welded joints of Al - Mg - Si alloy 6005-T6 are studied. Segregations of chemical elements are detected over grain boundaries in the heat-affected zones of the welded joints. The joints fracture by the intergrain mechanism. A Gleeble 3800 device is used to determine the temperature dependences of the mechanical properties of the alloy with allowance for the special features of the welding cycle. Amethod for evaluating the sensitivity of welded joints of aluminum alloys to formation of liquation cracks with allowance for the local properties of the metal, the welding conditions, and the rigidity of the construction is suggested.
The thermal evolution and dynamo generation of Mercury with an Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurrien
2017-04-01
The present day partially liquid (as opposed to fully solidified) Fe-rich core of Mercury is traditionally explained by assuming a substantial amount of S to be present in the core (e.g. Grott et al., 2011), because S lowers the core's melting temperature. However, this assumption has problematic implications: Mercury's large Fe-rich core and measured low FeO surface content are indicative of an oxygen poor bulk composition, which is consistent with the volatile-poor material that is expected to have condensed from the solar nebula close to the Sun. In contrast, S is a moderately volatile element. Combined with the high S content of Mercury's crust and (likely) mantle, as indicated by the measured high S/Si surface fraction, the resulting high planetary S abundance is difficult to reconcile with a volatile poor origin of the planet. Additionally, the observed low magnetic field strength is most easily explained if compositional buoyancy fluxes are absent [Manglik et al., 2010], yet such fluxes are produced upon solidifying a pure Fe inner core from Fe-S liquid. Alternatively, both Mercury's high S/Si and Mg/Si surface ratios (Nittler et al., 2011) may indicate that a siderophile fractionation of Si and lithophile fractionation of S took place during Mercury's core-mantle differentiation. This fractionation behaviour of these elements is supported by metal/silicate partitioning experiments that have been performed at the low oxygen conditions inferred for Mercury [e.g. Chabot et al., 2014]. Mercury's bulk composition, in terms of S/Si and Fe/Si ratios, would also approach that of meteorites that are considered as potential building blocks of the planet if the core is Si-rich and S-poor. Here we simulate the thermal evolution of Mercury with an Fe-Si core. Results show that an Fe-Si core can remain largely molten until present, without the need for S. An Fe-Si core also has interesting implications for Mercury's core-convection regime and magnetic field generation. The non-preferential Si fractionation between solid and liquid metal does not produce a compositional gradient, such that compositional buoyancy fluxes are negligible. Additionally, thermally driven core convection is more efficient as a result of a high latent heat release upon solidifying Si-rich metal. Implications of this scenario for Mercury's magnetic field strength and geometry need to be further examined.
Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique
NASA Astrophysics Data System (ADS)
Liu, Sixing; Yang, Zheng; Zhang, Jianfeng; Zhang, Shanwen; Miao, Hong; Zhang, Yanjun; Zhang, Qi
2018-05-01
Two pieces of plate glass were brazed into a composite of glazing with a vacuum chamber using PbO-TiO2-SiO2-RxOy powder filler alloys to develop a new type of vacuum glazing. The brazing process was carried out by laser technology. The interface characteristics of laser brazed joints formed between plate glass and solder were investigated using optical microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The results show that the inter-diffusion of Pb/Ti/Si/O elements from the sealing solder toward the glass and O/Al/Si elements from the glass toward the solder, resulting in a reaction layer in the brazed joints. The microstructure phases of PbTiO3, AlSiO, SiO2 and PbO in the glass/solder interface were confirmed by XRD analysis. The joining of the sealing solder to the glass was realized by the reaction products like fibrous structures on interface, where the wetting layer can help improve the bonding performance and strength between the sealing solder and the plate glass during the laser brazing process.
NASA Astrophysics Data System (ADS)
Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James
2008-12-01
Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.
NASA Astrophysics Data System (ADS)
D'Hondt, S. L.; Keller, G.; Stallard, R. F.
1987-03-01
The major element composition of microspherules from all three late Eocene stratigraphic layers was analyzed using an electron microprobe. The results indicate a major element compositional overlap beween individual microspherules of different microtektite layers or strewn fields. However, multivariate factor analysis shows that the microtektites of the three late Eocene layers follow recognizably different compositional trends. The microtektite population of the North American strewn field is characterized by high concentrations of SiO2, Al2O3, and TiO2; the microspherules of an older layer, the Gl. cerroazulensis Zone, are relatively enriched in FeO and MgO and impoverished in SiO2 and TiO2; while those of the oldest layer in the uppermost G. semiinvoluta Zone are relatively enriched in CaO and impoverished in Al2O3 and Na2O.
High temperature degradation mechanism of a red phosphor, CaAlSiN3:Eu for solid-state lighting
NASA Astrophysics Data System (ADS)
Oishi, Masatsugu; Shiomi, Shohei; Yamamoto, Takashi; Ueki, Tomoyuki; Kai, Yoichiro; Chichibu, Shigefusa F.; Takatori, Aiko; Kojima, Kazunobu
2017-09-01
Thermal properties of a red phosphor CaAlSiN3:Eu (CASN) at elevated temperatures were evaluated. A heat treatment at 800 °C degraded the photoluminescence property of CASN and caused irreversible changes in both the excitation and emission intensities. The heat treatment in air simultaneously decreased the N elements and increased the O elements. Consequently, the Eu2+ luminescence center was oxidized and CASN lost its photoluminescence property. Although the crystal structure of CASN host was stable even after the heat treatments, the local structure change around the Eu2+ ions is the origin of the thermal degradation of CASN. We found that the heat treatment in N2 atmosphere suppresses the thermal degradation. This is due to the suppression of N evolutions and the incorporation of O elements, which sustains the optically active Eu2+ state.
Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines
NASA Astrophysics Data System (ADS)
Rozhdestvenskaya, I. V.; Setkova, T. V.; Vereshchagin, O. S.; Shtukenberg, A. G.; Shapovalov, Yu. B.
2012-01-01
The crystal structures of synthetic tourmalines with a unique composition containing 3 d elements (Ni, Fe, and Co) have been refined: (Ca0.12▭0.88)(Al1.69Ni{0.81/2+}Fe{0.50/2+})(Al5.40Fe{0.60/3+})(Si5.82Al0.18O18)(BO3)3(OH)3.25O0.75 I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å; Na0.91(Ni{1.20/2+}Cr{0.96/3+}Al0.63Fe{0.18/2+}Mg0.03)(Al4.26Ni{1.20/2+}Cr{0.48/3+}Ti0.06)(Si5.82Al0.18)O18(BO3)3(OH)3.73O0.27 II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å3 and Na0.35(Al1.80Co{1.20/2+})(Al5.28Co{0.66/2+}Ti0.06)(Si5.64B0.36)O18(BO3)3(OH)3.81O0.19 III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å3. The reliability factors are R 1 = 0.038-0.057 and wR 2 = 0.041-0.060. It is found that 3 d elements occupy both Y- and Z positions in all structures. The excess positive charge is compensated for due to the incorporation of divalent oxygen anions into the O3(V)+O1(W) positions.
Thermodynamic Model of the Na-Al-Si-O-F Melts
NASA Astrophysics Data System (ADS)
Dolejs, D.; Baker, D. R.
2004-05-01
Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self-association in both joins. On the other hand, melt depolymerization by fluorine controls depression of silicate liquidi. The present model is useful for modeling the differentiation of peralkaline fluorine-bearing magmas and provides a starting point for predicting halide, carbonate, sulfide or sulfate saturation in natural melts.
NASA Astrophysics Data System (ADS)
Que, Zhongping; Wang, Yun; Fan, Zhongyun
2018-06-01
Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.
Ohno, H
1976-11-01
The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.
Entropy and structure of silicate glasses and melts
Richet, P.; Robie, R.A.; Hemingway, B.S.
1993-01-01
Low-temperature adiabatic Cp measurements have been made on NaAlSi2O6, MgSiO3, Ca3Al2Si3O12 and Ca1.5Mg1.5Al2Si3O12 glasses. Above about 50 K, these and previous data show that the heat capacity is an additive function of composition to within ??1% throughout the investigated glassforming part of the system CaO-MgO-Al2O3-SiO2. In view of the determining role of oxygen coordination polyhedra on the low-temperature entropy, this is interpreted as indicating that Si and Al are tetrahedrally coordinated in all these glasses, in agreement with structural data; whereas Ca and Mg remain octahedrally coordinated. In contrast, heat capacities and entropies are not additive functions of composition for alkali aluminosilicates, indicating increases in the coordination numbers of alkali elements from about six to nine when alumina is introduced. A thermochemical consequence of additivity of vibrational entropies of glasses is that entropies of mixing are essentially configurational for calcium and magnesium aluminosilicate melts. For alkali-bearing liquids, it is probable that vibrational entropies contribute significantly to entropies of mixing. At very low temperatures, the additive nature of the heat capacity with composition is less well followed, likely as a result of specific differences in medium-range order. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiriu, D.; Stagi, L.; Carbonaro, C.M.
2016-05-15
Highlights: • A new promising inert matrix as host of luminescent ions is proposed. • Al2SiO5 matrix is free from Rare earths (critical raw materials). • Doping the matrix with Ce and Tb we obtain an efficient green emitter. • Cerium acts as sensitizer for Terbium emission. - Abstract: A new promising inert matrix as host of luminescent ions is proposed. Al2SiO5 samples, doped with rare earths (Ce, Tb single doped and co-doped) are proposed as good prospect for the development of new UV–vis converter with reduced content of rare earths elements. Structural characterization by Raman, XRD spectroscopy and TEMmore » imaging reveals the sillimanite phase and nano sized dimension of the investigated powders. Optical characterization by steady time and time resolved emission spectroscopy for the single doped and co-doped samples allows to identify an efficient energy transfer from Ce to Tb ions under near UV excitation wavelength. The intense green emission observed in the Ce:Tb co-doped Al2SiO5 system suggests its potential application as efficient blue pumped green emitter phosphor to be exploited for white LED: to this purpose we tested the compound in combination with a red emitting doping ion recording for Ce:Tb:Cr:ASO system a correlated color temperature of 6720 K.« less
NASA Astrophysics Data System (ADS)
Chang, Kai-Sheng; Chen, Kuan-Ta; Hsu, Chun-Yao; Hong, Po-Da
2018-05-01
This paper determines the optimal settings in the deposition parameters for (AlCrNbSiTiV)N high-entropy alloy (HEAs) nitride films that are deposited on CBN cutting tools and glass substrates. We use direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HIPIMS), with Ar plasma and N2 reactive gases. Experiments with the grey-Taguchi method are conducted to determine the effect of deposition parameters (deposition time, substrate DC bias, DC power and substrate temperature) on interrupted turning 50CrMo4 steel machining and the films' structural properties. Experimental result shows that the multiple performance characteristics for these (AlCrNbSiTiV)N HEAs film coatings can be improved using the grey-Taguchi method. As can be seen, the coated film is homogeneous, very compact and exhibits perfect adherence to the substrate. The distribution of elements is homogeneous through the depth of the (AlCrNbSiTiV)N film, as measured by an auger electron nanoscope. After interrupted turning with an (AlCrNbSiTiV)N film coated tool, we obtain much longer tool life than when using uncoated tools. The correlation of these results with microstructure analysis and tool life indicates that HIPIMS discharge induced a higher (AlCrNbSiTiV)N film density, a smoother surface structure and a higher hardness surface.
Cole, J.W.; Cashman, K.V.; Rankin, P.C.
1983-01-01
Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence of crustal contamination. ?? 1983.
Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka
2018-01-01
The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.
Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia.
Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V
2016-09-01
Age-related differences in the trace element content of hair have been reported. However, some discrepancies in the data exist. The primary objective of this study was to estimate the change in hair trace elements content in relation to age. Six hundred and eighteen women and 438 men aged from 10-59 years took part in the current cross-sectional study. Hair Cr, Mn, Ni, Si, Al, As, Be, Cd and Pb tended to decrease with age in the female sample, whereas hair Cu, Fe, I, Se, Li and Sn were characterised by an age-associated increase. Hair levels of Cr, Cu, I, Mn, Ni, Si and Al in men decreased with age, whereas hair Co, Fe, Se, Cd, Li and Pb content tended to increase. Hair mercury increased in association with age in men and in women, whereas hair vanadium was characterised by a significant decrease in both sexes. The difference in hair trace element content between men and women decreased with age. These data suggest that age-related differences in trace element status may have a direct implication in the ageing process.
NASA Astrophysics Data System (ADS)
Ding, T.; Ma, D.; Lu, J.; Zhang, R.
2017-12-01
Huangshaping polymetallic deposit, located in southern Hunan Province, China, hosts abundant W-Mo-Pb-Zn mineralization which linked with the skarn system located between late Mesozoic high-K calc-alkaline to shoshonitic granitoids and the Carboniferous carbonate in this deposit. In this study, concentrations of trace and minor elements of the magnetites from different skarn stages are obtained by in situ LA-ICP-MS analysis, in order to further understand the polymetallic mineralization processes within this deposit. The generally high concentrations of spinel elements, including Mg, Al, Ti, Mn, V, Cr, Co, Ni, Ga, Ge, and Sn, in all magnetites from this deposit suggest that these elements are incorporated into magnetite lattice by substituting Fe3+ and/or Fe2+. However, the various concentrations of Na, Si, K, Ca, and W elements in magnetites, combining the abnormal time-resolved analytical signals of LA-ICP-MS analyses, suggest that these elements are significantly affected by the fluid inclusions in magnetites. Two groups of magnetites can be further distinguished based on their trace and minor elements concentrations: Group-1 magnetites, including those in medium grain garnets and calcite, have obvious lower Na, Si, K, Ca, Sn, W, but higher Mg, Al, Ti, V, Co, Ni, Zn concentrations compared with Group-2 magnetites, which including those in coarse grain garnets, tremolite, and bulk magnetite ores. This suggests that the hydrothermal fluids where Group-2 magnetites precipitated are evolved magmatic fluids which have undergone the crystal fractionation during the early skarn stages (eg. Garnet and tremolite), the high Na, Si, K, and Ca in the hydrothermal fluids probably result from the dissolution of the host rocks, such as limestone, sandstone, and evaporite horizons in this deposit. However, the Group-1 magnetites probably precipitated in the hydrothermal fluids with low salinity, which result the low Na, Si, K, and Ca in these magnitites. Furthermore, these fluids might have undergone large scale circulation, the extraction from Zn-rich metamorphic basement and Mg, Al-rich strata probably have provided abundant Mg, Al, Zn in the hydrothermal fluids where Group-1 magnetites precipitated. As a conclusion, this study suggests that the compositions of magnetites can be the proxies of ore genesis.
Shirazi, F S; Mehrali, M; Oshkour, A A; Metselaar, H S C; Kadri, N A; Abu Osman, N A
2014-02-01
The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process. © 2013 Published by Elsevier Ltd.
Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials
NASA Astrophysics Data System (ADS)
Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.
2013-07-01
Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.
NASA Astrophysics Data System (ADS)
Wang, Qing; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Zhao, Xiaofeng; Hu, Zhuang
2018-06-01
In order to immobilize high-level radioactive graphite, silicon carbide based composite materials{ (1-x) SiC· x MgAl2O4 (0.1 ≤ x≤0.4) } were fabricated by solid-state reaction at 1370 °C for 2 h in vacuum. Residual graphite and precipitated corundum were observed in the as-synthesized product, which attributed to the interface reaction of element silicon and magnesium compounds. To further understand the reasons for the presence of graphite and corundum, the effects of mole ratio of Si/C, MgAl2O4 content and non-stoichiometry of MgAl2O4 on the synthesis were investigated. To immobilize graphite better, residual graphite should be eliminated. The target product was obtained when the mole ratio of Si/C was 1.3:1, MgAl2O4 content was x = 0.2, and the mole ratio of Al to Mg in non-stoichiometric MgAl2O4 was 1.7:1. In addition, the interface reaction between magnesium compounds and silicon not graphite was displayed by conducting a series of comparative experiments. The key factor for the occurrence of interface reaction is that oxygen atom is transferred from magnesium compound to SiO gas. Infrared and Raman spectrum revealed the increased disorders of graphite after being synthesized.
Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da
2017-01-01
This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.
Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor
2013-06-01
Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.
NASA Astrophysics Data System (ADS)
Alyaldin, Loay
In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a result of the presence of both Mg and Cu. These alloy types display excellent strength values at both low and high temperatures. Additions of Zr, Ni, Mn and Sc would be expected to maintain the performance of these alloys at still higher temperatures. Six alloys were prepared using 0.2 wt% Ti grain-refined 354 alloy, comprising alloy R (354 + 0.25wt% Zr) considered as the base or reference alloy, and five others, viz., alloys S, T, U, V, and Z containing various amounts of Ni, Mn, Sc and Zr, added individually or in combination. For comparison purposes, another alloy L was prepared from 398 (Al-16%Si) alloy, reported to give excellent high temperature properties, to which the same levels of Zr and Sc additions were made, as in alloy Z. Tensile test bars were prepared from the different 354 alloys using an ASTM B-108 permanent mold. The test bars were solution heat treated using a one-step or a multi-step solution heat treatment, followed by quenching in warm water, and then artificial aging employing different aging treatments (T5, T6, T62 and T7). The one-step (or SHT 1) solution treatment consisted of 5 h 495 °C) and the multi-step (or SHT 2) solution treatment comprised 5 h 495°C + 2 h 515°C + 2 h 530°C. Thermal analysis of the various 354 alloy melts was carried out to determine the sequence of reactions and phases formed during solidification under close-to-equilibrium cooling conditions. The main reactions observed comprised formation of the alpha-Al dendritic network at 598°C followed by precipitation of the Al-Si eutectic and post-eutectic beta-Al5FeSi phase at 560°C; Mg2Si phase and transformation of the beta-phase into pi-Al8Mg 3FeSi6 phase at 540°C and 525°C; and lastly, precipitation of Al2Cu and Q-Al5Mg8Cu2Si 6 almost simultaneously at 498°C and 488°C. Larger sizes of AlFeNi and AlCuNi phase particles were observed in T alloy with its higher Ni content of 4 wt%, when compared to those seen in S alloy at 2% Ni content. Mn addition in Alloy U helps in reducing the detrimental effect of the beta-iron phase by replacing it with the less-detrimental Chinese script alpha-Al 15(Fe,Mn)3Si2 phase and sludge particles.
NASA Astrophysics Data System (ADS)
Schaefer, H.-E.
1991-05-01
In the present paper a concise review is given of the application of positron lifetime measurements to the study of high-temperature vacancies in intermetallic compounds (F 76.3Al 23.7), in metal oxides (NiO), in elemental semiconductors (Si, Ge), and of the oxygen loss or uptake in YBa 2Cu 3O 7-δ. Investigations of free volumes in elemental melts (Al, In, Ge) are included.
NASA Astrophysics Data System (ADS)
May, E.; Vennemann, T. W.; Baumgartner, L. P.; Meisser, N.
2014-12-01
Quartz is the most abundant mineral in the Earth's crust and is found in virtually every geological context. Despite its ubiquity and the detailed studies on the conditions of quartz crystallization, some questions concerning its growth and sector zoning with regard to trace element incorporation and oxygen isotope fractionations and the implications thereof for interpretations on the conditions of formation remain (e.g., Jourdan et al., 2009). This study presents new in-situ measurements of trace element and oxygen isotope ratios on natural hydrothermal quartz from an extensional gold-bearing quartz vein in the western Swiss Alps. The temperature of formation of the veins is estimated by quartz-hematite oxygen isotope thermometry to be about 360°C. A detailed SEM-CL study of this sample shows cyclic lamellar growth, alternating with phases of dissolution that are directly followed by macro-mosaic growth of the quartz, before returning to a cyclic lamellar growth again. Trace element concentrations (measured for Na, K, Li, Al, and Ti) notably showed Al/Si variations of three orders of magnitude and coupled Al and Li variations, likely substituting for Si in different growth zones with lower values in macro-mosaic zones precipitating after the period of dissolution. The oxygen isotope composition of the crystal, in contrast, is homogeneous through all growth zones (δ18O values between 15.6‰ and 16.2‰) indicating that the fluid must have been buffered by the host-rock and/or the source of the fluid remained the same despite the period of quartz dissolution. Furthermore, the temperature during crystallization of the quartz crystal has likely also remained similar. The fact that no variations are measured in oxygen isotope compositions but some variations in trace element contents may suggest that changes in pressure were important during the formation of this quartz crystal. Give the pressure effects on the solubility of quartz (Fournier and Potter, 1982), both the cyclic character of quartz growth and perhaps also the changes in Al/Si may be related to pressure variations caused by seismic activity during retrograde Alpine metamorphism. A-L. Jourdan et al. (2009) Mineralogical Magazine, 73, 615-632. R.O. Fournier and R.W. Potter (1982) Geochimica et Cosmochimica Acta, 46, 1969-1973.
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
NASA Astrophysics Data System (ADS)
Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao
2016-08-01
Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K. M.; Danielson, L. R.
2015-01-01
Recent models for accretion of terrestrial bodies involve metal-silicate equilibrium as the metallic core formed during growth. Most elements considered are either refractory or well studied elements for which effects of pressure, temperature, oxygen fugacity, and metallic liquid composition are well known. There are a large number of elements that are both siderophile and volatile, whose fate in such models is unknown, largely due to a lack of data at comparable conditions and com-positions (FeNi core with light elements such as S, C, Si, and O). We have focused on Ge, In, As, Sb and determined the effect of Si and C on metal-silicate partitioning, and developed a thermo-dynamic model that allows application of these new data to a wide range of planetary bodies. New experiments: We have previously carried out experiments with FeSi metallic liquid at C-saturated conditions at 1600 and 1800 C [4]. In a new series of experiments we investigate the effect of Si in carbon-free systems at 1600 C for comparison. Experiments were carried out at 1 GPa in MgO capsules using the same basaltic starting composition as in previous studies. The MgO capsule reacts with the silicate melt to form more MgO-rich liquids that have 22-26 wt% MgO. Experimental met-als and silicates were analyzed using a combination of electron microprobe analysis and laser ablation ICP-MS. Results: The new results can be interpreted by considering Ge as an example, in the simple exchange equilibrium Fe + GeO = FeO + Ge, where the equilibrium constant Kd can be examined as a function of Si content of the metal. The slope of lnKd vs. (1-XSi) for this new series allows derivation of the epsilon interaction parameter for each of these four elements and Si (both C-saturated and C-free).All four elements have positive epsilon values, indicating that Si causes a decrease in the partition coefficients; values are 6.6, 6.5, 27.8 and 25.2 for In, Ge, As, and Sb, respectively, at 1 GPa and 1600 C. As an example of how large the effect of Si can be, these epsilon values correspond to activity coefficients (gamma) for As of 0.01 when XSi = 0, and up to gamma = 23 when XSi = 0.2. Combining these new results with previous determinations [5,6] of epsilon parameters for S and C for these elements allows us calculate activity of Ge, In, As, and Sb in Fe-Ni-Si-S-C-O metallic liquids. We apply this new model to sever-al terrestrial bodies such as Earth (Si-rich core), Mars (S-rich core), Moon (S-, C-, and Si-poor core), and Vesta, and examine the resulting core and mantle concentrations of these elements. Mantle concentrations of these four elements are well explained for Earth and Mars in models that call for mid-mantle equilibration between Si-bearing and S-bearing FeNi cores, respectively. Modeling results for the Moon and Vesta will also be presented.
Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations
NASA Astrophysics Data System (ADS)
Flank, A.-M.; Trcera, N.; Brunet, F.; Itié, J.-P.; Irifune, T.; Lagarde, P.
2009-11-01
Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO6 groups). This new coordination was achieved in AlPO4 doped SiO2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.
Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics
NASA Astrophysics Data System (ADS)
Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak
2016-12-01
To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.
Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa
2012-03-15
Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less
First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50
NASA Astrophysics Data System (ADS)
Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei
2018-06-01
The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.
Brandt, H.L.
1962-02-20
A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)
Melting Experiments in the Fe-FeSi System at High Pressure
NASA Astrophysics Data System (ADS)
Ozawa, H.; Hirose, K.
2013-12-01
The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.
How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey.
Cetin, Ihsan; Nalbantcilar, Mahmut Tahir; Tosun, Kezban; Nazik, Aydan
2017-02-01
Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.
NASA Astrophysics Data System (ADS)
Chen, Rui; Xu, Qingyan; Liu, Baicheng
2015-06-01
In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.
Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires
NASA Astrophysics Data System (ADS)
de Santiago, F.; Trejo, A.; Miranda, A.; Salazar, F.; Carvajal, E.; Pérez, L. A.; Cruz-Irisson, M.
2018-05-01
Silicon nanowires (SiNWs) are considered as potential chemical sensors due to their large surface-to-volume ratio and their possible integration into arrays for nanotechnological applications. Detection of harmful gases like CO has been experimentally demonstrated, however, the influence of doping on the sensing capacity of SiNWs has not yet been reported. For this work, we theoretically studied the surface adsorption of a CO molecule on hydrogen-passivated SiNWs grown along the [111] crystallographic direction and compared it with the adsorption of other molecules such as NO, and O2. Three nanowire diameters and three dopant elements (B, Al and Ga) were considered, and calculations were done within the density functional theory framework. The results indicate that CO molecules are more strongly adsorbed on the doped SiNW than on the pristine SiNW. The following trend was observed for the CO adsorption energies: E A[B-doped] > E A[Al-doped] > E A[Ga-doped] > E A[undoped], for all diameters. The electronic charge transfers between the SiNWs and the adsorbed CO were estimated by using a Voronoi population analysis. The CO adsorbed onto the undoped SiNWs has an electron-acceptor character, while the CO adsorbed onto the B-, Al-, and Ga-doped SiNWs exhibits an electron-donor character. Comparing these results with the ones obtained for the NO and O2 adsorption, the larger CO adsorption energy on B-doped SiNWs indicates their good selectivity towards CO. These results suggest that SiNW-based sensors of toxic gases could represent a clear and advantageous application of nanotechnology in the improvement of human quality of life.
Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.
de Santiago, F; Trejo, A; Miranda, A; Salazar, F; Carvajal, E; Pérez, L A; Cruz-Irisson, M
2018-05-18
Silicon nanowires (SiNWs) are considered as potential chemical sensors due to their large surface-to-volume ratio and their possible integration into arrays for nanotechnological applications. Detection of harmful gases like CO has been experimentally demonstrated, however, the influence of doping on the sensing capacity of SiNWs has not yet been reported. For this work, we theoretically studied the surface adsorption of a CO molecule on hydrogen-passivated SiNWs grown along the [111] crystallographic direction and compared it with the adsorption of other molecules such as NO, and O 2 . Three nanowire diameters and three dopant elements (B, Al and Ga) were considered, and calculations were done within the density functional theory framework. The results indicate that CO molecules are more strongly adsorbed on the doped SiNW than on the pristine SiNW. The following trend was observed for the CO adsorption energies: E A [B-doped] > E A [Al-doped] > E A [Ga-doped] > E A [undoped], for all diameters. The electronic charge transfers between the SiNWs and the adsorbed CO were estimated by using a Voronoi population analysis. The CO adsorbed onto the undoped SiNWs has an electron-acceptor character, while the CO adsorbed onto the B-, Al-, and Ga-doped SiNWs exhibits an electron-donor character. Comparing these results with the ones obtained for the NO and O 2 adsorption, the larger CO adsorption energy on B-doped SiNWs indicates their good selectivity towards CO. These results suggest that SiNW-based sensors of toxic gases could represent a clear and advantageous application of nanotechnology in the improvement of human quality of life.
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2014-09-01
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.
NASA Astrophysics Data System (ADS)
Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin
2013-12-01
Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.
NASA Astrophysics Data System (ADS)
Shi, Chengbin; Wang, Hui; Li, Jing
2018-06-01
Electroslag remelting (ESR) is increasingly used to produce some varieties of special steels and alloys, mainly because of its ability to provide extreme cleanliness and an excellent solidification structure simultaneously. In the present study, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated. The inclusions in the steel before ESR refining were found to be oxysulfides of patch-type (Ca,Mn)S adhering to a CaO-Al2O3-SiO2-MgO inclusion. The oxide inclusions in both the liquid metal pool and remelted ingots are CaO-Al2O3-MgO and MgAl2O4 together with CaO-Al2O3-SiO2-MgO inclusions (slightly less than 30 pct of the total inclusions), which were confirmed to originate from the reduction of SiO2 from the original oxide inclusions by dissolved Al in liquid steel during ESR. CaO-Al2O3-MgO and MgAl2O4 are newly formed inclusions resulting from the reactions taking place inside liquid steel in the liquid metal pool caused by reoxidation of liquid steel during ESR. Increasing the SiO2 content in slag not only considerably reduced aluminum pickup in parallel with silicon loss during ESR, but also suppressed the decrease in SiO2 content in oxide inclusions. (Ca,Mn)S inclusions were fully removed before liquid metal droplets collected in the liquid metal pool.
Bonanza: An extremely large dust grain from a supernova
NASA Astrophysics Data System (ADS)
Gyngard, Frank; Jadhav, Manavi; Nittler, Larry R.; Stroud, Rhonda M.; Zinner, Ernst
2018-01-01
We report the morphology, microstructure, and isotopic composition of the largest SiC stardust grain known to have condensed from a supernova. The 25-μm diameter grain, termed Bonanza, was found in an acid-resistant residue of the Murchison meteorite. Grains of such large size have neither been observed around supernovae nor predicted to form in stellar environments. The large size of Bonanza has allowed the measurement of the isotopic composition of more elements in it than any other previous presolar grain, including: Li, B, C, N, Mg, Al, Si, S, Ca, Ti, Fe, and Ni. Bonanza exhibits large isotopic anomalies in the elements C, N, Mg, Si, Ca, Ti, Fe, and Ni typical of an astrophysical origin in ejecta of a Type II core-collapse supernova and comparable to those previously observed for other presolar SiC grains of type X. Additionally, we extracted multiple focused ion beam lift-out sections from different regions of the grain. Our transmission electron microscopy demonstrates that the crystalline order varies at the micrometer scale, and includes rare, higher order polytype domains (e.g., 15 R). Analyses with STEM-EDS show Bonanza contains a heterogeneous distribution of subgrains with sizes ranging from <10 nm to >100 nm of Ti(N, C); Fe, Ni-rich grains with variable Fe:Ni; and (Al, Mg)N. Bonanza also has the highest ever inferred initial 26Al/27Al ratio, consistent with its supernova origin. This unique grain affords us the largest expanse of data, both microstructurally and isotopically, to compare with detailed calculations of nucleosynthesis and dust condensation in supernovae.
Property of mono-vacancy in MAX phase M3AC2 (M=Ti, A=Al, Si, or Ge): First-principles calculations
NASA Astrophysics Data System (ADS)
Chen, L.; Duan, G.; Gao, X. F.; Wang, C. L.
2018-05-01
The formation and migration energies of the mono-vacancy in M3AC2 have been investigated using first-principles calculations. The results have shown that M element vacancy formation is the most energetically difficult in M3AC2. The A atomic layer is the most active one. It was also found that the energies of mono-vacancy formation and migration in Ti3AlC2 are higher than that in Ti3SiC2 and Ti3GeC2. Moreover, our calculation of the density of state confirms the conclusion that Ti3AlC2 is the most stable in the selected M3AC2 materials under high-temperature or irradiation environment conditions. These results could provide theoretical insights for the experimental results that Ti3AlC2 has a better radiation resistance than Ti3SiC2 and Ti3GeC2.
Finite Element Analysis of Eutectic Structures
2014-03-12
Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties . The material system...Sootsman et al ., Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites, Chem. Mater. 22 (2010) 869. 7. J...Professor) CASE WESTERN RESERVE UNIVERSTY Thermoelectric Properties of WSi2-SixGe1-x Composites Thermoelectric properties of the W/Si/Ge alloy
Anomalous Hall conductivity and electronic structures of Si-substituted Mn2CoAl epitaxial films
NASA Astrophysics Data System (ADS)
Arima, K.; Kuroda, F.; Yamada, S.; Fukushima, T.; Oguchi, T.; Hamaya, K.
2018-02-01
We study anomalous Hall conductivity (σAHC) and electronic band structures of Si-substituted Mn2CoAl (Mn2CoAl1 -xSix ). First-principles calculations reveal that the electronic band structure is like a spin-gapless system even after substituting a quaternary element of Si for Al up to x =0.2 in Mn2CoAl1 -xSix . This means that the Si substitution enables the Fermi-level shift without largely changing the electronic structures in Mn2CoAl . By using molecular beam epitaxy techniques, Mn2CoAl1 -xSix epitaxial films can be grown, leading to the systematic control of x (0 ⩽x ⩽0.3 ). In addition to the electrical conductivity, the values of σAHC for the Mn2CoAl1 -xSix films are similar to those in Mn2CoAl films shown in previous reports. We note that a very small σAHC of ˜1.1 S/cm is obtained for x = 0.225, and the sign of σAHC is changed from positive to negative at around x = 0.25. We discuss the origin of the sign reversal of σAHC as a consequence of the Fermi-level shift in Mn2CoAl . Considering the presence of the structural disorder in the Mn2CoAl1 -xSix films, we can conclude that the small value and sign reversal of σAHC are not related to the characteristics of spin-gapless semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudraswami, N. G.; Prasad, M. Shyam; Dey, S.
Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μ m) and high entry velocities (>16 km s{sup −1})more » experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s{sup −1} and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO{sub 2}, and FeO are not significant for an entry velocity of 11 km s{sup −1} and sizes <300 μ m, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s{sup −1} the changes in MgO, SiO{sub 2}, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μ m. Beyond 400 μ m particle sizes at 16 km s{sup −1}, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.« less
Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere
NASA Astrophysics Data System (ADS)
Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.
2016-12-01
Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s‑1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s‑1 and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s‑1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s‑1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s‑1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.
Synthesis of Al4SiC4 powders from kaolin grog, aluminum and carbon black by carbothermal reaction
NASA Astrophysics Data System (ADS)
Yuan, Wenjie; Yu, Chao; Deng, Chengji; Zhu, Hongxi
2013-12-01
In this paper, the synthesis of Al4SiC4 used as natural oxide materials by carbothermal reduction was investigated in order to explore the synthesis route with low costs. The samples were calcined by using kaolin grog, aluminum and carbon black as raw materials with the selected proportion at the temperature from 1500 to 1800 ° C for 2 hours under flow argon atmosphere. The phase composition of reaction products were determined by X-ray diffraction. The microstructure and elemental composition of different phases were observed and identified by scanning electron microscopy and energy dispersive spectroscopy. The mechanism of reaction processing was discussed. The results show that Al4SiC4 powders composed of hexagonal plate-like particulates with various sizes and the thickness of less than 20 μm are obtained when the temperature reaches 1800 °C.
Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy.
Li, Xin-Tao; Li, Ting-Ju; Li, Xi-Meng; Jin, Jun-Ze
2006-02-01
The fluctuation of the melt temperature in a tundish was measured during casting and experiments were conducted to investigate the effects of ultrasonic melt treatment on the surface quality and solidification structures of Al-1%Si ingots. The results show that the uniformity of melt temperature was enhanced with the application of ultrasonic melt treatment. When the ultrasonic power is 1,000W, the surface quality was evidently improved and grains of cast ingots were refined. Moreover, EPMA analysis was adopted to study the relationship between the ultrasonic power and boundary segregation of Si element. The result shows that boundary segregation is suppressed with the increase of ultrasonic power and the phenomenon was theoretically interpreted.
Shahsavani, Abbas; Yarahmadi, Maryam; Hadei, Mostafa; Sowlat, Mohammad Hossein; Naddafi, Kazem
2017-08-21
Middle Eastern dust (MED) storms carry large amounts of dust particles to the Southern and Western cities of Iran. This study aimed to characterize the elemental and carbonaceous composition of total suspended particles (TSP) and PM 10 in Ahvaz, Iran. TSP and PM 10 samples were collected using two separate high-volume air samplers. The sampling program was performed according to EPA guidelines and resulted in 72 samples. Twenty-eight elements and two carbonaceous components in TSP and PM 10 were measured. Over the entire study period, the mean concentration (SD) of TSP and PM 10 was 1548.72 μg/m 3 (1965.11 μg/m 3 ) and 1152.35 μg/m 3 (1510.34 μg/m 3 ), respectively. The order of concentrations of major species were Si > Al > Ca > OC > Na > B > Zn > Mn > K > Mg and Si > Ca > Al > Na > OC > B > K > Mn > Cu > Mg for TSP and PM 10 , respectively. Almost all elements (except for Cd, Cr, and Cu) and carbonaceous components (except for organic carbon) had dust days/non-dust days (DD/NDD) ratios higher than 1, implying that all components are somehow affected by dust storms. Crustal elements constituted the major portion of particles for both TSP and PM 10 in both DDs and NDDs. The enrichment factor of elements such as Ca, Fe, K, Mg, Na, and Ti was near unity. Species such as Al, Ca, Fe, K, Na, Si, and EC had high correlation coefficients in both TSP and PM 10 (except for EC). In conclusion, Ahvaz is exposed to high concentrations of TSP and PM 10 during the MED period. Immediate actions must be planned to decrease the high concentrations of particulate matter in Ahvaz's ambient air.
Experimental investigation of condensation predictions for dust-enriched systems
NASA Astrophysics Data System (ADS)
Ustunisik, Gokce; Ebel, Denton S.; Walker, David; Boesenberg, Joseph S.
2014-10-01
Condensation models describe the equilibrium distribution of elements between coexisting phases (mineral solid solutions, silicate liquid, and vapor) in a closed chemical system, where the vapor phase is always present, using equations of state of the phases involved at a fixed total pressure (<1 bar) and temperature (T). The VAPORS code uses a CaO-MgO-Al2O3-SiO2 (CMAS) liquid model at T above the stability field of olivine, and the MELTS thermodynamics algorithm at lower T. Quenched high-T crystal + liquid assemblages are preserved in meteorites as Type B Ca-, Al-rich inclusions (CAIs), and olivine-rich ferromagnesian chondrules. Experimental tests of compositional regions within 100 K of the predicted T of olivine stability may clarify the nature of the phases present, the phase boundaries, and the partition of trace elements among these phases. Twenty-three Pt-loop equilibrium experiments in seven phase fields on twelve bulk compositions at specific T and dust enrichment factors tested the predicted stability fields of forsteritic olivine (Mg2SiO4), enstatite (MgSiO3), Cr-bearing spinel (MgAl2O4), perovskite (CaTiO3), melilite (Ca2Al2SiO7-Ca2Mg2Si2O7) and/or grossite (CaAl4O7) crystallizing from liquid. Experimental results for forsterite, enstatite, and grossite are in very good agreement with predictions, both in chemistry and phase abundances. On the other hand the stability of spinel with olivine, and stability of perovskite and gehlenite are quite different from predictions. Perovskite is absent in all experiments. Even at low oxygen fugacity (IW-3.4), the most TiO2-rich experiments do not crystallize Al-, Ti-bearing calcic pyroxene. The stability of spinel and olivine together is limited to a smaller phase field than is predicted. The melilite stability field is much larger than predicted, indicating a deficiency of current liquid or melilite activity models. In that respect, these experiments contribute to improving the data for calibrating thermodynamic models including MELTS.
The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device
2011-11-01
stack between the GaN and Substrate layers. The University of Bristol recently reported that this TBR in commercial devices on Silicon Carbide ( SiC ...Circuit RF Radio Frequency PA Power Amplifier SiC Silicon Carbide FEA Finite Element Analysis heff Effective Heat transfer Coefficient (W/m 2 K...substrate material switched from sapphire to silicon , and by another factor of two from silicon to SiC . TABLE 1: SAMPLE RESULTS FROM DOUGLAS ET AL. FOR
2015-02-15
currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 20-04-2015 2. REPORT TYPE...of AlGaN/GaN/Si MOSFET Using Defect-Free Gate Recess and Laser Annealing 5a. CONTRACT NUMBER FA2386-11-1-4077 5b. GRANT NUMBER Grant AOARD...114077 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Prof. Robert Wallace 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7
NASA Astrophysics Data System (ADS)
Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.
2016-03-01
A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.
Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite
NASA Astrophysics Data System (ADS)
Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.
1996-02-01
The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.
The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.
Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L
2011-09-30
X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.
Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, B.R.; Powell, M.A.; Fyfe, W.S.
The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.
Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...
2017-02-18
Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Binwu; Jia, Xiaopeng; Sun, Hairui
2016-01-15
Clathrate compounds Ba{sub 8}Al{sub x}Si{sub 46−x} were successfully synthesized using the method of high-pressure and high-temperature (HPHT). In this process, we used BaSi{sub 2} as one of the starting materials in place of Ba metals, which reduces the complexity of the program caused by the extremely high chemical reactivity. By using this method, the processing time was reduced from few days to an hour. X-ray diffraction and structural refinement indicated this composition crystallized in type-I clathrate phase. Bond length analysis showed the Ba atoms in small dodecahedron had spherical thermal ellipsoids while those in large tetrakaidecahedron displayed anisotropic thermal ellipsoids.more » The negative Seebeck coefficient indicated transport processes were dominated by electrons as carriers, and increased with the increasing temperature. The electrical properties, including Seebeck coefficient and Power factor, were greatly enhanced by Al substitution. - Graphical abstract: Left: The cavity structure diagram of a China-type large volume cubic high-pressure apparatus, and the Type-I clathrate structure of sample synthesized using HPHT. Middle: X-ray Rietveld refinement profile for Ba{sub 8}Si{sub 46} and element mapping for Ba{sub 8}Al{sub 16}Si{sub 30}. Right: Temperature dependence of Seebeck coefficient for Ba{sub 8}Al{sub x}Si{sub 46−x} prepared by HPHT. - Highlights: • HPHT is a simple and rapid synthetic approach. • We use BaSi{sub 2} as one of the starting materials replacing Ba metals. • The processing time reduces from few days to an hour. • Structure determination is refined by Rietveld analysis of XRD data. • Variable temperature electrical properties are characterized.« less
The Effects of Surface Roughness on the NEAR XRS Elemental Results: Monte-Carlo Modeling
NASA Technical Reports Server (NTRS)
Lin, Lucy F.; Nittler, Larry R.
2011-01-01
The objective of the NEAR-Shoemaker X-ray Gamma-Ray Spec1roscopy ("XGRS") investigation was to determine the elemental composition of the near-Earth asteroid 433 Eros. The X-ray Spectrometer (XRS) system measured the characteristic fluorescence of six major elements (Mg, Al, Si, S, Ca, Fe) in the 1-10 keV energy range excited by the interaction of solar X-rays with the upper 100 microns of the surface of 433 Eros. Various investigators, using both laboratory experiments and computer simulations have established that X-ray fluorescent line ratios can be influenced by small-scale surface roughness at high incidence or emission angles. The effect on the line ratio is specific to the geometry, excitation spectrum, and composition involved, In general, however, the effect is only substantial for ratios of lines with a significant energy difference between them: Fe/Si and Ca/Si are much more likely to be affected than AI/Si or Mg/Si. We apply a Monte-Carlo code to the specific geometry and spectrum of a major NEAR XRS solar flare observation, using an H chondrite composition as the substrate. The seventeen most abundant elements were included in the composition model, from oxygen to titanium.
NASA Astrophysics Data System (ADS)
Arif, Sajjad; Tanwir Alam, Md; Aziz, Tariq; Ansari, Akhter H.
2018-04-01
In the present work, aluminium matrix composites reinforced with 10 wt% SiC micro particles along with x% SiC nano particles (x = 0, 1, 3, 5 and 7 wt%) were fabricated through powder metallurgy. The fabricated hybrid composites were characterized by x-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrum (EDS) and elemental mapping. The relative density, hardness and wear behaviour of all hybrid nanocomposites were studied. The influence of various control factors like SiC reinforcement, sliding distance (300, 600, 900 and 1200 m) and applied load (20, 30 and 40 N) were explored using pin-on-disc wear apparatus. The uniform distribution of micro and nano SiC particles in aluminium matrix is confirmed by elemental maps. The hardness and wear test results showed that properties of the hybrid composite containing 5 wt% nano SiC was better than other hybrid composites. Additionally, the wear loss of all hybrid nanocomposites increases with increasing sliding distance and applied load. The identification of wear phenomenon were studied through the SEM images of worn surface.
Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*
Guo, Xing-zhong; Yang, Hui
2005-01-01
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507
Aruga, Yasuhiro; Kozuka, Masaya
2016-04-01
Needle-shaped precipitates in an aged Al-0.62Mg-0.93Si (mass%) alloy were identified using a compositional threshold method, an isoconcentration surface, in atom probe tomography (APT). The influence of thresholds on the morphological and compositional characteristics of the precipitates was investigated. Utilizing optimum parameters for the concentration space, a reliable number density of the precipitates is obtained without dependence on the elemental concentration threshold in comparison with evaluation by transmission electron microscopy (TEM). It is suggested that careful selection of the concentration space in APT can lead to a reasonable average Mg/Si ratio for the precipitates. It was found that the maximum length and maximum diameter of the precipitates are affected by the elemental concentration threshold. Adjustment of the concentration threshold gives better agreement with the precipitate dimensions measured by TEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Delamination analysis of metal-ceramic multilayer coatings subject to nanoindentation
Jamison, Ryan Dale; Shen, Yu -Lin
2016-01-22
Internal damage has been experimentally observed in aluminum (Al)/silicon carbide (SiC) multilayer coatings subject to nanoindentation loading. Post-indentation characterization has identified that delamination at the coating/substrate interface is the most prominent form of damage. In this study the finite element method is employed to study the effect of delamination on indentation-derived hardness and Young's modulus. The model features alternating Al/SiC nanolayers above a silicon (Si) substrate, in consistence with the actual material system used in earlier experiments. Cohesive elements with a traction–separation relationship are used to facilitate delamination along the coating/substrate interface. Delamination is observed numerically to be sensitive tomore » the critical normal and shear stresses that define the cohesive traction–separation behavior. Axial tensile stress below the edge of indentation contact is found to be the largest contributor to damage initiation and evolution. Delamination results in a decrease in both indentation-derived hardness and Young's modulus. As a result, a unique finding is that delamination can occur during the unloading process of indentation, depending on the loading condition and critical tractions.« less
Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, K; Kita, N; Mendybaev, R
2009-06-18
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.« less
Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces
NASA Technical Reports Server (NTRS)
Noever, David; Phillips, Tony; Horack, John; Porter, Linda; Myszka, Ed
1999-01-01
Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si!O3)--or oxides, herecynite [(Fe,Mg) Al2O4].
Geochemistry and Minerality of Wine
NASA Astrophysics Data System (ADS)
Oze, C.; Horton, T. W.; Beaman, M.
2010-12-01
Kaolinite (Al2Si2O5(OH)4) and gibbsite (Al(OH)3) are capable of forming in a variety of environments including anthropogenic solutions such as wine. Here, we evaluate the geochemistry of twelve white wines in order to assess the potential relationship between kaolinite/gibbsite saturation and minerality, a common wine descriptor used to express the rock and/or soil character in the aromas and flavors of wines. Aluminum and Si concentrations ranged from 228-1,281 µg L-1 and 6,583-19,746 µg L-1, respectively, where Si and Al are the only elements to demonstrate positive covariance with minerality scores. Sulfur levels varied from 25,013-167,383 µg L-1 and show the strongest negative covariance with minerality scores. However, like all of the elements studied (Al, Si, Na, Mg, S, K, Ca, and Fe), these trends were not significantly different than random at the 95% confidence level. In contrast, the relative degrees of gibbsite/kaolinite saturation display strong positive covariance with minerality scores and these trends are not random at the greater than 95% confidence level. Overall, our tasters were able to accurately assess the degree of gibbsite/kaolinite saturation amongst the twelve wines based on the objective of assessing minerality. Although the wines were undersaturated with respect to gibbsite/kaolinite, geochemical modeling reveals that increasing the wines’ pHs from ~3.3 to 4.1-4.6 (which is achievable on the palate where saliva has a pH of 7.4) results in gibbsite/kaolinite oversaturation. By considering that minerality is a function of gibbsite/kaolinite saturation and decreasing S, the origin of minerality’s taste and chemical origin in wine with known physical standards becomes increasingly crystalline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parish, Chad M.; Terrani, Kurt A.; Kim, Young -Jin
Nano-infiltration and transient eutectic phase (NITE) sintering was developed for fabrication of nuclear grade SiC composites. We produced monolithic SiC ceramics using NITE sintering, as candidates for accident-tolerant fuels in light-water reactors (LWRs). In this work, we exposed three different NITE chemistries (yttria-alumina [YA], ceria-zirconia-alumina [CZA], and yttria-zirconia-alumina [YZA]) to autoclave conditions simulating LWR coolant loops. The YZA was most corrosion resistant, followed by CZA, with YA being worst. High-resolution elemental analysis using scanning transmission electron microscopy (STEM) X-ray mapping combined with multivariate statistical analysis (MVSA) datamining helped explain the differences in corrosion. YA-NITE lost all Al from the corrodedmore » region and the ytttria reformed into blocky precipitates. The CZA material lost all Al from the corroded area, and the YZA – which suffered the least corrosion –retained some Al in the corroded region. Lastly, the results indicate that the YZA-NITE SiC is most resistant to hydrothermal corrosion in the LWR environment.« less
Magnetic properties enhancement of melt spun CoZrB ribbons by elemental substitutions
NASA Astrophysics Data System (ADS)
Chang, H. W.; Tsai, C. F.; Hsieh, C. C.; Shih, C. W.; Chang, W. C.; Shaw, C. C.
2013-11-01
Effect of elemental substitution of M (M=C, Cu, Ga, Al and Si) for Zr on the magnetic properties, phase evolution, and microstructure of melt spun Co80Zr18-xMxB2 (x=0-2) ribbons have been investigated. The x-ray diffraction (XRD) and thermal magnetic analysis (TMA) results showed that two magnetically soft phases, namely fcc-Co and Co23Zr6, coexisted with hard phase Co5Zr in Co80Zr17M1B2 ribbons with M=Cu, Ga, Al and Si, while an extra unknown magnetic phase was present in ribbons with M=C. The ribbons with M=C and Si were found to improve the remanence (σr) of the Co80Zr17M1B2 ribbons. However, only M=Si could improve the whole magnetic properties, including Br, intrinsic coercivity (iHc) and energy product ((BH)max) of the above ribbons. The optimal magnetic properties of Br=5.2 kG, iHc=4.5 kOe, and (BH)max=5.3 MGOe were obtained in Co80Zr17Si1B2 ribbons, which possessed Co5Zr and minor fcc-Co phases with much finer grain size (10-30 nm) in comparison with its counterpart Co80Zr18B2 (20-60 nm).
Defect investigations of micron sized precipitates in Al alloys
NASA Astrophysics Data System (ADS)
Klobes, B.; Korff, B.; Balarisi, O.; Eich, P.; Haaks, M.; Kohlbach, I.; Maier, K.; Sottong, R.; Staab, T. E. M.
2011-01-01
A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) [1] in combination with the High Momentum Analysis (HMA) [2]. Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg2Si and Al2Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.
Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction
NASA Astrophysics Data System (ADS)
van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.
2007-12-01
Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006), the &δ&&30Si value of dissolved silicon in the lake water must be even higher. We infer that progressive cation removal alone is inadequate to describe rock dissolution and silicification by acid fluid. Exchange of silicon between the solution and mineral phases probably accompanied the alteration process. This hypothesis is qualitatively consistent with the idea that elements in solution take part in the formation of altered silica-rich layers at mineral-solution interfaces, as invoked to interpret surface reactions during silicate mineral weathering (e.g., Adriaens et al., 1999; Hellmann et al., 2003). References Adriaens et al., 1999. Surf. Interface Anal., 27: 8-23 Basile-Doelsch et al., 2006. Nature, 433: 399-402. Hellmann et al., 2003. Phys. Chem. Minerals, 30: 192-197.
Nanogeochemistry of hydrothermal magnetite
NASA Astrophysics Data System (ADS)
Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin
2018-06-01
Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.
Si-depleted outer core inferred from sound velocity measurements of liquid Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nakajima, Y.; Imada, S.; Hirose, K.; Kuwayama, Y.; Sinmyo, R.; Tateno, S.; Ozawa, H.; Tsutsui, S.; Uchiyama, H.; Baron, A. Q. R.
2016-12-01
Recent core formation models [1,2] suggested that a large amount of Si could have been incorporated into the core forming metals in the early stage of the Earth. These studies gave estimates for the Si content in the core, from 2 to 9 wt.%. In order to constrain the Si content of the outer core, we have determined the sound wave velocity of liquid Fe-Si alloys under high pressures and high temperatures. Starting materials of Fe-Si alloys with 6.5 and 9 wt.% Si were melted in a laser-heated diamond-anvil cell. The longitudinal acoustic phonon excitation of a liquid metal was measured up to 52 GPa and 3200 K by using high resolution inelastic X-ray scattering spectroscopy at beamline BL35XU [3] of the SPring-8 synchrotron facility. Our results show that silicon significantly increases the P-wave velocity of liquid Fe. Seismological observation shows that the P-wave velocity in the outer core is 3-4% faster than in pure iron. Comparing the present results with seismological observations, the silicon content of the outer core should be limited to be <2 wt.%, significantly lower than previous estimates based on the element partitioning between core forming mental and silicate magma ocean during core formation processes. This indicates that the present-day core is depleted in Si relative to the ancient core just after core formation, which agrees with the recent proposal [4] that the Si content in the outer core has been diminished by SiO2 crystallization through the core cooling history. [1] Rubie et al. (2011) Earth Planet. Sci. Lett. 301, 31-42. [2] Siebert et al. (2013) Science 339, 1194-1197. [3] Baron et al. (2000) J. Phys. Chem. Solids 61, 461-465 [4] Hirose et al. (2015) Abstract presented at AGU Fall Meeting 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang, E-mail: yang.li@upr.edu; Garcia, Jose; Lu, Kejie
2015-06-07
In recent years, efforts have been made to explore the superconductivity of clathrates containing crystalline frameworks of group-IV elements. The superconducting silicon clathrate is unusual in that the structure is dominated by strong sp{sup 3} covalent bonds between silicon atoms, rather than the metallic bonding that is more typical of traditional superconductors. This paper reports on critical magnetic fields of superconducting Al-substituted silicon clathrates, which were investigated by transport, ac susceptibility, and dc magnetization measurements in magnetic fields up to 90 kOe. For the sample Ba{sub 8}Si{sub 42}Al{sub 4}, the critical magnetic fields were measured to be H{sub C1} = 40.2 Oe andmore » H{sub C2} = 66.4 kOe. The London penetration depth of 4360 Å and the coherence length 70 Å were obtained, whereas the estimated Ginzburg–Landau parameter of κ = 62 revealed that Ba{sub 8}Si{sub 42}Al{sub 4} is a strong type-II superconductor.« less
Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys
Tsakiropoulos, Panos
2018-01-01
In Nb-silicide based alloys, eutectics can form that contain the Nbss and Nb5Si3 phases. The Nb5Si3 can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nbss and Nb5Si3 is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔHmix, ΔSmix, VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= Tm ΔSmix/|ΔHmix|). The values of these parameters were in the ranges −41.9 < ΔHmix <−25.5 kJ/mol, 4.7 < ΔSmix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔSmix, Ω, ΔSmix, and VEC were found for all of the eutectics. The correlation between ΔHmix and δ for the eutectics was the same as that of the Nbss, with more negative ΔHmix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nbss. Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus
Bahloul, Moez; Chabbi, Iness; Dammak, Rim; Amdouni, Ridha; Medhioub, Khaled; Azri, Chafai
2015-12-01
The present study investigates the geochemical behaviour of PM10 aerosol constituents (Cl, Na, Si, Al, Ca, Fe, Mg, Mn, Pb, Zn, S) at Sfax City (Tunisia) under succeeding meteorological conditions, including short-lived anticyclonic, cyclonic and prolonged anticyclonic situations. The results revealed daily total concentrations fluctuating between 4.07 and 88.51 μg/m(3). The highest level recorded was noted to occur under the effect of the short-lived anticyclonic situation characterized by low wind speeds. It was 1.5 times higher than those recorded during cyclonic and long-lived anticyclonic situations characterized by moderate to high wind speeds. During the cyclonic situation, the marked increase of (Na and Cl) concentrations is associated with relatively high sea wind speeds (6 to 9 m/s), which are in turn responsible for a slight increase of crustal elements such as Al, Ca, Si, Fe and Mg, by the entrainment in the air of dust from roads and undeveloped areas. During the two anticyclonic situations, the simultaneous increase (due to communal transport) of crustal (Ca, Si, Al, Fe, Mg) and man-made (Mn, S, Pb, Zn) elements was noted to be associated with the dominance of terrigenious wind flows with speeds varying between 1.5 and 4 m/s. However, the significant contribution rates observed for Cl under the prevalence of such winds as compared to other crustal elements such as Fe suggested the influence of the sebkhas of Southern Tunisia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuskelly, Dylan, E-mail: dylan.cuskelly@uon.edu.au; Richards, Erin; Kisi, Erich, E-mail: Erich.Kisi@newcastle.edu.au
2016-05-15
Extension of the aluminothermal exchange reaction synthesis of M{sub n+1}AX{sub n} phases to systems where the element ‘A’ is not the reducing agent was investigated in systems TiO{sub 2}–A–Al–C for A=Al, Si, Ga, Ge, In and Sn as well as Cr{sub 2}O{sub 3}–Ga–Al–C. MAX phase-Al{sub 2}O{sub 3} composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63–96% without optimisation of starting ratios. Optimisation in the Ti–Si–C system gave a MAX phase component with >98% Ti{sub 3}SiC{sub 2}. - Graphical abstract: A range of Ti{sub n+1}AX{submore » n} phases with different A elements were synthesised directly from the M oxide via exchange reactions. The process has now been shown to be general in all the systems marked in green in the table. - Highlights: • Ti{sub n+1}AC{sub n} phases were produced via a single step exchange reaction. • 3 MAX phase systems were successful via this method for the first time. • Cr{sub 2}GeC was also able to be produced via an exchange reaction. • The interconversion reaction in MAX phases is more general than previously thought.« less
NASA Astrophysics Data System (ADS)
Klimin, V. S.; Il'ina, M. V.; Il'in, O. I.; Rudyk, N. N.; Ageev, O. A.
2017-11-01
This experimental work is devoted to the regimes of obtaining arrays of carbon nanotubes. Arrays of perpendicular nanotubes perpendicular to the surface were obtained by the method of Plasma-enhanced chemical vapor deposition. In this paper, geometric and electronic parameters of carbon nanotubes were investigated depending on the material of the sublayer. The rates of growth of carbon nanotubes on various structures were also determined. In the experiments for growth, structures such as Ni-Al-Si, Ni-V-Si, Ni-Ti-Si, Ni-Cr-Si were used. The growth rates for the intensive section were for the Ni-Cr-Si structure, the growth rate is about 1 μm / min, for the Ni-V-Si structure it is 0.55 μm / min. The growth rates for the saturation region for the Ni-Cr-Si structure, the growth rate is about 0.2 μm / min, for the Ni-V-Si structure 0.16 μm / min. The results obtained in this paper can be used to optimize the growth regimes perpendicularly oriented to the substrate carbon nanotubes, which are used as various elements in modern nanoelectronics.
Modeling and Simulation of Ceramic Arrays to Improve Ballistic Performance
2014-04-30
experiments (tiles from Supplier, sintered SiC) 15. SUBJECT TERMS Adhesive Layer Effect, .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum...Aluminum (AI5083) □ Impacts by .30cal AP-M2 projectile and are modeled using SPH elements in AutoDyn □ Center strike model validation runs with SiC tiles...View SiC\\ Front View □ Smoothed-particle hydrodynamics ( SPH ) used for al parts J SPH Size 0.4 used initially □ SPH Size 0.2 used to capture
NASA Astrophysics Data System (ADS)
Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk
2016-09-01
Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.
Porous acicular mullite obtained by controlled oxidation of waste molybdenum disilicide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučevac, Dušan, E-mail: bucevac@vinca.rs; Dapčević, Aleksandra; Maksimović, Vesna
2014-02-01
Highlights: • Waste MoSi{sub 2} heating elements were used as starting material for fabrication of porous acicular mullite. • Calcined MoSi{sub 2} powder was source of SiO{sub 2} and pore former at the same time. • Porous acicular mullite is promising material for filtration of diesel engine exhaust. • Samples with decent mechanical integrity and porosity of more than 60% were fabricated. - Abstract: Porous acicular mullite was fabricated by using waste MoSi{sub 2} heating element and Al{sub 2}O{sub 3}. Careful calcination of the pulverized heating element led to the formation of a mixture of MoO{sub 3} and amorphous SiO{submore » 2}. This mixture was employed as both SiO{sub 2} precursor and pore former. The oxidation of MoSi{sub 2} and mullite formation were studied. The effect of fabrication temperature on phase composition, porosity, grain morphology, and compressive strength of sintered mullite was examined. Pure mullite with porosity of more than 60% and compressive strength of ∼20 MPa was obtained at temperature as low as 1300 °C. The microstructure consisted of elongated, rectangular, prism-like grains which are known to be effective in filtration of diesel engine exhaust. The increase in sintering temperature caused the change of grain morphology and reduction in compressive strength.« less
NASA Astrophysics Data System (ADS)
Wohlers, Anke; Manning, Craig E.; Thompson, Alan B.
2011-05-01
The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H 2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H 2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H 2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi 3O 6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P- T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.
Trace Elemental Characterization of Chalk Dust and Their Associated Health Risk Assessment.
Maruthi, Y A; Ramprasad, S; Lakshmana Das, N
2017-02-01
It is evident that chalk produces dust on use, i.e., particulate matter, which will alter the air quality of classrooms and can cause health hazards in teachers. The possible causes for health effects of chalk dust on teachers are still unclear. Hence, the aim of this study is to estimate the concentration of trace elements (Al, Cr, Mn, Fe, Co, Ni, Si, Pb) in chalk dust collected from classrooms by using ICP-MS. Both suspended and settled chalk dust was collected from selected classrooms. Suspended chalk dust was collected with PM2.5 filter paper using fine dust sampler, and settled chalk dust was collected by placing petriplates at a distance of 3 m from the board for a duration period of 30 min. Scanning electron microscopy images of chalk dust were taken up. Potential health risk analysis was also assessed. Results showed that Al, Fe, and Mn are in higher concentration (>1000 μg kg -1 ) in both settled and suspended chalk dust. Cr, Mn, Fe, Co, and Ni were beyond the minimal risk levels in both settled and suspended chalk dust. There are no minimal risk levels for the elements Al, Si, and Pb. The concentration of trace elements in suspended chalk dust was higher than that in settled chalk dust. The SEM images of PM2.5 filter papers (suspended chalk dust) showed that all pores of the sampled filter papers are clogged with chalk dust. The few SEM images of the settled chalk dust showed fibrous shape which is associated with good-quality chalk whereas others showed circular and more aggregated nature of chalk dust from low-quality chalk from which the dust production will be very high. As observed from the result that the trace elements concentration was high in the suspended chalk dust, the fact can be correlated with the SEM images which have shown high density of absorbed chalk dust. With reference to human health risk, dermal exposure was the main route of exposure followed by inhalation and ingestion. Al (aluminum), Fe (iron), Si (silicon), and Mn (manganese) are the major contributors for the non-carcinogenic effects. For all the elements, the carcinogenic effect calculated (LADD) is within the global acceptable limit (10 -6 -10 -4 ).
On the Potential of MAX phases for Nuclear Applications
NASA Astrophysics Data System (ADS)
Tallman, Darin Joseph
Materials within nuclear reactors experience some of the harshest environments currently known to man, including long term operation in extreme temperatures, corrosive media, and fast neutron fluences with up to 100 displacements per atom, dpa. In order to improve the efficiency and safety of current and future reactors, new materials are required to meet these harsh demands. The M n+1AXn phases, a growing family of ternary nano-layered ceramics, possess a desirable combination of metallic and ceramic properties. They are composed of an early transition metal (M), a group 13--16 element (A), and carbon and/or nitrogen (X). The MAX phases are being proposed for use in such extreme environments because of their unique combination of high fracture toughness values and thermal conductivities, machinability, oxidation resistance, and ion irradiation damage tolerance. Previous ion irradiation studies have shown that Ti3SiC2 and Ti3AlC2 resist irradiation damage, maintaining crystallinity up to 50 dpa. The aim of this work was to explore the effect of neutron irradiation, up to 9 dpa and at temperatures of 100 to 1000 °C, on select MAX phases for the first time. The MAX phases Ti3SiC2, Ti 3AlC2, Ti2AlC, and Ti2AlN were synthesized, and irradiated in test reactors that simulate in-pile conditions of nuclear reactors. X-ray diffraction, XRD, pattern refinements of samples revealed a distortion of the crystal lattice after low temperature irradiation, which was not observed after high temperature irradiations. Additionally, the XRD results indicated that Ti3AlC2 and Ti2AlN dissociated after relatively low neutron doses. This led us to focus on Ti 3SiC2 and Ti2AlC. For the first time, dislocation loops were observed in Ti3SiC 2 and Ti2AlC as a result of neutron irradiation. At 1 x 1023 loops/m3, the loop density in Ti2 AlC after irradiation to 0.1 dpa at 700°C was 1.5 orders of magnitude greater than that observed in Ti3SiC2, at 3 x 1021 loops/m3. The Ti2AlC composition appeared more prone to microcracking that Ti3SiC2. Additionally, exceptionally large denuded zones, up to 1 mum in width after 9 dpa irradiations at 500°C, were observed in Ti3SiC2, indicating that point defects readily diffuse to the grain boundaries. Denuded zones of this width, to our knowledge, have never been observed. In comparison, TiC impurity particles were highly damaged with various dislocation loops and defect clusters after irradiation. It is thus apparent that the A-layer, interleaved between MX blocks in the MAX phase nanolayered structure, readily accommodates and/or annihilates point defects, providing significant irradiation damage tolerance. Comparison of defect densities, post-irradiation microstructure, and electrical resistivity showed Ti3SiC2 to have the highest irradiation tolerance. Diffusion bonding of MAX phases to Zircaloy-4 was studied in the 1100 to 1300°C temperature range. The out diffusion of the A-group element into Zircaloy-4 formed Zr-intermetallic compounds that were roughly an order of magnitude thicker in Ti2AlC than Ti3SiC 2. Helium permeability results suggest that the MAX phases behave similarly to other sintered ceramics. Based on the totality of our results, Ti 3SiC2 remains a promising candidate for high temperature nuclear applications, and warrants future exploration. This work provides the foundation for understanding the response of the MAX phases to neutron irradiation, and can now be used to finely tune ion irradiation studies to accurately simulate reactor conditions.
Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite
NASA Astrophysics Data System (ADS)
Wang, Daqun; Sun, Dongli; Han, Xiuli; Wang, Qing; Wang, Guangwei
2018-03-01
Different oxidation layers on the Ti2AlN/TiAl substrate which was fabricated by in situ synthesis were prepared through thermal oxidation process. The microstructure, phase identification and elements distribution of the oxidation layers were analyzed. The tribological performance of pre-oxidized composites against Si3N4 ball at 25 and 600 °C, as well as the effect of pre-oxidation layers on tribological performance was systematically investigated. The results show that, compared to Ti2AlN/TiAl, the pre-oxidized composites present more excellent tribological properties, especially the wear resistance at 600 °C. It is a significant finding that, different from severe abrasive wear and plastic deformation of Ti2AlN/TiAl, the tribo-films formed by the pre-oxidation layers on the worn surface of pre-oxidized composites weaken abrasive wear and suppress the development of plastic deformation to protect the underlying composite substrate from wear. Moreover, the stable cooperation on the interface between tribo-films and Si3N4 ball results in the relatively steady friction coefficient.
Supernova Dust at Sub-micrometer Scales
NASA Astrophysics Data System (ADS)
Nittler, Larry; Stroud, R. M.
2006-06-01
Meteorites contain nanometer to micrometer stardust grains, which formed in pre-solar generations of stars and exhibit large isotopic anomalies that reflect the nuclear processes that occurred in their individual parent stars [1]. Supernovae of Type II have been identified as the sources of much of the stardust, including grains of SiC, Si3N4, graphite and Mg2SiO4. Although, the isotopic compositions of many elements in these grains point unambiguously to supernova nucleosynthesis processes [2], the data require extensive and heterogeneous mixing of disparate nuclear burning zones. A recent study found that individual 200 nm TiC sub-grains within a 12 micron supernova graphite grain have uniform Ti isotopic composition but a range of O isotopic ratios [3]. New microanalysis techniques allow us to correlate the physical microstructures of supernova grains with isotopic composition, e.g., SiC and Si3N4, providing a sub-micron view of condensation processes in supernova ejecta. Results on two SiC grains indicate that micron-sized SiC grains from supernovae consist of assemblages of smaller crystallites with some evidence of radiation and/or shock processing. This is in strong contrast to SiC grains from AGB stars, which are typically single euhedral crystals [4]. The Si, C and N isotopic compositions of the grains are highly uniform, in contrast to the model of [5], which predicts strong isotopic gradients in supernova-derived SiC grains.This work is supported by NASA.[1] Clayton D. D. and Nittler L. R. (2004) ARAA, 42, 39-78.[2] Nittler L. R., et al. (1996) ApJ, 462, L31-34.[3] Stadermann F. J., et al. (2005) GCA, 69, 177-188.[4] Daulton T. L., et al. (2002) Science, 296, 1852-1855.[5] Deneault E. A.-N., et al. (2003) ApJ, 594, 312-325.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Carl R.
Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less
Long term stability of nanowire nanoelectronics in physiological environments.
Zhou, Wei; Dai, Xiaochuan; Fu, Tian-Ming; Xie, Chong; Liu, Jia; Lieber, Charles M
2014-03-12
Nanowire nanoelectronic devices have been exploited as highly sensitive subcellular resolution detectors for recording extracellular and intracellular signals from cells, as well as from natural and engineered/cyborg tissues, and in this capacity open many opportunities for fundamental biological research and biomedical applications. Here we demonstrate the capability to take full advantage of the attractive capabilities of nanowire nanoelectronic devices for long term physiological studies by passivating the nanowire elements with ultrathin metal oxide shells. Studies of Si and Si/aluminum oxide (Al2O3) core/shell nanowires in physiological solutions at 37 °C demonstrate long-term stability extending for at least 100 days in samples coated with 10 nm thick Al2O3 shells. In addition, investigations of nanowires configured as field-effect transistors (FETs) demonstrate that the Si/Al2O3 core/shell nanowire FETs exhibit good device performance for at least 4 months in physiological model solutions at 37 °C. The generality of this approach was also tested with in studies of Ge/Si and InAs nanowires, where Ge/Si/Al2O3 and InAs/Al2O3 core/shell materials exhibited stability for at least 100 days in physiological model solutions at 37 °C. In addition, investigations of hafnium oxide-Al2O3 nanolaminated shells indicate the potential to extend nanowire stability well beyond 1 year time scale in vivo. These studies demonstrate that straightforward core/shell nanowire nanoelectronic devices can exhibit the long term stability needed for a range of chronic in vivo studies in animals as well as powerful biomedical implants that could improve monitoring and treatment of disease.
Long Term Stability of Nanowire Nanoelectronics in Physiological Environments
2015-01-01
Nanowire nanoelectronic devices have been exploited as highly sensitive subcellular resolution detectors for recording extracellular and intracellular signals from cells, as well as from natural and engineered/cyborg tissues, and in this capacity open many opportunities for fundamental biological research and biomedical applications. Here we demonstrate the capability to take full advantage of the attractive capabilities of nanowire nanoelectronic devices for long term physiological studies by passivating the nanowire elements with ultrathin metal oxide shells. Studies of Si and Si/aluminum oxide (Al2O3) core/shell nanowires in physiological solutions at 37 °C demonstrate long-term stability extending for at least 100 days in samples coated with 10 nm thick Al2O3 shells. In addition, investigations of nanowires configured as field-effect transistors (FETs) demonstrate that the Si/Al2O3 core/shell nanowire FETs exhibit good device performance for at least 4 months in physiological model solutions at 37 °C. The generality of this approach was also tested with in studies of Ge/Si and InAs nanowires, where Ge/Si/Al2O3 and InAs/Al2O3 core/shell materials exhibited stability for at least 100 days in physiological model solutions at 37 °C. In addition, investigations of hafnium oxide-Al2O3 nanolaminated shells indicate the potential to extend nanowire stability well beyond 1 year time scale in vivo. These studies demonstrate that straightforward core/shell nanowire nanoelectronic devices can exhibit the long term stability needed for a range of chronic in vivo studies in animals as well as powerful biomedical implants that could improve monitoring and treatment of disease. PMID:24479700
Phase relations in the system Fe-Si determined in an internally-resistive heated DAC
NASA Astrophysics Data System (ADS)
Komabayashi, T.; Antonangeli, D.; Morard, G.; Sinmyo, R.; Mezouar, N.
2015-12-01
It is believed that the iron-rich Earth's core contains some amounts of light elements on the basis of the density deficit of 7 % compared to pure iron. The identification of the kinds and amounts of the light elements in the core places constraints on the origin, formation, and evolution of the Earth because dissolution of light elements into an iron-rich core should place important constraints on the thermodynamic conditions (pressure (P), temperature (T), and oxygen fugacity) of the equilibration between liquid silicate and liquid iron during the core formation. Among potential light elements, silicon has been attracting attentions because it is abundant in the mantle, partitioned into both solid and liquid irons, and very sensitive to the oxygen fugacity. An important phase relation in iron alloy is a transition between the face-centred cubic (FCC) structure and hexagonal close-packed (HCP) structure. This boundary is a key to infer the stable structure in the inner core and is used to derive thermodynamic properties of the phases (Komabayashi, 2014). In the Fe-Si system, previous reports were based on experiments in laser-heated diamond anvil cells (DAC), which might have included large termperature uncertainties. We have revisited this boundary in the system Fe-Si using an internally resistive-heated DAC combined with synchrotron X-ray diffraction at the beamline ID27, ESRF. The internally-heated DAC (Komabayashi et al., 2009; 2012) provides much more stable heating than the laser-heated DAC and much higher temperature than externally resistive-heated DAC, which enables us to place tight constraints on the P-T locations of the boundaries. Also because the minimum measurable temperature is as low as 1000 K due to the stable electric heating, the internal heating is able to examine the low temperature phase stability which was not studied by the previous studies. We will report the P-T locations of the boundaries and evaluate the effect of Si on the phase relation of Earth's core materials. References Komabayashi, J. Geophys. Res., 119, 2014; Komabayashi et al., Earth Planet. Sci. Lett. 282, 2009; Komabayashi et al., Phys. Chem. Mineral 39, 2012.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Chopkar, Manoj
2018-05-01
Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen
Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average widthmore » of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.« less
Mostafa, Ahmad; Medraj, Mamoun
2017-01-01
Fabrication of solar and electronic silicon wafers involves direct contact between solid, liquid and gas phases at near equilibrium conditions. Understanding of the phase diagrams and thermochemical properties of the Si-dopant binary systems is essential for providing processing conditions and for understanding the phase formation and transformation. In this work, ten Si-based binary phase diagrams, including Si with group IIIA elements (Al, B, Ga, In and Tl) and with group VA elements (As, Bi, N, P and Sb), have been reviewed. Each of these systems has been critically discussed on both aspects of phase diagram and thermodynamic properties. The available experimental data and thermodynamic parameters in the literature have been summarized and assessed thoroughly to provide consistent understanding of each system. Some systems were re-calculated to obtain a combination of the best evaluated phase diagram and a set of optimized thermodynamic parameters. As doping levels of solar and electronic silicon are of high technological importance, diffusion data has been presented to serve as a useful reference on the properties, behavior and quantities of metal impurities in silicon. This paper is meant to bridge the theoretical understanding of phase diagrams with the research and development of solar-grade silicon production, relying on the available information in the literature and our own analysis. PMID:28773034
NASA Astrophysics Data System (ADS)
Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.
2009-05-01
We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.
Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.
Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph
2018-05-01
Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.
Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases
NASA Astrophysics Data System (ADS)
Christopoulos, S.-R. G.; Filippatos, P. P.; Hadi, M. A.; Kelaidis, N.; Fitzpatrick, M. E.; Chroneos, A.
2018-01-01
Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C or N) have a combination of advantageous metallic and ceramic properties, and are being considered for structural applications particularly where high thermal conductivity and operating temperature are the primary drivers: for example in nuclear fuel cladding. Here, we employ density functional theory calculations to investigate the intrinsic defect processes and mechanical behaviour of a range of Ti3AC2 phases (A = Al, Si, Ga, Ge, In, Sn). Based on the intrinsic defect reaction, it is calculated that Ti3SnC2 is the more radiation-tolerant 312 MAX phase considered herein. In this material, the C Frenkel reaction is the lowest energy intrinsic defect mechanism with 5.50 eV. When considering the elastic properties of the aforementioned MAX phases, Ti3SiC2 is the hardest and Ti3SnC2 is the softest. All the MAX phases considered here are non-central force solids and brittle in nature. Ti3SiC2 is elastically more anisotropic and Ti3AlC2 is nearly isotropic.
Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito
2016-04-01
In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.
An ET Origin for Stratospheric Particles Collected during the 1998 Leonids Meteor Shower
NASA Technical Reports Server (NTRS)
Noever, David A.; Phillips, James A.; Horack, John M.; Jerman, Gregory; Myszka, Ed
1999-01-01
On 17 November 1998, a helium-filled weather balloon was launched into tfle strato- sphere, equipped with a xerogel microparticle collector. The three-hour flight was designed to sample the dust environment in the stratosphere during the Leonid meteor shower, and possibly to capture Leonid meteoroids. Environmental Scanning Election Microscope analyses of the returned collectors revealed the capture of a -30-pm particle. with a smooth, multigranular shape, and partially melted, translucent rims; similar to known Antarctic micrometeorites. Energy-dispersive X-ray Mass Spectroscopy shows en- riched concentrations of the non-volatile elements, Mg, Al, and Fe. The particle possesses a high magnesium to iron ratio of 2.96, similar to that observed in 1998 Leonids meteors (Borovicka, et al. 1999) and sharply higher than the ratio expected for typical material from the earth's crust. A statistical nearest-neighbor analysis of the abundance ratios Mg/Si, Al/Si, and Fe/Si demonstrates that the particle is most similar in composition to cosmic spherules captured during airplane flights throucrh the stratosphere. The mineralogical class is consistent with a stony (S) type of silicates. olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg,Fe)SiO3]-or oxides, herecynite [(Fe,Mg) Al2O4]. Attribution to the debris stream of the Leonids' parent body, comet Tempel-Tuttle, would make it the first such material from beyond the orbit of Uranus positively identified on Earth.
On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys
Tsakiropoulos, Panos
2018-01-01
The alloying of Nb5Si3 modifies its properties. Actual compositions of (Nb,TM)5X3 silicides in developmental alloys, where X = Al + B + Ge + Si + Sn and TM is a transition and/or refractory metal, were used to calculate the composition weighted differences in electronegativity (Δχ) and an average valence electron concentration (VEC) and the solubility range of X to study the alloying and properties of the silicide. The calculations gave 4.11 < VEC < 4.45, 0.103 < Δχ < 0.415 and 33.6 < X < 41.6 at.%. In the silicide in Nb-24Ti-18Si-5Al-5Cr alloys with single addition of 5 at.% B, Ge, Hf, Mo, Sn and Ta, the solubility range of X decreased compared with the unalloyed Nb5Si3 or exceeded 40.5 at.% when B was with Hf or Mo or Sn and the Δχ decreased with increasing X. The Ge concentration increased with increasing Ti and the Hf concentration increased and decreased with increasing Ti or Nb respectively. The B and Sn concentrations respectively decreased and increased with increasing Ti and also depended on other additions in the silicide. The concentration of Sn was related to VEC and the concentrations of B and Ge were related to Δχ. The alloying of Nb5Si3 was demonstrated in Δχ versus VEC maps. Effects of alloying on the coefficient of thermal expansion (CTE) anisotropy, Young’s modulus, hardness and creep data were discussed. Compared with the hardness of binary Nb5Si3 (1360 HV), the hardness increased in silicides with Ge and dropped below 1360 HV when Al, B and Sn were present without Ge. The Al effect on hardness depended on other elements substituting Si. Sn reduced the hardness. Ti or Hf reduced the hardness more than Cr in Nb5Si3 without Ge. The (Nb,Hf)5(Si,Al)3 had the lowest hardness. VEC differentiated the effects of additions on the hardness of Nb5Si3 alloyed with Ge. Deterioration of the creep of alloyed Nb5Si3 was accompanied by decrease of VEC and increase or decrease of Δχ depending on alloying addition(s). PMID:29300327
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Dasgupta, R.
2008-12-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
NASA Astrophysics Data System (ADS)
Jackson, Matthew G.; Dasgupta, Rajdeep
2008-11-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
Effect of alloying elements on the physicomechanical properties of copper and tin bronze
NASA Astrophysics Data System (ADS)
Ri, Kh.; Komkov, V. G.; Ri, E. Kh.
2014-09-01
The effect of alloying elements (Al, Si, Mn, Zn, Ni, As) on the physicomechanical properties of copper and tin bronze (6 wt % Sn) is studied. These alloying elements are found to increase the hardness and the microhardness of the structural constituents of Cu- X alloys due to hardening the α solid solution and eutectoid, and this effect of alloying elements is most effective in tin bronze. Alloyed copper and tin bronze have a lower thermal conductivity and corrosion resistance as compared to plain copper and tin bronze.
NASA Astrophysics Data System (ADS)
Lafrance, Maxime
During the past few decades, aluminum foam research has focused on the improvement of properties. These properties include pore structure and process reproducibility. High energy absorption capacity, lightweight and high stiffness to weight ratio are some of the properties that make these foams desirable for a number of diverse applications. The use of a transient liquid phase and melting point depressant was studied in order to improve aluminum foam manufactured through the powder metallurgy process and to create reactive Stabilisation. The transient liquid phase reacts with aluminum and helps encapsulate higher levels of hydrogen, simultaneously reducing the difference between the melting point of the alloy and the gas release temperature of the blowing agent (TiH2). A large difference is known to adversely affect foam properties. The study of pure aluminum foam formation was undertaken to understand the basic foaming mechanisms related to crack formations under in-situ conditions. Elemental zinc powder at various concentrations (Al-10wt%Zn, Al-33wt%Zn and Al-50wt%Zn) was added to produce a transient liquid phase. Subsequently, an Al-12wt%Si pre-alloyed powder was added to the Al-Zn mixture in order to further reduce the melting point of the alloy and to increase the amount of transient liquid phase available (Al-3.59wtSi-9.6%Zn and Al-2.4wt%Si-9.7wt%Zn). The mechanical properties of each system at optimal foaming conditions were assessed and compared. It was determined that pure aluminum foam crack formation could be suppressed at higher heating rates, improving the structure through the nucleation of uniform pores. The Al-10wt%Zn foams generated superior pore properties, post maximum expansion stability and mechanical properties at lower temperatures, compared to pure aluminum. The Al-Si-Zn foams revealed remarkable stability and pore structure at very low temperatures (640 to 660°C). Overall, the Al-10wt%Zn and Al-3.59wt%Si-9.6wt%Zn foams offer superior properties compared to pure aluminum.
Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter
2016-04-28
The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.
The preparation and characterization of optical thin films produced by ion-assisted deposition
NASA Astrophysics Data System (ADS)
Martin, P. J.; Netterfield, R. P.; Sainty, W. G.; Pacey, C. G.
1984-06-01
Ion-based deposition techniques have been successfully used to deposit compound films suitable for photothermal applications, as well as dielectric films with stable and reproducible optical properties. Thus, thin films of TiN, a-Si:H, and PbS have been obtained by ion-assisted deposition for photothermal solar-selective elements and similarly prepared dielectric layers of ZrO2, SiO2, and Al2O3 have been used as protective coatings on Ag and Al mirrors. It is shown that the technique of ion-assisted deposition affords control over the film density, microstructure, adhesion, composition, and optical properties. Details of the process and film properties are discussed.
Essential and toxic elements in seaweeds for human consumption.
Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L
2016-01-01
Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.
Low Z total reflection X-ray fluorescence analysis — challenges and answers
NASA Astrophysics Data System (ADS)
Streli, C.; Kregsamer, P.; Wobrauschek, P.; Gatterbauer, H.; Pianetta, P.; Pahlke, S.; Fabry, L.; Palmetshofer, L.; Schmeling, M.
1999-10-01
Low Z elements, like C, O, ... Al are difficult to measure, due to the lack of suitable low-energy photons for efficient excitation using standard X-ray tubes, as well as difficult to detect with an energy dispersive detector, if the entrance window is not thin enough. Special excitation sources and special energy dispersive detectors are required to increase the sensitivity and to increase the detected fluorescence signal and so to improve the detection limits. Synchrotron radiation, due to its features like high intensity and wide spectral range covering also the low-energy region, is the ideal source for TXRF, especially of low-Z elements. Experiments at a specific beamline (BL 3-4) at SSRL, Stanford, designed for the exclusive use of low-energy photons has been used as an excitation source. Detection limits <100 fg for Al, Mg and Na have been achieved using quasimonochromatic radiation of 1.7 keV. A Ge(HP) detector with an ultra-thin NORWAR entrance window is used. One application is the determination of low-Z surface contamination on Si-wafers. Sodium, as well as Al, are elements of interest for the semiconductor industry, both influencing the yield of ICs negatively. A detection capacity of 10 10 atoms/cm 2 is required which can be reached using synchrotron radiation as excitation source. Another promising application is the determination of low-Z atoms implanted in Si wafers. Sodium, Mg and Al were implanted in Si-wafers at various depths. From measuring the dependence of the fluorescence signal on the glancing angle, characteristic shapes corresponding to the depth profile and the relevant implantation depth are found. Calculations are compared with measurements. Finally, aerosols sampled on polycarbonate plates in a Battelle impactor were analyzed with LZ-TXRF using multilayer monochromatized Cr-Kα radiation from a 1300-W fine-focus tube for excitation. Results are presented.
The mass balance of soil evolution on late Quaternary marine terraces, northern California
NASA Technical Reports Server (NTRS)
Merritts, Dorothy J.; Chadwick, Oliver A.; Hendricks, David M.; Brimhall, George H.; Lewis, Christopher J.
1992-01-01
Mass-balance interpretation of a soil chronosequence provides a means of quantifying elemental addition, removal, and transformation that occur in soils from a flight of marine terraces in northern California. Six soil profiles that range in age from several to 240,000 yr are developed in unconsolidated, sandy-marine, and eolian parent material deposited on bedrock marine platforms. Soil evolution is dominated by (1) open-system depletion of Si, Ca, Mg, K, and Na; (2) open-system enrichment of P in surface soil horizons; (3) relative immobility of Fe and Al; and (4) transformation of Fe, Si, and Al in the parent material to secondary clay minerals and sesquioxides. Net mass losses of bases and Si are generally uniform with depth and substantial, in some cases approaching 100 percent; however, the rate of loss of each element differs markedly, causing the ranking of each by relative abundance to shift with time. Loss of Si from the sand fraction by dissolution and particle-size diminution, from about 100 percent to less than 35 percent over 240 ky, mirrors a similar gain in the silt and clay size fractions. The Fe originally present in the sand fraction decreases from greater than 80 percent to less than 10 percent, whereas the amount of Fe present in the clay and crystalline oxyhydroxide fractions increases to 25 percent and 70 percent, respectively.
