Sample records for elements including selenium

  1. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  2. Selenium

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Selenium is a naturally occurring element that is present in some soils. Unlike mercury and lead, which also are natural environmental components, selenium is an essential nutrient in living systems. The amount of dietary selenium required by animals depends upon many factors, including the availability of certain other metals such as zinc and copper, as well as vitamin E and other nutrients. Muscle damage results if dietary selenium is deficient, but dietary excess can be toxic.

  3. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design.

    PubMed

    Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domínguez-Álvarez, Enrique; Kieć-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus

    2015-07-31

    Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.

  4. The facts and controversies about selenium.

    PubMed

    Dodig, Slavica; Cepelak, Ivana

    2004-12-01

    Selenium is a trace element, essential in small amounts, but it can be toxic in larger amounts. Levels in the body are mainly dependent on the amount of selenium in the diet, which is a function of the selenium content of the soil. Humans and animals require selenium for normal functioning of more than about 30 known selenoproteins, of which approximately 15 have been purified to allow characterisation of their biological functions. Selenoproteins are comprised of four glutathione peroxidases, three iodothyronine deiodinases, three thioredoxin reductases, selenoprotein P, selenoprotein W and selenophosphate synthetase. Selenium is essential for normal functioning of the immune system and thyroid gland, making selenium an essential element for normal development, growth, metabolism, and defense of the body. Supportive function of selenium in health and disease (male infertility, viral infections, including HIV, cancer, cardiovascular and autoimmune diseases) is documented in great number of clinical examinations. A great number of studies confirm that selenium supplementation plays a preventive and therapeutical role in different diseases. Definitive evidence regarding the preventive and therapeutical role of selenium as well as the exact mechanism of its action should be investigated in further studies. Investigations in Croatia indicate a possibility of inadequate selenium status of people in the area.

  5. Selenium and Human Health: Witnessing a Copernican Revolution?

    PubMed

    Jablonska, Ewa; Vinceti, Marco

    2015-01-01

    In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.

  6. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota

    PubMed Central

    Kasaikina, Marina V.; Kravtsova, Marina A.; Lee, Byung Cheon; Seravalli, Javier; Peterson, Daniel A.; Walter, Jens; Legge, Ryan; Benson, Andrew K.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Colonization of the gastrointestinal tract and composition of the microbiota may be influenced by components of the diet, including trace elements. To understand how selenium regulates the intestinal microflora, we used high-throughput sequencing to examine the composition of gut microbiota of mice maintained on selenium-deficient, selenium-sufficient, and selenium-enriched diets. The microbiota diversity increased as a result of selenium in the diet. Specific phylotypes showed differential effects of selenium, even within a genus, implying that selenium had unique effects across microbial taxa. Conventionalized germ-free mice subjected to selenium diets gave similar results and showed an increased diversity of the bacterial population in animals fed with higher levels of selenium. Germ-free mice fed selenium diets modified their selenoproteome expression similar to control mice but showed higher levels and activity of glutathione peroxidase 1 and methionine-R-sulfoxide reductase 1 in the liver, suggesting partial sequestration of selenium by the gut microorganisms, limiting its availability for the host. These changes in the selenium status were independent of the levels of other trace elements. The data show that dietary selenium affects both composition of the intestinal microflora and colonization of the gastrointestinal tract, which, in turn, influence the host selenium status and selenoproteome expression.—Kasaikina, M. V., Kravtsova, M. A., Lee, B. C., Seravalli, J., Peterson, D. A., Walter, J., Legge, R., Benson, A. K., Hatfield, D. L., Gladyshev, V. N. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. PMID:21493887

  7. Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Milliard, S.P.

    1988-01-01

    Samples of shallow groundwater that underlies much of the irrigated area in the western San Joaquin Valley, CA, were analyzed for various major ions and trace elements, including selenium. Concentrations of the major ions generally were similar for groundwater collected in the two primary geologic zones - the alluvial fan and basin trough. Selenium concentrations are significantly (α = 0.05) higher in the groundwater of the alluvial-fan zone than in that of the basin-trough zone. The concentrations of oxyanion trace elements were significantly correlated (α = 0.05) with groundwater salinity, but the correlations between selenium and salinity and between molybdenum and salinity were significantly different (α = 0.05) in the alluvial-fan geologic zone compared with those in the basin-trough geologic zone. The evidence suggests that the main factors affecting selenium concentrations in the shallow groundwater are the degree of groundwater salinity and the geologic source of the alluvial soil material.

  8. The role of selenium in thyroid gland pathophysiology.

    PubMed

    Stuss, Michał; Michalska-Kasiczak, Marta; Sewerynek, Ewa

    2017-01-01

    It is now assumed that proper functioning of the thyroid gland (TG), beside iodine, requires also a number of elements, including selenium, iron, zinc, copper, and calcium. In many cases, only an adequate supply of one of these microelements (e.g. iodine) may reveal symptoms resulting from deficits of other microelements (e.g. iron or selenium). Selenium is accounted to the trace elements of key importance for homeostasis of the human system, in particular, for the proper functioning of the immune system and the TG. Results of epidemiological studies have demonstrated that selenium deficit may affect as many as one billion people in many countries all over the world. A proper sequence of particular supplementations is also worth emphasising for the significant correlations among the supplemented microelements. For example, it has been demonstrated that an excessive supplementation of selenium may enhance the effects of iodine deficit in endemic regions, while proper supplementation of selenium in studied animals may alleviate the consequences of iodine excess, preventing destructive-inflammatory lesions in the TG. This paper is a summary of the current knowledge on the role of selenium in the functionality of the TG.

  9. Geochemistry of soils and shallow ground water, with emphasis on arsenic and selenium, in part of the Garrison Diversion Unit, North Dakota, 1985-87

    USGS Publications Warehouse

    Goolsby, D.A.; Severson, R.C.; Wilson, S.A.; Webber, Kurt

    1989-01-01

    The Garrison Diversion Unit is being constructed to transfer water from the Missouri River (Lake Sakakawea) to areas in east-central and southeastern North Dakota for expanded irrigation of agricultural lands. During initial investigations of irrigation return flows in 1969-76, the potential effects of toxic elements were considered, and the U.S. Bureau of Reclamation concluded these elements would have no adverse effects on streams receiving return flows. After the development of problems associated with selenium in irrigation return flows in the western San Joaquin Valley, Calif., in 1985, the U.S. Bureau of Reclamation initiated additional studies, including an investigation conducted in cooperation with the U.S. Geological Survey, to assist in collecting and evaluating trace-element data. Also, in 1986, with the passage of the Garrison Diversion Unit Reformulation Act, Congress mandated that soil surveys be conducted to determine if there are "*** soil characteristics which might result in toxic or hazardous irrigation return flows."In order to address this issue, an investigation was conducted during 1995-87 by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation to determine the occurrence and distribution of arsenic, selenium, and other trace elements in the soils of six potential irrigation areas along the Garrison Diversion Unit route and in the James River basin. A total of 165 soil samples were collected and analyzed for total concentrations of as many as 42 elements, including arsenic and selenium. In addition, 81 of the samples were analyzed for water-extractable concentrations of 14 elements, including arsenic and selenium, to aid in determining the extent to which they might be mobilized by the irrigation water. In a detailed phase of the investigation, 376 water samples were collected in one of the six potential irrigation areas, the west Oakes irrigation area. Most of these samples were analyzed for arsenic, selenium, and as many as 28 other elements.Results of the investigation indicate that soils in the potential irrigation areas contain small concentrations of arsenic, selenium, and other trace elements. The geometric mean concentrations of total arsenic and selenium were 4.15 and 0.13 milligrams per kilogram, respectively, which are considerably smaller than those measured in the western San Joaquin Valley, Calif., and soils from other areas in the western United States. Water-extractable concentrations of arsenic and selenium, determined on 1:5 soil to water extractions, generally were less than 10 percent of the total concentrations. The geometric mean water-extractable concentrations for both elements were 0.02 milligram per kilogram or less.The median and maximum concentrations of all constituents and properties indicative of irrigation drainage were tens to hundreds of times smaller in the Oakes test area drains than in western San Joaquin Valley drains. The maximum arsenic concentration in ground-water samples was 44 micrograms per liter, and the median concentration was 4 micrograms per liter. The maximum concentration in drain samples was 11 micrograms per liter, and the median concentration was 3 micrograms per liter.Only 22 percent of the water samples collected from wells in the Oakes test area contained detectable concentrations (1 microgram per liter or more) of selenium. However, selenium was detected in 63 percent of the samples collected from sites on drains. The greater incidence of detection of selenium in the drain samples is interpreted as an effect of the more oxidizing environment of the drains, which are about 8 feet below land surface near the top of the water table. The median selenium concentration in the drain samples, however, was only 1 microgram per liter, and the maximum concentration in 63 drain samples was 4 micrograms per liter. For comparison, the median selenium concentrations reported for drains in the western San Joaquin Valley, Calif., ranged from 84 to 320 micrograms per liter. Mater from two observation wells had the largest selenium concentrations (8 and 9 micrograms per liter) measured during the investigation. These were the only two samples that exceeded any of the water-quality regulations, standards, or criteria for selenium. Mercury and boron were the only other trace elements that exceeded standards and criteria. The median concentration of mercury was less than 0.1 microgram per liter, and the maximum concentration was 0.8 microgram per liter. The chronic freshwater-aquatic-life criterion for mercury (0.012 microgram per liter) is about 10 times less than the laboratory detection limit and is derived from bioconcentration factors based on methylmercury. Two boron samples exceeded the irrigation criteria of 750 micrograms per liter. Comparisons with criteria and standards indicate that the concentrations of trace elements determined in samples from wells and drains in the Oakes test area during this investigation should not adversely affect human and aquatic life or irrigated crops. The data collected indicate that the soils and ground water in the Garrison Diversion Unit contain small concentrations of trace elements, including arsenic and selenium. Based on a detailed study of soils and ground water in the west Oakes irrigation area, however, there is no evidence that expanded irrigation will mobilize these elements in concentrations large enough to adversely affect aquatic life in the James River ecosystem, based on current regulations, standards, and criteria. Data are not currently available to make definitive statements about selenium concentrations in ground water in Garrison Diversion Unit irrigation areas other than the west Oakes Irrigation area. Data available on total and water-extractable selenium concentrations in soils t however, indicate that concentrations in ground water would be similar to those determined in the west Oakes irrigation area. Plans have been developed to sample ground water in the additional areas.

  10. Selenium in edible mushrooms.

    PubMed

    Falandysz, Jerzy

    2008-01-01

    Selenium is vital to human health. This article is a compendium of virtually all the published data on total selenium concentrations, its distribution in fruitbody, bioconcentration factors, and chemical forms in wild-grown, cultivated, and selenium-enriched mushrooms worldwide. Of the 190 species reviewed (belonging to 21 families and 56 genera), most are considered edible, and a few selected data relate to inedible mushrooms. Most of edible mushroom species examined until now are selenium-poor (< 1 microg Se/g dry weight). The fruitbody of some species of wild-grown edible mushrooms is naturally rich in selenium; their occurrence data are reviewed, along with information on their suitability as a dietary source of selenium for humans, the impact of cooking and possible leaching out, the significance of traditional mushroom dishes, and the element's absorption rates and co-occurrence with some potentially problematic elements. The Goat's Foot (Albatrellus pes-caprae) with approximately 200 microg Se/g dw on average (maximum up to 370 microg/g dw) is the richest one in this element among the species surveyed. Several other representatives of the genus Albatrellus are also abundant in selenium. Of the most popular edible wild-grown mushrooms, the King Bolete (Boletus edulis) is considered abundant in selenium as well; on average, it contains approximately 20 microg Se/g dw (maximum up to 70 microg/g dw). Some species of the genus Boletus, such as B. pinicola, B. aereus, B. aestivalis, B. erythropus, and B. appendiculus, can also accumulate considerable amounts of selenium. Some other relatively rich sources of selenium include the European Pine Cone Lepidella (Amanita strobiliformis), which contains, on average, approximately 20 microg Se/g dw (up to 37 microg/g dw); the Macrolepiota spp., with an average range of approximately 5 to < 10 microg/g dw (an exception is M. rhacodes with < 10 microg/g dw); and the Lycoperdon spp., with an average of approximately 5 microg Se/g dw. For several wild-grown species of the genus Agaricus, the selenium content ( approximately 5 microg/g dw) is much greater than that from cultivated Champignon Mushroom; these include A. bisporus, A. bitorquis, A. campestris, A. cesarea, A. campestris, A. edulis, A. macrosporus, and A. silvaticus. A particularly rich source of selenium could be obtained from selenium-enriched mushrooms that are cultivated on a substrate fortified with selenium (as inorganic salt or selenized-yeast). The Se-enriched Champignon Mushroom could contain up to 30 or 110 microg Se/g dw, while the Varnished Polypore (Ganoderma lucidum) could contain up to 72 microg Se/g dw. An increasingly growing database on chemical forms of selenium of mushrooms indicates that the seleno-compounds identified in carpophore include selenocysteine, selenomethionine, Se-methylselenocysteine, selenite, and several unidentified seleno-compounds; their proportions vary widely. Some aspects of environmental selenium occurrence and human body pharmacokinetics and nutritional needs will also be briefly discussed in this review.

  11. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thavarajah, D.; Vandenberg, A.; George, G.N.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentilsmore » is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.« less

  12. Trace elements in patients on continuous renal replacement therapy.

    PubMed

    Broman, M; Bryland, A; Carlsson, O

    2017-07-01

    Intensive care patients with acute kidney injury (AKI), treated with continuous renal replacement therapy (CRRT) are at great risk for disturbances in plasma levels of trace elements due to the underlying illness, AKI, and dialysis. This study was performed to increase our knowledge regarding eight different trace elements during CRRT. Thirty one stable patients with AKI, treated with CRRT, were included in the study. Blood, plasma and effluent samples were taken at the start of the study and 36 ± 12 h later. A group of 48 healthy volunteers were included as controls and exposed to one fasting blood sample. Samples were analysed for trace elements (Cr, Cu, Mn, Co, Zn, Rb, Mo, Se) and standard blood chemistry. Blood and plasma levels of selenium and rubidium were significantly reduced while the levels of chromium, cobalt, and molybdenum were significantly increased in the study group vs. healthy volunteers. There was an uptake of chromium, manganese, and zinc. Molybdenum mass balance was around zero. For selenium, copper, and rubidium there were a marked loss. The low levels of selenium and rubidium in blood and plasma from CRRT patients, together with the loss via CRRT effluent, raises the possibility of the need for selenium supplementation in this group of patients, despite the unchanged levels during the short study period. Further investigations on the effect of additional administration of trace elements to CRRT patients would be of interest. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Distinctive Pattern of Serum Elements During the Progression of Alzheimer’s Disease

    PubMed Central

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer’s disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD. PMID:26957294

  14. Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease.

    PubMed

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-03-09

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer's disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD.

  15. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  16. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  17. Selenium metabolite levels in human urine after dosing selenium in different chemical forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasunuma, Ryoichi; Tsuda, Morizo; Ogawa, Tadao

    1993-11-01

    It has been well known that selenium in marine fish such as tuna and swordfish protects the toxicity of methylmercury in vivo. The protective potency might depend on the chemical forms of selenium in the meat of marine fish sebastes and sperm whale. Little has been revealed, however, on the chemical forms of selenium in the meat of these animals or the selenium metabolites in urine, because the amount of the element is very scarce. Urine is the major excretory route for selenium. The chemical forms of urinary selenium may reflect the metabolism of the element. We have developed methodologymore » for analysis of selenium-containing components in human urine. Using this method, we have observed the time courses of excretory levels of urinary selenium components after a single dose of selenium as selenious acid, selenomethionine, trimethylselenonium ion or tuna meat. 14 refs., 6 figs., 1 tab.« less

  18. [Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].

    PubMed

    Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu

    2004-03-01

    To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.

  19. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent biotechnological advances in the management of these selenium-laden wastewaters. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ore Deposits Mined for Critical Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verplanck, Philip; Kelley, Karen

    Summary of deposit types containing critical elements, including, cobalt, gallium, germanium, indium, niobium, PGE, REE, rhenium, selenium, and tellurium. Includes information about ore deposit type, mineralogy, geologic setting, example deposits and districts, concentration ranges per reported resource, grade, and additional deposit notes. References are also included.

  1. Producing selenium-enriched eggs and meat to improve the selenium status of the general population.

    PubMed

    Fisinin, Vladimir I; Papazyan, Tigran T; Surai, Peter F

    2009-01-01

    The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hens' diet at levels that provide 0.3-0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering approximately 50% (30-35 microg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.

  2. Cathodic electrodeposition of amorphous elemental selenium from an air- and water-stable ionic liquid.

    PubMed

    Redman, Daniel W; Murugesan, Sankaran; Stevenson, Keith J

    2014-01-14

    Electrodeposition of selenium from 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide is reported. In situ UV-vis spectroelectrochemistry was used to investigate the reduction of diethyl selenite to form elemental selenium thin films from an ionic liquid-acetonitrile medium. Three reduction peaks of diethyl selenite were observed via cyclic voltammetry and are attributed to the stepwise reduction of the selenium precursor adsorbed on the electrode. The electrodeposition mechanism is influenced by both potential and time. Electrodeposition at -1.7 V vs Pt QRE resulted in the deposition of elemental selenium nanoparticles that with time coalesced to form a continuous film. At reduction potentials more negative than -1.7 V the morphology of the deposit changed significantly due to the reduction of elemental Se to Se(2-). In addition, p-type photoconductivity of the films was observed during the spectroelectrochemical measurements. X-ray diffraction and Raman spectroscopy confirmed that the deposited selenium films were amorphous. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy confirm the films consisted of pure selenium with minor residual contamination from the precursor and ionic liquid.

  3. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  4. Selenium

    USGS Publications Warehouse

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There, waters draining from agricultural fields created wetlands with high concentrations of dissolved selenium in the water. The selenium was taken up by aquatic wildlife and caused massive numbers of embryonic deformities and deaths.Regulatory agencies have since worked to safeguard ecological and human health by creating environmental exposure guidelines based upon selenium concentrations in water and in fish tissue. Any attempt to regulate selenium concentrations requires a delicate balance because selenium occurs naturally and is also a vital nutrient for the health of wildlife, domestic stock, and humans. Selenium is commonly added as a vitamin to animal feed, and in some regions of the United States and the world, it is added as an amendment to soils for uptake by agricultural crops.The important role of selenium in economic products, energy supply, agriculture, and health will continue for well into the future. The challenge to society is to balance the benefits of selenium use with the environmental consequences of its extraction. Increased understanding of the elemental cycle of selenium in the earth may lead to new (or unconventional) sources of selenium, the discovery of new methods of extraction, and new technologies for minimizing the transfer of selenium from rock to biota, so to protect environmental and human health.

  5. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  6. Hazard assessment of selenium and other trace elements in wild larval razorback sucker from the Green River, Utah

    USGS Publications Warehouse

    Hamilton, S.J.; Muth, R.T.; Waddell, B.; May, T.W.

    2000-01-01

    Contaminant investigations of the Green River in northeastern Utah have documented selenium contamination at sites receiving irrigation drainage. The Green River provides critical habitat for four endangered fishes including the largest extant riverine population of endangered razorback sucker. Although 2175 larval razorback suckers were collected from the river between 1992 and 1996, very few juveniles have been captured within recent decades. Selenium concentrations were measured in larval razorback suckers collected from five sites in the Green River (Cliff Creek, Stewart Lake Drain, Sportsman's Drain, Greasewood Corral, and Old Charlie Wash) to assess the potential for adverse effects on recruitment of larvae to the juvenile stage and the adult population. Larvae from all sites contained mean selenium concentrations ranging from 4.3 to 5.8 ??g/g. These values were at or above the proposed toxic threshold of 4 ??g/g for adverse biological effects in fish, which was derived from several laboratory and field studies with a wide range of fish species. At two sites, Cliff Creek and Stewart Lake Drain, selenium concentrations in larvae increased over time as fish grew, whereas selenium concentrations decreased as fish grew at Sportsman's Drain. Evaluation of a 279-larvae composite analyzed for 61 elements demonstrated that selenium and, to a lesser extent, vanadium were elevated to concentrations reported to be toxic to a wide range of fish species. Elevated selenium concentrations in larval razorback suckers from the five sites suggest that selenium contamination may be widespread in the Green River, and that survival and recruitment of larvae to the juvenile stage may be limited due to adverse biological effects. Selenium contamination may be adversely affecting the reproductive success and recruitment of endangered razorback sucker.

  7. A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women

    PubMed Central

    Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-young; Lee, Soo-Youn

    2016-01-01

    This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4–40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29–0.53), copper: 165.0 μg/dL (IQR 144.0–187.0), zinc: 57.0 μg/dL (IQR 50.0–64.0), and selenium: 94.0 μg/L (IQR 87.0–101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower (p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters (p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper (p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia. PMID:27886083

  8. A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women.

    PubMed

    Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-Young; Lee, Soo-Youn

    2016-11-23

    This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4-40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29-0.53), copper: 165.0 μg/dL (IQR 144.0-187.0), zinc: 57.0 μg/dL (IQR 50.0-64.0), and selenium: 94.0 μg/L (IQR 87.0-101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower ( p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters ( p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper ( p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia.

  9. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    PubMed Central

    Zhang, Jinsong; Taylor, Ethan W; Wan, Xiaochun; Peng, Dungeng

    2012-01-01

    Background Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods. PMID:22359458

  10. Arsenic and selenium in microbial metabolism

    USGS Publications Warehouse

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  11. Effect of forms of selenium on the accumulation of selenium, sulfur, and forms of nitrogen and phosphorus in forage cowpea (Vigna sinensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Singh, N.

    1979-05-01

    The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less

  12. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    PubMed

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  13. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levelsmore » to those in the pituitary gland of AD and control subjects.« less

  14. DETECTION OF ELEMENTS AT ALL THREE r-PROCESS PEAKS IN THE METAL-POOR STAR HD 160617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E., E-mail: iur@obs.carnegiescience.edu, E-mail: jelawler@wisc.edu

    2012-05-01

    We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundancesmore » or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.« less

  15. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review.

    PubMed

    Gharipour, Mojgan; Sadeghi, Masoumeh; Behmanesh, Mehrdad; Salehi, Mansour; Nezafati, Pouya; Gharpour, Amin

    2017-10-23

      Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.

  16. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  17. Manganese and selenium concentrations in cerebrospinal fluid of seriously ill children.

    PubMed

    Franěk, Tomáš; Kotaška, Karel; Průša, Richard

    2017-11-01

    The homeostasis of essential trace elements such as selenium and manganese may be altered in patients with severe diseases of various etiologies (trauma brain injuries, tumors, leukemias, lymphomas, neurological diseases). Concentration of manganese and selenium were determined in cerebrospinal fluid by electrothermal atomic absorption spectrometry in 50 hospitalized children with various clinical ethiologies including oncological, neurological, and brain related diseases. The concentrations of manganese in cerebrospinal fluid of children were 0.97±0.67 μg/L. The concentrations of selenium were 13.3±3.5 μg/L. The concentrations were similar as published in adults. The values did not correlated with the age, gender and severity of the disease. We evaluated values of selenium and manganese in cerebrospinal fluid of seriously diseased children. © 2017 Wiley Periodicals, Inc.

  18. Selenium biomineralization for biotechnological applications.

    PubMed

    Nancharaiah, Yarlagadda V; Lens, Piet N L

    2015-06-01

    Selenium (Se) is not only a strategic element in high-tech electronics and an essential trace element in living organisms, but also a potential toxin with low threshold concentrations. Environmental biotechnological applications using bacterial biomineralization have the potential not only to remove selenium from contaminated waters, but also to sequester it in a reusable form. Selenium biomineralization has been observed in phylogenetically diverse microorganisms isolated from pristine and contaminated environments, yet it is one of the most poorly understood biogeochemical processes. Microbial respiration of selenium is unique because the microbial cells are presented with both soluble (SeO(4)(2-) and SeO(3)(2-)) and insoluble (Se(0)) forms of selenium as terminal electron acceptor. Here, we highlight selenium biomineralization and the potential biotechnological uses for it in bioremediation and wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  20. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  1. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    USGS Publications Warehouse

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  2. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  3. Selenium: Element of Contrasts

    ERIC Educational Resources Information Center

    Goldsmith, Robert H.; And Others

    1978-01-01

    Reports on recent findings concerning the impact of selenium on human and animal health. In its various oxidation states, different concentrations of selenium may be helpful or detrimental to human health. (CP)

  4. Mineral Commodity Profiles: Selenium

    USGS Publications Warehouse

    Butterman, W.C.; Brown, R.D.

    2004-01-01

    Overview -- Selenium, which is one of the chalcogen elements in group 16 (or 6A) of the periodic table, is a semiconductor that is chemically similar to sulfur for which it substitutes in many minerals and synthetic compounds. It is a byproduct of copper refining and, to a much lesser extent, lead refining. It is used in many applications, the major ones being a decolorizer for glass, a metallurgical additive to free-machining varieties of ferrous and nonferrous alloys, a constituent in cadmium sulfoselenide pigments, a photoreceptor in xerographic copiers, and a semiconductor in electrical rectifiers and photocells. Refined selenium amounting to more than 1,800 metric tons (t) was produced by 14 countries in 2000. Japan, Canada, the United States, and Belgium, which were the four largest producers, accounted for nearly 85 percent of world production. An estimated 250 t of the world total is secondary selenium, which is recovered from scrapped xerographic copier drums and selenium rectifiers; the selenium in nearly all other uses is dissipated (not recoverable as waste or scrap). The present selenium reserve bases for the United States and the world (including the United States), which are associated with copper deposits, are expected to be able to satisfy demand for selenium for several decades without difficulty.

  5. Reduced growth and survival of larval razorback sucker fed selenium-laden zooplankton

    USGS Publications Warehouse

    Hamilton, Steven J.; Buhl, Kevin J.; Bullard, Fern A.; McDonald, Susan

    2005-01-01

    Four groups of larval razorback sucker, an endangered fish, were exposed to selenium-laden zooplankton and survival, growth, and whole-body residues were measured. Studies were conducted with 5, 10, 24, and 28-day-old larvae fed zooplankton collected from six sites adjacent to the Green River, Utah. Water where zooplankton were collected had selenium concentrations ranging from <0.4 to 78 μg/L, and concentrations in zooplankton ranged from 2.3 to 91 μg/g dry weight. Static renewal tests were conducted for 20 to 25 days using reference water with selenium concentrations of <1.1 μg/L. In all studies, 80–100% mortality occurred in 15–20 days. In the 28-day-old larvae, fish weight was significantly reduced 25% in larvae fed zooplankton containing 12 μg/g selenium. Whole-body concentrations of selenium ranged from 3.7 to 14.3 μg/g in fish fed zooplankton from the reference site (Sheppard Bottom pond 1) up to 94 μg/g in fish fed zooplankton from North Roadside Pond. Limited information prior to the studies suggested that the Sheppard pond 1 site was relatively clean and suitable as a reference treatment; however, the nearly complete mortality of larvae and elevated concentrations of selenium in larvae and selenium and other elements in zooplankton indicated that this site was contaminated with selenium and other elements. Selenium concentrations in whole-body larvae and in zooplankton from all sites were close to or greater than toxic thresholds where adverse effects occur in fish. Delayed mortality occurred in larvae fed the two highest selenium concentrations in zooplankton and was thought due to an interaction with other elements.

  6. Toxicity of selenium and other elements in food organisms to razorback sucker larvae

    USGS Publications Warehouse

    Hamilton, Steven J.; Holley, Kathy M.; Buhl, Kevin J.; Bullard, Fern A.; Weston, L. Ken; McDonald, Susan F.

    2002-01-01

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4×4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 μg/l, in reference food (brine shrimp) was 3.2 μg/g, at Horsethief was 1.6 μg/l in water and 6.0 μg/g in zooplankton, at Adobe Creek was 3.4 μg/l in water and 32 μg/g in zooplankton, and at Walter Walker was 13 μg/l in water and 52 μg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of ≥4.6 μg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  7. Toxicity of selenium and other elements in food organisms to razorback sucker larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2002-09-24

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4 x 4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 microg/l, in reference food (brine shrimp) was 3.2 microg/g, at Horsethief was 1.6 microg/l in water and 6.0 microg/g in zooplankton, at Adobe Creek was 3.4 microg/l in water and 32 microg/g in zooplankton, and at Walter Walker was 13 microg/l in water and 52 microg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of >or=4.6 microg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  8. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  9. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  10. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  11. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  12. Microbial Transformations of Selenium

    PubMed Central

    Doran, J. W.; Alexander, M.

    1977-01-01

    Resting cell suspensions of a strain of Corynebacterium isolated from soil formed dimethyl selenide from selenate, selenite, elemental selenium, selenomethionine, selenocystine, and methaneseleninate. Extracts of the bacterium catalyzed the production of dimethyl selenide from selenite, elemental selenium, and methaneseleninate, and methylation of the inorganic Se compounds was enhanced by S-adenosylmethionine. Neither trimethylselenonium nor methaneselenonate was metabolized by the Corynebacterium. Resting cell suspensions of a methionine-utilizing pseudomonad converted selenomethionine to dimethyl diselenide. Six of 10 microorganisms able to grow on cystine used selenocystine as a sole source of carbon and formed elemental selenium, and one of the isolates, a pseudomonad, was found also to produce selenide. Soil enrichments converted trimethylselenonium to dimethyl selenide. Bacteria capable of utilizing trimethylselenonium, dimethyl selenide, and dimethyl diselenide as carbon sources were isolated from soil. PMID:16345188

  13. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinouski, M.; Kehr, S.; Finney, L.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts ofmore » the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.« less

  14. Microbial transformation of elements: the case of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.; Basu, P.; Oremland, R.

    2002-01-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  15. Microbial transformation of elements: the case of arsenic and selenium.

    PubMed

    Stolz, J F; Basu, P; Oremland, R S

    2002-12-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  16. Trace element partitioning during the retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.H.; Dale, L.S.; Chapman, J.f.

    1987-05-01

    A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less

  17. Selenium for preventing cancer

    PubMed Central

    Dennert, Gabriele; Zwahlen, Marcel; Brinkman, Maree; Vinceti, Marco; Zeegers, Maurice P A; Horneber, Markus

    2013-01-01

    Background Selenium is a trace element essential to humans. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. Objectives Two research questions were addressed in this review: What is the evidence for an aetiological relationship between selenium exposure and cancer risk in women and men? the efficacy of selenium supplementation for cancer prevention in women and men? Search strategy We searched electronic databases and bibliographies of reviews and included publications. Selection criteria We included prospective observational studies to answer research question (a) and randomised controlled trials (RCTs) to answer research question (b). Data collection and analysis We conducted random effects meta-analyses of epidemiological data when five or more studies were retrieved for a specific outcome. We made a narrative summary of data from RCTs. Main results We included 49 prospective observational studies and six RCTs. In epidemiologic data, we found a reduced cancer incidence (summary odds ratio (OR) 0.69 (95% confidence interval (CI) 0.53 to 0.91) and mortality (OR 0.55, 95% CI 0.36 to 0.83) with higher selenium exposure. Cancer risk was more pronouncedly reduced in men (incidence: OR 0.66, 95% CI 0.42 to 1.05) than in women (incidence: OR 0.90, 95% CI 0.45 to 1.77). These findings have potential limitations due to study design, quality and heterogeneity of the data, which complicated the interpretation of the summary statistics. The RCTs found no protective efficacy of selenium yeast supplementation against non-melanoma skin cancer or L-selenomethionine supplementation against prostate cancer. Study results for the prevention of liver cancer with selenium supplements were inconsistent and studies had an unclear risk of bias. The results of the Nutritional Prevention of Cancer Trial (NPCT) and SELECT raised concerns about possible harmful effects of selenium supplements. Authors’ conclusions No reliable conclusions can be drawn regarding a causal relationship between low selenium exposure and an increased risk of cancer. Despite evidence for an inverse association between selenium exposure and the risk of some types of cancer, these results should be interpreted with care due to the potential limiting factors of heterogeneity and influences of unknown biases, confounding and effect modification. The effect of selenium supplementation from RCTs yielded inconsistent results. To date, there is no convincing evidence that selenium supplements can prevent cancer in men, women or children. PMID:21563143

  18. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Vermejo Project area and the Maxwell National Wildlife Refuge, Colfax County, northeastern New Mexico, 1993

    USGS Publications Warehouse

    Bartolino, J.R.; Garrabrant, L.A.; Wilson, Mark; Lusk, J.D.

    1996-01-01

    Based on findings of limited studies during 1989-92, a reconnaissance investigation was conducted in 1993 to assess the effects of the Vermejo Irrigation Project on water quality in the area of the project, including the Maxwell National Wildlife Refuge. This project was part of a U.S. Department of the Interior National Irrigation Water-Quality Program to determine whether irrigation drainage has caused or has the potential to cause significant harmful effects on human health, fish, and wildlife and whether irrigation drainage may adversely affect the suitability of water for other beneficial uses. For this study, samples of water, sediment, and biota were collected from 16 sites in and around the Vermejo Irrigation Project prior to, during the latter part of, and after the 1993 irrigation season (April, August-September, and November, respectively). No inorganic constituents exceeded U.S. Environmental Protection Agency drinking-water standards. The State of New Mexico standard of 750 micrograms per liter for boron in irrigation water was exceeded at three sites (five samples), though none exceeded the livestock water standard of 5,000 micrograms per liter. Selenium concentrations exceeded the State of New Mexico chronic standard of 2 micrograms per liter for wildlife and fisheries water in at least eight samples from five sites. Bottom-sediment samples were collected and analyzed for trace elements and compared to concentrations of trace elements in soils of the Western United States. Concentrations of three trace elements at eight sites exceeded the upper values of the expected 95-percent ranges for Western U.S. soils. These included molybdenum at one site, selenium at seven sites, and uranium at four sites. Cadmium and copper concentrations exceeded the National Contaminant Biomonitoring Program 85th percentile in fish from six sites. Average concentrations of selenium in adult brine flies (33.7 mg/g dry weight) were elevated above concentrations in other invertebrates. Concentrations of other elements were below their respective toxicity levels. Plants, invertebrates, fish, and fish fillets were collected and analyzed. These analyses were compared to diagnostic criteria and to each other to determine the extent of bioaccumulation of trace elements. Plants contained larger dry weight concentrations of aluminum, arsenic, boron, chromium, iron, lead, magnesium, manganese, nickel, and vanadium than invertebrates and fish. Adult brine flies, gathered from playas, contained larger geometric mean dry weight concentrations of boron, magnesium, and selenium than other invertebrates. Of all samples collected, the largest mercury concentrations were found in fish fillets, although these concentrations were below levels of concern. Mercury and selenium bioaccumulation was evident in various habitats of the study area. Biological samples from Natural playa, an endemic wetland, and Half playa, a playa that receives additional water through seepage and irrigation delivery canals, generally had elevated concentrations of boron, iron, magnesium, and selenium than samples from reservoir and river sites. Selenium concentrations were lowest in biota from the two reservoir sites, although a wetland immediately downstream from the dam impounding Lake No. 13 (created by seepage from the reservoir) had elevated concentrations of selenium in biota. The geometric mean selenium concentration of whole-fish samples, except those from Lakes No. 13 and No. 14, exceeded the 5-mg/g dry weight selenium concentration that demarcates the approximate lower limit of the threshold range of concentrations that have been associated with adverse effects on piscine reproduction. Biota collected on and in the area around Maxwell National Wildlife Refuge contained concentrations of selenium that are in the low

  19. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Irrigation drainage studies of the Angostura Reclamation Unit and the Belle Fourche Reclamation Project, western South Dakota : results of 1994 sampling and comparisons with 1988 data

    USGS Publications Warehouse

    Sando, Steven K.; Williamson, Joyce E.; Dickerson, Kimberly K.; Wesolowski, Edwin A.

    2001-01-01

    The U.S. Department of the Interior started the National Irrigation Water Quality Program in 1985 to identify the nature and extent of irrigation-induced water-quality problems that might exist in the western U.S. The Angostura Reclamation Unit (ARU) and Belle Fourche Reclamation Project (BFRP) in western South Dakota were included as part of this program. The ARU and BFRP reconnaissance studies were initiated in 1988, during below-normal streamflow conditions in both study areas. Surface water, bottom sediment, and fish were resampled in 1994 at selected sites in both study areas during generally near-normal streamflow conditions to compare with 1988 study results. Concentrations of major ions in water for both the ARU and BFRP study areas are high relative to national baseline levels. Major-ion concentrations for both areas generally are lower for 1994 than for 1988, when low-flow conditions prevailed, but ionic proportions are similar between years. For ARU, dissolved-solids concentrations probably increase slightly downstream from Angostura Reservoir; however, the available data sets are insufficient to confidently discern effects of ARU operations on dissolved-solids loading. For BFRP, dissolved-solids concentrations are slightly higher at sites that are affected by irrigation drainage; again, however, the data are inconclusive to determine whether BFRP operations increase dissolved-solids loading. Most trace-element concentrations in water samples for both study areas are similar between 1988 and 1994, and do not show strong relations with discharge. ARU operations probably are not contributing discernible additional loads of trace elements to the Cheyenne River. For BFRP, concentrations of some trace elements are slightly higher at sites downstream from irrigation operations than at a site upstream from irrigation operations. BFRP operations might contribute to trace-element concentrations in the Belle Fourche River, but available data are insufficient to quantify increases. For both study areas, concentrations of several trace elements occasionally exceed National Irrigation Water Quality Program guidelines. Selenium routinely occurs in concentrations that could be problematic at sites upstream and downstream from both study areas. Elevated selenium concentrations at sites upstream from irrigation operations indicate that naturally occurring selenium concentrations are relatively high in and near the study areas. While ARU operations probably do not contribute discernible additional loads of selenium to the Cheyenne River, BFRP operations might contribute additional selenium loads to the Belle Fourche River. Concentrations of most trace elements in bottom sediment, except arsenic and selenium, are similar to typical concentrations for western U.S. soils for both study areas. Bottom-sediment arsenic and selenium (1988) concentrations in both study areas can reach levels that might be of concern; however, there is insufficient information to determine whether irrigation operations contribute to these elevated concentrations. Concentrations of most trace elements in fish in both study areas are less than values known to adversely affect fish or birds, although there are occasional exceedances of established criteria. However, selenium concentrations in fish samples routinely are within the National Irrigation Water Quality Program level of concern, and also commonly exceed the dietary guideline for avian consumers for both study areas. Selenium concentrations in fish samples generally are higher at sites downstream from irrigation operations. For BFRP, arsenic and mercury concentrations are elevated in fish samples from site B-18, which is influenced by mine tailings.

  1. Recycling of high purity selenium from CIGS solar cell waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition tomore » the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.« less

  2. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    PubMed Central

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  3. Rhizobium selenitireducens proteins involved in the reduction of selenite to elemental selenium

    USDA-ARS?s Scientific Manuscript database

    Microbial based bioremediation barriers can remove the metalloid selenite (SeO3–2) from flowing groundwater. The organisms associated with the process include microorganisms from within the bacterial and archaeal domains that can reduce soluble SeO3–2 to the insoluble and reddish-colored elemental ...

  4. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main streammore » cigarette smoke, obtained by destructive neutron activation analysis.« less

  5. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less

  6. [FEATURES OF THE CONTENT OF MOVABLE FORMS OF HEAVY METALS AND SELENIUM IN SOILS OF THE YAROSLAVL REGION].

    PubMed

    Bakaeva, E A; Eremeyshvili, A V

    2016-01-01

    With the use of the method of inversion voltammetry there was analyzed the content of movableforms of trace elements: (selenium, zinc, copper lead, cadmium) in soils in the Yaroslavl district of the Yaroslavl region, and also content of zinc, copper lead, cadmium in soils and snow cover in the city of Yaroslavl. According to values of concentrations of movable compounds in soils determined trace elements can be ranked into the following row: zinc > lead > copper > selenium > cadmium. There was revealed insufficient if compared with literature data concentrations, content of movable compounds of selenium, copper and zinc in examined explored soils. The maximal concentrations of lead are revealed in the close proximity to both the city of Yaroslavl and large highways of the city. It indicates to the anthropogenic pollution of soils by this element.

  7. [Selenium: the physiopathological and clinical implications].

    PubMed

    Tato Rocha, R E; Cárdenas Viedma, E; Herrero Huerta, E

    1994-09-01

    Selenium is an ultra-trace element widely distributed in the environment, although its consumption varies significantly depending on the region. Its daily requirements range between 50 and 200 micrograms/day (or a minimum of 1 microgram/kg/day), which are supplied by animal and vegetal foods. Its essentiality in human nutrition is derived from its antioxidative action, being a part of the glutation-peroxidase system (GPx). Thus, it is a protective agent against the harmful action of free radicals. Determination of the selenium-dependent GPx activity seems to be the best index for the assessment of nutritional status. A deficit of selenium will result in a decrease of the GPx activity and, therefore, in a increase of cell damage which cannot be counter-balanced by other antioxidative systems. Diet has a relevant role for the maintenance of selenium status. Deficiency conditions may appear in different population groups when the selenium content in the diet is inadequate. Toxicity states are rare, but some diseases are sensitive to this element, which is mainly involved in cancer prevention.

  8. [Assessment of efficiency of use of the developed supplement containing selenium on laboratory animals].

    PubMed

    Bazhenova, B A; Aslaliev, A D; Danilov, M B; Badmaeva, T M; Vtorushina, I A

    2015-01-01

    The article presents the results of a study of the effectiveness of wheat flour containing selenium in organic form. The organic form of trace element was achieved by transformation of selenium in selenium-methionine (Se-Met) at germination of wheat grains, moistened with a solution of sodium selenite. To determine the effectiveness of selenium- containing supplements experimental investigations were carried out on Long white rats with initial body weight 50 ± 2 g. The duration of the experiment was 30 days. The research model included four groups of animals: control group--animals were fed a complete vivarium diet; group 1--a model of selenium deficiency, which was achieved by feeding selenium-deficient food (grain growh in the Chita region of the Trans-Baikal Territory Zabaikalsky Krai); group 2--animals were administered selenium supplement in the form of enriched flour (0.025 µg Se per 50 g body weight of the animal) on the background of selenium-deficient diet; group 3--animals were treated with a high dose of selenium in the form of a solution of sodium selenite intragastrically through a tube (0.15 µg Se per 50 g body weight). Selenium-containing additive on the background of selenium-deficient diet had a positive impact on the appearance and behavior of animals, the body weight gain per head after 10 days in group 2 amounted to 47.9 g that was 4 fold larger than in rats of group 1. The study of selenium content showed that in the blood, liver, lungs and heart of rats treated with the additive on the background of selenium-deficient diet (group 2), selenium level did not differ from those in the control group and was within physiological norms. The experiment showed that selenium deficiency and rich in selenium rich diet has a significantly different effect on the studied parameters of oxidative-antioxidative status. The activity of blood glutathione peroxidase in animals of group 2 (did not differ from that in group 3) was almost 2 fold higher than in blood of control animals and was seven fold higher than that in blood of animals kept on selenium deficient diet (35.57 ± 3.36 µmol/g per 1 min) A similar dependence was established when studying the activity of glutathione reductase. It has been revealed thatthe oxidative-antioxidative status of animals from experimental groups 1 and 3 was lower than from control group and group 2. Thus, blood antioxidant activity in animals receiving diet with selenium deficiency and high dose of this trace element, was less than in the control group by 43.1 and 25.4%, respectively. Liver MDA level in animals kept on a diet with selenium deficiency exceeded the value of this indicator in the group 2 more than 1.5 fold (110.5 ± 10.70 vs. 72.5 ± 4.30 nmol/mg). When using selenium-containing supplement, this parameter decreased to the control level. In blood plasma of the animals of group 2 total antioxidant activity increased by about five times as compared with the indicators of animals kept on selenium-deficient diet, and was 25% higher than in control. Thus, the introduction of a selenium supplements in the deficient diet contributes to the development of endogenous antioxidants that suppress lipid oxidation. High biological effectiveness of supplements containing organic form of selenium has been proved.

  9. Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas palustris Strain N

    PubMed Central

    Li, Baozhen; Liu, Na; Li, Yongquan; Jing, Weixin; Fan, Jinhua; Li, Dan; Zhang, Longyan; Zhang, Xiaofeng; Zhang, Zhaoming; Wang, Lan

    2014-01-01

    The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO3 −2) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO3 −2 and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO3 −2 to red elemental selenium. The diameters of particles were 80–200 nm. The bacteria exhibited significant tolerance to SeO3 −2 up to 8.0 m mol/L concentration with an EC50 value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO3 2− up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO3 −2 was observed at 2.0, 4.0 and 8.0 m mol/L SeO3 2− concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO3 −2. The finding of this work will contribute to the application of selenium to human health. PMID:24759917

  10. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    PubMed

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Evaluation of selenium in dietary supplements using elemental speciation.

    PubMed

    Kubachka, Kevin M; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A; Falconer, Travis M; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2017-03-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. Published by Elsevier Ltd.

  12. Evaluation of selenium in dietary supplements using elemental speciation

    PubMed Central

    Kubachka, Kevin M.; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A.; Falconer, Travis M.; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2016-01-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common “seleno-amino acids” and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. PMID:27719915

  13. Selenium.

    PubMed

    Barceloux, D G

    1999-01-01

    The 4 natural oxidation states of selenium are elemental selenium (0), selenide (-2), selenite (+4), and selenate (+6). Inorganic selenate and selenite predominate in water whereas organic selenium compounds (selenomethionine, selenocysteine) are the major selenium species in cereal and in vegetables. The principal applications of selenium include the manufacture of ceramics, glass, photoelectric cells, pigments, rectifiers, semiconductors, and steel as well as use in photography, pharmaceutical production, and rubber vulcanizing. High concentrations of selenium in surface and in ground water usually occur in farm areas where irrigation water drains from soils with high selenium content (Kesterson Reservoir, California) or in lakes receiving condenser cooling water from coal-fired electric power plants (Belews Lake, North Carolina). For the general population, the primary pathway of exposure to selenium is food, followed by water and air. Both selenite and selenate possess substantial bioavailability. However, plants preferentially absorb selenates and convert them to organic compounds. Aquatic organisms (e.g., bivalves) can accumulate and magnify selenium in the food chain. Selenium is an essential component of glutathione peroxidase, which is an important enzyme for processes that protect lipids in polyunsaturated membranes from oxidative degradation. Inadequate concentrations of selenium in the Chinese diet account, at least in part, for the illness called Keshan disease. Selenium deficiency occurs in the geographic areas where Balkan nephropathy appears, but there is no direct evidence that selenium deficiency contributes to the development of this chronic, progressive kidney disease. Several lines of scientific inquiry suggest that an increased risk of cancer occurs as a result of low concentrations of selenium in the diet; however, insufficient evidence exists at the present time to recommend the use of selenium supplements for the prevention of cancer. The toxicity of most forms of selenium is low and the toxicity depends on the chemical form of selenium. The acute ingestion of selenious acid is almost invariably fatal, preceded by stupor, hypotension, and respiratory depression. Chronic selenium poisoning has been reported in China where changes in the hair and nails resulted from excessive environmental exposures to selenium. Garlic odor on the breath is an indication of excessive selenium exposure as a result of the expiration of dimethyl selenide. The US National Toxicology Program lists selenium sulfide as an animal carcinogen, but there is no evidence that other selenium compounds are carcinogens.

  14. Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida.

    PubMed

    Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Poor, Savannah K; Buchweitz, John P; Walsh, Catherine J

    2017-12-01

    Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Selenium and selenocysteine: roles in cancer, health and development

    PubMed Central

    Hatfield, Dolph L.; Tsuji, Petra A.; Carlson, Bradley A.; Gladyshev, Vadim N.

    2014-01-01

    The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid 1990s, selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace elucidating its many roles in health, development, and cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions. PMID:24485058

  16. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    PubMed Central

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  18. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. strain CA5

    USDA-ARS?s Scientific Manuscript database

    A Pseudomonas sp. that may be useful in bioremediation projects was isolated from soil. The strain is of potential value because it reduces selenite to elemental red selenium and is unusual in that it was resistant to high concentrations of both selenate and selenite. Cell of the strain removed 1....

  19. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Pine River Project area, Southern Ute Indian Reservation, southwestern Colorado and northwestern New Mexico, 1988-89

    USGS Publications Warehouse

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Thompson, A.L.; Formea, J.J.; Wickman, D.W.

    1993-01-01

    During 1988-89, water, bottom sediment, biota, soil, and plants were sampled for a reconnaissance investigation of the Pine River Project area in southwestern Colorado. Irrigation drainage does not seem to be a major source of dissolved solids in streams. Concentrations of manganese, mercury, and selenium exceeded drinking-water regulations in some streams. The maximum selenium concentration in a stream sample was 94 microg/L in Rock Creek. Irrigation drainage and natural groundwater are sources of some trace elements to streams. Water from a well in a nonirrigated area had 4,800 microg/L of selenium. Selenium concentrations in soil on the Oxford Tract were greater in areas previously or presently irrigated than in areas never irrigated. Some forage plants on the Oxford Tract had large selenium concentrations, including 180 mg/km in alfalfa. Most fish samples had selenium concentrations greater than the National Contaminant Biomonitoring Program 85th percentile. Selenium concentrations in aquatic plants, aquatic inverte- brates, and small mammals may be of concern to fish and wildlife because of possible food-chain bioconcentration. Selenium concentrations in bird samples indicate selenium contamination of biota on the Oxford Tract. Mallard breasts had selenium concentrations exceeding a guideline for human consumption. The maximum selenium concentration in biota was 50 microg/g dry weight in a bird liver from the Oxford Tract. In some fish samples, arsenic, cadmium, copper, and zinc exceeded background concentrations, but concentrations were not toxic. Mercury concentrations in 16 fish samples exceeded the background concentration. Ten mercury concentrations in fish exceeded a guideline for mercury in food for consumption by pregnant women.