SULFUR ISOTOPIC COMPOSITIONS OF SUBMICROMETER SiC GRAINS FROM THE MURCHISON METEORITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yuchen; Zinner, Ernst; Gallino, Roberto
2015-02-01
We report C, Si, N, S, Mg-Al, and Ca-Ti isotopic compositions of presolar silicon carbide (SiC) grains from the SiC-rich KJE size fraction (0.5-0.8 μm) of the Murchison meteorite. One thousand one hundred thirteen SiC grains were identified based on their C and Si isotopic ratios. Mainstream, AB, C, X, Y, and Z subtypes of SiC, and X-type silicon nitride (Si{sub 3}N{sub 4}) account for 81.4%, 5.7%, 0.1%, 1.5%, 5.8%, 4.9%, and 0.4%, respectively. Twenty-five grains with unusual Si isotopic ratios, including one C grain, 16 X grains, 1 Y grain, 5 Z grains, and 2 X-type Si{sub 3}N{sub 4} grainsmore » were selected for N, S, Mg-Al, and Ca-Ti isotopic analysis. The C grain is highly enriched in {sup 29}Si and {sup 30}Si (δ{sup 29}Si = 1345‰ ± 19‰, δ{sup 30}Si = 1272‰ ± 19‰). It has a huge {sup 32}S excess, larger than any seen before, and larger than that predicted for the Si/S supernova (SN) zone, providing evidence against the elemental fractionation model by Hoppe et al. Two SN models investigated here present a more satisfying explanation in terms of a radiogenic origin of {sup 32}S from the decay of short-lived {sup 32}Si (τ{sub 1/2} = 153 yr). Silicon-32 as well as {sup 29}Si and {sup 30}Si can be produced in SNe by short neutron bursts; evidence for initial {sup 44}Ti (τ{sub 1/2} = 60 yr) in the C grain is additional evidence for an SN origin. The X grains have marginal {sup 32}S excesses, much smaller than expected from their large {sup 28}Si excesses. Similarly, the Y and Z grains do not show the S-isotopic anomalies expected from their large Si isotopic anomalies. Low intrinsic S contents and contamination with isotopically normal S are the most likely explanations.« less
NASA Astrophysics Data System (ADS)
Brokamp, Cole; Jandarov, Roman; Rao, M. B.; LeMasters, Grace; Ryan, Patrick
2017-02-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment.
Brokamp, Cole; Jandarov, Roman; Rao, M B; LeMasters, Grace; Ryan, Patrick
2017-02-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment.
Brokamp, Cole; Jandarov, Roman; Rao, M.B.; LeMasters, Grace; Ryan, Patrick
2017-01-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment. PMID:28959135
Aerosol characteristics and sources for the Amazon basin during the wet season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artaxo, P.; Maenhaut, W.; Storms, H.
1990-09-20
Fine (< 2.0 {mu}m) and coarse (2.0 - 15 {mu}m) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced x-ray emission (PIXE) was used to measure concentrations Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Morphological and trace element measurements of individual particles were carried out by automated electron probe x-ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. The concentrations ofmore » soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1 {plus minus} 0.7 {mu}g m{sup {minus}3}, while the average coarse mass concentration was 6.1 {plus minus} 1.8 {mu}g m{sup {minus}3}. Sulfur concentrations averaged 76 {plus minus} 14 ng m{sup {minus}3} in the fine fraction and 37 {plus minus} 9 ng m{sup {minus}3} in the coarse fraction. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Biogenic particles account for 55-95% of the airborne concentrations and consisted of leaf fragments, pollen grains, fungi, algae, and other types of particles. It is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh
2013-09-25
Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the basemore » material for subsequent growth of templated carbon nanotubes.« less
Oxycarbonitride phosphors and light emitting devices using the same
Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi
2013-10-08
Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.
Oxycarbonitride phosphors and light emitting devices using the same
Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi
2014-07-08
Disclosed herein is a novel family of oxycarbonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.
NASA Astrophysics Data System (ADS)
Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.
2016-05-01
Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.
Determination of elemental composition of shale rocks by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sanghapi, Hervé K.; Jain, Jinesh; Bol'shakov, Alexander; Lopano, Christina; McIntyre, Dustin; Russo, Richard
2016-08-01
In this study laser induced breakdown spectroscopy (LIBS) is used for elemental characterization of outcrop samples from the Marcellus Shale. Powdered samples were pressed to form pellets and used for LIBS analysis. Partial least squares regression (PLS-R) and univariate calibration curves were used for quantification of analytes. The matrix effect is substantially reduced using the partial least squares calibration method. Predicted results with LIBS are compared to ICP-OES results for Si, Al, Ti, Mg, and Ca. As for C, its results are compared to those obtained by a carbon analyzer. Relative errors of the LIBS measurements are in the range of 1.7 to 12.6%. The limits of detection (LODs) obtained for Si, Al, Ti, Mg and Ca are 60.9, 33.0, 15.6, 4.2 and 0.03 ppm, respectively. An LOD of 0.4 wt.% was obtained for carbon. This study shows that the LIBS method can provide a rapid analysis of shale samples and can potentially benefit depleted gas shale carbon storage research.
Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2
NASA Technical Reports Server (NTRS)
Herbert, F.
1985-01-01
A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.
Magnetostrictive materials and method for improving AC characteristics in same
Pulvirenti, Patricia P.; Jiles, David C.
2001-08-14
The present invention provides Terfenol-D alloys ("doped" Terfenol) having optimized performances under the condition of time-dependent magnetic fields. In one embodiment, performance is optimized by lowering the conductivity of Terfenol, thereby improving the frequency response. This can be achieved through addition of Group III or IV elements, such as Si and Al. Addition of these types of elements provides scattering sites for conduction electrons, thereby increasing resistivity by 125% which leads to an average increase in penetration depth of 80% at 1 kHz and an increase in energy conversion efficiency of 55%. The permeability of doped Terfenol remains constant over a wider frequency range as compared with undoped Terfenol. These results demonstrate that adding impurities, such as Si and Al, are effective in improving the ac characteristics of Terfenol. A magnetoelastic Gruneisen parameter, .gamma..sub.me, has also been derived from the thermodynamic equations of state, and provides another means by which to characterize the coupling efficiency in magnetostrictive materials on a more fundamental basis.
Characteristics and environmental aspects of slag: a review
Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.
2015-01-01
The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation.
A Thermoelectric Generator Using Porous Si Thermal Isolation
Hourdakis, Emmanouel; Nassiopoulou, Androula G.
2013-01-01
In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer. PMID:24152923
NASA Astrophysics Data System (ADS)
He, Ping; Peng, Xiaolong; Zhang, Zhongzhi; Wu, Jiang; Chen, Naichao; Ren, Jianxing
Copper oxide (CuO) is proved to be a potential adsorbent for elemental mercury in the flue gas emitted from coal-fired power plant. However, the O-terminated CuO(110) surface has relatively week adsorption capacity for Hg. In this work, the doped method is applied to enhance the mercury adsorption capacity of O-terminated CuO(110). Mn, Si, Ti, Al and Zn are selected as the doped atom. It is found that only Zn-doped CuO (110) surfaces have the higher adsorption energy than the pure O-terminated CuO(110) surface. The mercury adsorption capacity is a complex issue, which depends on a combination of oxygen and doped element. The results suggest that the lower electropositive doped element is favorable for the improvement of mercury adsorption capacity. However, the lower electronegativity of oxygen atoms does not facilitate the mercury capture, which is different from the organic material. Cu and doped metal element, rather than oxygen atom, mainly determine mercury adsorption capacity of O-terminated CuO(110) surface, which leads to the lower adsorption capacity of the O-terminated CuO(110) surface than the Cu-terminated CuO(110) surface. The conclusions can also offer a valuable reference for the other metal oxide regarding mercury capture.
High-rate tensile properties of Si-reduced TRIP sheet steels
NASA Astrophysics Data System (ADS)
Choi, Ildong; Park, Yeongdo; Son, Dongmin; Kim, Sung-Joon; Moon, Manbeen
2010-02-01
There have been efforts to develop Si-reduced TRIP steels to improve the wettability of Zn coatings, since the conventional CMnSi-TRIP steels suffer from poor galvanizability. In addition, for the development of potential applications of Si-reduced TRIP steels in vehicle crash management, a better understanding of high strain rate properties is required. In the present study, the effects of alloying elements, such as Cu, Al, Si, and P, on the high-rate tensile properties of Si-reduced TRIP sheet steels were investigated. Tensile tests were performed with a servo-hydraulic tensile testing machine at strain rates ranging from 10-2 to 6 × 102 s-1, and the ultimate tensile strength, elongation, strain rate sensitivity, and absorbed energy were evaluated. The retained austenite volume fractions and carbon content of the specimens were measured using neutron diffraction. The UTS was increased with Cu, Al, Si, and P alloying throughout the strain rate range, and the alloying effect on UTS was considerable with Cu and P. The effects of alloying on the microstructure were not significant. All the steels tested in this study exhibited positive strain rate sensitivity, and the m value at strain rates higher than 10 s-1 was at least two times higher than that at lower strain rates.
Alloying and Hardness of Eutectics with Nbss and Nb₅Si₃ in Nb-silicide Based Alloys.
Tsakiropoulos, Panos
2018-04-11
In Nb-silicide based alloys, eutectics can form that contain the Nb ss and Nb₅Si₃ phases. The Nb₅Si₃ can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nb ss and Nb₅Si₃ is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔH mix , ΔS mix , VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= T m ΔS mix /|ΔH mix |). The values of these parameters were in the ranges -41.9 < ΔH mix <-25.5 kJ/mol, 4.7 < ΔS mix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔS mix , Ω, ΔS mix , and VEC were found for all of the eutectics. The correlation between ΔH mix and δ for the eutectics was the same as that of the Nb ss , with more negative ΔH mix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nb ss . Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus
SIBYLS - a SAXS and Protein Crystallography Beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trame, C.; MacDowell, A.A.; Celestre, R.S.
2004-05-12
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{delta}E{approx}1/110). Flux rates with Si(111) crystals for PX are measured as 2x1011 hv/sec through a 100{mu}m pinhole at 12.4KeV. For SAXS the flux is up to 3x1013photons/sec at 10KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less
Neoformation of clay in lateral root catchments of mallee eucalypts: a chemical perspective
Verboom, William H.; Pate, John S.; Aspandiar, Mehrooz
2010-01-01
Background and Aims A previous paper (Annals of Botany 103: 673–685) described formation of clayey pavements in lateral root catchments of eucalypts colonizing a recently formed sand dune in south-west Western Australia. Here chemical and morphological aspects of their formation at the site are studied. Methods Chemical and physical examinations of soil cores through pavements and sand under adjacent heath assessed build-up of salts, clay and pH changes in or below pavements. Relationships of root morphology to clay deposition were examined and deposits subjected to scanning electron microscopy and energy-dispersive X-ray analysis. Xylem transport of mineral elements in eucalypt and non-eucalypt species was studied by analysis of xylem (tracheal) sap from lateral roots. Key Results The columns of which pavements are composed develop exclusively on lower-tier lateral roots. Such sites show intimate associations of fine roots, fungal filaments, microbiota and clay deposits rich in Si, Al and Fe. Time scales for construction of pavements by eucalypts were assessed. Cores through columns of pavemented profiles showed gross elevations of bulk density, Al, Fe and Si in columns and related increases in pH, Mg and Ca status in lower profiles. A cutting through the dune exhibited pronounced alkalinity (pH 7–10) under mallee woodland versus acidity (pH 5–6·5) under proteaceous heath. Xylem sap analyses showed unusually high concentrations of Al, Fe, Mg and Si in dry-season samples from column-bearing roots. Conclusions Deposition of Al–Fe–Si-rich clay is pivotal to pavement construction by eucalypts and leads to profound chemical and physical changes in relevant soil profiles. Microbial associates of roots are likely to be involved in clay genesis, with parent eucalypts supplying the required key mineral elements and carbon sources. Acquisition of the Al and Fe incorporated into clay derives principally from hydraulic uplift from ground water via deeply penetrating tap roots. PMID:19897459
Ca2 Al2 SiO7 :Ce3+ phosphors for mechanoluminescence dosimetry.
Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D P; Sao, Sanjay Kumar; Sahu, Ishwar Prasad
2016-12-01
A series of Ce 3+ ion single-doped Ca 2 Al 2 SiO 7 phosphors was synthesized by a combustion-assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3 h and their X-ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV-irradiation excitation, the TL and ML emission spectra of Ca 2 Al 2 SiO 7 :Ce 3+ phosphor showed the characteristic emission of Ce 3+ peaking at 400 nm (UV-violet) and originating from the Ce 3+ transitions of 5d-4f ( 2 F 5/2 and 2 F 7/2 ). The photoluminescence (PL) emission spectra for Ca 2 Al 2 SiO 7 :Ce 3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca 2 Al 2 SiO 7 :Ce 3+ phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tematio, P.; Tchaptchet, W. T.; Nguetnkam, J. P.; Mbog, M. B.; Yongue Fouateu, R.
2017-07-01
The mineralogical and geochemical investigation of mylonitic weathering profiles in Fodjomekwet-Fotouni was done to better trace the occurrence of minerals and chemical elements in this area. Four representative soil profiles were identified in two geomorphological units (upland and lowland) differentiating three weathering products (organo-mineral, mineral and weathered materials). Weathering of these mylonites led to some minerals association such as vermiculite, kaolinite, goethite, smectite, halloysite, phlogopite and gibbsite. The minerals in a decreasing order of abundance are: quartz (24.2%-54.8%); kaolinite (8.4%-36.0%); phlogopite (5.5%-21.9%); goethite (7.8%-16.1%); vermiculite (6.7%-15.7%); smectite (10.2%-11.9%); gibbsite (9.0%-11.8%) and halloysite (5.6%-11.5%) respectively. Patterns of chemical elements allow highlighting three behaviors (enriched elements, depleted elements and elements with complex behavior), depending on the landscape position of the profiles. In the upland weathering products, K, Cr and REEs are enriched; Ca, Mg, Na, Mn, Rb, S and Sr are depleted while Si, Al, Fe, Ti, Ba, Co, Cu, Ga, Mo, Nb, Ni, Pb, Sc, V, Y, Zn and Zr portray a complex behavior. Contrarily, the lowland weathering profiles enriched elements are Fe, Ti, Co, Cr, Cu, V, Zr, Pr, Sm, Tb, Dy, Er and Yb; while depleted elements are Ca, Mg, K, Na, Mn, Ba, Ga, S, Sr, Y, Zn, La, Ce and Nd; and Si, Al, Mo, Nb, Ni, Pb, Rb, Sc evidenced complex behaviors. In all the studied weathering products, the REEs fractionation was also noticeable with a landscape-position dependency, showing light REEs (LREEs) enrichment in the upland areas and heavy REEs (HREEs) in lowland areas. SiO2, Al2O3 and Fe2O3 are positively correlated with most of the traces and REEs (Co, Cu, Nb, Ni, Mo, Pb, Sc, V, Zn, Zr, La, Ce, Sm, Tb, Dy, Er, Yb), pointing to the fact that they may be incorporated into newly formed clay minerals and oxides. Ba, Cr, Ga, Rb, S, Sr, Y, Pr and Nd behave like alkalis and alkaline earths, and are thus highly mobile during weathering.
NASA Astrophysics Data System (ADS)
Tang, Peng; Hu, Zhiliu; Zhao, Yanjun; Huang, Qingbao
2017-12-01
A numerical Newtonian thermal analysis (NTA) method was carried out for online monitoring the solidification course of commercial Al-Si alloys. The solidification paths of different molten Al-Si alloys were characterized by the fraction solid curves. The variation of heat capacity of Al and Si were concerned in the determination of baseline evaluation of latent heat. In this experiment, the pure Al, Al-1Si, Al-5Si, Al-9Si, Al-13Si and Al-18Si alloys were molten at 800 °C and cooled at room temperature, respectively. The cooling curves of these alloys were measured by using K-type thermocouples. The liquidus temperatures of these alloys decreased with the increase of Si %. An obvious stage occurred at about 580 °C, which was closely related to Al-Si eutectic reaction. Different phase fractions of these alloys were supported by the microstructure observation.
Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal
Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi
2016-01-01
Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071
Effect of AlB2 on the P-threshold in Al-Si alloy
NASA Astrophysics Data System (ADS)
Wu, Yuying; Liu, Xiangfa
2018-06-01
The nucleation of primary Si in Al-Si alloys has been investigated in this work. It was found that there was a threshold concentration of P, below which AlP can not heterogeneous nucleate primary Si in Al-12 wt%Si alloy. AlB2 can not nucleate primary Si directly, but the presence of AlB2 may assist the nucleation of AlP leading to the nucleation of primary Si particles. In addition, with addition of AlB2, the nucleation efficiency of AlP can be improved in Al-18 wt%Si alloy. The orientation relationship between AlB2 and AlP has been calculated, and the adsorption model for AlB2 and AlP was proposed in this work.
Bassel, Léna; Motto-Ros, Vincent; Trichard, Florian; Pelascini, Frédéric; Ammari, Faten; Chapoulie, Rémy; Ferrier, Catherine; Lacanette, Delphine; Bousquet, Bruno
2017-01-01
Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.
Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1
NASA Astrophysics Data System (ADS)
Dolejš, David; Baker, Don R.
2005-12-01
Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational properties. Thermodynamic expressions for the activity-composition relationships are simplified if all entities are expressed using symbolic molecular notation (e.g., SiO 2, SiF 4, [NaAl]O 2, [NaAl]F 4, NaF etc.) with corresponding nonfractional site multiplicities (1, 2 or 4). The model has been applied to three subsystems of the Na 2O-NaAlO 2-SiO 2-F 2O -1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra and only negligible interaction between fluoride species and silicate polymer. Phase equilibria in the cryolite-albite system with a large depression of albite liquidus are interpreted via complete substitution of O 0 by O - and F 0 in the silicate framework. With increasing fluorine content, initial Al-F and Si-O short-range order evolves into the partial O-F disorder. The present model provides a useful relationship between experimental equilibria, macroscopic thermodynamics and melt speciation, thus it facilitates comparisons with, and interpretations of, spectroscopic and molecular simulation data.
Characterization of Three Carbon- and Nitrogen-Rich Particles from Comet 81P/WILD
NASA Technical Reports Server (NTRS)
Gallien, J.-P.; Khodja, H.; Herzog, G. F.; Taylor, S.; Koepsell, E.; Daghlian, C. P.; Flynn, G. J.; Sitnitsky, I.; Lanzirotti, A.; Sutton, S. R.;
2007-01-01
Comets may sample the early solar system s complement of volatile-forming elements - including C and N - more fully and reliably than do the terrestrial planets or asteroids. Until recently, all elemental analyses of unambiguously cometary material were carried out remotely. The return of the Stardust mission makes it possible to analyze documented material from P81/Wild 2 in the laboratory Wild 2 particles fragmented when they stopped in the aerogel collectors. We have studied three fragments thought to be rich in C and N by using several techniques: FTIR to characterize organic matter; synchrotron-induced x-ray fluorescence (SXRF) to determine Fe and certain element/Fe ratios; SEM to image sample morphology and to detect semiquantitatively Mg, Al, Si, Ca, and Fe; and nuclear reaction analysis (NRA) to measure C, N, O, and Si.
Zhou, Shanshan; Yuan, Haodong; Ma, Xiaoling; Liu, Ying
2017-01-01
Women have an increased risk for chemical element deficiencies during reproductive age, particularly due to higher chemical element requirements and poor diets. Twenty-one chemical elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, Si, Sn, Sr, Ti, V and Zn) in hair samples, which were collected from 71 non-pregnant and 236 pregnant women living in the West Ujimqin Banner, central Inner Mongolia, China, were measured, and the environment, dietary habits and ethnic group influence factors associated with the biomarker were analyzed. The results indicated that the average values of the chemical element contents from hair were greatly different compared to those from other areas, especially the Al, Cd, Pb, Ca and Sr contents. There was no significant difference among the three ethnicities for any element except Mn and Ti in non-pregnant women. Compared to non-pregnant women, in the first trimester group, the levels of nine chemical elements (Ba, Cd, Cu, Pb, Se, Si, Sn and Ti) decreased, while the others increased, and the contents of all of the chemical elements decreased in the second trimester group, while in the third trimester, there was a slight increase. Three chemical elements (Cu, Mn and Zn) displayed a synergistic correlation between each other in the third trimester group, which may protect the placenta from some oxidant damage. The high levels of Cd and Pb in hair likely originate from house renovations and traffic pollution. This study provided basic and useful information on the levels of chemical elements in reproductive-age women, and the results of this study are helpful to control the contents and improve the health of pregnant and non-pregnant women. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1979-01-01
Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.
Morina, Filis; Vidović, Marija; Srećković, Tatjana; Radović, Vesela; Veljović-Jovanović, Sonja
2017-12-01
We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.
Si-Metasomatism During Serpentinization of Jurassic Ultramafic Sea-floor: a Comparative Study
NASA Astrophysics Data System (ADS)
Vogel, M.; Frueh-Green, G. L.; Boschi, C.; Schwarzenbach, E. M.
2014-12-01
The Bracco-Levanto ophiolitic complex (northwestern Italy) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge (MAR), such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of serpentinization processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to published data from modern oceanic hydrothermal systems, such as the Lost City hydrothermal field hosted in serpentinites on the Atlantis Massif. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread Si-metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater in the shallow ultramafic-dominated portions of the Jurassic seafloor, resulting in the formation of ophicalcites. In detail, regional variations in Si, Mg and Al content are observed in zones of ophicalcite formation, indicating metasomatic reactions and Si-Al transport during long-lived fluid-rock interaction and channelling of hydrothermal fluids. Rare earth element and isotopic analysis indicate that the Si-rich fluids are derived from alteration of pyroxenes to talc and tremolite in ultramafic rocks at depth. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si-enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments. However, in contrast to metasomatic processes at the MAR, we find no geochemical evidence for a gabbroic source of the fluids, and thus, processes leading to Si-rich fluids can be variable in these environments.
A Century of Sapphire Crystal Growth
2004-05-17
should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty for failing to comply with a collection of...and ruby were oxides of the elements aluminum and silicon.1 In 1817, J. L. Gay- Lussac found that pure aluminum oxide (also called alumina) could...thought to consist of Al2O3 and SiO2 •1817: Gay- Lussac : •1840: Rose: Found SiO2 in sapphire is from agate mortar used for grinding •1837-72: Gaudin
NASA Astrophysics Data System (ADS)
Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman
2018-01-01
Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.
NASA Astrophysics Data System (ADS)
Li, Jingwei; Bai, Xiaolong; Li, Yanlei; Ban, Boyuan; Chen, Jian
2015-12-01
The effect of Ga addition on alloy macrostructure, morphology and recovery rate of primary Si during the Al-Si-Ga alloy solvent refining process of silicon was studied in this work. The addition of Ga to Al-Si alloy could change the morphology of the primary Si. The average plate thickness of the primary Si increases with increase of Ga content. With the increase of Ga content, the average plate length of the primary Si crystals becomes larger when the Ga content is less than 5% in the Al-30%Si-xGa alloy, but becomes smaller when the Ga content exceeds 5%. Al-Si-Ga alloys consist of three types, primary Si, GaxAl1-x, (α-Al+Si+β-Ga) eutectic. (111) is the preferred growth surface of the plate-like primary Si. The recovery rate of the primary Si increases with the increase of Ga content. When the Ga content increased to 20% in Al-30%Si-xGa alloy, the relative recovery rate of the primary Si increased to 50.41% than that in Al-30%Si alloy.
Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.
1984-05-01
PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS Robert 0. Ritchie, Department of Materials Science and Mineral Engineering, University of 2306/ Al ...Chemical Compositions in wt% of Alloys Si Fe Cu Mn Mg Cr Zn Ti Zr Al 2024 0.50 0.50 4.50 0.50 1.50 0.10 0.25 0.15 -- balance 2124 0.20 0.30 4.50 0.50 1.50...been applied by Suresh et al .41 to rationalize the microstructural effects of precipitation hardening on fatigue crack growth in 7075 alloys. The
Zircon solubility and of Zr species in subduction zone fluids
NASA Astrophysics Data System (ADS)
Wilke, M.; Schmidt, C.; Rickers, K.; Pascarelli, S.; Manning, C. E.; Stechern, A.
2009-12-01
The geochemical signature of igneous rocks at convergent plate margins is thought to result from complex melt formation processes involving aqueous solutions derived from dehydration of the subducted slab. In these processes, the depletion of high-field-strength elements (HFSE) may be controlled by the presence of accessory phases such as zircon and rutile, which can strongly fractionate these elements; however, the stability and solubility of these phases depends strongly on the fluid composition, including concentration and stoichiometry of Na-Al silicate components. Here we present new data on the influence of the fluid composition on zircon solubility as well as data on the Zr complexation in these fluids at P&T. Experiments were conducted using a modified hydrothermal diamond-anvil cell (HDAC). Zr contents at P&T were determined using SR-µXRF spectra. Zr K-edge X-ray Absorption Fine Structure (XAFS) spectra were acquired to investigate the Zr complexation in-situ at P&T. A grain of synthetic crystalline zircon was equilibrated with an aqueous fluid containing Na2Si2O5 or Na2Si2O5 + Al2O3 components. XAFS and SR-µXRF spectra were taken at the dispersive beamline ID24 of the ESRF, Grenoble, France. Some additional SR-µXRF spectra were taken at HASYLAB, Hamburg, beamline L. The observed Zr concentrations in fluids containing 7-33 wt% Na2Si2O5 and variable Al contents were between 75 and 720 ppm at 500 to 750°C and ~300 MPa to ~700 MPa. These values match expected solubilities calculated from linear interpolation of the maximum solubility in pure H2O (from the detection limit) and the solubility in the most alkaline high-silica melts reported by Ellison and Hess (1986, CMP, 94, 343). The high Zr solubility in sodium silicate-bearing solutions signifies that aqueous fluids with alkali silicates offer an efficient mechanism for HFSE transport. This can be explained by complexation of HFSE with Si, Na, and perhaps also Al, via formation of polymerized solutes. The XAFS results show clear differences between spectra of Zr in an HCl solution and in H2O-Na2Si2O5 (±Al2O3) aqueous fluid, implying considerable differences in Zr complexation. The latter spectra display similarities to spectra of Zr in Na2Si2O5 glass. This may indicate a similar structural environment for the two examined states, and thus point to Zr in (alumino)-silicate-based polymeric units in the aqueous solutions.
NASA Astrophysics Data System (ADS)
Sun, Jiayue; Li, Chong; Liu, Xiangfa; Yu, Liming; Li, Huijun; Liu, Yongchang
2018-03-01
The microstructural evolution of primary Mg2Si in Al-20%Mg2Si with Al-3%P master alloy was observed by scanning electron microscope. And the interfacial properties of AlP/Mg2Si interface were investigated using first-principles calculations. The calculation results show that AlP(1 0 0)/Mg2Si(2 1 1) and AlP(3 3 1)/Mg2Si(1 1 0) interfaces can form steadily. P-terminated AlP(1 0 0)/Mg2Si(2 1 1) interface with the largest work of adhesion (4.13 J/m2) is theoretically the most stable. The interfacial electronic structure reveals that there are covalent Si-Al, Si-P and Mg-P bonds existing between AlP and Mg2Si slabs. Due to the AlP particles as effective heterogeneous nucleus of Mg2Si, primary Mg2Si particles change from dendrite to octahedron/truncated octahedron, and their sizes decrease to ∼20 μm.
Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity
Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.
1993-01-01
Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.
Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr
NASA Technical Reports Server (NTRS)
Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.
1996-01-01
Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.
NASA Astrophysics Data System (ADS)
Gujba, Kachalla Abdullahi
Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and increase in internal strains were observed as milling progressed with increase in wt.% reinforcement due to the severe plastic deformation. Al/SiC and Al/CNTs were successfully consolidated by the SPS at sintering temperatures of 400, 450 and 500°C with SiC at 5, 12 and 20wt% and 0.5wt%CNT milled for 20hrs and 3 hrs respectively. It was obtained that sintering temperature of 500°C was the most suitable as the densification achieved for SiC reinforced sample was above 98% and 100% for unreinforced sample. The hardness increased with increasing SiC content from 0, 5 to 12 wt% i.e 68, 82, 85 respectively. At 20%wt of SiC a slight decrease in the hardness was observed i.e. 70 which might be attributed to high wt.% SiC, a similar trend was observed for the other alloy studied. For CNT reinforced samples, the hardness and densification increased significantly and 100% densification was obtained at 500ºC, a hardness value from 68 to 82 was achieved from 0 to 0.5wt%CNT with a similar trend to the other alloy of interest. Conclusively, sintering of both alloys at 500ºC and above is the most suitable, the use of SiCp and CNTs as reinforcements improved the hardness, 12wt% SiC showed better hardness values than 20wt% SiC at all three temperatures and the Al alloy containing higher Si in its alloying elements showed better hardness values using the same reinforcement and sintering parameters.
Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy
Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.; ...
2017-09-22
Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less
Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.
Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less
Astrophysics with Presolar Stardust
NASA Astrophysics Data System (ADS)
Clayton, Donald D.; Nittler, Larry R.
2004-09-01
Meteorites and interplanetary dust particles contain presolar stardust grains: solid samples of stars that can be studied in the laboratory. The stellar origin of the grains is indicated by enormous isotopic ratio variations compared with Solar System materials, explainable only by nuclear reactions occurring in stars. Known presolar phases include diamond, SiC, graphite, Si3N4, Al2O3, MgAl2O4, CaAl12O19, TiO2, Mg(Cr,Al)2O4, and most recently, silicates. Subgrains of refractory carbides (e.g., TiC), and Fe-Ni metal have also been observed within individual presolar graphite grains. We review the astrophysical implications of these grains for the sciences of nucleosynthesis, stellar evolution, grain condensation, and the chemical and dynamic evolution of the Galaxy. Unique scientific information derives primarily from the high precision (in some cases <1%) of the measured isotopic ratios of large numbers of elements in single stardust grains. Stardust science is just now reaching maturity and will play an increasingly important role in nucleosynthesis applications.
Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M
2018-08-01
Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Min; Hua, Junwei
2017-07-01
The Al5056/SiC composite coatings were prepared by cold spraying. Experimental results show that the SiC content in the composite coating deposited with the SiC powder having an average size of 67 μm (Al5056/SiC-67) is similar to that deposited with the SiC powder having an average size of 27 μm (Al5056/SiC-27). The microhardness and cohesion strength of Al5056/SiC-67 coating are higher than those of the Al5056/SiC-27 coating. In addition, the Al5056/SiC-67 coating having a superior wear resistance because of the coarse SiC powder with a superior kinetic energy contributes to the deformation resistance of the matrix Al5056 particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian, E-mail: snove418562@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081; Fan, Xi’an, E-mail: groupfxa@163.com
2015-11-15
Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{submore » 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.« less
Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material
Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; ...
2016-01-01
In this study, the performance of Y 2O 3-stabilized ZrO 2 (YSZ), Y 2O 3, and Al 2O 3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al 2O 3 coating performed well while the YSZ and Y 2O 3 coating showed clear areas of attack.more » These results are attributed to the evolution of gaseous Mg at 820 °C leading to the formation of MgO and MgAl 2O 4.« less
NASA Astrophysics Data System (ADS)
Farges, Franã§Ois; Ponader, Carl W.; Brown, Gordon E., Jr.
1991-06-01
The structural environments of trace levels (2˜000 ppm) of Zr 4+ in several silicate glasses were examined as a function of melt composition and polymerization using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Glass compositions investigated were albite (NaAlSi 3O 8: AB) and a peralkaline composition (Na 3.3AlSi 7O 17: PR)- Zirconium was added to the oxide-carbonate mix prior to melting in the form of ZrO 2 (baddeleyite). A second set of Zr-silicate glasses containing 2000 ppm Zr and 1.0 to 2.4 wt% halogens (F as NaF and Cl as NaCl) was also synthesized. These included the Zr-AB and Zr-PR base-glass compositions as well as Zr-sodium trisilicate composition (Na2Si 3O 7: TS). In all glasses studied, Zr is mainly 6-coordinated by oxygen atoms ( d[Zr-O] ˜2.07 ± 0.01 Å). In the most polymerized glass (AB), a small but significant amount of Zr was also found to occur in 8-coordinated sites ( d[Zr-O] ˜2.22 Å). No clear evidence for F or Cl complexes of Zr was observed in any of the halogen-containing glasses. The regularity of the Zr site increases in the series AB < TS ˜PR. We attribute this change to an increase in the number of non-bridging oxygens in the first-coordination sphere of Zr related to the depolymerizing effects of halogens and/or sodium. Minor but significant interactions of Zr with the tetrahedral network were observed ( d[Zr-{Si, Al}] ˜3.65-3.71 Å ± 0.03 Å), which are consistent with Zr-O-{Si, Al} angles close to 160-170°, as in catapleiite (Na 2ZrSi 3O 9 · 2H 2O). Intermediaterange order, as reflected by the presence and number of second-neighbor {Si, Al} around Zr, increases significantly with increasing melt polymerization. The local environment around Zr is more strongly influenced by bonding requirements than by the network topology of the melt. Stabilization of zirconium in 6-coordinated sites in relatively depolymerized melts should act to decrease the crystal-melt partition coefficients of Zr and may explain the normally incompatible character of Zr during magmatic differentiation. The presence of Zr in sites of higher coordination (ZrO 8) in highly polymerized melts could be a precursor to the crystallization of zircon from such melts and thus may explain why Zr becomes a more compatible element, especially in the latest stages of magmatic differentiation.
NASA Astrophysics Data System (ADS)
Lu, Xuefeng; Gao, Xu; Ren, Junqiang; Li, Cuixia; Guo, Xin; Wei, Yupeng; La, Peiqing
2018-06-01
Bandgap tailoring of β-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al-P and As-P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al-P and Al-As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al-P and Al-As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.
Parallel Semi-Implicit Spectral Element Atmospheric Model
NASA Astrophysics Data System (ADS)
Fournier, A.; Thomas, S.; Loft, R.
2001-05-01
The shallow-water equations (SWE) have long been used to test atmospheric-modeling numerical methods. The SWE contain essential wave-propagation and nonlinear effects of more complete models. We present a semi-implicit (SI) improvement of the Spectral Element Atmospheric Model to solve the SWE (SEAM, Taylor et al. 1997, Fournier et al. 2000, Thomas & Loft 2000). SE methods are h-p finite element methods combining the geometric flexibility of size-h finite elements with the accuracy of degree-p spectral methods. Our work suggests that exceptional parallel-computation performance is achievable by a General-Circulation-Model (GCM) dynamical core, even at modest climate-simulation resolutions (>1o). The code derivation involves weak variational formulation of the SWE, Gauss(-Lobatto) quadrature over the collocation points, and Legendre cardinal interpolators. Appropriate weak variation yields a symmetric positive-definite Helmholtz operator. To meet the Ladyzhenskaya-Babuska-Brezzi inf-sup condition and avoid spurious modes, we use a staggered grid. The SI scheme combines leapfrog and Crank-Nicholson schemes for the nonlinear and linear terms respectively. The localization of operations to elements ideally fits the method to cache-based microprocessor computer architectures --derivatives are computed as collections of small (8x8), naturally cache-blocked matrix-vector products. SEAM also has desirable boundary-exchange communication, like finite-difference models. Timings on on the IBM SP and Compaq ES40 supercomputers indicate that the SI code (20-min timestep) requires 1/3 the CPU time of the explicit code (2-min timestep) for T42 resolutions. Both codes scale nearly linearly out to 400 processors. We achieved single-processor performance up to 30% of peak for both codes on the 375-MHz IBM Power-3 processors. Fast computation and linear scaling lead to a useful climate-simulation dycore only if enough model time is computed per unit wall-clock time. An efficient SI solver is essential to substantially increase this rate. Parallel preconditioning for an iterative conjugate-gradient elliptic solver is described. We are building a GCM dycore capable of 200 GF% lOPS sustained performance on clustered RISC/cache architectures using hybrid MPI/OpenMP programming.
Wang, J Y; Wang, Z M; Jeurgens, L P H; Mittemeijer, E J
2009-06-01
Aluminium-induced crystallization (ALIC) of amorphous Si and subsequent layer exchange (ALILE) occur in amorphous-Si/polycrystalline-Al bilayers (a-Si/c-Al) upon annealing at temperatures as low as 165 degrees C and were studied by X-ray diffraction and Auger electron spectroscopic depth profiling. It follows that: (i) nucleation of Si crystallization is initiated at Al grain boundaries and not at the a-Si/c-Al interface; (ii) low-temperature annealing results in a large Si grain size in the continuous c-Si layer produced by ALILE. Thermodynamic model calculations show that: (i) Si can "wet" the Al grain boundaries due to the favourable a-Si/c-Al interface energy (as compared to the Al grain-boundary energy); (ii) the wetting-induced a-Si layer at the Al grain boundary can maintain its amorphous state only up to a critical thickness, beyond which nucleation of Si crystallization takes place; and (iii) a tiny driving force controls the kinetics of the layer exchange.
Structure and superconductivity in the ternary silicide CaAlSi
NASA Astrophysics Data System (ADS)
Ma, Rong; Huang, Gui-Qin; Liu, Mei
2007-06-01
Using the linear response-linearized Muffin-tin orbital (LR-LMTO) method, we study the electronic band structure, phonon spectra, electron-phonon coupling and superconductivity for c-axis ferromagnetic-like (F-like) and antiferromagnetic-like (AF-like) structures in ternary silicide CaAlSi. The following conclusions are drawn from our calculations. If Al and Si atoms are assumed to arrange along the c axis in an F-like long-range ordering (-Al-Al-Al-and-Si-Si-Si-), one could obtain the ultrasoft B1g phonon mode and thus very strong electron-phonon coupling in CaAlSi. However, the appearance of imaginary frequency phonon modes indicates the instability of such a structure. For Al and Si atoms arranging along the c axis in an AF-like long-range ordering (-Al-Si-Al-), the calculated electron-phonon coupling constant is equal to 0.8 and the logarithmically averaged frequency is 146.8 K. This calculated result can correctly yield the superconducting transition temperature of CaAlSi by the standard BCS theory in the moderate electron-phonon coupling strength. We propose that an AF-like superlattice model for Al (or Si) atoms along the c direction may mediate the inconsistency estimated from theory and experiment, and explain the anomalous superconductivity in CaAlSi.
Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder
NASA Astrophysics Data System (ADS)
Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.