  20. GPX1 Pro198Leu polymorphism and GSTM1 deletion do not affect selenium and mercury status in mildly exposed Amazonian women in an urban population.

    PubMed

    Rocha, Ariana V; Rita Cardoso, Bárbara; Zavarize, Bruna; Almondes, Kaluce; Bordon, Isabella; Hare, Dominic J; Teixeira Favaro, Déborah Inês; Franciscato Cozzolino, Silvia Maria

    2016-11-15

    Mercury is potent toxicant element, but its toxicity can be reduced by forming a complex with selenium for safe excretion. Considering the impact of mercury exposure in the Amazon region and the possible interaction between these two elements, we aimed to assess the effects of Pro198Leu polymorphism to GPX1 and GSTM1 deletion, on mercury levels in a population from Porto Velho, an urban locality in the Brazilian Amazon region. Two hundred women from the capital city of Rondônia state were recruited for this study with 149 deemed suitable to participate. We assessed dietary intake using 24-hour recall. Selenium levels in plasma and erythrocytes were measured using hydride generation quartz tube atomic absorption spectroscopy and total hair mercury using cold vapor atomic absorption spectrometry. Oxidative stress parameters (GPx activity, oxygen radical absorbency capacity [ORAC] and malondialdehyde [MDA]) were also analyzed. All participants were genotyped for Pro198Leu polymorphism and GSTM1 deletion. We observed that this population presented high prevalence of selenium deficiency, and also low levels of mercury, likely due to food habits that did not include selenium-rich food sources or significant consumption of fish (mercury biomagnifiers) regularly. Univariate statistical analysis showed that Pro198Leu and GSTM1 genotypes did not affect selenium and mercury levels in this population. Pro198Leu polymorphism and GSTM1 deletion had no effect on mercury levels in mildly exposed people, suggesting these genetic variants impact mercury levels only in highly exposed populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Selenium exposure and depressive symptoms: the Coronary Artery Risk Development in Young Adults Trace Element Study

    PubMed Central

    Colangelo, Laura A; He, Ka; Whooley, Mary A; Daviglus, Martha L.; Morris, Steven; Liu, Kiang

    2014-01-01

    Selenium is an essential trace element important to neurotransmission, but toxic at high levels. Some studies suggest beneficial effects on mood. We assessed the association of selenium exposure with presence of depressive symptoms. Selenium exposure was measured in toenail samples collected in 1987 from 3,735 US participants (age 20–32 years) and depressive symptoms assessed in 1990, 1995, 2000, 2005, and 2010 using the Center for Epidemiologic Studies Depression Scale (CES-D). Binary and polytomous logistic regression models were used to assess the relation of log2(selenium) and selenium quintiles with presence of depressive symptoms (CES-D score ≥ 27 or on antidepressant medication). Relative to selenium quintile 1, the adjusted odds ratio (OR) for having depressive symptoms in 1990 for quintile 5 was 1.59 (95% CI: 1.01, 2.51) and a unit increase in log2(selenium), which represents a doubling of the selenium level, was associated with an OR=2.03 (95% CI: 1.12, 3.70). When examining 1, 2 or 3+ exams vs no exams with symptoms, the OR for quintile 5 was 1.73 (1.04, 2.89) for 3+ exams and for one exam and two exams, there were no associations. In a generalized estimating equations longitudinal model, a doubling of the selenium level was associated with a 56% higher odds of having depressive symptoms at an exam. Contrary to previously reported findings related to mood, higher level of selenium exposure was associated with presence of elevated depressive symptoms. More research is needed to elucidate the role of selenium in depressive disorders. PMID:24560993

  2. Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758).

    PubMed

    Hoo Fung, Leslie A; Antoine, Johann M R; Grant, Charles N; Buddo, Dayne St A

    2013-10-01

    Twenty-five samples of Pterois volitans caught in Jamaican waters were analyzed for 25 essential, non-essential and toxic elements using Graphite Furnace Atomic Absorption Spectrophotometry (GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Instrumental Neutron Activation Analysis (INAA). The mean values for calcium (355 mg/kg), copper (107 μg/kg), iron (0.81 mg/kg), potassium (3481 mg/kg), magnesium (322 mg/kg), manganese (0.04 mg/kg), selenium (0.47 mg/kg), sodium (700 mg/kg) and zinc (4.46 mg/kg) were used to estimate dietary intake. The percentage contribution to provisional tolerable weekly intake for a 70 kg male and a 65 kg female were also estimated for the toxic elements arsenic (1.28% M, 1.38% F), cadmium (0.26% M. 0.28% F), mercury (3.85% M, 4.15% F) and lead (0.17% M, 0.18% F). To further assess the risk of mercury toxicity and the role of mitigation provided by selenium, selenium-mercury molar ratios were calculated for all samples. All samples were shown to have a molar excess of selenium. In addition the suggested selenium health benefit value was calculated, and was positive for all samples. It was concluded that P. volitans appears to contribute modestly to mineral and trace element nutrition, while not being a significant contributor to dietary exposure of toxic elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    PubMed

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  4. Elements in whole blood of Northwestern Crows (Corvus caurinus) in Alaska: No evidence for an association with beak deformities

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.

    2016-01-01

    A recent outbreak of beak deformities among resident birds in Alaska has raised concern about environmental contamination as a possible underlying factor. We measured whole blood concentrations of 30 essential and nonessential elements to determine whether any were associated with beak deformities in Northwestern Crows (Corvus caurinus). We tested for differences between 1) adults with versus those without beak deformities and 2) unaffected adults versus juveniles. Crows with beak deformities had slightly higher levels of barium, molybdenum, and vanadium (all P<0.05), but concentrations were generally low and within the range of values reported from other apparently healthy wild birds. Concentrations of several elements, including selenium, were higher in birds without versus birds with beak deformities (all P<0.05), a difference that may be explained in part by compromised foraging ability associated with the deformities. Adult crows had higher concentrations of cadmium, silicon, and zinc than juveniles (all P<0.05), although differences were relatively small and values were similar to those from other wild birds. Our results suggest that neither selenium nor other tested elements are likely to be causing beak deformities in Alaskan crows. We also provide the first data on elemental concentrations in Northwestern Crows. Levels of selenium far exceeded those typically found in passerine birds and were similar to those in marine-associated waterfowl, suggesting that background levels should be interpreted relative to a species's environment.

  5. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    USGS Publications Warehouse

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.

  6. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles.

    PubMed

    Jain, Rohan; Jordan, Norbert; Weiss, Stephan; Foerstendorf, Harald; Heim, Karsten; Kacker, Rohit; Hübner, René; Kramer, Herman; van Hullebusch, Eric D; Farges, François; Lens, Piet N L

    2015-02-03

    The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  7. Content and distribution of arsenic, bismuth, lithium and selenium in mineral and synthetic fertilizers and their contribution to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senesi, N.; Polemio, M.; Lorusso, L.

    1979-01-01

    Concentrations of arsenic, bismuth, lithium and selenium were determined by atomic absorption spectrophotometry in 32 samples of commercial fertilizers from various manufacturers and distributors. Arsenic and lithium were detected in all investigated samples, bismuth in 50% of samples and selenium only in two samples. Arsenic content ranged from 2 to 321 ppM; lithium varied from 5 to 0.1 ppM; bismuth was always lower than 0.5 ppM; selenium was detectable at the levels of 10 and 13 ppM. Fertilizers made from rock phosphates contained trace element amounts generally higher than those derived from rock carbonates, synthetic nitrogen fertilizers and potassium sulphate.more » Additions of trace elements from fertilizers applied at common rates to cultivated soils are tabulated and discussed on the basis of the natural soil reserves and toxicity levels for plants. Whereas applications of bismuth resulted always very low to influence the usual soil content and plant uptakes and selenium was only rarely present in fertilizers, lithium and moreover arsenic additions by fertilizers could influence the trace element status in soil, overcoming occasionally the toxicity levels for more sensitive crops.« less

  8. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    PubMed

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  9. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy.

    PubMed

    Yang, Soo In; George, Graham N; Lawrence, John R; Kaminskyj, Susan G W; Dynes, James J; Lai, Barry; Pickering, Ingrid J

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se 0 ). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se 0 using the Se L III edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se 0 nanoparticles. The intimate association of Se 0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  10. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Soo In; George, Graham N.; Lawrence, John R.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to themore » same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.« less

  11. Nano-selenium and its nanomedicine applications: a critical review.

    PubMed

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Peng, Qiuming; Baron, Mojmir; Melcova, Magdalena; Opatrilova, Radka; Zidkova, Jarmila; Bjørklund, Geir; Sochor, Jiri; Kizek, Rene

    2018-01-01

    Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.

  12. Associations of Spatial Disparities of Alzheimer's Disease Mortality Rates with Soil Selenium and Sulfur Concentrations and Four Common Risk Factors in the United States.

    PubMed

    Sun, Hongbing

    2017-01-01

    Associations between environmental factors and spatial disparity of mortality rates of Alzheimer's disease (AD) in the US are not well understood. To find associations between 41 trace elements, four common risk factors, and AD mortality rates in the48 contiguous states. Isopleth maps of AD mortality rates of the 48 states and associated factors were examined. Correlations between state average AD mortality rates and concentrations of 41 soil elements, wine consumption, percentage of current smokers, obesity, and diagnosed diabetes of the 48 states between 1999 and 2014 were analyzed. Among 41 elements, soil selenium concentrations have the most significant inverse correlations with AD mortality rates. Rate ratio (RR) of the 6 states with the lowest product of soil selenium and sulfur concentrations is 53% higher than the 6 states with the highest soil selenium sulfur product in the 48 states (RR = 1.53, CI95% 1.51-1.54). Soil tin concentrations have the most significant inverse correlation with AD mortality growth rates between 1999 and 2014, followed by soil sulfur concentrations. Percentages of obesity, diagnosed diabetes, smoking, and wine consumption per capita also correlate significantly with AD mortality growth rates. High soil selenium and sulfur concentrations and wine consumption are associated with low AD mortality rates. Given that average soil selenium and sulfur concentrations are indicators of their intakes from food, water, and air by people in a region, long-term exposure to high soil selenium and sulfur concentrations might be beneficial to AD mortality rate reduction in a region.

  13. Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts

    PubMed Central

    Ramos, Joseph F; Webster, Thomas J

    2012-01-01

    Background: Ventilator-associated pneumonia is a deadly nosocomial infection caused by contaminated endotracheal tubes. It has been shown that polyvinyl chloride (PVC, the endotracheal tube substrate) coated with elemental selenium nanoparticles reduces bacterial adherence and proliferation on PVC by over 99%. However, it is not known if selenium nanoparticles elicit a cytotoxic effect in vitro. The purpose of this study was to investigate the cytotoxic effects of PVC coated with selenium nanoparticles on fibroblasts, which are mammalian cells central to endotracheal tube intubation. Methods: Different concentrations of selenium nanoparticles were precipitated onto the PVC surface by reduction of selenium salts using glutathione. Characterization of PVC coated with selenium nanoparticles was done by scanning electron microscopy, energy dispersive x-ray, and contact angle measurements. For the cytotoxicity experiments, fibroblasts were seeded at a density of 5000 cm2 onto PVC coated with three different concentrations of selenium nanoparticles (high, medium, low) and incubated for 4 hours (adhesion) as well as for 24 hours and 72 hours (proliferation). The half-maximal inhibitory concentration (IC50) value was determined after 72 hours using an ultrahigh concentration. MTT assays were used to assess cell viability at the indicated time points. Results: The three concentrations of selenium nanoparticles did not elicit a cytotoxic effect after 72 hours (P < 0.01, n = 3). It was found that the IC50value was at the ultrahigh concentration of selenium nanoparticles. The nanoparticulate elemental selenium concentration previously shown to decrease the function of bacteria was shown not to cause a cytotoxic effect on fibroblasts in vitro. Conclusion: These findings demonstrate great selectivity between bacteria and healthy cells, and are a viable option for coating endotracheal tubes in order to prevent ventilator-associated pneumonia. PMID:22915842

  14. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  15. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis.

    PubMed

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Trend of the selenium supply of cattle in Germany, Austria, Switzerland, and Denmark. Retrospective analysis of serum samples of the years 2006-2015].

    PubMed

    Müller, A; Freude, B

    2016-01-01

    An optimal selenium supply of cattle is essential, because an insufficiency can lead to health disorders and reduced performance. The aim of the study was to retrospectively evaluate the selenium supply of cattle in Germany, Austria, Switzerland, and Denmark. Serum samples from 45  068 cattle with unknown clinical status originating from countries all across Europe, which had been sent by veterinarians to the IDEXX Laboratory Ludwigsburg, Germany, between January 1st, 2006 and June 30th, 2015, were routinely analyzed for the selenium concentration by means of Inductively Coupled Plasma Mass Spectrometry. A total of 40  949 samples (30  462 from Germany, 4004 from Austria, 3232 from Switzerland, 3251 from Denmark) were included in the evaluation. Results were categorized as follows: 50-150 µg/l: sufficient supply, < 50 µg/l: supply too low, > 150 µg/l: supply too high. During the observation period, a generalized trend towards a decreasing selenium supply was clear. Denmark showed the best selenium supply (77.4% of samples indicating a sufficient supply); however, even in this country a tendency towards a deterioration was seen. A very poor situation with a strongly decreasing selenium supply was observed in Austria, followed by Germany (38% and 30% of samples, respectively, indicating an undersupply). For Switzerland, a constantly poor selenium supply was found (49% of samples indicating an undersupply). Due to the ongoing trend of a selenium undersupply in cattle herds, it is recommended to control the serum selenium concentration annually and supplement this trace element via mineral food when necessary.

  17. Selenium biochemistry and its role for human health.

    PubMed

    Roman, Marco; Jitaru, Petru; Barbante, Carlo

    2014-01-01

    Despite its very low level in humans, selenium plays an important and unique role among the (semi)metal trace essential elements because it is the only one for which incorporation into proteins is genetically encoded, as the constitutive part of the 21st amino acid, selenocysteine. Twenty-five selenoproteins have been identified so far in the human proteome. The biological functions of some of them are still unknown, whereas for others there is evidence for a role in antioxidant defence, redox state regulation and a wide variety of specific metabolic pathways. In relation to these functions, the selenoproteins emerged in recent years as possible biomarkers of several diseases such as diabetes and several forms of cancer. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important requisite to elucidate its preventing/therapeutic effect for human diseases. This review summarizes the most recent findings on the biochemistry of active selenium species in humans, and addresses the latest evidence on the link between selenium intake, selenoproteins functionality and beneficial health effects. Primary emphasis is given to the interpretation of biochemical mechanisms rather than epidemiological/observational data. In this context, the review includes the following sections: (1) brief introduction; (2) general nutritional aspects of selenium; (3) global view of selenium metabolic routes; (4) detailed characterization of all human selenoproteins; (5) detailed discussion of the relation between selenoproteins and a variety of human diseases.

  18. Disorders of metal metabolism

    PubMed Central

    Ferreira, Carlos R.; Gahl, William A.

    2017-01-01

    Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481

  19. Selenium deficiency risk predicted to increase under future climate change

    PubMed Central

    Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.

    2017-01-01

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487

  20. Selenium deficiency risk predicted to increase under future climate change.

    PubMed

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  1. [The selenium content of food products and the blood of inhabitants of Norilsk].

    PubMed

    Golubkina, N A; Shagova, M V; Spirichev, V B; Khristenko, P P; Alftan, D; Laaksonen, P; Muratov, Iu M; Vachaeva, N N

    1992-01-01

    The intake of trace element selenium by Norilsk citizens was assessed by its levels in the serum, food and soil. It was found that soil and food made in the Norilsk region are rich in selenium, its serum concentration in the population is normal (102 micrograms/l). References to such values for the Moscow and Zaporoje (Ukraine) regions are made. Low selenium levels in the serum may be indicative of pulmonary diseases.

  2. Environmental implications of excessive selenium: a review.

    PubMed

    Lemly, A D

    1997-12-01

    Selenium is a naturally occurring trace element that is nutritionally required in small amounts but it can become toxic at concentrations only twice those required. The narrow margin between beneficial and harmful levels has important implications for human activities that increase the amount of selenium in the environment. Two of these activities, disposal of fossil fuel wastes and agricultural irrigation of arid, seleniferous soils, have poisoned fish and wildlife, and threatened public health at several locations in the United States. Research studies of these episodes have generated a data base that clearly illustrates the environmental hazard of excessive selenium. It is strongly bioaccumulated by aquatic organisms and even slight increases in waterborne concentrations can quickly result in toxic effects such as deformed embryos and reproductive failure in wildlife. The selenium data base has been very beneficial in developing hazard assessment procedures and establishing environmentally sound water quality criteria. The two faces of selenium, required nutrient and potent toxin, make it a particularly important trace element in the health of both animals and man. Because of this paradox, environmental selenium in relation to agriculture, fisheries, and wildlife will continue to raise important land and water management issues for decades to come. If these issues are dealt with using prudence and the available environmental selenium data base, adverse impacts to natural resources and public health can be avoided.

  3. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    PubMed

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  4. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  5. The Effect of Helicobacter pylori Eradication on the Levels of Essential Trace Elements

    PubMed Central

    Wu, Meng-Chieh; Huang, Chun-Yi; Kuo, Fu-Chen; Hsu, Wen-Hung; Wang, Sophie S. W.; Shih, Hsiang-Yao; Liu, Chung-Jung; Chen, Yen-Hsu; Wu, Deng-Chyang; Huang, Yeou-Lih; Lu, Chien-Yu

    2014-01-01

    Objective. This study was designed to compare the effect of Helicobacter pylori (H. pylori) infection treatment on serum zinc, copper, and selenium levels. Patients and Methods. We measured the serum zinc, copper, and selenium levels in H. pylori-positive and H. pylori-negative patients. We also evaluated the serum levels of these trace elements after H. pylori eradication. These serum copper, zinc, and selenium levels were determined by inductively coupled plasma mass spectrometry. Results. Sixty-three H. pylori-positive patients and thirty H. pylori-negative patients were studied. Serum copper, zinc, and selenium levels had no significant difference between H. pylori-positive and H. pylori-negative groups. There were 49 patients with successful H. pylori eradication. The serum selenium levels were lower after successful H. pylori eradication, but not significantly (P = 0.06). There were 14 patients with failed H. pylori eradication. In this failed group, the serum selenium level after H. pylori eradication therapy was significantly lower than that before H. pylori eradication therapy (P < 0.05). The serum zinc and copper levels had no significant difference between before and after H. pylori eradication therapies. Conclusion. H pylori eradication regimen appears to influence the serum selenium concentration (IRB number: KMUH-IRB-20120327). PMID:25548772

  6. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Nano-selenium and its nanomedicine applications: a critical review

    PubMed Central

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Peng, Qiuming; Baron, Mojmir; Melcova, Magdalena; Opatrilova, Radka; Zidkova, Jarmila; Bjørklund, Geir; Sochor, Jiri; Kizek, Rene

    2018-01-01

    Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration. PMID:29692609

  8. Selenium as an essential micronutrient: roles in cell cycle and apoptosis.

    PubMed

    Zeng, Huawei

    2009-03-23

    Selenium is an essential trace element for humans and animals, and selenium deficiency is associated with several disease conditions such as immune impairment. In addition, selenium intakes that are greater than the recommended daily allowance (RDA) appear to protect against certain types of cancers. In humans and animals, cell proliferation and death must be regulated to maintain tissue homeostasis, and it has been well documented that numerous human diseases are directly related to the control of cell cycle progression and apoptosis. Thus, the elucidation of the mechanisms by which selenium regulates the cell cycle and apoptosis can lead to a better understanding of the nature of selenium's essentiality and its role in disease prevention. This article reviews the status of knowledge concerning the effect of selenium on cell cycle and apoptosis.

  9. DNA damage and oxidative stress response to selenium yeast in the non-smoking individuals: a short-term supplementation trial with respect to GPX1 and SEPP1 polymorphism.

    PubMed

    Jablonska, E; Raimondi, S; Gromadzinska, J; Reszka, E; Wieczorek, E; Krol, M B; Smok-Pieniazek, A; Nocun, M; Stepnik, M; Socha, K; Borawska, M H; Wasowicz, W

    2016-12-01

    Selenium, both essential and toxic element, is considered to protect against cancer, though human supplementation trials have generated many inconsistent data. Genetic background may partially explain a great variability of the studies related to selenium and human health. The aim of this study was to assess whether functional polymorphisms within two selenoprotein-encoding genes modify the response to selenium at the level of oxidative stress, DNA damage, and mRNA expression, especially in the individuals with a relatively low selenium status. The trial involved 95 non-smoking individuals, stratified according to GPX1 rs1050450 and SEPP1 rs3877899 genotypes, and supplemented with selenium yeast (200 µg) for 6 weeks. Blood was collected at four time points, including 4 weeks of washout. After genotype stratification, the effect of GPX1 rs1050450 on lower GPx1 activity responsiveness was confirmed; however, in terms of DNA damage, we failed to indicate that individuals homozygous for variant allele may especially benefit from the increased selenium intake. Surprisingly, considering gene and time interaction, GPX1 polymorphism was observed to modify the level of DNA strand breaks during washout, showing a significant increase in GPX1 wild-type homozygotes. Regardless of the genotype, selenium supplementation was associated with a selectively suppressed selenoprotein mRNA expression and inconsistent changes in oxidative stress response, indicating for overlapped, antioxidant, and prooxidant effects. Intriguingly, DNA damage was not influenced by supplementation, but it was significantly increased during washout. These results point to an unclear relationship between selenium, genotype, and DNA damage.

  10. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    PubMed

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues.

    PubMed

    Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N

    2014-09-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles. © 2014 SETAC.

  12. The Effect of Ketogenic Diet on Serum Selenium Levels in Patients with Intractable Epilepsy.

    PubMed

    Arslan, Nur; Kose, Engin; Guzel, Orkide

    2017-07-01

    The aim of the present study was to evaluate serum selenium levels in children receiving olive oil-based ketogenic diet (KD) for intractable seizures for at least 1 year. Out of 320 patients who were initiated on KD, patients who continued receiving KD for at least 12 months were enrolled. Sixteen patients who had selenium deficiency at the time of starting KD were excluded. Finally, a total of 110 patients (mean age 7.3 ± 4.2 years) were included. Serum selenium levels were measured at baseline and at 3, 6, and 12 months after treatment initiation by using atomic absorption spectroscopy. Selenium deficiency was defined as a serum selenium level <48 μg/L at each visit. Repeated measure ANOVA with post hoc Bonferroni correction was used for data analysis. Mean duration of KD was 15.3 ± 4.3 months. Mean serum selenium levels were significantly lower at 6 and 12 months of KD treatment (66.2 ± 23.3 and 57.2 ± 16.2 μg/L, respectively) compared to pre-treatment levels (79.3 ± 25.7 μg/L) (p = 0.001). On the other hand, selenium levels did not show any significant difference at 3 months of KD treatment (70.0 ± 21.2 μg/L) compared to baseline levels (p = 0.076). A total of 54 patients (49.1%) were diagnosed with selenium deficiency, and oral selenium medication was initiated for these patients. No relevant clinical findings were detected, and echocardiographic findings were normal in all patients. The decline of the serum selenium concentrations after 6 and 12 months of ketogenic diet suggests that patients on this highly prescriptive dietary treatment need close monitoring of this trace element.

  13. [Deficiency of selenium in pneumonia: an accident or regularity? Problem of nutriciology and gastroenterology].

    PubMed

    Orlov, A M; Bakulin, I G; Mazo, V K

    2013-01-01

    Study of features of community-acquired pneumonia in young adults with deficiency of trace element selenium and the development directions of optimization of treatment. The study of 114 patients with community-acquired pneumonia, were evaluated nutritional deficiencies, the level of selenium in the blood plasma and the efficiency of application selenium biologically active additives in treatment of community acquired pneumonia. The vast majority of the 114 patients with community-acquired pneumonia is marked by malnutrition and selenium varying degrees of symptoms. Application of selenium dietary supplement in patients with community-acquired pneumonia contributes to earlier periods of permission of pneumonia and increase outcomes from full resolution infiltrative pulmonary field changes according to the radiographic study in patients of this category.

  14. Toxicokinetics of selenium in the slider turtle, Trachemys scripta.

    PubMed

    Dyc, Christelle; Far, Johann; Gandar, Frédéric; Poulipoulis, Anastassios; Greco, Anais; Eppe, Gauthier; Das, Krishna

    2016-05-01

    Selenium (Se) is an essential element that can be harmful for wildlife. However, its toxicity in poikilothermic amniotes, including turtles, remains poorly investigated. The present study aims at identifying selenium toxicokinetics and toxicity in juvenile slider turtles (age: 7 months), Trachemys scripta, dietary exposed to selenium, as selenomethionine SeMet, for eight weeks. Non-destructive tissues (i.e. carapace, scutes, skin and blood) were further tested for their suitability to predict selenium levels in target tissues (i.e. kidney, liver and muscle) for conservation perspective. 130 juvenile yellow-bellied slider turtles were assigned in three groups of 42 individuals each (i.e. control, SeMet1 and SeMet2). These groups were subjected to a feeding trial including an eight-week supplementation period SP 8 and a following 4-week elimination period EP 4 . During the SP8, turtles fed on diet containing 1.1 ± 0.04, 22.1 ± 1.0 and 45.0 ± 2.0 µg g(-1) of selenium (control, SeMet1 and SeMet2, respectively). During the EP4, turtles fed on non-supplemented diet. At different time during the trial, six individuals per group were sacrificed and tissues collected (i.e. carapace, scutes, skin, blood, liver, kidney, muscle) for analyses. During the SP8 (Fig. 1), both SeMet1 and SeMet2 turtles efficiently accumulated selenium from a SeMet dietary source. The more selenium was concentrated in the food, the more it was in the turtle body but the less it was removed from their tissues. Moreover, SeMet was found to be the more abundant selenium species in turtles' tissues. Body condition (i.e. growth in mass and size, feeding behaviour and activity) and survival of the SeMet1 and SeMet2 turtles seemed to be unaffected by the selenium exposure. There were clear evidences that reptilian species are differently affected by and sensitive to selenium exposure but the lack of any adverse effects was quite unexpected. Fig. 1 Design of the feeding trial. T, Time of tissues collection in weeks. The feeding trial included a supplementation period of 8 weeks (i.e. SP8) followed by an elimination period of 4 weeks (i.e. EP4). Six turtles from each turtle group (i.e. control, SeMet1 and SeMet2) were sacrifice at each collection time, from T1 to T12. At T0, four turtles were sacrificed.

  15. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.

    PubMed

    Soda, S; Hasegawa, A; Kuroda, M; Hanada, A; Yamashita, M; Ike, M

    2015-01-01

    A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.

  16. Clinical relevance of trace element measurement in patients on initiation of parenteral nutrition.

    PubMed

    Salota, Rashim; Omar, Sohail; Sherwood, Roy A; Raja, Kishor; Vincent, Royce P

    2016-11-01

    Background and Aims Serum zinc, copper and selenium are measured in patients prior to commencing on parenteral nutrition; however, their interpretation can be difficult due to acute phase reactions. We assessed (i) the relationship of raised C-reactive protein with trace elements and albumin (ii) benefits of measuring trace elements when C-reactive protein is raised in patients requiring short-term parenteral nutrition. Methods Samples were collected for zinc, copper, selenium and albumin at baseline and then every two weeks and correlated with C-reactive protein results in patients on parenteral nutrition. Results were categorized into four groups based on the C-reactive protein concentrations: (i) <20 mg/L, (ii) 20-39 mg/L, (iii) 40-79 mg/L and (iv) ≥80 mg/L. Results In 166 patients, zinc, selenium and albumin correlated (Spearman's) negatively with C-reactive protein; r = -0.26, P < 0.001 (95% CI -0.40 to -0.11), r = -0.44, P < 0.001 (-0.56 to -0.29) and r = -0.22 P = 0.005 (-0.36 to -0.07), respectively. Copper did not correlate with C-reactive protein (r = 0.09, P = 0.25 [-0.07 to 0.25]). Comparison of trace elements between the four groups showed no difference in zinc and copper (both P > 0.05), whereas selenium and albumin were lower in the group with C-reactive protein > 40 mg/L ( P < 0.05). Conclusion In patients on short-term parenteral nutrition, measurement of C-reactive protein is essential when interpreting zinc and selenium but not copper results. Routine measurement of trace elements prior to commencing parenteral nutrition has to be considered on an individual basis in patients with inflammation.

  17. Selenium and its supplementation in cardiovascular disease--what do we know?

    PubMed

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-04-27

    The trace element selenium is of high importance for many of the body's regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.

  18. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    PubMed Central

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-01-01

    The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery. PMID:25923656

  19. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention?

    PubMed Central

    Diamond, Alan M.

    2013-01-01

    The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium’s impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies. PMID:23204505

  20. [The relationship between selenium and gastrointestinal inflammatory diseases].

    PubMed

    Nagy, Dániel Tamás; Fülesdi, Béla; Hallay, Judit

    2013-10-13

    The cell-membrane toxicity of reactive oxygen and nitrogen species (RONS) plays an increasing role in the pathomechanism of gastrointestinal tract diseases. Trace elements are important parts of antioxidant protecting system, especially the selenium (Se), which, in the form of glutathione peroxidase contributes to the immunity of the gut (GALT). Due to the absorptional disorders and consequent malnutrition observed in the course of inflammatory bowel diseases (IBD) an important role is associated with nutritional therapy, including energy-, protein- and trace element-support. Human studies show, that IBD is mostly accompanied by lower serum Se concentrations, reduced antoxidant and increased proinflammatory activity. Adequate Se-replacement may reduce the severity of organ failure and infections, but not mortality. However, it is encouraging that in animal studies obvious preventive effect of Se has been found on IBD and chronic inflammation induced colon cancer .

  1. Elemental content of tissues and excreta of lambs, goats, and kids fed white sweet clover growing on fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furr, A.K.; Parkinson, T.F.; Heffron, C.L.

    White sweet clover found voluntarily growing on a deep bed of soft coal fly ash was found to contain high concentrations of a number of elements including selenium, bromine, and molybdenum, rubidium, strontium, and others. The clover was harvested and fed as 23.5% of a dry pelleted ration to lambs and pregnant goats for up to 173 days. High concentrations of selenium were found in 11 tissues, blood, goats' milk, and excreta of lambs, goats, and newborn kids. Molybdenum in liver, strontium in bone, and bromine and rubidium in animal tissues were also elevated over those in the corresponding tissuesmore » of animals fed an identical ration containing control clover grown on soil. No gross or histologic lesions were present in any of the animals.« less

  2. Transformations of Heavy Metals and Plant Nutrients in Dredged Sediments as Affected by Oxidation Reduction Potential and pH. Volume 1. Literature Review

    DTIC Science & Technology

    1977-05-01

    895-896 (1974). 191. Fagerstrom, T., and Jernelov, A. "Formation of Methyl Mercury from Pure Mercuric Sulphide in Aerobic Organic Sediment." Water...was available. The toxic and nutrient elements included are lead, cadmium, mercury , arsenic, selenium, copper, zinc, manganese, iron, nitrogen...on the exchange of these materials between sediment and water. The toxic and nutrient elements included are lead, cadmium, mercury , ar- senic

  3. Environmental Implications of Excessive Selenium: A Review

    Treesearch

    A. Dennis Lemly

    1997-01-01

    Selenium is a trace element that is normally present in surface waters at concentrations of about 0.1 - 0.3 parts-per-billion; Lemly, 1985a. In slightly greater amounts, i. e., l-5 ppb, it can bioaccumulate in aquatic food chains and become a concentrated dietary source of selenium that is highly toxic to fish and wildlife (Lemly and Smith, 1987; Lemly, 1993a). Dietary...

  4. Therapeutic potential of selenium and tellurium compounds: opportunities yet unrealised.

    PubMed

    Tiekink, Edward R T

    2012-06-07

    Despite being disparaged for their malodorous and toxic demeanour, compounds of selenium, a bio-essential element, and tellurium, offer possibilities as therapeutic agents. Herein, their potential use as drugs, for example, as anti-viral, anti-microbial, anti-inflammatory agents, etc., will be surveyed along with a summary of the established biological functions of selenium. The natural biological functions of tellurium remain to be discovered.

  5. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    PubMed

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  6. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Trace elements and pesticides in Salton Sea area, California

    USGS Publications Warehouse

    Schroeder, Roy A.; Setmire, James G.; Wolfe, John C.

    1988-01-01

    Concentrations of numerous potentially toxic trace elements and pesticides were determined in water, sediment, and biota from the Salton Sea area in southestern California. Comparison of results with data from other studies in this area and from other areas, and with various water-quality standards or criteria, indicate that selenium probably is the principal contaminant of concern in the Salton Sea basin and that it probably is related to agricultural practices. Selenium is mobilized in the subsurface drainwater produced by agricultural irrigation and transported in ditches and rivers, some of which pass through or near the Salton Sea National Wildlife Refuge before entering the Salton Sea. Some selenium apparently is incorporated into the food chain. In response to the finding of elevated selenium residues in fish from the area by State agencies, the Imperial County Health Department has issued a health advisory restricting or prohibiting human consumption of fish from the Salton Sea and drains.

  8. Chemical Data for Detailed Studies of Irrigation Drainage in the Salton Sea Area, California, 1995?2001

    USGS Publications Warehouse

    Schroeder, Roy A.

    2004-01-01

    The primary purpose of this report is to present all chemical data from the Salton Sea area collected by the U.S. Geological Survey between 1995 and 2001. The data were collected primarily for the Department of the Interior's National Irrigation Water Quality Program (NIWQP). The report also contains a brief summary and citation to investigations done for the NIWQP between 1992 and 1995. The NIWQP began studies in the Salton Sea area in 1986 to evaluate effects on the environment from potential toxins, especially selenium, in irrigation-induced drainage. This data report is a companion to several reports published from the earlier studies and to interpretive publications that make use of historical and recent data from this area. Data reported herein are from five collection studies. Water, bottom material, and suspended sediment collected in 1995-96 from the New River, the lower Colorado River, and the All-American Canal were analyzed for elements, semi-volatile (extractable) organic compounds, and organochlorine compounds. Sufficient suspended sediment for chemical analyses was obtained by tangential-flow filtration. A grab sample of surficial bottom sediment collected from near the deepest part of the Salton Sea in 1996 was analyzed for 44 elements and organic and inorganic carbon. High selenium concentration confirmed the effective transfer (sequestration) of selenium into the bottom sediment. Similar grab samples were collected 2 years later (1998) from 11 locations in the Salton Sea and analyzed for elements, as before, and also for nutrients, organochlorine compounds, and polycyclic aromatic hydrocarbons. Nutrients were measured in bottom water, and water-column profiles were obtained for pH, conductance, temperature, and dissolved oxygen. Element and nutrient concentrations were obtained in 1999 from cores at 2 of the above 11 sites, in the north subbasin of the Salton Sea. The most-recent study reported herein was done in 2001 and contains element data on suspended material isolated by continuous-flow centrifugation on samples collected in transects extending out from the Whitewater, the Alamo, and the New Rivers into the Salton Sea. Chemical data on suspended sediment and bottom material from tributory rivers and the Salton Sea itself show that many insoluble constituents, including selenium and DDE, are concentrated in the fine-grained, organic- and carbonate-rich bottom sediment from deep areas near the center of the Salton Sea. Data also show that selenium and arsenic are markedly enriched in seston (plankton, partially-degraded algal detritus, and mineral matter that compose suspended particulates in the lake) collected just below the water surface in the Salton Sea. This result indicates that bio-concentration in primary producers in the water column provides an important pathway whereby high selenium residues accumulate in fish and fish-eating birds at the Salton Sea.

  9. Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    D'Amato, Roberto; Petrelli, Maurizio; Proietti, Primo; Onofri, Andrea; Regni, Luca; Perugini, Diego; Businelli, Daniela

    2018-03-25

    Biofortification of food crops has been used to increase the intake of Se in the human diet, even though this may change the concentration of other elements and modify the nutritional properties of the enriched food. Selenium biofortification programs should include routine assessment of the overall mineral composition of enriched plants. Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was used for the assessment of mineral composition of table olives. Olive trees were fertilized with sodium selenate before flowering. At harvest, the edible parts of drupes proved to be significantly enriched in Se, delivering 6.1 μg g -1 (39% of the RDA for five olives). Such enrichment was followed by significant changes in the concentrations of B, Mg, K, Cr, Mn, Fe and Cu in edible parts, which are discussed for their impact on food quality. The biofortification of olive plants has allowed the enrichment of fruits with selenium. Enrichment with selenium has caused an increase in the concentration of other elements, which can change the nutritional quality of the drupes. The analytical technique used well as a valuable tool for routinely determining the chemical composition of all fruit parts. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Selenium. Role of the Essential Metalloid in Health

    PubMed Central

    Kurokawa, Suguru; Berry, Marla J.

    2015-01-01

    Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health. PMID:24470102

  11. Trace elements in lesser scaup (Aythya affinis) from the Mississippi flyway

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Anteau, M.J.; Afton, A.D.; Wooten, D.E.

    2003-01-01

    Previous research reported that concentrations of selenium in the livers of 88a??95% of lesser scaup from locations in Lake Erie, Lake St. Clair, and Lake Michigan, USA were either elevated (10a??33 A?g/g dry weight [dw]) or in the potentially harmful range (>33 A?g/g dw). In order to determine the geographic extent of these high selenium concentrations, we collected lesser scaup in Louisiana, Arkansas, Illinois, Minnesota, Wisconsin, and Manitoba and analyzed the livers for 19 trace elements. We found that all trace element concentrations, except for selenium, generally were low. Arsenic, which usually is not detected in liver samples, was detected in Louisiana and may be related to past agricultural usages. Chromium, which also is not usually detected, was only present in lesser scaup from Arkansas and may be related to fertilizer applications. Cadmium and mercury concentrations did not differ among locations and concentrations were low. Selenium concentrations in Arkansas (geometric mean=4.2 A?g/g dw) were significantly lower than those in Louisiana (10.7 A?g/g dw), Illinois (10.5 A?g/g dw), and Minnesota (8.0 A?g/gdw); concentrations in Wisconsin and Manitoba were intermediate (6.6 and 6.5 A?g/g dw). About 25% of lesser scaup livers contained elevated selenium concentrations; however, none were in the harmful range. We concluded that selenium concentrations in lesser scaup in the Mississippi Flyway are elevated in some individuals, but not to the extent that has been documented in the industrial portions of the Great Lakes.

  12. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Dolores Project area, southwestern Colorado and southeastern Utah, 1990-91

    USGS Publications Warehouse

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Jensen, E.G.

    1995-01-01

    Water, bottom-sediment, and biota samples were collected in 1990-91 to identify water-quality problems associated with irrigation drainage in the Dolores Project area. Concentrations of cadmium, mercury, and selenium in some water samples exceeded aquatic-life criteria. Selenium was associated with irrigaton drainage from the Dolores Project, but other trace elements may be transported into the area in the irrigation water supply. Selenium concentrations exceeded the chronic aquatic-life criterion in water samples from lower McElmo Creek and Navajo Wash, which drain the Montezuma Valley, from newly irrigated areas, and from the Mancos River. The maximum selenium con- centration in water was 88 micrograms per liter from Navajo Wash. Concentrations of herbicides in water were less than concentrations harmful to aquatic life. Selenium concentrations in four bottom-sediment samples exceeded the baseline concentrations for soils in the Western United States. The largest selenium concentrations in biota were in samples from Navajo Wash, from newly irrigated areas north of the Montezuma Valley, and from the Mancos River basin. Selenium concentrations in aquatic-invertebrate samples from the newly irrigated areas exceeded a guideline for food items consumed by fish and wildlife. Selenium concen- trations in whole-body suckers were larger in the San Juan River downstream from the Dolores Project than upstream from the project at Four Corners. Selenium concentrations in fathead minnow samples from two sites were at adverse-effect levels. Mercury concentrations in warm-water game fish in reservoirs in the study area may be of concern to human health. Some concentrations of other trace elements exceeded background concentrations, but the concentrations were not toxicologically significant or the toxicologic significance is not known.

  13. Mercury, Lead, Cadmium, Arsenic, Chromium and Selenium in Feathers of Shorebirds during Migrating through Delaware Bay, New Jersey: Comparing the 1990s and 2011/2012

    PubMed Central

    Burger, Joanna; Tsipoura, Nellie; Niles, Lawrence J.; Gochfeld, Michael; Dey, Amanda; Mizrahi, David

    2015-01-01

    Understanding temporal changes in contaminant levels in coastal environments requires comparing levels of contaminants from the same species from different time periods, particularly if species are declining. Several species of shorebirds migrating through Delaware Bay have declined from the 1980s to the present. To evaluate some contaminants as cause for the declines, we examine levels of mercury, lead, cadmium, arsenic, chromium and selenium in feathers of red knot (Calidris canutus, N = 46 individuals), semipalmated sandpiper (Calidris pusilla, N = 70) and sanderling (Calidris alba, N = 32) migrating through Delaware Bay, New Jersey, USA, from 1991 to 1992 (N = 40), 1995 (N = 28), and 2011–2012 (N = 80) to determine if levels have changed. We found: (1) arsenic, chromium, and lead increased in red knot and decreased in semipalmated sandpiper; (2) cadmium decreased in semipalmated sandpipers; (3) mercury decreased in red knot and sanderlings; (4) selenium decreased in red knot and increased in semipalmated sandpipers. In 2011/2012 there were significant interspecific differences for arsenic, mercury and selenium. Except for selenium, the element levels were well below levels reported for feathers of other species. The levels in feathers in red knots, sanderling, and semipalmated sandpipers from Delaware Bay in 2011/2012 were well below levels in feathers that are associated with effect levels, except for selenium. Selenium levels ranged from 3.0 µg·g−1 dry weight to 5.8 µg·g−1 (semipalmated sandpiper), within the range known to cause adverse effects, suggesting the need for further examination of selenium levels in birds. The levels of all elements were well below those reported for other marine species, except for selenium, which was near levels suggesting possible toxic effects. PMID:29056651

  14. Concentrations of metals and trace elements in blood of spectacled and king eiders in northern Alaska, USA

    USGS Publications Warehouse

    Wilson, Heather M.; Petersen, Margaret R.; Troy, Declan

    2004-01-01

    In 1996, we measured concentrations of arsenic, barium, cadmium, lead, mercury, and selenium in blood of adult king (Somateria spectabilis) and spectacled (Somateria fischeri) eiders and duckling spectacled eiders from northern Alaska, USA. Concentrations of selenium exceeded background levels in all adults sampled and 9 of 12 ducklings. Mercury was detected in all adult spectacled eiders and 5 of 12 ducklings. Lead concentrations were above the clinical toxicity threshold in one duckling (0.64 ppm) and two adult female spectacled eiders (0.54 and 4.30 ppm). Concentrations of cadmium and mercury varied between species; barium, cadmium, mercury, and selenium varied between sexes. In female spectacled eiders, mercury concentrations increased during the breeding season and barium and selenium levels decreased through the breeding season. Selenium declined at 2.3 ± 0.9% per day and levels were lower in spectacled eiders arriving to the breeding grounds in northern Alaska than in western Alaska. The variation in selenium levels between breeding areas may be explained by differences in timing and routes of spring migration. Most trace elements for which we tested were not at levels currently considered toxic to marine birds. However, the presence of mercury and elevated lead in ducklings and adult female spectacled eiders suggests these metals are available on the breeding grounds.

  15. Maternal hair selenium levels as a possible long-term nutritional indicator of recurrent pregnancy loss

    PubMed Central

    2013-01-01

    Background Approximately 1% of all couples trying to conceive will suffer from recurrent pregnancy loss (RPL). Nutritional deficiencies have been postulated as a possible cause of RPL and in particular, selenium deficiency has been associated with reproductive failure in animal studies and more recently, in some human studies. This study was undertaken to assess the maternal hair selenium levels in women with RPL without an identified cause and to compare these results with those of women with successful reproductive histories. Methods Twenty four patients with RPL and twenty four control subjects with at least one successful pregnancy and no pregnancy failures, who were matched for age and ethnicity, were recruited. A questionnaire was completed, which included demographic and social information and a dietary history. Hair samples were collected and analyzed for selenium content by inductively coupled plasma mass spectrometry. Results The control subjects had a higher mean income and had completed more years of education compared with the RPL patients. There was no significant difference in the intake of selenium rich foods between the 2 groups. The patients, however, consumed significantly more fruit, cheese, potatoes and chocolate than the controls. The median (range) selenium content was 0.80 ppm (0.19-4.15) and 0.68 ppm (0.43-3.76) in patients and controls respectively (Mann Whitney U test 209.5 p = 0.74). Conclusions While there were significant differences in the 2 groups with regard to resources, education and diet our results show that hair selenium concentrations and dietary selenium intake, were similar in the two groups. Both groups had low levels of this important element. PMID:24148900

  16. Biomarkers of selenium status

    USDA-ARS?s Scientific Manuscript database

    The essential trace element selenium (Se) has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potentia...

  17. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum.

    PubMed

    Khoei, Nazanin Seyed; Lampis, Silvia; Zonaro, Emanuele; Yrjälä, Kim; Bernardi, Paolo; Vallini, Giovanni

    2017-01-25

    Microorganisms capable of transforming toxic selenium oxyanions into non-toxic elemental selenium (Se°) may be considered as biocatalysts for the production of selenium nanoparticles (SeNPs), eventually exploitable in different biotechnological applications. Two Burkholderia fungorum strains (B. fungorum DBT1 and B. fungorum 95) were monitored during their growth for both capacity and efficiency of selenite (SeO 3 2- ) reduction and elemental selenium formation. Both strains are environmental isolates in origin: B. fungorum DBT1 was previously isolated from an oil refinery drainage, while B. fungorum 95 has been enriched from inner tissues of hybrid poplars grown in a soil contaminated by polycyclic aromatic hydrocarbons. Our results showed that B. fungorum DBT1 is able to reduce 0.5mM SeO 3 2- to Se° when cultured aerobically in liquid medium at 27°C, while B. fungorum 95 can reduce more than 1mM SeO 3 2- to Se° within 96h under the same growth conditions, with the appearance of SeNPs in cultures of both bacterial strains. Biogenic SeNPs were spherical, with pH-dependent charge and an average hydrodynamic diameter of 170nm and 200nm depending on whether they were produced by B. fungorum 95 or B. fungorum DBT1, respectively. Electron microscopy analyses evidenced that Se nanoparticles occurred intracellularly and extracellularly. The mechanism of SeNPs formation can be tentatively attributed to cytoplasmic enzymatic activation mediated by electron donors. Biogenic nanoparticles were then probably released outside the bacterial cells as a consequence of a secretory process or cell lysis. Nevertheless, formation of elemental selenium nanoparticles under aerobic conditions by B. fungorum DBT1 and B. fungorum 95 is likely due to intracellular reduction mechanisms. Biomedical and other high tech sectors might exploit these biogenic nanoparticles in the near future, once fully characterized and tested for their multiple properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.

    PubMed

    Nissim, Werther Guidi; Hasbroucq, Séverine; Kadri, Hafssa; Pitre, Frederic E; Labrecque, Michel

    2015-01-01

    In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m(-2)), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.

  19. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial).

    PubMed

    Andrews, Peter J D; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C

    2007-09-20

    Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2-3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. 2 x 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrollment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826.

  20. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial)

    PubMed Central

    Andrews, Peter JD; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C

    2007-01-01

    Background Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2–3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. Methods/design 2 × 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrolment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. Discussion To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. Trial registration This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826 PMID:17883854

  1. Production of Selenoprotein P (Sepp1) by Hepatocytes Is Central to Selenium Homeostasis*

    PubMed Central

    Hill, Kristina E.; Wu, Sen; Motley, Amy K.; Stevenson, Teri D.; Winfrey, Virginia P.; Capecchi, Mario R.; Atkins, John F.; Burk, Raymond F.

    2012-01-01

    Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions. PMID:23038251

  2. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    PubMed

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  3. Amblyomma maculatum SECIS binding protein 2 and putative selenoprotein P are indispensable for pathogen replication and tick fecundity.

    PubMed

    Budachetri, Khemraj; Crispell, Gary; Karim, Shahid

    2017-09-01

    Selenium, a vital trace element, is incorporated into selenoproteins to produce selenocysteine. Our previous studies have revealed an adaptive co-evolutionary process that has enabled the spotted fever-causing tick-borne pathogen Rickettsia parkeri to survive by manipulating an antioxidant defense system associated with selenium, which includes a full set of selenoproteins and other antioxidants in ticks. Here, we conducted a systemic investigation of SECIS binding protein 2 (SBP2) and putative selenoprotein P (SELENOP) by transcript silencing in adult female Gulf-coast ticks (Amblyomma maculatum). Knockdown of the SBP2 and SELENOP genes depleted the respective transcript levels of these tick selenogenes, and caused differential regulation of other antioxidants. Importantly, the selenium level in the immature and mature tick stages increased significantly after a blood meal, but the selenium level decreased in ticks after the SBP2 and SELENOP knockdowns. Moreover, the SBP2 knockdown significantly impaired both transovarial transmission of R. parkeri to tick eggs and egg hatching. Overall, our data offer new insight into the relationship between the SBP2 selenoprotein synthesis gene and the putative tick SELENOP gene. It also augments our understanding of selenoprotein synthesis, selenium maintenance and utilization, and bacterial colonization of a tick vector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hepatic metabolite profiles in mice with a suboptimal selenium status.

    PubMed

    Geillinger, Kerstin E; Rathmann, Daniel; Köhrle, Josef; Fiamoncini, Jarlei; Daniel, Hannelore; Kipp, Anna P

    2014-09-01

    Selenium is an essential trace element and mediates its functions via various selenoproteins such as glutathione peroxidases or thioredoxin reductases. A suboptimal selenium supply causes metabolic disturbances and is associated with an increased risk to develop different disorders, including cancer or cardiovascular diseases. This study aimed to assess the impact of a suboptimal selenium status on the hepatic metabolome of male mice analyzed by a targeted liquid chromatography/tandem mass spectrometry and a method based on non-targeted gas chromatography hyphenated with mass spectrometry. Feeding animals a diet with about half of the recommended selenium content supplied as selenomethionine caused liver glutathione peroxidase and thioredoxin reductase activities to decline and lipid peroxidation to increase. Serum T3 thyroid hormone concentration also declined via a reduced hepatic deiodinase activity. Metabolite profiling revealed predominantly changes in cysteine and carbon-1 metabolism as well as in selected lipid subclasses. In particular the concentrations of palmitoylcarnitines and oleoylcarnitines (C18:1 and C16:1) and various phosphatidylcholine species containing saturated fatty acids were elevated. Increased taurine levels suggested an enhanced cysteine flux through the salvage pathway whereas increased homocysteine levels appeared to be a consequence of a massive down-regulation of cystathionine β lyase (cystathionine β synthase) and a reduced flux through the transsulfuration pathway. The findings demonstrate that a suboptimal selenium status causes alterations in lipid and carbon-1 metabolism in mouse liver. These changes may contribute to the development of diseases associated with a suboptimal selenium status. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Global advances in selenium research from theory to application

    USDA-ARS?s Scientific Manuscript database

    Selenium is without question one of the most influential natural-occurring trace elements for biological systems worldwide. The multi-faceted connections between the environment, food crops, human and animal health and selenium’s function through selenoprotein activity, have been well characterized....

  6. Selenium in blood, semen, seminal plasma and spermatozoa of stallions and its relationship to sperm quality.

    PubMed

    Bertelsmann, H; Keppler, S; Höltershinken, M; Bollwein, H; Behne, D; Alber, D; Bukalis, G; Kyriakopoulos, A; Sieme, H

    2010-01-01

    The essential trace element selenium is indispensable for male fertility in mammals. Until now, little data existed regarding the relationship between selenium and sperm quality in the stallion. Selenium, or selenium-dependent glutathione peroxidase activity, was determined in red blood cells, semen, seminal plasma and spermatozoa, and the percentages of spermatozoa with progressive motility (PMS), intact membranes (PMI), altered (positive) acrosomal status (PAS) and detectable DNA damage, determined by the sperm chromatin structure assay, were evaluated in 41 healthy stallions (three samples each). The pregnancy rate per oestrus cycle (PRC) served as an estimation of fertility. An adverse effect on stallion fertility caused by low dietary selenium intake was excluded, as all stallions had sufficient selenium levels in their blood. Interestingly, no significant correlations (P > 0.05) between the selenium level in blood and the selenium level in seminal plasma or spermatozoa were found, suggesting that the selenium level in blood is no indicator of an adequate selenium supply for spermatogenesis. The selenium level in spermatozoa (nmol billion(-1)) was correlated with PMI, PMS and PAS (r = 0.40, r = 0.31 and r = -0.42, respectively; P

  7. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices.

    PubMed

    Wang, Qi; Mejía Jaramillo, Alejandra; Pavon, Juan J; Webster, Thomas J

    2016-10-01

    Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016. © 2015 Wiley Periodicals, Inc.

  8. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  9. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  10. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    PubMed

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from <10 to 616 ppb; methylmercury concentrations in liver ranged from 25 to 236 ppb. Prey items had methylmercury concentrations below the limits of detection (<0.4 ppb). Hazard quotients and exposure rates indicate that leatherbacks of all life stages may be at risk for selenium toxicity. For endangered species like the leatherback, continued anthropogenic deposition of mercury and selenium into the environment is concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Inorganic versus organic selenium supplementation: a review.

    PubMed

    Mahima; Verma, Amit Kumar; Kumar, Amit; Rahal, Anu; Kumar, Vinod; Roy, Debashis

    2012-05-01

    Selenium is an essential trace element in the diets which is required for maintenance of health, growth and biochemical-physiological functions. The area covered in this review has been rapidly unfolding in recent years and has already acquired a vast spread. This study presents a concise introductory overview of the effect of organic and inorganic selenium on growth performance, carcass traits, daily egg production, egg quality, Se uptake in various tissues and plasma and plasma glutathione peroxidase activity in animals.

  13. Determination of Selenium and Nickel in Asphaltite from Milli (Sirnak) Deposit in SE Anatolia of Turkey

    NASA Astrophysics Data System (ADS)

    Aydin, Isil; Fidan, Celal; Kavak, Orhan; Erek, Figen; Aydin, Firat

    2017-12-01

    Asphaltite is one of the naturally occurring black, solid bitumen’s, which are soluble at heating in carbon disulphide band fuse. Asphaltite is also a solidified hydro carbon compound derived from petroleum [1]. According to the World Energy Council, Turkish National Committee (1998), the total reserve of the asphaltic substances that are found in south eastern Turkey is about 82 million tons, with Silopi and Sirnak reserves to get her comprising the major part of the Asphaltite deposits. Selenium and Nickel are very important elements both environmental and health. Selenium plays an important role in the formation of the enzyme antioxidant effect in the cell. The need for Selenium increases in situations such as pregnancy, menopause, grow than development, air pollution. Nickel is used for preventing iron-poor blood, increasing iron absorption, and treating weak bones. In this study, asphaltites were taken from Milli vein from Sirnak deposit in SE Anatolia of Turkey. A total of 6.500.000 tons of Asphaltite reserves have been identified as asphaltites in Milli (Sirnak). The sample preparation method was developed in Asphaltite by spectroanalytical techniques, wet acid digestion. MW-AD followed by ICP-OES were used for the determination of Selenium and Nickel in Asphaltite. Proximate analysis of Asphaltite fly ash samples was made. It also, Selenium and Nickel element analysis in Asphaltite were made.

  14. The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study

    PubMed Central

    2010-01-01

    Background A community in northern Italy was previously reported to have an excess incidence of amyotrophic lateral sclerosis among residents exposed to high levels of inorganic selenium in their drinking water. Methods To assess the extent to which such association persisted in the decade following its initial observation, we conducted a population-based case-control study encompassing forty-one newly-diagnosed cases of amyotrophic lateral sclerosis and eighty-two age- and sex-matched controls. We measured long-term intake of inorganic selenium along with other potentially neurotoxic trace elements. Results We found that consumption of drinking water containing ≥ 1 μg/l of inorganic selenium was associated with a relative risk for amyotrophic lateral sclerosis of 5.4 (95% confidence interval 1.1-26) after adjustment for confounding factors. Greater amounts of cumulative inorganic selenium intake were associated with progressively increasing effects, with a relative risk of 2.1 (95% confidence interval 0.5-9.1) for intermediate levels of cumulative intake and 6.4 (95% confidence interval 1.3-31) for high intake. Conclusion Based on these results, coupled with other epidemiologic data and with findings from animal studies that show specific toxicity of the trace element on motor neurons, we hypothesize that dietary intake of inorganic selenium through drinking water increases the risk for amyotrophic lateral sclerosis. PMID:21134276

  15. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species—A Critical Review

    PubMed Central

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Malevu, Thembinkosi Donald; Sochor, Jiri; Baron, Mojmir; Melcova, Magdalena; Zidkova, Jarmila; Kizek, Rene

    2017-01-01

    Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar. PMID:29065468

  16. Influence of volcanic activity and anthropic impact in the trace element contents of fishes from the North Patagonia in a global context.

    PubMed

    Bubach, D F; Macchi, P J; Pérez Catán, S

    2015-11-01

    The elemental contents in salmonid muscle and liver tissues from different lakes around the world were investigated. Fish from pristine areas were compared with those fishes from impacted environments, both by volcanic and anthropogenic activities. Within the data, special attention was given to fishes from the Andean Patagonian lakes in two contexts: local and global. The local evaluation includes geological and limnological parameters and diet composition which were obtained through a data search from published works. The volcanic influence in Andean Patagonian lakes was mainly observed by an increase of cesium (Cs) and rubidium (Rb) concentrations in fishes, influenced by calcium (Ca) and potassium (K) water contents. Zinc (Zn), selenium (Se), iron (Fe), silver (Ag), and mercury (Hg) contents in fishes showed the effect of the geological substratum, and some limnological parameters. The diet composition was another factor which affects the elemental concentration in fishes. The analyzed data showed that the fishes from Andean Patagonian lakes had elemental content patterns corresponding to those of pristine regions with volcanic influence. Selenium and Ag contents from Andean Patagonian fishes were the highest reported.

  17. Glutathione peroxidase response in tissues of rats fed diets containing fish protein concentrate prepared from shark flesh of known mercury and selenium contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, S.J.; Andrewartha, K.A.

    1981-01-01

    Studies have been reported using experimental animals and synthetic diets containing selenium and mercury compounds to demonstrate detoxification of mercury by selenium. The mechanism of detoxification remains obscure. Most experiments have involved the use of high levels of both elements and relied on the observation of gross symptoms. The measurement of enzyme systems may be useful in detecting effects of mercury at a lower, subclinical level and in elucidating the biochemistry of mercury/selenium interactions. The activity of the selenoenzyme glutathione peroxidase (GSH-Px) in rats is dependent on dietary selenium and attempts have been made to use this enzyme as anmore » indicator of mercury/selenium interactions. The research described in this paper was designed to investigate the effect of mercury, in the form and amounts which occur naturally in seafood, on the availability of selenium at levels approximating the nutritional requirement. In anticipation of mercury lowering the GSH-Px response a range of selenium concentrations was used, from nutritional deficiency to three times the nutritional requirement.« less

  18. Trace elements in lake sediment, macrozoobenthos, and fish near a coal ash disposal basin

    USGS Publications Warehouse

    Hatcher, Charles O.; Ogawa, Roann E.; Poe, Thomas P.; French, John R. P.

    1992-01-01

    Of the 29 trace elements examined, arsenic and cobalt were significantly (p <0.05) more concentrated in sediment nearest the coal ash basin except in spring, when little or no difference was detected. Arsenic and bromine were significantly higher in oligochaetes, and selenium was significantly higher in both oligochaetes and chironomids taken from proximal stations than in those taken from reference stations. Selenium, bromine, cobalt, nickel, and chromium were higher in young-of-the-year brown bullheads taken nearer the disposal basin in fall 1983. Selenium was higher in adult spottail shiners taken at the proximal station in spring 1984, and bromine was higher in yearling white bass from the proximal station in fall 1983 and 1984. None of the trace elements was higher in adult yellow perch or adult brown bullheads at any time. Fewer spottail shiners and yearling white bass were caught close to the disposal basin than far away, which may indicate avoidance by these fish of increased concentrations of trace elements contained within the ash effluent.

  19. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  20. Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game.

    PubMed

    Birgisdottir, B E; Knutsen, H K; Haugen, M; Gjelstad, I M; Jenssen, M T S; Ellingsen, D G; Thomassen, Y; Alexander, J; Meltzer, H M; Brantsæter, A L

    2013-10-01

    The first aim of the study was to evaluate calculated dietary intake and concentrations measured in blood or urine of essential and toxic elements in relation to nutritional and toxicological reference values. The second aim was to identify patterns of the element concentrations in blood and urine and to identify possible dietary determinants of the concentrations of these elements. Adults with a known high consumption of environmental contaminants (n=111), and a random sample of controls (n=76) answered a validated food frequency questionnaire (FFQ). Complete data on biological measures were available for 179 individuals. Blood and urine samples were analyzed for selenium, iodine, arsenic, mercury, cadmium and lead. Principal component analysis was used to identify underlying patterns of correlated blood and urine concentrations. The calculated intakes of selenium, iodine, inorganic arsenic and mercury were within guideline levels. For cadmium 24% of the high consumer group and 8% of the control group had intakes above the tolerable weekly intake. Concentrations of lead in blood exceeded the bench-mark dose lower confidence limits for some participants. However, overall, the examined exposures did not give rise to nutritional or toxicological concerns. Game consumption was associated with lead in blood (B(ln) 0.021; 95%CI:0.010, 0.031) and wine consumption. Seafood consumption was associated with urinary cadmium in non-smokers (B(ln) 0.009; 95%CI:0.003, 0.015). A novel finding was a distinct pattern of positively associated biological markers, comprising iodine, selenium, arsenic and mercury (eigenvalue 3.8), reflecting seafood intake (B 0.007; 95%CI:0.004, 0.010). The study clearly demonstrates the significance of seafood as a source of both essential nutrients and toxic elements simultaneously and shows that exposure to various essential and toxic elements can be intertwined. © 2013 Elsevier B.V. All rights reserved.

  1. Effect of sodium selenite on chosen anti- and pro-oxidative parameters in rats treated with lithium: A pilot study.

    PubMed

    Musik, Irena; Kocot, Joanna; Kiełczykowska, Małgorzata

    2015-06-01

    Selenium is an essential element of antioxidant properties. Lithium is widely used in medicine but its administration can cause numerous side effects including oxidative stress. The present study aimed at evaluating if sodium selenite could influence chosen anti- and pro-oxidant parameters in rats treated with lithium. The experiment was performed on four groups of Wistar rats: I (control) - treated with saline; II (Li) - treated with lithium (2.7 mgLi/kg b.w. as Li2CO3), III (Se) - treated with selenium (0.5 mgSe/kg b.w. as Na2SeO3), IV (Li+Se) - treated with Li2CO3 and Na2SeO3 together at the same doses as in group II and III, respectively. All treatments were performed by stomach tube for three weeks in form of water solutions. The following anti- and pro-oxidant parameters: total antioxidant status (TAS) value, catalase (CAT) activity, concentrations of ascorbic acid (AA) and malonyldialdehyde (MDA) in plasma as well as whole blood superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured. Selenium given alone markedly enhanced whole blood GPx and diminished plasma CAT vs. Lithium significantly decreased plasma CAT and slightly increased AA vs. Selenium co-administration restored these parameters to the values observed in control animals. Furthermore, selenium co-administration significantly increased GPx in Li-treated rats. All other parameters (TAS, SOD and MDA) were not affected by lithium and/or selenium. Further research seems to be warranted to decide if application of selenium as an adjuvant in lithium therapy is worth considering. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Decreased reproductive rates in sheep fed a high selenium diet

    USDA-ARS?s Scientific Manuscript database

    High Se-containing forages grow on seleniferous soils in many parts of the United States and throughout the world. Selenium is an essential trace element that is required for many physiological processes but can also be either acutely or chronically toxic to livestock. Anecdotal reports of decrease...

  3. Selenium cycling across soil-plant atmosphere interfaces: a critical review

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass, and in the atmosphere. Low Se levels in certain terrestrial environments ha...

  4. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.

    2015-01-01

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789

  5. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  6. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  7. Study of the Accumulation of Toxic and Essential Ultra-Trace Elements in Fruits of Sorbus domestica L.

    PubMed Central

    Zeiner, Michaela; Juranović Cindrić, Iva; Majić, Boris; Stingeder, Gerhard

    2017-01-01

    In the present work, the accumulation of selected toxic and essential ultra-trace elements in fruits of service tree (Sorbus domestica L.) were determined depending on harvest time. Samples were collected from the same sampling area in two different years and within one year in September and October (maturity state). Harvesting the fruits in the same area excludes the influence of metals taken up via roots, thus the impact of airborne contamination by heavy metal translocation can be studied. All samples were dried and digested using an acidic microwave assisted digestion system prior to quantification by inductively coupled plasma—sector field mass spectrometry (ICP–SFMS). The elements chosen were Arsenic and Cadmium as well as Lithium, Molybdenum, and Selenium. The Arsenic content rose with maturity in mesocarp. Cadmium found in the mesocarp was unaffected by ripeness. For Selenium and Molybdenum, no statistically significant effect of ripeness could be found on their content in mesocarp. Lithium could not be detected in the majority of fruit samples. Differences between the metal concentrations based on the year of harvest were found for Arsenic, Molybdenum, and Selenium, depending on precipitation. The drier the season, the more Arsenic was accumulated. For Molybdenum and Selenium, the opposite effect was observed. PMID:28338629

  8. Study of the Accumulation of Toxic and Essential Ultra-Trace Elements in Fruits of Sorbus domestica L.

    PubMed

    Zeiner, Michaela; Juranović Cindrić, Iva; Majić, Boris; Stingeder, Gerhard

    2017-03-24

    In the present work, the accumulation of selected toxic and essential ultra-trace elements in fruits of service tree ( Sorbus domestica L.) were determined depending on harvest time. Samples were collected from the same sampling area in two different years and within one year in September and October (maturity state). Harvesting the fruits in the same area excludes the influence of metals taken up via roots, thus the impact of airborne contamination by heavy metal translocation can be studied. All samples were dried and digested using an acidic microwave assisted digestion system prior to quantification by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The elements chosen were Arsenic and Cadmium as well as Lithium, Molybdenum, and Selenium. The Arsenic content rose with maturity in mesocarp. Cadmium found in the mesocarp was unaffected by ripeness. For Selenium and Molybdenum, no statistically significant effect of ripeness could be found on their content in mesocarp. Lithium could not be detected in the majority of fruit samples. Differences between the metal concentrations based on the year of harvest were found for Arsenic, Molybdenum, and Selenium, depending on precipitation. The drier the season, the more Arsenic was accumulated. For Molybdenum and Selenium, the opposite effect was observed.

  9. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey.

    PubMed

    Emmanuelle, Barron; Virginie, Migeot; Fabienne, Séby; Isabelle, Ingrand; Martine, Potin-Gautier; Bernard, Legube; Sylvie, Rabouan

    2012-04-01

    Selenium is an essential element which can be toxic if ingested in excessive quantities. The main human exposure is food. In addition, intake may be boosted by consumption drinking water containing unusual high selenium concentration. We measured the individual selenium level of people exposed to selenium concentration in drinking water greater than the maximum recommended limit which is 10 μg/L. We carried out a prospective cohort study on 80 adults (40 exposed subjects i.e. living in the involved area and 40 non-exposed ones i.e. living elsewhere) in western France. We used three different approaches: (1) direct measurement of ingested selenium by the duplicate portion method, (2) dietary reconstitution with a food frequency questionnaire (FFQ) and (3) evaluation of the individual selenium status by measuring the selenium content in toenail clippings. Analyses were performed by inductively coupled plasma-mass spectrometry. The association between toenail selenium concentration and area of residence was analyzed using linear regression with repeated measurements. We estimated selenium intake from FFQ at 64±14 μg/day for exposed subjects as opposed to 52±14 μg/day for the non-exposed ones. On the basis of 305 duplicate diet samples, average intake was estimated at 64±26 μg/day for exposed subjects. Area of residence (p=0.0030) and smoking (p=0.0054) were independently associated with toenail selenium concentration. Whatever method used for estimating selenium intake, the selenium level in this studied area with high selenium concentrated drinking water is much lower than in seleniferous areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Is plasma selenium correlated to transthyretin levels in critically ill patients?

    PubMed

    Freitas, Renata G B O N; Nogueira, Roberto Jose Negrão; Cozzolino, Silvia Maria Franciscato; Vasques, Ana Carolina Junqueira; Ferreira, Matthew Thomas; Hessel, Gabriel

    2017-06-05

    Selenium is an essential trace element, but critically ill patients using total parenteral nutrition (PN) do not receive selenium because this mineral is not commonly offered. Threfore, the eval uation of plasma selenium levels is very important for treating or preventing this deficiency. Recent studies have shown that transthyretin may reflect the selenium intake and could be considered a biomarker. However, this issue is still little explored in the literature. This study aims to investigate the correlation of transthyretin with the plasma selenium of critically ill patients receiving PN. This was a prospective cohort study with 44 patients using PN without selenium. Blood samples were carried out in 3 stages: initial, 7th and 14th day of PN. In order to evaluate the clinical condition and the inflammatory process, albumin, C-reactive protein (CRP), transthyretin, creatinine and HDL cholesterol levels were observed. To assess the selenium status, plasma selenium and glutathione peroxidase (GPx) in whole blood were measured. Descriptive analyses were performed and the ANOVA, Mann-Whitney and Spearman's coefficient tests were conducted; we assumed a significance level of 5%. A positive correlation of selenium with the GPx levels (r = 0.46; p = 0.03) was identified. During two weeks, there was a positive correlation of transthyretin with plasma selenium (r = 0.71; p = 0.05) regardless of the CRP values. Transthyretin may have reflected plasma selenium, mainly because the correlation was verified after the acute phase.

  11. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2016-10-01

    A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Selenium protein identification and profiling by mass spectrometry: A tool to assess progression of cardiomyopathy in a whale model.

    PubMed

    Bryan, Colleen E; Bossart, Gregory D; Christopher, Steven J; Davis, W Clay; Kilpatrick, Lisa E; McFee, Wayne E; O'Brien, Terrence X

    2017-12-01

    Non-ischemic cardiomyopathy is a leading cause of congestive heart failure and sudden cardiac death in humans and in some cases the etiology of cardiomyopathy can include the downstream effects of an essential element deficiency. Of all mammal species, pygmy sperm whales (Kogia breviceps) present the greatest known prevalence of cardiomyopathy with more than half of examined individuals indicating the presence of cardiomyopathy from gross and histo-pathology. Several factors such as genetics, infectious agents, contaminants, biotoxins, and inappropriate dietary intake (vitamins, selenium, mercury, and pro-oxidants), may contribute to the development of idiopathic cardiomyopathy in K. breviceps. Due to the important role Se can play in antioxidant biochemistry and protein formation, Se protein presence and relative abundance were explored in cardiomyopathy related cases. Selenium proteins were separated and detected by multi-dimension liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS), Se protein identification was performed by liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS), and Se protein profiles were examined in liver (n=30) and heart tissue (n=5) by SEC/UV/ICP-MS detection. Data collected on selenium proteins was evaluated in the context of individual animal trace element concentration, life history, and histological information. Selenium containing protein peak profiles varied in presence and intensity between animals with no pathological findings of cardiomyopathy and animals exhibiting evidence of cardiomyopathy. In particular, one class of proteins, metallothioneins, was found to be associated with Se and was in greater abundance in animals with cardiomyopathy than those with no pathological findings. Profiling Se species with SEC/ICP-MS proved to be a useful tool to identify Se protein pattern differences between heart disease stages in K. breviceps and an approach similar to this may be applied to other species to study Se protein associations with cardiomyopathy. Published by Elsevier GmbH.

  13. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    PubMed

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review.

    PubMed

    Medeiros, Denis M

    2016-06-01

    Nutrients have been known to have a significant role in maintaining the health of the skeleton, both bone and cartilage. The nutrients that have received the majority of the attention are Vitamin D and calcium. However, limited attention has been directed toward three trace elements that may have mechanistic impact upon the skeletal tissues and could compromise skeletal health resulting from inadequate intakes of copper, iron, and selenium. The role of copper and selenium has been known, but the role of iron has only received recent attention. Copper deficiency is thought to impact bone health by a decrease in lysyl oxidase, a copper-containing enzyme, which facilitates collagen fibril crosslinking. Iron deficiency impact upon bone has only recently been discovered but the exact mechanism on how the deficient states enhance bone pathology is speculative. Selenium deficiency has an impact on cartilage thereby having an indirect impact on bone. However, several studies suggest that a mycotoxin when consumed by humans is the culprit in some cartilage disorders and the presence of selenium could attenuate the pathology. This review summarizes the current knowledge base with respect to skeletal integrity when each of these three trace elements are inadequate in diets of both animals and humans. © 2016 by the Society for Experimental Biology and Medicine.

  15. Microbial Selenite Reduction and the Selenium Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Wells, M.

    2016-12-01

    Selenium is an essential trace element utilized by many species in the three domains of life. In most Bacteria and Archaea, selenium is primarily assimilated to form selenocysteine, the 21st amino acid (Sec). Additionally selenium can be methylated, demethylated, or used as a terminal electron acceptor in dissimilatory selenate or selenite reduction. Although progress has been made on elucidating the synthesis of selenoproteins, less is known of their occurrence, diversity, and functionality, primarily due to poor genome annotation (e.g., failure to recognize UGA as a Sec and not a stop codon) and proteomics analysis (e.g., failure to detect Sec in LC/MS-MS). Furthermore important parts of the selenium biogeochemical cycle remain to be fully explored, in particular the reduction of Se(IV) to Se(O). We have examined the selenoproteome of a selenate respiring bacterium Sulfurospirillum barnesii strain SES-3, which reduces Se(VI) to Se(0) and the dissimilatory selenite reducing bacterium, Bacillus selenitireducens, strain MLS-10, which reduces Se(IV) to Se(0). Candidate selenoproteins including D-proline reductase, formate dehydrogenase, and methionine-S sulfoxide reductase have been identified in the genomes. A putative dissimilatory selenate reducase (Ser) was found in the genome of S. barnesii. More significant was the discovery of a candidate for the respiratory selenite reductase in B. selenitireducens as determined by in gel assays and LC/MS-MS. The latter has provided a hint at the potential diversity of DSiR bacteria and the development of molecular probes for investigating DSiR in the selenium biogeochemical cycle.

  16. Selenium nanoparticles as a nutritional supplement.

    PubMed

    Skalickova, Sylvie; Milosavljevic, Vedran; Cihalova, Kristyna; Horky, Pavel; Richtera, Lukas; Adam, Vojtech

    2017-01-01

    Selenium is an essential trace element in the diet, required for maintenance of health and growth; however, its toxicity could cause serious damage depending on dose and chemical form. Selenium nanoparticles (SeNPs) represent what we believe to be a novel prospect for nutritional supplementation because of their lower toxicity and ability to gradually release selenium after ingestion. In this review, we discuss various forms and types of SeNPs, as well as the way they are synthesized. We also discuss absorption and bioavailability of nanoparticles within the organism. SeNPs demonstrate anticancer and antimicrobial properties that may contribute to human health, not only as dietary supplements, but also as therapeutic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Germanium, Arsenic, and Selenium Abundances in Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2012-09-01

    The elements germanium (Ge, Z = 32), arsenic (As, Z = 33), and selenium (Se, Z = 34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 <= [Fe/H] <= -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research made use of StarCAT, hosted by the Mikulski Archive at the Space Telescope Science Institute (MAST). These data are associated with Programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9455, and GO-9804.Based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 67.D-0439(A), 074.C-0364(A), 076.B-0055(A), and 080.D-0347(A).This research has made use of the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. These data are associated with Programs H2aH, H6aH, and H39aH (PI: Boesgaard), N01H (PI: Latham), and U11H (PI: Prochaska).This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  18. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  19. Functional role of inorganic trace elements in angiogenesis--Part I: N, Fe, Se, P, Au, and Ca.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Sorenson, Christine M; Sheibani, Nader

    2015-10-01

    Many inorganic elements are recognized as being essential for the growth of all living organisms. Transfer of nutrients and waste material from cells and tissues in the biological systems are accomplished through a functional vasculature network. Maintenance of the vascular system is vital to the wellbeing of organisms, and its alterations contribute to pathogenesis of many diseases. This article is the first part of a review on the functional role of inorganic elements including nitrogen, iron, selenium, phosphorus, gold, and calcium in angiogenesis. The methods of exposure, structure, mechanisms, and potential activity of these elements are briefly summarized. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. The recent aspects of the relationship between different elements and their role in angiogenesis, and production of pro- and anti-angiogenic factors were assessed. Several studies emphasized the role of these elements on the different phases of angiogenesis process in vivo. These elements can either enhance or inhibit angiogenesis events. Nitrogen in combination with bisphosphonates has antiangiogenic effects, while nitric oxide promotes the production of angiogenic growth factors. Iron deficiency can stimulate angiogenesis, but its excess suppresses angiogenesis events. Gold nanoparticles and selenium agents have therapeutic effects due to their anti-angiogenic characteristics, while phosphorus and calcium ions are regarded as pro-angiogenic elements. Understanding how these elements impact angiogenesis may provide new strategies for treatment of many diseases with neovascular component. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Translational Redefinition of UGA Codons Is Regulated by Selenium Availability*

    PubMed Central

    Howard, Michael T.; Carlson, Bradley A.; Anderson, Christine B.; Hatfield, Dolph L.

    2013-01-01

    Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins. PMID:23696641

  1. Dietary incorporation of feedstuffs naturally high in organic selenium for racing pigeons (Columba livia): effects on plasma antioxidant markers after a standardised simulation of a flying effort.

    PubMed

    Schoonheere, N; Dotreppe, O; Pincemail, J; Istasse, L; Hornick, J L

    2009-06-01

    Selenium is a trace element of importance for animal health. It is essential for adequate functioning of many enzymes such as, the antioxidant enzyme, glutathione peroxidase, which protects the cell against free radicals. A muscular effort induces a rise in reactive oxygen species production which, in turn, can generate an oxidative stress. Two groups of eight racing pigeons were fed respectively with a diet containing 30.3 (control group) and 195.3 (selenium group) microg selenium/kg diet. The pigeons were submitted to a standardised simulation of a flying effort during 2 h. Blood was taken before and after the effort to measure antioxidant markers and blood parameters related to muscle metabolism. Plasma selenium concentration and glutathione peroxidase activity were significantly higher in the selenium group. There were no significant differences for the other measured parameters. As a consequence of the effort, the pigeons of the selenium group showed a higher increase of glutathione peroxidase activity and a smaller increase of plasma lactate concentration. Variations because of the effort in the other markers were not significantly different between the two groups. It is concluded that the selenium status was improved with the feeding of feedstuffs high in Selenium.

  2. Opposing impacts on healthspan and longevity by limiting dietary selenium in Telomere Dysfunctional mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential trace element essential for optimal health. We investigated the role of Se in longevity and healthspan in a mouse model of healthy aging in humans with short telomeres. Telomere shortening is associated with aging, mortality and aging-related diseases. We found that whi...

  3. Urinary excretion of platinum, arsenic and selenium of cancer patients from the Antofagasta region in Chile treated with platinum-based drugs

    PubMed Central

    2012-01-01

    Background Arsenic exposure increases the risk of non-cancerous and cancerous diseases. In the Antofagasta region in Chile, an established relationship exists between arsenic exposure and the risk of cancer of the bladder, lung and skin. Platinum-based drugs are first-line treatments, and many works recognise selenium as a cancer-fighting nutrient. We characterised the short-term urinary excretion amounts of arsenic, selenium and platinum in 24-h urine samples from patients with lung cancer and those with cancer other than lung treated with cisplatin or/and carboplatin. As - Se - Pt inter-element relationships were also investigated. Results The amounts of platinum excreted in urine were not significantly different between patients with lung cancer and those with other cancers treated with cisplatin, despite the significant variation in platinum amounts supplied from platinum-based drugs. In general, the analytical amounts of excreted selenium were greater than those for arsenic, which could imply that platinum favours the excretion of selenium. For other types of cancers treated with drugs without platinum, excretion of selenium was also greater than that of arsenic, suggesting an antagonist selenium-anti-cancer drug relationship. Conclusions Regards the baseline status of patients, the analytical amounts of excreted Se is greater than those for As, particularly, for cisplatin chemotherapy. This finding could imply that for over the As displacement Pt favours the excretion of Se. The analytical amounts of excreted Se were greater than those for As, either with and without Pt-containing drugs, suggesting an antagonist Se-anti-cancer drug relationship. However, it seemed that differences existed between As - Se - Pt inter-element associations in patients treated for lung cancer in comparison with those treated for cancer other than lung. Therefore, knowledge obtained in this work, can contribute to understanding the arsenic cancer mechanism and the As - Se - Pt inter-element association for lung cancer and other types of cancer, which in some cases respond at a linear mathematical model. PMID:22546077

  4. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    PubMed Central

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  5. Effects of selenium biofortification on crop nutritional quality.

    PubMed

    Malagoli, Mario; Schiavon, Michela; dall'Acqua, Stefano; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.

  6. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.

  7. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  8. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Relationships between selenium and mercury in the fruiting bodies of some mushrooms growing in Poland

    NASA Astrophysics Data System (ADS)

    Falandysz, J.; Kubotal, R.; Kunito, T.; Bielawski, L.; Brzostowski, A.; Gucia, M.; Jedrusiak, A.; Lipka, K.; Tanabe, S.

    2003-05-01

    The relationships between concentrations of total selenium and mercury were investigated for the whole fruiting bodies, caps and/or stalks of King bolete (Boletus edulis), Brown birch scaber stalk (Leccinum scabrum), Parasol mushroom (Macrolepiota procera), Poison pax (Paxillus involutus) and Fly agaric (Amatiita niuscaria) collected from the various sites in Poland. The mushroom species examined varied largely due to the contents and proportions between the total selenium and mercury concentrations, what seems to indicate on species-dependent strategy of co-uptake and accumulation of these elements.

  10. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  11. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  12. Concentrations of Trace Elements in Hemodialysis Patients: A Prospective Cohort Study.

    PubMed

    Tonelli, Marcello; Wiebe, Natasha; Bello, Aminu; Field, Catherine J; Gill, John S; Hemmelgarn, Brenda R; Holmes, Daniel T; Jindal, Kailash; Klarenbach, Scott W; Manns, Braden J; Thadhani, Ravi; Kinniburgh, David

    2017-11-01

    Low concentrations and excessive concentrations of trace elements have been commonly reported in hemodialysis patients, but available studies have several important limitations. Random sample of patients drawn from a prospective cohort. 198 incident hemodialysis patients treated in 3 Canadian centers. We used mass spectrometry to measure plasma concentrations of the 25 elements at baseline, 6 months, 1 year, and 2 years following enrollment in the cohort. We focused on low concentrations of zinc, selenium, and manganese and excessive concentrations of lead, arsenic, and mercury; low and excessive concentrations of the other 19 trace elements were treated as exploratory analyses. Low and excessive concentrations were based on the 5th and 95th percentile plasma concentrations from healthy reference populations. At all 4 occasions, low zinc, selenium, and manganese concentrations were uncommon in study participants (≤5.1%, ≤1.8%, and ≤0.9% for zinc, selenium, and manganese, respectively) and a substantial proportion of participants had concentrations that exceeded the 95th percentile (≥65.2%, ≥74.2%, and ≥19.7%, respectively). Almost all participants had plasma lead concentrations above the 95th percentile at all time points. The proportion of participants with plasma arsenic concentrations exceeding the 95th percentile was relatively constant over time (9.1%-9.8%); the proportion with plasma mercury concentrations that exceeded the 95th percentile varied between 15.2% and 29.3%. Low arsenic, platinum, tungsten, and beryllium concentrations were common (>50%), as were excessive cobalt, manganese, zinc, vanadium, cadmium, selenium, barium, antimony, nickel, molybdenum, lead, and chromium concentrations. There was no evidence that low zinc, selenium, or manganese concentrations exist in most contemporary Canadian hemodialysis patients. Some patients have excessive plasma arsenic and mercury concentrations, and excessive lead concentrations were common. These findings require further investigation. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Trace elements in sera of patients with hepatitis B: Determination and analysis

    NASA Astrophysics Data System (ADS)

    Saod, Wahran M.; Darwish, Nadiya T.; Zaidan, Tahseen A.; Alfalujie, Abdul Wahab A.

    2018-04-01

    Chronic Hepatitis B (HBV) is the leading cause of morbidity and mortality worldwide with about 248 million people having HBV infection. Trace elements e.g. copper (Cu), zinc (Zn), selenium (Se) and iron (Fe) are constituent components of many metal proteins and metalloenzymes in human sera. Therefore, the ratios of these trace elements in human sera are often stated to be a good marker for diagnosing various diseases including HBV. The aims of this study are: to compare the level of trace elements in sera of patients infected with HBV and healthy participants, and to evaluate the efficiency of analytical techniques (e.g. Inductively Coupled Plasma-Mass spectrometry (ICP-MS), Atomic Absorption Spectroscopy (hydride generation) (AAS) and Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) that are currently used to detect Fe and Se elements in Patients' human sera. The findings of this study show that the concentration range of copper element between (132.80±28.64 µg/dl) to (105.66±23.20 µg/dl) was significantly higher in HBV infected patients as compared to those in healthy controls (91.27±9.20 µg/dl). Iron concentration range between (206.64±61.60 µg/l) to (170.00±36.71 µg/l) was significantly higher in HBV infected patients as compared to those in healthy controls (158.00±15.13 µg/l). However, patients with HBV had significantly lower serum concentrations of zinc with a concentration range between (111.64±20.90 µg/dl) to (99.25±24.06 µg/dl) as compared to those in healthy controls (113.44±16.38 µg/dl). While selenium concentration range between (64.39±7.39 µg/l) to (51.10±4.96 µg/l) was significantly lower in HBV infected patients as compared to those in healthy controls (67.68±7.60) (μg/l). Moreover, the results of this study suggest that (AAS) technique was the most accurate method to measure the concentration of selenium element, while (UV and ICP-MS) analytical techniques have the same efficiency in measuring the iron concentration.

  14. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins

    PubMed Central

    Zoidis, Evangelos; Seremelis, Isidoros; Kontopoulos, Nikolaos

    2018-01-01

    Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins’ genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken. PMID:29758013

  15. [Selenium supplementation trials for cancer prevention and the subsequent risk of type 2 diabetes mellitus: selenium and vitamin E cancer prevention trial and after].

    PubMed

    Koyama, Hiroshi; Mutakin; Abdulah, Rizky; Yamazaki, Chiho; Kameo, Satomi

    2013-01-01

    The essential trace element selenium has long been considered to exhibit cancer-preventive, antidiabetic and insulin-mimetic properties. However, recent epidemiological studies have indicated that supranutritional selenium intake and high plasma selenium levels are not necessarily preventive against cancer, and are possible risk factors for developing type 2 diabetes mellitus. The results of the SELECT, Selenium and Vitamin E Cancer Prevention Trial, in which it is hypothesized that the supplementations with selenium and/or vitamin E decrease the prostate cancer incidence among healthy men in the U.S., showed that the supplementation did not prevent the development of prostate cancer and that the incidence of newly diagnosed type 2 diabetes mellitus increased among the selenium-supplemented participants. The Nutritional Prevention of Cancer (NPC) trial showed a decreased risk of prostate cancer among participants taking 200 μg of selenium daily for 7.7 years. However, the results of the NPC trial also showed an increased risk of type 2 diabetes mellitus in the participants with plasma selenium levels in the top tertile at the start of the study. Recently, the association of serum selenium with adipocytokines, such as TNF-α, VCAM-1, leptin, FABP-4, and MCP-1, has been observed. Selenoprotein P has been reported to associated with adiponectin, which suggests new roles of selenoprotein P in cellular energy metabolism, possibly leading to the increased risk of type 2 diabetes mellitus and also the development of cancer. Further studies are required to elucidate the relationship between selenium and adipocytokines and the role of selenoprotein P in the development of type 2 diabetes mellitus and cancer at high levels of selenium.

  16. Mineralogical Studies Related to Endemic Diseases in Rural P. R. China

    NASA Astrophysics Data System (ADS)

    Belkin, H. E.; Zheng, B.; Finkelman, R. B.

    2003-12-01

    Domestic combustion of coal for heating and cooking is mostly confined to the world's developing countries and probably involves about 1 billion persons in China, India, Indonesia, and Africa. Various endemic diseases affecting millions of people involving arsenic, selenium, and fluorine poisoning have been associated with domestic coal combustion in rural China. We have investigated the relationship between mineralized coals (and stone coals) and disease occurrences in Guizhou and Hubei Provinces. The mineralogy of the coals has been studied by a wide variety of techniques, including optical petrography, scanning electron microscopy, electron microprobe analysis, ion probe, Synchrotron XANES-EXAFS, and Raman spectroscopy. Arsenic enrichment (up to 3 weight percent) in Upper Permian Longtan Formation coals, southwestern Guizhou Province, occurs in both 3+ and 5+ valence states. Arsenic occurs in arsenopyrite, pyrite, Al-phosphate, scorodite, Fe-oxides, and as an organically-bound species. Fluorine poisoning, much more widespread than arsenic-poisoning, is related to burning F-rich coals and F-rich clays as admixtures. Mineralogical and chemical analysis suggests that the clays contain the fluorine probably substituting for the hydroxyl group. Localized selenium poisoning in Hubei Province is related to Se-rich stone coals. The selenium occurs as a native element and in rare mandarinoite. In these three cases, knowledge of the paragenesis and mineralogy of the element enrichment in coal was vital to help understand and mitigate the endemic diseases. For the situation concerning arsenic and selenium poisoning, suspect coals have been identified and mining from these deposits has been curtailed. Fluorine has been a much more difficult problem for the local public health officials as both the coal and clay in the burning admixture can contain high fluorine. Regional geochemical and mineralogical studies will help to define coal and clay with low fluorine, suitable for domestic use.

  17. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    PubMed

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  18. High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation.

    PubMed

    Barlow, Jacob; Gozzi, Kevin; Kelley, Chase P; Geilich, Benjamin M; Webster, Thomas J; Chai, Yunrong; Sridhar, Srinivas; van de Ven, Anne L

    2017-01-01

    Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(D,L-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.

  19. Evaluation of the Content of Antimony, Arsenic, Bismuth, Selenium, Tellurium and Their Inorganic Forms in Commercially Baby Foods.

    PubMed

    Ruiz-de-Cenzano, M; Rochina-Marco, A; Cervera, M L; de la Guardia, M

    2017-12-01

    Baby foods, from the Spanish market and prepared from meat, fish, vegetables, cereals, legumes, and fruits, were analyzed to obtain the concentration of antimony (Sb), arsenic (As), bismuth (Bi), and tellurium (Te) as toxic elements and selenium (Se) as essential element. An analytical procedure was employed based on atomic fluorescence spectroscopy which allowed to obtain accurate data at low levels of concentration. Values of 14 commercial samples, expressed in nanograms per gram fresh weight, ranged for Sb 0.66-6.9, As 4.5-242, Te 1.35-2.94, Bi 2.18-4.79, and Se 5.4-109. Additionally, speciation studies were performed based on data from a non-chromatographic screening method. It was concluded that tellurium and bismuth were mainly present as inorganic forms and selenium as organic form, and antimony and arsenic species depend on the ingredients of each baby food. Risk assessment considerations were made by comparing dietary intake of the aforementioned elements through the consumption of one baby food portion a day and recommended or tolerable guideline values.

  20. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Complex of vitamins and antioxidants protects low-density lipoproteins in blood plasma from free radical oxidation and activates antioxidants enzymes in erythrocytes from patients with coronary heart disease.

    PubMed

    Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V

    2003-08-01

    We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.

  2. Mobilization of Selenite by Ralstonia metallidurans CH34

    PubMed Central

    Roux, Murielle; Sarret, Géraldine; Pignot-Paintrand, Isabelle; Fontecave, Marc; Coves, Jacques

    2001-01-01

    Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites. PMID:11157242

  3. Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing.

    PubMed

    Juhász, Péter; Lengyel, Szvetlana; Udvari, Zsolt; Sándor, Alex Nagy; Stündl, László

    2017-09-01

    Selenium is an essential microelement for the normal functioning of life processes. Moreover, it is a component of enzymes with antioxidant effects. However, it has the smallest window of any micronutrient between requirement and toxicity. Selenium is a regularly used element in fish feeds; moreover, enriching zooplankton with selenium to rear larvae is also a well-known technology. It is accepted that the most common starter foods of fish larvae, natural rotifers contain the smallest dosage of selenium, but providing selenium enriched Artemia sp. instead could increase survival and growth rate of fish. However, no such references are available for the red drum (Sciaenops ocellatus) larvae. Therefore, in this study, Artemia sp. was enriched with nano-selenium of verified low toxicity and easy availability in 5 treatments (1, 5, 10, 50, 100 mg/l Se), and then, fish larvae were fed with four of these enriched Artemia stocks (1, 5, 10, 50 mg/l Se) and a control group. At the end of the 9-day-long experiment, survival rate (S) and growth parameters (SL, W, K-factor, SGR) of fish larvae were calculated as well as their selenium retention and glutathione peroxidase enzyme activity were analysed. It was revealed that a moderate level of selenium enrichment (~4 mg/kg dry matter) of Artemia sp. positively influences the rearing efficiency (i.e. survival and growth) of fish larvae, but higher dosages of selenium could cause adverse effects.

  4. Sequential extractions of selenium soils from Stewart Lake: total selenium and speciation measurements with ICP-MS detection.

    PubMed

    Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A

    2003-06-01

    Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.

  5. Whole-body concentrations of elements in three fish species from offshore oil platforms and natural areas in the Southern California Bight, USA

    USGS Publications Warehouse

    Love, Milton S.; Saiki, Michael K.; May, Thomas W.; Yee, Julie L.

    2013-01-01

    elements. Forty-two elements were excluded from statistical comparisons as they (1) consisted of major cations that were unlikely to accumulate to potentially toxic concentrations; (2) were not detected by the analytical procedures; or (3) were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. However, the concentrations of copper, selenium, titanium, and vanadium in Pacific sanddab were unusual because small individuals exhibited either no differences between oil platforms and natural areas or significantly lower concentrations at oil platforms than at natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas.

  6. Homeostasis of chosen bioelements in organs of rats receiving lithium and/or selenium.

    PubMed

    Kiełczykowska, Małgorzata; Musik, Irena; Żelazowska, Renata; Lewandowska, Anna; Kurzepa, Jacek; Kocot, Joanna

    2016-10-01

    Lithium is an essential trace element, widely used in medicine and its application is often long-term. Despite beneficial effects, its administration can lead to severe side effects including hyperparathyroidism, renal and thyroid disorders. The aim of the current study was to evaluate the influence of lithium and/or selenium treatment on magnesium, calcium and silicon levels in rats' organs as well as the possibility of using selenium as an adjuvant in lithium therapy. The study was performed on rats divided into four groups (six animals each): control-treated with saline; Li-treated with Li2CO3 (2.7 mg Li/kg b.w.); Se-treated with Na2SeO3·H2O (0.5 mg Se/kg b.w.); Se + Li-treated simultaneously with Li2CO3 and Na2SeO3·H2O (2.7 mg Li/kg b.w. and of 0.5 mg Se/kg b.w., respectively). The administration was performed in form of water solutions by stomach tube once a day for 3 weeks. In the organs (liver, kidney, brain, spleen, heart, lung and femoral muscle) the concentrations of magnesium, calcium and silicon were determined. Magnesium was increased in liver of Se and Se + Li given rats. Lithium decreased tissue Ca and co-administration of selenium reversed this effect. Silicon was not affected by any treatment. The beneficial effect of selenium on disturbances of calcium homeostasis let suggest that further research on selenium application as an adjuvant in lithium therapy is worth being performed.

  7. The investigation of the possible protective influence of selenium on antioxidant barrier in heart of rats exposed to lithium.

    PubMed

    Musik, Irena; Kocot, Joanna; Lewandowska, Anna; Żelazowska, Renata; Kiełczykowska, Małgorzata

    2015-07-01

    Selenium is an essential element possessing antioxidant properties and the treatment with it has displayed protective effects against toxicity of different substances occurring in the environment and food as well as against the side effects of some drugs. Lithium is used in medicine although numerous side effects can occur during therapy, including disturbances of the heart. For these reasons studies to find protective adjuvants have been performed. In the current study the possibility of selenium (as sodium selenite) application as a protective adjuvant in lithium treatment was studied. Male Wistar rats were treated: control - with saline; Li-group - with Li2CO3 (2.7 mg Li/kg b.w.); Se-group - with Na2SeO3 (0.5 mg Se/kg b.w.); Li+Se-group simultaneously with Li2CO3 and Na2SeO3 (2.7 mg Li/kg b.w. and 0.5 mg Se/kg b.w., respectively) by a stomach tube for a period of three weeks, once a day. In heart homogenate activities of antioxidant enzymes - catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of low-molecular-weight antioxidants - ascorbic acid (AA) and reduced glutathione (GSH) as well as total antioxidant status (TAS) values were determined. GPx/SOD and CAT/SOD ratios were evaluated. In comparison with control selenium caused no significant changes of the studied parameters except for GPx, whereas lithium slightly disturbed TAS and markedly GPx, CAT and CAT/SOD ratio. In Li-treated rats co-administration of selenium displayed tendency towards restoring the impaired parameters. The results suggest that research on selenium application as an adjuvant in lithium therapy is worthy to be continued. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Role of Selenium from Different Sources in Prevention of Pulmonary Arterial Hypertension Syndrome in Broiler Chickens.

    PubMed

    Zamani Moghaddam, A K; Mehraei Hamzekolaei, M H; Khajali, F; Hassanpour, H

    2017-11-01

    Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.

  9. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion

    PubMed Central

    Jobeili, Lara; Rousselle, Patricia; Béal, David; Blouin, Eric; Roussel, Anne-Marie; Damour, Odile; Rachidi, Walid

    2017-01-01

    Skin is constantly exposed to environmental factors such as pollutants, chemicals and ultra violet radiation (UV), which can induce premature skin aging and increase the risk of skin cancer. One strategy to reduce the effect of oxidative stress produced by environmental exposure is the application of antioxidant molecules. Among the endogenous antioxidants, selenoproteins play a key role in antioxidant defense and in maintaining a reduced cellular environment. Selenium, essential for the activity of selenoproteins, is a trace element that is not synthesized by organisms and must be supplied by diet or supplementation. The aim of this study is to evaluate the effect of Selenium supplementation on skin aging, especially on keratinocytes, the main cells of the epidermis. Our results demonstrate for the first time to our knowledge, the major role of Selenium on the replicative life span of keratinocytes and on aging skin. Selenium protects keratinocyte stem cells (KSCs) against senescence via preservation of their stemness phenotype through adhesion to the basement membrane. Additionally, Selenium supplementation maintains the homeostasis of skin during chronological aging in our senescent skin equivalent model. Controlled supplementation with Selenium could be a new strategy to protect skin against aging. PMID:29176034

  10. Involvement of Superoxide Dismutases in the Response of Escherichia coli to Selenium Oxides

    PubMed Central

    Bébien, Magali; Lagniel, Gilles; Garin, Jérôme; Touati, Danièle; Verméglio, André; Labarre, Jean

    2002-01-01

    Selenium can provoke contrasting effects on living organisms. It is an essential trace element, and low concentrations have beneficial effects, such as the reduction of the incidence of cancer. However, higher concentrations of selenium salts can be toxic and mutagenic. The bases for both toxicity and protection are not clearly understood. To provide insights into these mechanisms, we analyzed the proteomic response of Escherichia coli cells to selenate and selenite treatment under aerobic conditions. We identified 23 proteins induced by both oxides and ca. 20 proteins specifically induced by each oxide. A striking result was the selenite induction of 8 enzymes with antioxidant properties, particularly the manganese and iron superoxide dismutases (SodA and SodB). The selenium inductions of sodA and sodB were controlled by the transcriptional regulators SoxRS and Fur, respectively. Strains with decreased superoxide dismutase activities were severely impaired in selenium oxide tolerance. Pretreatment with a sublethal selenite concentration triggered an adaptive response dependent upon SoxRS, conferring increased selenite tolerance. Altogether, our data indicate that superoxide dismutase activity is essential for the cellular defense against selenium salts, suggesting that superoxide production is a major mechanism of selenium toxicity under aerobic conditions. PMID:11872706

  11. Interplay between Selenium Levels, Selenoprotein Expression, and Replicative Senescence in WI-38 Human Fibroblasts*

    PubMed Central

    Legrain, Yona; Touat-Hamici, Zahia; Chavatte, Laurent

    2014-01-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence. PMID:24425862

  12. Operationally defined species characterization and bioaccessibility evaluation of cobalt, copper and selenium in Cape gooseberry (Physalis Peruviana L.) by SEC-ICP MS.