2013-07-01
UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of σabs = 0.24 barn. Aluminum has σabs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the fuelplate is sealed. After this step, the UMo particles are tightly covered with Al as shown in Fig. 1. To access the meat layer, small samples have been cut from the fuel plates. The AlFeNi cladding has been removed using abrasive paper and diamond polishing paste. Cross sections were prepared from each sample and examined using SEM/EDX and XRD. Laboratory scale XRD Laboratory sealed-tube XRD on a STOE-STADIP diffractometer equipped with an incident beam focusing monochromator and used in reflection geometry with respect to the sample. MoK-α radiation has been used. Details on the systems used can be found in [39]. mu;-XRD using micro-focused synchrotron radiation at the Swiss Light Source μ-XAS beamline (PSI, Switzerland). At SLS, the beam size was 3 × 3 μm2, the energy was 19.7 keV. Further details on the experimental procedure can be found in [40]. Only very small sample volumes are probed with this technique, therefore the results may not be representative for the whole miniplate. The standard deviation of the lattice parameters obtained with this method is ±0.01 Å in case not different given. High-energy XRD (HE-XRD) in transmission mode using synchrotron radiation at the "High Energy Diffraction and Scattering Beamline ID15B" of ESRF. An X-ray energy of 87 keV has been used, the beam size was 0.3 × 0.3 mm2. Details on the experimental procedure are presented in [41,42]. It was possible to determine the average mass fractions of the phases present inside the sample using this technique. The standard deviation of the lattice parameters obtained with this method is ±0.001 Å in case not different given. laser granulometry to determine the size distribution of the particles, XRD for phase identification. Granulometry measurements showed that a significant amount of very fine particles of a few μm to 10 μm size are present in the first class of powder.In both cases, laboratory XRD analyses evidenced only two phases: γ-UMo and UO2. In contrast to observations on the final fuel plates, there are no signs of α-U. Comparing XRD data of atomized UMo powder (taken form the IRIS4 experiment) and ground UMo powder with almost the same Mo content, the peaks are broader in XRD patterns of ground UMo and there is a higher background [44]. This points that the lattice structure of the UMo inside the ground powder is strongly disordered during the grinding process.Complementary investigations were performed in these ground UMo powder samples using HE-XRD. The obtained data can therefore directly be compared to those measured on pre-oxidized atomized UMo powders [45] and IRIS-TUM fuel plates [41]. For both powder samples the γ-UMo lattice constant has been estimated to 3.433 ± 0.002 Å which corresponds to about 7.2 wt% for Mo in the alloy according to Dwight's law [46]. The existence of two UMo phases inside these ground particles (as in atomized case) could not be investigated because of the huge peak broadening (presence of micro distortions). Whatever the sample granulometry, the analysis of the HE-XRD data showed a non-negligible nitride contamination in ground powders (see Fig. 2). Two uranium nitride phases are indeed found in these samples: UN and U2N3+x[47]. Note that the presence of UN has also been found in the as-fabricated plates. These results confirm the high reactivity of UMo with both Oxygen and Nitrogen in the grinding conditions. As a comparison for temperatures in the 200-250 °C range, it seems that UNx phases are more difficult to grow: they were not present in outer layers obtained by heat treatment under air on atomized particles [45]. Finally it can be seen in Table 3 that the weight fractions of UO2 and U2N3+x phases are lower in the sample with larger UMo particles. This suggests the existence of an oxide, nitride outer shell around UMo ground particle with thickness that does not strongly evolve with particle size. This constant outer shell thickness has also been found in pre-oxidized atomized powders [45].The UMoX powder used for the samples MAFIA-I-18 - MAFIA-I-21 has not been investigated prior to plate fabrication. However, since the grinding process is essentially the same as for the pure UMo powder, similar characteristics are assumed. Thin oxide layers with a thickness ⩽1 μm on some of the particles that were not intentionally oxidized. Although the UMo powder was stored and handled under an inert atmosphere over the whole production process, some residual oxygen has reacted with the UMo. Already this thin oxide layers exhibits cracks (Fig. 5). Thicker oxide layers with a thickness up to 5 μm on the UMo particles that were oxidized purposely. This kind of oxide layer is very brittle and shows large cracks (Fig. 6). The oxidized UMo particles tend to detach with the matrix as gaps between the UMo particles and the oxide layer could be observed (Fig. 6). This is most obvious at spots where a UMo particle has been pulled out during polishing. A part of the oxide layer remained inside the resulting hole (Fig. 7). Atomized UMo powder 2 wt%Si in Al matrix, alloyed AlSi 2 wt%Si in Al matrix, mixed AlSi 5 wt%Si in Al matrix, mixed AlSi 7 wt%Si in Al matrix, mixed AlSi Ground UMo powder 2 wt%Si in Al matrix, alloyed AlSi The influence of an oxide layer around the UMo particles on the formation of the SiRL during fuel plate production is further discussed. The growth of a Si rich layer surrounding the UMo particles in the 2 wt%Si alloyed powder (oxidized UMo), as well as the 5 wt% and 7 wt%Si mixed powder (non-oxidized UMo) during production of the miniplates. The presence of Si precipitates in the Al-matrix (large precipitates in case of mixture, small si particles in alloy). No oxide layer: If no oxide layer is present around the UMo particles a homogeneous SiRL grows at the interface UMo-Al (Fig. 15a). Brittle oxide layer: An oxide layer is present around the UMo particles, the SiRL grows always between the UMo particle and the oxide layer (Fig. 15b). In this case the the SiRL is thin and not homogeneous. As presumed by Ripert et al. [7] it is essential that the oxide layer reveals cracks perpendicular the UMo particle surface to make path for the Si diffusion. Dense oxide layer: In case of a thin (≈1 μm) but compact oxide layer no SiRL is formed even at high Si concentrations inside the matrix (Fig. 15c). The observed effects are pronounced when the thickness of the oxide layer is increased, as shown in Fig. 16: UMo particles covered with a thicker oxide layer (>1 μm) inside an Aluminum matrix with 5 wt%Si (mixed Al-Si powder). The oxide layer is dense at the left side of the particle, no Si can be found there (Fig. 16a). In contrast, the brittle and cracked oxide layer on the right side made path for a Si diffusion but the SiRL is thinner than in the sites where the UMo particle is not covered with an oxide layer. EDX maps at different positions of the sample showed that in general no SiRL forms around UMo particles covered by oxide layers with a thickness greater than 1 μm (Fig. 16b). This behavior is identical for the samples with 5 wt%Si and 7 wt%Si added to the Aluminum matrix (mixed Al-Si powder). Obviously the presence of a (dense) oxide layer hampers the formation of a SiRL. different UXSiY phases with strongly overlapping peaks can be found in the SiRL, these phases are characterized by small sizes of the crystallites (a few tens of nanometers) and/or cell parameter gradients. Two different crystallographic phases have been usually identified: U(Al,Si)3 displaying a small lattice parameter of a0 = 4.16 Å. This indicates that about 40% of the Al lattice sites are occupied by Si atoms. The second phase is isostructural to U3Si54 with a different lattice parameter [59-61]. Although the U-Si-Al phase diagram contains a variety of phases, none of the phases reported in literature [62] could be used to fully refine the measured diagram. Therefore, three different hypotheses are suggested to explain the occurence of this unknown phase: The observed compound consists of two phases: Conventional U3Si5 and USi2, as has been suggested by the authors before [58]. However, only one literature source (Brown et al.) describing the occurrence of USi2 below 450 °C could be found [63,64]. Furthermore, it has not been possible to reproduce the experiments described by Brown et al. Therefore, this hypothesis remains doubtful [59]. The observed phase may be a new unknown phase. For example, a cubic phase with lattice constant a0 = 3.96 Å can be used to refine the observed peaks. This hypothesis can neither be confirmed nor refused based on the existing data. The observed phase can be a U3Si5 variant containing Mo and/or Al atoms. This hypothesis is supported by the authors. Hence in the following sections this structure will be denoted as U3Si5. No traces of SiRL phases are found inside the sample with 2 wt%Si mixed-powder matrix (MAFIA-I-3), all the Si remained inside the matrix. A SiRL is present inside the samples with 2.1 wt%Si alloyed powder matrix (MAFIA-I-4) and 5 wt%Si (MAFIA-I-5) and 7 wt%Si (MAFIA-I-7) mixed powder matrix. However, between 76% and 96% of the Si remained inside the matrix in form of precipitates or Si particles. The SiRL is formed readily when the Si is present inside the matrix in form of precipitates (i.e. Al-Si alloy matrix, MAFIA-I-4 and IRIS-TUM 8502) compared to particles (i.e. Al-Si mixed powder matrix, MAFIA-I-3, MAFIA-I-5 and MAFIA-I-7). This behavior can best be observed on the sample prepared with ground powder and with 2.1 wt%Si alloyed powder matrix (IRIS-TUM-8502): The matrix contains no Si, only SiRL phases are found. Since the sample with 5 wt%Si mixed powder matrix (MAFIA-I-5) has the lowest SiRL fraction but by far the highest UO2 content, it is concluded that the presence of UO2 around the UMo kernels tends to hamper the formation of a SiRL. UMo/Al samples prepared with ground powder contain irregularly shaped UMo kernels. They are in general oxidized and also contain oxide stringers. These samples have a high porosity content of around 8 vol%. In contrast, UMo/Al samples prepared with atomized powder contain spherical UMo kernels. Only the surface of the UMo kernels is oxidized in some cases. Thick oxide layers must be grown intentionally while thinner layers are the result of oxidation during the whole process. The oxide layer is in general brittle and exhibits cracks. The Uranium-oxide content of all examined samples (atomized and ground) varies between 2 and 13 wt%. gamma;-UMo present in the fresh UMo powder destabilizes to transform to an α-U-like phase, U2Mo, and two γ-UMo phases with different Mo content during the fuel plate production. For ground powder, α-U content varies in 28-38 wt%, for atomized powder in 11-14 wt%. The degree of γ-phase destabilization is therefore higher for ground powder. Ternary addition of Nb, Ti or Pt to the UMo did not impact the extent of decomposition. The γ-phase decomposition in the atomized and ground powder does not follow the expected in the U8wt%Mo TTT diagram between 400 and 450 °C [41]. According to Repas et al. [65], the route is γ-UMoa → γ-UMob + α-U → γ-UMoc+α-U + U2Mo . γ-UMoa,b,c differ in the Mo content where γ-UMoa has the lowest and γ-UMoc has the highest Mo content. We observe a new route of decomposition of ground powder into two different γ-UMo phases. One of them has approximately the original Mo content and the other has a higher Mo content. Further U2Mo and a phase with deformed lattice parameters compared to pure α-U have been observed. The latter is known as α' in literature.For atomized powder, also two different γ-UMo phases and traces of U2Mo have been found. However, a different α-U like phase has been identified: α″ [41,53-55].Repas et al. used as cast samples that have been examined with conventional XRD and different metallographic methods [65]. The difference to our data can be explained by the superior resolution of the here used HE-XRD diffraction. Most probably, conventional lab X-ray sourcces could not resolve fine differences in the lattice parameters of α-U and may not enable to separate two γ-UMo phase. To overcome this uncertainty it is highly desirable to examine the TTT diagram of UMo with high resolution. When Si is added into the matrix - by using alloyed Al-Si powder as a matrix or blending Al and Si powder - in general a SiRL is formed at the interface between the UMo and the Al matrix. An exception can be found in MAFIA-I-3 in which the overall Si content was to low to form a SiRL. The SiRL consists of U(Al,Si)3 and U3Si5. The SiRL forms less readily in case of mixed Al-Si than in case of alloyed Al-Si powder. In the latter case (MAFIA-I-4), a Si depleted zone has been observed around the UMo particles. For ground powder in combination with an Al-Si alloyed matrix, the entire Si from the matrix has reacted with the UMo forming SiRL phases. The presence of a dense oxide layer around the UMo kernels can prevent the formation of a SiRL. However, as soon as the oxide layer is cracked a SiRL forms between the UMo and the oxide layer. A dense oxide layer isolates the UMo from the Si inside the matrix and occurring cracks make path for the diffusion of Si towards the UMo. U3Si 5 is also called USi2-x or USi1.66 in literature.
Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin
2015-03-14
Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability.
Pontigo, Sofía; Godoy, Karina; Jiménez, Héctor; Gutiérrez-Moraga, Ana; Mora, María de la Luz; Cartes, Paula
2017-01-01
Silicon (Si) has been well documented to alleviate aluminum (Al) toxicity in vascular plants. However, the mechanisms underlying these responses remain poorly understood. Here, we assessed the effect of Si on the modulation of Si/Al uptake and the antioxidant performance of ryegrass plants hydroponically cultivated with Al (0 and 0.2 mM) in combination with Si (0, 0.5, and 2.0 mM). Exposure to Al significantly increased Al concentration, mainly in the roots, with a consequent reduction in root growth. However, Si applied to the culture media steadily diminished the Al concentration in ryegrass, which was accompanied by an enhancement in root dry matter production. A reduced concentration of Si in plant tissues was also observed when plants were simultaneously supplied with Al and Si. Interestingly, Si transporter genes ( Lsi1 and Lsi2 ) were down-regulated in roots after Si or Al was applied alone; however, both Lsi1 and Lsi2 were up-regulated as a consequence of Si application to Al-treated plants, denoting that there is an increase in Si requirement in order to cope with Al stress in ryegrass. Whereas Al addition triggered lipid peroxidation, Si contributed to an attenuation of Al-induced oxidative stress by increasing phenols concentration and modulating the activities of superoxide dismutase (SOD), catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes. Differential changes in gene expression of SOD isoforms ( Mn-SOD, Cu/Zn-SOD , and Fe-SOD ) and the profile of peroxide (H 2 O 2 ) generation were also induced by Si in Al-stressed plants. This, to the best of our knowledge, is the first study to present biochemical and molecular evidence supporting the effect of Si on the alleviation of Al toxicity in ryegrass plants.
The Effect of Microstructure on the Creep behavior of Ti-6Al-2Nb-1Ta-0.8Mo.
1985-09-01
SCIENCE WI H MILLER El AL . SEP 85 UNLSSFEM N 1 -21 U m|hh|hhh|h|hEI mmhhhhhhmhhmml mh/|mhEEE/mhh EigEggEElgllgE * -72 °o- ° - 112.5 .b L. L.- 1111 34...transus temperature ( Al and interstitials 02, N2 and C) and "alpha strengthening elements which have high alpha soluability (Sn, Si and Zr) but do not...Ti 3 A1 may also precipitate in the alpha phase 3 and cause embrittlement in some alloy systems during ageing at 773K ( l.4) The effect of Ti 3 Al
Trace elements in lake sediments measured by the PIXE technique
NASA Astrophysics Data System (ADS)
Gatti, Luciana V.; Mozeto, Antônio A.; Artaxo, Paulo
1999-04-01
Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernão Lake, that is an oxbow lake of the Moji-Guaçu River basin, in the state of São Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy.
NASA Astrophysics Data System (ADS)
Ikhmal Hanapi, Muhammad; Ahmad, Sufizar; Taib, Hariati; Ismail, Al Emran; Nasrull Abdol Rahman, Mohd; Salleh, Salihatun Md; Sadikin, Azmahani; Mahzan, Shahruddin
2017-10-01
The aim of this work is to determine the characteristics of porcelain ceramic with influence of milled Alkali Resistant (AR) fiberglass for manufacturing vitrified clay pipes. In this study, raw materials consist of porcelain clay and AR fiberglass were refined into powders less than 90μm. Subsequently, these samples were compacted into cylindrical pellet for chemical analysis using X-Ray Fluorescence (XRF). The ceramic sample was produced by mixing different weight percentage of AR glass to porcelain ceramic with 3 wt%, 6 wt%, 9 wt% and 12 wt%. Subsequently, the sample was compacted with 3 ton of pressure load and sintered at 900 °C, 1000 °C, 1100 °C and 1200 °C. The phase identification by using X-Ray Diffraction (XRD) and microstructural analysis were performed for the sintered sample. Chemical analysis revealed that the significant element for all raw material are SiO2, Al2O3, Na2O and K2O. Phase identification analysis shown that sample sintered at 1000 °C produces quartz (SiO2), berlinite (AlPO4), albite (NaAlSi3O8) and calcium-magnesium-aluminum-silicate (CaMgAlSiO). The formation of primary mullite was observed in sample sintered at 1100 °C. The image of microstructural morphology denoted that the formation of glassy phase with decreasing amount of void when sintering temperature and addition of AR glass were increased, which correspond well to phase identification analysis.
NASA Astrophysics Data System (ADS)
Kaiser, Md. Salim
2018-04-01
The effects of T6 solution treatment on tensile, impact and fracture properties of cast Al-12Si-1Mg-1Cu piston alloys with trace of zirconium were investigated. Cast alloys were given precipitation strengthening treatment having a sequence of homogenizing, solutionizing, quenching and ageing. Both cast and solutionized samples are isochronally aged for 90 min at different temperatures up to 300 °C. Tensile and impact properties of the differently processed alloys have been studied to understand the precipitation strengthening of the alloys. Fractograpy of the alloys were observed to understand the mode of fracture. It is observed that the improvement in tensile properties in the aged alloys through heat treatment is mainly attributed to the formation of the Al2Cu and Mg2Si precipitates within the Al matrix. Solution treatment improves the tensile strength for the reason that during solution treatment some alloying elements are re-dissolved to produce a solute-rich solid solution. Impact energy decreases with ageing temperature due to formation of GP zones, β' and β precipitates. The fractography shows large and small dimple structure and broken or cracked primary Si, particles. Microstructure study of alloys revealed that the solution treatment improved distribution of silicon grains. The addition of Zr produces an improvement in the tensile properties as a result of its grain refining action and grain coarsening resistance in the matrix at a higher temperature.
Adsorption of uranium composites onto saltrock oxides - experimental and theoretical study.
Ivanova, Bojidarka; Spiteller, Michael
2014-09-01
The study encompassed experimental mass spectrometric and theoretical quantum chemical studies on adsorption of uranium species in different oxidation states of the metal ion, and oxides of UxOy(n+) type, where x = 1 or 3, y = 2 or 8, and n = 0, 1 or 2 onto nanosize-particles of saltrock oxides MO (M = Mg(II), Ca(II), Ni(II), Co(II), Sr(II) or Ba(II)), M2Oy (M = Au(III) or Ag(I), y = 3 or 1) silicates 3Al2O3.2SiO2, natural kaolinite (Al2O2·2SiO2·2H2O), illite (K0.78Ca0.02Na0.02(Mg0.34Al1.69Fe(III)0.02)[Si3.35Al0.65]O10(OH)2·nH2O), CaSiO3, 3MgO·4SiO2,H2O, and M(1)M(2)(SiO4)X2 (M(1) = M(2) = Al or M(1) = K, M(2) = Al, X = F or Cl), respectively. The UV-MALDI-Orbitrap mass spectrometry was utilized in solid-state and semi-liquid colloidal state, involving the laser ablation at λex = 337.2 nm. The theoretical modeling and experimental design was based on chemical-, physico-chemical, physical and biological processes involving uranium species under environmental conditions. Therefore, the results reported are crucial for quality control and monitoring programs for assessment of radionuclide migration. They impact significantly the methodology for evaluation of human health risk from radioactive contamination. The study has importance for understanding the coordination and red-ox chemistry of uranium compounds as well. Due to the double nature of uranium between rare element and superconductivity like materials as well as variety of oxidation states ∈ (+1)-(+6), the there remain challenging areas for theoretical and experimental research, which are of significant importance for management of nuclear fuel cycles and waste storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars withmore » [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.« less
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy
NASA Astrophysics Data System (ADS)
Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro
2017-08-01
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.
NASA Astrophysics Data System (ADS)
Feltzing, S.; Gustafsson, B.
1998-04-01
We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.
NASA Astrophysics Data System (ADS)
Chun, Eun-Joon; Lim, Sung-Sang; Kim, Young-Tae; Nam, Ki-Sung; Kim, Young-Min; Park, Young-Whan; Murugan, Siva Prasad; Park, Yeong-Do
2018-03-01
Resistance nut projection weldability of Al-Si coated hot stamped steel (HSS) was investigated under the viewpoint of weldable current range and joint strength (pull-out load). The microstructural inhomogeneities in the welds were also studied in order to elucidate the factors affecting the joint strength of the welds. The weldability of the given Al-Si coated HSS was compared with the weldability of an identical HSS without the Al-Si coating (Al-Si coating was polished out) and Zn coated dual phase steel. The weldable current range of Al-Si coated HSS was found to be narrower than that of the other materials. Furthermore, the average pull-out load within the weldable current range of the Al-Si coated HSS was the lowest among the three materials. The reason for poor weld mechanical property of the Al-Si coated hot-stamped steel was attributed to the microstructural inhomogeneities such as unmixed Al-Si coating layer at the edge of the nugget and the second phase Fe3(Al, Si) intermetallic compound. The formation of Fe3(Al, Si) phase was attributed to the solidification segregation of Al and Si during the weld solidification and was confirmed with the numerical analysis of solidification segregation.
Wozniakiewicz, Penelope J.; Ishii, Hope A.; Kearsley, Anton T.; ...
2015-11-05
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s -1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. Here, we simulated Stardust Al foil capture conditions using a two-stage light-gas gun, and directlymore » compared transmission electron microscope analyses of pre- and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact-induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe- and Fe-Si-rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al-bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state-of-the-art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.« less
NASA Astrophysics Data System (ADS)
Lei, Zhenglong; Tian, Ze; Li, Peng; Chen, Yanbin; Zhang, Hengquan; Gu, Jingyan; Su, Xuan
2017-12-01
Laser melting deposition (LMD), an additive manufacturing-based technology, was utilized to join Sip/6063Al composite creatively with different Si weight contents (Al-Si 5%, 12%, 20% and 30%). Influence of the Si content on the constitutional phases, microstructural characteristics, and thermo-physical properties of the layer by layer built-up weld beads was investigated. Experimental results showed that the increasing of deposited Si content could lead to a marked increment of both size and volume of precipitated Si phase, and the circled α-Al phase decreased as a whole. The Si/Al interface began to decrease for the sample Al-Si30 wt.% due to the connection of Si phases. The α-Al phase within the (Al, Si) eutectic were observed to exhibit two sub-micron solidification morphologies, columnar grains and equiaxed grains, respectively. In general, by increasing the content of the deposited Si, the thermal conductivity decreased owing to the decreasing of α-Al phase with high conductivity, and the coefficient of thermal expansion (CTE) had the same varying trend which was attributed to the increasing volume fraction of stiff precipitated Si phase and Si-Si contiguity.
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
Metal-silicate partitioning and the light element in the core (Invited)
NASA Astrophysics Data System (ADS)
Wood, B. J.; Wade, J.; Tuff, J.
2009-12-01
Most attempts to constrain the concentrations of “light” elements in the Earth’s core rely either on cosmochemical arguments or on arguments based on the densities and equations of state of Fe-alloys containing the element of concern. Despite its utility, the latter approach yields a wide range of permissible compositions and hence weak constraints. The major problem with the cosmochemical approach is that the abundances in the bulk Earth of all the candidate “light” elements- H, C, O, Si and S are highly uncertain because of their volatile behavior during planetary accretion. In contrast, refractory elements appear to be in approximately CI chondritic relative abundances in the Earth. This leads to the potential for using the partitioning of refractory siderophile elements between the mantle and core to constrain the concentrations of light elements in the core. Recent experimental metal-silicate partitioning data, coupled with mantle abundances of refractory siderophile elements (e.g. Wade and Wood, EPSL v.236, 78—95,2005; Kegler et. al. EPSL v.268, 28-40,2008) have shown that the core segregated from the mantle under high pressure conditions (~40 GPa). If a wide range of elements, from very siderophile, (e.g. Mo) through moderately (Ni, Co, W) to weakly siderophile (V, Cr, Nb, Si) are considered, the Earth also appears to have become more oxidized during accretion. Metal-silicate partitioning of some elements is also sensitive to the light element content of the metal. For example, Nb and W partitioning depend strongly on carbon, Mo on silicon and Cr on sulfur. Given the measured mantle abundances of the refractory elements, these observations enable the Si and C contents of the core to be constrained at ~5% and <2% respectively while partitioning is consistent with a cosmochemically-estimated S content of ~2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.
New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo inmore » combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.« less
Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.
2010-01-01
The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that enriched trace elements above were largely derived from mafic tuffs, in addition to a minor amount from the Kandian Oldland. ?? 2010 Elsevier B.V.
Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula
2015-07-01
So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.
Geochemical fingerprinting and source discrimination in soils at the continental scale
NASA Astrophysics Data System (ADS)
Negrel, Philippe; Sadeghi, Martiya; Ladenberger, Anna; Birke, Manfred; Reimann, Clemens
2014-05-01
Agricultural soil (Ap-horizon, 0-20 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site per 2500 km2. The resulting 2108 soil samples were air dried, sieved to <2 mm, milled and analysed for their major and trace element concentrations by wavelength dispersive X-ray fluorescence spectrometry (WD-XRF). The main goal of this study is to provide a global view of element mobility and source rocks at the continent scale, either by reference to crustal evolution or normalized patterns of element mobility during weathering processes. The survey area includes several sedimentary basins with different geological history, developed in different climate zones and landscapes and with different land use. In order to normalize the chemical composition of soils, mean values and standard deviation of the selected elements have been checked against values for the upper continental crust (UCC). Some elements turned out to be enriched relative to the UCC (Al, P, Zr, Pb) whereas others, like Mg, Na, Sr and Pb were depleted with regards to the variation represented by the standard deviation. The concept of UCC extended normalization patterns have been further used for the selected elements. The mean value of Rb, K, Y, Ti, Al, Si, Zr, Ce and Fe are very close to the UCC model even if standard deviation suggests slight enrichment or depletion, and Zr shows the best fit with the UCC model using both mean value and standard deviation. Lead and Cr are enriched in European soils when compared to UCC but their standard deviation values show very large variations, particularly towards very low values, which can be interpreted as a lithological effect. Element variability has been explored by looking at the variations using indicator elements. Soil data have been converted into Al-normalized enrichment factors and Na was applied as normalizing element for studying provenance source taking into account the main lithologies of the UCC. This latter normalization highlighted variations related to the soluble and insoluble behavior of some elements (K, Rb versus Ti, Al, Si, V, Y, Zr, Ba, and La, respectively), their reactivity (Fe, Mn, Zn), association with carbonates (Ca and Sr) and with phosphates (P and Ce). The maps of normalized composition revealed some problems with use of classical element ratios due to genetical differences in composition of parent material reflected, for example, in large differences in titanium content in bedrock and soil throughout the Europe.
NASA Astrophysics Data System (ADS)
Deng, L.; Liu, X.; Liu, H.; Dong, J.
2010-12-01
The high pressure physical-chemical behaviors of feldspar in subducted slab are very important to the geodynamic process in the deep interior of the Earth. Albite (NaAlSi3O8;Ab) is one of the few end members in the feldspar family, and its high-P behavior is obviously a prerequisite to the full understanding of the physical-chemical properties of feldspar at high pressures. So far it has been well accepted that Ab breaks down to the phase assemblage of Jadeite+Stishovite(NaAlSi2O6; Jd, SiO2; St,JS hereafter) at ~9-10 GPa. The JS phase assemblage might be stable up to ~23 GPa, and eventually directly change into the phase assemblage of calcium-ferrite type NaAlSiO4 (Cf) +2St (CS hereafter). However, some independent researches suggest there is an intermediate phase Na-hollandite (Na-Hall; a phase with the composition of NaAlSi3O8 and the structure of hollandite) between JS phase assemblage transition into CS phase assemblage (Liu 1978; Tutti 2007; Sekine and Ahrens, 1992; Beck et al., 2004). Whether Na-Hall is a thermodynamic stable phase under high P-T conditions remains unknown. In this work, phase relations in the composition of albite NaAlSi3O8 at pressures up to 40 GPa were constrained by a theoretical method that combines the ab initio calculation and quasi-harmonic Debyemodel. First, the P-T dependence of the thermodynamic potentials of the individual phase, St, Cf, Jd and the hypothetical Na-Holl were derived. Our results are generally in consistent agreement with available experimental data and previous theoretical predictions. Second, the Gibbs free energy of the hypothetical Na-Holl phase was compared with that of the phase assemblages JS and CS. Our results show that the Na-Holl phase is not a thermodynamically stable phase over the studied P-T conditions of 0-40 GPa and 100-600 K, which rules it out as a possible intermediate phase along the transition path from the JS phase assemblage to CS phase assemblage. Our calculations have predicted that the JS phase assemblage transforms into the CS phase assemblage at about 33.6 GPa at 0 K, and the Clayperon slope of this phase transition is about 0.014 GPa/K. This study implies that lingunite (Na-Holl), found in somemeteorites, is not possibly a thermodynamically stable high-P phase, and the Cf phase probably plays an important role in maintaining the sodium budget and hosting the large-ion lithophile elements in the deep interior of the Earth. References: Beck, P., Gillet, P., Gautron, L., Daniel, I., El Goresy, A., 2004. A new natural high-pressure (Na, Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett. 219, 1-12. Liu, L., 1978. High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet. Sci. Lett. 37, 438-444. Sekine, T., Ahrens, T.J., 1992. Shock-induced transformations in the system NaAlSi3O8-SiO2: a new interpretation. Phys. Chem. Mineral. 18, 359-364. Tutti, F., 2007. Formation of end-member NaAlSi3O8 hollandite-type structure (lingunite) in diamond anvil cell. Phys. Earth Planet. Inter. 161, 143-149.
NASA Astrophysics Data System (ADS)
Sun, Yongqi; Wang, Hao; Zhang, Zuotai
2018-04-01
In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q 0(Si) and Q 2(Si) decreased, while those of the asymmetric units of Q 1(Si) and Q 3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.
Preferential site occupancy of alloying elements in TiAl-based phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holec, David, E-mail: david.holec@unileoben.ac.at; Reddy, Rajeev K.; Klein, Thomas
2016-05-28
First principles calculations are used to study the preferential occupation of ternary alloying additions into the binary Ti-Al phases, namely, γ-TiAl, α{sub 2}-Ti{sub 3}Al, β{sub o}-TiAl, and B19-TiAl. While the early transition metals (TMs, group IVB, VB, and VIB elements) prefer to substitute for Ti atoms in the γ-, α{sub 2}-, and B19-phases, they preferentially occupy Al sites in the β{sub o}-TiAl. Si is, in this context, an anomaly, as it prefers to sit on the Al sublattice for all four phases. B and C are shown to prefer octahedral Ti-rich interstitial positions instead of substitutional incorporation. The site preferencemore » energy is linked with the alloying-induced changes of energy of formation, hence alloying-related (de)stabilisation of the phases. We further show that the phase-stabilisation effect of early TMs on β{sub o}-phase has a different origin depending on their valency. Finally, an extensive comparison of our predictions with available theoretical and experimental data (which is, however, limited mostly to the γ-phase) shows a consistent picture.« less
NASA Astrophysics Data System (ADS)
Dolejš, David
2014-05-01
Intepretation of fluid-mineral interaction mechanisms and hydrothermal fluxes requires knowledge of predominant solubility and speciation reactions and their thermodynamic properties. Fluorine represents a hard electron donor, capable of complexing and transporting high-field strength elements, which are traditionally considered to be immobile. Reactions responsible for element mobility have general form MOx + y HF (aq) + x - y H2O = M(OH)2x-yFy (aq), and their extent and transport efficiency relies on hydrogen fluoride activity. In natural fluids, a[HF] is controlled by various fluorination equilibria including neutralization of silicates with consequent formation of silicohydroxyfluoride complexes. Quartz solubility in HF-H2O fluids was experimentally determined at 400-800 oC and 100-200 MPa using rapid-quench cold-seal pressure vessels and the mineral weight-loss method. Quartz solubility significantly increases in the presence of hydrogen fluoride: at 400 oC and 100 MPa, dissolved SiO2 ranges from 0.18 wt. % in pure H2O to 12.2 wt. % at 8.3 wt. % F in the fluid, whereas at 800 oC and 200 MPa it rises from 1.51 wt. % in pure H2O to 15.3 wt. % at 8.0 wt. % F in the fluid. The isobaric solubilities of quartz appear to be temperature-independent, i.e., effects of temperature vs. fluid density on the solubility are counteracting. The experimental data are described by the density model: log m[SiO2] = a + blog ρ + clog m[F] + dT , where a = -1.049 mol kg-1, b = 0.816 mol cm-3, c = 0.802 and d = 1.256 · 10-3 mol kg-1 K-1. Solubility isotherms have similar d(log m[SiO2])/d(log m[F]) slopes over the entire range of conditions indicating that Si(OH)2F2 is the major aqueous species. Several factors promote breakdown of silicohydroxyfluoride complexes and precipitation of silica solute: (i) decreasing temperature and pressure, i.e., fluid ascent and cooling and/or (ii) neutralization and increase in the alkali/H ratio of fluids during alteration reactions or removal of hydrogen halides by fluid boiling. Thermodynamic analysis of mineral equilibria in the system SiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O-H2O-F2O-1 indicates that cryolite, topaz, fluorite and sellaite represent fluoride buffers with decreasing chemical potential of F2O-1 or a[HF], in a sequence from peralkaline to peraluminous silicic, intermediate to progressively Ca-rich mafic and, finally, ultramafic environments. Corresponding a[HF] decrease from 100.2 to 10-1 and from 10-1.6 to 10-3.0 mol kg-1 at 800 and 400 oC, respectively, and 100 MPa. These results imply that: (i) silicohydroxyfluoride and aluminumhydroxyfluoride complexes transport Si and Al in quantities appreciably greater than SiO2 (aq) and aluminate species in peraluminous granite and greisen environments only, and (ii) significant transport (10-100 ppm) of high-field strength (e.g., Ti, Zr) and rare earth elements in aqueous fluids is predicted when formation constants of metal-fluoride complexes exceed 101-2 under hydrothermal conditions. This study concludes that in fluorine-bearing environments the transport of Si and Al remains little affected, but HFSE and REE are largely mobile.
SIBYLS - A SAXS and protein crystallography beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trame, Christine; MacDowell, Alastair A.; Celestre, Richard S.
2003-08-22
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{Delta}E {approx} 1/110). Flux rates with Si(111) crystals for PX are measured as 2 x 10{sup 11} hv/sec/400 mA through a 100 {micro}m pinhole at 12.4 KeV. For SAXS the flux is up to 3 x 10{sup 13} photons/sec at 10 KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less
The thermodynamic properties of dumortierite Si3B[Al6.75[]0.25O17.25(OH)0.75
Hemingway, Bruce S.; Anovitz, Lawrence M.; Robie, Richard A.; McGee, James J.
1990-01-01
The enthalpy and Gibbs free energy of formation of dumortierite from the elements have been estimated from synthesis and decomposition data and are -9109 + 20 and -8568 + 20 kJ/mol, respectively, at 298.15 K and I bar
NASA Astrophysics Data System (ADS)
Seetha, D.; Velraj, G.
2015-10-01
The ancient materials characterization will bring back the more evidence of the ancient people life styles. In this study, the archaeological pottery shards recently excavated from Kodumanal, Erode District in Tamilnadu, South India were investigated. The experimental results enlighten us to the elemental and the mineral composition of the pottery shards. The FT-IR technique tells that the mineralogy and the firing temperature of the samples are less than 800 °C, in the oxidizing/reducing atmosphere and the XRD was used as a complementary technique for the mineralogy. A thorough scientific study of SEM-EDS with the help of statistical approach done to find the provenance of the selected pot shards has not yet been performed. EDS and XRF results revealed that the investigated samples have the elements O, Si, Al, Fe, Mn, Mg, Ca, Ti, K and Na are in different compositions. For establishing the provenance (same or different origin) of pottery samples, Al and Si concentration ratio as well as hierarchical cluster analysis (HCA) was used and the results are correlated.
Oxidation and corrosion behavior of modified-composition, low-chromium 304 stainless steel alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Barrett, C. A.
1977-01-01
The effects of substituting less strategic elements than Cr on the oxidation and corrosion resistance of AISI 304 stainless steel were investigated. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of at least 33%. Two alloys containing 12% Cr and 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified as most promising for more detailed evaluation.
Electronic structures of Al-Si clusters and the magic number structure Al8Si4
NASA Astrophysics Data System (ADS)
Du, Ning; Su, Mingzhi; Chen, Hongshan
2018-02-01
The low-energy structures of Al8Sim (m = 1-6) have been determined by using the genetic algorithm combined with density functional theory and the Second-order Moller-Plesset perturbation theory (MP2) models. The results show that the close-packed structures are preferable in energy for Al-Si clusters and in most cases there exist a few isomers with close energies. The valence molecular orbitals, the orbital level structures and the electron localisation function (ELF) consistently demonstrate that the electronic structures of Al-Si clusters can be described by the jellium model. Al8Si4 corresponds to a magic number structure with pronounced stability and large energy gap; the 40 valence electrons form closed 1S21P61D102S21F142P6 shells. The ELF attractors also suggest weak covalent Si-Si, Si-Al and Al-Al bonding, and doping Si in aluminium clusters promotes the covalent interaction between Al atoms.
Analysis of the Henze precipitate from the blood cells of the ascidian Phallusia mammillata
NASA Astrophysics Data System (ADS)
Ciancio, Aurelio; Scippa, Silvia; Nette, Geoffrey; De Vincentiis, Mario
The Henze precipitate, a peculiar blue-green microparticulate obtained by lysis of the blood cells of the ascidian Phallusia mammillata (Protochordata), was investigated with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray microanalysis. The precipitate was collected from the Henze solution, an unstable red-brown product obtained by treating blood with distilled water, whose degradation yields a characteristic blue-green product. The microparticulates measured 50-100 µm in diameter and appeared irregular in shape. SEM examination showed smooth, roughly round boundaries. The microparticulate surface examined with AFM appeared as an irregular matrix formed by 70-320-nm-wide mammillate composites, including and embedding small (500-800 nm wide) crystal-like multilayered formations. X- ray analysis showed that the elements present in these same precipitates were mainly C, Si, Al and O. The microparticulate composition appeared close to those of natural waxes or lacquers, embedding amorphous silicates and/or other Si-Al components. The unusual occurrence of Si in ascidian blood and its role are discussed.
Ng, K. Y. Simon; Salley, Steve O.; Wang, Huali
2017-10-03
A catalyst comprises a carbide or nitride of a metal and a promoter element. The metal is selected from the group consisting of Mo, W, Co, Fe, Rh or Mn, and the promoter element is selected from the group consisting of Ni, Co, Al, Si, S or P, provided that the metal and the promoter element are different. The catalyst also comprises a mesoporous support having a surface area of at least about 170 m.sup.2 g.sup.-1, wherein the carbide or nitride of the metal and the promoter element is supported by the mesoporous support, and is in a non-sulfided form and in an amorphous form.
Study on the Anti-Poison Performance of Al-Y-P Master Alloy for Impurity Ca in Aluminum Alloys.
Zuo, Min; Dong, Yu; Zhao, Degang; Wang, Yan; Teng, Xinying
2017-11-26
In this article, the anti-poison performance of novel Al-6Y-2P master alloy for impurity Ca in hypereutectic Al-Si alloys was investigated in detail. According to the microstructural analysis, it can be found that the primary Si and eutectic Si particles could be relatively modified and refined. In order to investigate the influence mechanism of Ca on the limited refinement performance of Al-6Y-2P master alloy, types of Al-xSi-2Ca-3Y-1P (x = 0, 6, 12, 18, and 30) alloys were prepared. It is observed that Ca takes the form of more stable Ca3P2 compounds by reacting with YP, and the surface of Ca3P2 particles are unsmooth, and even some have wrinkles in Al Al-2Ca-3Y-1P alloy. With the increase of Si content in Al-xSi-2Ca-3Y-1P (x = 6, 12, 18 and 30) systems, the multi-encapsulation structures, i.e., the phosphide (AlP and YP), hexagonal Al2Si2Ca, the Al3Si2Y2 or primary Si from inside to outside in order were examined.The excapsulation of YP and AlP caused by Al2Si2Ca might be the reason for the limited refinement effect of Al-6Y-2P master alloy for hypereutectic Al-18Si alloys.
Crystallization of silicon-germanium by aluminum-induced layer exchange
NASA Astrophysics Data System (ADS)
Isomura, Masao; Yajima, Masahiro; Nakamura, Isao
2018-02-01
We have studied the crystallization of amorphous silicon-germanium (a-SiGe) by aluminum (Al)-induced layer exchange (ALILE) with a starting structure of glass/Al/Al oxide/a-SiGe. We examined ALILE at 450 °C, which is slightly higher than the eutectic temperature of Ge and Al, in order to shorten the ALILE time. We successfully produced c-SiGe films oriented in the (111) direction for 16 h without significant alloying. The thickness of Al layers should be 2800 Å or more to complete the ALILE for the a-SiGe layers of 2000-2800 Å thickness. When the Al layer is as thick as the a-SiGe layer, almost uniform c-SiGe is formed on the glass substrate. On the other hand, the islands of c-SiGe are formed on the glass substrate when the Al layer is thicker than the a-SiGe layer. The islands become smaller with thicker Al layers because more excess Al remains between the SiGe islands. The results indicate that the configuration of c-SiGe can be altered from a uniform structure to island structures of various sizes by changing the ratio of a-SiGe thickness to Al thickness.
Allu, Amarnath R; Gaddam, Anuraag; Ganisetti, Sudheer; Balaji, Sathravada; Siegel, Renée; Mather, Glenn C; Fabian, Margit; Pascual, Maria J; Ditaranto, Nicoletta; Milius, Wolfgang; Senker, Jürgen; Agarkov, Dmitrii A; Kharton, Vladislav V; Ferreira, José M F
2018-05-03
Aluminosilicate glasses are considered to follow the Al-avoidance principle, which states that Al-O-Al linkages are energetically less favorable, such that, if there is a possibility for Si-O-Al linkages to occur in a glass composition, Al-O-Al linkages are not formed. The current paper shows that breaching of the Al-avoidance principle is essential for understanding the distribution of network-forming AlO 4 and SiO 4 structural units in alkaline-earth aluminosilicate glasses. The present study proposes a new modified random network (NMRN) model, which accepts Al-O-Al linkages for aluminosilicate glasses. The NMRN model consists of two regions, a network structure region (NS-Region) composed of well-separated homonuclear and heteronuclear framework species and a channel region (C-Region) of nonbridging oxygens (NBOs) and nonframework cations. The NMRN model accounts for the structural changes and devitrification behavior of aluminosilicate glasses. A parent Ca- and Al-rich melilite-based CaO-MgO-Al 2 O 3 -SiO 2 (CMAS) glass composition was modified by substituting MgO for CaO and SiO 2 for Al 2 O 3 to understand variations in the distribution of network-forming structural units in the NS-region and devitrification behavior upon heat treating. The structural features of the glass and glass-ceramics (GCs) were meticulously assessed by advanced characterization techniques including neutron diffraction (ND), powder X-ray diffraction (XRD), 29 Si and 27 Al magic angle spinning (MAS)-nuclear magnetic resonance (NMR), and in situ Raman spectroscopy. ND revealed the formation of SiO 4 and AlO 4 tetrahedral units in all the glass compositions. Simulations of chemical glass compositions based on deconvolution of 29 Si MAS NMR spectral analysis indicate the preferred formation of Si-O-Al over Si-O-Si and Al-O-Al linkages and the presence of a high concentration of nonbridging oxygens leading to the formation of a separate NS-region containing both SiO 4 and AlO 4 tetrahedra (Si/Al) (heteronuclear) in addition to the presence of Al [4] -O-Al [4] bonds; this region coexists with a predominantly SiO 4 -containing (homonuclear) NS-region. In GCs, obtained after heat treatment at 850 °C for 250 h, the formation of crystalline phases, as revealed from Rietveld refinement of XRD data, may be understood on the basis of the distribution of SiO 4 and AlO 4 structural units in the NS-region. The in situ Raman spectra of the GCs confirmed the formation of a Si/Al structural region, as well as indicating interaction between the Al/Si region and SiO 4 -rich region at higher temperatures, leading to the formation of additional crystalline phases.
Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan
2016-10-01
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.
Interdiffusion in U 3Si-Al, U 3Si 2-Al, and USi-Al dispersion fuels during irradiation
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Hofman, Gerard L.
2011-03-01
Uranium-silicide compound fuel dispersion in an Al matrix is used in research and test reactors worldwide. Interaction layer (IL) growth between fuel particles and the matrix is one of performance issues. The interaction layer growth data for U 3Si, U 3Si 2 and USi dispersions in Al were obtained from both out-of-pile and in-pile tests. The IL is dominantly U(AlSi) 3 from out-of-pile tests, but its (Al + Si)/U ratio from in-pile tests is higher than the out-of-pile data, because of amorphous behavior of the ILs. IL growth correlations were developed for U 3Si-Al and U 3Si 2-Al. The IL growth rates were dependent on the U/Si ratio of the fuel compounds. During irradiation, however, the IL growth rates did not decrease with the decreasing U/Si ratio by fission. It is reasoned that transition metal fission products in the IL compensate the loss of U atoms by providing chemical potential for Al diffusion and volume expansion by solid swelling and gas bubble swelling. The addition of Mo in U 3Si 2 reduces the IL growth rate, which is similar to that of UMo alloy dispersion in a silicon-added Al matrix.
Dynamic fatigue of a lithia-alumina-silica glass-ceramic
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
1990-01-01
A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass-ceramic in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N = 20) to stress corrosion in ambient conditions. Analysis also indicated the elements should survive applied stresses incurred during grinding and polishing operations.
NASA Astrophysics Data System (ADS)
Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang
2013-12-01
Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.
NASA Astrophysics Data System (ADS)
Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman
2018-02-01
Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.
The devitrification of a LAS glass matrix studied by X-ray powder diffraction
NASA Astrophysics Data System (ADS)
Rocherullé, Jean; Bénard-Rocherullé, Patricia
2002-06-01
The crystallisation kinetics of a Li 0.6Al 0.1Si 0.6O 1.65 glass matrix has been performed by means of X-ray powder diffraction. Data diffraction have shown the simultaneous formation of two crystalline phases Li 2SiO 3 and Li 0.6Al 0.6Si 2.4O 6 (so-called virgilite) for heat treatments conducted at 700 and 750 °C. The kinetic parameters of crystallisation have been determined for each phase from several time-dependent X-ray diffraction studies. The two values of the Avrami exponent, close to 1.5, suggest that crystallisation is controlled by a diffusion process, the nucleation being non-existent in the temperature range from 700 to 750 °C. With regard to the activation energy of the overall crystallisation phenomenon, the values obtained, close to 175 kJ mol -1, provide to this glass a relative ability to crystallise compared to others glasses from MSiAlO systems, where M is an alkaline-earth or a rare-earth element. With respect to the Li 0.6Al 0.6Si 2.4O 6 phase, long time heat treatments at 750 °C have revealed a phase transition from the hexagonal symmetry to the tetragonal one. The corresponding value of the Avrami exponent (i.e., 1) suggests a diffusionless transformation with a one-dimensional growth.
NASA Astrophysics Data System (ADS)
Kubicki, J. D.; Sykes, D. G.
2004-10-01
Ab initio, molecular orbital (MO) calculations were performed on model systems of SiO 2, NaAlSi 3O 8 (albite), H 2O-SiO 2 and H 2O-NaAlSi 3O 8 glasses. Model nuclear magnetic resonance (NMR) isotropic chemical shifts (δ iso) for 1H, 17O, 27Al and 29Si are consistent with experimental data for the SiO 2, NaAlSi 3O 8, H 2O-SiO 2 systems where structural interpretations of the NMR peak assignments are accepted. For H 2O-NaSi 3AlO 8 glass, controversy has surrounded the interpretation of NMR and infrared (IR) spectra. Calculated δ iso1H, δ iso17O, δ iso27Al and δ iso29Si are consistent with the interpretation of Kohn et al. (1992) that Si-(OH)-Al linkages are responsible for the observed peaks in hydrous Na-aluminosilicate glasses. In addition, a theoretical vibrational frequency associated with the Kohn et al. (1992) model agrees well with the observed shoulder near 900 cm -1 in the IR and Raman spectra of hydrous albite glasses. MO calculations suggest that breaking this Si-(OH)-Al linkage requires ˜+56 to +82 kJ/mol which is comparable to the activation energies for viscous flow in hydrous aluminosilicate melts.
NASA Technical Reports Server (NTRS)
Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.
1989-01-01
The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.
Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles.
Sun, Hui; Wu, Hsuan-Chung; Chen, Sheng-Chi; Ma Lee, Che-Wei; Wang, Xin
2017-12-01
Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi 2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.
NASA Technical Reports Server (NTRS)
Grobstein, Toni (Editor); Doychak, Joseph (Editor)
1989-01-01
The present conference on the high-temperature oxidation behavior of aerospace structures-applicable intermetallic compounds discusses the influence of reactive-element additions on the oxidation of Ni3Al base alloys, the effect of Ni3Al oxidation below 850 C on fracture behavior, the oxidation of FeAl + Hf, Zr, and B, the synergistic effect of Al and Si on the oxidation resistance of Fe alloys, and pack cementation coatings of Cr-Al on Fe, Ni, and Co alloys. Also discussed are the formation of alumina on Nb- and Ti-base alloys, the oxidation behavior of titanium aluminide alloys, silicide coatings for refractory metals, the oxidation of chromium disilicide, and the oxidation behavior of nickel beryllides.
NASA Astrophysics Data System (ADS)
Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.
2016-05-01
Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.
Measurement of X-ray emission efficiency for K-lines.