    PubMed

    Wojcieszek, Justyna; Ruzik, Lena

    2016-03-01

    Physalis peruviana could attract great interest because of its nutritional and industrial properties. It is an excellent source of vitamins, minerals, essential fatty acids and carotenoids. Physalis Peruviana is also known to have a positive impact on human health. Unfortunately, still little is known about trace elements present in Physalis Peruviana and their forms available for the human body. Thus, the aim of this study was to estimate bioaccessibility and characterization of species of cobalt, copper and selenium in Physalis Peruviana fruits. Total and extractable contents of elements were determined by mass spectrometer with inductively coupled plasma (ICP MS). In order to separate the different types of metal complexes Physalis peruviana fruits were treated with the following solvents: Tris-HCl (pH 7.4), sodium dodecyl sulfate (SDS) (pH 7.4) and ammonium acetate (pH 5.5). The best efficiency of extraction of: cobalt was obtained for ammonium acetate (56%) and Tris-HCl (60%); for copper was obtained for SDS (66%), for selenium the best extraction efficiency was obtained after extraction with SDS (48%). To obtain information about bioaccessibility of investigated elements, enzymatic extraction based on in vitro simulation of gastric (pepsin) and intestinal (pancreatin) digestion was performed. For copper and selenium the simulation of gastric digestion leads to the extraction yield above 90%, while both steps of digestion method were necessary to obtain satisfactory extraction yield in the case of cobalt. Size exclusion chromatography (SEC) coupled to on-line ICP MS detection was used to investigate collected metal species. The main fraction of metal compounds was found in the 17 kDa region. Cobalt and copper create complexes mostly with compounds extracted by means of ammonium acetate and SDS, respectively. Cobalt, copper and selenium were found to be highly bioaccessible from Physalis Peruviana. Investigation of available standards of cobalt and selenium allows confirming the presence of vitamin B12 and probably selenomethionine in the fraction bioaccessible by human body (obtained during enzymatic extraction). It should be noted that the presence of small seleno-compounds in Cape gooseberry was performed for the first time. The results show that the combination of SEC and ICP MS could provide a simple method for separating of soluble element species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (Danio rerio).

    PubMed

    Hauser-Davis, R A; Silva, J A N; Rocha, Rafael C C; Saint'Pierre, Tatiana; Ziolli, R L; Arruda, M A Z

    2016-01-01

    Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations. Little is known regarding Se effects on parameters such as oxidative stress biomarkers. The aim of the present study was to investigate the effects of acute selenium exposure on oxidative stress biomarkers in a model organism, zebrafish (Danio rerio). Fish were exposed to selenium selenite at 1mgL(-1). Reduced glutathione (GSH), and metallothionein (MT) concentrations were determined in liver, kidney and brain, with MT also being determined in bile. Essential metals and trace-elements were also determined by inductively coupled mass spectrometry (ICP-MS) in order to verify possible metal homeostasis alterations. GSH concentrations in liver, kidney and brain increased significantly (1.05±0.03μmolg(-1) ww, 1.42±0.03μmolg(-1) ww and 1.64±0.03μmolg(-1) ww, respectively) in the Se-exposed group when compared to the controls (0.88±0.05μmolg(-1) ww, 0.80±0.04μmolg(-1) ww and 0.89±0.03μmolg(-1) ww for liver, kidney and brain, respectively). MT levels in Se-exposed liver (0.52±0.03μmolg(-1) ww) decreased significantly in comparison to the control group (0.64±0.02μmolg(-1) ww), while levels in bile increased, albeit non-significantly. This is in accordance with previous studies that indicate efficient biliary MT action, leading to a rapid metabolism and elimination of contaminants from the body. Levels in the brain increased significantly after Se-exposure (0.57±0.01μmolg(-1) ww) when compared to the control group (0.35±0.03μmolg(-1) ww) since this organ does not present a detoxification route as quick as the liver-gallbladder route. Several metal and trace-elements were altered with Se-exposure, indicating that excess of selenium results in metal dyshomeostasis. This is the first report on metal dyshomeostasis due to Se-exposure, which may be the first step in the mechanism of action of selenium toxicity, as is postulated to occur in certain major human pathophysiologies. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies

    USDA-ARS?s Scientific Manuscript database

    Lentils (Lens culinaris L.) are an important protein and carbohydrate food, rich in essential dietary components and trace elements. Selenium (Se) is an essential micronutrient for human health. For adults, 55 µg of daily Se intake is recommended for better health and cancer prevention. Millions of ...

  15. Survival of the hermit crab, Clibanarius vittatus, exposed to selenium and other environmental factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Recent investigations of water quality criteria have frequently examined the effects of a pollutant; however, a more realistic investigation would consider effects of multiple environmental factors and their interactions with the pollutant. Awareness of selenium as a pollutant is increasing. The growing sulfur and petroleum industries are only two of the potential sources of the element on the Texas coast. This study examined the toxicity of selenium to hermit crab Clibanarius vittatus (Bosc) under twelve different combinations of temperature and salinity. Additionally, the impact of the organisms' original environment was considered as an environmental factor.

  16. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    PubMed

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  18. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Selenium deficiency in an organic extensive water buffalo farm].

    PubMed

    Große, Reinhard; Binici, Cagri; Pieper, Robert; Müller, Kerstin E

    2018-06-01

    This case report presents investigations of muscle problems in three male water buffaloes (1-2 years) kept extensively (loose housing, pasture). The bulls were presented because of listlessness and increased lying periods. They displayed difficulties to stand up, a stilted gait, and tremor in the legs. The determination of the selenium concentration by the measurement of glutathione peroxidase activity in whole blood samples (EDTA) demonstrated selenium deficiency in all three buffaloes. This confirmed the tentative diagnosis of nutritive myodystrophy due to selenium deficiency. Following a single injection of 1500 mg all-rac-alpha-tocopherol acetate and 11 mg sodium selenite, the bulls recovered clinically. The whole blood samples taken subsequently from seven adult water buffaloes on the farm showed selenium deficiency in all animals. Consequently, slow-release multi-trace element boluses were administered once orally - as far as possible - to all adult animals of the herd. After 1 year, a good to very good selenium supply was observed in all these buffaloes, except for one cow, in which bolus application had failed. Schattauer GmbH.

  20. Atomic-absorption spectrochemical analysis for ultratrace elements in geological materials by hydride-forming techniques: Selenium.

    PubMed

    Sighinolfi, G P; Gorgoni, C

    1981-03-01

    A method based on hydride generation for the AAS determination of selenium at nanogram levels in geological materials is described. The sample is decomposed by aqua regia attack in a sealed Teflon bomb. After treatment with hydrochloric acid, selenium is converted into hydrogen selenide by reaction with sodium borohydride and determined by AAS. Matrix interference effects have been investigated, but though they are rarely significant, the standard-additions method is recommended. The absolute sensitivity of the method is about 2.0 ng of Se (in 10 ml of solution). Detection limits of about 5-10 ng in a 1.0-g sample have been achieved with the use of "Suprapure" reagents. The selenium content of some USGS, CRPG and ANRT reference samples is reported.

  1. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    DOEpatents

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  2. Trace elements and their distribution in protein fractions of camel milk in comparison to other commonly consumed milks.

    PubMed

    Al-Awadi, F M; Srikumar, T S

    2001-08-01

    Studies on camels' milk, whether with respect to concentration or bioavailability of trace elements from this milk, are limited and warrant further investigation. The object of this study was to analyse the concentration and distribution of zinc, copper, selenium, manganese and iron in camel milk compared to those in human milk, cows' milk and infant formula under similar experimental conditions. Camels' milk and cows' milk were collected from local farms, human milk samples were obtained from healthy donors in Kuwait and infant formula was purchased locally. Milk fractionation was performed by ultra-centrifugation and gelcolumn chromatography. The concentration of trace elements was analysed by atomic absorption spectrometry and that of protein was determined spectrophotometrically. The concentration of manganese and iron in camels' milk was remarkably higher (7-20-fold and 4-10-fold, respectively) than in human milk, cows' milk and infant formula. The zinc content of camels' milk was higher than that of human milk but slightly lower than in cows' milk and infant formula. The concentration of copper in camels' milk was similar to that of cows' milk but lower than in human milk and infant formula. The selenium content of camels' milk was comparable to those of other types of milk, Approximately 50-80% of zinc, copper and manganese in camels' milk were associated with the casein fraction, similar to that of cows' milk, The majority of selenium and iron in camels' milk was in association with the low molecular weight fraction, It is recommended that camels' milk be considered as a potential source of manganese, selenium and iron, perhaps not only for infants, but also for other groups suspected of mild deficiency of these elements. Further investigations are required to confirm this proposal.

  3. Selenium modulates MMP2 expression through the TGFβ1/Smad signalling pathway in human umbilical vein endothelial cells and rabbits following lipid disturbance.

    PubMed

    Xu, Chenggui; Lu, Guihua; Li, Qinglang; Zhang, Juhong; Huang, Zhibin; Gao, Xiuren

    2017-07-01

    A high-fat diet is a major risk factor for coronary heart diseases. Matrix metalloprotease (MMP) expression is changed in many cardiovascular diseases. Selenium, which is an important trace element in animals, has a close relationship with cardiovascular diseases. The TGFβ1/Smad signalling pathway is ubiquitous in diverse tissues and cells, and it is also associated with the occurrence and development of cardiovascular diseases. Therefore, in this study, we aimed to determine selenium's effect on lipid metabolism, atherosclerotic plaque formation, and MMP2 expression, as well as the underlying functional mechanism. In vivo tests: 24 male New Zealand white rabbits were randomly divided into 4 groups: regular diet, high-fat diet, high-fat diet+selenium and regular diet+selenium groups. The high-fat diet induced the lipid disturbances of rabbits at week 12. Selenium supplementation lowered total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels (p<0.01). Selenium supplementation also suppressed MMP2 over-expression in thoracic aortas. In vitro tests: Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of selenium or ox-LDL. Ox-LDL promoted MMP2 expression by increasing TGFβ1, pSmad2, pSmad3 and Smad3 expression (p<0.01). Selenium attenuated MMP2 over-expression by regulating the TGFβ1/Smad signalling pathway. Selenium suppressed high-fat diet-induced MMP2 over-expression in vivo by improving lipid metabolism. In vitro, selenium attenuated MMP2 over-expression through the TGFβ1/Smad signalling pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Roles and potential mechanisms of selenium in countering thyrotoxicity of DEHP.

    PubMed

    Zhang, Pei; Guan, Xie; Yang, Min; Zeng, Li; Liu, Changjiang

    2018-04-01

    Di-(2-ethylhexyl) phthalate (DEHP) as a ubiquitous environmental contaminant could disturb thyroid hormone (TH) homeostasis. Selenium as an essential trace element has protective effects on thyroids. To verify roles of selenium in countering thyrotoxicity of DEHP and elucidate potential mechanisms, Sprague-Dawley rats and Nthy-ori 3-1 cells were treated with DEHP or/and selenomethionine (SeMet). Results showed that selenium supplementation elevated plasma free thyroxine (FT4) that was decreased by DEHP, and free triiodothyronine (FT3) and thyroid stimulating hormone (TSH) levels were also partially recovered. DEHP-caused histopathologic changes were ameliorated after selenium supplementation, as indicated by recovered thyroid follicular epithelial cell numbers and cavity diameters. DEHP disrupted the redox equilibrium, causing depletions of SOD, GPx1, GPx3, and TxnRd, and accumulations of MDA. Nevertheless, selenium supplementation effectively improved the redox status. DEHP affected biosynthesis, biotransformation, biotransport, and metabolism of THs, as well as thyrotropin releasing hormone receptor (TRHr) levels. Plasma selenium, thyroid peroxidase (TPO), deiodinase 1 (Dio1), and transthyretin (TTR) were downregulated, while Dio3, Ugt1a1, Sult1e1, CYP2b1, CYP3a1, and TRHr were upregulated by DEHP. However, selenium supplementation led to elevations of selenium, Dio1 and TTR, and reductions of Ugt1a1, Sult1e1, CYP2b1, and TRHr. TPO, Dio3, and CYP3a1 were not significantly affected by selenium supplementation. Taken together, selenium could ameliorate DEHP-caused TH dyshomeostasis via modulations of the redox status, Dio1, TTR, TRHr, and hepatic enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. How Certain Trace Elements Behave.

    ERIC Educational Resources Information Center

    Zingaro, Ralph A.

    1979-01-01

    Fluorine, selenium, tin, and arsenic are among the trace elements occurring in the environment which are considered. Emphasis is given to developing a qualitative survey of the extent and kinds of metal transformations and their resultant effects. (CS)

  6. Analytical determination of selenium in medical samples, staple food and dietary supplements by means of total reflection X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Stosnach, Hagen

    2010-09-01

    Selenium is essential for many aspects of human health and, thus, the object of intensive medical research. This demands the use of analytical techniques capable of analysing selenium at low concentrations with high accuracy in widespread matrices and sometimes smallest sample amounts. In connection with the increasing importance of selenium, there is a need for rapid and simple on-site (or near-to-site) selenium analysis in food basics like wheat at processing and production sites, as well as for the analysis of this element in dietary supplements. Common analytical techniques like electrothermal atomic absorption spectroscopy (ETAAS) and inductively-coupled plasma mass spectrometry (ICP-MS) are capable of analysing selenium in medical samples with detection limits in the range from 0.02 to 0.7 μg/l. Since in many cases less complicated and expensive analytical techniques are required, TXRF has been tested regarding its suitability for selenium analysis in different medical, food basics and dietary supplement samples applying most simple sample preparation techniques. The reported results indicate that the accurate analysis of selenium in all sample types is possible. The detection limits of TXRF are in the range from 7 to 12 μg/l for medical samples and 0.1 to 0.2 mg/kg for food basics and dietary supplements. Although this sensitivity is low compared to established techniques, it is sufficient for the physiological concentrations of selenium in the investigated samples.

  7. Final report for CCQM-K107: total elements and selenomethionine in human serum

    NASA Astrophysics Data System (ADS)

    Goenaga Infante, Heidi

    2016-01-01

    Routine tests that measure the concentration of electrolytes in serum are needed for diagnosis and management of renal, endocrine, acid-base, water balance and other conditions such as screening D- and A-vitamin disorders, kidney insufficiency, bone diseases and leukaemia. The diagnostic concentration ranges for many such markers are narrow, requiring reference methods with small uncertainty. Serum concentration of total selenium (Se) is important in health studies but there is increasing interest in the speciation of selenium compounds in clinical samples such as serum and individual Se- Species are bio-indicators of Se status. The last CCQM IAWG key comparison for elements in the clinical area (CCQM-K14: Ca in human serum) was organized in 2003 and the previous key comparison (CCQM-K60) for Se and Se species used a wheat flour sample. Therefore, the CCQM IAWG agreed that CCQM-K107 and a parallel pilot study CCQM-P146 should be carried out. The candidate human serum sample used for both CCQM-K107 and P146 is of high complexity and contains approximately 1000-fold lower concentrations of selenium methionine (SeMet) than those encountered in the CCQM-K60 wheat flour. This significantly broadens the scope and degree of difficulty of earlier measurements in this field. A total of eleven institutes participated in CCQM-K107 (11 participants for total elements and 7 for SeMet). The performance of the majority of the K107 participants for all the measurands was very good, illustrating their ability to obtain accurate results for analytes such as electrolytes at mg kg-1 level, essential elements at µg kg-1 level and selenium species at µg kg-1 level in a complex biological fluid. The range of agreement between participants was within the interval of ± 0.1% for Ca and up to ± 1.8% for Fe. CMC claims based on total elements in this study may include other elements with similar core competencies (e.g. Se, Cu, Zn) in a wide range of biological materials (including liquids and solids) at a similar level of performance using the same measurement technique applied in CCQM-K107 provided that there are no additional factors (e.g. blank or dissolution issues). CMC claims based on SeMet measurements in this study may be applied to other biological matrices (e.g., tissues) provided that the concentration range is similar and due diligence is taken to ensure an appropriate extraction process is achieved and species specific spikes are available for quantitation by isotope dilution. Indeed, having accepted such conditions, application to quantitation of other organometallic species and other elements in similar matrices should be possible with the same level of performance. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    USGS Publications Warehouse

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  9. Parenteral trace element provision: recent clinical research and practical conclusions

    PubMed Central

    Stehle, P; Stoffel-Wagner, B; Kuhn, K S

    2016-01-01

    The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended. PMID:27049031

  10. Selenium extraction: development on extraction chromatographic resins compatible with Diffusive Gradient in Thin film (DGT)

    NASA Astrophysics Data System (ADS)

    Rad, S.; Dirks-Fandrei, C.; Happel, S. A.; Bombard, A.; Cary, L.

    2016-12-01

    Measurement of Selenium is of importance regarding public health as the ratio between beneficial daily intake and toxicity is rather low [1], [2]. Also from the radiological perspective, Se-79 as a long-lived fission nuclide (T1/2=2.8x105y) with high mobility in environment, is of concern regarding waste management and decommissioning [3], [4]. Due to the existence of different oxidation states Selenium has a complex speciation chemistry which makes extraction and separation schemes not straightforward. The aim of this research is to develop extraction methods for Selenium based on extraction chromatographic resins allowing for the extraction of Se(VI), as well as Se(IV), from water samples for later use on DGT (Diffusive Gradients in Thin films) devices. Extraction chromatographic resins have been tested and characterized for Se and other elements. For Se(VI) a commercially available Aliquat 336 based extraction chromatographic resin (TEVA resin[5]) was found to be most suitable, for Se(IV) a newly developed extraction chromatographic resin based on Piazselenol chemistry was found to be most effective, data on the selectivity of this resin will be presented. The extraction of Se(IV) and Se(VI) by these resins was tested on water sampled in Lille City, where a high Se spatial variability has been observed. Concentrations in groundwater can reach 30µg/L as a consequence; most Se-contaminated wells are no longer exploited by the water operators. One of the applications of this development is to be able to measure Se concentrations insitu in contaminated areas including very complex object such as hyporheic zone. [1] Cary L. et al. Applied Geochemistry 48 (2014) 70-82 [2] Chen C. et al. Biological Trace Element Research Vols. 71-72 (1999) 131-138 [3] http://www.irsn.fr/FR/Larecherche/publications-documentation/fiches-radionucleides/Documents/environnement/Selenium_Se79_v2.pdf last access 03/03/2016 [4] Uchida et al. WM2009 Conference, March 1-5, 2009, Phoenix, AZ [5] Horwitz P. et al. Analytica Chimica Acta 310 (1995) 63-78

  11. Metastable Se6 as a ligand for Ag+: from isolated molecular to polymeric 1D and 2D structures.

    PubMed

    Aris, Damian; Beck, Johannes; Decken, Andreas; Dionne, Isabelle; Schmedt auf der Günne, Jörn; Hoffbauer, Wilfried; Köchner, Tobias; Krossing, Ingo; Passmore, Jack; Rivard, Eric; Steden, Folker; Wang, Xinping

    2011-06-14

    Attempts to prepare the hitherto unknown Se(6)(2+) cation by the reaction of elemental selenium and Ag[A] ([A](-) = [Sb(OTeF(5))(6)](-), [Al(OC(CF(3))(3))(4)](-)) in SO(2) led to the formation of [(OSO)Ag(Se(6))Ag(OSO)][Sb(OTeF(5))(6)](2)1 and [(OSO)(2)Ag(Se(6))Ag(OSO)(2)][Al(OC(CF(3))(3))(4)](2)2a. 1 could only be prepared by using bromine as co-oxidant, however, bulk 2b (2a with loss of SO(2)) was accessible from Ag[Al(OC(CF(3))(3))(4)] and grey Se in SO(2) (chem. analysis). The reactions of Ag[MF(6)] (M = As, Sb) and elemental selenium led to crystals of 1/∞{[Ag(Se(6))](∞)[Ag(2)(SbF(6))(3)](∞)} 3 and {1/∞[Ag(Se(6))Ag](∞)}[AsF(6)](2)4. Pure bulk 4 was best prepared by the reaction of Se(4)[AsF(6)](2), silver metal and elemental selenium. Attempts to prepare bulk 1 and 3 were unsuccessful. 1-4 were characterized by single-crystal X-ray structure determinations, 2b and 4 additionally by chemical analysis and 4 also by X-ray powder diffraction, FT-Raman and FT-IR spectroscopy. Application of the PRESTO III sequence allowed for the first time (109)Ag MAS NMR investigations of 4 as well as AgF, AgF(2), AgMF(6) and {1/∞[Ag(I(2))](∞)}[MF(6)] (M = As, Sb). Compounds 1 and 2a/b, with the very large counter ions, contain isolated [Ag(Se(6))Ag](2+) heterocubane units consisting of a Se(6) molecule bicapped by two silver cations (local D(3d) sym). 3 and 4, with the smaller anions, contain close packed stacked arrays of Se(6) rings with Ag(+) residing in octahedral holes. Each Ag(+) ion coordinates to three selenium atoms of each adjacent Se(6) ring. 4 contains [Ag(Se(6))(+)](∞) stacks additionally linked by Ag(2)(+) into a two dimensional network. 3 features a remarkable 3-dimensional [Ag(2)(SbF(6))(3)](-) anion held together by strong Sb-FAg contacts between the component Ag(+) and [SbF(6)](-) ions. The hexagonal channels formed by the [Ag(2)(SbF(6))(3)](-) anions are filled by stacks of [Ag(Se(6))(+)](∞) cations. Overall 1-4 are new members of the rare class of metal complexes of neutral main group elemental clusters, in which the main group element is positively polarized due to coordination to a metal ion. Notably, 1 to 4 include the commonly metastable Se(6) molecule as a ligand. The structure, bonding and thermodynamics of 1 to 4 were investigated with the help of quantum chemical calculations (PBE0/TZVPP and (RI-)MP2/TZVPP, in part including COSMO solvation) and Born-Fajans-Haber-cycle calculations. From an analysis of all the available data it appears that the formation of the usually metastable Se(6) molecule from grey selenium is thermodynamically driven by the coordination to the Ag(+) ions.

  12. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    PubMed

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  13. Selenium in the environment, metabolism and involvement in body functions.

    PubMed

    Mehdi, Youcef; Hornick, Jean-Luc; Istasse, Louis; Dufrasne, Isabelle

    2013-03-13

    Selenium (Se³⁴₇₉) is a metalloid which is close to sulfur (S) in terms of properties. The Se concentration in soil varies with type, texture and organic matter content of the soil and with rainfall. Its assimilation by plants is influenced by the physico-chemical properties of the soil (redox status, pH and microbial activity). The presence of Se in the atmosphere is linked to natural and anthropogenic activities. Selenoproteins, in which selenium is present as selenocysteine, present an important role in many body functions, such as antioxidant defense and the formation of thyroid hormones. Some selenoprotein metabolites play a role in cancer prevention. In the immune system, selenium stimulates antibody formation and activity of helper T cells, cytotoxic T cells and Natural Killer (NK) cells. The mechanisms of intestinal absorption of selenium differ depending on the chemical form of the element. Selenium is mainly absorbed in the duodenum and caecum by active transport through a sodium pump. The recommended daily intake of selenium varies from 60 μg/day for women, to 70 μg/day for men. In growing ruminants the requirements are estimated at 100 μg/kg dry matter and 200 μg/Kg for pregnant or lactating females. A deficiency can cause reproductive disorders in humans and animals.

  14. Altered selenium status in Huntington's disease: neuroprotection by selenite in the N171-82Q mouse model.

    PubMed

    Lu, Zhen; Marks, Eileen; Chen, Jianfang; Moline, Jenna; Barrows, Lorraine; Raisbeck, Merl; Volitakis, Irene; Cherny, Robert A; Chopra, Vanita; Bush, Ashley I; Hersch, Steven; Fox, Jonathan H

    2014-11-01

    Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice.

    PubMed

    Zhang, Jinsong; Wang, Xufang; Xu, Tongwen

    2008-01-01

    Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.

  16. REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I.

    PubMed Central

    Woolfolk, C. A.; Whiteley, H. R.

    1962-01-01

    Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647–658. 1962.—Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of certain compounds of arsenic, bismuth, selenium, tellurium, lead, thallium, vanadium, manganese, iron, copper, molybdenum, tungsten, osmium, ruthenium, gold, silver, and uranium, as well as molecular oxygen. Chemical and manometric data indicate that the following reductions are essentially quantitative: arsenate to arsenite, pentavalent and trivalent bismuth to the free element, selenite via elemental selenium to selenide, tellurate and tellurite to tellurium, lead dioxide and manganese dioxide to the divalent state, ferric to ferrous iron, osmium tetroxide to osmate ion, osmium dioxide and trivalent osmium to the metal, uranyl uranium to the tetravalent state, vanadate to the level of vanadyl, and polymolybdate ions to molybdenum blues with an average valence for molybdenum of +5. The results of a study of certain other hydrogenase-containing bacteria with respect to their ability to carry out some of the same reactions are also presented. PMID:14001842

  17. Protective effects of Nano-elemental selenium against chromium-vi-induced oxidative stress in broiler liver.

    PubMed

    Xueting, L; Rehman, M U; Zhang, H; Tian, X; Wu, X; Shixue; Mehmood, K; Zhou, D

    2018-01-01

    The valuable role of selenium in mitigation of oxidative stress and heavy metal toxicity is well-known. Thus, the aim of the current study on broiler chickens was to examine whether nano elemental selenium (Nano-Se) supplementation can reduce the effects of chromium VI (K2Cr2O7) toxicity. For this purpose, a total of 150, one-day-old broiler chickens were allotted to five groups with three replicates: control group (standard diet), poisoned group (K2Cr2O7 via drinking water), protection group (K2Cr2O7 + Nano- Se), cure group (K2Cr2O7 for initial 2 weeks and then Nano-Se), and prevention group (opposite to the cure group). The broilers were detected by the activities of marker enzymes and oxidative stress markers including, aspartate aminotransferase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (GGT) and superoxide dismutase (SOD), glutathione peroxidase (GSH-px), malondialdehyde (MDA), respectively. The (K2Cr2O7 administration caused histopathological damage in the liver of the chickens. Moreover, changes in serum biochemical indicators and oxidative stress parameters were also observed. Nano-Se supplementation increased the levels of GSH-px but reduced the activities of SOD, MDA, GGT, ALT and AST in the experimental groups (P less than 0.05). Our results showed that Nano-Se plays a protective role by preventing the oxidative stress induced by the chromium VI in broiler chickens.

  18. A post-publication analysis of the idealized upper reference value of 2.5 mIU/L for TSH: Time to support the thyroid axis with magnesium and iron especially in the setting of reproduction medicine.

    PubMed

    Moncayo, Roy; Moncayo, Helga

    2017-06-01

    Laboratory medicine approaches the evaluation of thyroid function mostly through the single determination of the blood level of thyroid stimulating hormone (TSH). Some authors have suggested an upper reference value for TSH of 2.5 mIU/L. This suggestion has not been confirmed by recent clinical studies. These studies have delivered a clinically valid reference range going from 0.3 to 3.5 mIU/L. These values are valid for both for the general population as well as in the setting of fertility and pregnancy. Current biochemical evidence about the elements required to maintain thyroid function shows that these not only include dietary iodine but also magnesium, iron, selenium and coenzyme Q10. Iron is important for the synthesis of thyroid peroxidase; magnesium-ATP contributes to the active process of iodine uptake; iodine has to be sufficiently present in the diet; selenium acts through selenoproteins to protect the thyroid cell during hormone synthesis and in deiodination of thyroxine; coenzyme Q10 influences thyroid vascularity. As a consequence, good clinical practice requires additional biochemical information on the blood levels of magnesium, selenium, coenzyme Q10 as well as iron status. Since these elements are also important for the maintenance of reproductive function, we postulate that they constitute the connecting link between both endocrine systems.

  19. Trace elements in oceanic pelagic communities in the western Indian Ocean.

    PubMed

    Bodin, Nathalie; Lesperance, Dora; Albert, Rona; Hollanda, Stephanie; Michaud, Philippe; Degroote, Maxime; Churlaud, Carine; Bustamante, Paco

    2017-05-01

    The mineral composition of target and non-target pelagic fish caught by purse-seiners and longliners in the western-central Indian Ocean was determined. From the 10 essential elements analysed, selenium and zinc showed the highest concentrations in swordfish and blue marlin while Indian mackerel appeared as a good source of copper, iron and chrome. All catch had levels of lead and cadmium, two toxic elements, below the maximum sanitary limits. Although some concerns were raised regarding mercury concentrations in the largest species (wahoo, swordfish and blue marlin), molar ratios of mercury and selenium indicate that all oceanic pelagic fish from the western-central Indian Ocean are safe for human consumption. This study also gives insights on the relationships between the levels of essential and toxic elements in fish muscle and the size, trophic position and diet sources of the studied pelagic species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Dietary reference intakes of trace elements for Japanese and problems in clinical fields].

    PubMed

    Inoue, Yoshifumi

    2016-07-01

    In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.

  1. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  2. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  3. [Nutritive value of daily food rations reproduced in several regions of Poland. Part VII. Evaluation of cobalt, chromium, nickel and selenium intakes].

    PubMed

    Marzec, Z; Buliński, R

    1992-01-01

    On the basis of the data of the Chief Census Bureau, concerning the consumption of more than 80 food products, we reproduced in years 1987 and 1988 in Lublin, Olsztyn, Poznań, Warszawa and Wrocław the food rations characteristic of manual workers' families and of other families with medium incomes. In samples of these diets, chromium, cobalt and nickel were determined by the ASA method, and selenium-spectrophotometrically. Daily intakes were: for cobalt 15-32 micrograms, chromium 65-187 micrograms, nickel 138-316 micrograms and selenium 93-233 micrograms. It was found that the investigated food rations cover the requirements of these elements, and create no risk of their excess in food. The present results indicate that the levels of the investigated elements are mainly related to the kind of food products and to their composition, whereas they depend to a lesser extent on the region in which the food ration has been reproduced.

  4. Celebrating Two Centuries of Research in Selenium Chemistry: State of the Art and New Prospective.

    PubMed

    Santi, Claudio; Bagnoli, Luana

    2017-12-02

    In 2017, the 200th anniversary of the discovery of selenium was celebrated. In 1817, the Swedish chemists, Berzelius and Gahn, on roasting 200 kg of sulfur from a pyrite from the Falun mine, obtained about 3 g of a precipitate that they first wrongly identified as tellurium. Berzelius doubted this result and repeated the analysis some months later realizing that a new element was in his hands and he named this element Selenium (Greek: Selene, moon) in consideration of its resemblance to Tellurium (Latin: Tellus, earth). Several events were organized in the year for this special celebration and this Special Issue would like to be an additional contribution to the success of a research that, especially during the last decades, rapidly grew in different fields: synthesis, medicinal chemistry, biology, material, and environment. These studies are strongly characterized by multi- and interdisciplinary connections, and, for this reason, we collected here contributions coming from different areas and disciplines, not exclusively synthetic organic chemistry.

  5. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres.

    PubMed

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD 50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings.

  6. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres

    PubMed Central

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings. PMID:28684913

  7. Metals in albatross feathers from Midway Atoll: Influence of species, age, and nest location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Gochfeld, M.

    2000-03-01

    In this paper the authors examine the concentrations of metals (heavy metals, mercury, lead, cadmium, chromium, manganese, tin; and metalloids, arsenic and selenium), in the down and contour (body) feathers of half-grown young albatrosses, and contour feathers of one of their parents. They collected feathers from Laysan Diomedea immutabilis and black-footed Diomedea nigripes albatrosses from Midway Atoll in the central Pacific Ocean. The authors test the null hypotheses that there is no difference in metal levels as a function of species, age, feather type, and location on the island. Using linear regression they found significant models accounting for the variationmore » in the concentrations of mercury, lead, cadmium, selenium, chromium, and manganese (but not arsenic or tin) as a function of feather type (all metals), collection location (all metals but lead), species (selenium only), and interactions between these factors. Most metals (except mercury, arsenic, and tin) were significantly higher in down than in the contour feathers of either chicks or adults. Comparing the two species, black-footed albatross chicks had higher levels of most elements (except arsenic) in their feathers and/or down. Black-footed adults had significantly higher levels of mercury and selenium. They also collected down and feathers from Laysan albatross chicks whose nests were close to buildings, including buildings with flaking lead paint and those that had been lead-abated.« less

  8. Coal fly ash basins as an attractive nuisance to birds: parental provisioning exposes nestlings to harmful trace elements.

    PubMed

    Bryan, A L; Hopkins, W A; Parikh, J H; Jackson, B P; Unrine, J M

    2012-02-01

    Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: a randomized controlled trial123

    PubMed Central

    Burk, Raymond F; Hill, Kristina E; Motley, Amy K; Byrne, Daniel W; Norsworthy, Brooke K

    2015-01-01

    Background: Selenomethionine, which is the principal dietary form of selenium, is metabolized by the liver to selenide, which is the form of the element required for the synthesis of selenoproteins. The liver synthesizes selenium-rich selenoprotein P (SEPP1) and secretes it into the plasma to supply extrahepatic tissues with selenium. Objectives: We conducted a randomized controlled trial to determine whether cirrhosis is associated with functional selenium deficiency (the lack of selenium for the process of selenoprotein synthesis even though selenium intake is not limited) and, if it is, whether the deficiency is associated with impairment of selenomethionine metabolism. Design: Patients with Child-Pugh (C-P) classes A, B, and C (mild, moderate, and severe, respectively) cirrhosis were supplemented with a placebo or supranutritional amounts of selenium as selenate (200 or 400 μg/d) or as selenomethionine (200 μg/d) for 4 wk. Plasma SEPP1 concentration and glutathione peroxidase (GPX) activity, the latter due largely to the selenoprotein GPX3 secreted by the kidneys, were measured before and after supplementation. Results: GPX activity was increased more by both doses of selenate than by the placebo in C-P class B patients. The activity was not increased more by selenomethionine supplementation than by the placebo in C-P class B patients. Plasma selenium was increased more by 400 μg Se as selenate than by the placebo in C-P class C patients. Within the groups who responded to selenate, there was a considerable variation in responses. Conclusion: These results indicate that severe cirrhosis causes mild functional selenium deficiency in some patients that is associated with impaired metabolism of selenomethionine. This trial was registered at clinicaltrials.gov as NCT00271245. PMID:26468123

  10. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    PubMed Central

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  11. Selenium for preventing cancer.

    PubMed

    Vinceti, Marco; Filippini, Tommaso; Del Giovane, Cinzia; Dennert, Gabriele; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice Pa; Horneber, Markus; D'Amico, Roberto; Crespi, Catherine M

    2018-01-29

    This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently investigated site-specific cancers, investigators provided little evidence of any effect of selenium supplementation. Two RCTs with 19,009 participants indicated that colorectal cancer was unaffected by selenium administration (RR 0.99, 95% CI 0.69 to 1.43), as were non-melanoma skin cancer (RR 1.16, 95% CI 0.30 to 4.42; 2 studies, 2027 participants), lung cancer (RR 1.16, 95% CI 0.89 to 1.50; 2 studies, 19,009 participants), breast cancer (RR 2.04, 95% CI 0.44 to 9.55; 1 study, 802 participants), bladder cancer (RR 1.07, 95% CI 0.76 to 1.52; 2 studies, 19,009 participants), and prostate cancer (RR 1.01, 95% CI 0.90 to 1.14; 4 studies, 18,942 participants). Certainty of the evidence was high for all of these cancer sites, except for breast cancer, which was of moderate certainty owing to imprecision, and non-melanoma skin cancer, which we judged as moderate certainty owing to high heterogeneity. RCTs with low risk of bias suggested increased melanoma risk.Results for most outcomes were similar when we included all RCTs in the meta-analysis, regardless of risk of bias. Selenium supplementation did not reduce overall cancer incidence (RR 0.99, 95% CI 0.86 to 1.14; 5 studies, 21,860 participants) nor mortality (RR 0.81, 95% CI 0.49 to 1.32; 2 studies, 18,698 participants). Summary RRs for site-specific cancers showed limited changes compared with estimates from high-quality studies alone, except for liver cancer, for which results were reversed.In the largest trial, the Selenium and Vitamin E Cancer Trial, selenium supplementation increased risks of alopecia and dermatitis, and for participants with highest background selenium status, supplementation also increased risk of high-grade prostate cancer. RCTs showed a slightly increased risk of type 2 diabetes associated with supplementation. A hypothesis generated by the Nutritional Prevention of Cancer Trial - that individuals with low blood selenium levels could reduce their risk of cancer (particularly prostate cancer) by increasing selenium intake - has not been confirmed. As RCT participants have been overwhelmingly male (88%), we could not assess the potential influence of sex or gender.We included 15 additional observational cohort studies (70 in total; over 2,360,000 participants). We found that lower cancer incidence (summary odds ratio (OR) 0.72, 95% CI 0.55 to 0.93; 7 studies, 76,239 participants) and lower cancer mortality (OR 0.76, 95% CI 0.59 to 0.97; 7 studies, 183,863 participants) were associated with the highest category of selenium exposure compared with the lowest. Cancer incidence was lower in men (OR 0.72, 95% CI 0.46 to 1.14, 4 studies, 29,365 men) than in women (OR 0.90, 95% CI 0.45 to 1.77, 2 studies, 18,244 women). Data show a decrease in risk of site-specific cancers for stomach, colorectal, lung, breast, bladder, and prostate cancers. However, these studies have major weaknesses due to study design, exposure misclassification, and potential unmeasured confounding due to lifestyle or nutritional factors covarying with selenium exposure beyond those taken into account in multi-variable analyses. In addition, no evidence of a dose-response relation between selenium status and cancer risk emerged. Certainty of evidence was very low for each outcome. Some studies suggested that genetic factors might modify the relation between selenium and cancer risk - an issue that merits further investigation. Well-designed and well-conducted RCTs have shown no beneficial effect of selenium supplements in reducing cancer risk (high certainty of evidence). Some RCTs have raised concerns by reporting a higher incidence of high-grade prostate cancer and type 2 diabetes in participants with selenium supplementation. No clear evidence of an influence of baseline participant selenium status on outcomes has emerged in these studies.Observational longitudinal studies have shown an inverse association between selenium exposure and risk of some cancer types, but null and direct relations have also been reported, and no systematic pattern suggesting dose-response relations has emerged. These studies suffer from limitations inherent to the observational design, including exposure misclassification and unmeasured confounding.Overall, there is no evidence to suggest that increasing selenium intake through diet or supplementation prevents cancer in humans. However, more research is needed to assess whether selenium may modify the risk of cancer in individuals with a specific genetic background or nutritional status, and to investigate possible differential effects of various forms of selenium.

  12. Survey of Manual Methods of Measurements of Asbestos, Beryllium, Lead, Cadmium, Selenium, and Mercury in Stationary Source Emissions. Environmental Monitoring Series.

    ERIC Educational Resources Information Center

    Coulson, Dale M.; And Others

    The purpose of this study is to evaluate existing manual methods for analyzing asbestos, beryllium, lead, cadmium, selenium, and mercury, and from this evaluation to provide the best and most practical set of analytical methods for measuring emissions of these elements from stationary sources. The work in this study was divided into two phases.…

  13. Technical issues affecting the implementation of US environmental protection agency's proposed fish tissue-based aquatic criterion for selenium

    Treesearch

    A. Dennis Lemly; Joseph P. Skorupa

    2007-01-01

    The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the ‘‘what, where, and...

  14. Production of selenium nanoparticles in Pseudomonas putida KT2440.

    PubMed

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I; Chavarría, Max

    2016-11-15

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L -1 h -1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.

  15. Production of selenium nanoparticles in Pseudomonas putida KT2440

    PubMed Central

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I.; Chavarría, Max

    2016-01-01

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L−1 h−1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles. PMID:27845437

  16. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium concentrations were greatest in samples containing indications of reducing conditions and organic matter (dark gray to black claystones and lignite horizons). The Toll Gate Creek watershed is situated in a unique hydrogeologic setting in the west-central part of the Denver Basin such that weathering of Cretaceous- to Tertiary-aged, non-marine, selenium-bearing rocks releases selenium to groundwater and surface water under present-day semi-arid environmental conditions. The Denver Formation contains several known and suspected geologic sources of selenium including: (1) lignite deposits; (2) tonstein partings; (3) organic-rich bentonite claystones; (4) salts formed as secondary weathering products; and possibly (5) the Cretaceous-Tertiary boundary. Organically complexed selenium and/or selenium-bearing pyrite in the enclosing claystones are likely the primary mineral sources of selenium in the Denver Formation, and correlations between concentration of dissolved selenium and dissolved organic carbon in groundwater indicate weathering and dissolution of organically complexed selenium from organic-rich claystone is a primary process mobilizing selenium. Secondary salts accumulated along fractures and bedding planes in the weathered zone are another potential geologic source of selenium, although their composition was not specifically addressed by the solids analyses. Results from this and previous work indicate that shallow groundwater and streams similarly positioned over Denver Formation claystone units at other locations in the Denver Basin also may contain concentrations of dissolved selenium greater than the Colorado aquatic-life standard or the drinking- water standard.

  17. Human placenta processed for encapsulation contains modest concentrations of 14 trace minerals and elements.

    PubMed

    Young, Sharon M; Gryder, Laura K; David, Winnie B; Teng, Yuanxin; Gerstenberger, Shawn; Benyshek, Daniel C

    2016-08-01

    Maternal placentophagy has recently emerged as a rare but increasingly popular practice among women in industrialized countries who often ingest the placenta as a processed, encapsulated supplement, seeking its many purported postpartum health benefits. Little scientific research, however, has evaluated these claims, and concentrations of trace micronutrients/elements in encapsulated placenta have never been examined. Because the placenta retains beneficial micronutrients and potentially harmful toxic elements at parturition, we hypothesized that dehydrated placenta would contain detectable concentrations of these elements. To address this hypothesis, we analyzed 28 placenta samples processed for encapsulation to evaluate the concentration of 14 trace minerals/elements using inductively coupled plasma mass spectrometry. Analysis revealed detectable concentrations of arsenic, cadmium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, rubidium, selenium, strontium, uranium, and zinc. Based on one recommended daily intake of placenta capsules (3300 mg/d), a daily dose of placenta supplements contains approximately 0.018 ± 0.004 mg copper, 2.19 ± 0.533 mg iron, 0.005 ± 0.000 mg selenium, and 0.180 ± 0.018 mg zinc. Based on the recommended dietary allowance (RDA) for lactating women, the recommended daily intake of placenta capsules would provide, on average, 24% RDA for iron, 7.1% RDA for selenium, 1.5% RDA for zinc, and 1.4% RDA for copper. The mean concentrations of potentially harmful elements (arsenic, cadmium, lead, mercury, uranium) were well below established toxicity thresholds. These results indicate that the recommended daily intake of encapsulated placenta may provide only a modest source of some trace micronutrients and a minimal source of toxic elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence.

    PubMed

    Fleming, David E B; Nader, Michel N; Foran, Kelly A; Groskopf, Craig; Reno, Michael C; Ware, Chris S; Tehrani, Mina; Guimarães, Diana; Parsons, Patrick J

    2017-02-01

    The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic K α , selenium K α , arsenic K β , selenium K β , and bromine K α characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the K α peak only, ranged from 0.210±0.002µg/g selenium under one condition of analysis to 0.777±0.009µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  20. Selenium and other elements in juvenile striped bass from the San Joaquin Valley and San Francisco Estuary, California

    USGS Publications Warehouse

    Saiki, Michael K.; Palawski, Donald U.

    1990-01-01

    Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.

  1. Can selenium be a modifier of cancer risk in CHEK2 mutation carriers?

    PubMed

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Lubinski, Jan; Jakubowska, Anna

    2013-11-01

    Selenium is an essential trace element for humans, playing an important role in various major metabolic pathways. Selenium helps to protect the body from the poisonous effects of heavy metals and other harmful substances. Medical studies have provided evidence of selenium supplementation in preventing certain cancers. Low and too high selenium (Se) status correlates with increased risk of e.g. lung, larynx, colorectal and prostate cancers. A higher level of selenium and supplementation with selenium has been shown to be associated with substantially reduced cancer mortality. Selenium exerts its biological roles through selenoproteins, which are involved in oxidoreductions, redox signalling, antioxidant defence, thyroid hormone metabolism and immune responses. Checkpoint kinase 2 (CHEK2) is an important signal transducer of cellular responses to DNA damage and acts as a tumour suppressor gene. Mutations in the CHEK2 gene have been shown to be associated with increased risks of several cancers. Four common mutations in CHEK2 gene (1100delC, IVS2+1G>A, del5395 and I157T) have been identified in the Polish population. Studies have provided evidence that CHEK2-truncating and/or missense mutations are associated with increased risk of breast, prostate, thyroid, colon and kidney cancers. The variability in penetrance and cancer expression in CHEK2 mutation carriers can probably be explained by the influence of other genetic or environmental factors. One of the possible candidates is Se, which together with genetic variations in selenoprotein genes may influence susceptibility to cancer risk.

  2. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  3. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  4. Mercury, Lead, Cadmium, Cobalt, Arsenic and Selenium in the Blood of Semipalmated Sandpipers (Calidris pusilla) from Suriname, South America: Age-related Differences in Wintering Site and Comparisons with a Stopover Site in New Jersey, USA.

    PubMed

    Burger, Joanna; Mizrahi, David; Tsipoura, Nellie; Jeitner, Christian; Gochfeld, Michael

    2018-05-09

    It is essential to understand contaminant exposure and to compare levels of contaminants in organisms at different ages to determine if there is bioaccumulation, and to compare levels encountered in different geographical areas. In this paper, we report levels of mercury, lead, cadmium, cobalt, arsenic and selenium in the blood of semipalmated sandpipers ( Calidris pusilla ) wintering in Suriname as a function of age, and compare them to blood levels in northbound migrants at a stopover in Delaware Bay, New Jersey. We found (1) young birds had higher levels of cadmium, cobalt, and lead than adults (after second year birds); (2) there were no age-related differences for arsenic, mercury and selenium; (3) only four of the possible 16 inter-metal correlations were significant, at the 0.05 level; (4) the highest correlation was between cadmium and lead (Kendall tau = 0.37); and (5) the adult sandpipers had significantly higher levels of cadmium, mercury and selenium in Suriname than in New Jersey, while the New Jersey birds had significantly higher levels of arsenic. Suriname samples were obtained in April, after both age classes had spent the winter in Suriname, which suggests that sandpipers are accumulating higher levels of trace elements in Suriname than in Delaware Bay. The levels of selenium may be within a range of concern for adverse effects, but little is known about adverse effect levels of trace elements in the blood of wild birds.

  5. Use of Elemental Sulfur or Selenium in a Novel One-Pot Copper-Catalyzed Tandem Cyclization of Functionalized Ynamides Leading to Benzosultams.

    PubMed

    Siva Reddy, Alla; Kumara Swamy, K C

    2015-06-19

    A novel and efficient [Cu]-catalyzed one-pot regio- and stereospecific synthesis of benzo[1,4,2]dithiazine 1,1-dioxides and benzo[1,4,2]thiaselenazine 1,1-dioxides by cyclization of functionalized ynamides with elemental sulfur/selenium has been developed. Its generality is elegantly illustrated by extension to benzodithiazepines and benzothiaselenazepines. Involvement of water in the reaction is demonstrated by the incorporation of (2)D at the olefinic site by using D2O in place of water. Selective oxidation at sulfur in benzo[1,4,2]dithiazine 1,1-dioxide by using mCPBA as the oxidizing agent is also described.

  6. Toenail selenium, genetic variation in selenoenzymes and risk and outcome in glioma.

    PubMed

    Peeri, Noah C; Creed, Jordan H; Anic, Gabriella M; Thompson, Reid C; Olson, Jeffrey J; LaRocca, Renato V; Chowdhary, Sajeel A; Brockman, John D; Gerke, Travis A; Nabors, L Burton; Egan, Kathleen M

    2018-05-16

    Selenium is an essential trace element obtained through diet that plays a critical role in DNA synthesis and protection from oxidative damage. Selenium intake and polymorphisms in selenoproteins have been linked to the risk of certain cancers though data for glioma are sparse. In a case-control study of glioma, we examined the associations of selenium in toenails and genetic variants in the selenoenzyme pathway with the risk of glioma and patient survival. A total of 423 genetic variants in 29 candidate genes in the selenoenzyme pathway were studied in 1547 glioma cases and 1014 healthy controls. Genetic associations were also examined in the UK Biobank cohort comprised of 313,868 persons with 322 incident glioma cases. Toenail selenium was measured in a subcohort of 300 glioma cases and 300 age-matched controls from the case-control study. None of the 423 variants studied were consistently associated with glioma risk in the case-control and cohort studies. Moreover, toenail selenium in the case-control study had no significant association with glioma risk (p trend = 0.70) or patient survival among 254 patients with high grade tumors (p trend = 0.70). The present study offers no support for the hypothesis that selenium plays a role in the onset of glioma or patient outcome. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Sohn, Mary; Anquandah, George A K; Pettine, Maurizio; Zboril, Radek

    2017-12-01

    This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selenium effect on ischemia-reperfusion injury of gastrocnemius muscle in adult rats.

    PubMed

    Gholami, Mohammadreza; Zendedel, Abolfazl; Khanipour khayat, Zahra; Ghanad, Kourosh; Nazari, Afshin; Pirhadi, Atieh

    2015-04-01

    Selenium is a trace element that has antioxidant and neuroprotective effects. The aim of this study is to investigate the effects of selenium in reducing ischemia-reperfusion injury of the gastrocnemius muscle. In this experimental study, 80 adult male Wistar rats weighing 250-300 g were divided into ten groups (N = 8 per group). Group 1 is control group (without ischemia-reperfusion). Group 2 received 0.2 mg/kg selenium. Group 3 received ischemia + 3 d reperfusion + 0.2 mg/kg selenium, group 4 received ischemia + 3 d reperfusion + 0.2 mg/kg placebo, group 5 received ischemia + 7 d reperfusion + 0.2 mg/kg selenium, group 6 received ischemia + 7 d reperfusion + 0.2 mg/kg placebo, group 7 received ischemia + 14 d reperfusion + 0.2 mg/kg selenium, group 8 received ischemia + 14 d reperfusion + 0.2 mg/kg placebo, group 9 received ischemia + 28 d reperfusion + 0.2 mg/kg selenium and group 10 received ischemia + 3 d reperfusion + 0.2 mg/kg placebo. External iliac artery blocked for 3 h. After reperfusion, rats killed and gastrocnemius muscle removed, fixed, and tissue processing performed. Samples stained with hematoxylin-eosin for edema evaluation, toluidine blue for mast cell infiltration evaluation and immunohistochemistry for detection TNF-alpha and NF-kappa B proteins. Comparison of mast cell infiltration, edema of the interstitial fluid on the tissue, expression of TNF-alpha protein, and expression of NF-kappa B protein in the groups that received selenium with corresponding placebo group showed that selenium can reduce edema, mast cell infiltration, and TNF-alpha expression and inactivated NF-kappa B. The use of selenium simultaneously with creating ischemia can reduce ischemia-reperfusion injury of the gastrocnemius muscle.

  9. Evaluation of flushing of a high-selenium backwater channel in the Colorado River.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2004-02-01

    Concern has been raised that selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine if operation of a water control structure (opened in December 1996) that allowed the Colorado River to flow through a channel area at Walter Walker State Wildlife Area (WWSWA) would reduce selenium and other inorganic elements in water, sediment, aquatic invertebrates, and forage fish. Endangered Colorado pikeminnow were collected and muscle plug samples taken for selenium analysis. Selenium concentrations in filtered water were 21.0 microg/L in 1995, 23.5 microg/L in 1996, 2.1 microg/L in 1997, and 2.1 microg/L in 1998. Selenium concentrations in sediment cores and sediment traps were 8.5 microg/g in 1995, 8.2 microg/g in 1996, 4.8 microg/g in 1997, and 1.1 microg/g in 1998. Selenium concentrations in aquatic invertebrates were 27.4 microg/g in 1996, 15.5 microg/g in 1997, and 4.9 microg/g in 1998. Selenium concentrations in forage fish were 27.2 microg/g in 1996, 20.2 microg/g in 1997, and 8.6 microg/g in 1998. Selenium concentrations in muscle plugs of Colorado pikeminnow were 9.8 microg/g in 1995, 9.5 microg/g in 1996, 9.0 microg/g in 1997, and 10.3 microg/g in 1998. Although selenium concentrations in water, sediment, aquatic invertebrates, and forage fish decreased substantially after operation of the water control structure, a corresponding change in Colorado pikeminnow did not seem to occur. Selenium concentrations in muscle plugs decreased with increasing fish total length and weight, did not change between repeat sampling in the same year or recapture in subsequent years, and seemed to be most closely associated with the mean monthly river flow for the March-July period. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 51-81, 2004.

  10. Selenium, fluorine, and arsenic in surficial materials of the conterminous United States

    USGS Publications Warehouse

    Shacklette, Hansford T.; Boerngen, Josephine G.; Keith, John R.

    1974-01-01

    Concentrations of selenium, fluorine, and arsenic in 912, 911, and 910 samples, respectively, of soils and other regoliths from sites approximately 50 miles (80 km) apart throughout the United States are represented on maps by symbols showing five ranges of values. Histograms of the concentrations of these elements are also given. The geometric-mean concentrations (ppm) in the samples, grouped by area, are as follows: Selenium-- Entire United States, 0.31; Western United States, 0.25; and Eastern United States, 0.39. Fluorine-- Entire United States, 180; Western United States, 250; and Eastern United States, 115. Arsenic-- Entire United States, 5.8; Western United States, 6.1; and Eastern United States, 5.4.

  11. Nationwide residues of mercury, lead, cadmium, arsenic, and selenium in starlings, 1973

    USGS Publications Warehouse

    White, D.H.; Bean, J.R.; Longcore, J.R.

    1977-01-01

    Starlings (Sturnus vulgaris) collected in 1973 at 51 sites throughout the continental United States were analyzed for mercury, lead, cadmium, arsenic, and selenium. All samples contained detectable levels of these elements. In general, residues were low: mercury residues ranged from <0.01 to 0.20 ppm: lead, from <0.10 10 3.20 ppm: cadmium, from <0.05 to 0.20 ppm: arsenic, from <0.05 to 1.40 ppm: and selenium, from 0.10 to 1.10 ppm. There was a significant overall decline in mercury and lead residues in starlings since 1971, and a significant increase in arsenic residues. Lead residues were significantly higher in starlings from urban areas than from rural areas.

  12. Organochlorine pesticide, polychlorinated biphenyl, trace element and metal residues in bird eggs from Salton Sea, California, 2004

    USGS Publications Warehouse

    Henny, Charles J.; Anderson, T.W.; Crayon, J.J.

    2008-01-01

    The Salton Sea is a highly eutrophic, hypersaline terminal lake that receives inflows primarily from agricultural drainages in the Imperial and Coachella valleys. Impending reductions in water inflow at Salton Sea may concentrate existing contaminants which have been a concern for many years, and result in higher exposure to birds. Thus, waterbird eggs were collected and analyzed in 2004 and compared with residue concentrations from earlier years; these data provide a base for future comparisons. Eggs from four waterbird species (black-crowned night-heron [Nycticorax nycticorax], great egret [Ardea alba], black-necked stilt [Himantopus mexicanus], and American avocet [Recurvirostra Americana]) were collected. Eggs were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), metals, and trace elements, with current results compared to those reported for eggs collected from the same species and others during 1985a??1993. The two contaminants of primary concern were p,pa??-DDE (DDE) and selenium. DDE concentrations in night-heron and great egret eggs collected from the northwest corner of Salton Sea (Whitewater River delta) decreased 91 and 95%, respectively, by 2004, with a concomitant increase in eggshell thickness for both species. Decreases in bird egg DDE levels paralleled those in tissues of tilapia (Oreochromis mossambicus ?? O. urolepis), an important prey species for herons and egrets. Despite most nests of night-herons and great egrets failing in 2004 due to predation, predicted reproductive effects based on DDE concentrations in eggs were low or negligible for these species. The 2004 DDE findings were in dramatic contrast to those in the past decade, and included an 81% decrease in black-necked stilt eggs, although concentrations were lower historically than those reported in night-herons and egrets. Selenium concentrations in black-necked stilt eggs from the southeast corner of Salton Sea (Davis Road) were similar in 1993 and 2004, with 4.5a??7.6% of the clutches estimated to be selenium impaired during both time periods. Because of present selenium concentrations and future reduced water inflow, the stilt population is of special concern. Between 1992 and 1993 and 2004 selenium in night-heron and great egret eggs from the Whitewater River delta at the north end of the Sea decreased by 81 and 55%, respectively. None of the night-heron or egret eggs collected in 2004 contained selenium concentrations above the lowest reported effect concentration (6.0 I?g/g dw). Reasons for selenium decreases in night-heron and egret eggs are unknown. Other contaminants evaluated in 2004 were all below known effect concentrations. However, in spite of generally low contaminant levels in 2004, the nesting populations of night-herons and great egrets at Salton Sea were greatly reduced from earlier years and snowy egrets (Egretta thula) were not found nesting. Other factors that include predation, reduced water level, diminished roost and nest sites, increased salinity, eutrophication, and reduced fish populations can certainly influence avian populations. Future monitoring, to validate predicted responses by birds, other organisms, and contaminant loadings associated with reduced water inflows, together with adaptive management should be the operational framework at the Salton Sea.

  13. Task 1: Whole-body concentrations of elements in kelp bass (Paralabrax clathratus), kelp rockfish (Sebastes atrovirens), and Pacific sanddab (Citharichthys sordidus) from offshore oil platforms and natural areas in the Southern California Bight

    USGS Publications Warehouse

    Love, Milton S.

    2009-01-01

    Resource managers are concerned that offshore oil platforms in the Southern California Bight may be contributing to environmental contaminants accumulated by marine fishes. To examine this possibility, 18 kelp bass (Paralabrax clathratus), 80 kelp rockfish (Sebastes atrovirens), and 98 Pacific sanddab (Citharichthys sordidus) were collected from five offshore oil platforms and 10 natural areas during 2005-2006 for whole-body analysis of 63 elements. The natural areas, which served as reference sites, were assumed to be relatively uninfluenced by contaminants originating from platforms. Forty-two elements were excluded from statistical comparisons for one of three reasons: they consisted of major cations that were unlikely to accumulate to potentially toxic concentrations under ambient exposure conditions; they were not detected by the analytical procedures; or they were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these 21 elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. Eight comparisons yielded significant interaction effects between total length (TL) of the fish and the two habitat types (oil platforms and natural areas). This indicated that relations between certain elemental concentrations (i.e., copper, rubidium, selenium, tin, titanium, and vanadium) and habitat type varied by TL of affected fish species. To better understand these interactions, we examined elemental concentrations in very small and very large individuals of affected species. Although significant interactions were detected for rubidium, tin, and selenium in kelp rockfish, the concentrations of these elements did not differ significantly between oil platforms and natural areas over the TL range of sampled fish. However, for selenium, titanium, and vanadium in Pacific sanddab, small individuals (average TL, 13.0 cm) exhibited significantly lower concentrations at oil platforms than at natural areas, whereas large individuals (average TL, 27.5 cm) exhibited higher concentrations at oil platforms than at natural areas. For copper in Pacific sanddab, small individuals did not exhibit differences between oil platforms and natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas. On the other hand, for tin in Pacific sanddab, small individuals did not exhibit differences between oil platforms and natural areas, whereas large individuals exhibited significantly lower concentrations at oil platforms than at natural areas. Although concentrations of arsenic, cadmium, chromium, lead, mercury, and selenium in fishes from some platforms and natural areas equaled or exceeded literature-based toxicity thresholds for fish and fish-eating wildlife, studies are still needed to document evidence of toxicity from these elements. When estimates of elemental concentrations in skinless fillets were compared to risk-based consumption limits for humans, the concentrations of arsenic, cadmium, mercury, and tin in fish from a mix of oil platforms and natural areas were sufficiently elevated to suggest a need for further study of inorganic arsenic, cadmium, mercury, and tributyltin.

  14. A new separation and preconcentration method for selenium in some foods using modified silica gel with 2,6-diamino-4-phenil-1,3,5-triazine.

    PubMed

    Mendil, Durali; Demirci, Zafer; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2017-04-15

    A novel and simple solid phase extraction method was improved and recommended for selenium. Silica gel was modified with 2,6-diamino-4-phenil-1,3,5-triazine and characterized by FTIR, SEM and elemental analysis and used adsorbent for column solid phase extraction of selenium ions. The experimental parameters (pH, flow rates, amounts of the modified silica gel, concentration and type of eluent, volume of sample, etc.) on the recoveries of selenium were optimized. Standard reference materials were analyzed for validation of method. The present method was successfully applied to the detection of total selenium in water and microwave digested some food samples with quantitative recoveries (> 95%). The relative standard deviations were<8%. Matrix influences were not observed. The adsorption capacity of modified silica gel was 5.90mgg -1 . The LOD was 0.015μgL -1 . Enrichment factor was obtained as 50 for the introduced method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influences of fiber, methionine and form of selenium on selenium hindgut targeting and tissue accumulation

    USDA-ARS?s Scientific Manuscript database

    Increased selenium (Se) status has beneficial outcomes, including decreased colorectal cancer risk, yet obesity may interfere with Se metabolism. Commensal bacteria can influence colon carcinogenesis and Se influences the microbiome, including production of volatile fatty acids by these microbes. We...

  16. Arsenic and selenium in soils and shallow ground water in the Turtle Lake, New Rockford, Harvey Pumping, Lincoln Valley, and LaMoure irrigation areas of the Garrison Diversion Unit, North Dakota

    USGS Publications Warehouse

    Berkas, W.R.; Komor, S.C.

    1996-01-01

    The Garrison Diversion Unit project was authorized as part of the Pick-Sloan Missouri River Basin program to divert water from Lake Sakakawea to irrigation areas in North Dakota. A special Garrison Commission was created to evaluate an environmental concern that return flow from the irrigation areas might contain metals in toxic concentrations. This report summarizes the results of detailed investigations of the Turtle Lake, New Rockford, Harvey Pumping, Lincoln Valley, and LaMoure irrigation areas. A total of 223 soil samples were collected from the irrigation areas and analyzed for elemental composition. Water extractions were done on 40 of the 223 soil samples using a 1:5 soil-to-water extraction method, and the solution from the extraction was analyzed for elemental composition. A total of 52 ground-water samples were collected and analyzed for inorganic constituents and organic carbon.Average arsenic concentrations in the entire soil column ranged from 1.0 milligram per kilogram in the Harvey Pumping irrigation area to 70 milligrams per kilogram in the New Rockford irrigation area. Average selenium concentrations ranged from less than 0.1 milligram per kilogram in the Turtle Lake, New Rockford, Harvey Pumping, and Lincoln Valley irrigation areas to 6.0 milligrams per kilogram in the Turtle Lake irrigation area. In the Turtle Lake irrigation area, average arsenic and selenium concentrations generally increased with depth through the topsoil, oxidized soil, and transition soil but decreased in the reduced soil at the bottom of the sampled horizons. Average arsenic concentrations in the New Rockford irrigation area follow the same pattern as in the Turtle Lake irrigation area, but selenium concentrations do not show a clear pattern of variation with depth. In the Harvey Pumping and Lincoln Valley irrigation areas, arsenic and selenium concentrations do not appear to vary systematically with depth. No correlation is shown between the concentrations in soils and soil extracts, indicating that, based on conditions of laboratory soil-water extraction experiments, trace-element concentrations in soils are not good predictors of trace-element concentrations in irrigation return flow. Arsenic concentrations in the aquifers ranged from less than 1 microgram per liter to 27 micrograms per liter. Arsenic concentrations generally were larger in the deep part of the aquifers underlying the Turtle Lake and New Rockford irrigation areas than in the shallow part of the aquifers. In the shallow part of the aquifers, where oxidizing conditions prevail, arsenic is strongly adsorbed to soil particles. In the deep part of the aquifers, where reducing conditions prevail, arsenic is more mobile.Selenium concentrations in the aquifers ranged from less than 1 microgram per liter to 4 micrograms per liter. Little difference existed between the selenium concentrations in the shallow part of the aquifers underlying the irrigation areas and the concentrations in the deep part of the aquifers.

  17. Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2012-04-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium's protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single "protective" ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium-mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens.

    PubMed

    Fellowes, J W; Pattrick, R A D; Green, D I; Dent, A; Lloyd, J R; Pearce, C I

    2011-05-30

    Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl(2) and its transformation to Hg(v)(0) represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼ 1.7 μg m(-3)) are below advised safe levels (<25 μg m(-3)) but up to 90 μg m(-3) mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM-EDS and XANES suggest the presence of residual HgCl(2) as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the Hg(v)(0) was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se(0) can be used to reduce Hg(v)(0) in long term, slow release environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Selenium and arsenic in biology: their chemical forms and biological functions.

    PubMed

    Shibata, Y; Morita, M; Fuwa, K

    1992-01-01

    Based on the recent development of analytical methods, sensitive systems for the analysis and speciation of selenium and arsenic have been established. A palladium addition technique was developed for the accurate determination of selenium in biological samples using graphite furnace atomic absorption analysis. For the speciation of the elements, combined methods of HPLC either with ICP-AES or with ICP-MS were found to work well. These systems were applied to the elucidation of the chemical form of the elements in natural samples. Some chemical properties of the selenium-mercury complex in dolphin liver were elucidated: i.e., it was a cationic, water-soluble, low molecular weight compound containing selenium and mercury in a 1:1 molar ratio, and was shown to be different from a known selenium-mercury complex, bis(methylmercuric)selenide. The major selenium compound excreted in human urine was revealed to be other than any of those previously identified (TMSe, selenate, and selenite). TMSe, a suspected major metabolite in urine, was found, if at all, in low levels. The major water-soluble, and lipid-soluble arsenic compounds in a brown seaweed, U. pinnatifida (WAKAME), were rigorously identified, and the results were compared with other data on marine algae and animals. The major organic arsenic compounds (termed "arseno-sugars") in marine algae commonly contain 5-deoxy-5-dimethylarsinyl-ribofuranoside moiety. There are various kinds of arseno-sugar derivatives containing different side-chains attached to the anomeric position of the sugar, and the distribution of each arsenic species seems to be related to algal species. The arseno-sugar (A-XI) is present in every alga so far examined, is metabolized to lipids, and possibly may play some specific role in the algal cells. On the other hand, the major arsenic compound in fish, crustacea and molluscs has been identified as arsenobetaine, which is an arseno-analog of glycinebetaine, a very common osmo-regulator in living organisms. Arsenobetaine is not detected in marine algae while arseno-sugars are not present in marine animals except for some molluscs which contain both compounds in considerable amounts. Arsenobetaine is present in the urine of human beings who have eaten foods derived from marine animals.

  20. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Sun River area, west-central Montana, 1986-87

    USGS Publications Warehouse

    Knapton, J.R.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    The Sun River area was selected for a reconnaissance investigation of irrigation drainage because sufficient information existed to indicate that potential problems of a toxic nature might exist. The area of study included the Sun River Irrigation Project, Freeze-out Lake Game Management Area, and Benton Lake National Wildlife Refuge. Water, bottom sediment , and biota were sampled at selected sites and analyzed for inorganic and organic constituents that could be toxic at large concentrations. Although selenium was of primary concern, other trace elements and selected pesticides were also analyzed. Some water quality problems have been prevalent for many years in the Sun River Irrigation Projects, including the Sun River and Muddy Creek. However, during this study, most sampling sites were free of concentrations of toxic constituents that are in excess of established criteria and standards. There was little change in arsenic, boron, mercury, and selenium concentrations in fish and invertebrates at Sun River sampling sites upstream and downstream from the irrigation project. Presently, the most serious threat within the irrigation project appears to be from nitrate in groundwater. Water from some wells contains nitrate concentration in excess of drinking water standards (10 mg/L) established for the State of Montana. The largest selenium concentrations in water and bottom sediment were from seeps that surround Benton Lake, with maximum concentrations of 580 mg/L in water and biological samples. Several eared-grebe livers from Freezeout Lake and several coot livers and eggs from Benton Lake had selenium concentrations indicative of contamination. (See also W89-07064) (Author 's abstract)

  1. Association between trace elements in the environment and stroke risk: The reasons for geographic and racial differences in stroke (REGARDS) study.

    PubMed

    Merrill, Peter D; Ampah, Steve B; He, Ka; Rembert, Nicole J; Brockman, John; Kleindorfer, Dawn; McClure, Leslie A

    2017-07-01

    The disparities in stroke mortality between blacks and whites, as well as the increased stroke mortality in the "stroke belt" have long been noted. The reasons for these disparities have yet to be fully explained. The association between trace element status and cardiovascular diseases, including stroke, has been suggested as a possible contributor to the disparities in stroke mortality but has not been fully explored. The purpose of this study is to investigate distributions of four trace elements (arsenic, mercury, magnesium, and selenium) in the environment in relation to stroke risk. The study population (N=27,770) is drawn from the Reasons for Geographic and Racial Disparities in Stroke (REGARDS) cohort. Environmental distribution of each trace element was determined using data from the United States Geological Survey (USGS) and was categorized in quartiles. A proportional hazards model, adjusted for demographic data and stroke risk factors, was used to examine the association of interest. The results showed that higher selenium levels in the environment were associated with increased stroke risk, and the hazard ratio for the 4th quartile compared to the 1st quartile was 1.33 (95% CI: 1.09, 1.62). However, there was no statistically significant relationship between environmental arsenic, mercury or magnesium and the risk of stroke. Because of dietary and non-dietary exposure as well as bioavailability, further research using biomarkers is warranted to examine the association between these trace elements and the risk of stroke. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Feasibility of measuring selenium in humans using in vivo neutron activation analysis.

    PubMed

    Tahir, S N A; Chettle, D R; Byun, S H; Prestwich, W V

    2015-11-01

    Selenium (Se) is an element that, in trace quantities, plays an important role in the normal function of a number of biological processes in humans. Many studies have demonstrated that selenium deficiency in the body may contribute to an increased risk for certain neoplastic, cardiovascular, osseous, and nervous system diseases including retardation of bone formation. However, at higher concentrations Se is cytotoxic. For these reasons it is desirable to have a means of monitoring selenium concentration in humans.This paper presents the outcome of a feasibility study carried out for measuring selenium in humans using in vivo neutron activation analysis (IVNAA). In this technique a small dose of neutrons is delivered to the organ of interest, the neutrons are readily captured by the target nuclei, and the γ-rays given off are detected outside of the body. For the present study, human hand (bone) tissue equivalent phantoms were prepared with varying amounts of Se. These were irradiated by a low energy fast neutron beam produced by the (7)Li(p,n)(7)Be reaction employing the high beam current Tandetron accelerator. The counting data saved using a 4π NaI(TI) detection system were analyzed. The selenium was detected via the neutron capture reaction, (76)Se(n,γ)(77 m)Se, whereas calcium was detected through the (48)Ca(n,γ)(49)Ca reaction for the purpose of normalization of the Se signals to the calcium signals. From the calibration lines drawn between Se/Ca concentrations and Se/Ca counts ratio, the minimum detection limits (MDLs) were computed for two sets of phantoms irradiated under different irradiation parameters.In this study the optimized MDL value was determined to be 81 ng g(-1) (Se/phantom mass) for an equivalent dose of 188 mSv to the phantom. This MDL was found at least 10 times lower than the reported data on Se concentration measured in bone tissues. It was concluded that the NAA technique would be a feasible means of performing in vivo measurements of selenium in humans. Currently the data on in vivo measurement of selenium in humans are limited; the results of the present study would greatly contribute to the present data.

  3. Low concentrations of selenium and zinc in nails are associated with childhood asthma.

    PubMed

    Carneiro, Maria Fernanda Hornos; Rhoden, Claudia Ramos; Amantéa, Sérgio Luis; Barbosa, Fernando

    2011-12-01

    The purpose of this study was to investigate possible associations between Zn, Se, Cu, Mn, and Co concentrations in nails and asthma in a young population from a Southern Brazil city. Additionally, correlations between these chemical elements among asthmatic and non-asthmatic children were evaluated. Before nail collection (n = 165), children were asked to complete the International Study of Asthma and Allergies in Childhood questionnaire. The concentrations of trace elements were determined by inductively coupled plasma mass spectrometry. The chi-square test was used to evaluate the association between element concentrations in nails and the respiratory outcome. To evaluate correlations between the elements, we used the Spearman correlation test. For all tests, the significance level was set at 95% (P ≤ 0.05). Children included in the highest quartile of nail Se and Zn concentration presented a fivefold decrease in the prevalence ratio of asthma while children in the lowest Se range presented an almost 2.5-fold increase in the asthma prevalence ratio. There were weak to strong correlations between Cu vs. Zn, Cu vs. Co, Cu vs. Se, Zn vs. Se, Zn vs. Mn, and Mn vs. Co in both asthmatic and non-asthmatic children. Interestingly, non-asthmatics also presented correlations between Co vs. Se and Zn. Taken together, our results clearly demonstrated an association between concentrations of selenium and zinc and childhood asthma and the usefulness of nail as a noninvasive matrix to detect minerals imbalance in asthma patients.

  4. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    USGS Publications Warehouse

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi

  5. Impact of the Nationwide Intravenous Selenium Product Shortage on the Development of Selenium Deficiency in Infants Dependent on Long-Term Parenteral Nutrition.

    PubMed

    Chen, Connie H; Harris, Mary Beth; Partipilo, M Luisa; Welch, Kathleen B; Teitelbaum, Daniel H; Blackmer, Allison B

    2016-08-01

    For patients dependent on parenteral nutrition (PN), selenium must be supplemented intravenously. A nationwide intravenous selenium shortage began in April 2011. The impact of this shortage on PN-dependent infants was evaluated by examining the provision of selenium, development of biochemical deficiency, and costs associated with the shortage. This single-center, retrospective study included PN-dependent infants aged ≤1 year who weighed ≤30 kg, received PN for ≥1 month, and had ≥1 serum selenium measurement. The primary outcome was the incidence of biochemical selenium deficiency. Secondary outcomes included severity of biochemical deficiency, clinical manifestations, costs, and relationship between serum selenium levels and selenium dose. The average selenium dose decreased 2-fold during the shortage (2.1 ± 1.2 µg/kg/d; range, 0.2-4.6 µg/kg/d) versus the nonshortage period (3.8 ± 1 µg/kg/d; range, 2.4-6 µg/kg/d; P < .001). A linear relationship between serum selenium concentration and selenium dose was observed (r(2) = 0.42), with a dose of 6 µg/kg/d expected to result in normal serum levels in most cases. Similar proportions of patients developed biochemical deficiency in both groups: shortage period, 59.1%; nonshortage, 66.7%; P = .13. The severity of biochemical deficiency was similar between groups. A significant increase in incremental cost during the shortage was observed. This is the first study examining the impact of the intravenous selenium shortage on PN-dependent infants. Both groups exhibited similarly high incidences of biochemical selenium deficiency, suggesting higher empiric doses may benefit this population. However, ongoing shortages limit the ability to provide supplementation. © 2015 American Society for Parenteral and Enteral Nutrition.

  6. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    PubMed Central

    2014-01-01

    Background Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic. Results A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction. PMID:25098921

  7. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    USGS Publications Warehouse

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  8. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  9. Competition between the Brain and Testes under Selenium-Compromised Conditions: Insight into Sex Differences in Selenium Metabolism and Risk of Neurodevelopmental Disease.

    PubMed

    Pitts, Matthew W; Kremer, Penny M; Hashimoto, Ann C; Torres, Daniel J; Byrns, China N; Williams, Christopher S; Berry, Marla J

    2015-11-18

    Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1(-/-) and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy. Copyright © 2015 the authors 0270-6474/15/3515326-13$15.00/0.

  10. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    PubMed

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.

    PubMed

    Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G

    2016-07-01

    Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific.

  12. Selenocysteine in thiol/disulfide-like exchange reactions.

    PubMed

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  13. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  14. Selenium protects reproductive system and foetus development in a rat model of gestational lead exposure.

    PubMed

    Shen, W; Chen, J; Yin, J; Wang, S-L

    2016-01-01

    Lead is a common environmental contaminant. Lead accumulation in the body is especially dangerous for pregnant women and newborns. Selenium is a trace element which may rectify the damaging effects of lead. Here we tested potential protective effects of selenium against gestational lead exposure. Pregnant SD rats were exposed to 200 mg/L of lead acetate (given with water), with or without sodium selenite supplementation (2-8 mg/kg/day via intragastric administration). Pregnant rats not exposed to lead or selenium served as control animals. The outcomes in pregnant rats were serum lead and selenium levels, reproductive hormone (follicle-stimulating hormone, luteinizing hormone, prolactin, oestradiol, progesterone) levels, and uterine and ovarian morphological changes. The outcomes in the offspring were sex differentiation, survival rates (day 21 after birth), weight (days 0-35 after birth), weight of reproductive organs, and puberty onset (foreskin separation or vaginal opening). Selenium supplementation dose-dependently decreased serum lead levels, rectified reproductive hormone levels, and attenuated reproductive morphological changes caused by lead exposure. Lead exposure did not affect sex differentiation, but significantly (p < 0.05 vs. control animals) decreased the offspring weight on days 0-28 and the weight of their reproductive organs. Furthermore, lead exposure delayed the onset of puberty. These pathological changes were dose-dependently rectified or attenuated by selenium supplementation. Gestational lead exposure causes damages to the reproductive system of pregnant rats, and negatively modulates growth and reproductive system development of the offspring. These adverse effects are rectified or attenuated by selenium supplementation.

  15. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer's dementia in persons with mild cognitive impairment.

    PubMed

    Vinceti, Marco; Chiari, Annalisa; Eichmüller, Marcel; Rothman, Kenneth J; Filippini, Tommaso; Malagoli, Carlotta; Weuve, Jennifer; Tondelli, Manuela; Zamboni, Giovanna; Nichelli, Paolo F; Michalke, Bernhard

    2017-12-19

    Little is known about factors influencing progression from mild cognitive impairment to Alzheimer's dementia. A potential role of environmental chemicals and specifically of selenium, a trace element of nutritional and toxicological relevance, has been suggested. Epidemiologic studies of selenium are lacking, however, with the exception of a recent randomized trial based on an organic selenium form. We determined concentrations of selenium species in cerebrospinal fluid sampled at diagnosis in 56 participants with mild cognitive impairment of nonvascular origin. We then investigated the relation of these concentrations to subsequent conversion from mild cognitive impairment to Alzheimer's dementia. Twenty-one out of the 56 subjects developed Alzheimer's dementia during a median follow-up of 42 months; four subjects developed frontotemporal dementia and two patients Lewy body dementia. In a Cox proportional hazards model adjusting for age, sex, duration of sample storage, and education, an inorganic selenium form, selenate, showed a strong association with Alzheimer's dementia risk, with an adjusted hazard ratio of 3.1 (95% confidence interval 1.0-9.5) in subjects having a cerebrospinal fluid content above the median level, compared with those with lower concentration. The hazard ratio of Alzheimer's dementia showed little departure from unity for all other inorganic and organic selenium species. These associations were similar in analyses that measured exposure on a continuous scale, and also after excluding individuals who converted to Alzheimer's dementia at the beginning of the follow-up. These results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer's dementia.

  16. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.

    PubMed

    Saiki, Michael K; Martin, Barbara A; May, Thomas W

    2012-09-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  17. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2012-01-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  18. Selenium accumulation and metabolism in algae.

    PubMed

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pyridine-2,6-Bis(Thiocarboxylic Acid) Produced by Pseudomonas stutzeri KC Reduces and Precipitates Selenium and Tellurium Oxyanions

    PubMed Central

    Zawadzka, Anna M.; Crawford, Ronald L.; Paszczynski, Andrzej J.

    2006-01-01

    The siderophore of Pseudomonas stutzeri KC, pyridine-2,6-bis(thiocarboxylic acid) (pdtc), is shown to detoxify selenium and tellurium oxyanions in bacterial cultures. A mechanism for pdtc's detoxification of tellurite and selenite is proposed. The mechanism is based upon determination using mass spectrometry and energy-dispersive X-ray spectrometry of the chemical structures of compounds formed during initial reactions of tellurite and selenite with pdtc. Selenite and tellurite are reduced by pdtc or its hydrolysis product H2S, forming zero-valent pdtc selenides and pdtc tellurides that precipitate from solution. These insoluble compounds then hydrolyze, releasing nanometer-sized particles of elemental selenium or tellurium. Electron microscopy studies showed both extracellular precipitation and internal deposition of these metalloids by bacterial cells. The precipitates formed with synthetic pdtc were similar to those formed in pdtc-producing cultures of P. stutzeri KC. Culture filtrates of P. stutzeri KC containing pdtc were also active in removing selenite and precipitating elemental selenium and tellurium. The pdtc-producing wild-type strain KC conferred higher tolerance against selenite and tellurite toxicity than a pdtc-negative mutant strain, CTN1. These observations support the hypothesis that pdtc not only functions as a siderophore but also is involved in an initial line of defense against toxicity from various metals and metalloids. PMID:16672449

  20. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    PubMed

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. The effect of sulfate on selenate bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata).

    PubMed

    Lo, Bonnie P; Elphick, James R; Bailey, Howard C; Baker, Josh A; Kennedy, Christopher J

    2015-12-01

    Predicting selenium bioaccumulation is complicated because site-specific conditions, including the ionic composition of water, affect the bioconcentration of inorganic selenium into the food web. Selenium tissue concentrations were measured in Lemna minor and Pseudokirchneriella subcapitata following exposure to selenate and sulfate. Selenium accumulation differed between species, and sulfate reduced selenium uptake in both species, indicating that ionic constituents, in particular sulfate, are important in modifying selenium uptake by primary producers. © 2015 SETAC.

  2. Polonium-210 and selenium in tissues and tissue extracts of the mussel Mytilus galloprovincialis (Gulf of Trieste).

    PubMed

    Kristan, Urška; Planinšek, Petra; Benedik, Ljudmila; Falnoga, Ingrid; Stibilj, Vekoslava

    2015-01-01

    Marine organisms such as mussels and fish take up polonium (Po) and selenium (Se), and distribute them into different cellular components and compartments. Due to its high radiotoxicity and possible biomagnification across the marine food chain Po-210 is potentially hazardous, while selenium is an essential trace element for humans and animals. The aim of this study was to investigate and compare the presence and extractability of the elements in the mussels Mytilus galloprovincialis collected in the Gulf of Trieste. The levels of Po-210 in the samples ranged from 220 to 400 Bq kg(-1) and of Se from 2.6 to 8.2 mg kg(-1), both on a dry matter basis. Using various extraction types and conditions in water, buffer or enzymatic media, the best extractability was obtained with enzymatic extraction (Protease XIV, 1h shaking at 40 °C) and the worst by water extraction (24 h shaking at 37 °C). 90% of Po-210 and 70% of Se was extractable in the first case versus less than 10% of Po-210 and less than 40% of Se in the second. Such evident differences in extractability between the investigated elements point to different metabolic pathways of the two elements. In enzymatic extracts Se speciation revealed three Se compounds (SeCys2, SeMet, one undefined), while Po-210 levels were too low to allow any conclusions about speciation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  4. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    NASA Astrophysics Data System (ADS)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    The comparative evaluation of the levels of biologically active chemical elements and their migration in the soil-plant complex of two Urov endemic locations in East Transbaikalia (Zolinsky and Uryumkansky) and background areas (Western Baikal region and the western area of the Trans-Baikal region) was conducted. The predominant soil-forming rocks in East Transbaikalia are weathering products of Proterozoic carbonated granitoids PR2. The surface rocks consist from granite, granodiorite, diorite quartz diorite, gabbro, norite, gabbro-norite and other. Soils - mountain and cryogenic meadow forests, mountain permafrost taiga podzolised, meadow alluvial, peaty meadow [2]. The paludification of narrow valleys and thermokarst phenomena are typical in Urov endemic localities. It reflects on the spotted of soil and differentiation of chemical composition of soils and plants. Most of the chemical elements in soils were determined by means of X-ray fluorescence, and trace elements in soils and plants - by atomic absorption spectrometry. The selenium content was measured by spectrofluorimetric method [3]. The research processed by methods of variation statistics. It was found that the soils of two locations of the Urov subregion of the biosphere were more enriched with iron, barium, calcium, uranium, thorium, phosphorus, and to a lesser extent strontium compared to background soils. The ratio of Ca: P was significantly higher in the soil of background areas, and Ca: Sr, on the contrary, in endemic soils. In assessing the migration of trace elements in soil-plant complex by means of the total content of trace elements and biological absorption coefficient found a marked accumulation by plants manganese, chromium, arsenic and weak plants accumulation of cobalt and nickel. Soil landscape is not much different in content of selenium, but its migration in plants was reduced in places of spread of Urov disease [1]. The concentrators of cadmium (leaves of different species of willow - Salicaceae) and selenium (needles of larch - Larix sibirica L.) were found among the plants. References 1. Ermakov V., Jovanovic L. Characteristics of selenium migration in soil-plant system of East Meshchera and Transbaikalia// J. Geochem. Explor., 2010. Vol. 107, 200-205. 2. Ermakov Vadim, Jovanovic Larisa, Berezkin Victor, Tyutikov Sergey, Danilogorskaya Anastasiya, Danilova Valentina, Krechetova Elena, Degtyarev Alexander, Khushvakhtova Sabsbakhor. Chemical assessment of soil and water of Urov biogeochemical provinces of Eastern Transbaikalia// Ecologica, 2012. Vol. 19, 69, 5-9. 3. Ermakov V.V., Tuytikov S.F. Khushvakhtova S.D., Danilova V.N. Boev V.A., Barabanschikova R.N., Chudinova E.A. Peculiarities of quantitative determination of selenium in biological materials// Bulletin of the Tyumen State University Press, 2010, 3, 206-214. Supported by the Russian Foundation for Basic Research, grant number 12-05-00141a.

  5. Aquatic Life Criterion - Selenium

    EPA Pesticide Factsheets

    Documents pertaining to the 2016 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Selenium (Freshwater). These documents include what the safe levels of Selenium are in water for the majority of species.

  6. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    1999-01-01

    The inductively coupled plasma?mass spectrometric (ICP?MS) methods have been expanded to include the determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium in filtered, acidified natural water. Method detection limits for these elements are now 10 to 200 times lower than by former U.S. Geological Survey (USGS) methods, thus providing lower variability at ambient concentrations. The bias and variability of the method was determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries at 5 to 10 times the method detection limit and 75 micrograms per liter in reagent-water, surface-water, and groundwater matrices averaged 93 percent for seven replicates, although selected elemental recoveries in a ground-water matrix with an extremely high iron sulfate concentration were negatively biased by 30 percent. Results for standard reference materials were within 1 standard deviation of the most probable value. Statistical analysis of the results from about 60 filtered, acidified natural-water samples indicated that there was no significant difference between ICP?MS and former USGS official methods of analysis.

  8. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways

    USGS Publications Warehouse

    Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.

    1992-01-01

    Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.

  9. Aquatic Life Criterion - Selenium Documents

    EPA Pesticide Factsheets

    Documents pertaining to the 2016 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Selenium (Freshwater). These documents include what the safe levels of Selenium are in water for the majority of species.

  10. Relationship between serum selenium, sociodemographic variables, other trace elements and lipid profile in an adult Spanish population.

    PubMed

    González-Estecha, Montserrat; Palazón-Bru, Irene; Bodas-Pinedo, Andrés; Trasobares, Elena; Palazón-Bru, Antonio; Fuentes, Manuel; Cuadrado-Cenzual, M Ángeles; Calvo-Manuel, Elpidio

    2017-09-01

    Several studies have shown an inverse relationship between selenium status and cardiovascular health, although epidemiologic evidence yielded by the randomized trials did not find a beneficial effect of selenium administration. The aim of this study was to analyze the association between serum selenium levels and lipid profile adjusted by age, sex and other associated factors among a general adult population in Spain. We recruited 372 hospital employee volunteers (60 men and 312 women) with a mean age of 47 (SD: 10.9), whom were given a standardized questionnaire. Serum selenium concentration was measured by electrothermal atomization atomic absorption spectrometry. Serum copper and zinc concentrations were measured using flame atomic absorption spectrometry. The mean of serum selenium was 79.5μg/L (SD: 11.7) with no sex-dependent differences. In the multivariate linear regression analysis, the associated factors with the mean levels of selenium were: age (β=0.223; CI 95%: 0.101-0.345), p<0.001; widowhood (β=-9.668; CI 95%: -17.234 to -2.102), p=0.012; calcium supplements (β=3.949; CI 95%: 0.059-7.838), p=0.047; zinc (β=0.126; CI 95%: 0.013-0.238), p=0.028 and glucose (β=0.172; CI 95%: 0.062- 0.281), p=0.002; Participants with serum selenium≥79.5μg/L were 1.98 (OR=1.98; CI 95% 1.17-3.35; p=0.011) and 2.04 times (OR=2.04; CI 95% 1.06-3.97; p=0.034) more likely to have cholesterol ≥200mg/dL and LDL-c ≥100mg/dL respectively than those with serum selenium <79.5μg/L. Higher selenium was positively associated with increased total and LDL cholesterol but not with HDL-c and triglycerides. More studies are needed in order to confirm the lower serum selenium findings in widows. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Selenium, selected inorganic elements, and organochlorine pesticides in bottom material and biota from the Colorado River delta

    USGS Publications Warehouse

    Garcia-Hernandez, J.; King, K.A.; Velasco, A.L.; Shumilin, E.; Mora, M.A.; Glenn, E.P.

    2001-01-01

    Concentrations of selenium (Se) in bottom material ranged from 0.6 to 5.0 μg g−1, and from 0.5 to 18.3 μg g−1in biota; 23% of samples exceeded the toxic threshold. Concentrations of DDE in biota exceeded the toxic threshold in 30% of the samples. Greater concentrations of selenium in biota were found at sites with strongly reducing conditions, no output, alternating periods of drying and flooding or dredging activities, and at sites that received water directly from the Colorado River. The smallest Se concentrations in biota were found at sites where an outflow and exposure or physical disturbance of the bottom material were uncommon.

  12. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    USGS Publications Warehouse

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  13. Selenium: a brief review and a case report of selenium responsive cardiomyopathy

    PubMed Central

    2013-01-01

    Background The authors review the role of selenium and highlight possible low selenium levels in soil that may result in deficient states in Saudi Arabia. Case presentation The authors report a case of selenium-responsive cardiomyopathy in a 15-month old Saudi Arabian boy. This case of selenium deficiency causing dilated cardiomyopathy is presented with failure to thrive, prolonged fever and respiratory distress. The investigations revealed selenium deficiency. Selenium supplementation along with anti-failure therapy [Furosimide, Captopril] was administered for 6 months. Following therapy the cardiac function, hair, skin and the general health of the patient improved significantly. Conclusion The patient with dilated cardiomyopathy of unknown etiology, not responding to usual medication may be deficient in selenium. Serum selenium measurements should be included in the diagnostic work-up to ensure early detection and treatment of the disease. The selenium level in the Saudi population needs be determined. Vulnerable populations have to undergo regular selenium measurements and supplementation if indicated. Dependence on processed foods suggests that the Saudi population fortify themselves with nutrient and micronutrient supplements in accordance to the RDA. PMID:23530936

  14. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  15. Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: Manganese and selenium interest in Algerian participants with dysthyroidism.

    PubMed

    Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed

    2015-10-01

    The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of real target therapy in thyroid dysfunction. The publisher would like to apologise for any inconvenience caused. [corrected].

  16. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  17. 78 FR 22442 - Infant Formula: The Addition of Minimum and Maximum Levels of Selenium to Infant Formula and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... known biological functions of selenium include defense against oxidative stress, regulation of thyroid hormone action, and regulation of the oxidation/reduction status of vitamin C and other molecules. Plant..., and nuts. The selenium content of a food depends on the selenium content of the soil where the plant...

  18. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  19. A study of selenium nanoparticles as charge storage element for flexible semi-transparent memory devices

    NASA Astrophysics Data System (ADS)

    Alotaibi, Sattam; Nama Manjunatha, Krishna; Paul, Shashi

    2017-12-01

    Flexible Semi-Transparent electronic memory would be useful in coming years for integrated flexible transparent electronic devices. However, attaining such flexibility and semi-transparency leads to the boundaries in material composition. Thus, impeding processing speed and device performance. In this work, we present the use of inorganic stable selenium nanoparticles (Se-NPs) as a storage element and hydrogenated amorphous carbon (a-C:H) as an insulating layer in two terminal non-volatile physically flexible and semi-transparent capacitive memory devices (2T-NMDs). Furthermore, a-C:H films can be deposited at very low temperature (<40° C) on a variety of substrates (including many kinds of plastic substrates) by an industrial technique called Plasma Enhanced Chemical Vapour Deposition (PECVD) which is available in many existing fabrication labs. Self-assembled Se-NPs has several unique features including deposition at room temperature by simple vacuum thermal evaporation process without the need for further optimisation. This facilitates the fabrication of memory on a flexible substrate. Moreover, the memory behaviour of the Se-NPs was found to be more distinct than those of the semiconductor and metal nanostructures due to higher work function compared to the commonly used semiconductor and metal species. The memory behaviour was observed from the hysteresis of current-voltage (I-V) measurements while the two distinguishable electrical conductivity states (;0; and "1") were studied by current-time (I-t) measurements.

  20. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    PubMed

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  2. Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...

  3. Speciation, Characterization, And Mobility Of As, Se, and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile elements, such as arsenic (As), selenium (Se) and mercury (Hg), which could lead to serious environmental health risks. The capture of these toxic elements in the scrubber with a flue gas desulphurization (FGD...

  4. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.

  5. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    PubMed

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2017-06-01

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  6. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  7. Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research.

    PubMed

    Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette

    2013-10-01

    Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China.

    PubMed

    Du, Yajun; Luo, Kunli; Ni, Runxiang; Hussain, Rahib

    2018-03-01

    The natural selenium poisoning due to toxic Se levels in food chain had been observed in humans and animals in Lower Cambrian outcrop areas in Southern Shaanxi, China. To find out the distribution pattern of selenium and other hazardous elements in the plant, soil and water of Lower Cambrian in Southern Shaanxi, China, and their possible potential health risk, a total of 30 elements were analyzed and the health risk assessment of 18 elements was calculated. Results showed that the soil, plant and natural water of Lower Cambrian all had relatively high Se levels. In Lower Cambrian, the soil was enriched with Se, As, Ba, Cu, Mo, Ni, Zn, Ga, Cd and Cr (1.68 < I geo  < 4.48, I geo ; geo-accumulation index). In same plants, the contents of Se, Cd and Zn (except Cd in corn and rice, Zn in potato and corn) of Lower Cambrian were higher than that of the other strata. Ba and Ga in natural water were higher than that of the other strata, while K and Cs were opposite. The health risk assessment results showed that the people living in outcrop areas of Lower Cambrian had both high total non-carcinogenic risk of 18 elements (HI = 16.12, acceptable range: < 1) and carcinogenic risk of As (3.98E-04, acceptable range: 10 -6 -10 -4 ). High contents of Se, As, Mo and Tl of Lower Cambrian may pose a health risk to local people, and food intake was the major pathway. For minimizing potential health risk, the local inhabitants should use the mix-imported food with local growing foods.

  9. 2014 annual summary of the lower Gunnison River Basin Selenium Management Program water-quality monitoring, Colorado

    USGS Publications Warehouse

    Henneberg, Mark F.

    2016-08-10

    Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2014. The instantaneous 85th percentiles for samples for WY 2014 ranged from 1.1 µg/L at Uncompahgre River at Colona to 125 µg/L at Loutzenhizer Arroyo at North River Road.A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 8,000 lb from WY 1986 to WY 2014, a 34.8 percent reduction during the time period, and an additional 6.2 percent reduction from a reported 28.6 percent reduction during WYs 1986–2008. The trend analysis for WY 1992 to WY 2014 indicates a decrease of 5,800 lb per year, or 27.9 percent.

  10. Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry.

    PubMed

    Liang, Jing; Wang, Qiuquan; Huang, Benli

    2005-01-01

    An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV-UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 microL dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO2 PCRD-KBH4-acid interface. The detection limits obtained for seleno-DL: -cystine (SeCys), selenite (Se(IV)), seleno-DL: -methionine (SeMet), and selenate (Se(VI)) were 2.1, 2.9, 4.3, and 3.5 ng mL(-1), respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO2 PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.

  11. Selenocysteine in Thiol/Disulfide-Like Exchange Reactions

    PubMed Central

    Marino, Stefano M.

    2013-01-01

    Abstract Significance: Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. Recent Advances: The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. Critical Issues: We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. Future Directions: It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec. Antioxid. Redox Signal. 18, 1675–1689. PMID:23121622

  12. The Effect on Selenium Concentrations of a Randomized Intervention with Fish and Mussels in a Population with Relatively Low Habitual Dietary Selenium Intake

    PubMed Central

    Outzen, Malene; Tjønneland, Anne; Larsen, Erik H.; Andersen, Klaus K.; Christensen, Jane; Overvad, Kim; Olsen, Anja

    2015-01-01

    Selenium status of the Danish population is below that assumed optimal for the suggested protective effects against chronic diseases, including certain cancers. Fish and shellfish are important dietary sources of selenium in Denmark. We investigated the effect of increased fish and mussel intake on selenium blood concentrations in a population with relatively low habitual dietary selenium intake. We randomly assigned 102 healthy men and women (all non-smokers) aged 48–76 years to an intervention group (n = 51) or a control group (n = 51). Intervention participants received 1000 g fish and mussels/week for 26 weeks (~50 μg selenium/day). Controls received no intervention. Non-fasting blood samples were taken and whole blood selenium was determined using inductively coupled plasma-mass spectrometry (ICP-MS), and plasma selenoprotein P (SelP) was determined by high performance liquid chromatography coupled to ICP-MS. All available observations were included in linear multiple regression analysis to evaluate the effect of the intervention. The difference in mean change for intervention compared with control persons was 14.9 ng/mL (95% CI: 10.2, 19.7) for whole blood selenium, and 7.0 ng/mL (95% CI: 3.1, 10.9) for plasma SelP (Weeks 0–26). Selenium concentrations were significantly increased after 26 weeks of intervention, albeit to a lower degree than expected. PMID:25599275

  13. Se(VI) Reduction and the Precipitation of Se(0) Precipitation by the Facultative Bacterium Enterobacter Cloacae SLD1a-1 is Regulated by FNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee,N.; Ma, J.; Dalia, A.