Procop, M
2004-08-01
Results for the X-ray emission efficiency (counts per C per sr) of K-lines for selected elements (C, Al, Si, Ti, Cu, Ge) and for the first time also for compounds and alloys (SiC, GaP, AlCu, TiAlC) are presented. An energy dispersive X-ray spectrometer (EDS) of known detection efficiency (counts per photon) has been used to record the spectra at a takeoff angle of 25 degrees determined by the geometry of the secondary electron microscope's specimen chamber. Overall uncertainty in measurement could be reduced to 5 to 10% in dependence on the line intensity and energy. Measured emission efficiencies have been compared with calculated efficiencies based on models applied in standardless analysis. The widespread XPP and PROZA models give somewhat too low emission efficiencies. The best agreement between measured and calculated efficiencies could be achieved by replacing in the modular PROZA96 model the original expression for the ionization cross section by the formula given by Casnati et al. (1982) A discrepancy remains for carbon, probably due to the high overvoltage ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bin, E-mail: huangbin@nwpu.edu.cn; Li, Maohua; Chen, Yanxia
The interfacial reactions of continuous SiC fiber reinforced Ti-6Al-4V matrix composite (SiC{sub f}/Ti-6Al-4V composite) and continuous SiC fiber coated by C reinforced Ti-6Al-4V matrix composite (SiC{sub f}/C/Ti-6Al-4V composite) were investigated by using micro-beam electron diffraction (MBED) and energy disperse spectroscopy (EDS) on transmission electron microscopy (TEM). The sequence of the interfacial reactions in the as-processed and exposed at 900°C for 50h SiC{sub f}/Ti-6Al-4V composites can be described as SiC||TiC||Ti{sub 5}Si{sub 3} + TiC||Ti-6Al-4V and SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||Ti-6Al-4V, respectively. Additionally, both in as-processed and exposed composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces.more » For the SiC{sub f}/C/Ti-6Al-4V composite exposed at 900 °C for 50 h, the sequence of the interfacial reaction can be described as SiC||C||TiC{sub F}||TiC{sub C}||Ti-6Al-4V before C coating is completely consumed by interfacial reaction. When interfacial reaction consumes C coating completely, the sequence of the interfacial reaction can be described as SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti-6Al-4V. Furthermore, in SiC{sub f}/C/Ti-6Al-4V composite, C coating can absolutely prevent Si diffusion from SiC fiber to matrix. Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed. - Highlights: • We obtained the sequence of the interfacial reactions in the as-processed and exposed at 900 °C for 50 h SiC{sub f}/Ti-6Al-4 V composites as well as in the SiC{sub f}/C/Ti-6Al-4 V composite exposed at 900 °C for 50 h. • We verified that both in as-processed and exposed SiC{sub f}/Ti-6Al-4 V composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces. • Carbon coating can absolutely prevent silicon diffusion from SiC fiber to matrix. • Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed.« less
Jenke, Dennis; Rivera, Christine; Mortensen, Tammy; Amin, Parul; Chacko, Molly; Tran, Thang; Chum, James
2013-01-01
Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions and the levels of 32 metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The extracting solvents included aqueous mixtures at low and high pH and an organic solvent mixture (40/60 ethanol water). The sealed vessel extractions were performed by placing an appropriate portion of the test articles and an appropriate volume of extracting solution in inert extraction vessels and exposing the extraction units (and associated extraction blanks) to defined conditions of temperature and duration. The levels of extracted target elements were measured by inductively coupled plasma atomic emission spectroscopy. The overall reporting threshold for most of the targeted elements was 0.05 μg/mL, which corresponds to 0.5 μg/g for the most commonly utilized extraction stoichiometry (1 g of material per 10 mL of extracting solvent). The targeted elements could be classified into four major groups depending on the frequency with which they were present in the over 250 extractions reported in this study. Thirteen elements (Ag, As, Be, Cd, Co, Ge, Li, Mo, Ni, Sn, Ti, V, and Zr) were not extracted in reportable quantities from any of the test articles under any of the extraction conditions. Eight additional elements (Bi, Cr, Cu, Mn, Pb, Sb, Se, and Sr) were rarely extracted from the test articles at reportable levels, and three other elements (Ba, Fe, and P) were infrequently extracted from the test articles at reportable levels. The remaining eight elements (Al, B, Ca, Mg, Na, S, Si, and Zn) were more frequently present in the extracts in reportable quantities. These general trends in accumulation behavior were compared to compiled lists of elements of concern as impurities in pharmaceutical products. Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions, and the levels of thirty-two metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The targeted elements could be classified into four major groups depending on the frequency with which they were present in the extractions reported in this study: those elements that were not extracted in reportable quantities from any of the test articles under any of the extraction conditions, those elements that were rarely extracted from the test articles at reportable levels, those elements that were infrequently extracted from the test articles at reportable levels, and those elements that were more frequently present in the extracts in reportable quantities.
Kinetics and equilibrium adsorption study of selenium oxyanions onto Al/Si and Fe/Si coprecipitates.
Chan, Y T; Liu, Y T; Tzou, Y M; Kuan, W H; Chang, R R; Wang, M K
2018-05-01
Inappropriate treatments for the effluents from semiconductor plants might cause the releases and wide distributions of selenium (Se) into the ecosystems. In this study, Al/Si and Fe/Si coprecipitates were selected as model adsorbents as they often formed during the wastewater coagulation process, and the removal efficiency of selenite (SeO 3 ) and selenate (SeO 4 ) onto the coprecipitates were systematically examined. The removal efficiency of SeO 3 and SeO 4 was highly related to surface properties of Al/Si and Fe/Si coprecipitates. The surface-attached Al shell of Al/Si coprecipitates shielded a portion of negative charges from the core SiO 2 , resulting in a higher point of zero charge than that of Fe/Si coprecipitates. Thus, adsorption of SeO 3 /SeO 4 was favorable on the Al/Si coprecipitates. Adsorptions of both SeO 3 and SeO 4 on Al/Si coprecipitates were exothermic reactions. On Fe/Si coprecipitates, while SeO 3 adsorption also showed the exothermic behavior, SeO 4 adsorption occurred as an endothermic reaction. The kinetic adsorption data of SeO 3 /SeO 4 on Al/Si and Fe/Si coprecipitates were described well by the pseudo-second-order kinetic model. SeO 4 and SeO 3 adsorption on Fe/Si or Al/Si were greatly inhibited by the strong PO 4 ligand, whereas the weak ligand such as SO 4 only significantly affected SeO 4 adsorption. The weakest complex between SeO 4 and Al was implied by the essentially SeO 4 desorption as SeO 4 /PO 4 molar ratios decreased from 0.5 to 0.2. These results were further confirmed by the less SeO 4 desorption (41%) from Fe/Si coprecipitates than that from Al/Si coprecipitates (78%) while PO 4 was added sequentially. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions
NASA Astrophysics Data System (ADS)
Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.
2006-01-01
To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions. Evaporation coefficients derived for Fe (g), Mg (g), and SiO (g) from the Hashimoto (1983) experiments are similar to those found by Alexander [Alexander C. M. O'D. (2004) Erratum. Meteoritics Planet. Sci. 39, 163] in his EQR treatment of the same data and also adequately describe the FeO-bearing stages of the Wang et al. (2001) experiments. From the Yu et al. (2003) experiments at 1723 K, αNa = 0.26 ± 0.05, and αK = 0.13 ± 0.02 in vacuum, and αNa = 0.042 ± 0.020, and αK = 0.017 ± 0.002 in 9 × 10 -5 bar H 2. In the FeO-free stages of the Wang et al. (2001) experiments, αMg and αSiO are significantly different from their respective values in the FeO-bearing portions of the same experiments and from the vacuum values obtained at the same temperature by Richter [Richter F. M., Davis A. M., Ebel D. S., Hashimoto A. (2002) Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta 66, 521-540] for CMAS compositions much lower in MgO. When corrected for temperature, the values of αMg and αSiO that best describe the FeO-free stages of the Wang et al. (2001) experiments also adequately describe the FeO-free stage of the Cohen et al. (2004) H 2 experiments, but αFe that best describes the FeO-bearing stage of the latter experiment differs significantly from the temperature-corrected value derived from the Hashimoto (1983) vacuum data.
Silicon Isotopic Measurements in Desolvated Samples by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Cardinal, D.; Alleman, L.; Ziegler, K.; de Jong, J.; Andre, L.
2002-12-01
Silicon, the most ubiquitous rock-forming element presents also a key role in biological processes. In particular, its biogeochemical cycle constitutes one of the most challenging issues in recent years due to its close relationship with the carbon cycle in marine environments (Tréguer et al., 1995; Ragueneau et al., 2000). The most recent silicon isotopic investigations on various natural samples have highlighted the great potential of this (palaeo)-proxy for oceanographers (De La Rocha et al., 1997, 1998). Better understanding the silicon isotope fractionation due to various biogeochemical processes can be achieved by facilitating its measurements through MC-ICPMS technique (De La Rocha et al., 2002; Alleman et al., 2002). In this regard we have developed an original method to analyze silicon isotopes under dry plasma conditions. We demonstrate that coupling a Nu Plasma MC-ICP-MS with a Cetac Aridus desolvator allows the rapid acquisition of natural silicon isotope abundances with high sensitivity and accuracy. To adequately correct for the mass fractionation occurring at the interface between the plasma source and the mass spectrometer line, we combine external normalization using Mg as a dopant with standard-sample bracketing using NBS-28 as the reference. With the desolvating nebulization system, the measurement of 28Si and 29Si isotopes is not hampered by significant interferences. δ29Si values are obtained with an accuracy and repeatability better than 0.1 \\permil. The accuracy has been successfully calibrated against the laser fluorination line technique (De La Rocha et al., 1996; Alleman et al., 2002). We could demonstrate that the isotopic fractionation that might occur in the plasma or the desolvator was adequately corrected by combining Mg isotopes and the sample-standard bracketing procedure. Moreover, the preservation of the Si isotopic signatures of the samples is validated by the different chemical sample treatments required by these two techniques. This method presents clear advantages compared to the wet plasma technique described by De La Rocha et al. (2002), also using a Nu Plasma MC-ICP-MS, as being much more sensitive and less time consuming. We report here single δ29Si data obtained within one hour and requiring less than 3μg Si per sample. Preliminary results over a large range of natural samples including diatomite, large diatoms, sponge spicules, phytoliths and water from lakes and seawater will also be presented and briefly discussed. Alleman et al., 2002, Geochim. Cosmochim. Acta, 66:15A, A14, Abstract.\\De La Rocha et al., 1996, Anal. Chem., 68, 3746-3750.\\De La Rocha et al., 1997, Geochim. Cosmochim. Acta, 61, 5051-5056.\\De La Rocha et al., 1998, Nature, 395, 680-683.\\De La Rocha, 2002, Geochem., Geophys., Geosyst., 3(8), 10.1029/2002GC00310.\\Ragueneau et al., 2000, Global Planet. Change, 26, 317-365.\\Tréguer et al., 1995, Science, 268, 375-379.
NASA Astrophysics Data System (ADS)
Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya
2016-06-01
The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.
Measuring excitation functions needed to interpret cosmogenic nuclide production in lunar rocks
NASA Technical Reports Server (NTRS)
Sisterson, J. M.; Kim, K.; Beverding, A.; Englert, P. A. J.; Caffee, M. W.; Vincent, J.; Castaneda, C.; Reedy, R. C.
1997-01-01
Radionuclides produced in lunar rocks by cosmic ray interactions are measured using Accelerator Mass Spectrometry or gamma-ray spectroscopy. From these measurements, estimates of the solar proton flux over time periods characterized by the half-life of the isotope under study can be made, if all the cross sections for all the reactions of all cosmic ray particles with all elements found in lunar rocks are known. Proton production cross sections are very important because (approximately) 98% of solar cosmic rays and (approximately) 87% of galactic cosmic rays are protons in the lunar environment. Many of the needed cross sections have never been measured. Targets of C, Al, Si, SiO2, mg, K, Ca, Fe and Ni have been irradiated using three accelerators to cover a proton energy range of 25-500 MeV. Excitation functions for Be-7, Be-10, Na-22, and Al-26 production from Mg and Al will be reported, and the consequences of using these new cross section values to estimate solar proton fluxes discussed.
NASA Astrophysics Data System (ADS)
Sun, Chao; Shen, Rujuan; Song, Min
2012-03-01
This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.
AlGaN/GaN-on-Si monolithic power-switching device with integrated gate current booster
NASA Astrophysics Data System (ADS)
Han, Sang-Woo; Jo, Min-Gi; Kim, Hyungtak; Cho, Chun-Hyung; Cha, Ho-Young
2017-08-01
This study investigates the effects of a monolithic gate current booster integrated with an AlGaN/GaN-on-Si power-switching device. The integrated gate current booster was implemented by a single-stage inverter topology consisting of a recessed normally-off AlGaN/GaN MOS-HFET and a mesa resistor. The monolithically integrated gate current booster in a switching FET eliminated the parasitic elements caused by external interconnection and enabled fast switching operation. The gate charging and discharging currents were boosted by the integrated inverter, which significantly reduced both rise and fall times: the rise time was reduced from 626 to 41.26 ns, while the fall time was reduced from 554 to 42.19 ns by the single-stage inverter. When the packaged monolithic power chip was tested under 1 MHz hard-switching operation with VDD = 200 V, the switching loss was found to have been drastically reduced, from 5.27 to 0.55 W.
NASA Astrophysics Data System (ADS)
Mannig, C. E.
2005-12-01
The chemistry of subduction-zone fluids is complicated by melt-vapor miscibility and the existence of critical end-points in rock-H2O systems. It is commonly assumed that fluids in subduction zones attain properties intermediate in composition between hydrous silicate liquid and H2O, and that such fluids possess enhanced material transport capabilities. However, the relevance of supercritical, intermediate fluids to subduction zones presents four problems. (1) Albite-H2O is typically used as an analogue system, but the favorable position of its critical curve is not representative; critical curves for polymineralic subduction-zone lithologies lie at substantially higher P. (2) Even if albite-H2O is relevant, jadeite may interfere because of its different solubility and the positive clapeyron slope of its solidus, which points to liquid-structure changes that could cause reappearance of the liquid+vapor field. (3) Critical curves are features of very H2O-rich compositions; low-porosity, H2O-poor natural systems will coexist with intermediate fluids only over a narrow PT interval. (4) Intermediate fluids are expected only over short length scales because their migration will likely result in compositional shifts via reaction and mineral precipitation in the mantle wedge. Although supercritical, intermediate fluids are probably relatively unimportant in subduction zones, they reflect a chemical process that may hold the key to understanding high- P mass transfer. Miscibility in melt-vapor systems is a consequence of polymerization of dissolved components, primarily Si ± Al, Na and Ca. This behavior yields, e.g., aqueous Si-Si, Si-Al, Si-Na-Al, and Si-Ca oxide dimers and other multimers of varying stoichiometry (silicate polymers), even in subcritical, dilute, H2O-rich vapor. Silicate polymers in subcritical aqueous solutions have been inferred from high- P mineral-solubility experiments. The abundance of these species at high P shows that the chemistry of aqueous fluids in subduction-zones differs fundamentally from the more familiar ionic solutions of the upper crust. This has important consequences for minor element transport. Measurements of Fe, phosphorous and Ti solubility reveal that dissolved concentrations rise with increased aqueous albite content at fixed P and T, with maximum enhancements exceeding 10X at melt saturation. Subcritical silicate polymerization thus permits transport of low solubility components via their substitution into sites on aqueous multimers constructed of "polymer formers" such as Na, Al, and Si, even in dilute solutions. The partitioning of elements between the bulk fluid, the polymer network, and the rock matrix likely controls the overall compositional evolution of subduction-zone fluids. Because they form over a wider PT and bulk X range, subcritical silicate polymers in dilute solutions are likely responsible for more mass transfer in subduction zones than intermediate, supercritical fluids.
Armstrong, Andrew M.; Allerman, Andrew A.
2017-07-24
AlGaN:Si epilayers with uniform Al compositions of 60%, 70%, 80%, and 90% were grown by metal-organic vapor phase epitaxy along with a compositionally graded, unintentionally doped (UID) AlGaN epilayer with the Al composition varying linearly between 80% and 100%. The resistivity of AlGaN:Si with a uniform composition increased significantly for the Al content of 80% and greater, whereas the graded UID-AlGaN film exhibited resistivity equivalent to 60% and 70% AlGaN:Si owing to polarization-induced doping. Deep level defect studies of both types of AlGaN epilayers were performed to determine why the electronic properties of uniform-composition AlGaN:Si degraded with increased Al content,more » while the electronic properties of graded UID-AlGaN did not. The deep level density of uniform-composition AlGaN:Si increased monotonically and significantly with the Al mole fraction. Conversely, graded-UID AlGaN had the lowest deep level density of all the epilayers despite containing the highest Al composition. These findings indicate that Si doping is an impetus for point defect incorporation in AlGaN that becomes stronger with the increasing Al content. However, the increase in deep level density with the Al content in uniform-composition AlGaN:Si was small compared to the increase in resistivity. This implies that the primary cause for increasing resistivity in AlGaN:Si with the increasing Al mole fraction is not compensation by deep levels but rather increasing activation energy for the Si dopant. As a result, the graded UID-AlGaN films maintained low resistivity because they do not rely on thermal ionization of Si dopants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Allerman, Andrew A.
AlGaN:Si epilayers with uniform Al compositions of 60%, 70%, 80%, and 90% were grown by metal-organic vapor phase epitaxy along with a compositionally graded, unintentionally doped (UID) AlGaN epilayer with the Al composition varying linearly between 80% and 100%. The resistivity of AlGaN:Si with a uniform composition increased significantly for the Al content of 80% and greater, whereas the graded UID-AlGaN film exhibited resistivity equivalent to 60% and 70% AlGaN:Si owing to polarization-induced doping. Deep level defect studies of both types of AlGaN epilayers were performed to determine why the electronic properties of uniform-composition AlGaN:Si degraded with increased Al content,more » while the electronic properties of graded UID-AlGaN did not. The deep level density of uniform-composition AlGaN:Si increased monotonically and significantly with the Al mole fraction. Conversely, graded-UID AlGaN had the lowest deep level density of all the epilayers despite containing the highest Al composition. These findings indicate that Si doping is an impetus for point defect incorporation in AlGaN that becomes stronger with the increasing Al content. However, the increase in deep level density with the Al content in uniform-composition AlGaN:Si was small compared to the increase in resistivity. This implies that the primary cause for increasing resistivity in AlGaN:Si with the increasing Al mole fraction is not compensation by deep levels but rather increasing activation energy for the Si dopant. As a result, the graded UID-AlGaN films maintained low resistivity because they do not rely on thermal ionization of Si dopants.« less
Fabrication and electrical properties of p-CuAlO2/(n-, p-)Si heterojunctions
NASA Astrophysics Data System (ADS)
Suzhen, Wu; Zanhong, Deng; Weiwei, Dong; Jingzhen, Shao; Xiaodong, Fang
2014-04-01
CuAlO2 thin films have been prepared by the chemical solution deposition method on both n-Si and p-Si substrates. X-ray diffraction analysis indicates that the obtained CuAlO2 films have a single delafossite structure. The current transport properties of the resultant p-CuAlO2/n-Si and p-CuAlO2/p-Si heterojunctions are investigated by current-voltage measurements. The p-CuAlO2/n-Si has a rectifying ratio of ~35 within the applied voltages of -3.0 to +3.0 V, while the p-CuAlO2/p-Si shows Schottky diode-like characteristics, dominated in forward bias by the flow of space-charge-limited current.
The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziadoń, Andrzej
2016-08-15
The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, themore » following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.« less
NASA Astrophysics Data System (ADS)
Tiwari, Tejshree; Lidman, Fredrik; Laudon, Hjalmar; Lidberg, William; Ågren, Anneli M.
2017-01-01
Landscape morphology exerts strong, scale-dependent controls on stream hydrology and biogeochemistry in heterogeneous catchments. We applied three descriptors of landscape structure at different spatial scales based on new geographic information system tools to predict variability in stream concentrations for a wide range of solutes (Al, Ba, Be, Ca, Fe, K, Mg, Na, S, Si, Sr, Sc, Co, Cr, Ni, Cu, As, Se, Rb, Y, Cd, Sb, Cs, La, Pb, Th, U, DOC, and Cl) using a linear regression analysis. Results showed that less reactive elements, which can be expected to behave more conservatively in the landscape (e.g., Na, K, Ca, Mg, Cl, and Si), generally were best predicted from the broader-scale description of landscape composition (areal coverage of peat, tills, and sorted sediments). These results highlight the importance of mineral weathering as a source of some elements, which was best captured by landscape-scale descriptors of catchment structure. By contrast, more nonconservative elements (e.g., DOC, Al, Cd, Cs, Co, Th, Y, and U), were best predicted by defining wet areas and/or flow path lengths of different patches in the landscape. This change in the predictive models reflect the importance of peat deposits, such as organic-rich riparian zones and mire ecosystems, which are favorable environments for biogeochemical reactions of more nonconservative elements. As such, using this understanding of landscape influences on stream chemistry can provide improved mitigation strategies and management plans that specifically target source areas, so as to minimize mobilization of undesired elements into streams.
New Approaches to the Computer Simulation of Amorphous Alloys: A Review.
Valladares, Ariel A; Díaz-Celaya, Juan A; Galván-Colín, Jonathan; Mejía-Mendoza, Luis M; Reyes-Retana, José A; Valladares, Renela M; Valladares, Alexander; Alvarez-Ramirez, Fernando; Qu, Dongdong; Shen, Jun
2011-04-13
In this work we review our new methods to computer generate amorphous atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group IV elements like SiC; the GeSe 2 chalcogenide; aluminum-based systems: AlN and AlSi, and the CuZr amorphous alloy. We use an ab initio approach based on density functionals and computationally thermally-randomized periodically-continued cells with at least 108 atoms. The computational thermal process to generate the amorphous alloys is the undermelt-quench approach, or one of its variants, that consists in linearly heating the samples to just below their melting (or liquidus) temperatures, and then linearly cooling them afterwards. These processes are carried out from initial crystalline conditions using short and long time steps. We find that a step four-times the default time step is adequate for most of the simulations. Radial distribution functions (partial and total) are calculated and compared whenever possible with experimental results, and the agreement is very good. For some materials we report studies of the effect of the topological disorder on their electronic and vibrational densities of states and on their optical properties.
New Approaches to the Computer Simulation of Amorphous Alloys: A Review
Valladares, Ariel A.; Díaz-Celaya, Juan A.; Galván-Colín, Jonathan; Mejía-Mendoza, Luis M.; Reyes-Retana, José A.; Valladares, Renela M.; Valladares, Alexander; Alvarez-Ramirez, Fernando; Qu, Dongdong; Shen, Jun
2011-01-01
In this work we review our new methods to computer generate amorphous atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group IV elements like SiC; the GeSe2 chalcogenide; aluminum-based systems: AlN and AlSi, and the CuZr amorphous alloy. We use an ab initio approach based on density functionals and computationally thermally-randomized periodically-continued cells with at least 108 atoms. The computational thermal process to generate the amorphous alloys is the undermelt-quench approach, or one of its variants, that consists in linearly heating the samples to just below their melting (or liquidus) temperatures, and then linearly cooling them afterwards. These processes are carried out from initial crystalline conditions using short and long time steps. We find that a step four-times the default time step is adequate for most of the simulations. Radial distribution functions (partial and total) are calculated and compared whenever possible with experimental results, and the agreement is very good. For some materials we report studies of the effect of the topological disorder on their electronic and vibrational densities of states and on their optical properties. PMID:28879948
NASA Astrophysics Data System (ADS)
Soltani, Mohammadreza; Atrian, Amir
2018-02-01
This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.
NASA Technical Reports Server (NTRS)
Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.
1992-01-01
The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A total of 35 impacts on leading edge sensors and 22 impacts on trailing edge sensors were analyzed.
Isotopic Composition of Molybdenum and Barium in Single Presolar Silicon Carbide Grains of Type A+B
NASA Technical Reports Server (NTRS)
Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.
2003-01-01
Presolar SiC grains fall into several groups based on C, N, and Si isotopic compositions. Approximately 93% are defined as mainstream, having 10 less than C-12/C-13 less than 100 and N-14/N-15 ranging from 50 to 20,000. A number of studies have shown that the most likely sources of mainstream grains are low mass asymptotic giant branch stars. Models of nucleosynthesis in AGB stars reproduce the s-process enhancements seen in the heavy elements in mainstream SiC grains. Among the less common grains, A+B grains, which comprise approximately 3-4% of presolar SiC, are perhaps the least well understood. Recent studies by Amari et al. show that A+B grains can be divided into at least 4 groups based on their trace element concentration patterns. Of 20 grains studied, 7 showed trace element patterns consistent with condensation from a gas of solar system composition, while the rest had varying degrees of process enhancements. Our previous measurements on 3 A+B grains showed Mo of solar isotopic composition, but Zr with a strong enhancement in 96Zr, which is an r-process isotope but can be made in an sprocess if the neutron density is high enough to bridge the unstable Zr-95 (T(sub 1/2)= 64 d). The observation of Mo with solar system isotopic composition in the same grains is puzzling however. Meyer et al. have recently shown that a neutron burst mechanism can produce a high Zr-96/Zr-94 without enhancing Mo-100, however this model leads to enhancements in Mo-95 and Mo-97 not observed in A+B grains. We report here results of Mo measurements on 7 additional A+B grains, and Ba measurements on 2 A+B grains, and compare these to the previous studies.
NASA Astrophysics Data System (ADS)
Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak
2017-09-01
In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.
Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining
NASA Astrophysics Data System (ADS)
Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan
2017-05-01
An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.
Efficient drug delivery using SiO2-layered double hydroxide nanocomposites.
Li, Li; Gu, Zi; Gu, Wenyi; Liu, Jian; Xu, Zhi Ping
2016-05-15
MgAl-layered double hydroxide (MgAl-LDH) nanoparticles have great potentials in drug and siRNA delivery. In this work, we used a nanodot-coating strategy to prepare SiO2 dot-coated layered double hydroxide (SiO2@MgAl-LDH) nanocomposites with good dispersibility and controllable size for drug delivery. The optimal SiO2@MgAl-LDH nanocomposite was obtained by adjusting synthetic parameters including the mass ratio of MgAl-LDH to SiO2, the mixing temperature and time. The optimal SiO2@MgAl-LDH nanocomposite was shown to have SiO2 nanodots (10-15nm in diameter) evenly deposited on the surface of MgAl-LDHs (110nm in diameter) with the plate-like morphology and the average hydrodynamic diameter of 170nm. We further employed SiO2@MgAl-LDH nanocomposite as a nanocarrier to deliver methotrexate (MTX), a chemotherapy drug, to the human osteosarcoma cell (U2OS) and found that MTX delivered by SiO2@MgAl-LDH nanocomposite apparently inhibited the U2OS cell growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage.
Moreno, Diego A; Víllora, Gemma; Ruiz, Juan M; Romero, Luis
2003-08-01
Soils contaminated with low levels of heavy metals and other trace elements are now frequently used for vegetable growing. In this situation, heavy metals and trace elements from these polluted soils may accumulate in the agricultural plants being grown in them and thereby enter the human food chain. The objectives of this study are to elucidate the effects of growth conditions, manipulated by the crop covers, on the phytoaccumulation of elements, and to investigate the conceivable influences of these conditions on the plant biochemistry. In three consecutive years of field experiments, open air (T(0)), and floating rowcover treatments (T(1): perforated polyethylene 50 micrometers; T(2): polypropylene 17 gm(-2)) were used to produce different environmental conditions for the growth of Chinese cabbage [Brassica rapa L. (Pekinensis group) cv. 'Nagaoka 50']. Five samplings (whole tops) were carried out from transplanting to harvest and measurements of B, Al, Ag, Si and Ca concentration as well as phenolics (orto-diphenols, total phenols and anthocyanins), pectic fractions, amino acids (histidine, phenylalanine and tyrosine) and polyphenol oxidase activity, were carried out in samples. The T(1) (perforated polyethylene sheet) gave greater B, Al, Ag and Si concentration and phytoextraction (in weight units) than the open-air control. These findings can help to develop new cost-effective techniques for phytoremediation as the application of plastic covers in the field. The build-up of heavy metals in those crops would make the product less suitable for human consumption.
Intra-eruption changes in composition of some mafic to intermediate tephras in Central America
NASA Astrophysics Data System (ADS)
Carr, Michael J.; Walker, James A.
1987-08-01
Tephras provide stratigraphic control that allows documentation of changes in magma composition during eruptions. Stratigraphic sections of five recent mafic tephra deposits show a variety of different changes in composition, but three patterns stand out: elements abundant in plagioclase, Al, Sr and to a lesser extent Ca, are sometimes concentrated in the earliest eruptive products; elements common in ferromagnesian minerals, Mg, Fe, Cr and Ni, are usually concentrated in the latest eruptive products; the incompatible elements and Si are highest during the early phases of the eruption, although the very first erupted material will not have the highest incompatible element and Si contents if a high proportion of plagioclase crystals are present. The unusual pattern is the enrichment of Al, Sr and Ca in the earliest phases of eruptions. The two most mafic tephra sequences show the most enrichment, the intermediate tephras show slight enrichment and the most silicic sequence, which also had the longest repose interval, has an opposite pattern. Plagioclase phenocrysts are able to float in some mafic magmas, especially, when aided by the adherence of vesicles to their surfaces. Mafic magmas, especially water-rich ones, appear to have low enough viscosity to allow phenocryst sorting during the rise of magma to the surface. Random samples will not represent either the liquid component of the erupted magma or the parental magmatic liquid. Stratigraphic sampling of tephras produced by disruption of such magma is essential for deducing preeruptive conditions.
Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George
2014-01-01
The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.
Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii
NASA Astrophysics Data System (ADS)
Stolper, Edward; Sherman, Sarah; Garcia, Michael; Baker, Michael; Seaman, Caroline
2004-07-01
The Hawaii Scientific Drilling Project recovered ˜3 km of basalt by coring into the flank of Mauna Kea volcano at Hilo, Hawaii. Rocks recovered from deeper than ˜1 km were deposited below sea level and contain considerable fresh glass. We report electron microprobe analyses of 531 glasses from the submarine section of the core, providing a high-resolution record of petrogenesis over ca. 200 Kyr of shield building of a Hawaiian volcano. Nearly all the submarine glasses are tholeiitic. SiO2 contents span a significant range but are bimodally distributed, leading to the identification of low-SiO2 and high-SiO2 magma series that encompass most samples. The two groups are also generally distinguishable using other major and minor elements and certain isotopic and incompatible trace element ratios. On the basis of distributions of high- and low-SiO2 glasses, the submarine section of the core is divided into four zones. In zone 1 (1079-˜1950 mbsl), most samples are degassed high-SiO2 hyaloclastites and massive lavas, but there are narrow intervals of low-SiO2 hyaloclastites. Zone 2 (˜1950-2233 mbsl), a zone of degassed pillows and hyaloclastites, displays a continuous decrease in silica content from bottom to top. In zone 3 (2233-2481 mbsl), nearly all samples are undegassed low-SiO2 pillows. In zone 4 (2481-3098 mbsl), samples are mostly high-SiO2 undegassed pillows and degassed hyaloclastites. This zone also contains most of the intrusive units in the core, all of which are undegassed and most of which are low-SiO2. Phase equilibrium data suggest that parental magmas of the low-SiO2 suite could be produced by partial melting of fertile peridotite at 30-40 kbar. Although the high-SiO2 parents could have equilibrated with harzburgite at 15-20 kbar, they could have been produced neither simply by higher degrees of melting of the sources of the low-SiO2 parents nor by mixing of known dacitic melts of pyroxenite/eclogite with the low-SiO2 parents. Our hypothesis for the relationship between these magma types is that as the low-SiO2 magmas ascended from their sources, they interacted chemically and thermally with overlying peridotites, resulting in dissolution of orthopyroxene and clinopyroxene and precipitation of olivine, thereby generating high-SiO2 magmas. There are glasses with CaO, Al2O3, and SiO2 contents slightly elevated relative to most low-SiO2 samples; we suggest that these differences reflect involvement of pyroxene-rich lithologies in the petrogenesis of the CaO-Al2O3-enriched glasses. There is also a small group of low-SiO2 glasses distinguished by elevated K2O and CaO contents; the sources of these samples may have been enriched in slab-derived fluid/melts. Low-SiO2 glasses from the top of zone 3 (2233-2280 mbsl) are more alkaline, more fractionated, and incompatible-element-enriched relative to other glasses from zone 3. This excursion at the top of zone 3, which is abruptly overlain by more silica-rich tholeiitic magmas, is reminiscent of the end of Mauna Kea shield building higher in the core.
Gong, Chunjie; Tu, Hao; Wu, Changjun; Wang, Jianhua; Su, Xuping
2018-03-20
An hypereutectic Al-18Si alloy was modified via an Al-3B master alloy. The effect of the added Al-3B and the modification temperature on the microstructure, tensile fracture morphologies, and mechanical properties of the alloy were investigated using an optical microscope, Image-Pro Plus 6.0, a scanning electron microscope, and a universal testing machine. The results show that the size of the primary Si and its fraction decreased at first, and then increased as an additional amount of Al-3B was added. When the added Al-3B reached 0.2 wt %, the fraction of the primary Si in the Al-18Si alloy decreased with an increase in temperature. Compared with the unmodified Al-18Si alloy, the tensile strength and elongation of the alloy modified at 850 °C with 0.2 wt % Al-3B increased by 25% and 81%, respectively. The tensile fracture of the modified Al-18Si alloy exhibited partial ductile fracture characteristics, but there were more areas with ductile characteristics compared with that of the unmodified Al-18Si alloy.
Fabrication of SiC-Particles-Shielded Al Spheres upon Recycling Al/SiC Composites
NASA Astrophysics Data System (ADS)
Madarasz, D.; Budai, I.; Kaptay, G.
2011-06-01
Wettability of liquid A359 alloy on SiC particles under molten salt NaCl-KCl-NaF is found at 180 deg, meaning that SiC particles prefer the molten salt phase against the Al phase or the Al/molten salt interface. Thus, this molten salt can be used for recycling, i.e., to separate the phases in the SiC reinforced Al matrix composites. If the separation process is interrupted, Al droplets (submillimeter solidified powder) can be produced, stabilized/surrounded by a monolayer of shielding SiC particles.
Li15Al3Si6 (Li14.6Al3.4Si6), a compound displaying a heterographite-like anionic framework.
Spina, Laurent; Tillard, Monique; Belin, Claude
2003-02-01
The title compound, lithium aluminium silicide (15/3/6), crystallizes in the hexagonal centrosymmetric space group P6(3)/m. The three-dimensional structure of this ternary compound may be depicted as two interpenetrating lattices, namely a graphite-like Li(3)Al(3)Si(6) layer and a distorted diamond-like lithium lattice. As is commonly found for LiAl alloys, the Li and Al atoms are found to share some crystallographic sites. The diamond-like lattice is built up of Li cations, and the graphite-like anionic layer is composed of Si, Al and Li atoms in which Si and Al are covalently bonded [Si-Al = 2.4672 (4) A].
Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core
NASA Astrophysics Data System (ADS)
Arveson, S. M.; Lee, K. K. M.
2017-12-01
The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.
Constraining metasomatism in the oceanic lithosphere
NASA Astrophysics Data System (ADS)
Plümper, Oliver; Beinlich, Andreas; Austrheim, Hâkon
2010-05-01
Serpentinization is the most prominent fluid-mediated alteration process in the oceanic lithosphere, but the physical and chemical conditions of this process are difficult to constrain. It is crucial to establish a framework of mineralogical markers that constrain (a) whether the reaction proceeded without substantial addition of elements from the fluid (isochemical), (b) the reaction is isovolumetric generating no internal stresses and (c) if the overall system was closed with respect to certain elements. We have examined ophiolitic metaperidotites from Norway, combining microtextural and microchemical observations to gain further insight into the complex fluid-mediated phase transformations occurring during the alteration of the oceanic lithosphere. Serpentinization can be isovolumetric, resulting in pseudomorphic mineral replacement reactions (e.g. Viti et al., 2005), or produce an observable volume increase (e.g. Shervais et al., 2005). In the case of olivine, the ideal reaction is commonly written as forsteritic olivine reacting to lizardite and brucite, i.e. 2 Mg2SiO4 + 3 H2O - Mg3[Si2O5](OH)4 + Mg(OH)2, implying a total volume increase of approximately 20%. However, if Mg was lost from the system, the reaction can also be written as 2 Mg2SiO4 + 2 H+ + H2O - Mg3[Si2O5](OH)4 + Mg2+. This suggests that the solid volume is preserved and no internal stresses are generated. Therefore, the presence of brucite could be used to constrain volumetric changes during serpentinization. However, the small size and sparse distribution of brucite makes it difficult to find in serpentinized metaperidotites. Here we show that micro-Raman spectroscopy is a reliable tool to identify even nanometer-sized brucite in serpentine. In addition, we also used the electron backscatter diffraction (EBSD) technique to identify volume increase illustrated by the progressive change of olivine orientation at the tip of a crack induced by serpentinization. Furthermore, it is important to constrain the degree of system openness and the transport of elements through the fluid phase. Observations from fractures in metapyroxenite layers from the Røragen-Feragen ultramafic complex provide closer insight into the late stage alteration of the oceanic lithosphere. Detailed electron microscopy reveals that these fractures are filled with polyhedral serpentine, indicating late stage open system conditions (Andreani et al., 2007). However, microtextures and reactive transport modeling suggest that Ca from clinopyroxene dissolution in the metapyroxenite layers was instantaneously precipitated as andradite within the fracture, without major Ca transport. Hence, although the overall system can be regarded as open for water, Ca exhibits closed system behavior on the decimeter scale within the metapyroxenite layers. Our observations show that mineralogical and microtextural markers, such as characteristic phases, their spatial relationship and stress generation associated with replacement, provide an insight into the metasomatic conditions of oceanic lithosphere alteration. References: Andreani et al. (2007), Geochem. Geophys. Geosyst., 8 (2). Shervais et al. (2005), Int. Geol. Rev., 47, 1-23. Viti et al. (2005) Min. Mag., 69 (2), 491-507.
Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.H., E-mail: jie-hua.li@hotmail.com; Wiessner, M.; Albu, M.
2015-04-15
Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases.more » Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)« less
NASA Astrophysics Data System (ADS)
Juan, Li; Kehong, Wang; Deku, Zhang
2016-09-01
The effect of Ti on microstructural characteristics and reaction mechanism in bonding of Al-Ceramic composite was studied. Ti and Al-Ceramic composite were diffusion welded at 550, 600, 700, 800, and 900 °C in a vacuum furnace. The microstructures and compositions of the interface layers were analyzed, and the mechanical properties and fracture morphology of the joints were examined. The results indicated that there was a systematic switch from Ti/Ti7Al5Si12/composite at 600 °C and Ti/TiAl3/Ti7Al5Si12/composite at 700 °C to Ti/Ti7Al5Si12/TiAl3/Ti7Al5Si12/composite at 800 °C and Ti/Ti7Al5Si12/TiAl3/composite at 900 °C. The formation of TiAl3 at 700 and 800 °C depended on Al segregation, which was an uphill diffusion driven by chemical potential. The maximum shear strength was 40.9 MPa, found in the joint welded at 700 °C. Most joints fractured between Ti7Al5Si12 and Al-Ceramic composite. In any case, Ti7Al5Si12 was favorable for Al-Ceramic composite welding, which attached to Al-Ceramic composite, reducing the differences in physiochemical properties between SiC and metal, improving the mechanical properties of the joints and increasing the surface wettability of Al-Ceramic composite.
Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery
NASA Astrophysics Data System (ADS)
Jeon, Sung Min; Song, Jong Jin; Kim, Sun-I.; Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook
2013-01-01
Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20-30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
3D elemental sensitive imaging using transmission X-ray microscopy.
Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero
2012-09-01
Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.
Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant
NASA Astrophysics Data System (ADS)
Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.
2016-06-01
In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.
A Viable Scheme for Elemental Extraction and Purification Using In-Situ Planetary Resources
NASA Technical Reports Server (NTRS)
Sen, S.; Schofield, E.; ODell, S.; Ray, C. S.
2005-01-01
NASA's new strategic direction includes establishing a self-sufficient, affordable and safe human and robotic presence outside the low earth orbit. Some of the items required for a self-sufficient extra-terrestrial habitat will include materials for power generation (e.g. Si for solar cells) and habitat construction (e.g. Al, Fe, and Ti). In this paper we will present a viable elemental extraction and refining process from in-situ regolith which would be optimally continuous, robotically automated, and require a minimum amount of astronaut supervision and containment facilities, The approach is based on using a concentrated heat source and translating sample geometry to enable simultaneous oxide reduction and elemental refining. Preliminary results will be presented to demonstrate that the proposed zone refining process is capable of segregating or refining important elements such as Si (for solar cell fabrication) and Fe (for habitat construction). A conceptual scheme will be presented whereby such a process could be supported by use of solar energy and a precursor robotic mission on the surface of the moon.
Electron microscopy of AlN-SiC interfaces and solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, J.; Tanaka, S.; Davis, R.F.
In a 2H AlN-SiC solid solution grown by MBE on {alpha}(6H)-SiC (3{degrees} from [0001]), the epilayer contained a high density of basal faults related to {approximately}5 nm steps on the growth surface: no compositional inhomogeneity was detected by PEELS. In diffusion couples of polycrystalline, sintered AlN on SiC annealed at 1600 and 1700{degrees}C. 8H sialon [nominally (AlN){sub 2}Al{sub 2}O{sub 3}] formed at the interface of SiC and recrystallized epitactic AlN grains, and Si{sub 3}N{sub 4}-rich {beta}{prime} sialon particles formed in the SiC. No interdiffusion was detected by PEELS in diffusion couples of MBE-grown AlN on SiC annealed at 1700 andmore » 1850{degrees}C. Irregular epilayer thickness explains companion Auger depth profile results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hua-Jun, E-mail: cszzl772002@yeah.net; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002
Two quaternary sulfides RE{sub 3}Sb{sub 0.33}SiS{sub 7} (RE=La, Pr) have been prepared from stoichiometric mixtures of elements at 1223 K in an evacuated silica tube. They are the first examples of chalcogenides in the quaternary RE/Si/Sb/Q (RE=rare earth metal; Q=S, Se, Te) system. These two isostructural materials crystallize in the Ce{sub 3}Al{sub 1.67}S{sub 7} structure type in the hexagonal space group P6{sub 3}. Their structure features one-dimensional chains of face-sharing SbS{sub 6} octahedra running parallel to the c direction surrounded by the discrete SiS{sub 4} tetrahedra and RE cations. The La{sub 3}Sb{sub 0.33}SiS{sub 7} exhibits a SHG signal about 0.5more » times that of the commercially used IR NLO material AgGaS{sub 2} at 2.05 μm laser. The optical gap of 1.92 eV for La{sub 3}Sb{sub 0.33}SiS{sub 7} was deduced from UV/Vis reflectance spectroscopy. - Graphical abstract: The RE{sub 3}Sb{sub 0.33}SiS{sub 7} (RE=La, Pr), crystalling in the Ce{sub 3}Al{sub 1.67}S{sub 7} structure type, have been prepared. The La{sub 3}Sb{sub 0.33}SiS{sub 7} exhibits a SHG signal about 0.5 times that of the IR NLO material AgGaS{sub 2}. - Highlights: • The RE{sub 3}Sb{sub 0.33}SiS{sub 7} (RE=La, Pr), crystalling in the Ce{sub 3}Al{sub 1.67}S{sub 7} structure type, have been prepared. • The La{sub 3}Sb{sub 0.33}SiS{sub 7} exhibits a SHG signal about 0.5 times that of the IR NLO material AgGaS{sub 2}. • The optical gap of 1.92 eV for La{sub 3}Sb{sub 0.33}SiS{sub 7} was deduced from UV/Vis reflectance spectroscopy.« less
Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Kang, E-mail: du126kang@126.com; Zhu, Qiang, E-mail: zhu.qiang@grinm.com; Li, Daquan, E-mail: lidaquan@grinm.com
Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at variousmore » temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.« less
Keeping, Malcolm G
2017-01-01
Soils of the tropics and sub-tropics are typically acid and depleted of soluble sources of silicon (Si) due to weathering and leaching associated with high rainfall and temperatures. Together with intensive cropping, this leads to marginal or deficient plant Si levels in Si-accumulating crops such as rice and sugarcane. Although such deficiencies can be corrected with exogenous application of Si sources, there is controversy over the effectiveness of sources in relation to their total Si content, and their capacity to raise soil and plant Si concentrations. This study tested the hypothesis that the total Si content and provision of plant-available Si from six sources directly affects subsequent plant Si uptake as reflected in leaf Si concentration. Two trials with potted cane plants were established with the following Si sources as treatments: calcium silicate slag, fused magnesium (thermo) phosphate, volcanic rock dust, magnesium silicate, and granular potassium silicate. Silicon sources were applied at rates intended to achieve equivalent elemental soil Si concentrations; controls were untreated or lime-treated. Analyses were conducted to determine soil and leaf elemental concentrations. Among the sources, calcium silicate produced the highest leaf Si concentrations, yet lower plant-available soil Si concentrations than the thermophosphate. The latter, with slightly higher total Si than the slag, produced substantially greater increases in soil Si than all other products, yet did not significantly raise leaf Si above the controls. All other sources did not significantly increase soil or leaf Si concentrations, despite their high Si content. Hence, the total Si content of sources does not necessarily concur with a product's provision of soluble soil Si and subsequent plant uptake. Furthermore, even where soil pH was raised, plant uptake from thermophosphate was well below expectation, possibly due to its limited liming capacity. The ability of the calcium silicate to provide Si while simultaneously and significantly increasing soil pH, and thereby reducing reaction of Si with exchangeable Al 3+ , is proposed as a potential explanation for the greater Si uptake into the shoot from this source.
Keeping, Malcolm G.
2017-01-01
Soils of the tropics and sub-tropics are typically acid and depleted of soluble sources of silicon (Si) due to weathering and leaching associated with high rainfall and temperatures. Together with intensive cropping, this leads to marginal or deficient plant Si levels in Si-accumulating crops such as rice and sugarcane. Although such deficiencies can be corrected with exogenous application of Si sources, there is controversy over the effectiveness of sources in relation to their total Si content, and their capacity to raise soil and plant Si concentrations. This study tested the hypothesis that the total Si content and provision of plant-available Si from six sources directly affects subsequent plant Si uptake as reflected in leaf Si concentration. Two trials with potted cane plants were established with the following Si sources as treatments: calcium silicate slag, fused magnesium (thermo) phosphate, volcanic rock dust, magnesium silicate, and granular potassium silicate. Silicon sources were applied at rates intended to achieve equivalent elemental soil Si concentrations; controls were untreated or lime-treated. Analyses were conducted to determine soil and leaf elemental concentrations. Among the sources, calcium silicate produced the highest leaf Si concentrations, yet lower plant-available soil Si concentrations than the thermophosphate. The latter, with slightly higher total Si than the slag, produced substantially greater increases in soil Si than all other products, yet did not significantly raise leaf Si above the controls. All other sources did not significantly increase soil or leaf Si concentrations, despite their high Si content. Hence, the total Si content of sources does not necessarily concur with a product's provision of soluble soil Si and subsequent plant uptake. Furthermore, even where soil pH was raised, plant uptake from thermophosphate was well below expectation, possibly due to its limited liming capacity. The ability of the calcium silicate to provide Si while simultaneously and significantly increasing soil pH, and thereby reducing reaction of Si with exchangeable Al3+, is proposed as a potential explanation for the greater Si uptake into the shoot from this source. PMID:28555144
Heterocycles Based on Group III, IV, and V Elements, Precursors for Novel Glasses and Ceramics
1990-08-01
OF TABLES v LIST OF FIGURES vi 1. ABSTRACT 1 2. INTRODUCTION 3 3. RESULTS AND DISCUSSION 5 3.1 Synthesis and Thermolysis of Aluminum...Chloride.Hexamethyldisilazane Adduct 5 3.2 Synthesis and Reactions of Bis(trimethylsilyl)- aminoaluminum Compounds 11 3.3 Reactions of Tris[bis(trimethylsilyl)amino...Et3N.C12AIN(SiMe3 )B(NH2 )NHSiMe3 , a processible precursor to AlN.BN ceramic. Attempts at synthesis of other AlN.BN precursors and AINP systems were
Strengthening Mechanisms, Creep and Fatigue Processes in Dispersion Hardened Niobium Alloy
1991-05-01
WORK UNIT BOLLING AFB DC 20332-6448 ELEMENT No. NO. NO. NO ATTN: DR. ALAN H. ROSENSTEIN 61102F 2306 Al 1 1 TITLE tilnciude Security CluAifIcatlonI 12... Mughrabi , volume editor, in the series "Materials Science and Technology" by VCH Verlagsgesellshaft mbH, Germany. 4. CREEP BEHAVIOR OF Nb-1%Zr AT...Meeting, Japan Institute of Metals, Sendia, Japan, 1990. 6. CREEP AND AGING RESPONSE OF A RAPIDLY SOLIDIFIED Al -Fe-V-Si ALLOY, R. J. Lewis and J. C
Si3 AlP: A New Promising Material for Solar Cell Absorber
NASA Astrophysics Data System (ADS)
Yang, Jihui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Suhuai
2014-03-01
First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] The most stable structure of Si3AlP is a superlattice along the <111>direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si3AlP is found to be the most stable one among all the structures with -AlPSi3- motifs, in agreement with the experimental suggestions. We predict that C1c1-Si3AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region, making it a promising candidate for improving the performance of the existing Si-based solar cells.
Characterization of single-crystalline Al films grown on Si(111)
NASA Astrophysics Data System (ADS)
Fortuin, A. W.; Alkemade, P. F. A.; Verbruggen, A. H.; Steinfort, A. J.; Zandbergen, H.; Radelaar, S.
1996-10-01
Single-crystalline Al films have been grown by molecular beam epitaxy on a (7 × 7) reconstructed Si(111) surface at 50°C. The 100 nm thick Al films were extensively characterized by X-ray diffraction, transmission electron diffraction and microscopy, SIMS, and RBS in combination with ion channeling. The orientational relationship found was Al(111) t' | Si(111) and Al[11¯0] t'| Si[11¯0]. The film is single-crystalline over the entire 4″ Si wafer. TED and TEM showed that the lattice mismatch of 25.3% at room temperature is accommodated at the interface by alignment of every three Si atoms to four Al atoms. Annealing of the film at 400°C for 30 min led to a reduction of defects in the film and an increase at the interface. Furthermore, it increased the Si concentration in the Al film slightly. We regard this deposition method as the most appropriate one among the various techniques for epitaxial growth of Al on Si explored so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; FR 8.1 Universität des Saarlandes, Postach 151150, 66041 Saarbrücken; Reichert, Christian
2015-01-15
In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stablemore » structure for 0.7« less
Role of Si on the Diffusional Interactions Between U-Mo and Al-Si Alloys at 823 K (550 °C)
NASA Astrophysics Data System (ADS)
Perez, Emmanuel; Sohn, Yong-Ho; Keiser, Dennis D.
2013-01-01
U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloy fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interaction products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and result in premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7 wt pct Mo, U-10 wt pct Mo and U-12 wt pct Mo in contact with pure Al, Al-2 wt pct Si, and Al-5 wt pct Si, annealed at 823 K (550 °C) for 1, 5 and 20 hours. Scanning electron microscopy and transmission electron microscopy were employed for the analysis. Diffusion couples consisting of U-Mo in contact with pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. Additions of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al- and Si-enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In these couples, the (U,Mo)(Al,Si)3 phase was observed throughout the interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.
Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating
NASA Astrophysics Data System (ADS)
Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong
2017-03-01
The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.
NASA Astrophysics Data System (ADS)
Sirotkina, Ekaterina; Bobrov, Andrey; Bindi, Luca; Irifune, Tetsuo
2017-04-01
Introduction Despite significant interest of experimentalists to the study of geophysically important phase equilibria in the Earth's mantle and a huge experimental database on a number of the model and multicomponent systems, incorporation of minor elements in mantle phases was mostly studied on a qualitative level. The influence of such elements on structural peculiarities of high-pressure phases is poorly investigated, although incorporation of even small portions of them may have a certain impact on the PT-parameters of phase transformations. Titanium is one of such elements with the low bulk concentrations in the Earth's mantle (0.2 wt % TiO2) [1]; however, Ti-rich lithologies may occur in the mantle as a result of oceanic crust subduction. Thus, the titanium content is 0.6 wt% in Global Oceanic Subducted Sediments (GLOSS) [2], and 1.5 wt% TiO2, in MORB [3]. In this regard, accumulation of titanium in the Earth's mantle is related to crust-mantle interaction during the subduction of crustal material at different depths of the mantle. Experimental methods At 10-24 GPa and 1600°C, we studied the full range of the starting materials in the MgSiO3 (En) - MgTiO3 (Gkl) system in increments of 10-20 mol% Gkl and 1-3 GPa, which allowed us to plot the phase PX diagram for the system MgSiO3-MgTiO3 and synthesize titanium-bearing phases with a wide compositional range. The experiments were performed using a 2000-t Kawai-type multi-anvil high-pressure apparatus at the Geodynamics Research Center, Ehime University (Japan). The quenched samples were examined by single-crystal X-ray diffractometer, and the composition of phases was analyzed using SEM-EDS. Results The main phases obtained in experiments were rutile, wadsleyite, MgSiO3-enstatite, MgTiO3-ilmenite, MgTiSi2O7 with the weberite structure type (Web), Mg(Si,Ti)O3 and MgSiO3 with perovskite-type structure. At a pressure of 13 GPa for Ti-poor bulk compositions, an association of En+Wad+Rt is replaced by the paragenesis of Web+Wad+Rt. With increasing Glk content in the starting composition, Gkl+Wad+Rt association is formed. At a pressure of >17 GPa, an association of two phases with Prv-type structure is stable within a narrow range of starting compositions. Addition of Al to the starting material allows us to simulate the composition of natural bridgmanites, since lower mantle bridgmanites are characterized by significant Al contents. In addition, this study shows that, in contrast to Al, the high contents of Ti can stabilize bridgmanite-like compounds at considerably lower pressure (18 GPa) in comparison with pure MgSiO3 bridgmanite. Small crystals of titanium-rich phases, including Ti-Al-Brd and Web were examined by single-crystal X-ray diffractometer, which allowed us to study the influence of Ti on crystallochemical peculiarities of the mantle phases and on the phase transformations. This study was supported by the Foundation of the President of the Russian Federation for Young Ph.D. (projects no. MK 1277.2017.5 to E.A. Sirotkina) and partly supported by the Russian Foundation for Basic Research (project nos. 17-55-50062 to E.A. Sirotkina and A.V.Bobrov) [1] Ringwood, A.E. The chemical composition and origin of the Earth. In: Advances in Earth science. Hurley, P.M. (Editors), M.I.T. Press, Cambridge. 1966. P. 287-356 [2] Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325-394. [3] Wilson, M. (1989) Igneous Petrogenesis—A global tectonic approach, 466 p. Kluwer, Dordrecht.
Kopittke, Peter M; Gianoncelli, Alessandra; Kourousias, George; Green, Kathryn; McKenna, Brigid A
2017-01-01
Silicon is reported to reduce the toxic effects of Al on root elongation but the in planta mechanism by which this occurs remains unclear. Using seedlings of soybean ( Glycine max ) and sorghum ( Sorghum bicolor ), we examined the effect of up to 2 mM Si on root elongation rate (RER) in Al-toxic nutrient solutions. Synchrotron-based low energy X-ray fluorescence (LEXRF) was then used for the in situ examination of the distribution of Al and Si within cross-sections cut from the apical tissues of sorghum roots. The addition of Si potentially increased RER in Al-toxic solutions, with RER being up to ca. 0.3 mm h -1 (14%) higher for soybean and ca. 0.2 mm h -1 (17%) higher for sorghum relative to solutions without added Si. This improvement in RER could not be attributed to a change in Al-chemistry of the bulk nutrient solution, nor was it due to a change in the concentration of Al within the apical (0-10 mm) root tissues. Using LEXRF to examine sorghum, it was demonstrated that in roots exposed to both Al and Si, much of the Al was co-located with Si in the mucigel and outer apoplast. These observations suggest that Si reduces the toxicity of Al in planta through formation of Al-Si complexes in mucigel and outer cellular tissues, thereby decreasing the binding of Al to the cell wall where it is known to inhibit wall loosening as required for cell elongation.
Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S
2015-06-01
Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
IRD evidence for Heinrich Events H1 and H2 on the NJ Margin
NASA Astrophysics Data System (ADS)
Christensen, B. A.; Calabrese, J.; O'Neill, C.; Goff, J. A.
2011-12-01
Recent seismic reflection studies suggest icebergs grounded on the late Pleistocene New Jersey margin (Goff and Austin, 2009) during Heinrich events H1 (~17 cal Ka), H2 (~23 cal Ka), H3 (~30 cal Ka) and H4 (~37 cal Ka). We tested this hypothesis by analyzing sediments on the upper NJ continental slope, near the area where icebergs were found. Ocean Drilling Program Site 1073A is located at 39°13.5214'N, 72°16.5461'W in 639 m water depth. The greater water depth increases the likelihood of preservation and improves the stratigraphic control. We obtained elemental measurements for Site 1073A Cores 1-6 using the X-ray Fluorescence (XRF) Core Scanner at the MARUM IODP core repository, University of Bremen. Cores were scanned at 10kV and 30kV to obtain a full suite of elements for analysis, with XRF data collected between 1 and 10 cm intervals. The values are reported in areas for the elements and were then converted to elemental ratios (Ca/Sr, Si/Sr, K/Al, and Si/Ti) for analysis. The origin of a Heinrich layer within an IRD belt can be identified by geochemical measures along with magnetic susceptibility and the presence of detrital materials that reflect its provenance (Hemming, 2004). Following analyses for Atlantic Ocean IRD by Hodell et al. (2008), higher Si/Sr values indicate abundant detrital silicates and low biogenic carbonate. Abundant detrital carbonate is identified by higher Ca/Sr values. K/Al may be used as a proxy for weathered matter being deposited and is a good indicator of terrigenous material (Yarincik, 2000). Si/Ti ratios may be used as a proxy for organic and siliceous productivity (Agnihotri, 2008). The elemental analysis was ground-truthed with grain size analysis at 10 cm intervals. Grain size analysis reveals large particles in a finer matrix at 123 cm and 284 cm. We interpret these as IRD. A linear sedimentation age model places the IRD around the time of Heinrich events H1 and H2. Age control is provided for the late Pleistocene principally by radiocarbon methods (McHugh and Olsson, 2002); however, the age model is not unequivocal so we present results for a few interpretations (linear sedimentation rates, and modeled). Nonetheless, the IRD is consistent with the timing of H1 and H2. While the IRD are obvious from the grain size analysis, we were not able to identify IRD from XRF elemental analyses. This may because the sediments are derived locally rather than transported from the higher latitudes, rendering IRD identification a function of grain size (anomalously large particles in a marine setting) rather than geochemistry. Alternatively, the particles were not close enough to the surface to impact the XRF response. This study provides further evidence for the presence of icebergs on the late Pleistocene NJ margin.
Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy
NASA Astrophysics Data System (ADS)
Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan
2013-07-01
Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.
Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy
NASA Astrophysics Data System (ADS)
Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar
2018-03-01
In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.
Compression behavior of Fe-Si-H alloys
NASA Astrophysics Data System (ADS)
Tagawa, S.; Ohta, K.; Hirose, K.; Ohishi, Y.
2015-12-01
Although the light elements in the Earth's core are still enigmatic, hydrogen has recently been receiving much attention. Planetary formation theory suggested that a large amount of water, much more than is in the oceans, could have been brought to the Earth during its accretion. Hydrogen is a strong siderophile element and could be incorporated into the core as a consequence of a reaction between water and molten iron in a magma ocean [Okuchi, 1997 Science]. Nevertheless, the effect of hydrogen on the property of iron is not well known so far. Here, we have experimentally examined the compression behavior of hcp Fe0.88Si0.12Hx (6.5 wt.% Si) at two different hydrogen concentrations (x = 0.7 and 0.9). Fe0.88Si0.12 foil was loaded into a diamond-anvil cell, and then liquid hydrogen was introduced to a sample chamber below 20 K. Hydrogenation occurred upon thermal annealing below 1500 K at 25-62 GPa, and hcp Fe0.88Si0.12Hx was obtained as a single phase. Unlike the Fe-H alloy, hydrogen did not fully occupy the octahedral sites even under hydrogen-saturated conditions. Two compression curves, one from 25 to 136 GPa, and the other from 62 to 128 GPa, were obtained at room temperature. While the effect of hydrogen on the compressibility of iron has been controversial in earlier experimental studies [Hirao et al., 2004 GRL; Pépin et al., 2014 PRL], our data indicate that the compressibility of Fe0.88Si0.12Hx alloy does not change with changing hydrogen content from x = 0 to 0.9. Such compression behavior observed is consistent with the recent ab initio calculations for hcp Fe-H alloys by Caracas[2015 GRL]. The extrapolation of present data to the outer core pressure and temperature range, assuming thermal expansivity is the same as that for iron and there is no density difference between solid and liquid, shows that the density of Fe0.88Si0.12H0.3 matches the PREM in the whole outer core within 1%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena, P.; Rivas Mercury, J.M.; Aza, A.H. de
2008-08-15
Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub y}(OH){sub 12-4y}-Al(OH){sub 3} mixtures, prepared by hydration of Ca{sub 3}Al{sub 2}O{sub 6} (C{sub 3}A), Ca{sub 12}Al{sub 14}O{sub 33} (C{sub 12}A{sub 7}) and CaAl{sub 2}O{sub 4} (CA) phases in the presence of silica fume, have been characterized by {sup 29}Si and {sup 27}Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca{sub 3}Al{sub 2}(OH){sub 12} and Al(OH){sub 3} phases were detected. From the quantitative analysis of {sup 27}Al NMR signals, the Al(OH){sub 3}/Ca{sub 3}Al{sub 2}(OH){sub 12} ratio was deduced. The incorporation of Simore » into the katoite structure, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x}, was followed by {sup 27}Al and {sup 29}Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of {sup 27}Al MAS-NMR components associated with Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The {sup 29}Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From {sup 29}Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl{sub 2}O{sub 4}-microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca{sub 3}Al{sub 2.0{+-}}{sub 0.2}(SiO{sub 4}){sub 0.9{+-}}{sub 0.2}(OH){sub 1.8} crystal surrounded by unreacted amorphous silica spheres.« less
METHOD OF SUPPRESSING UAl$sub 4$ FORMATION IN U-Al ALLOYS
Picklesimer, M.L.; Thurber, W.C.
1960-08-23
A method is given for suppressing the formation of UAl/sub 4/ in uranium- - aluminum alloys, thereby rendering these alloys more easily workable. The method comprises incorporating in the base alloy a Group Four element selected from the group consisting of Si, Ti, Ge, Zr, and Sn, the addition preferably being within the range of 0.5to20at.%.
Microstructural characterisation of Al-Si cast alloys containing rare earth additions
NASA Astrophysics Data System (ADS)
Elgallad, E. M.; Ibrahim, M. F.; Doty, H. W.; Samuel, F. H.
2018-05-01
This paper presents a thorough study on the effect of rare earth elements, specifically La and Ce, on the microstructure characteristics of non-modified and Sr-modified A356 and A413 alloys. Several alloys were prepared by adding 1% La and 1% Ce either individually or in combination. Microstructural characterisation was carried out using optical microscopy, scanning electron microscopy and electron probe microanalysis as well as differential scanning calorimetry (DSC) analysis. The results showed that the individual and combined additions of La and Ce did not bring about any modification or even refinement in the eutectic Si structure. Moreover, these additions were found to negate the modification effect of Sr, particularly in the presence of La. The A356 and A413 alloys containing La and/or Ce displayed high phase volume fractions owing to the formation of Al-Si-La/Ce/(La,Ce) and Al-Ti-La/Ce intermetallic phases. DSC analysis revealed that the formation temperatures of these phases varied from 560 to 568 °C and 568 to 574 °C, respectively. This analysis also showed that the addition of La and Ce whether individually or in combination resulted in a depression in the eutectic temperature and a considerable increase in the solidification range, particularly for the A413 alloy.
NASA Astrophysics Data System (ADS)
Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao
2017-08-01
In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.
Improved Photoactivity of Pyroxene Silicates by Cation Substitutions.
Legesse, Merid; Park, Heesoo; El Mellouhi, Fedwa; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H
2018-04-17
We investigated the possibility of band structure engineering of pyroxene silicates with chemical formula A +1 B +3 Si 2 O 6 by proper cation substitution. Typically, band gaps of naturally formed pyroxene silicates such as NaAlSi 2 O 6 are quite high (≈5 eV). Therefore, it is important to find a way to reduce band gaps for these materials below 3 eV to make them usable for optoelectronic applications operating at visible light range of the spectrum. Using first-principles calculations, we found that appropriate substitutions of both A + and B 3+ cations can reduce the band gaps of these materials to as low as 1.31 eV. We also discuss how the band gap in this class of materials is affected by cation radii, electronegativity of constituent elements, spin-orbit coupling, and structural modifications. In particular, the replacement of Al 3+ in NaAlSi 2 O 6 by another trivalent cation Tl 3+ results in the largest band-gap reduction and emergence of intermediate bands. We also found that all considered materials are still thermodynamically stable. This work provides a design approach for new environmentally benign and abundant materials for use in photovoltaics and optoelectronic devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Majumder, Chiranjib; Kulshreshtha, S. K.
2004-12-01
Structural and electronic properties of metal-doped silicon clusters ( MSi10 , M=Li , Be, B, C, Na, Mg, Al, and Si) have been investigated via ab initio molecular dynamics simulation under the formalism of the density functional theory. The exchange-correlation energy has been calculated using the generalized gradient approximation method. Several stable isomers of MSi10 clusters have been identified based on different initial configurations and their relative stabilities have been analyzed. From the results it is revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurty atom. Whereas Be and B atoms form stable isomers, the impurity atom being placed at the center of the bicapped tetragonal antiprism structure of the Si10 cluster, all other elements diffuse outside the cage of Si10 cluster. Further, to understand the stability and the chemical bonding, the LCAO-MO based all electron calculations have been carried out for the lowest energy isomers using the hybrid B3LYP energy functional. Based on the interaction energy of the M atoms with Si10 clusters it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. Based on the binding energy, the relative stability of MSi10 clusters is found to follow the order of CSi10>BSi10>BeSi10>Si11>AlSi10>LiSi10>NaSi10>MgSi10 , leading one to infer that while the substitution of C, B and Be enhances the stability of the Si11 cluster, others have an opposite effect. The extra stability of the BeSi10 clusters is due to its encapsulated close packed structure and large energy gap between the HOMO and LUMO energy levels.
Researches on the behaviour of cellular antiballistic composites based on AlMg-SiC alloys
NASA Astrophysics Data System (ADS)
Bălţătescu, O.; Florea, R. M.; Rusu, I.; Carcea, I.
2015-11-01
The researches presented in this paper refers basically to the impact of a small/medium caliber bullet shot on a light armor built on the base of a AlMg-SiC metallic composite cellular/foam. Thus, we study the antiballistic behavior and protection properties of the armor, based on the effects that occur at the impact zone of the bullet with the composite surface. We performed an antiballistic behavior modeling by means of a finite element analysis, based on a "multi grid" Fast Finite Element (FFE) system. We used for this purpose the DYNA 2D software package. The obtained samples show after the impact the occurrence of concentration / deformation pores effect and intercellular cracks development to the interior of the composite. Those effects, depending on speed, mass and length of the projectile ballistic trajectory, reduce zonal tensions due to the effect of cell walls deformation. It was obtained a good correlation between modeling results and the electron microscope analyse of the impact area. It is worth mentioning that almost all values for impact energy absorbed by the composite armor are in the protection active zone provided by it.
NASA Astrophysics Data System (ADS)
Harpp, K. S.; Christensen, B. C.; Geist, D. J.; Garcia, M. O.
2005-12-01
The Dry Valleys of southern Victoria Land, Antarctica, are notable for the presence of the Vanda dikes, prominent NE-trending swarms that crosscut a sequence of granitoid plutons. These older plutons are regional in extent and comprise 3 Cambro-Ordovician groups, including: a) calc-alkaline granitoids formed at an active plate margin during the Ross Orogeny (c. 505 Ma); b) adakitic granitoids, likely marking the conclusion of Ross Orogeny subduction-related activity (c. 490 Ma); and c) younger monzonitic plutons, probably generated in an intraplate extensional setting (Cox et al., 2000). The Vanda dikes crosscut the younger plutons, possibly between c. 490 and 477 Ma (Allibone et al., 1993; Encarnacion and Grunow, 1996). Dikes from the east wall of Bull Pass and the south wall of the Wright Valley range from 0.5-25 m wide with nearly vertical dips, are usually several km long, and, in the center of the swarms, occur with a frequency of ~18 dikes/km. Most have chilled margins and are surrounded by brittle fractures, indicative of shallow intrusion into cold country rock. Dike compositions are bimodal, most defining a trend at the boundary between the high-K calc-alkaline and shoshonite series in SiO2-K2O space; some Wright Valley dikes have slightly lower K2O and are calc-alkaline. Granite porphyry dikes are relatively homogeneous (69-73 wt.% SiO2), whereas the mafic dikes exhibit a wider range of compositions (49-57 wt.% SiO2). The felsic and mafic dikes have distinct trace element abundances but similar normalized distribution patterns, including fractionated heavy rare earth elements and negative Eu and high field-strength element anomalies. Average Sr/Y ratios of both the felsic and mafic dikes cluster around 20, well below a typical adakite signature. Major and trace element variations suggest that the felsic dikes may be differentiates of the mafic magmas. Field relations further indicate that the felsic lavas may represent, on average, a later phase of dike intrusion (Keiller, 1988; Allibone et al., 1993). The high-K calc-alkaline Vanda dike swarm likely represents the last phase of magmatism in a dying continental arc, perhaps accompanied by extension and uplift of the orogen. The relatively alkaline compositions of the dikes may result from lower degrees of melting, as subduction waned. References: Allibone, AH et al., New Zealand J of Geology and Geophysics, 36: 281-297, 1993. Cox, SC et al., New Zealand J of Geology and Geophysics, 43: 501-520, 2000. Encarnacion, J and Grunow, A, Tectonics, 15: 1325-1341, 1996. Keiller, IG, New Zealand Antarctic Record, 8: 25-34, 1988.
Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada
NASA Technical Reports Server (NTRS)
Hayashi, K. I.; Fujisawa, H.; Holland, H. D.; Ohmoto, H.
1997-01-01
Fifty-eight rock chips from fifteen samples of sedimentary rocks from the Ramah Group (approximately 1.9 Ga) in northeastern Labrador, Canada, were analyzed for major and minor elements, including C and S, to elucidate weathering processes on the Earth's surface about 1.9 Ga ago. The samples come from the Rowsell Harbour, Reddick Bight, and Nullataktok Formations. Two rock series, graywackes-gray shales of the Rowsell Harbour, Reddick Bight and Nullataktok Formations, and black shales of the Nullataktok Formation, are distinguishable on the basis of lithology, mineralogy, and major and trace element chemistry. The black shales show lower concentrations than the graywackes-gray shales in TiO2 (0.3-0.7 wt% vs. 0.7-1.8 wt%), Al2O3 (9.5-20.1 wt% vs. 13.0-25.0 wt%), and sigma Fe (<1 wt% vs. 3.8-13.9 wt% as FeO). Contents of Zr, Th, U, Nb, Ce, Y, Rb, Y, Co, and Ni are also lower in the black shales. The source rocks for the Ramah Group sediments were probably Archean gneisses with compositions similar to those in Labrador and western Greenland. The major element chemistry of source rocks for the Ramah Group sedimentary rocks was estimated from the Al2O3/TiO2 ratios of the sedimentary rocks and the relationship between the major element contents (e.g., SiO2 wt%) and Al2O3/TiO2 ratios of the Archean gneisses. This approach is justified, because the Al/Ti ratios of shales generally retain their source rock values; however, the Zr/Al, Zr/Ti, and Cr/Ni ratios fractionate during the transport of sediments. The measured SiO2 contents of shales in the Ramah Group are generally higher than the estimated SiO2 contents of source rocks by approximately 5 wt%. This correction may also have to be applied when estimating average crustal compositions from shales. Two provenances were recognized for the Ramah Group sediments. Provenance I was comprised mostly of rocks of bimodal compositions, one with SiO2 contents approximately 45 wt% and the other approximately 65 wt%, and was the source for most sedimentary rocks of the Ramah Group, except for black shales of the Nullataktok Formation. The black shales were apparently derived from Provenance II that was comprised mostly of felsic rocks with SiO2 contents approximately 65 wt%. Comparing the compositions of the Ramah Group sedimentary rocks and their source rocks, we have recognized that several major elements, especially Ca and Mg, were lost almost entirely from the source rocks during weathering and sedimentation. Sodium and potassium were also leached almost entirely during the weathering of the source rocks. However, significant amounts of Na were added to the black shales and K to all the rock types during diagenesis and/or regional metamorphism. The intensity of weathering of source rocks for the Ramah Group sediments was much higher than that of typical Phanerozoic sediments, possibly because of a higher PCO2 in the Proterozoic atmosphere. Compared to the source rock values, the Fe3+/Ti ratios of many of the graywackes and gray shales of the Ramah Group are higher, the Fe2+/Ti ratios are lower, and the sigma Fe/Ti ratios are the same. Such characteristics of the Fe geochemistry indicate that these sedimentary rocks are comprised of soils formed by weathering of source rocks under an oxygen-rich atmosphere. The atmosphere about 1.9 Ga was, therefore, oxygen rich. Typical black shales of Phanerozoic age exhibit positive correlations between the organic C contents and the concentrations of S, U, and Mo, because these elements are enriched in oxygenated seawater and are removed from seawater by organic matter in sediments. However, such correlations are not found in the Ramah Group sediments. Black shales of the Ramah Group contain 1.7-2.8 wt% organic C, but are extremely depleted in sigma Fe (<1 wt% as FeO), S (<0.3 wt%), U (approximately l ppm), Mo (<5 ppm), Ni (<2 ppm), and Co (approximately 0 ppm). This lack of correlation, however, does not imply that the approximately 1.9 Ga atmosphere-ocean system was anoxic. Depletion of these elements from the Ramah Group sediments may have occurred during diagenesis.
NASA Astrophysics Data System (ADS)
Lin, J.; Fei, Y.; Sturhahn, W.; Zhao, J.; Mao, H.; Hemley, R.
2004-05-01
Iron-nickel is the most abundant constituent of the Earth's core. The amount of Ni in the core is about 5.5 wt%. Geophysical and cosmochemical studies suggest that the Earth's outer core also contains approximately 10% of light element(s) and a certain amount of light element(s) may be present in the inner core. Si and S are believed to be alloying light elements in the iron-rich planetary cores such as the Earth and Mars. Therefore, understanding the alloying effects of Ni, Si, and S on the phase diagram and physical properties of Fe under core conditions is crucial for geophysical and geochemical models of planetary interiors. The addition of Ni and Si does not appreciably change the compressibility of hcp-Fe under high pressures. Studies of the phase relations of Fe and Fe-Ni alloys indicate that Fe with up to 10 wt% Ni is likely to be in the hcp structure under inner core conditions. On the other hand, adding Si into Fe strongly stabilizes the bcc structure to much higher pressures and temperatures (Lin et al., 2002). We have also studied the sound velocities and magnetic properties of Fe0.92Ni0.08, Fe0.85Si0.15, and Fe3S alloys with nuclear resonant inelastic x-ray scattering and nuclear forward scattering up to 106 GPa, 70 GPa, and 57 GPa, respectively. The sound velocities of the alloys are obtained from the measured partial phonon density of states for 57Fe incorporated in the alloys. Addition of Ni slightly decreases the VP and VS of Fe under high pressures (Lin et al., 2003). Si or S alloyed with Fe increases the VP and VS under high pressures, which provides a better match to seismological data of the Earth's core. We note that the increase in the VP and VS of Fe0.85Si0.15 and Fe3S is mainly contributed from the density decrease of adding Si and S in iron. Time spectra of the nuclear forward scattering reveal that the most iron rich sulfide, Fe3S, undergoes a magnetic to non-magnetic transition at approximately 18 GPa from a low-pressure magnetically ordered state to a high-pressure non-magnetic ordered state. The magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. It is conceivable that the magnetic collapse of Fe3S may also affect the binary phase diagram of the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Study of the non-magnetic phase is more relevant to understand the properties of the Fe3S under planetary core conditions where high pressures and high temperature ensure the non-magnetic ordering state, affecting the interpretation of the amount and properties of sulfur being in the planetary cores. If the Martian core is in the solid state containing 14.2 wt% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to understand the velocity profile in the Martian core.
Material and structural characterization of alkali activated low-calcium brown coal fly ash.
Skvára, Frantisek; Kopecký, Lubomír; Smilauer, Vít; Bittnar, Zdenek
2009-09-15
The waste low-calcium Czech brown coal fly ash represents a considerable environmental burden due to the quantities produced and the potentially high content of leachable heavy metals. The heterogeneous microstucture of the geopolymer M(n) [-(Si-O)(z)-Al-O](n).wH(2)O, that forms during the alkaline activation, was examined by means of microcalorimetry, XRD, TGA, DSC, MIP, FTIR, NMR MAS ((29)Si, (27)Al, (23)Na), ESEM, EDS, and EBSD. The leaching of heavy metals and the evolution of compressive strength were also monitored. The analysis of raw fly ash identified a number of different morphologies, unequal distribution of elements, Fe-rich rim, high internal porosity, and minor crystalline phases of mullite and quartz. Microcalorimetry revealed exothermic reactions with dependence on the activator alkalinity. The activation energy of the geopolymerization process was determined as 86.2kJ/mol. The X-ray diffraction analysis revealed no additional crystalline phases associated with geopolymer formation. Over several weeks, the (29)Si NMR spectrum testified a high degree of polymerization and Al penetration into the SiO(4) tetrahedra. The (23)Na NMR MAS spectrum hypothesized that sodium is bound in the form of Na(H(2)O)(n) rather than Na(+), thus causing efflorescence in a moisture-gradient environment. As and Cr(6+) are weakly bonded in the geopolymer matrix, while excellent immobilization of Zn(2+), Cu(2+), Cd(2+), and Cr(3+) are reported.
CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Meng
2015-03-01
The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6 ohm-cm, similar to that of screen-printed Ag. 3) Demonstration of two all-Al, Ag-free Si solar cells, with an electroplated Al front electrode and a screen-printed Al back electrode. One cell is an industrial p-type front-emitter cell, and the other is an n-type back-emitter cell. The efficiency of the p-type cell is close to 15%. This is an industrial cell and its efficiency is capped at ~18%. 4) Demonstration of grain boundary passivation by both hydrogen and sulfur using hydrogen sulfide (H2S). When the new grain boundary passivation is combined with Al2O3 surface passivation and post-annealing, the minority carrier lifetime in the p-type multicrystalline Si samples shows a significant improvement up to 68 fold. 5) In a side project, a simple green process is developed which is capable of recycling over 90% of the Si material in end-of-life crystalline-Si solar cells. The recycled Si meets the specifications for solar-grade Si and can be used as a new poly-Si feedstock for ingot growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; van de Loo, Bas W. H.; Nemeth, William
Here, the interplay between hydrogenation and passivation of poly-Si/SiO x contacts to n-type Si wafers is studied using atomic layer deposited Al 2O 3 and anneals in forming gas and nitrogen. The poly-Si/SiO x stacks are prepared by thermal oxidation followed by thermal crystallization of a-Si:H films deposited by plasma-enhanced chemical vapor deposition. Implied open-circuit voltages as high as 710 mV are achieved for p-type poly-Si/SiO x contacts to n-type Si after hydrogenation. Correlating minority carrier lifetime data and secondary ion mass spectrometry profiles reveals that the main benefit of Al 2O 3 is derived from its role as amore » hydrogen source for chemically passivating defects at SiO x; Al 2O 3 layers are found to hydrogenate poly-Si/SiO x much better than a forming gas anneal. By labelling Al 2O 3 and the subsequent anneal with different hydrogen isotopes, it is found that Al 2O 3 exchanges most of its hydrogen with the ambient upon annealing at 400 °C for 1 h even though there is no significant net change in its total hydrogen content.« less
Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium
NASA Astrophysics Data System (ADS)
Schnabel, Manuel; van de Loo, Bas W. H.; Nemeth, William; Macco, Bart; Stradins, Paul; Kessels, W. M. M.; Young, David L.
2018-05-01
The interplay between hydrogenation and passivation of poly-Si/SiOx contacts to n-type Si wafers is studied using atomic layer deposited Al2O3 and anneals in forming gas and nitrogen. The poly-Si/SiOx stacks are prepared by thermal oxidation followed by thermal crystallization of a-Si:H films deposited by plasma-enhanced chemical vapor deposition. Implied open-circuit voltages as high as 710 mV are achieved for p-type poly-Si/SiOx contacts to n-type Si after hydrogenation. Correlating minority carrier lifetime data and secondary ion mass spectrometry profiles reveals that the main benefit of Al2O3 is derived from its role as a hydrogen source for chemically passivating defects at SiOx; Al2O3 layers are found to hydrogenate poly-Si/SiOx much better than a forming gas anneal. By labelling Al2O3 and the subsequent anneal with different hydrogen isotopes, it is found that Al2O3 exchanges most of its hydrogen with the ambient upon annealing at 400 °C for 1 h even though there is no significant net change in its total hydrogen content.
Schnabel, Manuel; van de Loo, Bas W. H.; Nemeth, William; ...
2018-05-14
Here, the interplay between hydrogenation and passivation of poly-Si/SiO x contacts to n-type Si wafers is studied using atomic layer deposited Al 2O 3 and anneals in forming gas and nitrogen. The poly-Si/SiO x stacks are prepared by thermal oxidation followed by thermal crystallization of a-Si:H films deposited by plasma-enhanced chemical vapor deposition. Implied open-circuit voltages as high as 710 mV are achieved for p-type poly-Si/SiO x contacts to n-type Si after hydrogenation. Correlating minority carrier lifetime data and secondary ion mass spectrometry profiles reveals that the main benefit of Al 2O 3 is derived from its role as amore » hydrogen source for chemically passivating defects at SiO x; Al 2O 3 layers are found to hydrogenate poly-Si/SiO x much better than a forming gas anneal. By labelling Al 2O 3 and the subsequent anneal with different hydrogen isotopes, it is found that Al 2O 3 exchanges most of its hydrogen with the ambient upon annealing at 400 °C for 1 h even though there is no significant net change in its total hydrogen content.« less
Glass-water interactions: Effect of high-valence cations on glass structure and chemical durability
Pierce, Eric M.; Kerisit, Sebastien N.; Charpentier, Thibault; ...
2016-02-27
Spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na 2O Al 2O 3 B 2O 3 HfO 2 SiO 2 system (e.g., Na/(Al+B) = 1.0 and HfO 2/SiO 2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N 4 and increasesmore » the amount of Si–O–Hf moieties in the glass. Results from flow through experiments conducted under dilute and near saturated conditions show a decrease of approximately 100 or more in the dissolution rate over the series from 0 to 20 mol% HfO 2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveal a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the formation of a low coordination Si sites when Si from the saturated solution adsorbs to Hf on the glass surface. The residence time of the newly formed low coordination Si sites is longer at the glass surface and increases the density of anchor sites from which altered layers with higher Si densities can form than in the absence of Hf. These results illustrate the importance of understanding solid water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes.« less
Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.
Faraji, M; Katgerman, L
2010-08-01
The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.
Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis
NASA Technical Reports Server (NTRS)
Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III
1979-01-01
The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jian; Laboratory of Glasses and Nanostructured Functional Materials, 122 Luoshi Road, Wuhan, Hubei 430070; Xie, Rong-Jun, E-mail: Xie.Rong-Jun@nims.go.jp
2013-12-15
Ce{sup 3+}-doped and Ce{sup 3+}/Li{sup +}-codoped SrAlSi{sub 4}N{sub 7} phosphors were synthesized by gas pressure sintering of powder mixtures of Sr{sub 3}N{sub 2}, AlN, α-Si{sub 3}N{sub 4}, CeN and Li{sub 3}N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi{sub 4}N{sub 7}:Ce{sup 3+}(Ce{sup 3+}/Li{sup +}) were investigated in this work. The band structure calculated by the DMol{sup 3} code shows that SrAlSi{sub 4}N{sub 7} has a direct band gap of 3.87 eV. The single crystal analysis of Ce{sup 3+}-doped SrAlSi{sub 4}N{sub 7} indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi{sub 4}N{sub 7} was identified as a majormore » phase of the fired powders, and Sr{sub 5}Al{sub 5}Si{sub 21}N{sub 35}O{sub 2} and AlN as minor phases. Both Ce{sup 3+} and Ce{sup 3+}/Li{sup +} doped SrAlSi{sub 4}N{sub 7} phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce{sup 3+}/Li{sup +}-doped SrAlSi{sub 4}N{sub 7} (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr{sub 0.97}Al{sub 1.03}Si{sub 3.997}N/94/maccounttest14=t0005{sub 1}8193 {sub 7}:Ce{sup 3+}{sub 0.03} with a commercial blue InGaN chip. It indicates that SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce{sup 3+} phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color rendering white LEDs by using a single SrAlSi4N7:Ce.« less
Interfacial characterization of Al-Al thermocompression bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, N., E-mail: nishantmalik1987@gmail.com; SINTEF ICT, Department of Microsystems and Nanotechnology, P.O. Box 124 Blindern, N-0314 Oslo; Carvalho, P. A.
2016-05-28
Interfaces formed by Al-Al thermocompression bonding were studied by the transmission electron microscopy. Si wafer pairs having patterned bonding frames were bonded using Al films deposited on Si or SiO{sub 2} as intermediate bonding media. A bond force of 36 or 60 kN at bonding temperatures ranging from 400–550 °C was applied for a duration of 60 min. Differences in the bonded interfaces of 200 μm wide sealing frames were investigated. It was observed that the interface had voids for bonding with 36 kN at 400 °C for Al deposited both on Si and on SiO{sub 2}. However, the dicing yield was 33% for Al onmore » Si and 98% for Al on SiO{sub 2}, attesting for the higher quality of the latter bonds. Both a bond force of 60 kN applied at 400 °C and a bond force of 36 kN applied at 550 °C resulted in completely bonded frames with dicing yields of, respectively, 100% and 96%. A high density of long dislocations in the Al grains was observed for the 60 kN case, while the higher temperature resulted in grain boundary rotation away from the original Al-Al interface towards more stable configurations. Possible bonding mechanisms and reasons for the large difference in bonding quality of the Al films deposited on Si or SiO{sub 2} are discussed.« less
Al+Si Interface Optical Properties Obtained in the Si Solar Cell Configuration
Subedi, Indra; Silverman, Timothy J.; Deceglie, Michael G.; ...
2017-10-18
Al is a commonly used material for rear side metallization in commercial silicon (Si) wafer solar cells. In this study, through-the-silicon spectroscopic ellipsometry is used in a test sample to measure Al+Si interface optical properties like those in Si wafer solar cells. Two different spectroscopic ellipsometers are used for measurement of Al+Si interface optical properties over the 1128-2500 nm wavelength range. For validation, the measured interface optical properties are used in a ray tracing simulation over the 300-2500 nm wavelength range for an encapsulated Si solar cell having random pyramidal texture. The ray tracing model matches well with the measuredmore » total reflectance at normal incidence of a commercially available Si module. The Al+Si optical properties presented here enable quantitative assessment of major irradiance/current flux losses arising from reflection and parasitic absorption in encapsulated Si solar cells.« less
NASA Astrophysics Data System (ADS)
Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.