    2007-01-01

    The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07more » x 10{sup -2} h{sup -1} and k = 3.36 x 10{sup -2} h{sup -1}, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.« less

  14. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.

    PubMed

    Favorito, Jessica E; Luxton, Todd P; Eick, Matthew J; Grossl, Paul R

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO 4 -extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Spatial distribution of birth defects among children aged 0 to 5 years and its relationship with soil chemical elements in Chongqing].

    PubMed

    Dong, Yan; Zhong, Zhao-hui; Li, Hong; Li, Jie; Wang, Ying-xiong; Peng, Bin; Zhang, Mao-zhong; Huang, Qiao; Yan, Ju; Xu, Fei-long

    2013-10-01

    To explore the correlation between the incidence of birth defects and the contents of soil elements so as to provide a scientific basis for screening the related pathogenic factors that inducing birth defects for the development of related preventive and control strategies. MapInfo 7.0 software was used to draw the maps on spatial distribution regarding the incidence rates of birth defects and the contents of 11 chemical elements in soil in the 33 studied areas. Variables on the two maps were superposed for analyzing the spatial correlation. SAS 8.0 software was used to analyze single factor, multi-factors and principal components as well as to comprehensively evaluate the degrees of relevance. Different incidence rates of birth defects showed in the maps of spatial distribution presented certain degrees of negative correlation with anomalies of soil chemical elements, including copper, chrome, iodine, selenium, zinc while positively correlated with the levels of lead. Results from the principal component regression equation indicating that the contents of copper(0.002), arsenic(-0.07), cadmium(0.05), chrome (-0.001), zinc (0.001), iodine(-0.03), lead (0.08), fluorine(-0.002)might serve as important factors that related to the prevalence of birth defects. Through the study on spatial distribution, we noticed that the incidence rates of birth defects were related to the contents of copper, chrome, iodine, selenium, zinc, lead in soil while the contents of chrome, iodine and lead might lead to the occurrence of birth defects.

  16. Trace Element Levels in Congenital Hypogonadotrophic Hypogonadism.

    PubMed

    Aydogdu, A; Haymana, C; Soykut, B; Erdem, O; Basaran, Y; Baskoy, K; Dinc, M; Taslipinar, A; Sonmez, A; Bolu, E; Azal, O

    2016-05-01

    Cardiometabolic diseases are prevalent in hypogonadism. The pathophysiologic mechanism of increased cardiometabolic risk in hypogonadal patients is not clear. Recently, trace elements have been linked to the development of chronic disease especially cardiovascular disease. We investigated the trace element levels in an unconfounded population of congenital hypogonadotrophic hypogonadism (CHH) and also searched for the relationship with metabolic risk factors. A total of 89 patients with CHH (mean age 21.8 ± 2.0 years) and 80 healthy control subjects (mean age 21.3 ± 1.1 years) were enrolled. The demographic parameters, homeostatic model assessment of insulin resistance (HOMA-IR) levels and plasma zinc, copper, and selenium levels, were measured in patients and healthy controls. The patients had higher waist circumferences (p = 0.014), triglyceride (p = 0.04), insulin (p = 0.004), HOMA-IR levels (p = 0.001), and lower selenium (p = 0.049), zinc (p = 0.004), and copper (p = 0.012) levels when compared to the healthy controls. There was a significant relationship between zinc levels and HOMA-IR levels (p = 0.015). In the regression analysis, zinc levels were independently associated with the calculated HOMA-IR levels (p = 0.015). The results of the present study show that plasma selenium, zinc, and copper levels are decreased in patients with CHH. Also, plasma zinc levels are independently associated with insulin resistance in patients with hypogonadism. Long-term follow-up studies are warranted to investigate the effect of trace elements on the increased cardiometabolic risk in hypogonadism.

  17. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    USGS Publications Warehouse

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  18. The Association between Selenium and Other Micronutrients and Thyroid Cancer Incidence in the NIH-AARP Diet and Health Study

    PubMed Central

    O’Grady, Thomas J.; Kitahara, Cari M.; DiRienzo, A. Gregory; Gates, Margaret A.

    2014-01-01

    Background Selenium is an essential trace element that is important for thyroid hormone metabolism and has antioxidant properties which protect the thyroid gland from oxidative stress. The association of selenium, as well as intake of other micronutrients, with thyroid cancer is unclear. Methods We evaluated associations of dietary selenium, beta-carotene, calcium, vitamin D, vitamin C, vitamin E, folate, magnesium, and zinc intake with thyroid cancer risk in the National Institutes of Health – American Association of Retired Persons Diet and Health Study, a large prospective cohort of 566,398 men and women aged 50–71 years in 1995–1996. Multivariable-adjusted Cox proportional hazards regression was used to examine associations between dietary intake of micronutrients, assessed using a food frequency questionnaire, and thyroid cancer cases, ascertained by linkage to state cancer registries and the National Death Index. Results With the exception of vitamin C, which was associated with an increased risk of thyroid cancer (HRQ5 vs Q1, 1.34; 95% CI, 1.02–1.76; Ptrend, <0.01), we observed no evidence of an association between quintile of selenium (HRQ5 vs Q1, 1.23; 95% CI, 0.92–1.65; Ptrend, 0.26) or other micronutrient intake and thyroid cancer. Conclusion Our study does not suggest strong evidence for an association between dietary intake of selenium or other micronutrients and thyroid cancer risk. More studies are needed to clarify the role of selenium and other micronutrients in thyroid carcinogenesis. PMID:25329812

  19. Translation regulation of mammalian selenoproteins.

    PubMed

    Vindry, Caroline; Ohlmann, Théophile; Chavatte, Laurent

    2018-05-09

    Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. Copyright © 2018. Published by Elsevier B.V.

  20. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  1. Potentially-toxic and essential elements profile of AH1N1 patients in Mexico City

    PubMed Central

    Moya, Mireya; Bautista, Edgar G.; Velázquez-González, Antonio; Vázquez-Gutiérrez, Felipe; Tzintzun, Guadalupe; García-Arreola, María Elena; Castillejos, Manuel; Hernández, Andrés

    2013-01-01

    During spring of 2009, a new influenza virus AH1N1 spread in the world causing acute respiratory illness and death, resulting in the first influenza pandemic since 1968. Blood levels of potentially-toxic and essential elements of 40 pneumonia and confirmed AH1N1 were evaluated against two different groups of controls, both not infected with the pandemic strain. Significant concentrations of potentially-toxic elements (lead, mercury, cadmium, chromium, arsenic) along with deficiency of selenium or increased Zn/Cu ratios characterized AH1N1 cases under study when evaluated versus controlled cases. Deficiency of selenium is progressively observed from controls I (influenza like illness) through controls II (pneumonia) and finally pneumonia -AH1N1 infected patients. Cases with blood Se levels greater than the recommended for an optimal cut-off to activate glutathione peroxidase (12.5 μg/dL) recovered from illness and survived. Evaluation of this essential element in critical pneumonia patients at the National Institutes is under evaluation as a clinical trial. PMID:23422930

  2. Reconnaissance for determining effects of land use and surficial geology on concentrations of selected elements on streambed materials from the coal-mining region, southwestern Indiana, October 1979 to March 1980

    USGS Publications Warehouse

    Wilber, W.G.; Boje, Rita R.

    1982-01-01

    Streambed materials were collected in October 1979 from 69 watersheds in Southwest Indiana having predominantly forested, agricultural, reclaimed, and unreclaimed mined land use to determine whether concentrations of sorbed and acid-soluble metals and trace elements were affected by land use and surficial geology. Analysis of variance indicated that 10% or more of the total variation in aluminum, arsenic, cobalt, iron, nickel, selenium, and zinc concentrations on streambed materials was accounted for by differences in land use. Concentrations of aluminum, cobalt, iron, nickel, selenium, and zinc on streambed materials smaller than 0.062-millimeter from mined watersheds were significantly greater than the concentrations of these elements on streambed materials from agricultural and forested watersheds. The greater concentrations of these elements on streambed materials are due to (1) their concentrations in mine drainage and their subsequent absorption and (or) copecipitation with the oxides and hydroxides of aluminum and iron and (2) their concentrations in coal and pyritic material in streambed materials. (USGS)

  3. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2007-01-01

    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  4. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT)

    PubMed Central

    Nicastro, Holly L.; Dunn, Barbara K.

    2013-01-01

    The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention. PMID:23552052

  5. Overwinter survival of mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Fitzgerald, M.A.

    1993-01-01

    Adult male mallards (Anas platyrhynchos) were fed diets supplemented with 0, 10, 20, 40, or 80 g/g selenium in the form of selenomethionine. Mortality in each of these treatments was 0, 10, 25, 95, and 100%, respectively, during a 16-week exposure that started in November. After one week of treatment, body weights were significantly depressed by the 20, 40, and 80-ug/g selenium treatments, but not by 10 :g/g selenium. Four weeks after being returned to an untreated diet, the body weight of birds fed 20 ug/g selenium had increased to the point of being statistically inseparable from the weight of controls. Signs of selenium poisoning in the dead included severe emaciation, mottling of the liver, empty gizzard, and the presence of a yellowish fluid around some organs. Concentrations of selenium in blood were related to dietary treatments, but mortality was not clearly related to a threshold concentration of selenium in blood.

  6. Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China.

    PubMed

    Li, Yu-Feng; Dong, Zeqin; Chen, Chunying; Li, Bai; Gao, Yuxi; Qu, Liya; Wang, Tianchen; Fu, Xin; Zhao, Yuliang; Chai, Zhifang

    2012-10-16

    Due to a long history of extensive mercury mining and smelting activities, local residents in Wanshan, China, are suffering from elevated mercury exposure. The objective of the present study was to study the effects of oral supplementation with selenium-enriched yeast in these long-term mercury-exposed populations. One hundred and three volunteers from Wanshan area were recruited and 53 of them were supplemented with 100 μg of organic selenium daily as selenium-enriched yeast while 50 of them were supplemented with the nonselenium-enriched yeast for 3 months. The effects of selenium supplementation on urinary mercury, selenium, and oxidative stress-related biomarkers including malondialdehyde and 8-hydroxy-2-deoxyguanosine were assessed. This 3-month selenium supplementation trial indicated that organic selenium supplementation could increase mercury excretion and decrease urinary malondialdehyde and 8-hydroxy-2-deoxyguanosine levels in local residents.

  7. [The selenium haemostasis during experimental anaphylaxis reaction in rats treated with reduced glutathione and selenium enriched spirulina].

    PubMed

    Golubkina, N A; Mazo, V K; Gmoshinskiĭ, I V; Zorin, S N; Tambiev, A Kh; Kirikova, N N

    2000-01-01

    The main events caused by anaphilaxis in selenium haemostasis in rats include significant increase of selenium excretion with urine (6.36 +/- 1.18 nM Se/18 h., n = 10, compared with 1.72 +/- 0.38 nM Se/18 h., n = 10) and decrease of selenium plasma/selenium erythrocytes ratio from 0.939 to 0.791. Reduced glutathione (G-SH) administration led to 1.5-fold decrease of plasma selenium level and 1.3-fold increase of selenium concentration in intestinal walls of sensitized rats (r = -0.720, P < 0.001). Chromatographic separation of plasma proteins showed that intragastric intubation of G-SH to sensibilized rats significantly decreased the protein P content and did not influence the concentration of Se-GSHPx, thus indicating the local selenium acceptor role of G-SH. G-SH administration did not influence the intestinal permeability in sensitised rats while use of complex additive: G-SH and selenium enriched spirulina--normalized the latter parameter and the ratio of protein P/Se-GSHPx in plasma.

  8. The Association between Selenium and Lipid Levels: a Longitudinal Study in Rural Elderly Chinese

    PubMed Central

    Chen, Chen; Jin, Yinlong; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Liang, Chaoke; Ma, Feng; Su, Liqin; Liu, Jingyi; Bian, Jianchao; Li, Ping; Gao, Sujuan

    2014-01-01

    A protective effect of selenium on lipid levels has been reported in populations with relatively low selenium status. However, recent studies found that high selenium exposure may lead to adverse cardiometabolic effects, particularly in selenium-replete populations. We examined the associations of selenium status with changes in lipid levels in a 7-year follow up of an elderly Chinese cohort including participants from selenium-deplete areas. Study population consisted of 140 elderly Chinese aged 65 or older with nail selenium levels measured at baseline (2003-2005). Lipid concentrations were measured in fasting blood samples collected at baseline and the 7-year follow-up (2010-2012). Analysis of covariance (ANCOVA) models was used to determine the association between baseline selenium status and changes in lipid levels from baseline to follow-up adjusting for other covariates. Mean (±standard deviation) baseline selenium concentration was 0.41±0.2mg/kg. In prospective analysis, we found that individuals in the highest selenium quartile group showed 1.11 SD decrease on total-cholesterol (p<0.001), 0.41 SD increase on HDL-cholesterol (p<0.001) and 0.52 SD decrease on triglyceride after 7 years than those in the lowest selenium quartile group. The similar trends were seen with significant lipids changes in the 2th and 3th quartile groups. Selenium has modestly beneficial effects on blood lipid levels in a population with relatively low selenium status. Our result suggests adequate dietary selenium intake as a potential prevention strategy for lowering lipid levels in selenium deplete populations. PMID:25263027

  9. In Vitro and in Vivo Mechanism of Bone Tumor Inhibition by Selenium-Doped Bone Mineral Nanoparticles.

    PubMed

    Wang, Yifan; Wang, Jianglin; Hao, Hang; Cai, Mingle; Wang, Shiyao; Ma, Jun; Li, Yan; Mao, Chuanbin; Zhang, Shengmin

    2016-11-22

    Biocompatible tissue-borne crystalline nanoparticles releasing anticancer therapeutic inorganic elements are intriguing therapeutics holding the promise for both tissue repair and cancer therapy. However, how the therapeutic inorganic elements released from the lattice of such nanoparticles induce tumor inhibition remains unclear. Here we use selenium-doped hydroxyapatite nanoparticles (Se-HANs), which could potentially fill the bone defect generated from bone tumor removal while killing residual tumor cells, as an example to study the mechanism by which selenium released from the lattice of Se-HANs induces apoptosis of bone cancer cells in vitro and inhibits the growth of bone tumors in vivo. We found that Se-HANs induced apoptosis of tumor cells by an inherent caspase-dependent apoptosis pathway synergistically orchestrated with the generation of reactive oxygen species. Such mechanism was further validated by in vivo animal evaluation in which Se-HANs tremendously induced tumor apoptosis to inhibit tumor growth while reducing systemic toxicity. Our work proposes a feasible paradigm toward the design of tissue-repairing inorganic nanoparticles that bear therapeutic ions in the lattice and can release them in vivo for inhibiting tumor formation.

  10. Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters.

    PubMed

    LeBlanc, Kelly L; Wallschläger, Dirk

    2016-06-21

    Laboratory algal cultures exposed to selenate were shown to produce and release selenomethionine, selenomethionine oxide, and several other organic selenium metabolites. Released discrete organic selenium species accounted for 1.6-13.1% of the selenium remaining in the media after culture death, with 1.3-6.1% of the added selenate recovered as organic metabolites. Analysis of water from an industrially impacted river collected immediately after the death of massive annual algal blooms showed that no selenomethionine or selenomethionine oxide was present. However, other discrete organic selenium species, including a cyclic oxidation product of selenomethionine, were observed, indicating the previous presence of selenomethionine. Industrial biological treatment systems designed for remediation of selenium-contaminated waters were shown to increase both the concentration of organic selenium species in the effluent, relative to influent water, and the fraction of organic selenium to up to 8.7% of the total selenium in the effluent, from less than 1.1% in the influent. Production and emission of selenomethionine, selenomethionine oxide, and other discrete organic selenium species were observed. These findings are discussed in the context of potentially increased selenium bioavailability caused by microbial activity in aquatic environments and biological treatment systems, despite overall reductions in total selenium concentration.

  11. Lead poisoning and trace elements in common eiders Somateria mollissima from Finland

    USGS Publications Warehouse

    Hollmén, Tuula E.; Franson, J.C.; Poppenga, R.H.; Hario, Martti; Kilpi, Mikael

    1998-01-01

    We collected carcasses of 52 common eider Somateria mollissima adults and ducklings and blood samples from 11 nesting eider hens in the Gulf of Finland near Helsinki in 1994, 1995 and 1996. Samples of liver tissue were analysed for arsenic, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, selenium and zinc. Blood was analysed for lead, mercury and selenium. Most of the 21 adults examined at necropsy were emaciated with empty gizzards, and no ingested shotgun pellets or other metal were found in any of the birds. Three adult females had a combination of lesions and tissue lead residues characteristic of lead poisoning. Two of these birds had acid-fast intranuclear inclusion bodies in renal epithelial cells and high concentrations of lead (73.4 and 73.3 ppm; all liver residues reported on dry weight basis) in their livers. The third was emaciated with a liver lead concentration of 47.9 ppm. An adult male had a liver lead concentration of 81.7 ppm, which is consistent with severe clinical poisoning. Two other adults, one male and one female, had liver lead concentrations of 14.2 and 8.03 ppm, respectively. Lead concentrations in the blood of hens ranged from 0.11 to 0.63 ppm wet weight. Selenium residues of A?60 ppm were found in the livers of five adult males. Selenium concentrations in the blood of hens ranged from 1.18 to 3.39 ppm wet weight. Arsenic concentrations of 27.5-38.5 ppm were detected in the livers of four adult females. Detectable concentrations of selenium, mercury and molybdenum were found more frequently in the livers of adult males arriving on the breeding grounds than in incubating females, while the reverse was true for arsenic, lead and chromium. Mean concentrations of selenium, copper and molybdenum were higher in the livers of arriving males than in the livers of incubating hens, but hens had greater concentrations of iron and magnesium. Concentrations of trace elements were lower in the livers of ducklings than in the livers of adults.

  12. Trace-elements, methylmercury and metallothionein levels in Magellanic penguin (Spheniscus magellanicus) found stranded on the Southern Brazilian coast.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tércia G; Fillmann, Gilberto

    2015-07-15

    Magellanic penguins have been reported as good biomonitors for several types of pollutants, including trace-elements. In this context, selenium (Se), total mercury, methylmercury, inorganic mercury (Hg(inorg)), cadmium (Cd) and lead (Pb), as well as metallothionein (MT) levels, were evaluated in the feathers, liver and kidney of juvenile Magellanic penguins found stranded along the coast of Southern Brazil. The highest concentrations of all trace-elements and methylmercury were found in internal organs. Concentrations of Cd and Se in feathers were extremely low in comparison with their concentrations in soft tissues. The results showed that both Se and MT are involved in the detoxification of trace-elements (Cd, Pb and Hg(inorg)) since statistically significant relationships were found in liver. Conversely, hepatic Se was shown to be the only detoxifying agent for methylmercury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Selenium supplementation and lung cancer incidence: an update of the nutritional prevention of cancer trial.

    PubMed

    Reid, Mary E; Duffield-Lillico, Anna J; Garland, Linda; Turnbull, Bruce W; Clark, Larry C; Marshall, James R

    2002-11-01

    Interest in the chemopreventive effects of the trace element selenium has spanned the past three decades. Of >100 studies that have investigated the effects of selenium in carcinogen-exposed animals, two-thirds have observed a reduction in tumor incidence and/or preneoplastic endpoints (G. F. Combs and S. B. Combs, The Role of Selenium in Nutrition Chapter 10, pp. 413-462. San Diego, CA: Academic Press, 1986, and B. H. Patterson and O. A. Levander, Cancer Epidemiol. Biomark. Prev., 6: 63-69, 1997). The Nutritional Prevention of Cancer Trial, a randomized clinical trial reported by Clark et al. (L. C. Clark et al., JAMA, 276: 1957-1963, 1996), showed as a secondary end point, a statistically significant decrease in lung cancer incidence with selenium supplementation. The adjusted hazard ratio (HR) was 0.56 [95% confidence interval (CI), 0.31-1.01; P = 0.05]. These results were based on active follow-up of 1312 participants. This reanalysis used an extended Nutritional Prevention of Cancer Trial participant follow-up through the end of the blinded clinical trial on February 1, 1996. The additional 3 years added 8 cases to the selenium-treated group and 4 cases to the placebo group, and increased follow-up to 7.9 years. The relative risk of 0.70 (95% CI, 0.40-1.21; P = 0.18) is not statistically significant. Whereas the overall adjusted HR is not significant (HR = 0.74; 95% CI, 0.44-1.24; P = 0.26), and the HR for current and former smokers was not significant, the trend is toward a reduction in risk of incident lung cancer with selenium supplementation. In a subgroup analysis there was a nominally significant HR among subjects with baseline plasma selenium in the lowest tertile (HR = 0.42; 95% CI, 0.18-0.96; P = 0.04). The analysis for the middle and highest tertiles of baseline showed HRs of 0.91 and 1.25. The current reanalysis indicates that selenium supplementation did not significantly decrease lung cancer incidence in the full population, but a significant decrease among individuals with low baseline selenium concentrations was observed.

  14. Plasma Selenium Concentrations Are Sufficient and Associated with Protease Inhibitor Use in Treated HIV-Infected Adults123

    PubMed Central

    Hileman, Corrilynn O; Dirajlal-Fargo, Sahera; Lam, Suet Kam; Kumar, Jessica; Lacher, Craig; Combs, Gerald F; McComsey, Grace A

    2015-01-01

    Background: Selenium is an essential constituent of selenoproteins, which play a substantial role in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation, including cardiovascular disease (CVD). Although HIV infection has been associated with low selenium, the role of selenium status in HIV-related CVD is unclear. Objectives: We sought to assess associations between plasma selenium and markers of inflammation, immune activation, and subclinical vascular disease in HIV-infected adults on contemporary antiretroviral therapy (ART) and to determine if statin therapy modifies selenium status. Methods: In the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN trial, HIV-infected adults on stable ART were randomly assigned 1:1 to rosuvastatin or placebo. Plasma selenium concentrations were determined at entry, week 24, and week 48. Spearman correlation and linear regression analyses were used to assess relations between baseline selenium, HIV-related factors and markers of inflammation, immune activation, and subclinical vascular disease. Changes in selenium over 24 and 48 wk were compared between groups. Results: One hundred forty-seven HIV-infected adults were included. All participants were on ART. Median current CD4+ count was 613, and 76% had HIV-1 RNA ≤48 copies/mL (range: <20–600). Median plasma selenium concentration was 122 μg/L (range: 62–200). At baseline, higher selenium was associated with protease inhibitor (PI) use, lower body mass index, and a higher proportion of activated CD8+ T cells (CD8+CD38+human leukocyte antigen-DR+), but not markers of inflammation or subclinical vascular disease. Over 48 wk, selenium concentrations increased in the statin group (P < 0.01 within group), but the change did not differ between groups (+13.1 vs. +5.3 μg/L; P = 0.14 between groups). Conclusions: Plasma selenium concentrations were within the normal range for the background population and were not associated with subclinical vascular disease in HIV-infected adults on contemporary ART. The association between current PI use and higher selenium may have implications for ART allocation, especially in resource-limited countries. Also, it appears that statin therapy may increase selenium concentrations; however, larger studies are necessary to confirm this finding. This trial was registered at clinicaltrials.gov as NCT01218802. PMID:26269240

  15. Biomagnetic Recovery and Bioaccumulation of Selenium Granules in Magnetotactic Bacteria.

    PubMed

    Tanaka, Masayoshi; Knowles, William; Brown, Rosemary; Hondow, Nicole; Arakaki, Atsushi; Baldwin, Stephen; Staniland, Sarah; Matsunaga, Tadashi

    2016-07-01

    Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd(2+) adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Selenium in bone health: roles in antioxidant protection and cell proliferation.

    PubMed

    Zeng, Huawei; Cao, Jay J; Combs, Gerald F

    2013-01-10

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.

  17. Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation

    PubMed Central

    Zeng, Huawei; Cao, Jay J.; Combs, Gerald F.

    2013-01-01

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health. PMID:23306191

  18. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    PubMed

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  19. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides). [Radium 226; Uranium; Molybdenum; Selenium; Vanadium; Astatine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations inmore » plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes.« less

  20. Effect of Intestinal Tapeworm Clestobothrium crassiceps on Concentrations of Toxic Elements and Selenium in European Hake Merluccius merluccius from the Gulf of Lion (Northwestern Mediterranean Sea).

    PubMed

    Torres, Jordi; Eira, Catarina; Miquel, Jordi; Ferrer-Maza, Dolors; Delgado, Eulàlia; Casadevall, Margarida

    2015-10-28

    The capacity for heavy metal bioaccumulation by some fish parasites has been demonstrated, and their contribution to decreasing metal concentrations in tissues of parasitized fish has been hypothesized. The present study evaluated the effect of the cestode Clestobothrium crassiceps on the accumulation of trace elements in 30 European hake, Merluccius merluccius, in Spain (half of them infested by C. crassiceps). Tissue samples from all M. merluccius and specimens of C. crassiceps from the infected hakes were collected and stored until element analysis by inductively coupled plasma mass spectrometry (ICP-MS). Arsenic, mercury, and selenium were generally present in lower levels in the cestode than in all hake tissues. The mean value of the muscular Se:Hg molar ratio in the infested subsample was higher than that in hakes without cestodes. Values indicate that the edible part of infested hakes presents a lower amount of Cd and Pb in relation to noninfested hakes.

  1. Homeostasis of metals in the progression of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  2. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  3. Forecasting Selenium Discharges to the San Francisco Bay-Delta Estuary: Ecological Effects of A Proposed San Luis Drain Extension

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2006-01-01

    Selenium discharges to the San Francisco Bay-Delta Estuary (Bay-Delta) could change significantly if federal and state agencies (1) approve an extension of the San Luis Drain to convey agricultural drainage from the western San Joaquin Valley to the North Bay (Suisun Bay, Carquinez Strait, and San Pablo Bay); (2) allow changes in flow patterns of the lower San Joaquin River and Bay-Delta while using an existing portion of the San Luis Drain to convey agricultural drainage to a tributary of the San Joaquin River; or (3) revise selenium criteria for the protection of aquatic life or issue criteria for the protection of wildlife. Understanding the biotransfer of selenium is essential to evaluating effects of selenium on Bay-Delta ecosystems. Confusion about selenium threats to fish and wildlife stem from (1) monitoring programs that do not address specific protocols necessary for an element that bioaccumulates; and (2) failure to consider the full complexity of the processes that result in selenium toxicity. Past studies show that predators are more at risk from selenium contamination than their prey, making it difficult to use traditional methods to predict risk from environmental concentrations alone. This report presents an approach to conceptualize and model the fate and effects of selenium under various load scenarios from the San Joaquin Valley. For each potential load, progressive forecasts show resulting (1) water-column concentration; (2) speciation; (3) transformation to particulate form; (4) particulate concentration; (5) bioaccumulation by invertebrates; (6) trophic transfer to predators; and (7) effects on those predators. Enough is known to establish a first-order understanding of relevant conditions, biological response, and ecological risks should selenium be discharged directly into the North Bay through a conveyance such as a proposed extension of the San Luis Drain. The approach presented here, the Bay-Delta selenium model, determines the mass, fate, and effects of selenium released to the Bay-Delta through use of (1) historical land-use, drainage, alluvial-fill, and runoff databases; (2) existing knowledge concerning biogeochemical reactions and physiological parameters of selenium (e.g., speciation, partitioning between dissolved and particulate forms, and bivalve assimilation efficiency); and (3) site-specific data mainly from 1986 to 1996 for clams and bottom-feeding fish and birds. Selenium load scenarios consider effluents from North Bay oil refineries and discharges of agricultural drainage from the San Joaquin Valley to enable calculation of (a) a composite freshwater endmember selenium concentration at the head of the estuary; and (b) a selenium concentration at a selected seawater location (Carquinez Strait) as a foundation for modeling. Analysis of selenium effects also takes into account the mode of conveyance for agricultural drainage (i.e., the San Luis Drain or San Joaquin River); and flows of the Sacramento River and San Joaquin River on a seasonal or monthly basis. Load scenarios for San Joaquin Valley mirror predictions made since 1955 of a worsening salt (and by inference, selenium) build-up exacerbated by an arid climate and massive irrigation. The reservoir of selenium in the San Joaquin Valley is sufficient to provide loading at an annual rate of approximately 42,500 pounds of selenium to a Bay-Delta disposal point for 63 to 304 years at the lower range of projections presented here, even if influx of selenium from the California Coast Ranges could be curtailed. Disposal of wastewaters on an annual basis outside of the San Joaquin Valley may slow the degradation of valley resources, but drainage alone cannot alleviate the salt and selenium build-up in the San Joaquin Valley, at least within a century. Load scenarios also show the different proportions of selenium loading to the Bay-Delta. Oil refinery loads from 1986 to 1992 ranged from 8.5 to 20 pounds of selenium per day;

  4. Health effects of arsenic, fluorine, and selenium from indoor burning of Chinese coal.

    PubMed

    Guijian, Liu; Liugen, Zheng; Duzgoren-Aydin, Nurdan S; Lianfen, Gao; Junhua, Liu; Zicheng, Peng

    2007-01-01

    China's economy has developed rapidly in the last two decades, leading to an increase in energy consumption and consequently emissions from energy generation. Coal is a primary energy source in China because of its abundance and will continue to be used in the future. The dominance of coal in energy production is expected to result in increasing levels of exposure to environmental pollution in China. Toxic trace elements emitted during coal combustion are the main sources of indoor air pollution. They are released into the atmosphere mainly in the forms of fine ash and vapors and have the potential to adversely affect human health. Those trace elements, which volatilize during combustion, are hazardous air pollutants (HAPs) and are particularly rich in Chinese coals. Among the HAPs, arsenic (As), fluorine (F), and selenium (Se) have already been identified as pollutants that can induce severe health problems. In this review, the geochemical characteristics of As, F, and Se, including their concentration, distribution, and mode of occurrences in Chinese coal, are documented and discussed. Our investigations have confirmed the current As- and F-induced epidemics in Guizhou (Southwest China) and Se epidemic in Hubei (Northeast China). In this study, diagnostic symptoms of arseniasis, fluorosis, and selenosis are also illustrated.

  5. Cancer incidence following long-term consumption of drinking water with high inorganic selenium content.

    PubMed

    Vinceti, Marco; Vicentini, Massimo; Wise, Lauren A; Sacchettini, Claudio; Malagoli, Carlotta; Ballotari, Paola; Filippini, Tommaso; Malavolti, Marcella; Rossi, Paolo Giorgi

    2018-04-16

    Selenium, a trace element to which humans are exposed mainly through diet, has been involved in the etiology of human cancer. We investigated the long-term effects of selenium exposure on cancer incidence using data from a natural experiment in Northern Italy. During the 1970s-1980s, in a part of the Italian municipality of Reggio Emilia, residents were inadvertently exposed to unusually high levels of inorganic hexavalent selenium (selenate) through drinking water. We followed the exposed residents for 28years, generating data on incidence (when available) and mortality rates for selected cancer sites; the remaining municipal residents comprised the unexposed (reference) group. We observed no substantial difference in overall cancer incidence comparing exposed and unexposed cohorts. We detected, however, a higher incidence of cancer at some sites, and for a few of them, namely cancers of the buccal cavity and pharynx, melanoma, urinary tract and lymphoid tissue, the excess incidence was particularly evident in the first period of follow-up but decreased over time. Overall, these results suggest that consumption of water with levels of selenium in its inorganic hexavalent form close to the European standard, 10μg/L, may have unfavourable effects on cancer incidence. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Characterization of selenium species in biological extracts by enhanced ion-pair liquid chromatography with inductively coupled plasma-mass spectrometry and by referenced electrospray ionization-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kotrebai, Mihály; Bird, Susan M.; Tyson, Julian F.; Block, Eric; Uden, Peter C.

    1999-11-01

    Selenium is an essential nutrient for humans; selenium compounds catalyze intermediate metabolism reactions and inhibit the toxic effects of heavy metals such as arsenic, cadmium and mercury. Some extracts of selenium-enriched biological materials show cancer preventive effects, tentatively attributable to the biological functions of selenoamino acids. An improved ion pair chromatographic method with methodological enhancements for the separation, qualitative and quantitative determination of non-volatile selenium compounds extracted from different samples has been developed using ICP-MS as an element-selective detector. Separation power early in the chromatogram was increased to baseline separation in the standard mixture as a result of decreasing spray chamber size from 97 to 14 ml, and increasing trifluoracetic acid (TFA) concentration in the mobile phase from 0.1 to 0.6%. The former pH was restored by the addition of ammonia to the mobile phase, which also served to increase the column recovery of inorganic anions. Calibration curves for different selenoamino acids showed statistically different behavior. Biological sample extracts were characterized using HPLC-ICP-MS. Mass spectral behavior of selenoamino acids, using electrospray and ion trap technology with direct infusion and liquid chromatographic sample introduction, is also reported.

  7. Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes.

    PubMed

    Weiller, Markus; Latta, Markus; Kresse, Matthias; Lucas, Rudolf; Wendel, Albrecht

    2004-09-01

    The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.

  8. Selenium impacts on razorback sucker, Colorado River, Colorado II. Eggs.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-05-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 microg/g from Horsethief, 46 microg/g from Adobe Creek, 38 microg/g from North Pond, and 6.0 microg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  9. Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions.

    PubMed

    Mozaffarian, Dariush

    2009-06-01

    Controversy has arisen among the public and in the media regarding the health effects of fish intake in adults. Substantial evidence indicates that fish consumption reduces coronary heart disease mortality, the leading cause of death in developed and most developing nations. Conversely, concerns have grown regarding potential effects of exposure to mercury found in some fish. Seafood species are also rich in selenium, an essential trace element that may protect against both cardiovascular disease and toxic effects of mercury. Such protective effects would have direct implications for recommendations regarding optimal selenium intake and for assessing the potential impact of mercury exposure from fish intake in different populations. Because fish consumption appears to have important health benefits in adults, elucidating the relationships between fish intake, mercury and selenium exposure, and health risk is of considerable scientific and public health relevance. The evidence for health effects of fish consumption in adults is reviewed, focusing on the strength and consistency of evidence and relative magnitudes of effects of omega-3 fatty acids, mercury, and selenium. Given the preponderance of evidence, the focus is on cardiovascular effects, but other potential health effects, as well as potential effects of polychlorinated biphenyls and dioxins in fish, are also briefly reviewed. The relevant current unanswered questions and directions of further research are summarized.

  10. Selenium impacts on razorback sucker, Colorado River, Colorado: II. Eggs

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.

    2005-01-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 μg/g from Horsethief, 46 μg/g from Adobe Creek, 38 μg/g from North Pond, and 6.0 μg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  11. Selenium in pollen gathered by bees foraging on fly ash-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, D.; Morse, R.A.; Gutenmann, W.H.

    1977-10-01

    Fly ash is the material collected in the stacks of coal burning electric power-generating plants by electrostatic precipitators. About 26 million metric tons of fly ash was estimated to have been produced in 1975 (BRACKETT, 1970). Aside from a small percentage of the material which is used as a base material for roads and in concrete, the bulk of it is deposited in landfills. It was first reported by Gutenmann et al. (1976) that sweet clover, found voluntarily growing on a fly ash landfill site, contained up to 200 ppM of selenium. Fly ashes from 21 states were found tomore » contain the element. Cabbage grown on each of these fly ashes added (7 percent w/w) to soil was shown to absorb selenium in proportion to its concentration in the particular ash (GUTENMANN et al., 1976). The percentage of fly ash in soil was also shown to dictate the extent of selenium absorption by a variety of plants (FURR et al., 1976). In the work reported, pollen collected by honey bees foraging on plants growing on a fly ash landfill was analyzed for selenium and compared with that collected by bees from the same plants growing on soil.« less

  12. Daily selenium intake in a moderate selenium deficiency area of Suzhou China

    USDA-ARS?s Scientific Manuscript database

    Daily dietary selenium (Se) intake in Suzhou China was investigated to determine whether residents were susceptible to Se deficiency. Food samples were purchased from local supermarkets, including vegetables, fruits, meats and seafood. Hair samples were collected from 285 people ranging from 20 to ...

  13. Plasma selenium concentrations are sufficient and associated with protease inhibitor use in treated HIV-infected adults

    USDA-ARS?s Scientific Manuscript database

    Background: Selenium (Se) is an essential constituent of selenoproteins which play significant roles in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation including cardiovascular disease (CVD). While HIV infection has b...

  14. A high prevalence of zinc- but not iron-deficiency among women in rural Malawi: a cross-sectional study.

    PubMed

    Siyame, Edwin W P; Hurst, Rachel; Wawer, Anna A; Young, Scott D; Broadley, Martin R; Chilimba, Allan D C; Ander, Louise E; Watts, Michael J; Chilima, Benson; Gondwe, Jellita; Kang'ombe, Dalitso; Kalimbira, Alexander; Fairweather-Tait, Susan J; Bailey, Karl B; Gibson, Rosalind S

    2013-01-01

    Zinc deficiency is often associated with nutritional iron deficiency (ID), and may be exacerbated by low selenium status. To investigate risk of iron and zinc deficiency in women with contrasting selenium status. In a cross-sectional study, 1-day diet composites and blood samples were collected from self-selected Malawian women aged 18-50 years from low- (Zombwe) (n=60) and high-plant-available soil selenium (Mikalango) (n=60) districts. Diets were analyzed for trace elements and blood for biomarkers. Zinc deficiency (>90 %) was greater than ID anemia (6 %), or ID (5 %), attributed to diets low in zinc (median 5.7 mg/day) with high phytate:zinc molar ratios (20.0), but high in iron (21.0 mg/day) from soil contaminant iron. Zombwe compared to Mikalango women had lower (p<0.05) intakes of selenium (6.5 vs. 55.3 µg/day), zinc (4.8 vs. 6.4 mg/day), iron (16.6 vs. 29.6 mg/day), lower plasma selenium (0.72 vs. 1.60 µmol/L), and higher body iron (5.3 vs. 3.8 mg/kg), although plasma zinc was similar (8.60 vs. 8.87 µmol/L). Body iron and plasma zinc were positive determinants of hemoglobin. Risk of zinc deficiency was higher than ID and was shown not to be associated with selenium status. Plasma zinc was almost as important as body iron as a hemoglobin determinant.

  15. Selected vitamins and essential elements in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in mid- and northern Norway: geographical variations and effect of animal population density.

    PubMed

    Hassan, Ammar Ali; Sandanger, Torkjel M; Brustad, Magritt

    2012-07-01

    Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat.

  16. Selected Vitamins and Essential Elements in Meat from Semi-Domesticated Reindeer (Rangifer tarandus tarandus L.) in Mid- and Northern Norway: Geographical Variations and Effect of Animal Population Density

    PubMed Central

    Hassan, Ammar Ali; Sandanger, Torkjel M.; Brustad, Magritt

    2012-01-01

    Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat. PMID:22852060

  17. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances.Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium and zinc). Radionuclide activities and stable isotope (5 values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample.Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance. Logs for test-hole NOTS 7 do not include long- and short-normal resistivity, spontaneous-potential, or single-point resistivity. Logs for test-hole NOTS 7A include only caliper and natural-gamma logs.

  18. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    USGS Publications Warehouse

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among laboratories comparable. The minimum and maximum concentrations of a selected isotope in naturally occurring terrestrial materials for selected chemical elements reviewed in this report are given below: Isotope Minimum mole fraction Maximum mole fraction -------------------------------------------------------------------------------- 2H 0 .000 0255 0 .000 1838 7Li 0 .9227 0 .9278 11B 0 .7961 0 .8107 13C 0 .009 629 0 .011 466 15N 0 .003 462 0 .004 210 18O 0 .001 875 0 .002 218 26Mg 0 .1099 0 .1103 30Si 0 .030 816 0 .031 023 34S 0 .0398 0 .0473 37Cl 0 .240 77 0 .243 56 44Ca 0 .020 82 0 .020 92 53Cr 0 .095 01 0 .095 53 56Fe 0 .917 42 0 .917 60 65Cu 0 .3066 0 .3102 205Tl 0 .704 72 0 .705 06 The numerical values above have uncertainties that depend upon the uncertainties of the determinations of the absolute isotope-abundance variations of reference materials of the elements. Because reference materials used for absolute isotope-abundance measurements have not been included in relative isotope abundance investigations of zinc, selenium, molybdenum, palladium, and tellurium, ranges in isotopic composition are not listed for these elements, although such ranges may be measurable with state-of-the-art mass spectrometry. This report is available at the url: http://pubs.water.usgs.gov/wri014222.

  19. Evaluation of simultaneous reduction and transport of selenium in saturated soil columns

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Frankenberger, William T.; Jury, William A.

    1999-03-01

    Speciation plays an important role in determining the overall leachability of selenium in soil. In this study we present a mathematical model and results of miscible displacement experiments that were conducted to evaluate simultaneous reduction and transport of selenate in saturated soil columns. The experiments were carried out in organic amended (compost manure or gluten) or unamended soil, with O2-sparged or nonsparged influent solution. In all columns, reduction of selenate was fast enough to produce selenite flux in the effluent and elemental Se in the soil profile during a mean residence time of ˜30 hours. Reduction was accelerated in the presence of organic amendments and under low O2 concentrations, resulting in an increased retardation of selenium transport as a whole. The results of our experiments show that although selenate does not sorb to solid surfaces during transport, it reduces rapidly to forms that are strongly retarded. On the basis of simulation with the consecutive reaction and transport model using parameters derived from this study, selenium is expected to be retained near the soil surface, even under extreme leaching conditions.

  20. Facile Synthesis and Optical Properties of Small Selenium Nanocrystals and Nanorods

    NASA Astrophysics Data System (ADS)

    Jiang, Fengrui; Cai, Weiquan; Tan, Guolong

    2017-06-01

    Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

  1. Lack of Correlation between Metallic Elements Analyzed in Hair by ICP-MS and Autism

    ERIC Educational Resources Information Center

    De Palma, Giuseppe; Catalani, Simona; Franco, Anna; Brighenti, Maurizio; Apostoli, Pietro

    2012-01-01

    A cross-sectional case-control study was carried out to evaluate the concentrations of metallic elements in the hair of 44 children with diagnosis of autism and 61 age-balanced controls. Unadjusted comparisons showed higher concentrations of molybdenum, lithium and selenium in autistic children. Logistic regression analysis confirmed the role of…

  2. Effect of diet, location and sampling year on bioaccumulation of mercury, selenium and cadmium in pelagic feeding seabirds in Svalbard.

    PubMed

    Øverjordet, Ida Beathe; Gabrielsen, Geir Wing; Berg, Torunn; Ruus, Anders; Evenset, Anita; Borgå, Katrine; Christensen, Guttorm; Lierhagen, Syverin; Jenssen, Bjørn Munro

    2015-03-01

    Hepatic concentrations of mercury (Hg), selenium (Se) and cadmium (Cd) were determined in black-legged kittiwakes (Rissa tridactyla) and little auks (Alle alle) from two fjords in Svalbard (Kongsfjorden; 78°57'N, 12°12'E and Liefdefjorden; 79°37'N, 13°20'E). The inflow of Arctic and Atlantic water differs between the two fjords, potentially affecting element accumulation. Trophic positions (TP) were derived from stable nitrogen isotope ratios (δ(15)N), and stable carbon isotope ratios (δ(13)C) were assessed to evaluate the terrestrial influence on element accumulation. Mercury, Cd, TP and δ(13)C varied significantly between locations and years in both species. Trophic position and feeding habits explained Hg and Cd accumulation in kittiwakes, but not in little auks. Biomagnification of Hg and Cd were found in the food webs of both the Atlantic and the Arctic fjord, and no inter-fjord differences were detected. The δ(13)C were higher in the seabirds from Kongsfjorden than in Liefdefjorden, but this did not explain variations in element accumulation. Selenium concentrations were not influenced by Hg accumulation in kittiwakes, indicating baseline levels of Se in this species. In contrast, correlations between Hg and Se and lower Se:Hg ratios in little auks from Kongsfjorden than in Liefdefjorden indicate a more pronounced influence of Se-Hg complex formation in little auks feeding in Atlantic waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Is selenium supplementation in autoimmune thyroid diseases justified?

    PubMed

    Winther, Kristian H; Bonnema, Steen J; Hegedüs, Laszlo

    2017-10-01

    This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. Epidemiological data suggest an increased prevalence of autoimmune thyroid diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves' disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism, and might benefit patients with mild Graves' orbitopathy. The use of selenium supplementation as adjuvant therapy to standard thyroid medication may be widespread, but a growing body of evidence yields equivocal results. The available evidence from trials does not support routine selenium supplementation in the standard treatment of patients with autoimmune thyroiditis or Graves' disease. However, correction of moderate to severe selenium deficiency may offer benefits in preventing, as well as treating, these disorders. Molecular mechanisms have been proposed, but further studies are needed.

  4. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2008-01-01

    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  5. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  6. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  7. Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories☆

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium’s protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single “protective” ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium–mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. PMID:22405995

  8. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    PubMed

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. CANOLA CROP TAKES UP SELENIUM PROVIDES BIOFUEL AND FEED SUPPLEMENT

    USDA-ARS?s Scientific Manuscript database

    Many of the Brassica plant taxi that are candidates for phytoremediation of selenium also produce products that be used for refining into biodiesel, as well as selenium enriched animal feeds. These include canola (Brassica napus) that is planted in the Westside soils of central California (Oxalis si...

  10. [Studies of bioavailability of different food sources of selenium in experiment].

    PubMed

    Egorova, E A; Gmoshinskiĭ, I V; Zorin, S I; Mazo, V K

    2006-01-01

    The selenium bioavailability in selenium enriched Spirulina (Arthrospira platensis), phycocyanin containing (Se-PC) protein isolate, separated from this micro algae and in sodium selenite was studied and compared in rats. The daily dose of selenium per one animal was 5 microgram in all experimental groups. The average selenium levels in blood serum and liver of animals that received sodium selenite during 14 days were the highest. The average selenium level in blood serum of animals fed with selenium enriched Spirulina platensis after 14 days of receiving was the same with the control group, but the average concentration of selenium in their liver was rather high and close to this parameter of sodium selenite animal group. The animals which were fed with Se-PC showed better results. Their average selenium level in blood serum was higher than in Spirulina group, but lower than in sodium selenite group. The average concentration of selenium in the liver of these animals was the same with sodium selenite animal group. As regards to animals that were fed with selenium enriched Spirulina, Se-PC and sodium selenite for 21 days, the average selenium levels ratio in their blood serum and liver was higher than in control group, but these results were not significantly different among each other. The concentrations of selenium in seminal glands in all groups of animals including control group both after 14 and 21 days feeding were close to each other.

  11. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  12. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulationmore » of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design.« less

  13. Selenium-Enriched Foods Are More Effective at Increasing Glutathione Peroxidase (GPx) Activity Compared with Selenomethionine: A Meta-Analysis

    PubMed Central

    Bermingham, Emma N.; Hesketh, John E.; Sinclair, Bruce R.; Koolaard, John P.; Roy, Nicole C.

    2014-01-01

    Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p < 0.001). There were differences between tissues on the effects of selenium supplementation on GPx activity (p < 0.001); however, there was no evidence in the data of differences between animal species (p = 0.95). The interactions between dose and tissue, animal species and form were significant (p < 0.001). Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity. PMID:25268836

  14. Chemical Sample Processing for Combined Selenium Isotope and Selenium-Tellurium Elemental Investigation of the Earth's Igneous Reservoirs

    NASA Astrophysics Data System (ADS)

    Yierpan, Aierken; König, Stephan; Labidi, Jabrane; Kurzawa, Timon; Babechuk, Michael G.; Schoenberg, Ronny

    2018-02-01

    The redox-sensitive, chalcophile, and volatile Se stable isotope system offers new perspectives to investigate the origin and evolution of terrestrial volatiles and the roles of magmatic and recycling processes in the development of the redox contrast between Earth's reservoirs. Selenium isotope systematics become more robust in a well-constrained petrogenetic context as can be inferred from Se-Te elemental signatures of sulfides and igneous rocks. In this study, we present a high-yield chemical sample processing method that allows the determination of Se-Te concentrations and Se isotope composition from the same sample digest of silicate rocks by hydride generation isotope dilution (ID) quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and double spike (DS) multicollector (MC)-ICP-MS, respectively. Our procedure yields ˜80% Se-Te recoveries with quantitative separation of relevant interfering elements such as Ge and HG-buffering metals. Replicate analyses of selected international reference materials yield uncertainties better than 0.11‰ (2 s.d.) on δ82/76Se and 3% (r.s.d.) on Se concentration for DS MC-ICP-MS determinations for as low as ˜10 ng sample Se. The precision of Se-Te concentration measurements by ID ICP-MS is better than 3% and 5% (r.s.d.) for total amounts of ˜0.5-1 ng Se and ˜0.2-0.5 ng Te, respectively. The basaltic reference materials have variable Se-Te contents, but their δ82/76Se values are rather uniform (on average 0.23 ± 0.14‰; 2 s.d.) and different from the chondritic value. This altogether provides the methodology and potential to extend the limited data set of coupled Se isotope and Se-Te elemental systematics of samples relevant to study the terrestrial igneous inventory.

  15. Effects of processed oil shale on the element content of Atriplex cancescens

    USGS Publications Warehouse

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with the gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium-- considered to be potential toxic contaminants--were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppm, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.

  16. Characterization and data-gap analysis of surface-water quality data in the Piceance study area, western Colorado, 1959–2009

    USGS Publications Warehouse

    Thomas, Judith C.; Moore, Jennifer L.; Schaffrath, Keelin R.; Dupree, Jean A.; Williams, Cory A.; Leib, Kenneth J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Federal, State, county, and industry partners, developed a Web-accessible common data repository to provide access to historical and current (as of August 2009) water-quality information (available on the Internet at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml). Surface-water-quality data from public and private sources were compiled for the period 1931 to 2009 and loaded into the common data repository for the Piceance Basin. A subset of surface-water-quality data for 1959 to 2009 from the repository were compiled, reviewed, and checked for quality assurance for this report. This report contains data summaries, comparisons to water-quality standards, trend analyses, a generalized spatial analysis, and a data-gap analysis for select water-quality properties and constituents. Summary statistics and a comparison to standards were provided for 347 sites for 33 constituents including field properties, nutrients, major ions, trace elements, suspended sediment, Escherichia coli, and BTEX (benzene, toluene, ethylbenzene, and xylene). When sufficient data were available, trends over time were analyzed and loads were calculated for those sites where there were also continuous streamflow data. The majority of sites had information on field properties. Water temperature data was available for 316 sites where data were collected between 1959 and 2009. The only trend that was detected in temperature was an upward trend at the Gunnison River near Grand Junction, Colorado. There were 326 values out of a total of 32,006 values in the study area that exceeded the aquatic-life standard for daily maximum water temperature. For the entire study area, 196 sites had dissolved-oxygen data collected between 1970 and 2009, and median dissolved-oxygen concentrations ranged from 6.8 to11.2 milligrams per liter (mg/L). There were 185 concentrations that exceeded the dissolved oxygen aquatic-life standard out of a total of 11,248 values. The pH data were available for 276 sites, and median pH values ranged from 7.5 to 9.0. There were 241 values that exceeded the high pH standard and 13 values that were less than the low pH standard of the 16,790 values in the study area. Nutrients within the study area were not well represented in each basin and were often not being sampled currently. For the entire study area, 62 sites had nitrate data collected between 1958 and 2009, and median nitrate concentrations ranged from less than detection to 3.72 mg/L as nitrogen. The maximum contaminant level for domestic water supply for nitrate is 10 mg/L and was exceeded once in 3,736 samples. Total phosphorus was collected at 113 sites between 1974 and 2009, and median total phosphorus concentrations ranged from less than detection to 5.04 mg/L. The U.S. Environmental Protection Agency recommendation for phosphorus is less than 0.1 mg/L, and 1,469 of 4,842 samples exceeded this recommended standard. An upward trend in both nitrate and total phosphorus was detected in the White River above Coal Creek near Meeker, Colo. Standards for major ions exist only for chloride and sulfate. For the entire study area, 118 sites had both chloride and sulfate concentration data collected between 1958 and 2009. Median chloride concentrations ranged from 0.085 mg/L to 280 mg/L. Median sulfate concentrations ranged from 4.57 mg/L to 15,000 mg/L. Both chloride and sulfate domestic water-supply standards are 250 mg/L. There were 120 chloride concentrations and 1,111 sulfate concentration samples that exceeded these standards. A downward trend in dissolved solids was detected at the Colorado River near the Colorado-Utah state border and could be a result of salinity control work near Grand Junction, Colo. Trace elements were relatively well represented both temporally and spatially in the study area though the number of trace element samples per site was not typically enough to compute trends or loads except for selenium. There were 127 sites that had dissolved iron concentration data collected between 1961 and 2009, and median iron concentrations ranged from less than detection to 1,100 micrograms per liter (µg/L). The 30-day drinking-water standard for iron is 300 µg/L, and 203 samples exceeded the standard. Selenium was the best represented trace element with selenium concentration data collected at 197 sites between 1973 and 2009, and median selenium concentrations range from less than detection to 181 µg/L. The chronic standard of 4.6 µg/L for selenium concentrations was exceeded in 899 samples, and the acute aquatic-life standard of 18.4 µg/ for selenium was exceeded in 629 samples. High concentrations of selenium are of concern in the Lower Gunnison River Basin because of the combination of geologic formations and land use. There were significant downward trends in selenium at both main-stem sites on the Gunnison River at Delta, Colo., and the Gunnison River near Grand Junction, Colo. High selenium concentrations correlate with high salinity concentrations; thus, when salinity control efforts are conducted in selenium-rich areas in the Lower Gunnison River Basin, both salinity and selenium have the potential to decrease. Spatial, temporal, and analytical data gaps were identified in the study area. The spatial coverage of sampling sites could be expanded in the White River Basin by adding more tributary sites. No water-quality data exist for tributary streams in the area north of Rangely, Colo., where extensive energy development has occurred in a complex geologic setting. Douglas Creek has a drainage area of 425 square miles and has limited historic water-quality and water-quantity data. Limited data were available for field properties, major ions, nutrients, and trace elements on the main stem of the Colorado River between Glenwood Springs and Cameo, Colo. Nutrient data were minimally collected upstream from Colorado River at the Colorado-Utah state border and on the Gunnison River (major tributary in the reach). Approximately 30 percent of the samples for total phosphorus in the Lower Gunnison River Basin exceeded the recommended standard, yet there were insufficient data to do trends analysis in the Lower Gunnison River Basin except at the Gunnison near Grand Junction site. There is limited trace element data except for selenium in the Lower Gunnison River Basin. Additional sampling is necessary to understand the occurrence, concentrations, and loads of these constituents.

  17. Selenium- or vitamin E-related gene variants, interaction with supplementation, and risk of high-grade prostate cancer in SELECT

    PubMed Central

    Chan, June M.; Darke, Amy K.; Penney, Kathryn L.; Tangen, Catherine M.; Goodman, Phyllis J.; Lee, Gwo-Shu Mary; Sun, Tong; Peisch, Sam; Tinianow, Alex M.; Rae, James M.; Klein, Eric A.; Thompson, Ian M.

    2016-01-01

    Background Epidemiological studies and secondary analyses of randomized trials supported the hypothesis that selenium and vitamin E lower prostate cancer risk. However, the Selenium and Vitamin E Cancer Prevention Trial (SELECT) showed no benefit of either supplement. Genetic variants involved in selenium or vitamin E metabolism or transport may underlie the complex associations of selenium and vitamin E. Methods We undertook a case-cohort study of SELECT participants randomized to placebo, selenium or vitamin E. The subcohort included 1,434 men; our primary outcome was high-grade prostate cancer (N=278 cases, Gleason 7 or higher cancer). We used weighted Cox regression to examine the association between SNPs and high-grade prostate cancer risk. To assess effect modification, we created interaction terms between randomization arm and genotype and calculated log likelihood statistics. Results We noted statistically significant (p<0.05) interactions between selenium assignment, SNPs in CAT, SOD2, PRDX6, SOD3, and TXNRD2 and high-grade prostate cancer risk. Statistically significant SNPs that modified the association of vitamin E assignment and high-grade prostate cancer included SEC14L2, SOD1, and TTPA. In the placebo arm, several SNPs, hypothesized to interact with supplement assignment and risk of high-grade prostate cancer, were also directly associated with outcome. Conclusion Variants in selenium and vitamin E metabolism/transport genes may influence risk of overall and high-grade prostate cancer, and may modify an individual man’s response to vitamin E or selenium supplementation with regards to these risks. Impact The effect of selenium or vitamin E supplementation on high-grade prostate cancer risk may vary by genotype. PMID:27197287

  18. Relationship between Selected Serum Metallic Elements and Obesity in Children and Adolescent in the U.S.

    PubMed

    Fan, Yun; Zhang, Chunlan; Bu, Jin

    2017-02-03

    The prevalence of obesity has increased at an alarming rate worldwide. Metallic elements are involved in the pathogenesis of obesity and related diseases. To date, whether environmental exposure to metallic elements has effects on obesity in children and adolescents is still unclear. The aim of the current study was to investigate the association of blood metallic elements with obesity in U.S. children and adolescents. This cross-sectional study was performed with 5404 children and adolescents (6-19 years, 2745 males and 2659 females) who participated in the US National Health and Nutrition Examination Survey 2011-2014. Blood lead, mercury, selenium, manganese, copper, and zinc, as well as biochemical parameters including triglyceride (TG), cholesterol, low-density lipoprotein (LDL), and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed for all subjects. Multivariate logistic regression and linear regression were applied to assess associations of metallic elements and overweight, obesity status, and serum metabolites as distinct outcomes adjusted for age, gender, ethnicity, and the poverty income ratio. When stratified by age and sex, significant associations were found between the highest quartile of copper concentrations in blood with obesity status (OR = 9.27, 95% CI: 5.43, 15.82, p for trend < 0.001) and cholesterol (OR = 3.08, 95% CI: 1.43, 6.63, p for trend < 0.001). The highest concentrations of manganese in the blood was associated with obesity in those aged 6-19 years (OR = 2.29, 95% CI: 1.74, 3.02, p for trend < 0.001). Moreover, blood mercury and selenium showed positive relationships with cholesterol. Further, a negative association existed between blood zinc and obesity. The National Health and Nutrition Examination Survey data provide epidemiological evidence that blood metallic elements are positively associated with obesity in children and adolescents. However, the underlying mechanisms still need further exploration.

  19. Selenium nanoparticles inhibit Staphylococcus aureus growth

    PubMed Central

    Tran, Phong A; Webster, Thomas J

    2011-01-01

    Staphylococcus aureus is a key bacterium commonly found in numerous infections. S. aureus infections are difficult to treat due to their biofilm formation and documented antibiotic resistance. While selenium has been used for a wide range of applications including anticancer applications, the effects of selenium nanoparticles on microorganisms remain largely unknown to date. The objective of this in vitro study was thus to examine the growth of S. aureus in the presence of selenium nanoparticles. Results of this study provided the first evidence of strongly inhibited growth of S. aureus in the presence of selenium nanoparticles after 3, 4, and 5 hours at 7.8, 15.5, and 31 μg/mL. The percentage of live bacteria also decreased in the presence of selenium nanoparticles. Therefore, this study suggests that selenium nanoparticles may be used to effectively prevent and treat S. aureus infections and thus should be further studied for such applications. PMID:21845045

  20. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  1. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    PubMed Central

    Haug, Anna; Graham, Robin D.; Christophersen, Olav A.; Lyons, Graham H.

    2007-01-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations. PMID:18833333

  2. Determination of trace elements in Ethiopian, Vietnamese, and Japanese women using high-resolution IC-PMS.

    PubMed

    Tekeste, Zinaye; Amare, Bemnet; Asfaw, Fanaye; Fantahun, Bereket; van Nguyen, Nhien; Nishikawa, Takeshi; Yabutani, Tomoki; Okayasu, Takako; Ota, Fusao; Kassu, Afework

    2015-10-01

    Humans and other living organisms require small quantities of trace elements throughout life. Both insufficient and excessive intakes of trace elements can have negative consequences. However, there is little information on serum level of trace elements in different populations. This study examines serum levels of trace elements in Ethiopian, Japanese, and Vietnamese women. Random samples of healthy women who were referred for routine hospital laboratory examinations in the cities of Hanoi, Sapporo, and Gondar were invited to participate in the study. Serum levels of magnesium, zinc, copper, iron, selenium, and calcium were determined using an inductively coupled plasma mass spectrometer. Furthermore, body mass index of each study participant was determined. The mean ± SD serum concentrations of zinc (μg/dL), copper (μg/dL), iron (μg/dL), selenium (μg/dL) and calcium (mg/dL), respectively, were 76.51 ± 39.16, 152.20 ± 55.37, 385.68 ± 217.95, 9.15 ± 4.21, and 14.18 ± 3.91 in Ethiopian women; 111.49 ± 52.92, 105.86 ± 26.02, 155.09 ± 94.83, 14.11 ± 3.41, and 11.66 ± 2.51 in Vietnamese women; and 60.69 ± 9.76, 107 ± 156, 268 ± 128, 8.33 ± 3.65, and 11.18 ± 0.68 in Japanese participants. Ethiopian women had significantly higher level of serum calcium than Vietnamese and Japanese women (both P < 0.05). Although the mean calcium concentration in Vietnamese women was higher than in women from Japan, the difference was not statistically significant (P > 0.05). Furthermore, compared with Japanese women, Ethiopian women had significantly high iron and copper concentrations (P < 0.05). Serum selenium and zinc levels were higher in Vietnamese than Ethiopian women. The study revealed a remarkable difference in serum concentrations of trace elements in women from different countries, implying differences in trace elements in the food or soil. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Prospecting for hyperaccumulators of trace elements: a review.

    PubMed

    Krzciuk, Karina; Gałuszka, Agnieszka

    2015-01-01

    Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.

  4. Reproduction in mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Krynitsky, A.J.; Weller, D.M.G.

    1987-01-01

    Mallards (Anas platyrhynchos) were fed diets containing 1, 5, 10, 25 or 100 ppm selenium as sodium selenite, a diet containing 10 ppm selenium as seleno-DL-methionine or a control diet. There were no effects of 1, 5 or 10 ppm selenium as sodium selenite on either weight or survival of adults or on reproductive success, and there did not appear to be a dose-response relationship at these lower levels. The 100 ppm selenium diet killed 11 of 12 adults; one adult male fed 25 ppm selenium died. Selenium at 25 and 100 ppm caused weight loss in adults. Females fed 25 ppm selenium took longer to begin laying eggs and intervals between eggs were longer than in females in other treatment groups. Hatching success appeared to be reduced in birds fed 10 ppm selenium at selenomethionine, but the reduction was not statistically significant. The survival of ducklings and the mean number of 21-d-old ducklings produced per female were reduced in the 25 ppm selenium as sodium selenite group and the 10 ppm selenium as selenomethionine group. Egg weights were not affected by any selenium treatment, but 25 ppm selenium lowered the Ratcliffe Index. Duckling weights at hatching and at 21 d of age were reduced 28 and 36%, respectively, in birds fed 25 ppm selenium, as compared with controls. Body weights measured on day 21 were lower for ducklings fed 10 ppm selenium as selenomethionine than in some other groups. Selenium in concentrations of 10 and 25 ppm as sodium selenite caused mainly embryotoxic effects, whereas 10 ppm as selenomethionine was more teratogenic, causing hydrocephaly, bill defects, eye defects (microphthalmia and anophthalmia) and foot and toe defects, including ectrodactyly. Selenomethionine was much more readily taken up by mallards and passed into their eggs than was sodium selenite, and a greater proportion of the selenium in the eggs ended up in the white when selenomethionine was fed. Adult males accumulated more selenium than did females, probably because of the females' ability to eliminate selenium in their eggs.

  5. Inverse association between gluthathione peroxidase activity and both selenium-binding protein 1 levels and gleason score in human prostate tissue

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND. Data from human epidemiological studies, cultured mammalian cells, and animal models have supported a potentially beneficial role of selenium (Se) in prostate cancer prevention. In addition, Se-containing proteins including members of the gutathione peroxidase (GPx) family and Selenium-B...

  6. Long-term mortality patterns in a residential cohort exposed to inorganic selenium in drinking water.

    PubMed

    Vinceti, Marco; Ballotari, Paola; Steinmaus, Craig; Malagoli, Carlotta; Luberto, Ferdinando; Malavolti, Marcella; Giorgi Rossi, Paolo

    2016-10-01

    Selenium (Se) is a metalloid of considerable nutritional and toxicological importance in humans. To date, limited epidemiologic evidence exists about the health effects of exposure to this trace element in drinking water. We investigated the relationship between Se levels in water and mortality in the municipality of Reggio Emilia, Italy, where high levels of Se were previously observed in drinking water. From 1974 to 1985, 2065 residents consumed drinking water with Se levels close to the European standard of 10μg/l, in its inorganic hexavalent form (selenate). Follow-up was conducted for the years 1986-2012 in Reggio Emilia and a lesser exposed comparison group of around 100,000 municipal residents, with comparable socio-demographic characteristics. Overall mortality from all causes, cardiovascular disease and cancer showed little evidence of differences. However, excess rate ratios were seen for some site specific cancers such as neoplasms of buccal cavity and pharynx, urinary tract, lymphohematopoietic tissue, melanoma, and two neurodegenerative diseases, Parkinson's disease and amyotrophic lateral sclerosis. Excess mortality in the exposed cohort for specific outcomes was concentrated in the first period of follow-up (1986-1997), and waned starting 10 years after the high exposure ended. We also found lower mortality from breast cancer in females during the first period of follow-up. When we extended the analysis to include residents who had been consuming the high-selenium drinking water for a shorter period, mortality rate ratios were also increased, but to a lesser extent. Overall, we found that the mortality patterns related to long-term exposure to inorganic hexavalent selenium through drinking water were elevated for several site-specific cancers and neurodegenerative disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Phase III randomised chemoprevention study with selenium on the recurrence of non-invasive urothelial carcinoma. The SELEnium and BLAdder cancer Trial.

    PubMed

    Goossens, Maria E; Zeegers, Maurice P; van Poppel, Hendrik; Joniau, Steven; Ackaert, Koen; Ameye, Filip; Billiet, Ignace; Braeckman, Johan; Breugelmans, Alex; Darras, Jochen; Dilen, Kurt; Goeman, Lieven; Tombal, Bertrand; Van Bruwaene, Siska; Van Cleyenbreugel, Ben; Van der Aa, Frank; Vekemans, Kris; Buntinx, Frank

    2016-12-01

    In Belgium, bladder cancer (BC) is the fifth most common cancer in men. The per-patient lifetime cost is high. Previous epidemiological studies have consistently reported that selenium concentrations were inversely associated with the risk of BC. We therefore hypothesised that selenium may be suitable for chemoprevention of recurrence of BC. The Selenium and Bladder Cancer Trial (SELEBLAT) was an academic phase III placebo-controlled, double-blind, randomised clinical trial designed to determine the effect of selenium on recurrence of non-invasive urothelial carcinoma conducted in 14 Belgian hospitals. Patients were randomly assigned by a computer program to oral selenium yeast 200 μg once a day or placebo for three years, in addition to standard care. All study personnel and participants were blinded to treatment assignment for the duration of the study. All randomised patients were included in the intention to treat (ITT) and safety analyses. Per protocol analyses (PPAs) included all patients in the study three months after start date. Between September 18, 2009 and April 18, 2013, 151 and 141 patients were randomised in the selenium and placebo group. Patients were followed until December 31, 2015. The ITT analysis resulted in 43 (28%; 95% CI, 0.21-0.35) and 45 (32%; 95% CI, 0.24-0.40) recurrences in the selenium and placebo group. The hazard ratio (HR) was 0.85 (95% CI, 0.56-1.29; p = 0.44) while the HR for the PPA resulted in 42 and 39 (28%; 95% CI, 0.20-0.35) recurrences in the selenium and placebo group (HR = 0.96 [95% CI, 0.62-1.48]; p = 0.93). Selenium supplementation does not lower the probability of recurrence in BC patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985-September 1988

    USGS Publications Warehouse

    Hill, B.R.; Gilliom, R.J.

    1993-01-01

    The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum, chromium, copper, iron, manganese, nickel, and zinc, none of which cause significant water-quality problems in the river.

  9. Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P).

    PubMed

    Ekoue, Dede N; Zaichick, Sofia; Valyi-Nagy, Klara; Picklo, Matthew; Lacher, Craig; Hoskins, Kent; Warso, Michael A; Bonini, Marcelo G; Diamond, Alan M

    2017-01-01

    Selenium supplementation of the diets of rodents has consistently been shown to suppress mammary carcinogenesis and some, albeit not all, human epidemiological studies have indicated an inverse association between selenium and breast cancer risk. In order to better understand the role selenium plays in breast cancer, 30 samples of tumor tissue were obtained from women with breast cancer and analyzed for selenium concentration, the levels of several selenium-containing proteins and the levels of the MnSOD anti-oxidant protein. Polymorphisms within the genes for these same proteins were determined from DNA isolated from the tissue samples. There was a wide range of selenium in these tissues, ranging from 24 to 854ng/gm. The selenium levels in the tissues were correlated to the genotype of the SELENOP selenium carrier protein, but not to other proteins whose levels have been reported to be responsive to selenium availability, including GPX1, SELENOF and SBP1. There was an association between a polymorphism in the gene for MnSOD and the levels of the encoded protein. These studies were the first to examine the relationship between selenium levels, genotypes and protein levels in human tissues. Furthermore, the obtained data provide evidence for the need to obtain data about the effects of selenium in breast cancer by examining samples from that particular tissue type. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Irrigation-induced contamination of water, sediment, and biota in the western United States-synthesis of data from the National Irrigation Water Quality Program

    USGS Publications Warehouse

    Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas

    2003-01-01

    In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life. Data collected by the NIWQP studies indicated that, in surface water, filtered and unfiltered samples had nearly the same concentrations of arsenic, boron, molybdenum, and selenium for concentrations greater than about 10 micrograms per liter. Therefore, in this concentration range, filtered concentrations can be directly compared to biological-effect levels developed for unfiltered samples. In the range of 1 to 10 micrograms per liter there may be a tendency for unfiltered arsenic concentrations to be greater than filtered concentrations. For selenium, however, the data suggest differences from equality in that range result from analytical imprecision and not a general tendency for unfiltered concentrations to be greater than filtered concentrations. This relation may not be true in lentic, nutrient-rich waters because in such settings algae can bioaccumulate large amounts of selenium and other trace elements. Selenium was the trace element in surface water that most commonly exceeded chronic criteria for the protection of freshwater aquatic life; more than 40 percent of the selenium concentrations in surface-water samples exceeded the U.S. Environmental Protection Agency (USEPA) aquatic-life chronic criterion (5 micrograms per liter). In 12 of the 26 areas at least 25 percent of the surface water-samples had selenium concentrations that either equaled or exceeded the chronic criterion (5 micrograms per liter). More than 28 percent of boron concentrations and almost 17 percent of the molybdenum concentrations exceeded the aquatic life criteria established by the State of California (550 and 19 micrograms per liter, respectively). In ground water, more than 22 percent of the arsenic concentrations and more than 35 percent of the selenium concentrations exceeded the MCL (10 and 50 micrograms per liter, respectively). Few samples of uranium in surface water exceeded a criterion for the protection of aquatic life (300 micrograms per liter), but 44 percent

  11. Hazard assessment of selenium to endangered razorback suckers (Xyrauchen texanus)

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.

    2002-01-01

    A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 μg/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 μg/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers.

  12. Hazard assessment of selenium to endangered razorback suckers (Xyrauchen texanus).

    PubMed

    Hamilton, Steven J; Holley, Kathleen M; Buhl, Kevin J

    2002-05-27

    A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 microg/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 microg/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers.

  13. Analysis of metals with luster: Roman brass and silver

    NASA Astrophysics Data System (ADS)

    Fajfar, H.; Rupnik, Z.; Šmit, Ž.

    2015-11-01

    Non-destructive PIXE analysis using in-air proton beam was used for the studies of earliest brass coins issued during the 1st century BC by Greek cities in Asia Minor, Romans and Celts, and for the studies of plated low grade silver coins of the 3rd century AD. The analysis determined the levels of zinc and important trace elements, notably selenium, which confirms spread of selenium-marked copper from the east. For plating, combined tinning and silvering was identified by the mapping technique for the mid 3rd century AD, which evolved into mere plating by 270 AD.

  14. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  15. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the American Falls Reservoir area, Idaho, 1988-89

    USGS Publications Warehouse

    Low, Walton H.; Mullins, William H.

    1990-01-01

    Increased concern about the quality of irrigation drainage and its potential effects on human health, fish, and wildlife prompted the Department of the Interior to begin a program during late 1985 to identify irrigation-induced water-quality problems that might exist in the Western States. During `988, the Task Group on Irrigation Drainage selected the American Falls Reservoir area, Idaho, for study to determine whether potentially toxic concentrations of trace elements or organochlorine compounds existed in water, bottom sediment, and biota. The 91-square mile American Falls Reservoir has a total capacity of 1.7 million acre-feet and is used primarily for irrigation-water supply and power generation. Irrigated land upstream from the reservoir totals about 550,000 acres. Total water inflow to the reservoir is about 5.8 million acre-feet per year, of which about 63 percent is from surface-water runoff, 33 percent is from ground-water discharge, and about 4 percent is from ungaged tributaries, canals, ditches, sloughs, and precipitation. Ground-water discharge to the reservoir originates, in part, from irrigation of land upstream from and adjacent to the reservoir. The 1988 water year was a drought year, and water discharge was about 34 percent less than during 1939-88. Water samples were collected during the post-irrigation (October 1987) and irrigation (July 1988) seasons and were analyzed for major ions and trace elements. Bottom-sediment samples were collected during the irrigation season and were analyzed for trace elements and organochlorine compounds. Biota samples were collected during May, June, July, and August 1988 and were analyzed for trace elements and organochlorine compounds. Dissolved-solids concentrations in water ranged from 216 to 561 milligrams per liter. The similarity of dissolved-solids concentrations between the irrigation and post-irrigation seasons can be attributed to the large volume of ground-water discharge in the study area. Most trace-element concentrations in water were near analytical reporting limits; none exceeded State or Federal water-quality standards or criteria. Trace elements that were present at all sites in analytically detectable concentrations (in micrograms per liter) included arsenic (2 to 7), boron (40 to 130), uranium (0.7 to 3.5), vanadium (1 to 6) and zinc (less than 3 to 42). The ranges of arsenic, cadmium, and mercury concentrations in water analyzed during previous investigations. Selenium concentrations ranged from less than 1 (the reporting limit) to 6 micrograms per liter and did not exceed State of Federal water-quality standards or criteria. Concentrations of most trace elements in bottom sediment were similar to geometric mean concentrations in study area soils and were within the expected 95-percent range of concentrations in soils in the Western United States. Mercury concentrations in 9 of the 18 bottom-sediment samples exceeded the 95th-percentile concentration for mercury in area soils. Selenium concentration for selenium in area soils and, in 1 sample, exceeded the upper limit of the expected 95-percent range for selenium in Western United States soils. Most organochlorine compunds in bottom sediment were lower than analytical reporting limits. Only DDE (0.2 micrograms per kilogram) and DDT (0.3 micrograms per kilogram) were detected in bottom sediment from the Portneuf River. Except for mercury and selenium, concentrations of most trace elements in biota were not considered high enough to be harmful to humans or wildlife. Some mercury concentrations in fish exceeded the U.S. Fish and Wildlife Service National Contaminant Biomonitoring Program 85th-percentile concentration and were at levels that might not be safe for human consumption, especially for pregnant women. Elevated mercury concentrations in fish-eating waterbirds, such as double-crested cormorants, indicates biomagnification in the food chain. Selenium concentrations generally were low except in mallard livers (6.6 to 41.8 micrograms per gram, dry weight). This range is within the range of selenium concentrations (19 to 43 micrograms per gram, dry weight) reported in livers of ducks from Kesterson National Wildlife Refuge, California, where waterbird deformities, moralities, and reproductive impairment were observed. Selenium concentrations in mayfly nymphs were at or near dietary concentrations (5 to 8 micrograms per gram, dry weight) that had adverse reproductive effects on mallards during laboratory toxicity studies. p,p'DDE was detected in all waterbird eggs and juvenile mallared carcasses. Highest concentrations were in cormorant eggs (0.59 to 5.70 micrograms per gram, wet weight). p,p'DDE concentrations in four of five cormorant eggs exceeded the National Academy of Sciences, National Academy of Engineering criterion for protection of aquatic wildlife (1 microgram per gram, wet weight, for p,p'DDT and its metabolites). p,p'DDE was detected in all fish samples except rainbow trout. p,p'DDE was detected in one sample of Utah suckers. No concentrations of p,p'DDE or p,p'DDT in fish exceeded the criterion for protection of aquatic life. Total PCB's were detected in all cormorant eggs and all fish samples. PCB's were not detected in other waterbird eggs. PCB concentrations in cormorant eggs (0.28 to 1.8 micro per gram, wet weight) were lower than concentrations that would be expected to cause adverse effects. Two of the three carp samples contained PCB concntrations higher than the recommended level for protection of fish and wildlife (0.4 micrograms per gram, wet weight). Eggshell thinning was noted in cormorant and mallard eggs but was not considered great enough to cause reporductive problems. Observations of the general health of fish and waterbird populations during the study indicated that the area did not appear to have a serious contaminant problem that could be associated with irrigation grainage. No waterbird or fish die-offs were observed, and nesting waterbird populations were noted to be increasing. Selenium concentrations in mallard livers, however, are of concern, as are p,p'DDE residues in cormorant eggs.

  16. Geochemistry of selenium.

    PubMed

    Kabata-Pendias, A

    1998-01-01

    Selenium (Se) is one of the most peculiar chemical elements in the geo- and biospheres. It partly resembles sulfur and tellurium; however, its behavior in the geosphere and its functions in the biosphere are very specific. Despite a relatively large database, its cycling in both the natural environment and in that modified by human activities requires further study. Selenium is rather concentrated in the geospheric cycle and is also bioconcentrated. The values of its accumulation ratios are: 5 for soil/sandstone, 2 for animal tissues/sandstone, and 5 for animal tissues/grain. For a specific plant/soil system, the bioconcentration factor for plants always has to be estimated because some plants can absorb extremely high concentrations of Se. Their ability to accumulate and tolerate high Se levels is related to different Se metabolisms. These plants play a significant role in geochemical prospecting and animal nutrition. This paper presents some geochemical observations toward a better understanding of the environmental properties of Se.

  17. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  18. Correlation between structural and thermodynamic properties of some selenium based phase-change materials

    NASA Astrophysics Data System (ADS)

    Chandel, Namrata; Mehta, Neeraj

    2018-04-01

    In this study, we prepared novel selenium rich multi-component glasses by incorporating In, Cd and Sb as foreign elements in an Sn containing Sesbnd Te system in order to study their metal-induced effects on the thermal properties of the parent ternary glass. In particular, we determined the thermodynamic parameters of Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glassy semiconductors in a non-isothermal environment using the differential scanning calorimetry. Calorimetric measurements were obtained in the glass transition regions for Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glasses to determine their thermodynamic parameters such as the specific heat, enthalpy, and entropy during glass transition. We analyzed the variation in the specific heat before and after the heat capacity jump in these alloys. The metal-induced effects of foreign elements on the thermodynamic properties of the parent glass were also investigated in terms of the influence of the elemental specific heat of the added elemental metal as well as the thermal stability and glass-forming ability of the glasses.

  19. Concentrations and loads of suspended sediment and trace element pollutants in a small semi-arid urban tributary, San Francisco Bay, California.

    PubMed

    McKee, Lester J; Gilbreath, Alicia N

    2015-08-01

    Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.

  20. A high-selenium lentil dietary intervention in Bangladesh to counteract arsenic toxicity: study protocol for a randomized controlled trial.

    PubMed

    Krohn, Regina M; Raqib, Rubhana; Akhtar, Evana; Vandenberg, Albert; Smits, Judit E G

    2016-04-27

    Millions of people worldwide are exposed to dangerous levels of arsenic (above the WHO water standard of 10 ppb) in drinking water and food. Lack of nutritious foods exacerbates the adverse health effects of arsenic poisoning. The micronutrient selenium is a known antagonist to arsenic, promoting the excretion of arsenic from the body. Studies are in progress examining the potential of using selenium supplement pills to counteract arsenic toxicity. We are planning a clinical trial to test whether high-selenium lentils, as a whole food solution, can improve the health of arsenic-exposed Bangladeshi villagers. A total of 400 participants (about 80 families) will be divided into two groups via computer-generated block randomization. Eligibility criteria are age (≥14) years) and arsenic concentration in the household tube well (≥100 ppb). In this double-blind study, one group will eat high-selenium lentils grown in western Canada; the other will consume low-selenium lentils grown in Idaho, USA. Each participant will consume 65 g of lentils each day for 6 months. At the onset, midterm, and end of the trial, blood, urine and stool, plus hair (day 1 and at 6 months only) samples will be collected and a health examination conducted including assessment of acute lung inflammation, body mass and height, and blood pressure. The major outcome will be arsenic excretion in urine and feces, as well as arsenic deposition in hair and morbidity outcomes as assessed by a biweekly questionnaire. Secondary outcomes include antioxidant status, lipid profile, lung inflammation status, and blood pressure. Selenium pills as a treatment for arsenic exposure are costly and inconvenient, whereas a whole food approach to lower the toxic burden of arsenic may be a practical remedy for Bangladeshi people while efforts to provide safe drinking water are continuing. If high-selenium lentils prove to be effective in counteracting arsenic toxicity, agronomic partnerships between Canada and Bangladesh will work to improve the selenium content of the Bangladeshi-grown lentil crops. Results will be presented to the community to promote informed food choices, which may include increasing selenium in their diet. ClinicalTrials.gov NCT02429921.

  1. Selenium for preventing cancer

    PubMed Central

    Vinceti, Marco; Dennert, Gabriele; Crespi, Catherine M; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice PA; Horneber, Markus; D'Amico, Roberto; Del Giovane, Cinzia

    2015-01-01

    Background This review is an update of the first Cochrane publication on selenium for preventing cancer (Dennert 2011). Selenium is a metalloid with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. Objectives Two research questions were addressed in this review: What is the evidence for: an aetiological relation between selenium exposure and cancer risk in humans? andthe efficacy of selenium supplementation for cancer prevention in humans? Search methods We conducted electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2013, Issue 1), MEDLINE (Ovid, 1966 to February 2013 week 1), EMBASE (1980 to 2013 week 6), CancerLit (February 2004) and CCMed (February 2011). As MEDLINE now includes the journals indexed in CancerLit, no further searches were conducted in this database after 2004. Selection criteria We included prospective observational studies (cohort studies including sub-cohort controlled studies and nested case-control studies) and randomised controlled trials (RCTs) with healthy adult participants (18 years of age and older). Data collection and analysis For observational studies, we conducted random effects meta-analyses when five or more studies were retrieved for a specific outcome. For RCTs, we performed random effects meta-analyses when two or more studies were available. The risk of bias in observational studies was assessed using forms adapted from the Newcastle-Ottawa Quality Assessment Scale for cohort and case-control studies; the criteria specified in the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the risk of bias in RCTs. Main results We included 55 prospective observational studies (including more than 1,100,000 participants) and eight RCTs (with a total of 44,743 participants). For the observational studies, we found lower cancer incidence (summary odds ratio (OR) 0.69, 95% confidence interval (CI) 0.53 to 0.91, N = 8) and cancer mortality (OR 0.60, 95% CI 0.39 to 0.93, N = 6) associated with higher selenium exposure. Gender-specific subgroup analysis provided no clear evidence of different effects in men and women (P value 0.47), although cancer incidence was lower in men (OR 0.66, 95% CI 0.42 to 1.05, N = 6) than in women (OR 0.90, 95% CI 0.45 to 1.77, N = 2). The most pronounced decreases in risk of site-specific cancers were seen for stomach, bladder and prostate cancers. However, these findings have limitations due to study design, quality and heterogeneity that complicate interpretation of the summary statistics. Some studies suggested that genetic factors may modify the relation between selenium and cancer risk-a hypothesis that deserves further investigation. In RCTs, we found no clear evidence that selenium supplementation reduced the risk of any cancer (risk ratio (RR) 0.90, 95% CI 0.70 to 1.17, two studies, N = 4765) or cancer-related mortality (RR 0.81, 95% CI 0.49 to 1.32, two studies, N = 18,698), and this finding was confirmed when the analysis was restricted to studies with low risk of bias. The effect on prostate cancer was imprecise (RR 0.90, 95% CI 0.71 to 1.14, four studies, N = 19,110), and when the analysis was limited to trials with low risk of bias, the interventions showed no effect (RR 1.02, 95% CI 0.90 to 1.14, three studies, N = 18,183). The risk of non-melanoma skin cancer was increased (RR 1.44, 95% CI 0.95 to 1.17, three studies, N = 1900). Results of two trials-the Nutritional Prevention of Cancer Trial (NPCT) and the Selenium and Vitamin E Cancer Trial (SELECT)-also raised concerns about possible increased risk of type 2 diabetes, alopecia and dermatitis due to selenium supplements. An early hypothesis generated by NPCT that individuals with the lowest blood selenium levels at baseline could reduce their risk of cancer, particularly of prostate cancer, by increasing selenium intake has not been confirmed by subsequent trials. As the RCT participants were overwhelmingly male (94%), gender differences could not be systematically assessed. Authors’ conclusions Although an inverse association between selenium exposure and the risk of some types of cancer was found in some observational studies, this cannot be taken as evidence of a causal relation, and these results should be interpreted with caution. These studies have many limitations, including issues with assessment of exposure to selenium and to its various chemical forms, heterogeneity, confounding and other biases. Conflicting results including inverse, null and direct associations have been reported for some cancer types. RCTs assessing the effects of selenium supplementation on cancer risk have yielded inconsistent results, although the most recent studies, characterised by a low risk of bias, found no beneficial effect on cancer risk, more specifically on risk of prostate cancer, as well as little evidence of any influence of baseline selenium status. Rather, some trials suggest harmful effects of selenium exposure. To date, no convincing evidence suggests that selenium supplements can prevent cancer in humans. PMID:24683040

  2. Salt-Rich Selenium for Prevention and Control Children with Kashin-Beck Disease: a Meta-analysis of Community-Based Trial.

    PubMed

    Yu, Fang-fang; Han, Jing; Wang, Xi; Fang, Hua; Liu, Huan; Guo, Xiong

    2016-03-01

    Kashin-Beck disease (KBD) in western China is not well controlled. The objective of this study is to evaluate prevention and control children with KBD through a meta-analysis of a community-based trial. Web of knowledge, PubMed, Elsevier, the Chinese National Knowledge Infrastructure (CNKI), VIP and Wanfang data had been electronically searched up to February 2015. Search terms included the trial terms "Salt rich selenium" and "Kashin-Beck disease." Eligible studies were prospective trials of salt-rich selenium in endemic villages. Data extraction was performed by two authors using predefined data fields that also included quality evaluation. Of 292 potentially relevant articles initially screened, reporting 11 community-based trials with a total enrollment of 2652 participants were included, from five provinces in China. The pooled odds ratios (OR) and 95 % confidence intervals (CI) of primary prevention in healthy children were 0.16 and 0.08∼0.33, respectively. The OR and 95 % CI of clinical improvement in KBD children were 6.57 and 3.33∼12.93, respectively. The OR of repairing rate of metaphysis lesions was 5.53 (95 % CI 2.92∼10.47) based on X-ray film, which was statistically significantly different in favor of salt-rich selenium. The combined standard mean difference (SMD) of selenium content in hair was 2.54 (95 % CI 1.21∼3.87) which was significantly higher in selenium group. Current evidence showed that supplement salt-rich selenium was effective in reducing new incidence in healthy children and clinical improvement including repairing metaphysis lesions instead of repairing distal end of phalanx lesions in KBD children.

  3. A blood survey of elements, viral antibodies, and hemoparasites in wintering Harlequin Ducks (Histrionicus histrionicus) and Barrow's Goldeneyes (Bucephala islandica)

    USGS Publications Warehouse

    Heard, D.J.; Mulcahy, D.M.; Iverson, S.A.; Rizzolo, D.J.; Greiner, E.C.; Hall, J.; Ip, Hon S.; Esler, Daniel N.

    2008-01-01

    Twenty-eight Harlequin Ducks (Histrionicus histrionicus) and 26 Barrow's Goldeneyes (Bucephala islandica) were captured in Prince William Sound, Alaska, between 1 and 15 March 2005. Blood was collected for quantification of element concentrations, prevalence of antibodies to several viruses, and hemoparasite prevalence and identification. Although we found selenium concentrations that have been associated with selenosis in some birds (???.0 ppm ww), our findings contribute to a growing literature describing relatively high selenium in apparently healthy birds in marine environments. Avian influenza virus antibodies were detected in the plasma of 28% of the ducks. No antibodies against adenovirus, reovirus, or paramyxovirus 1 were detected. Several hemoparasite species were identified in 7% of ducks. Our findings are similar to those in other free-living marine waterfowl and do not indicate unusual concerns for the health of these species in this area in late winter. ?? Wildlife Disease Association 2008.

  4. A blood survey of elements, viral antibodies, and hemoparasites in wintering Harlequin Ducks (Histrionicus histrionicus) and Barrow's Goldeneyes (Bucephala islandica).

    PubMed

    Heard, Darryl J; Mulcahy, Daniel M; Iverson, Samuel A; Rizzolo, Daniel J; Greiner, Ellis C; Hall, Jeff; Ip, Hon; Esler, Daniel

    2008-04-01

    Twenty-eight Harlequin Ducks (Histrionicus histrionicus) and 26 Barrow's Goldeneyes (Bucephala islandica) were captured in Prince William Sound, Alaska, between 1 and 15 March 2005. Blood was collected for quantification of element concentrations, prevalence of antibodies to several viruses, and hemoparasite prevalence and identification. Although we found selenium concentrations that have been associated with selenosis in some birds (>or=2.0 ppm ww), our findings contribute to a growing literature describing relatively high selenium in apparently healthy birds in marine environments. Avian influenza virus antibodies were detected in the plasma of 28% of the ducks. No antibodies against adenovirus, reovirus, or paramyxovirus 1 were detected. Several hemo-parasite species were identified in 7% of ducks. Our findings are similar to those in other free-living marine waterfowl and do not indicate unusual concerns for the health of these species in this area in late winter.

  5. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950

    PubMed Central

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna

    2015-01-01

    Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa. PMID:26185592

  7. Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice.

    PubMed

    Van der Jeugd, Ann; Parra-Damas, Arnaldo; Baeta-Corral, Raquel; Soto-Faguás, Carlos M; Ahmed, Tariq; LaFerla, Frank M; Giménez-Llort, Lydia; D'Hooge, Rudi; Saura, Carlos A

    2018-04-24

    Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer's disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12-14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.

  8. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  9. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1

    PubMed Central

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed. PMID:26005349

  10. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1.

    PubMed

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed.

  11. Secondary power-producing cell. [electrodes contain same two elements in different proportions

    DOEpatents

    Fischer, A.K.

    1971-10-26

    This cell consists of an anode and a cathode containing the same two elements in different proportions and an electrolyte which contains ions of the element which is to be transported through it. The electrodes consist of chromium, iron, lithium, sodium, cadmium, copper, or zinc and phosphorus, selenium, tellurium, sulfur, arsenic, or nitrogen. A method to heat the cathode in the regeneration cycle to transfer the electronegative component to the anode is provided. (RWR)

  12. Assessment of dissolved-selenium concentrations and loads in the lower Gunnison River Basin, Colorado, as part of the Selenium Management Program, from 2011 to 2016

    USGS Publications Warehouse

    Henneberg, Mark F.

    2018-04-23

    The Gunnison Basin Selenium Management Program implemented a water-quality monitoring network in 2011 in the lower Gunnison River Basin in Colorado. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents the percentile values of selenium because regulatory agencies in Colorado make decisions based on the U.S. Environmental Protection Agency (EPA) Clean Water Act Section 303(d) that uses percentile values of concentration. Also presented are dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for water years (WYs) 2011–2016 (October 1, 2010, through September 30, 2016). Annual dissolved-selenium loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations. Annual dissolved-selenium loads for WY 2011 through WY 2016 ranged from 179 and 391 pounds (lb) at Uncompahgre River at Colona to 11,100 and 17,300 lb at Gunnison River near Grand Junction (herein called Whitewater), respectively. Instantaneous loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations and 13 ancillary sites where discrete water-quality sampling also took place, using discrete water-quality samples and the associated discharge measurements collected during the period. Median instantaneous loads ranged from 0.01 pound per day (lb/d) at Smith Fork near Lazear to 33.0 lb/d at Whitewater. Mean instantaneous loads ranged from 0.06 lb/d at Smith Fork near Lazear to 36.2 lb/d at Whitewater. Most tributary sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb/day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream. The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected sites. Annual 85th percentiles for dissolved selenium were calculated for the five core sites having USGS streamflow-gaging stations using estimated dissolved-selenium concentrations from linear regression models. The 85th-percentile concentrations for WYs 2011–2016 based on this method ranged from 0.62 µg/L and 1.1µg/L at Uncompahgre River at Colona to 12.1 µg/L and 18.7 µg/L at Uncompahgre River at Delta. The 85th percentiles for dissolved selenium also were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2016. The annual 85th-percentile concentrations based on the discrete samples ranged from 0.16 µg/L and 0.17 µg/L at Gunnison River below Gunnison Tunnel to 62.2 µg/L and 170 µg/L at Loutzenhizer Arroyo at North River Road. A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 9,100 lb from WY 1986 to WY 2016, a 40.8 percent reduction during the time period. The trend analysis for the annual dissolved-selenium load for WY 1994 to WY 2016 indicates a decrease of 6,300 lb per year, or 33.3 percent.

  13. Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: collaborative study.

    PubMed

    Kane, Peter F; Hall, William L

    2006-01-01

    There is increasing regulatory interest in the non-nutritive metals content of fertilizer materials, but at present there is no consensus analytical method for acid digestion and instrument detection of those elements in fertilizer matrixes. This lack of method standardization has resulted in unacceptable variability of results between fertilizer laboratories performing metals analysis. A method has been developed using microwave digestion with nitric acid at 200 degrees C, followed by inductively coupled plasma-optical emission spectrometry instrument detection, for the elements arsenic, cadmium, cobalt, chromium, molybdenum, nickel, lead, and selenium. The method has been collaboratively studied, and statistical results are here reported. Fourteen collaborators were sent 62 sample materials in a blind duplicate design. Materials represented a broad cross section of fertilizer types, including phosphate ore, manufactured phosphate products, N-P-K blends, organic fertilizers, and micro-nutrient materials. As much as possible within the limit of the number of samples, materials were selected from different regions of the United States and the world. Limit of detection (LOD) was determined using synthetic fertilizers consisting of reagent grade chemicals with near zero levels of the non-nutritive elements, analyzed blindly. Samples with high iron content caused the most variability between laboratories. Most samples reasonably above LOD gave HorRat values within the range 0.5 to 2.0, indicating acceptable method performance according to AOAC guidelines for analyses in the mg/kg range. The method is recommended for AOAC Official First Action status.

  14. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.

  15. Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis.

    PubMed

    Arikan, Deniz Cemgil; Coskun, Ayhan; Ozer, Ali; Kilinc, Metin; Atalay, Filiz; Arikan, Tugba

    2011-12-01

    It has been shown that the trace elements and lipids play role in the growth, development and maintenance of bones. We aimed to investigate serum selenium (Se), zinc (Zn), copper (Cu) and lipid (total cholesterol, triglyceride (TG), high density lipoprotein-cholesterol, low-density lipoprotein-cholesterol) levels in postmenopausal women with osteoporosis, osteopenia and in healthy controls, and to determine the relationship between Se, Zn, Cu and lipid parameters and bone mineral density (BMD). The study included 107 postmenopausal women; 35 healthy (group 1), 37 osteopenic (group 2) and 35 osteoporotic (group 3). The women in all three groups were carefully matched for body mass index (BMI). Serum concentrations of Se, Zn and Cu were measured by atomic absorption spectrophotometry. Plasma Se, Cu, Zn and lipid levels were similar in all groups (p > 0.05). When we combined the women in each of the three groups, and considered them as one group (n = 107) we found a positive correlation between BMI and lumbar vertebra BMD, femur neck BMD, femur total BMD; a positive correlation between TG and femur neck BMD, femur total BMD; a positive correlation between Zn and lumbar vertebra BMD (total T score) (p < 0.05). There was no correlation between Se, Cu, Zn, P and lipid parameters (p > 0.05). Although BMI has a positive effect on BMD, trace elements and lipids, except Zn and TG, did not directly and correlatively influence BMD. Further studies are needed to clarify the role and relationship of trace elements and lipid parameters in postmenopausal osteoporosis.

  16. Total Mercury, Methylmercury, Inorganic Arsenic and Other Elements in Meat from Minke Whale (Balaenoptera acutorostrata) from the North East Atlantic Ocean.

    PubMed

    Maage, Amund; Nilsen, Bente M; Julshamn, Kaare; Frøyland, Livar; Valdersnes, Stig

    2017-08-01

    Meat samples of 84 minke whales (Balaenoptera acutorostrata) mainly from the Barents Sea, collected between 1 May and 16 August 2011, were analyzed for total mercury, methylmercury, cadmium, lead, total arsenic, inorganic arsenic and selenium. The average total mercury concentration found was 0.15 ± 0.09 mg/kg, with a range from 0.05 to 0.49 mg/kg. The molar ratio of selenium to mercury varied between 1.0 and 10.3. Cadmium content ranged from 0.002 to 0.036 mg/kg, while the content of lead in whale meat ranged from <0.01 to 0.09 mg/kg. None of the whale samples exceeded established EU maximum levels for metals in fish muscle, but 4.8% and 6.8% of the samples exceeded Japanese maximum levels for total mercury and methylmercury, respectively, in whale meat. There was only minor variations in element concentrations between whales from different geographical areas, and cadmium was the only element were the concentration increased with increasing length.

  17. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2013-01-15

    A number of contaminants affect fish health, including mercury and selenium, and the selenium:mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) (n=40) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium:mercury molar ratios by tissues. Total mercury averaged 0.32±0.02 ppm wet weight in edible muscle and 0.09±0.01 ppm in brain. Selenium concentration averaged 0.37±0.03 in muscle and 0.36±0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium:mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium:mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Deficient selenium status of a healthy adult Spanish population.

    PubMed

    Millán Adame, E; Florea, D; Sáez Pérez, L; Molina López, J; López-González, B; Pérez de la Cruz, A; Planells del Pozo, E

    2012-01-01

    Selenium is an essential micronutrient for human health, being a cofactor for enzymes with antioxidant activity that protect the organism from oxidative damage. An inadequate intake of this mineral has been associated with the onset and progression of chronic diseases such as hypertension, diabetes, coronary diseases, asthma, and cancer. For this reason, knowledge of the plasma and erythrocyte selenium levels of a population makes a relevant contribution to assessment of its nutritional status. The objective of the present study was to determine the nutritional status of selenium and risk of selenium deficiency in a healthy adult population in Spain by examining food and nutrient intake and analyzing biochemical parameters related to selenium metabolism, including plasma and erythrocyte levels and selenium-dependent glutathione peroxidase (GPx) enzymatic activity. We studied 84 healthy adults (31 males and 53 females) from the province of Granada, determining their plasma and erythrocyte selenium concentrations and the association of these levels with the enzymatic activity of glutathione peroxidase (GPx) and with life style factors. We also gathered data on their food and nutrient intake and the results of biochemical analyses. Correlations were studied among all of these variables. The mean plasma selenium concentration was 76.6 ± 17.3 μg/L (87.3 ± 17.4 μg/L in males, 67.3 ± 10.7 μg/L in females), whereas the mean erythrocyte selenium concentration was 104.6 μg/L (107.9 ± 26.1 μg/L in males and 101.7 ± 21.7 μg/L in females). The nutritional status of selenium was defined by the plasma concentration required to reach maximum GPx activity, establishing 90 μg/L as reference value. According to this criterion, 50% of the men and 53% of the women were selenium deficient. Selenium is subjected to multiple regulation mechanisms. Erythrocyte selenium is a good marker of longer term selenium status, while plasma selenium appears to be a marker of short-term nutritional status. The present findings indicate a positive correlation between plasma selenium concentration and the practice of physical activity. Bioavailability studies are required to establish appropriate reference levels of this mineral for the Spanish population.