2015-10-01
A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.
Al+Si Interface Optical Properties Obtained in the Si Solar Cell Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Indra; Silverman, Timothy J.; Deceglie, Michael G.
Al is a commonly used material for rear side metallization in commercial silicon (Si) wafer solar cells. In this study, through-the-silicon spectroscopic ellipsometry is used in a test sample to measure Al+Si interface optical properties like those in Si wafer solar cells. Two different spectroscopic ellipsometers are used for measurement of Al+Si interface optical properties over the 1128-2500 nm wavelength range. For validation, the measured interface optical properties are used in a ray tracing simulation over the 300-2500 nm wavelength range for an encapsulated Si solar cell having random pyramidal texture. The ray tracing model matches well with the measuredmore » total reflectance at normal incidence of a commercially available Si module. The Al+Si optical properties presented here enable quantitative assessment of major irradiance/current flux losses arising from reflection and parasitic absorption in encapsulated Si solar cells.« less
Nondestructive depth profile of the chemical state of ultrathin Al2O3/Si interface
NASA Astrophysics Data System (ADS)
Lee, Jong Cheol; Oh, S.-J.
2004-05-01
We investigated a depth profile of the chemical states of an Al2O3/Si interface using nondestructive photon energy-dependent high-resolution x-ray photoelectron spectroscopy (HRXPS). The Si 2p binding energy, attributed to the oxide interfacial layer (OIL), was found to shift from 102.1 eV to 102.9 eV as the OIL region closer to Al2O3 layer was sampled, while the Al 2p binding energy remains the same. This fact strongly suggests that the chemical state of the interfacial layer is not Al silicate as previously believed. We instead propose from the HRXPS of Al 2p and Si 2p depth-profile studies that the chemical states of the Al2O3/Si interface mainly consist of SiO2 and Si2O3.
NASA Astrophysics Data System (ADS)
Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng
2013-11-01
This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.
Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings
NASA Astrophysics Data System (ADS)
Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.
2018-03-01
High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.
Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin
NASA Astrophysics Data System (ADS)
Pattan, J. N.; Parthiban, G.
2011-01-01
Fourteen ferromanganese nodule-sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule-sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo - (307, 273), Ni - (71, 125), Mn - (64, 87), Cu - (43, 80), Co - (23, 75), Pb - (15, 24), Zn - (9, 11) and V - (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation ( r ⩾ 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.
Analysis of Semiconductor Structures by Nuclear and Electrical Techniques.
temperatures well below the Si-Al eutectic (577C), fine grained polycrystalline Si in contact with Al films recrystallizes in the Al matrix. The... recrystallization can be deferred or suppressed by placing a buffer layer of V or Ti between the Al film and poly Si. (2) When annealing Pt films deposited on Si
NASA Astrophysics Data System (ADS)
Han, Tongtong; Li, Caifeng; Guo, Xiangyu; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli
2016-12-01
A series of SiO2@aluminum-MOF(MIL-68) composites with different SiO2 loadings have been synthesized by a simple and mild compositing strategy for high-efficiency removal of aniline. As evidenced from SEM and TEM images as well as the particle size distribution, the incorporation of SiO2 can improve the dispersity of MIL-68(Al) in composites, and result in the smaller particle size than that of pristine MIL-68(Al). Besides, the adsorption of aniline over SiO2, MIL-68(Al), the physical mixture of these two materials, and SiO2@MIL-68(Al) composites was investigated comparatively, demonstrating a relatively high adsorption capacity (531.9 mg g-1) of 7% SiO2@MIL-68(Al) towards aniline. Combining the ultrafast adsorption dynamics (reaching equilibrium within 40 s) and great reusability, 7% SiO2@MIL-68(Al) shows excellent adsorption performance. This indicates that the SiO2@MIL-68(Al) composites possess great potential applications as a kind of fascinating adsorbent in water pollution protection.
Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam
2016-01-15
The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Grossman, J.N.; Rubin, A.E.; MacPherson, G.J.
1988-01-01
Allan Hills 85085 is a unique chondrite with affinities to the Al Rais-Renazzo clan of carbonaceous chondrites. Its constituents are less than 50 ??m in mean size. Chondrules and microchondrules of all textures are present; nonporphyritic chondrules are unusually abundant. The mean compositions of porphyritic, nonporphyritic and barred olivine chondrules resemble those in ordinary chondrites except that they are depleted in volatile elements. Ca-, Al-rich inclusions are abundant and largely free of nebular alteration; they comprise types similar to those in CM and CO chondrites, as well as unique types. Calcium dialuminate occurs in several inclusions. Metal, silicate and sulfide compositions are close to those in CM-CO chondrites and Al Rais and Renazzo. C1-chondrite clasts and metal-rich "reduced" clasts are present, but opaque matrix is absent. Siderophile abundances in ALH85085 are extremely high (e.g., Fe Si = 1.7 ?? solar), and volatiles are depleted (e.g., Na Si = 0.25 ?? solar, S Si = 0.03 ?? solar). Nonvolatile lithophile abundances are similar to those in Al Rais, Renazzo, and CM and CO chondrites. ALH85085 agglomerated when temperatures in the nebula were near 1000 K, in the same region where Renazzo, Al Rais and the CI chondrites formed. Agglomeration of high-temperature material may thus be a mechanism by which the fractionation of refractory lithophiles occurred in the nebula. Chondrule formation must have occurred at high temperatures when clumps of precursors were small. After agglomeration, ALH85085 was annealed and lightly shocked. C1 and other clasts were subsequently incorporated during late-stage brecciation. ?? 1988.
Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder
NASA Astrophysics Data System (ADS)
Pei, Wei; Zhengying, Wei; Zhen, Chen; Junfeng, Li; Shuzhe, Zhang; Jun, Du
2017-08-01
A three-dimensional numerical model was developed to investigate effects of laser scanning speed, laser power, and hatch spacing on the thermodynamic behaviors of the molten pool during selective laser melting of AlSi10Mg powder. A randomly distributed packed powder bed was achieved using discrete element method (DEM). The powder bed can be treated as a porous media with interconnected voids in the simulation. A good agreement between numerical results and experimental results establish the validity of adopted method. The numerical results show that the Marangoni flow within the molten pool was significantly affected by the processing parameters. An intense Marangoni flow leads to a perturbation within the molten pool. In addition, a relatively high scanning speed tends to cause melt instability. The perturbation or the instability within the molten pool results in the formation of pores during SLM, which have a direct influence on the densification level.
Impact glasses from the ultrafine fraction of lunar soils
NASA Technical Reports Server (NTRS)
Norris, J. A.; Keller, L. P.; Mckay, D. S.
1993-01-01
The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes which accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact induced chemical fractionation. Among these are HASP glasses (High-Al, Si-Poor) which are believed to represent the refractory residuum left after the loss of volatile elements (e.g. Si, Fe, N) from the precursor material. In addition to HASP-type glasses, we also observed a group of VRAP glasses (volatile-rich, Al-poor) that represent condensates of vaporized volatile constituents and are complementary to the HASP compositions. High-Ti glasses were also found during the course of the study, and are documented here for the first time.
Lunar mining of oxygen using fluorine
NASA Technical Reports Server (NTRS)
Burt, Donald M.
1992-01-01
An important aspect of lunar mining will be the extraction of volatiles, particularly oxygen, from lunar rocks. Thermodynamic data show that oxygen could readily be recovered by fluorination of abundant lunar anorthite, CaAl2Si2O8. Fluorine is the most reactive element, and the only reagent able to extract 100 percent of the oxygen from any mineral, yet it can safely be stored or reacted in nickel or iron containers. The general fluorination reaction, mineral + 2F2 = mixed fluorides = O2, has been used for more than 30 years at a laboratory scale by stable-isotope geochemists. For anorthite, metallic Al and Si may be recovered from the mixed fluorides by Na-reduction, and CaO via exchange with Na2O; the resulting NaF may be recycled into F2 and Na by electrolysis, using lanthanide-doped CaF2 as the inert anode.
NASA Astrophysics Data System (ADS)
Laslo, A.; Dudric, R.; Neumann, M.; Isnard, O.; Coldea, M.; Pop, V.
2014-12-01
The electronic properties of RCo5-xMx (R=Er, Sm, Tm; M=Si, Ga, Al; x=0 and 1) compounds were investigated by X-ray photoelectron spectroscopy (XPS). The study was focused on the Co 3s exchange splitting, the valence bands and chemical shifts of the elements from the analyzed compounds. The Co 2p3/2 core-level chemical shifts were described by means of the Auger parameters and Wagner plot. The hybridization between the R 5d6s and M 3sp and 4sp states and Co 3d states leads to a partial filling of the Co 3d band and to a decrease of the Co magnetic moments in comparison with the value in pure Co metal, in good agreement with the magnetic measurements.
NASA Astrophysics Data System (ADS)
Dang, Xudan; Wei, Meng; Fan, Bingbing; Guan, Keke; Zhang, Rui; Long, Weimin; Zhang, Hongsong
2017-06-01
In situ synthesis of mullite whisker was introduced to Al2O3-SiC composite by microwave sintering. The effects of sintering parameters (sintering temperature, holding time and SiC particle size) on thermal shock resistance of Al2O3-SiC composite were also studied in this paper. Original SiC particles coated with SiO2 by a sol-gel method were reacted with Al2O3 particles, resulting in the in situ growth of mullite. The phase composition was identified by x-ray diffraction (XRD). The bridging of mullite whisker between Al2O3 and SiC particles was observed by scanning electron microscopy (SEM) analysis. The thermal shock resistance of samples was investigated through the combination of water quenching and three-point bending methods. The results show that the thermal shock resistance of Al2O3-SiC composite with mullite whisker reinforced remarkably, indicating better mechanical properties than the Al2O3-SiC composite without mullite whisker. Finally, the optimum process parameters (the sintering temperature of 1500 °C, the holding time of 30 min, and the SiC particle size of 5 µm) for toughening Al2O3-SiC composite by in situ synthesized mullite whisker were obtained.
Single crystal growth of the Er2PdSi3 intermetallic compound
NASA Astrophysics Data System (ADS)
Mazilu, I.; Frontzek, M.; Löser, W.; Behr, G.; Teresiak, A.; Schultz, L.
2005-02-01
Single crystals of the Er2PdSi3 intermetallic compound melting congruently at 1648 ∘C, were grown by a floating zone method with radiation heating. The control of oxygen content was the key factor to avoid oxide precipitates, which can affect effective grain selection in the crystal growth process. Crystals grown at velocities of 5 mm/h with a preferred direction close to (1 0 0) with inclination angles of about 12 ∘ against the rod axis show very distinct facets at the rod surface. The crystals are Pd-depleted and Si-rich with respect to the nominal Er2PdSi3 stoichiometry, but exhibit inferior element segregation. Measurements on oriented single crystalline samples revealed antiferromagnetic ordering below 7 K, a magnetic easy axis parallel to the (0 0 1) axis of the AlB2-type hexagonal unit cell, and anisotropic electric properties.
Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites
NASA Astrophysics Data System (ADS)
Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng
2015-03-01
This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antao, Sytle M.; Hassan, Ishmael; West Indies)
2011-09-06
The structure of an intermediate scapolite (Me{sub 36.6}) from Lake Clear, Ontario, was obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement in space group P4{sub 2}/n. The chemical formula obtained by electron microprobe is Na{sub 2.19}Ca{sub 1.35}K{sub 0.16}[Al{sub 3.95}Si{sub 8.05}O{sub 24}]Cl{sub 0.55}(CO{sub 3}){sub 0.41}(SO{sub 4}){sub 0.04}, equivalent to Me{sub 36.6}. The unit-cell parameters are a 12.07899(1), c 7.583467(9) {angstrom}, and V 1106.443(2) {angstrom}{sup 3}. The average distances are
NASA Astrophysics Data System (ADS)
Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault
2014-01-01
Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.
NASA Astrophysics Data System (ADS)
Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon; Kang, Youn-Bae
2013-04-01
In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 °C to 1550 °C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steel; thus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.
Sarmento, Hugo R; Campos, Fernanda; Sousa, Rafael S; Machado, Joao P B; Souza, Rodrigo O A; Bottino, Marco A; Ozcan, Mutlu
2014-07-01
This study evaluated the influence of air-particle abrasion protocols on the surface roughness (SR) of zirconia and the shear bond strength (SBS) of dual-polymerized resin cement to this ceramic. Sintered zirconia blocks (n = 115) (Lava, 3M ESPE) were embedded in acrylic resin and polished. The specimens were divided according to the 'particle type' (Al: 110 µm Al2O3; Si: 110 µm SiO2) and 'pressure' factors (2.5 or 3.5 bar) (n = 3 per group): (a) Control (no air-abrasion); (b) Al2.5; (c) Si2.5; (d) Al3.5; (e) Si3.5. SR (Ra) was measured 3-times from each specimen after 20 s of air-abrasion (distance: 10 mm) using a digital optical profilometer. Surface topography was evaluated under SEM analyses. For the SBS test, 'particle type', 'pressure' and 'thermocycling' (TC) factors were considered (n = 10; n = 10 per group): Control (no air-abrasion); Al2.5; Si2.5; Al3.5; Si3.5; ControlTC; Al2.5TC; Si2.5TC; Al3.5TC; Si3.5TC. After silane application, resin cement (Panavia F2.0) was bonded and polymerized. Specimens were thermocycled (6.000 cycles, 5-55°C) and subjected to SBS (1 mm/min). Data were analyzed using ANOVA, Tukey's and Dunnett tests (5%). 'Particle' (p = 0.0001) and 'pressure' (p = 0.0001) factors significantly affected the SR. All protocols significantly increased the SR (Al2.5: 0.45 ± 0.02; Si2.5: 0.39 ± 0.01; Al3.5: 0.80 ± 0.01; Si3.5: 0.64 ± 0.01 µm) compared to the control group (0.16 ± 0.01 µm). For SBS, only 'particle' factor significantly affected the results (p = 0.015). The SiO2 groups presented significantly higher SBS results than Al2O3 (Al2.5: 4.78 ± 1.86; Si2.5: 7.17 ± 2.62; Al3.5: 4.97 ± 3.74; Si3.5: 9.14 ± 4.09 MPa) and the control group (3.67 ± 3.0 MPa). All TC specimens presented spontaneous debondings. SEM analysis showed that Al2O3 created damage in zirconia in the form of grooves, different from those observed with SiO2 groups. Air-abrasion with 110 µm Al2O3 resulted in higher roughness, but air-abrasion protocols with SiO2 promoted better adhesion.
NASA Astrophysics Data System (ADS)
Jiao, H. Y.; LiMao, C. R.; Chen, Q.; Wang, P. Y.; Cai, R. C.
2018-01-01
Ca1.86Al2(Si1-xMox)O7:0.14Eu3+ and Ca1.86Al2Si1+yO7+2y:0.14 Eu3+ were synthesized by solid-state reaction. X-ray powder diffraction, excitation and emission spectra were used to investigate their structures and photoluminescence properties. The results shows that the phosphor Ca1.86Al2SiO7:0.14Eu3+ cannot be excited efficiently by light of 393 nm. The introduced Mo ion does not change the position of the excitation peak, but increases both the absorption at 400nm and the emission intensity of Eu3+. The intense red emitting phosphor Ca1.86Al2(Si0.95Mo0.05)O7:0.14Eu3+ was obtained, which has 67% enhanced luminous intensity compared to that of the undoped sample Ca1.86Al2SiO7:0.14Eu3+. Otherwise, SiO2 excess of non-stoichiometric phosphors Ca1.86Al2Si1+yO7+2y:0.14Eu3+ showed the characteristic pattern of a tetragonal structure with a small SiO2 concentration. The optimal phosphor of Ca1.86Al2Si1.1O7.2:0.14Eu3+ has a luminous intensity about two times higher than that of the original stoichiometric phosphor Ca1.86Al2SiO7:0.14Eu3+. We confirmed that the photoluminescence intensity of the obtained phosphors is fairly enhanced by excessive SiO2. The mechanism of this photoluminescence enhancement is discussed in this paper.
NASA Technical Reports Server (NTRS)
Mckay, G. A.; Weill, D. F.
1975-01-01
Solid/liquid distribution coefficients (weight basis) were experimentally determined for a number of trace elements for olivine, orthopyroxene, plagioclase and ilmenite. Values of distribution coefficients were measured at 1200 C and a f sub O2 of 10 to the -13.0 power for liquids similar in composition to the olivine-opx-plagioclase peritectic in the pseudoternary system (Fe,Mg)2SiO4-CaAl2Si2O8-SiO2. Values were also measured at 1140 C and a f sub O2 of 10 to the -12.8 power for liquids similar in composition to high-Ti mare basalts. Major and trace element partitioning and relevant phase equilibria were used to investigate possible parent-daughter relationships between a number of highland samples and highly evolved KREEP-rich materials. Out of about 80 highlands samples tested, 33 were found to be possible parents to the KREEP-rich materials. The average composition of these samples is very similar to that of the Low-K Fra Mauro basalt (LKFM). A model is proposed to explain the production of LKFM-type material and more evolved members of the KREEP suite.
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy System
NASA Astrophysics Data System (ADS)
Hasselquist, Sten; Shetrone, Matthew D.; Smith, Verne V.; Holtzman, Jon A.; McWilliam, Andrew; APOGEE Team
2018-06-01
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze the chemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] > -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function. We then exploit the unique chemical abundance patters of the Sgr core to trace stars belonging to the Sgr tidal streams elsewhere in the Milky Way.
Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites
NASA Astrophysics Data System (ADS)
Wang, Peng; Gao, Zeng; Niu, Jitai
2016-06-01
Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.
Liu, B; Zheng, Y F
2011-03-01
Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a concluding remark, Co, W, C and S are recommended as alloying elements for biodegradable iron-based biomaterials. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Štyriaková, I.; Štyriak, I.; Oberhänsli, H.
2012-07-01
The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria . With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255 days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.
Soroko, S I; Maksimova, I A; Protasova, O V
2014-01-01
By means of the nuclear-emission spectral analysis with inductively connected argon plasma were studied the contents of 28 macro- and trace elements (Al, Ag, Li, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Mg, Mn, Na, Ni, Mo, P, Zn, Se, Tl, Pb, Sr, S, Si) in the hair of children and teenagers living in the European North of the Russian Federation (Arkhangelsk region). There were revealed both: decrease and increase of some elements' contents. Also were revealed the dynamics of mentioned elements contents in the hair of the same children in different years. Significant individual variability of the macro and trace elements' status of children-northerners and some gender dependence were revealed.
Optimization of Machining Process Parameters for Surface Roughness of Al-Composites
NASA Astrophysics Data System (ADS)
Sharma, S.
2013-10-01
Metal matrix composites (MMCs) have become a leading material among the various types of composite materials for different applications due to their excellent engineering properties. Among the various types of composites materials, aluminum MMCs have received considerable attention in automobile and aerospace applications. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like silicon carbide particles. In the present investigation Al-SiC composite was produced by stir casting process. The Brinell hardness of the alloy after SiC addition had increased from 74 ± 2 to 95 ± 5 respectively. The composite was machined using CNC turning center under different machining parameters such as cutting speed (S), feed rate (F), depth of cut (D) and nose radius (R). The effect of machining parameters on surface roughness (Ra) was studied using response surface methodology. Face centered composite design with three levels of each factor was used for surface roughness study of the developed composite. A response surface model for surface roughness was developed in terms of main factors (S, F, D and R) and their significant interactions (SD, SR, FD and FR). The developed model was validated by conducting experiments under different conditions. Further the model was optimized for minimum surface roughness. An error of 3-7 % was observed in the modeled and experimental results. Further, it was fond that the surface roughness of Al-alloy at optimum conditions is lower than that of Al-SiC composite.
Mechanical properties of metal-ceramic nanolaminates: Effect of constraint and temperature
Yang, Ling Wei; Mayer, Carl; Li, Nan; ...
2017-09-21
Al/SiC nanolaminates with equal nominal thicknesses of the Al and SiC layers (10, 25, 50 and 100 nm) were manufactured by magnetron sputtering. The mechanical properties were measured at 25 °C and 100 °C by means of nanoindentation and micropillar compression tests and the deformation mechanisms were analyzed by in situ micropillar compression tests in the transmission electron microscope. In addition, finite element simulations of both tests were carried out to ascertain the role played by the strength of the Al layers and by the elastic constraint of the ceramic layers on the plastic flow of Al in the mechanicalmore » response. It was found that the mechanical response was mainly controlled by the constraint during nanoindentation or micropillar compression tests of very thin layered (≈10 nm) laminates, while the influence of the strength of Al layers was not as critical. This behavior was reversed, however, for thick layered laminates (100 nm). Here, these mechanisms point to the different effects of layer thickness during nanoindentation and micropillar compression, at both temperatures, and showed the critical role played by constraint on the mechanical response of nanolaminates made of materials with a very large difference in the elasto-plastic properties.« less
Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks
NASA Astrophysics Data System (ADS)
van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.
2017-06-01
Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.
NASA Technical Reports Server (NTRS)
Snyder, Gregory A.; Taylor, Lawrence A.; Crozaz, Ghislaine
1993-01-01
Results are presented of trace-element analyses of three lunar zircons. The major-element and REE compositions were determined using electron microprobes, and a correction was made for zircon for Zr-Si-O molecular interferences in the La to Pr mass region. The three zircons were found to exhibit similar REE abundances and patterns. Results of the analyses confirm earlier studies (Hess et al., 1975; Watson, 1976; Neal and Taylor, 1989) on the partitioning behavior of trace elements in immiscible liquid-liquid pairs. The results also support the postulated importance of silicate liquid immiscibility in the differentiation of the upper mantle and crust of the moon.
SBIR Phase I final report, Sensor for direct, rapid and complete elemental analysis of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyi
This Final Report is the result of the DOE SBIR Phase I assistance agreement No: DE-FOA-0001619 awarded to Applied Spectra, Inc. During the nine-month Phase I effort, we successfully demonstrated the ability to quantify rare-earth elements (REE) in coal using LIBS (Laser Induced Breakdown Spectroscopy) along with other elements of interest such as silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), titanium (Ti) and iron (Fe). In addition to elemental quantification, eighteen different coal types could be classified with 100% certainty using their LIBS spectrum. High-resolution LA-ICP-MS surface mapping showed a correlation between REE and other prevalent elementsmore » such as aluminum, silicon, and titanium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deibel, C. M.; Physics Division, Argonne National Laboratory, Argonne, Illinois 60439; Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824
2009-09-15
Strong evidence of the nucleosynthesis of Galactic {sup 26}Al has been found through measurements involving excesses in {sup 26}Mg from the decay of {sup 26}Al in meteoritic inclusions and the 1.809-MeV {gamma}-ray line detected by satellites such as CGRO and INTEGRAL. Several sites for the production of {sup 26}Al have been suggested, including ONe novae. Destruction of {sup 26}Al in ONe novae is possible via the reactions {sup 26}Al{sup g}(p,{gamma}){sup 27}Si and {sup 26}Al{sup m}(p,{gamma}){sup 27}Si. In the present work, resonance parameters for the {sup 26}Al{sup m}(p,{gamma}){sup 27}Si reaction have been determined via studies of the {sup 27}Al({sup 3}He,t){sup 27}Si*(p){supmore » 26}Al{sup m} and {sup 28}Si({sup 3}He,{alpha}){sup 27}Si*(p){sup 26}Al{sup m} reactions. Several new {sup 26}Al{sup m}+p resonances have been discovered within 1 MeV above the proton threshold of 7.691 MeV. Excitation energies and proton-branching ratios for those and previously known states are reported.« less
Zhou, Shengzhen; Davy, Perry K; Wang, Xuemei; Cohen, Jason Blake; Liang, Jiaquan; Huang, Minjuan; Fan, Qi; Chen, Weihua; Chang, Ming; Ancelet, Travis; Trompetter, William J
2016-12-01
Hourly-resolved PM 2.5 and PM 10-2.5 samples were collected in the industrial city Foshan in the Pearl River Delta region, China. The samples were subsequently analyzed for elemental components and black carbon (BC). A key purpose of the study was to understand the composition of particulate matter (PM) at high-time resolution in a polluted urban atmosphere to identify key components contributing to extreme PM concentration events and examine the diurnal chemical concentration patterns for air quality management purposes. It was found that BC and S concentrations dominated in the fine mode, while elements with mostly crustal and oceanic origins such as Si, Ca, Al and Cl were found in the coarse size fraction. Most of the elements showed strong diurnal variations. S did not show clear diurnal variations, suggesting regional rather than local origin. Based on empirical orthogonal functions (EOF) method, 3 forcing factors were identified contributing to the extreme events of PM 2.5 and selected elements, i.e., urban direct emissions, wet deposition and a combination of coarse mode sources. Conditional probability functions (CPF) were performed using wind profiles and elemental concentrations. The CPF results showed that BC and elemental Cl, K, Fe, Cu and Zn in the fine mode were mostly from the northwest, indicating that industrial emissions and combustion were the main sources. For elements in the coarse mode, Si, Al, K, Ca, Fe and Ti showed similar patterns, suggesting same sources such as local soil dust/construction activities. Coarse elemental Cl was mostly from the south and southeast, implying the influence of marine aerosol sources. For other trace elements, we found vanadium (V) in fine PM was mainly from the sources located to the southeast of the measuring site. Combined with CPF results of S and V in fine PM, we concluded shipping emissions were likely an important elemental emission source. Copyright © 2016. Published by Elsevier B.V.
Elements and inorganic ions as source tracers in recent Greenland snow
NASA Astrophysics Data System (ADS)
Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.
2017-09-01
Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.
Compositional variability of the aerosols collected on Kerkennah Islands (central Tunisia)
NASA Astrophysics Data System (ADS)
Trabelsi, A.; Masmoudi, M.; Quisefit, J. P.; Alfaro, S. C.
2016-03-01
The aim of the present study is to investigate the seasonal variability of the aerosol concentrations and origins in central Tunisia. Four field campaigns were carried out in 2010/2011 to collect air-suspended particles on the Kerkennah Islands. The elemental composition (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Pb, Ni, V, and As) of the particles collected in summer (June and July), autumn (September and November), winter (February and March), and spring (April and May) is determined by X-ray fluorescence analysis. Examination of the enrichment factors (EF) of all elements indicate that Al, Fe, Si, Ca, Ti, Mn, and Cr are mainly derived from soil sources, whereas Na and Cl are mostly of marine origin. Other elements such as K and Mg or S and P have multiple origins (Marine/crustal and crustal/anthropogenic, respectively). Finally, V, Cu, Ni, As, and Pb appear to be produced by anthropogenic activities. Based on the inter-elemental correlations, the mass concentrations of mineral dust (MD), sea-salt (SS) and anthropogenic (non-crustal and non-marine) sulfates (NSS) are quantified. MD, SS and NSS display significant inter-seasonal differences: on the one hand, MD and SS are the highest in spring and the lowest in winter, probably because of the seasonal change in meteorological conditions. On the other hand, NSS and Cu concentrations are above their autumn and winter values in spring and summer, which suggests the existence of a common source of the combustion type for these two pollutants.
NASA Astrophysics Data System (ADS)
Kikkawa, Takamaro; Kikuta, Kuniko
1993-05-01
Issues of interconnection technologies for quarter-micron devices are the reliability of metal lines with quarter-micron feature sizes and the formation of contact-hole-plugs with high aspect ratios. This paper describes a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure as a quarter-micron interconnection technology and aluminum-germanium (Al-Ge) reflow sputtering as a contact-hole filling technology. The TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure could suppress stress-induced voiding and improve the electromigration mean-time to failure. These improvements are attributed to the fact that the grain boundaries for the Al-Si-Cu film and the interfaces between the Al-Si-Cu and the TiN films are strengthened by the rigid intermetallic compound, TiAl3. The Al-Ge alloy reflow sputtering is a candidate for contact- and via-hole filling technologies in terms of reducing fabrication costs. The Al-Ge reflow sputtering achieved low temperature contact hole filling at 300 degree(s)C. Contact holes with a diameter of 0.25 micrometers and aspect ratio of 4 could be filled. This is attributed to the low eutectic temperature for Al-Ge (424 degree(s)C) and the effect of thin polysilicon underlayer on the enhancement of Al-Ge reflow.
Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varela, C.L. Komar; Arico, S.F.; Mirandou, M.
Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This lastmore » phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)« less
Partially etched Ti3AlC2 as a promising high capacity Lithium-ion battery anode.
Chen, Xifan; Zhu, Yuanzhi; Zhu, Xiaoquan; Peng, Wenchao; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin
2018-06-25
MXenes, a family of two-dimensional transition-metal carbide and nitride materials, are supposed to be the promising materials in energy storage because of the high electronic conductivity, hydrophilic surfaces and low diffusion barriers. MXenes are generally prepared by removing the "A" elements (A = Al, Si, Sn, etc.) from their corresponding MAX phases by using hydrofluoric acid (HF) and the other etching agents, despite the fact that these "A" elements usually have great volumetric and gravimetric capacities. Herein, we studied the etching progress of Ti3AlC2 and evaluated their anode performance in Lithium-ion batteries. We found that a partially etched sample (0.5h-peTi3C2Tx) showed much higher capacity (160 mA h g-1, 331.6 mA h cm-3 at 1C) when compared with the fully etched Ti3C2Tx (110 mA h g-1, 190.3 mA h cm-3 at 1C). Besides, a 99% capacity retention was observed even after 1000 cycles in the 0.5h-peTi3C2Tx anode. This interesting result can be explained, at least in part, by the alloying of the residue Al element during lithiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abundances and Kinematics of OB Stars in the Leading Arm of the Magellanic System
NASA Astrophysics Data System (ADS)
Zhang, L.; Moni Bidin, C.; Casetti-Dinescu, D. I.; Mendez, R. A.; Girard, T. M.; Korchagin, V. I.; Vieira, K.; van Altena, W. F.; Zhao, G.
2018-01-01
We determined seven element abundances (He, C, N, O, Mg, Si, and S) and kinematics for eight O-/B- type stars which is selected from 42 candidates (Casetti-Dinescu et al. 2014) of membership in the Leading Arm (LA) of the Magellanic System. The high resolution spectra were taken with the MIKE instrument on the Magellan 6.5m Clay telescope.
Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr
NASA Astrophysics Data System (ADS)
Senkova, S. V.; Senkov, O. N.; Miracle, D. B.
2006-12-01
The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.
Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Shengchang; Kong, Man
2014-01-28
The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less
NASA Astrophysics Data System (ADS)
Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri
2017-04-01
SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.
In-situ synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite by a thermite reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deevi, S.C.; Deevi, S.
1995-08-01
In this paper, the authors discuss the reaction mechanism involved in the thermite reaction leading to the synthesis of a composite since in an actual combustion synthesis, the reaction propagates at a velocity of 10 to 20 mm/sec. Reaction mechanism was determined by using a differential thermal analysis (DTA) and X-ray diffraction (XRD). During the combustion synthesis of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}, reaction of MoO{sub 3}, Al and Si occurs rapidly and the reactants and products are expected to be in the liquid state at the combustion temperature. MoO{sub 3} is first reduced to MoO{sub 2}, and the reaction betweenmore » MoO{sub 2}, Al and Si leads to a composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}. Differential thermal analysis reveals that the onset of exothermic reactions is preceded by melting indicating the necessity of molten Al for the synthesis of the composite. The reaction between MoO{sub 2} + 2Al +2Si can be moderated with Mo-Si mixtures such that the ratio of MoSi{sub 2} to Al{sub 2}O{sub 3} can be increased in the composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}.« less
NASA Astrophysics Data System (ADS)
Palke, A. C.; Geiger, C. A.; Stebbins, J. F.
2015-12-01
The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a number of crystal-chemical properties. Spectra of garnet containing various paramagnetic transition elements can also, in some cases, give local structural information. With a better understanding of paramagnetic effects in NMR spectroscopy, this type of study can possibly be expanded to other geologically important paramagnetic minerals and phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuryaeva, R.G., E-mail: rufina@igm.nsc.ru; Dmitrieva, N.V.; Surkov, N.V.
2016-02-15
Highlights: • Refractive index and the compressibility of LiAlSi{sub 3}O{sub 8} glass are obtained. • Among Li(Na,K)AlSi{sub 3}O{sub 8} glasses LiAlSi{sub 3}O{sub 8} glass has the lowest compressibility. • Degree of depolymerization (NBO/T = 0.31) for LiAlSi{sub 3}O{sub 8} glass was calculated. • NBO/T = 0.31 indicates a high content of NBOs atoms and Al in LiAlSi{sub 3}O{sub 8} glass. • Proposed reaction corresponds to the condition of the existence of ∼9% Al. - Abstract: The refractive index and the relative changes in the density for LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa were obtainedmore » using a polarization-interference microscope and an apparatus with diamond anvils. The results were compared with the previous data for the NaAlSi{sub 3}O{sub 8} and KAlSi{sub 3}O{sub 8} glasses. The compressibility of glasses increases in a series of alkali metal cations Li{sup +}, Na{sup +}, K{sup +}. From the previously found dependence of the compressibility (at P = 4.0 GPa) on the degree of depolymerization the value of NBO/T = 0.31 for LiAlSi{sub 3}O{sub 8} glass was calculated. A high degree of depolymerization of the LiAlSi{sub 3}O{sub 8} glass indicates not only a high content of NBOs atoms in the structural network, but also the presence of highly coordinated aluminum (according to the literature data ∼9%). The proposed schematic reaction for the formation of different structural groups corresponds to the condition of the existence of 9% highly coordinated aluminum.« less
The influence of Na + and Ca 2+ ions on the SiO 2-AlPO 4 materials structure — IR and Raman studies
NASA Astrophysics Data System (ADS)
Rokita, M.; Mozgawa, W.; Handke, M.
2001-09-01
The series of samples containing 0-20 mol% of NaCaPO4 and 20-0 mol% of AlPO4, respectively, with the constant amount of SiO2 (80 mol%) have been selected. The materials were prepared using both sol-gel as well as aerosil pseudo-aqua solution method. The AlPO4·SiO2 and NaCaPO4·SiO2 (80 mol% of SiO2) samples have been prepared. IR and Raman spectra of these samples are presented. The spectra of materials from NaCaPO4-AlPO4-SiO2 system are compared to those of NaCaPO4·SiO2 and AlPO4·SiO2 sample (samples without Al3+ or Na+ and Ca2+ cations, respectively). The studies have enabled us to identify the bands arising from the internal and lattice vibrations. The slight differences between the spectra of sol-gel and aerosil pseudo-aqua solution materials are pointed out and discussed. The influence of Na+ and Ca2+ ions on the AlPO4-SiO2 materials structure is analysed.
Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena
2016-01-01
In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094
NASA Astrophysics Data System (ADS)
Wu, Kai; Ding, Xing; Ling, Ming-Xing; Sun, Wei-dong; Zhang, Li-Peng; Hu, Yong-Bin; Huang, Rui-Fang
2018-03-01
Serpentinites are important volatile and fluid mobile element repositories in oceanic lithosphere and subduction zones, and thus provide significant constraints on global geochemical cycles and tectonic evolution at convergent margins. In this contribution, two types of serpentinites from the Mianlue suture zone in the Qinling orogenic belt, central China, are identified on the basis of detailed mineralogical and geochemical study. Serpentinites from the Jianchaling region (Group 1) are composed of lizardite/chrysotile + magnesite + magnetite. Most of these serpentinites (Group 1a), consist of pseudomorphic orthopyroxene and olivine, and are characterized by low Al2O3/SiO2, high MgO/SiO2 and Ir-type PGEs to Pt ratios, suggesting a residual mantle origin. Meanwhile, the U-shape REE pattern and positive Eu, Sr and Ba anomalies of these serpentinites indicate that serpentinization fluids have interacted with gabbroic cumulates at moderately high temperatures or associate with the chlorinity and redox conditions of the fluid. Considering the limited mobility of U in the hydrating fluids for the Group 1a serpentinites, hydrating fluids for these serpentinites are most likely derived from the dehydrated slab, and have been in equilibrium with subducting sediments. There are also some serpentinites with low-grade metamorphic recrystallization from the Jianchaling region (Group 1b), represented by recrystallized serpentine minerals (antigorite). The trace element compositions of these Group 1b serpentinites suggest that partial dehydration of serpentinites associated with the transformation from lizardite to antigorite in subduction zone is also likely to affect the geochemistry of serpentinites. Serpentinites from the Liangyazi region (Group 2) are composed of antigorite + dolomite + spinel + magnetite. The high Cr number (0.65-0.80) and low Ti concentrations of spinels in Group 2 serpentinites indicate a refractory mantle wedge origin. Fertile major element compositions (e.g., high Al2O3 content and Al2O3/SiO2) and conjoint enrichment in light rare earth elements and high field strength elements, however, suggest melt-rock interactions before serpentinization. Combined with their geochemical affinity to "subducted serpentinites", we conclude that their protoliths (refractory mantle wedge peridotite) experienced melt-rock interactions and then were incorporated into the subduction channel before serpentinization. Studies on these two types of serpentinites indicate that serpentinites from the orogenic belt are most likely characterized by multi-source, multi-stage and multi-genesis, further providing important constraints on subduction channel processes.
NASA Astrophysics Data System (ADS)
Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.
2017-08-01
Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).
NASA Astrophysics Data System (ADS)
Adams, J.; Spera, F. J.; Jackson, M. G.; Schmidt, J.
2017-12-01
The Samoan hotspot track hosts lavas that are representative of the Enriched Mantle II (EMII) geochemical signature, long thought to result from incorporation of recycled upper continental crust. Silicic (66-69 wt% SiO2) clinopyroxene (cpx)-hosted melt inclusions (MI) from isotopically enriched lavas from Samoa provide a window into their petrogenetic evolution. Enriched Samoan submarine lava, ALIA-115-18, from Savai'i Island, Samoa contains clinopyroxene (cpx) antecrysts that host uniformly trachydacitic MI's. The cpx's are more radiogenic (87Sr/86Sr=0.720232-0.720830) than the host whole rock (WR) (87Sr/86Sr=0.718592) providing evidence of cpx antecryst-WR disequilibrium (Jackson et al., 2007, 2009). Phase equilibria calculations using the Magma Chamber Simulator (Bohrson et al., 2014) have corroborated a lack of relationship by fractional crystallization (FC) between the antecrysts and WR composition as well as the cpx's and MI's. Cpx thermobarometry reveals cpx antecryst-WR disequilibrium is not a pressure effect but rather reflects cpx crystallization from a more magnesian parental melt (similar to the most mafic WR of the Samoan submarine lavas; SiO2=49 wt%, MgO=9 wt%), different than the ALIA-115-18 WR. The cpx antecrysts (Mg#72-86), and the rest of the antecryst population show a crystallization range of 1-5 kbar. Cpx groundmass phenocrysts (Mg#70-75) are consistent with ALIA-115-18 WR (SiO2=55 wt%, MgO=5 wt%) composition by FC in the 1-5 kbar range. The more mafic parent may represent the magma that mixed with evolved magmas, giving rise to radiogenic ALIA-115-18, and possibly the silicic MI's. Thus, studying the petrogenesis of the MI's is essential to understanding the evolution of EMII. Many cpx antecrysts with MI's are characterized by compositional halos; transects across the halos exhibit major and trace element gradients. Modeling of diffusive exchange (Cottrell et al., 2002) between the MI's and their host lavas, mediated by diffusion through cpx, allows one to constrain post-entrapment timescales. Preliminary results show distinct gradients in Al, Ti, Si, Cr, Sr, Zr, and the REEs. These elements cover a wide range of diffusivities and partition coefficients enabling a detailed timescale study of post-entrapment MI evolution and the petrogenesis of the Samoan lava suite.
NASA Astrophysics Data System (ADS)
Eason, Paul Duane
The Mo(Si,Al)2 C40 compound was chosen for investigation as a possible high temperature structural material. To produce the C40 phase, several processing routes were explored with emphasis on obtaining microstructure/property relationships (i.e. control of grain size and minimization of secondary phases). To facilitate processing of single phase material, the phase equilibria of the Mo-Si-Al ternary system were reevaluated with respect to the phases adjacent to the C40 compound. An anomalous environmental degradation appeared to be the primary obstacle to further study of the compound and was investigated accordingly. Several processing routes were assessed for the production of dense, nearly single-phase Mo(Si,Al)2. Hot powder compaction was chosen as the method of sample production as is the case with many refractory silicide based materials. Therefore, variations in the processing techniques came from the choice of precursor materials and methods of powder production. Mechanical alloying, arc-melting and comminution, and blending of both elemental and compound powders were all employed to produce charges for hot uniaxial pressing. The final compacts were compared on the basis of density, grain size and presence of secondary phases. Establishment of a Mo-Si-Al ternary isothermal phase diagram at 1400°C was performed. Multiphase alloy compositions were selected to identify the phase boundaries of the C40, C54, T1 and Mo3Al8 phase fields, as well as to verify the existence of the C54 phase at 1400°C. The alloys were equilibrated by heat treatment and analyzed for phase identification and quantitative compositional information. The environmental degradation phenomenon was approached as a classical "pest" with an emphasis of study on grain boundary chemistry and atmospheric dependence of attack. Both Auger spectroscopy and electron microscopy revealed carbon-impurity-induced grain boundary segregation responsible for the embrittlement and material loss. Means of preventing the attack by alloying techniques used in traditional alloys were explored.
NASA Astrophysics Data System (ADS)
Polukhin, V. A.; Kurbanova, E. D.
2016-02-01
Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).
Solidification studies of nanocrystalline and quasicrystalline materials from the undercooled state
NASA Astrophysics Data System (ADS)
Croat, Thomas Kevin
2001-07-01
Nanocrystallization occurring during metallic glass devitrification is studied in Zr-Al-Ni-Cu bulk metallic glasses (BMGs) and Al-RE-TM (RE = rare-earth, TM = transition metal) metallic glasses. The importance of transient nucleation in BMG devitrification was established by a direct transmission electron microscopy (TEM) measurement of the grain density in two-stage annealed samples. TEM examination of low temperature annealed BMGs also suggest that amorphous phase separation is occurring prior to crystallization. Nanocrystallization of rapidly quenched Al-RE-Ni glasses was preceded by the compositional segregation of the initially homogeneous glass into Al-rich and solute-rich regions (mainly nickel-enriched) on a ≈50--100 nm length scale, suggesting amorphous phase separation. This pre-existing compositional modulation on a nanometer scale leads naturally to the development of nanocrystals. The average rare earth radius (rRE) in Al-RE-Ni alloys was altered by co-substitution of chemically similar rare earth elements. In glasses with smaller r RE, nucleation of alpha-Al occurred preferentially near the boundaries of the phase-separated regions. However, phase separation did not universally lead to alpha-Al nanocrystallization; glasses with larger rRE crystallized to metastable intermetallic phases with a 50--100 nm grain size. Kinetic analysis of the alpha-Al crystallization was performed using isothermal DSC, yielding abnormally low Avrami exponents (n = 1.0--1.5); these values were found to be consistent with the observed transformation using a model that considers the overlapping diffusion fields of the alpha-Al grains during growth within the phase separated region. Containerless solidification experiments on Ti-based quasicrystal-forming alloys have been performed using various techniques, including drop-tube solidification, electromagnetic levitation (EML) and electrostatic levitation (ESL). In Ti-Fe-Si-O, the alpha-1/1 quasicrystal approximant phase is found to nucleate directly from the liquid over the range TixFe94-xSi 4(SiO2)2 with 67 < x < 69 in EML experiments. Both the alpha-1/1 phase in Ti-Fe-Si-O and the C14 Laves phase in Ti-Zr-Ni have lower relative undercoolings than nearby crystal phases. This presumably reflects the structural similarity between these polytetrahedral phases and the undercooled liquid, which leads to smaller nucleation barriers and lower maximum undercoolings.
Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel
NASA Astrophysics Data System (ADS)
Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.
2017-12-01
Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.
NASA Astrophysics Data System (ADS)
Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene
2016-06-01
The effect of a high magnetic field on the morphology of the Al-Si eutectic was investigated using EBSD technology. The results revealed that the application of the magnetic field modified the morphology of the Al-Si eutectic significantly. Indeed, the magnetic field destroyed the coupled growth of the Al-Si eutectic and caused the formation of the divorced α-Al and Si dendrites at low growth speeds (≤1 μm/s). The magnetic field was also found to refine the eutectic grains and reduce the eutectic spacing at the initial growth stage. Moreover, the magnetic field caused the occurrence of the columnar-to-equiaxed transition of the α-Al phase in the Al-Si eutectic. The abovementioned effects were enhanced as the magnetic field increased. This result should be attributed to the magnetic field restraining the interdiffusion of Si and Al atoms in liquid ahead of the liquid/solid interface and the thermoelectric magnetic force acting on the eutectic lamellae under the magnetic field.
Active zinc-blende III-nitride photonic structures on silicon
NASA Astrophysics Data System (ADS)
Sergent, Sylvain; Kako, Satoshi; Bürger, Matthias; Blumenthal, Sarah; Iwamoto, Satoshi; As, Donat Josef; Arakawa, Yasuhiko
2016-01-01
We use a layer transfer method to fabricate free-standing photonic structures in a zinc-blende AlN epilayer grown by plasma-assisted molecular beam epitaxy on a 3C-SiC pseudosubstrate and containing GaN quantum dots. The method leads to the successful realization of microdisks, nanobeam photonic crystal cavities, and waveguides integrated on silicon (100) and operating at short wavelengths. We assess the quality of such photonic elements by micro-photoluminescence spectroscopy in the visible and ultraviolet ranges, and extract the absorption coefficient of ZB AlN membranes (α ˜ (2-5) × 102 cm-1).
NASA Astrophysics Data System (ADS)
Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.
2011-06-01
Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and Dcation/D, although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.
NASA Astrophysics Data System (ADS)
Herdocia, C.; Maurrasse, F. J.
2017-12-01
The thick (> 4.5 km) sedimentary succession of the Organya Basin includes the Cabo Formation [1] which is well exposed in the Cabo valley area and is characteristically composed of black to dark gray marlstones and limestones that accumulated during the greenhouse climate and contain variable amount of organic matter [2-4]. Here we present geochemical results to assess redox conditions of 35.6 m of the Cabo Formation near the Barremian / Aptian boundary, along Catalunya Route C-14, immediately north of the town of Organya. TOC values range between 1 wt% and 5.8 wt%, and peak in all black limestones (0.43 m, 4.38 m, 14.85 m, 29.95 m, and 35.6 m). These TOC values average about 2.0 wt %, except at a height of 0.43 m, where the TOC has a strong peak (5.78 wt%). TIC values oscillated between 86.7 wt% and 96.8 wt%, and averaged at 92.7 wt% and show a strong negative correlation with TOC (r = -0.78). Measured carbon isotope on the organic carbon fraction (δ13Corg) showed fluctuations that ranged from -24.41‰ to -22.15‰. The TOC and δ13Corg curves show a positive correlation (r = 0.58), suggesting that carbon sequestration in the basin followed the overall global signature. Redox sensitive trace elements (V, Ni, Cu, and Mo) correlate with TOC values (r > 0.6), suggesting that dysoxic conditions were responsible for the preservation of organic matter. Biolimiting trace elements (Fe, P) also correlate positively with redox trace elements, and both have highest concentrations at 14.85 m, in concurrence with a high TOC value (2.93 wt%) indicating high primary productivity at that level. Major elements (Al, Si, and Ti) also correlates slightly with TOC (Al: r = 0.39; Si: r = 0.36; Ti: r = 0.43). References: [1] García-Senz, J., 2002, PhD Thesis, University of Barcelona, 310 pp. [2] Bernaus, J.M., et al., 2003. Sedimentary Geology 159 (3-4), 177-201. [3] Caus, E., et al., 1990. Cret. Research 11, 313-320. [4] Sanchez-Hernandez, Y., Maurrasse, F.J-M.R. 2014. Chem.Geology 372, 12-31.
Synthesis and characterization of AlTiSiN/CrSiN multilayer coatings by cathodic arc ion-plating
NASA Astrophysics Data System (ADS)
Yang, B.; Tian, C. X.; Wan, Q.; Yan, S. J.; Liu, H. D.; Wang, R. Y.; Li, Z. G.; Chen, Y. M.; Fu, D. J.
2014-09-01
AlTiSiN/CrSiN multilayer coatings were deposited on Si (1 0 0) and cemented carbide substrates using Cr, AlTi cathodes and SiH4 gases by cathodic arc ion plating system. The influences of SiH4 gases flowrate on the structural and mechanical properties of the coatings were investigated, systematically. AlTiSiN/CrSiN coatings exhibit a B1 NaCl-type nano-multilayered structure in which the CrSiN nano-layers alternate with AlTiSiN nano-layers with multiple orientations of crystal planes indicated by XRD patterns and TEM. Si contents of the coatings increase with increasing SiH4 flowrate. The hardness of the coatings increases to the maximum value of 3500 Hv0.05 with increasing SiH4 flowrate from 20 to 40 sccm and then decreases with further addition of SiH4 gases. A higher adhesive force of 73 N is obtained at the flowrate of 48 sccm. The coatings exhibit different tribological performance when the mating materials were varied from Si3N4 to cemented carbide balls and the variation of friction coefficients of the coatings against Si3N4 influenced by SiH4 flowrate are not obvious as against cemented carbide balls.
The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.
Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A
2010-03-01
This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.
NASA Astrophysics Data System (ADS)
Wang, A. Q.; Tian, H. W.; Xie, J. P.
2018-01-01
In this study, 35 vol.% SiC particles with different sizes reinforced 6061 aluminium alloy matrix composites were prepared by a powder metallurgy method. The Scanning Electron Microscope (SEM) images of composites were observed, the Coefficient of Thermal Expansion (CTE) and tensile strength of composites were examined, and the influences of SiC particle size on microstructures and properties of the composites were analyzed. Furthermore, the SiCp/6061Al composites with SiC particle size of 7.5 µm were selected to investigate the SiCp/Al interface microstructure and precipitated phases by the means of SEM, TEM and HRTEM. The study indicated that, with the increase of SiC particle size, the SiC particles distributed more uniformly in the matrix, the CTE of composites increased, but the tensile strength of composites decreased. The SiCp/Al interface in this experiment is clean and smooth, and the combination mechanism of SiC and Al is the formation of a half coherent interface by closely matching of atoms. Some micron-sized coarse intermetallic particles existed in the hot-pressed composites, such as random-shaped Mg2Si, long stick shaped Al15(Mn, Fe, Cu)3Si2. When the composites were solution treated at 510 °C for 2 h and then aging treated at 190 °C for 9 h, except long stick shaped Al15(Mn, Fe, Cu)3Si2, numerous nano-sized precipitated phases (Mg2Si) with diameters of 50-200 nm dispersively distributed in the matrix. After heat treatment, the tensile strength of composite with SiC particle size of 7.5 µm enhance from 298 MPa to 341 MPa.
Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy
NASA Astrophysics Data System (ADS)
Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue
2018-05-01
This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, X.C.; Fang, H.S.
1998-03-01
In Part 2 of this article, the high-strength Al-Si/TiC composite and the elevated-temperature-resistant Al-Fe(-V-Si)/TiC composite, developed on the basis of the in situ Al-TiC composites (Part 1 of the article), have been evaluated for their room- and elevated-temperature mechanical behavior. The microstructural characteristics of ingot metallurgy (IM) or rapid solidification (RS) Al-Si/TiC and Al-Fe(-V-Si)/TiC composites could be thought of as a combination of the related alloy matrix microstructures and the IM or RS Al/TiC composites. The IM Al/TiC and the Al-Si/TiC composites show superior strength and ductility to the relevant aluminum-based composites. The RS Al/TiC and the Al-Fe-V-Si/TiC exhibit highmore » Young`s moduli and substantial improvements in room- and elevated-temperature tensile properties compared to those of rapidly solidified alloys and conventional composites. The Young`s modulus values of RS Al/TiC and Al-Fe-V-Si/TiC composites are well within Hashin-Shtrikman (H-S) limits, in keeping with the strong interfacial bonding. In the micromechanics approach, the principal strengthening mechanisms for the present dispersed, particle-hardened RS in situ Al-TiC composites would include Orowan strengthening, grain-size and substructure strengthening, and solid-solution strengthening.« less
The effect of dietary habits on mineral composition of human scalp hair.
Chojnacka, Katarzyna; Zielińska, Agnieszka; Michalak, Izabela; Górecki, Henryk
2010-09-01
In the present work, hair mineral analysis of 117 individuals was carried out. The subjects were asked to fill a questionnaire concerning their dietary habits. The content of minerals in hair was determined by ICP-OES (macroelements) and ICP-MS technique (micro-, toxic and other trace elements). The results were elaborated statistically by Statisticaver. 8.0. It was found that consuming highly processed food causes increased levels of e.g. Na and P in hair, intake of slimming preparation resulted in increased content of Al, Cr, Ti, taking in laxative agents caused lower level of Pb (this element was probably eliminated by other excretory routes). Individuals which declared the use of analgesic agents had more Si in their hair. Drinking coffee was related with higher level of Al, Ni, S and Ti and lower Pb in hair. Drinking tea caused reduction in the level of Hg. These results show that hair mineral content reflects exposure of elements from the diet. Copyright © 2010 Elsevier B.V. All rights reserved.
Collisional Ionization Equilibrium for Optically Thin Plasmas
NASA Technical Reports Server (NTRS)
Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.
2006-01-01
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.
Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
Ovshinsky, Stanford R.; Fetcenko, Michael A.
1996-01-01
An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.
Effect of negative bias on TiAlSiN coating deposited on nitrided Zircaloy-4
NASA Astrophysics Data System (ADS)
Jun, Zhou; Zhendong, Feng; Xiangfang, Fan; Yanhong, Liu; Huanlin, Li
2018-01-01
TiAlSiN coatings were deposited on the nitrided Zircaloy-4 by multi-arc ion plating at -100 V, -200 V and -300 V. In this study, the high temperature oxidation behavior of coatings was tested by a box-type resistance furnace in air for 3 h at 800 °C; the macro-morphology of coatings was observed and analyzed by a zoom-stereo microscope; the micro-morphology of coatings was analyzed by a scanning electron microscopy (SEM), and the chemical elements of samples were analyzed by an energy dispersive spectroscopy(EDS); the adhesion strength of the coating to the substrate was measured by an automatic scratch tester; and the phases of coatings were analyzed by an X-ray diffractometer(XRD). Results show that the coating deposited at -100 V shows better high temperature oxidation resistance behavior, at the same time, Al elements contained in the coating is of the highest amount, meanwhile, the adhesion strength of the coating to the substrate is the highest, which is 33N. As the bias increases, high temperature oxidation resistance behavior of the coating weakens first and then increases, the amount of large particles on the surface of the coating increases first and then decreases whereas the density of the coating decreases first and then increases, and adhesion strength of the coating to the substrate increases first and then weakens. The coating's quality is relatively poor when the bias is -200 V.
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Yoshinori; Korenaga, Jun
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Miyazaki, Yoshinori; Korenaga, Jun
2017-11-01
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.
Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion
2014-01-01
Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems. PMID:24994964
Noh, Jin-Seo
2014-01-01
Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, M.R.; Richards, A.C.; Ohuchi, F.S.
1995-10-27
This report is the final summary for AFOSR project number F49620-92-J-0367. The purpose of this research was to evaluate the oxidation protection afforded to graphite or C/C composites by combining IrAl with SiC-C functionally gradient coatings FGCs. This project involved the design and construction of a novel cold wall levitation chemical vapor deposition (LCVD) reactor capable of producing continuous FGCs, and the modification of an existing physical vapor deposition (PVD) system to allow for codeposition of Ir and Al. The SiC-C FGCs were produced using the SiCl4-C3H8-H2 gas system. By continuously varying the Si to C ratio in the gasmore » stream the composition of the coatings could be precisely controlled and tailored to fit a predetermined compositional profile. IrAl was deposited onto the SiC-C FGC by alternately depositing layers of Ir and Al and reacting them at 700 deg C, in vacuum, to form IrAl. Analysis of the as reacted film indicated that IrAl had indeed formed, however, a secondary reaction had occurred between the Ir and SiC producing IrSi3 and graphite. Cracking of the IrAl coating was also observed and was attributed to the CTE mismatch between SiC and the IrAl coating. Upon exposure to a high temperature oxidizing flame (<2100 deg C for 5 min.), the IrAl formed a protective layer of alumina, however, the extensive cracking of the IrAl layer allowed the SiC-C FGC layer to oxidize.« less
First-principles study of spin-transfer torque in Co{sub 2}MnSi/Al/Co{sub 2}MnSi spin-valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Ling, E-mail: lingtang@zjut.edu.cn; Yang, Zejin, E-mail: zejinyang@zjut.edu.cn
The spin-transfer torque (STT) in Co{sub 2}MnSi(CMS)/Al/Co{sub 2}MnSi spin-valve system with and without interfacial disorder is studied by a first-principles noncollinear wave-function-matching method. It is shown that in the case of clean interface the angular dependence of STT for CoCo/Al (the asymmetry parameter Λ≈4.5) is more skewed than that for MnSi/Al (Λ≈2.9), which suggests the clean CoCo/Al architecture is much more efficient for the application on radio frequency oscillation. We also find that even with interfacial disorder the spin-valve of half-metallic CMS still has a relatively large parameter Λ compared to that of conventional ferromagnet. In addition, for clean interfacemore » the in-plane torkance of MnSi/Al is about twice as large as that of CoCo/Al. However, as long as the degree of interfacial disorder is sufficiently large, the CoCo/Al and MnSi/Al will show approximately the same magnitude of in-plane torkance. Furthermore, our results demonstrate that CMS/Al/CMS system has very high efficiency of STT to switch the magnetic layer of spin-valve.« less
NASA Astrophysics Data System (ADS)
Kurat, Gero; Zinner, Ernst; Varela, Maria Eugenia
2007-08-01
A devitrified glass inclusion from the Guin (UNGR) iron consists of cryptocrystalline feldspars, pyroxenes, and silica and is rich in SiO2, Al2O3, and Na2O. It contains a rutile grain and is in contact with a large Cl apatite. The latter is very rich in rare earth elements (REEs) (˜80 × CI), which display a flat abundance pattern, except for Eu and Yb, which are underabundant. The devitrified glass is very poor in REEs (<0.1 × CI), except for Eu and Yb, which have positive abundance anomalies. Devitrified glass and Cl apatite are out of chemical equilibrium and their complementary REE patterns indicate a genesis via condensation under reducing conditions. Inclusion 1 in the Kodaikanal (IIE) iron consists of glass only, whereas inclusion 2 consists of clinopyroxene, which is partly overgrown by low-Ca pyroxene, and apatite embedded in devitrified glass. All minerals are euhedral or have skeletal habits indicating crystallization from the liquid precursor of the glass. Pyroxenes and the apatite are rich in trace elements, indicating crystallization from a liquid that had 10-50 × CI abundances of REEs and refractory lithophile elements (RLEs). The co-existing glass is poor in REEs (˜0.1-1 × CI) and, consequently, a liquid of such chemical composition cannot have crystallized the phenocrysts. Glasses have variable chemical compositions but are rich in SiO2, Al2O3, Na2O, and K2O as well as in HFSEs, Be, B, and Rb. The REE abundance patterns are mostly flat, except for the glass-only inclusion, which has heavy rare earth elements (HREEs) > light rare earth elements (LREEs) and deficits in Eu and Yb—an ultrarefractory pattern. The genetic models suggested so far cannot explain what is observed and, consequently, we offer a new model for silicate inclusion formation in IIE and related irons. Nebular processes and a relationship with E meteorites (Guin) or Ca-Al-rich inclusions (CAIs) (Kodaikanal) are indicated. A sequence of condensation (CaS, TiN or refractory pyroxene-rich liquids) and vapor-solid elemental exchange can be identified that took place beginning under reducing and ending at oxidizing conditions (phosphate, rutile formation, alkali and Fe2+ metasomatism, metasomatic loss of REEs from glass).
Connectivity of glass structure. Oxygen number
NASA Astrophysics Data System (ADS)
Medvedev, E. F.; Min'ko, N. I.
2018-03-01
With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.
The Charge-Balancing Role of Calcium and Alkali Ions in Per-Alkaline Aluminosilicate Glasses.
Thomsen, René M; Skibsted, Jørgen; Yue, Yuanzheng
2018-03-29
The structural arrangement of alkali-modified calcium aluminosilicate glasses has implications for important properties of these glasses in a wide range of industrial applications. The roles of sodium and potassium and their competition with calcium as network modifiers in peralkaline aluminosilicate glasses have been investigated by 27 Al and 29 Si MAS NMR spectroscopy. The 29 Si MAS NMR spectra are simulated using two models for distributing Al in the silicate glass network. One model assumes a hierarchical, quasi-heterogeneous aluminosilicate network, whereas the other is based on differences in relative lattice energies between Si-O-Si, Al-O-Al, and Si-O-Al linkages. A systematic divergence between these simulations and the experimental 29 Si NMR spectra is observed as a function of the sodium content exceeding that required for stoichiometric charge-balancing of the negatively charged AlO 4 tetrahedra. Similar correlations between simulations and experimental 29 Si NMR spectra cannot be made for the excess calcium content. Moreover, systematic variations in the 27 Al isotropic chemical shifts and the second-order quadrupole effect parameters, derived from the 27 Al MAS NMR spectra, are reported as a function of the SiO 2 content. These observations strongly suggest that alkali ions preferentially charge-balance AlO 4 3- as compared to alkaline earth (calcium) ions. In contrast, calcium dominates over the alkali ions in the formation of nonbridging oxygens associated with the SiO 4 tetrahedra.
Adsorption properties of AlN on Si(111) surface: A density functional study
NASA Astrophysics Data System (ADS)
Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting
2018-04-01
In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.
NASA Technical Reports Server (NTRS)
Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.
1992-01-01
The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing (wake), or west, side), 12 from tray B-12 (north side), 4 from tray D-6 (south side), 3 from tray H-11 (space end), and 6 from tray G-10 (earth end). Residue from manmade debris was identified in craters on all trays (aluminum oxide particle residues were not detectable on the Al/Si substrates). These results were consistent with the IDE impact record which showed highly variable long term microparticle impact flux rates on the west, space, and Earth sides of the LDEF which could not be ascribed to astronomical variability of micrometeorite density. The IDE record also showed episodic bursts of microparticle impacts on the east, north, and south sides of the satellite, denoting passage through orbital debris clouds or rings.
Anomalously low pressure of rutile-CaCl2 phase transition in aluminous hydrogen- bearing stishovite.
NASA Astrophysics Data System (ADS)
Lakshtanov, D. L.; Sinogeikin, S. V.; Litasov, K. D.; Prakapenka, V. B.; Hellwig, H.; Wang, J.; Sanches-Valle, C.; Perrillat, J.; Chen, B.; Somayazulu, M.; Ohtani, E.; Bass, J.
2006-12-01
Stishovite, the tetragonal rutile-structured (P42/mnm) high-pressure phase of silica with Si in six coordination by oxygen, is one of the main constituents of subducting slabs, may also be present as a free phase in the lower mantle, and may be a reaction product at the core-mantle boundary. Pure SiO2 stishovite undergoes a rutile-CaCl2 structural transition at 50 - 60GPa. Theoretical investigations suggested that this transition is associated with a drastic drop in shear modulus that could provide a sharp seismic signature, however such a change in velocity has never been verified experimentally. Thus far a majority of investigations have concentrated on pure SiO2 stishovite, whereas stishovite in natural lithologies (such as MORB) is expected to contain up to 5wt.% Al2O3 and possibly water. Here we report the elastic properties, densities, and Raman spectra of Al- and H-bearing stishovite with a composition close to that expected in Earth's mantle. We show that the Landau-type rutile-CaCl2 phase transition in stishovite is significantly different from the transition pressure for pure SiO2. Our results suggest that the rutile-CaCl2 transition in natural stishovite (with up to 5wt.% Al2O3) is strongly influenced by the presence of minor elements. The phase transition is accompanied by drastic changes in elastic properties, which we have measured on single-crystal samples. This transition should be visible in seismic profiles and may be responsible for seismic reflectors at 1000-1400 km depths.
NASA Astrophysics Data System (ADS)
Fitriani, Pipit; Sharma, Amit Siddharth; Yoon, Dang-Hyok
2018-05-01
SiCf/SiC composites containing three different types of sintering additives viz. Sc-nitrate, Al2O3-Sc2O3, and Al2O3-Y2O3, were subjected to ion irradiation using 0.2 MeV H+ ions with a fluence of 3 × 1020 ions/m2 at room temperature. Although all composites showed volumetric swelling upon ion irradiation, SiCf/SiC with Sc-nitrate showed the smallest change followed by those with the Al2O3-Sc2O3 and Al2O3-Y2O3 additives. In particular, SiCf/SiC containing the conventional Al2O3-Y2O3 additive revealed significant microstructural changes, such as surface roughening and the formation of cracks and voids, resulting in reduced fiber pullout upon irradiation. On the other hand, the SiCf/SiC with Sc-nitrate showed the highest resistance against ion irradiation without showing any macroscopic changes in surface morphology and mechanical strength, indicating the importance of the sintering additive in NITE-based SiCf/SiC for nuclear structural applications.
NASA Astrophysics Data System (ADS)
Sager, Manfred; Erhart, Eva
2016-04-01
High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate-soluble Fe together with P and S was independent from oxalate-soluble Al-Mn-Si. In the crops, all element levels were within a non-contaminated and non-deficient range, therefore correlations with concentrations as well as loads in the wheat grains where largely not pronounced. Maximum correlations between plant and soil data were obtained with Li and Be. The load data (concentration times yield, given in g/ha) were much more intercorrelated than the concentrations. Regarding the same element, correlation coefficients between loads and respective concentrations were larger than 0,800 for Al, Ba, Cd, Co, Cr, Li, Mo, Na, Ni, Se, and Sr, which means the transfer remained independent from the load. In case of Ca, Mg, P, S, Zn, however, correlation coefficients between loads and concentrations were < 0,500, thus the transfer was not constant because of obvious metabolic influences. The proposed method of soil characterization was applied at a field trial here for the first time, and offers new possibilities of intercorrelations between plant uptake and geochemical soil fractions.
NASA Astrophysics Data System (ADS)
Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.
2017-04-01
This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.
PRELIMINARY EVALUATION OF FeCrAl CLADDING AND U-Si FUEL FOR ACCIDENT TOLERANT FUEL CONCEPTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, J. D.; Gamble, K. A.
2015-09-01
Since the accident at the Fukushima Daiichi Nuclear Power Station, enhancing the accident tolerance of light water reactors (LWRs) has become an important research topic. In particular, the community is actively developing enhanced fuels and cladding for LWRs to improve safety in the event of accidents in the reactor or spent fuel pools. Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system, can tolerate loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normalmore » operations and operational transients. This paper presents early work in developing thermal and mechanical models for two materials that may have promise: U-Si for fuel, and FeCrAl for cladding. These materials would not necessarily be used together in the same fuel system, but individually have promising characteristics. BISON, the finite element-based fuel performance code in development at Idaho National Laboratory, was used to compare results from normal operation conditions with Zr-4/UO2 behavior. In addition, sensitivity studies are presented for evaluating the relative importance of material parameters such as ductility and thermal conductivity in FeCrAl and U-Si in order to provide guidance on future experiments for these materials.« less
NASA Astrophysics Data System (ADS)
Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide
2017-12-01
Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y = Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.
NASA Astrophysics Data System (ADS)
Tsukimoto, S.; Nitta, K.; Sakai, T.; Moriyama, M.; Murakami, Masanori
2004-05-01
In order to understand a mechanism of TiAl-based ohmic contact formation for p-type 4H-SiC, the electrical properties and microstructures of Ti/Al and Ni/Ti/Al contacts, which provided the specific contact resistances of approximately 2×10-5 Ω-cm2 and 7×10-5 Ω-cm2 after annealing at 1000°C and 800°C, respectively, were investigated using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Ternary Ti3SiC2 carbide layers were observed to grow on the SiC surfaces in both the Ti/Al and the Ni/Ti/Al contacts when the contacts yielded low resistance. The Ti3SiC2 carbide layers with hexagonal structures had an epitaxial orientation relationship with the 4H-SiC substrates. The (0001)-oriented terraces were observed periodically at the interfaces between the carbide layers and the SiC, and the terraces were atomically flat. We believed the Ti3SiC2 carbide layers primarily reduced the high Schottky barrier height at the contact metal/p-SiC interface down to about 0.3 eV, and, thus, low contact resistances were obtained for p-type TiAl-based ohmic contacts.
Combined PIXE and X-ray SEM studies on time-resolved deposits of welding shop aerosols
NASA Astrophysics Data System (ADS)
Barfoot, K. M.; Mitchell, I. V.; Verheyen, F.; Babeliowsky, T.
1981-03-01
Time-resolved deposits of welding shop air particulates have been obtained using a streak sampling system. PIXE analysis of these deposits, using 2 MeV protons, typically revealed the presence of a large number of elements, with many in the range Z = 11-30. Strong variations, up to three orders of magnitude, in the concentrations of several elements such as Al, Si and Fe as well as Zn, Na, K and Ca were found. The 2 h sampling resolution normally used was found to be insufficient to follow the short pollution episodes that regularly occur in a welding shop environment and so sampling with a 20 min resolution was used. The variation of elemental concentrations for different sampling times together with information on the physical nature of these air particulates, determined with a scanning electron microscope (SEM) and Si(Li) X-ray detector attachment, are presented. This type of information together with that obtained from the PIXE analysis is of importance in industrial hygiene studies. The need to make corrections for partial filter clogging, based on air-flow rate monitoring, is discussed.
NASA Astrophysics Data System (ADS)
Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel
2018-02-01
The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.
The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.
Gee, Becky A
2004-01-01
The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2. Copyright 2003 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurdakul, Hilmi; Idrobo Tapia, Juan C; Pennycook, Stephen J
2011-01-01
Direct visualization of rare earths in {alpha}- and {beta}-SiAlON unit-cells is performed through Z-contrast imaging technique in an aberration-corrected scanning transmission electron microscope. The preferential occupation of Yb and Ce atoms in different interstitial locations of {beta}-SiAlON lattice is demonstrated, yielding higher solubility for Yb than Ce. The triangular-like host sites in {alpha}-SiAlON unit cell accommodate more Ce atoms than hexagonal sites in {beta}-SiAlON. We think that our results will be applicable as guidelines for many kinds of rare-earth-doped materials.
Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys
NASA Astrophysics Data System (ADS)
Ravi, K. R.; Manivannan, S.; Phanikumar, G.; Murty, B. S.; Sundarraj, Suresh
2011-07-01
Although the grain-refinement practice is well established for wrought Al alloys, in the case of foundry alloys such as near eutectic Al-Si alloys, the underlying mechanisms and the use of grain refiners need better understanding. Conventional grain refiners such as Al-5Ti-1B are not effective in grain refining the Al-Si alloys due to the poisoning effect of Si. In this work, we report the results of a newly developed grain refiner, which can effectively grain refine as well as modify eutectic and primary Si in near eutectic Al-Si alloys. Among the material choices, the grain refining response with Al-1Ti-3B master alloy is found to be superior compared to the conventional Al-5Ti-1B master alloy. It was also found that magnesium additions of 0.2 wt pct along with the Al-1Ti-3B master alloy further enhance the near eutectic Al-Si alloy's grain refining efficiency, thus leading to improved bulk mechanical properties. We have found that magnesium essentially scavenges the oxygen present on the surface of nucleant particles, improves wettability, and reduces the agglomeration tendency of boride particles, thereby enhancing grain refining efficiency. It allows the nucleant particles to act as potent and active nucleation sites even at levels as low as 0.2 pct in the Al-1Ti-3B master alloy.
2015-03-01
polypropylene ...ai n in g A C N - E x tr ac ta b le (F in al /I n it ia l) In it ia l A n al y si s2 (m g /k g ) F in al A n al y si s3 (m g /k g...R em ai n in g A C N - E x tr ac ta b le (F in al /I n it ia l) In it ia l A n al y si s2 (m g /k g ) F in al A n al y si s3 (m g /k
Wettability of MnxSiyOz by Liquid Zn-Al Alloys
NASA Astrophysics Data System (ADS)
Kim, Yunkyum; Shin, Minsoo; Tang, Chengying; Lee, Joonho
2010-08-01
The wettability of MnxSiyOz by liquid Zn-Al alloys was investigated to obtain basic information on the coating properties of high-strength steels with surface oxides in the hot-dip galvanizing process. In this study, the contact angles of liquid Zn-Al alloys (Al concentrations were 0.12 and 0.23 wt pct) on four different MnxSiyOz oxides, namely MnO, MnSiO3, Mn2SiO4, and SiO2, were measured with the dispensed drop method. The contact angle did not change across time. With an increasing Al concentration, the contact angle was slightly decreased for MnO and Mn2SiO4, but there was no change for MnSiO3 and SiO2. With an increasing SiO2 content, the contact angle gradually increased by 54 wt pct to form MnSiO3, and for pure SiO2 substrate, the contact angle decreased again. Consequently, the MnSiO3 substrate showed the worst wettability among the four tested oxide substrates.
LA-ICP-MS analysis of trace elements in glass spherules of the El'gygytgyn impact structure, Siberia
NASA Astrophysics Data System (ADS)
Adolph, Leonie; Deutsch, Alex
2010-05-01
The 3.58±0.04 Ma old El'gygytgyn impact structure (Central Chukotka, NE Siberia) with a diameter of 18 km (Gurov and Gurova 1979, Layer 2000) is one of only two terrestrial craters with a volcanic target; therefore, analysis of its target and impact lithologies is of basic interest for comparative planetology. Lake El'gygytgyn is a very valuable climate archive in the Arctic as it was neither covered by glaciers (Melles et al. 2007) nor has the lake ever fallen dry. Climate and impact research were the rationale for the ICDP drilling project that finished successfully in spring 2009. Impactites like melt rocks and breccias are rarely found in outcrops yet are present in the 80 m terrace of Lake El'gygytgyn (Gurov and Gurova 1979). Numerous investigations on petrography, shock metamorphism, and geochemistry of impactites from El'gygytgyn have been published so far (e.g. Gurov et al. 2007). We report the first trace element data for seven 30- to 760-μm-sized impact glass spherules that have been collected about10 km off the crater center from a terrace deposit of the Enmyvaam River outside the crater rim. The spherules are translucent with colors ranging from amber, dark brown to nearly black; they contain a few circular bubbles, schlieren, and very rarely mineral clasts and breccia fragments. Major elements were measured with the JEOL JXA 8600 MX Superprobe, 31 trace elements were analyzed with the Finnigan Element2 LA-ICP-MS with 5 Hz, 8-9 J/cm2 at with Si as internal, and NIST612 as external standard (Institut f. Mineralogie, WWU Münster). The spot size was 60 μm. All spherules show a very homogeneous major and trace element distribution yet clear differences exist between the samples in the SiO2 content (in weight percent) 53-68: four of the glasses are dacitic, two andesitic, and one basaltic-andesitic in composition. In addition, MgO (2.1-9.2), K2O (0.6-3.3), and (in ppm) Ni (317-1096), Co (25-79), Zr (100-169), Rb (18-107), and Ba (459-1092) display wide ranges in concentration. The Ni/Co ratio is consistently high (11-14), the Zr/Hf ratio range between 36 and an anomalous high value of about 50, the Nb/Ta ratio vary from 17.6 to 14.9. The rare earth element distribution patterns are similar, yet samples with low SiO2 contents (53.1-58.4) have lower REE concentrations except for Eu. The new trace element data for impact glass lithologies from El'gygytgyn extent the range of known impactites (Gurov et al. 2007) into the field of more mafic compositions. Basalts to andesites are known to occur in the El'gygytgyn area, and obviously form the precursor lithologies for two of the spherules. All impact glass samples plot in the Zr-Ti-Y-diagram (in the tectonic setting for calc-alkaline rocks, as expected from the larger geological frame (Chekhovich et al. 1999), indicating that impact melting did not change the primary characteristics of the precursor rocks. In agreement with this setting are the Nb/Ta and Zr/Hf values although a Zr/Hf of 50 is remarkable. Origin and importance of the exceptional high Ni contents, in combination with high Ni/Co ratios are currently not understood. We exclude, however, technical reasons for these data as analyses of standard glass NIST 612 measured as unknown yielded satisfactory results.
Importance of Silicon and Mechanisms of Biosilica Formation in Plants
Siti Nor Akmar, Abdullah; Rafii, Mohd Y.; Tengoua, F. F.; Nurul Mayzaitul Azwa, Jamaludin; Shabanimofrad, M.
2015-01-01
Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation. PMID:25685787
Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites
NASA Astrophysics Data System (ADS)
Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.
2018-02-01
The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.
Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan
2013-11-15
In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, (27)Al MAS NMR and (29)Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si+Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al(IV) and Al(VI), but mainly in the form of Al(VI). Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO4] to [AlO6] and inhibits the combination between [AlO4] and [SiO4] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO4] in the hydration products declines. Published by Elsevier B.V.
Zhang, Y.; Mahowald, N.; Scanza, R. A.; ...
2015-10-12
Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less
DuMont, Jaime W; Marquardt, Amy E; Cano, Austin M; George, Steven M
2017-03-22
The thermal atomic layer etching (ALE) of SiO 2 was performed using sequential reactions of trimethylaluminum (TMA) and hydrogen fluoride (HF) at 300 °C. Ex situ X-ray reflectivity (XRR) measurements revealed that the etch rate during SiO 2 ALE was dependent on reactant pressure. SiO 2 etch rates of 0.027, 0.15, 0.20, and 0.31 Å/cycle were observed at static reactant pressures of 0.1, 0.5, 1.0, and 4.0 Torr, respectively. Ex situ spectroscopic ellipsometry (SE) measurements were in agreement with these etch rates versus reactant pressure. In situ Fourier transform infrared (FTIR) spectroscopy investigations also observed SiO 2 etching that was dependent on the static reactant pressures. The FTIR studies showed that the TMA and HF reactions displayed self-limiting behavior at the various reactant pressures. In addition, the FTIR spectra revealed that an Al 2 O 3 /aluminosilicate intermediate was present after the TMA exposures. The Al 2 O 3 /aluminosilicate intermediate is consistent with a "conversion-etch" mechanism where SiO 2 is converted by TMA to Al 2 O 3 , aluminosilicates, and reduced silicon species following a family of reactions represented by 3SiO 2 + 4Al(CH 3 ) 3 → 2Al 2 O 3 + 3Si(CH 3 ) 4 . Ex situ X-ray photoelectron spectroscopy (XPS) studies confirmed the reduction of silicon species after TMA exposures. Following the conversion reactions, HF can fluorinate the Al 2 O 3 and aluminosilicates to species such as AlF 3 and SiO x F y . Subsequently, TMA can remove the AlF 3 and SiO x F y species by ligand-exchange transmetalation reactions and then convert additional SiO 2 to Al 2 O 3 . The pressure-dependent conversion reaction of SiO 2 to Al 2 O 3 and aluminosilicates by TMA is critical for thermal SiO 2 ALE. The "conversion-etch" mechanism may also provide pathways for additional materials to be etched using thermal ALE.
NASA Astrophysics Data System (ADS)
Stedman, J. D.; Spyrou, N. M.
1994-12-01
The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.
Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization
NASA Astrophysics Data System (ADS)
Wang, Linzhi; Liu, Ying; Chang, Sen
2016-05-01
Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capriotti, M., E-mail: mattia.capriotti@tuwien.ac.at; Alexewicz, A.; Fleury, C.
2014-03-17
Using a generalized extraction method, the fixed charge density N{sub int} at the interface between in situ deposited SiN and 5 nm thick AlGaN barrier is evaluated by measurements of threshold voltage V{sub th} of an AlGaN/GaN metal insulator semiconductor high electron mobility transistor as a function of SiN thickness. The thickness of the originally deposited 50 nm thick SiN layer is reduced by dry etching. The extracted N{sub int} is in the order of the AlGaN polarization charge density. The total removal of the in situ SiN cap leads to a complete depletion of the channel region resulting in V{sub th} = +1 V.more » Fabrication of a gate stack with Al{sub 2}O{sub 3} as a second cap layer, deposited on top of the in situ SiN, is not introducing additional fixed charges at the SiN/Al{sub 2}O{sub 3} interface.« less
Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing
Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.
2002-01-01
At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low-FeO chondrules appear to have fully altered mesostasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A.L.; Becker, N.; Gainsforth, Z.
2012-03-13
Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotronmore » techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.« less
Time-Resolved Photoluminescence Studies of Si-doped AlGaN alloys
NASA Astrophysics Data System (ADS)
Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.
2002-03-01
Si-doped n-type Al x Ga_1-x N alloys with x between 0.3 and 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. Time-resolved photoluminescence (PL) emission spectroscopy and variable temperature Hall-effect measurements were employed to study the optical and electrical properties of these epilayers. Our electrical data revealed that the conductivity of Si-doped Al x Ga_1-x N alloys (x > 0.4) increases with an increase of the Si doping concentration (N_Si) for a fixed x value and exhibits a sharp increase around N_Si= 1x10 ^18cm-3, suggesting the existence of a critical Si doping concentration needed to convert insulating Al x Ga_1-x N alloys (x > 0.4) to n-type conductivity. Time-resolved PL studies also showed that PL decay lifetime and activation energy decrease sharply when Si-doping concentration increases from N_Si= 0 to 1x10 ^18cm-3and then followed by gradual decreases as N_Si further increases. Our results thus suggest that Si-doping reduces the effect of carrier localization in Al x Ga_1-x N alloys and a sharp drop in carrier localization energy occurs at N_Si= 1x10 ^18cm-3, which is the critical Si-doping concentration needed to fill up the localized states in Al x Ga_1-x N alloys (x > 0.4). The implications of these results to UV optoelectronic devices are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Qian; Cheng, Xinhong; Zheng, Li; Shen, Lingyan; Zhang, Dongliang; Gu, Ziyue; Qian, Ru; Cao, Duo; Yu, Yuehui
2018-01-01
The influence of lanthanum silicate (LaSiOx) passivation interlayer on the band alignment between plasma enhanced atomic layer deposition (PEALD)-Al2O3 films and 4H-SiC was investigated by high resolution X-ray photoelectron spectroscopy (XPS). An ultrathin in situ LaSiOx interfacial passivation layer (IPL) was introduced between the Al2O3 gate dielectric and the 4H-SiC substrate to enhance the interfacial characteristics. The valence band offset (VBO) and corresponding conduction band offset (CBO) for the Al2O3/4H-SiC interface without any passivation were extracted to be 2.16 eV and 1.49 eV, respectively. With a LaSiOx IPL, a VBO of 1.79 eV and a CBO of 1.86 eV could be obtained across the Al2O3/4H-SiC interface. The difference in the band alignments was dominated by the band bending or band shift in the 4H-SiC substrate as a result of different interfacial layers (ILs) formed at the interface. This understanding of the physical details of the band alignment could be a good foundation for Al2O3/LaSiOx/4H-SiC heterojunctions applied in the 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).
NASA Astrophysics Data System (ADS)
Härkönen, Ville J.; Karttunen, Antti J.
2016-08-01
The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4] Cl4 and Na4[Al4Si19] , is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4] Cl4 , and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19] , the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4] Cl4 . The difference in the relaxation times and group velocities arises primarily due to the phonon spectrum at low frequencies, resulting eventually from the differences in the second-order interatomic force constants (IFCs). The obtained third-order IFCs were rather similar for all materials considered here. The present findings are similar to those obtained earlier for some skutterudites. The predicted lattice thermal conductivity of Na4[Al4Si19] is in line with the experimentally measured thermal conductivity of recently synthesized type-I Zintl clathrate Na8[Al8Si38] (polycrystalline samples).
Behavior of Al2O3 and SiO2 with heating in a Cl2 + CO stream
NASA Technical Reports Server (NTRS)
Shchetinin, L. K.
1984-01-01
Differential thermal analysis (DTA) and Thermogravimetric analysis (TGA) were used to study the chlorination of alpha-Al2O3, gamma-Al2O3 and amorphous SiO2 in a Cl + CO stream, for the preparation of AlCl3 and SiCl4. The chlorination starting temperatures were 235 deg for Al2O3 and 680 deg for SiO2. The chlorination of alpha- and gamma-Al2O3 takes place via the formation of AlOCl as an intermediate product, and its subsequent dissociation at 480 to 560 deg, according to 3AlOCl yields AlCl3 + Al2O3. The chlorination activation energies are given for the three oxides.
Applications of beam-foil spectroscopy to atomic collisions in solids
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1976-01-01
Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.
NASA Astrophysics Data System (ADS)
Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah
2018-05-01
Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.
Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping
2013-09-09
GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurai, Satoshi, E-mail: kurai@yamaguchi-u.ac.jp; Yamada, Yoichi; Miyake, Hideto
2016-01-14
Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractionsmore » of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.« less
Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana
2017-07-19
Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan
2011-01-01
Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756
NASA Technical Reports Server (NTRS)
O'D. Alexander, Conel
2003-01-01
The discovery of presolar grains in meteorites is one of the most exciting recent developments in meteoritics. Six types of presolar grain have been discovered: diamond, Sic, graphite, Si3N4, Al2O3 and MgAl2O4. These grains have been identified as presolar because their isotopic compositions are very different from those of Solar System materials. Comparison of their isotopic compositions with astronomical observations and theoretical models indicates most of the grains formed in the envelopes of highly evolved stars. They are, therefore, a new source of information with which to test astrophysical models of the evolution of these stars. In fact, because several elements can often be measured in the same grain, including elements that are not measurable spectroscopically in stars, the grain data provide some very stringent constraints for these models. Our primary goal is to create large, unbiased, multi-isotope databases of single presolar Sic, Si,N,, oxide and graphite grains in meteorites, as well as any new presolar grain types that are identified in the future. These will be used to: (i) test stellar and nucleosynthetic models, (ii) constrain the galactic chemical evolution (GCE) paths of the isotopes of Si, Ti, O and Mg, (iii) establish how many stellar sources contributed to the Solar System, (iv) constrain relative dust production rates of various stellar types and (v) assess how representative of galactic dust production the record in meteorites is. The primary tool for this project is a highly automated grain analysis system on the Carnegie 6f ion probe.
NASA Technical Reports Server (NTRS)
O'D.Alexander, Conel
2004-01-01
The discovery of presolar grains in meteorites is one of the most exciting recent developments in meteoritics. Six types of presolar grain have been discovered: diamond, Sic, graphite, Si3N4, Al2O3 and MgAl2O4. These grains have been identified as presolar because their isotopic compositions are very different from those of Solar System materials. Comparison of their isotopic compositions with astronomical observations and theoretical models indicates most of the grains formed in the envelopes of highly evolved stars. They are, therefore, a new source of information with which to test astrophysical models of the evolution of these stars. In fact, because several elements can often be measured in the same grain, including elements that are not measurable spectroscopically in stars, the grain data provide some very stringent constraints for these models. Our primary goal is to create large, unbiased, multi-isotope databases of single presolar Sic, Si,N,, oxide and graphite grains in meteorites, as well as any new presolar grain types that are identified in the future. These will be used to: (i) test stellar and nucleosynthetic models, (ii) constrain the galactic chemical evolution (GCE) paths of the isotopes of Si, Ti, 0 and Mg, (iii) establish how many stellar sources contributed to the Solar System, (iv) constrain relative dust production rates of various stellar types and (v) assess how representative of galactic dust production the record in meteorites is. The primary tool for this project is a highly automated grain analysis system we have developed for the Carnegie 6f ion probe.