  19. Organochlorine and trace element contamination in wintering and migrating diving ducks in the southern Great Lakes, USA, since the zebra mussel invasion

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    2000-01-01

    Because of the potential for increased trophic transfer of contaminants by zebra mussels (Dreissena sp.) to higher trophic levels, we collected four species of waterfowl (n = 65 ducks) from four locations in Lake Erie, Lake St. Clair, and Lake Michigan, USA, between 1991 and 1993 for organochlorine contaminant and trace element analyses. Geometric mean concentrations of total polychlorinated biphenyls (PCBs) and p,pa??-dichlorodiphenyldichloroethylene (DDE) were 1.35 and 0.15 I?g/g wet weight in lesser scaup (Aythya affinis) carcasses and were below known effect levels. Total PCBs in 80% of carcasses, however, were above the U.S. Food and Drug Administration's threshold of 3.0 I?g/g lipid weight for consumption of poultry. With the exception of selenium, trace elements were also at background or no-effect levels. Selenium concentrations in livers of 95% of lesser scaup, 90% of bufflehead (Bucephala albeola), and 72% of common goldeneye (Bucephala clangula) were in the elevated (>10 I?g/g dry wt) or potentially harmful range (>33 I?g/g dry wt). The effects of these high selenium concentrations are unknown but should be investigated further based on reproductive effects observed in field and laboratory studies of dabbling ducks and because lesser scaup populations are declining. Concentrations of total PCBs in dreissenid mussels in western Lake Erie were 10 times higher than in the upper Mississippi River but were similar to concentrations in other industrialized rivers in Europe and the United States. Metal concentrations were similar to other industrialized sites where zebra mussels have been sampled.

  20. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats.

    PubMed

    Shi, Li-guang; Yang, Ru-jie; Yue, Wen-bin; Xun, Wen-juan; Zhang, Chun-xiang; Ren, You-she; Shi, Lei; Lei, Fu-lin

    2010-04-01

    The objective of this experiment is to study the effects of novel elemental nano-selenium in the diet on testicular ultrastructure, semen quality and GSH-Px activity in male goats. Forty-two 2-month-old bucks were offered a total mixed ration which had been supplemented with nano-Se (0.3mg/kg Se) or unsupplemented (the control group only received 0.06mg/kg Se-background), for a period of 12 weeks (from weaning to sexual maturity). Results showed that the testicular Se level, semen glutathione peroxidase and ATPase activity increased significantly in the nano-Se supplementation group compared with control (P<0.05). The semen quality (volume, density, motility and pH) was not affected by added Se in diets, however, the sperm abnormality rate of control bucks was significantly higher than Se supplemented bucks (P<0.05). The testes of 5 goats in each group were examined by transmission electron microscopy (TEM), and showed that in Se-deficient bucks the membrane was damaged, and showed the occurrence of abnormalities in the mitochondria of the midpiece of spermatozoa. In conclusion, selenium deficiency resulted in abnormal spermatozoal mitochondria, and supplementation with nano-Se enhanced the testis Se content, testicular and semen GSH-Px activity, protected the membrane system integrity and the tight arrayment of the midpiece of the mitochondria. Further studies are required to research the novel elemental nano-Se with characterization of bioavailability and toxicity in small ruminants. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay.

    PubMed

    Dwivedi, Sourabh; Alkhedhairy, Abdulaziz A; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental selenium (Se(0)) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3(2-) to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3(2-) to elemental red Se(0), a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3(2-) bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point.

  2. Selenium and Preeclampsia: a Systematic Review and Meta-analysis.

    PubMed

    Xu, Min; Guo, Dan; Gu, Hao; Zhang, Li; Lv, Shuyan

    2016-06-01

    Conflicting results exist between selenium concentration and preeclampsia. The role of selenium in the development of preeclampsia is unclear. We conducted a meta-analysis to compare the blood selenium level in patients with preeclampsia and healthy pregnant women, and to determine the effectiveness of selenium supplementation in preventing preeclampsia. We searched PubMed, ScienceDirect, the Cochrane Library, and relevant references for English language literature up to November 25, 2014. Mean difference from observational studies and relative risk from randomized controlled trials were meta-analyzed by a random-effect model. Thirteen observational studies with 1515 participants and 3 randomized controlled trials with 439 participants were included in the meta-analysis. Using a random-effect model, a statistically significant difference in blood selenium concentration of -6.47 μg/l (95 % confidence interval (CI) -11.24 to -1.7, p = 0.008) was seen after comparing the mean difference of observational studies. In randomized controlled trials, using a random-effect model, the relative risk for preeclampsia was 0.28 (0.09 to 0.84) for selenium supplementation (p = 0.02). Evidence from observational studies indicates an inverse association of blood selenium level and the risk of preeclampsia. Supplementation with selenium significantly reduces the incidence of preeclampsia. However, more prospective clinical trials are required to assess the association between selenium supplementation and preeclampsia and to determine the dose, beginning time, and duration of selenium supplementation.

  3. A Nano-Selenium Reactive Barrier Approach for Managing Mercury over the Life-Cycle of Compact Fluorescent Lamps

    PubMed Central

    Lee, Brian; Sarin, Love; Johnson, Natalie C.; Hurt, Robert H.

    2013-01-01

    Compact fluorescent lamps contain small quantities of mercury, whose release can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nano-selenium as the reactive component. Multi-layer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of the three scenarios. The nano-selenium barriers also exhibit a unique indicator function that can reveal the location of Hg-contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nano-selenium and its reaction products. PMID:19731697

  4. Serum trace element differences between Schizophrenia patients and controls in the Han Chinese population.

    PubMed

    Cai, Lei; Chen, Tianlu; Yang, Jinglei; Zhou, Kejun; Yan, Xiaomei; Chen, Wenzhong; Sun, Liya; Li, Linlin; Qin, Shengying; Wang, Peng; Yang, Ping; Cui, Donghong; Burmeister, Margit; He, Lin; Jia, Wei; Wan, Chunling

    2015-10-12

    Little is known about the trace element profile differences between Schizophrenia patients and healthy controls; previous studies about the association of certain elements with Schizophrenia have obtained conflicting results. To identify these differences in the Han Chinese population, inductively coupled plasma-mass spectrometry was used to quantify the levels of 35 elements in the sera of 111 Schizophrenia patients and 110 healthy participants, which consisted of a training (61/61 for cases/controls included) and a test group including remaining participants. An orthogonal projection to latent structures model was constructed from the training group (R(2)Y = 0.465, Q(2)cum = 0.343) had a sensitivity of 76.0% and a specificity of 71.4% in the test group. Single element analysis indicated that the concentrations of cesium, zinc, and selenium were significantly reduced in patients with Schizophrenia in both the training and test groups. The meta-analysis including 522 cases and 360 controls supported that Zinc was significantly associated with Schizophrenia (standardized mean difference [SMD], -0.81; 95% confidence intervals [CI], -1.46 to -0.16, P = 0.01) in the random-effect model. Information theory analysis indicated that Zinc could play roles independently in Schizophrenia. These results suggest clear element profile differences between patients with Schizophrenia and healthy controls, and reduced Zn level is confirmed in the Schizophrenia patients.

  5. Sorption and diffusion of selenium oxyanions in granitic rock

    NASA Astrophysics Data System (ADS)

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0 ± 2.0) × 10- 3 m3/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5 ± 0.3) × 10- 3 m3/kg and (1.0 ± 0.6) × 10- 4 m3/kg. The De of selenium was significantly higher for GG; De = (2.5 ± 1.5) × 10- 12 m2/s than for KGG; De = (7 ± 2) × 10- 13 m2/s due to the higher permeability of GG compared with KGG.

  6. Sorption and diffusion of selenium oxyanions in granitic rock.

    PubMed

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0±2.0)×10(-3)m(3)/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5±0.3)×10(-3)m(3)/kg and (1.0±0.6)×10(-4)m(3)/kg. The De of selenium was significantly higher for GG; De=(2.5±1.5)×10(-12)m(2)/s than for KGG; De=(7±2)×10(-13)m(2)/s due to the higher permeability of GG compared with KGG. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. GIS INTERNET MAP SERVICE FOR DISPLAYING SELENIUM CONTAMINATION DATA IN THE SOUTHEASTERN IDAHO PHOSPHATE MINING RESOURCE AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roger Mayes; Sera White; Randy Lee

    2005-04-01

    Selenium is present in waste rock/overburden that is removed during phosphate mining in southeastern Idaho. Waste rock piles or rock used during reclamation can be a source of selenium (and other metals) to streams and vegetation. Some instances (in 1996) of selenium toxicity in grazing sheep and horses caused public health and environmental concerns, leading to Idaho Department of Environmental Quality (DEQ) involvement. The Selenium Information System Project is a collaboration among the DEQ, the United States Forest Service (USFS), the Bureau of Land Management (BLM), the Idaho Mining Association (IMA), Idaho State University (ISU), and the Idaho National Laboratorymore » (INL)2. The Selenium Information System is a centralized data repository for southeastern Idaho selenium data. The data repository combines information that was previously in numerous agency, mining company, and consultants’ databases and web sites. These data include selenium concentrations in soil, water, sediment, vegetation and other environmental media, as well as comprehensive mine information. The Idaho DEQ spearheaded a selenium area-wide investigation through voluntary agreements with the mining companies and interagency participants. The Selenium Information System contains the results of that area-wide investigation, and many other background documents. As studies are conducted and remedial action decisions are made the resulting data and documentation will be stored within the information system. Potential users of the information system are agency officials, students, lawmakers, mining company personnel, teachers, researchers, and the general public. The system, available from a central website, consists of a database that contains the area-wide sampling information and an ESRI ArcIMS map server. The user can easily acquire information pertaining to the area-wide study as well as the final area-wide report. Future work on this project includes creating custom tools to increase the simplicity of the website and increasing the amount of information available from site-specific studies at 15 mines.« less

  8. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  9. A randomized, double-blind, placebo-controlled trial of ketoconazole 2% shampoo versus selenium sulfide 2.5% shampoo in the treatment of moderate to severe dandruff.

    PubMed

    Danby, F W; Maddin, W S; Margesson, L J; Rosenthal, D

    1993-12-01

    Ketoconazole is highly effective against the yeast Pityrosporum ovale, an organism believed to be involved in the pathogenesis of dandruff. Our purpose was to evaluate the safety and effectiveness of ketoconazole 2% shampoo versus selenium sulfide 2.5% shampoo and placebo shampoo in patients with moderate to severe dandruff. Features assessed included adherent and loose dandruff scores, presence or absence of irritation, itching, yeast cells, and global improvement rating by the investigator. A total of 246 patients were included. Mean total adherent dandruff score declined throughout the treatment period with both ketoconazole 2% and selenium sulfide 2.5% shampoos significantly better than placebo at all visits. Ketoconazole was statistically superior to selenium sulfide at day 8 only (p = 0.0026). Both medicated shampoos were significantly better than placebo for reducing irritation and itching. Of the nine adverse experiences reported during the treatment phase, all involved patients treated with selenium sulfide 2.5% shampoo. Both ketoconazole 2% shampoo and selenium sulfide 2.5% shampoo are effective in the treatment of moderate to severe dandruff; however, ketoconazole 2% shampoo appears to be better tolerated.

  10. Effects of industrial processing on essential elements and regulated and emerging contaminant levels in seafood.

    PubMed

    Rasmussen, Rie Romme; Søndergaard, Annette Bøge; Bøknæs, Niels; Cederberg, Tommy Licht; Sloth, Jens Jørgen; Granby, Kit

    2017-06-01

    Mitigation of contaminants in industrial processing was studied for prawns (cooked and peeled), Greenland halibut (cold smoked) and Atlantic salmon (cold smoked and trimmed). Raw prawns had significantly higher cadmium, chromium, iron, selenium and zinc content in autumn than in spring, while summer levels typically were intermediate. Peeling raw prawns increased mercury concentration but reduced the concentration of all other elements including inorganic arsenic, total arsenic, chromium, zinc, selenium but especially cadmium, copper and iron (p < 0.05), however interaction between seasons and processing was observed. Non-toxic organic arsenic in raw Greenland halibut (N = 10) and salmon (N = 4) did not transform to carcinogenic inorganic arsenic during industrial cold smoking. Hence inorganic arsenic was low (<0.003 mg/kg wet weight) in both raw and smoked fillets rich in organic arsenic (up to 9.0 mg/kg for farmed salmon and 0.7 mg/kg for wild caught Greenland halibut per wet weight). Processing salmon did not significantly change any levels (calculated both per wet weight, dry weight or lipid content). Cold smoking decreased total arsenic (17%) and increased PCB congeners (10-22%) in Greenland halibut (wet weight). However PFOS, PCB and PBDE congeners were not different in processed Greenland halibut when corrected for water loss or lipid content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    NASA Astrophysics Data System (ADS)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  12. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks.

    PubMed

    Falandysz, Jerzy; Borovička, Jan

    2013-01-01

    This article reviews and updates data on macro and trace elements and radionuclides in edible wild-grown and cultivated mushrooms. A huge biodiversity of mushrooms and spread of certain species over different continents makes the study on their multi-element constituents highly challenging. A few edible mushrooms are widely cultivated and efforts are on to employ them (largely Agaricus spp., Pleurotus spp., and Lentinula edodes) in the production of selenium-enriched food (mushrooms) or nutraceuticals (by using mycelia) and less on species used by traditional medicine, e.g., Ganoderma lucidum. There are also attempts to enrich mushrooms with other elements than Se and a good example is enrichment with lithium. Since minerals of nutritional value are common constituents of mushrooms collected from natural habitats, the problem is however their co-occurrence with some hazardous elements including Cd, Pb, Hg, Ag, As, and radionuclides. Discussed is also the problem of erroneous data on mineral compounds determined in mushrooms.

  13. Protective effects of meat from lambs on selenium nanoparticle supplemented diet in a mouse model of polycyclic aromatic hydrocarbon-induced immunotoxicity.

    PubMed

    Ungvári, Éva; Monori, István; Megyeri, Attila; Csiki, Zoltán; Prokisch, József; Sztrik, Attila; Jávor, András; Benkő, Ilona

    2014-02-01

    Increased environmental oxidative stress caused primarily by chemicals like polycyclic aromatic hydrocarbons, plays significant role in human diseases. A representative compound, 7,12-dimethylbenz(a)anthracene (DMBA), was used for modeling oxidative damages including the significant decrease of the antioxidant capacity of the blood. Selenium has antioxidant effects but with a narrow therapeutic window. In our current studies to avoid accidental overdose and toxicity selenium was given to meat-producing animals. The standard rodent diet of mice was replaced by meat from lambs either on standard or selenium-enriched diet. Selenium concentration of lamb meat was enhanced three times by nano-selenium administration and an increase in the antioxidant capacity of the blood of mice was measured after the indirect selenium supplementation. Protective effects were also observed against DMBA-induced immunotoxicity. Twice the amount of white blood cells and among them three times more phagocytes survived. Similarly, in their renewal system in bone marrow twice the amount of cells survived and regenerative capacity of granulopoiesis was four times higher than in control DMBA-damaged mice. Our findings suggest functional dietary benefits of lamb meat enriched with selenium by feeding lambs with nanoparticle selenium supplements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  15. Colorectal Adenomas in Participants of the SELECT Randomized Trial of Selenium and Vitamin E for Prostate Cancer Prevention

    PubMed Central

    Lance, Peter; Alberts, David S.; Thompson, Patricia A.; Fales, Liane; Wang, Fang; Jose, Jerilyn San; Jacobs, Elizabeth T.; Goodman, Phyllis J.; Darke, Amy K.; Yee, Monica; Minasian, Lori; Thompson, Ian M.; Roe, Denise J.

    2017-01-01

    Selenium and vitamin E micronutrients have been advocated for the prevention of colorectal cancer. Colorectal adenoma occurrence was used as a surrogate for colorectal cancer in an ancillary study to the Selenium and Vitamin E Cancer Prevention Trial (SELECT) for prostate cancer prevention. The primary objective was to measure the effect of selenium (as selenomethionine) on colorectal adenomas occurrence, with the effect of vitamin E (as alpha tocopherol) supplementation on colorectal adenoma occurrence considered as a secondary objective. Participants who underwent lower endoscopy while in SELECT were identified from a subgroup of the 35,533 men randomized in the trial. Adenoma occurrence was ascertained from the endoscopy and pathology reports for these procedures. Relative risk (RR) estimates and 95% confidence intervals (CI) of adenoma occurrence were generated comparing those randomized to selenium versus placebo and to vitamin E versus placebo based on the full factorial design. Evaluable endoscopy information was obtained for 6,546 participants, of whom 2,286 had 1+ adenomas. Apart from 21 flexible sigmoidoscopies, all the procedures yielding adenomas were colonoscopies. Adenomas occurred in 34.2% and 35.7%, respectively, of participants whose intervention included or did not include selenium. Compared with placebo, the RR for adenoma occurrence in participants randomized to selenium was 0.96 (95% CI, 0.90–1.02; P = 0.194). Vitamin E did not affect adenoma occurrence compared to placebo (RR = 1.03, 95% CI, 0.96–1.10; P = 0.38). Neither selenium nor vitamin E supplementation can be recommended for colorectal adenoma prevention. PMID:27777235

  16. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in theenvironment; however, waterfowl were reproducing at the two ponds. Three tributary streams of Mc Elmo Creek that drain irrigated areas of the Montezuma Valley south of the creek were sampled in 1994. Mud Creek probably is the largest source of selenium to Mc Elmo Creek. Most biota samples from Mud Creek had elevated selenium concentrations when compared to guidelines for dietary items and freshwater fish. Selenium concentrations in water samples collected in the Mancos River Basin upstream from Navajo Wash, which includes the Mancos Project, ranged from less than 1 to 10 micrograms per liter. Mud Creek contributed about 74 percent of the selenium load to the upper Mancos River in March 1994.Selenium concentrations were much higher in Navajo Wash; a sample collected in March had 97 micrograms per liter of selenium. Bottom-sediment samples from two ponds in the Mancos Projectexceeded the concentration of concern of 4 micrograms per gram. The highest selenium concentrations in biota samples from streams in the Mancos River Basin were for samples from Navajo Wash. Mostconcentrations in biota in the upper Mancos River Basin were less than guidelines. Mean selenium concentrations in eggs from aquatic birds collected at three ponds in the Mancos Project slightly exceed the guideline associated with reduced hatchability.Five bird livers had a mean selenium concentration of 32.6 micrograms per gram dry weight, whichslightly exceeded the mean concentration of 30 micrograms per gram dry weight that is associated with reproductive impairment. Two of the pondshad a high selenium hazard rating; however, mallard reproduction was observed in 1994 at one of the ponds that had a high selenium-hazard rating.

  17. Quality assurance program for the determination of selenium in foods and diets by instrumental neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.H.; Chatt, A.

    1996-12-31

    The biological essentially of selenium for animals was first evidenced in 1957. However, it was not until 1973 that an enzyme called glutathione peroxidase was proven to be a selenoenzyme. At present, selenium is known to be a normal component of several enzymes, proteins, and some aminoacryl transfer nucleic acids. A few selenium compounds have been reported to possess anticarcinogenic properties. There is an increasing interest in understanding the role of selenium in human nutrition and metabolism. Analytical methods are being developed in several laboratories for the determination of total and species-specific selenium in whole blood, serum, urine, soft andmore » hard tissues, food, water, proteins, etc. We have developed several instrumental neutron activation analysis (INAA) methods using the, Dalhousie University SLOWPOKE-2 reactor facility for the determination of parts-per-billion levels of selenium. These methods include cyclic INAA (CINAA) and pseudocyclic INAA (PCINAA) using both conventional and anticoincidence gamma-ray spectrometry. Considering the immense health significance, it is imperative that the selenium levels in foods and diets be measured under an extensive quality assurance program for routine monitoring purposes.« less

  18. Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey.

    PubMed

    Ayoglu, Hilal; Sezer, Ustun; Akin, Mehmet; Okyay, Dilek; Ayoglu, Ferruh; Can, Murat; Kucukosman, Gamze; Piskin, Ozcan; Aydin, Bengu; Cimencan, Murat; Gur, Abdullah; Turan, Isil

    2016-04-01

    To evaluate the changing levels of selenium, copper, zinc and iron in patients with sepsis and systemic inflammatory response syndrome and their influence on mortality. The prospective study was conducted at a tertiary care university hospital in Zonguldak city in the western Black Sea region of Turkey from January 2012 to December 2013, and comprised patients with sepsis and systemic inflammatory response syndrome. Blood samples were taken on 1st, 3rd, 5th and 7th days to measure serum selenium, copper, zinc and iron levels. Patients' demographic data, presence of additional diseases and mortality were recorded. Of the 57 patients, 28(49.1%) were female and 29(50.9%) were male, with an overall mean age of 60.3±19.4 years, mean height of 166.1±11.4cm, mean weight of 76.5±17.5kg. Copper and zinc levels were in the normal range, while selenium and iron levels were lower than the limit values at all measuring periods. There was no significant difference between first and other days in accordance with element levels (p>0.05). Baseline copper levels in patients with malignancy were lower than patients without malignancy (p< 0.05). In hypertensive patients, baseline copper levels were higher and 7th day levels were lower than non-hypertensive (p< 0.05). Baseline selenium levels of those who died were lower than the other patients (p< 0.05). Selenium and iron levels were decreased in patients with sepsis-systemic inflammatory response syndrome and copper levels were lower in patients with malignancy, hypertension and chronic obstructive pulmonary disease (p< 0.05). There was no change in zinc levels of the patients. Reduced basal selenium levels of patients with sepsis and systemic inflammatory response syndrome were associated with mortality.

  19. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved.

    PubMed

    Skröder, Helena; Engström, Karin; Kuehnelt, Doris; Kippler, Maria; Francesconi, Kevin; Nermell, Barbro; Tofail, Fahmida; Broberg, Karin; Vahter, Marie

    2018-02-01

    It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. We aimed to investigate potential interactions in the methylation of selenium and arsenic. Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women ( n =226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe ( INMT rs6970396 AG+AA, n =74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA ( p -interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.

  20. Variation in Sulfur and Selenium Accumulation Is Controlled by Naturally Occurring Isoforms of the Key Sulfur Assimilation Enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis Species Range1[W][OPEN

    PubMed Central

    Chao, Dai-Yin; Baraniecka, Patrycja; Danku, John; Koprivova, Anna; Lahner, Brett; Luo, Hongbing; Yakubova, Elena; Dilkes, Brian; Kopriva, Stanislav; Salt, David E.

    2014-01-01

    Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored. PMID:25245030

  1. Trace element supplementation in hemodialysis patients: a randomized controlled trial.

    PubMed

    Tonelli, Marcello; Wiebe, Natasha; Thompson, Stephanie; Kinniburgh, David; Klarenbach, Scott W; Walsh, Michael; Bello, Aminu K; Faruque, Labib; Field, Catherine; Manns, Braden J; Hemmelgarn, Brenda R

    2015-04-11

    People with kidney failure are often deficient in zinc and selenium, but little is known about the optimal way to correct such deficiency. We did a double-blind randomized trial evaluating the effects of zinc (Zn), selenium (Se) and vitamin E added to the standard oral renal vitamin supplement (B and C vitamins) among hemodialysis patients in Alberta, Canada. We evaluated the effect of two daily doses of the new supplement (medium dose: 50 mg Zn, 75 mcg Se, 250 IU vitamin E; low dose: 25 mg Zn, 50 mcg Se, 250 IU vitamin E) compared to the standard supplement on blood concentrations of Se and Zn at 90 days (primary outcome) and 180 days (secondary outcome) as well as safety outcomes. We enrolled 150 participants. The proportion of participants with low zinc status (blood level <815 ug/L) did not differ between the control group and the two intervention groups at 90 days (control 23.9% vs combined intervention groups 23.9%, P > 0.99) or 180 days (18.6% vs 28.2%, P = 0.24). The proportion with low selenium status (blood level <121 ug/L) was similar for controls and the combined intervention groups at 90 days (32.6 vs 19.6%, P = 0.09) and 180 days (34.9% vs 23.5%, P = 0.17). There were no significant differences in the risk of adverse events between the groups. Supplementation with low or medium doses of zinc and selenium did not correct low zinc or selenium status in hemodialysis patients. Future studies should consider higher doses of zinc (≥75 mg/d) and selenium (≥100 mcg/d) with the standard supplement. Registered with ClinicalTrials.gov (NCT01473914).

  2. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA.

    PubMed

    Carlson, Bradley A; Xu, Xue-Ming; Gladyshev, Vadim N; Hatfield, Dolph L

    2005-02-18

    Selenocysteine (Sec) is the 21st amino acid in the genetic code. Its tRNA is variably methylated on the 2'-O-hydroxyl site of the ribosyl moiety at position 34 (Um34). Herein, we identified a role of Um34 in regulating the expression of some, but not all, selenoproteins. A strain of knock-out transgenic mice was generated, wherein the Sec tRNA gene was replaced with either wild type or mutant Sec tRNA transgenes. The mutant transgene yielded a tRNA that lacked two base modifications, N(6)-isopentenyladenosine at position 37 (i(6)A37) and Um34. Several selenoproteins, including glutathione peroxidases 1 and 3, SelR, and SelT, were not detected in mice rescued with the mutant transgene, whereas other selenoproteins, including thioredoxin reductases 1 and 3 and glutathione peroxidase 4, were expressed in normal or reduced levels. Northern blot analysis suggested that other selenoproteins (e.g. SelW) were also poorly expressed. This novel regulation of protein expression occurred at the level of translation and manifested a tissue-specific pattern. The available data suggest that the Um34 modification has greater influence than the i(6)A37 modification in regulating the expression of various mammalian selenoproteins and Um34 is required for synthesis of several members of this protein class. Many proteins that were poorly rescued appear to be involved in responses to stress, and their expression is also highly dependent on selenium in the diet. Furthermore, their mRNA levels are regulated by selenium and are subject to nonsense-mediated decay. Overall, this study described a novel mechanism of regulation of protein expression by tRNA modification that is in turn regulated by levels of the trace element, selenium.

  3. Selenium:Mercury Molar Ratios in Freshwater Fish from Tennessee: Individual, Species, and Geographical Variations have Implications for Management

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, C.; Donio, M.; Pittfield, T.

    2014-01-01

    Vertebrates, including humans, can experience adverse effects from mercury consumed in fish. Humans often prefer large predatory fish that bioaccumulate high mercury levels. Recent attention has focused on the role of selenium countering mercury toxicity, but there is little research on the selenium:mercury molar ratios in freshwater fish. We examine selenium:mercury molar ratios in freshwater fish from Tennessee at Poplar Creek which receives ongoing inputs of mercury from the Department of Energy’s Oak Ridge Y-12 facility. Our objective was to determine variation of the ratios within species that might affect the protectiveness of selenium against mercury toxicity. Within species, the ratio was correlated significantly and positively with fish length only for two species. There was great individual variation in the selenium:mercury molar ratio within each species, except striped bass. The lack of a clear relationship between the selenium:mercury molar ratio and fish length, and the intraspecific variation, suggests that it would be difficult to use the molar ratio in predicting either the risk from mercury toxicity or in devising consumption advisories. PMID:22456727

  4. Reproduction in eastern screech-owls fed selenium

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Hoffman, D.J.

    1996-01-01

    Raptors are occasionally exposed to excessive selenium from contaminated prey, but the effects of this exposure on reproduction are unknown. Therefore, we fed captive eastern screech-owls (Otus asio) diets containing 0, 4.4, or 13.2 ppm (wet wt) added selenium in the form of seleno-DL-methionine. Adult mass at sacrifice and reproductive success of birds receiving 13.2 ppm selenium were depressed (P < 0.05) relative to controls. Parents given 4.4 ppm selenium produced no malformed nestlings, but femur lengths of young were shorter (P = 0.015) than those of controls. Liver biochemistries indicative of oxidative stress were affected (P < 0.05) in 5-day-old nestlings from parents fed 4.4 ppm selenium and included a 19% increase in glutathione peroxidase activity, a 43% increase in the ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH), and a 17% increase in lipid peroxidation. Based on reproductive effects relative to dietary exposure, sensitivity of eastern screech-owls to selenium was similar to that of black-crowned night-herons (Nycticorax nycticorax) but less than that of mallards (Anas platyrhynchos).

  5. Selenium in the Therapy of Neurological Diseases. Where is it Going?

    PubMed Central

    Dominiak, Agnieszka; Wilkaniec, Anna; Wroczyńsk, Piotr; Adamczyk, Agata

    2016-01-01

    Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income. PMID:26549649

  6. [Analysis and Evaluation of Inorganic Elements in Euryale Semen from Different Habitats by Microwave Digestion-ICP-OES].

    PubMed

    Wang, Hong; Wu, Qi-nan; Wu, Cheng-ying; Fan, Xiu-he; Jiang, Zheng; Gu, Wei; Yue, Wei

    2015-01-01

    To establish a simple, rapid and efficient method for determination of different inorganic elements in Euryale Semen from different habitats. Inductively coupled plasma-optical emission spectrometry(ICP-OES) was applied to determine inorganic elements in Euryale Semen, and the results were analyzed by principal component analysis. Euryale Semen from different habitats contained the kind of inorganic elements ranging from 22 to 26, including micronutrient elements like Iron, Zinc, Selenium, Copper, Molybdenum, Chrome and Cobalt, as well as macronutrient elements such as Potassium, Calcium, Sodium, Magnesium and Phosphorus. Five factors were extracted and used to comprehensively evaluate Euryale Semen from 20 different habitats covered almost China. The comprehensive function was F = 0. 38828F1 + 0. 25603F2 + 0. 07617F3 + 0. 06860F4 + 0. 04868F5, which resulted in the top three samples coming from Jiangsu Gaoyou, Hunan Xiangxi and Jiangsu Suzhou respectively. The study indicates that ICP-OES is a quick, accurate and sensitive method to determine the contents of inorganic elements in Euryale Semen,which provides scientific and reliable reference for its quality control and safety assessment.

  7. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: Potential protection on mercury toxicity by selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant inter-specific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios. PMID:22664537

  8. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water.

    PubMed

    Li, Zhengkai; Ke, Fang; Deng, Hang; Xu, Hualong; Xiang, Haifeng; Zhou, Xiangge

    2013-05-14

    A simple and efficient protocol for copper-catalyzed coupling reactions between aryl halides and elemental sulfur or selenium has been developed. A variety of disulfides and diselenides can be obtained in moderate to excellent yields up to 96%.

  9. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  10. Technical issues affecting the implementation of US Environmental Protection Agency's proposed fish tissue-based aquatic criterion for selenium.

    PubMed

    Lemly, A Dennis; Skorupa, Joseph P

    2007-10-01

    The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the "what, where, and when" is essential with the new tissue-based approach in order to ensure proper acquisition of data that apply to the criterion. Dischargers will need to understand selenium transport, cycling, and bioaccumulation in order to effectively monitor for the criterion and, if necessary, develop site-specific standards. This paper discusses 11 key issues that affect the implementation of a tissue-based criterion, ranging from the selection of fish species to the importance of hydrological units in the sampling design. It also outlines a strategy that incorporates both water column and tissue-based approaches. A national generic safety-net water criterion could be combined with a fish tissue-based criterion for site-specific implementation. For the majority of waters nationwide, National Pollution Discharge Elimination System permitting and other activities associated with the Clean Water Act could continue without the increased expense of sampling and interpreting biological materials. Dischargers would do biotic sampling intermittently (not a routine monitoring burden) on fish tissue relative to the fish tissue criterion. Only when the fish tissue criterion is exceeded would a full site-specific analysis including development of intermedia translation factors be necessary.

  11. Selenium intake and metabolic syndrome: A systematic review.

    PubMed

    Retondario, Anabelle; Fernandes, Ricardo; Rockenbach, Gabriele; Alves, Mariane de Almeida; Bricarello, Liliana Paula; Trindade, Erasmo Benicio Santos de Moraes; Vasconcelos, Francisco de Assis Guedes de

    2018-03-02

    Metabolic syndrome is a multi-causal disease. Its treatment includes lifestyle changes with a focus on weight loss. This systematic review assessed the association between Selenium intake and metabolic syndrome. Data were collected mainly from four databases: PubMed, CENTRAL (Cochrane), Scopus and Web of Knowledge. Keywords related to metabolic syndrome, selenium, as well as metabolic syndrome features were searched. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. A systematic review protocol was registered at PROSPERO (n. 42016046321). Two reviewers independently screened 2957 abstracts. Six studies were included to perform data extraction with standardized spreadsheets. The risk of bias was assessed by using specific tools according to the design of the relevant studies. An assessment was carried out based on the appropriateness of the study reports accordingly to STROBE and the CONSORT-based checklist for each study design. Three studies found no association between Selenium intake and metabolic syndrome; two of them found an inverse association; and one study found a direct association between Selenium intake and metabolic syndrome. One study also showed an inverse association between Selenium intake and the prevalence of high waist circumference, high diastolic blood pressure, and hyperglycaemia in women. Overall, based on the argumentation and results of this study, it is possible to conclude that Selenium intake and metabolic syndrome are not clearly associated in adults and elderly. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Photoelectrochemical cells including chalcogenophosphate photoelectrodes

    NASA Technical Reports Server (NTRS)

    Reichman, B.; Byvik, C. E. (Inventor)

    1984-01-01

    Photoelectrochemical cells employing chalcogenophosphate (MPX3) photoelectrodes are described where M is selected from the group of transition metal series of elements beginning with scandium (atomic number 21) through germanium (atomic number 32) yttrium (atomic number 39) through antimony (atomic number 51) and lanthanum (atomic number 57) through polonium (atomic number 84); P is phosphorus; and X is selected from the chalogenide series consisting of sulfur, selenium, and tellurium. These compounds have bandgaps in the desirable range from 2.0 eV to 2.2 eV for the photoelectrolysis of water and are stable when used as photoelectrodes for the same.

  13. Effects of processed oil shale on the element content of Atriplex cancescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with themore » gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium - considered to be potential toxic contaminants - were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppM, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.« less

  14. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice.

    PubMed

    Dong, Ruixia; Wang, Dongxu; Wang, Xiaoxiao; Zhang, Ke; Chen, Pingping; Yang, Chung S; Zhang, Jinsong

    2016-12-01

    Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Colorectal Adenomas in Participants of the SELECT Randomized Trial of Selenium and Vitamin E for Prostate Cancer Prevention.

    PubMed

    Lance, Peter; Alberts, David S; Thompson, Patricia A; Fales, Liane; Wang, Fang; San Jose, Jerilyn; Jacobs, Elizabeth T; Goodman, Phyllis J; Darke, Amy K; Yee, Monica; Minasian, Lori; Thompson, Ian M; Roe, Denise J

    2017-01-01

    Selenium and vitamin E micronutrients have been advocated for the prevention of colorectal cancer. Colorectal adenoma occurrence was used as a surrogate for colorectal cancer in an ancillary study to the Selenium and Vitamin E Cancer Prevention Trial (SELECT) for prostate cancer prevention. The primary objective was to measure the effect of selenium (as selenomethionine) on colorectal adenomas occurrence, with the effect of vitamin E (as α-tocopherol) supplementation on colorectal adenoma occurrence considered as a secondary objective. Participants who underwent lower endoscopy while in SELECT were identified from a subgroup of the 35,533 men randomized in the trial. Adenoma occurrence was ascertained from the endoscopy and pathology reports for these procedures. Relative Risk (RR) estimates and 95% confidence intervals (CI) of adenoma occurrence were generated comparing those randomized to selenium versus placebo and to vitamin E versus placebo based on the full factorial design. Evaluable endoscopy information was obtained for 6,546 participants, of whom 2,286 had 1+ adenomas. Apart from 21 flexible sigmoidoscopies, all the procedures yielding adenomas were colonoscopies. Adenomas occurred in 34.2% and 35.7%, respectively, of participants whose intervention included or did not include selenium. Compared with placebo, the RR for adenoma occurrence in participants randomized to selenium was 0.96 (95% CI, 0.90-1.02; P = 0.194). Vitamin E did not affect adenoma occurrence compared with placebo (RR = 1.03; 95% CI, 0.96-1.10; P = 0.38). Neither selenium nor vitamin E supplementation can be recommended for colorectal adenoma prevention. Cancer Prev Res; 10(1); 45-54. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities.

    PubMed

    Shoeibi, Sara; Mashreghi, Mohammad

    2017-01-01

    Microorganisms are capable of synthesizing metal nanoparticles, and specifically Enterococcus faecalis bacteria were tested for its ability to synthesize selenium nanoparticles (Se-NPs) from sodium selenite. The biosynthesized Se-NPs were spherical in shape with the size range of 29-195nm. Also, the TEM microscopy showed the accumulation of nano-structures as extracellular deposits. The ability of the bacteria to tolerate high levels of toxic selenite was studied by changing with different concentrations of sodium selenite (0.19mM-2.97mM). Also, the effect of Se-NPs was studied on the growth profile of number of pathogenic Gram-positive and -negative bacteria. High concentrations of sodium selenite in the medium led to the production of small amounts of selenium nanostructures by bacteria. In addition, Se-NPs can be used as an anti-staphylococcal element to effectively prevent and treat S. aureus infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Selenium as a versatile center in fluorescence probe for the redox cycle between HClO oxidative stress and H2S repair.

    PubMed

    Lou, Zhangrong; Li, Peng; Han, Keli

    2015-01-01

    Selenium is a biologically important trace element and acts as an active center of glutathione peroxidase (GPx). GPx is the important antioxidant enzyme to protect organisms from oxidative damage via catalyzing the reaction between ROS and glutathione (GSH). Mimicking the oxidation-reduction cycles of the versatile selenium core in GPx, we can develop fluorescence probes to detect oxidation and reduction events in living systems. The cellular redox balance between hypochloric acid (HClO) and hydrogen sulfide (H2S) has broad implications in human health and diseases, such as Alzheimer's disease (AD). Therefore, to further investigate the roles of this redox balance and understand the pathogenesis of neurodegenerative diseases, it is necessary to detect the redox state between HClO and H2S in real time. We have developed a reversible fluorescence probe MPhSe-BOD for imaging of the redox cycle between HClO and H2S based on oxidation and reduction of selenide in living cells.

  18. Safety of long-term restrictive diets for peroxisomal disorders: vitamin and trace element status of patients treated for Adult Refsum Disease.

    PubMed

    Baldwin, E J; Harrington, D J; Sampson, B; Feher, M D; Wierzbicki, A S

    2016-03-01

    Adult Refsum's Disease (ARD) is caused by defects in the pathway for alpha-oxidation of phytanic acid (PA). Treatment involves restricting the dietary intake of phytanic acid by reducing the intake of dairy-derived fat. The adequacy of micronutrient intake in patients with ARD is unknown. Patients established on the Chelsea low-PA diet had general diet macronutrients, vitamins and trace elements assessed using 7-day-weighed intakes and serial 24-h recalls. Intakes were compared with biochemical assessments of nutritional status for haematinics (ferritin), trace elements (copper, zinc, iron, selenium), water- (vitamin B6 , B12 and folate) and fat-soluble vitamins (A, D, E and K). Eleven subjects (four women, seven men) were studied. Body mass index was 27 ± 5 kg/m(2) (range 19-38). All subjects had high sodium intakes (range 1873-4828 mg). Fat-soluble vitamin insufficiencies occurred in some individuals (vitamin A, n = 2; vitamin D, n = 6; vitamin E, n = 3; vitamin K, n = 10) but were not coincident. Vitamin B6 levels were normal or elevated (n = 6). Folate and 5-methyltetrahydrofolate concentrations were normal. Metabolic vitamin B12 insufficiency was suspected in four subjects based on elevated methylmalonic acid concentrations. Low copper and selenium intakes were noted in some subjects (n = 7, n = 2) but plasma levels were adequate. Iron, ferritin and zinc intakes and concentrations were normal. Subjects with ARD can be safely managed on the Chelsea low PA without routine micronutrient supplementation. Sodium intake should be monitored and reduced. Periodic nutritional screening may be necessary for fat-soluble vitamins, vitamin B12 , copper or selenium. © 2016 John Wiley & Sons Ltd.

  19. Quantitative determination of selenium and mercury, and an ICP-MS semi-quantitative scan of other elements in samples of eagle tissues collected from the Pacific Northwest--Summer 2011

    USGS Publications Warehouse

    May, Thomas; Walther, Mike; Brumbaugh, William

    2013-01-01

    Eagle tissues from dead eagle carcasses were collected by U.S. Fish and Wildlife Service personnel at various locations in the Pacific Northwest as part of a study to document the occurrence of metal and metalloid contaminants. A group of 182 eagle tissue samples, consisting of liver, kidney, brain, talon, feather, femur, humerus, and stomach contents, were quantitatively analyzed for concentrations of selenium and mercury by atomic absorption techniques, and for other elements by semi-quantitative scan with an inductively coupled plasma-mass spectrometer. For the various tissue matrices analyzed by an ICP-MS semiquantitative scan, some elemental concentrations (micrograms per gram dry weight) were quite variable within a particular matrix; notable observations were as follows: lead concentrations ranged from 0.2 to 31 in femurs, 0.1 to 29 in humeri, 0.1 to 54 in talons, less than (<) 0.05 to 120 in livers, <0.05 to 34 in kidneys, and 0.05 to 8 in brains; copper concentrations ranged from 5 to 9 in feathers, 8 to 47 in livers, 7 to 43 in kidneys, and 7 to 28 in brains; cadmium concentrations ranged from 0.1 to 10 in kidneys. In stomach contents, concentrations of vanadium ranged from 0.08 to 5, chromium 2 to 34, manganese 1 to 57, copper 2 to 69, arsenic <0.05 to 6, rubidium 1 to 13, and barium <0.5 to 18. Selenium concentrations from highest to lowest based on the matrix mean were as follows: kidney, liver, feather, brain, stomach content, talon, femur, and humerus. For mercury, the highest to lowest concentrations were feather, liver, talon, brain, stomach content, femur, and humerus.

  20. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Trace elements in streambed sediment and fish livers, 1995-96

    USGS Publications Warehouse

    Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.

    2000-01-01

    In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.

  1. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    PubMed

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony. Copyright © 2016. Published by Elsevier Inc.

  2. Ultrasonic extraction of arsenic and selenium from rocks associated with mountaintop removal/valley fills coal mining: Estimation of bioaccessible concentrations.

    PubMed

    Pumure, I; Renton, J J; Smart, R B

    2010-03-01

    Ultrasonic extraction (UE) was used to estimate the total bioaccessible fractions of arsenic and selenium released from rocks associated with mountaintop removal/valley fill coal mining. The combined readily bioaccessible amounts of arsenic and selenium in water soluble, exchangeable and NaOH fractions can be extracted from the solid phase within a 20 or 25 min application of 200 W cm(-2) ultrasound energy in nanopure water for selenium and arsenic, respectively. Application of a two-way ANOVA predicted that there are no significant differences (p0.001, n=12) in the extracted arsenic and selenium concentrations between the combined bioaccessible and ultrasonic extracts. The mechanisms for the UE of arsenic and selenium are thought to involve the formation of secondary minerals on the particle surfaces which eventually dissolve with continued sonication. This is supported by the presence of transient Si-O stretching and OH absorption and bending ATR-FTIR peaks at 795.33 cm(-1), 696.61 cm(-1) and 910.81 cm(-1). The subsequent dissolution of secondary minerals is followed by the release of chemical species that include selenium and arsenic. Release rates decrease after the ultrasound energy elastic limit for the particles is reached. Selenium and arsenic are bound differently within the rock lattice because no selenium was detected in the acid soluble fraction and no arsenic was found in the exchangeable fraction. However, selenium was found in the exchangeable fraction and arsenic was found in the acid soluble fraction. The characterization of coal associated rocks is essential to the design of methodologies and procedures that can be used to control the release of arsenic and selenium from valley fills. Published by Elsevier Ltd.

  3. Selenium Biomarkers in Prostate Cancer Cell Lines and Influence of Selenium on Invasive Potential of PC3 Cells

    PubMed Central

    Hendrickx, Wouter; Decock, Julie; Mulholland, Francis; Bao, Yongping; Fairweather-Tait, Susan

    2013-01-01

    Dietary selenium intake has been linked to reduced cancer risk, however the underlying mechanisms are yet unknown. We question the commonly used practice of applying selenium concentrations found in human blood to in vitro studies and evaluated the utility of biomarkers, e.g., glutathione peroxidase 1 (GPx1) and thioredoxin reductase 1 (TrxR1), to determine appropriate selenium levels for in vitro work. Furthermore, we investigated the effects of Se-methylselenocysteine (SeMSC) on prostate cancer cell migration and invasion. After excluding cytotoxicity, we demonstrated that prostate cancer cell lines respond differently to selenium treatment as observed through biomarker assessment. We found that the maximum levels of GPx1 activity and TrxR1 expression were reached at lower selenium concentrations in LNCaP compared to PC3 cells, and PC3 compared to DU145 cells. Therefore the use of selenium concentrations extrapolated from human studies for in vitro work may be applicable when further informed using a readout of selenium repletion including use of selenium responsive biomarkers. No effect on PC3 migration or invasion was observed after long term SeMSC treatment; however a slight increase was found when treatment was solely administered during the assay. The opposite could be observed when cells were cultured under low serum conditions, with a significant increase in migration upon long term but not upon acute SeMSC treatment. To conclude, these findings indicate that it is imperative to study the selenium sensitivity of an in vitro model preferably using biomarkers before investigating any effects on biological processes, or before comparing models. PMID:24066278

  4. Investigations into effects on performance and glutathione peroxidase activity in broilers when increasing selenium contents of complete diets appropriate to animals' selenium requirements by adding different selenium compounds (organic vs. inorganic).

    PubMed

    Salman, Mustafa; Muğlali, Omer Hakan; Selçuk, Zehra

    2009-06-01

    The aim of this study was to compare the effects of inorganic and organic selenium compounds supplementations to diets containing adequate selenium in broilers on performance, carcass traits, plasma and tissue glutathione peroxidase activity. A total of 150 one-day-old broilers were randomized into one control and two treatment groups each containing 50 birds; each group was then divided into 3 replicate groups. The experiment lasted 42 days. All groups were fed with broiler starter diet from day 1 to 21 and finisher diet from day 22 to 42. The basal diet for control group included adequate selenium due to vitamin-mineral premix and feeds. The basal diet was supplemented with 0.2 mg/kg organic selenium (selenomethionine, treatment group 1) and 0.2 mg/kg inorganic selenium (sodium selenite, treatment group 2). Although no significant differences were determined between treatment group 1 and the control group for mean body weights, the differences between the group given inorganic selenium and the other groups were statistically significant (p < 0.01). There was no significant difference between control and treatment groups with regard to mean feed intake and feed efficiency. The dressing percentages of the second treatment group were found to be lower than the first treatment group. Treatment groups were observed to have increased levels of glutathione peroxidase in plasma (p <0.01), kidney (p < 0.05), femoral muscle (p < 0.05), heart (p < 0.01) and liver tissue (p < 0.01) compared with the control group. Results of this study indicated that the supplementation of organic selenium to diets containing adequate selenium increased plasma, liver, femoral muscle, kidney and heart tissue glutathione peroxidase activity in broilers.

  5. Dietary exposure estimates of 14 trace elements in Xuanwei and Fuyuan, two high lung cancer incidence areas in China.

    PubMed

    Zhang, Linlin; Lv, Jungang; Liao, Chunyang

    2012-06-01

    Xuanwei and Fuyuan, located in the Yunnan province in southwest of China, are known to have a strikingly high incidence of lung cancer. Among the many factors that have been explored, the association between lung cancer and trace elements has not received enough attention. In this study, dietary samples were collected from 60 families of the lung cancer and control groups and abundances of 14 trace elements were determined using inductively coupled-plasma mass spectroscopy. Accuracy and sensitivity of the method were demonstrated by analyzing national standard reference materials. The results showed that the dietary intake of the trace elements contributed 96.6% of total intake. Among the 14 elements tested, cadmium and titanium were found to be present at a significantly higher level in the food consumed by the cancer group than by the control group. The intake of selenium by the population living in the areas is much lower than what it should be, with the people in the cancer group experiencing even more severe selenium deficiency. In addition, in both groups, the intakes of several essential elements (iron, copper, and zinc) from food and the drinking water were found to be significantly lower than required according to the Chinese Dietary Reference Intakes. The present study of the relationship between trace element intakes of lung cancer cases and controls provides important information urgently needed for the assessment of lung cancer risk of healthy subjects. The study also gives rational dietary suggestions to local residents which is important to the early diagnosis and pretreatment of lung cancer.

  6. Association between Serum Selenium Concentrations and Levels of Proinflammatory and Profibrotic Cytokines-Interleukin-6 and Growth Differentiation Factor-15, in Patients with Alcoholic Liver Cirrhosis.

    PubMed

    Prystupa, Andrzej; Kiciński, Paweł; Luchowska-Kocot, Dorota; Błażewicz, Anna; Niedziałek, Jarosław; Mizerski, Grzegorz; Jojczuk, Mariusz; Ochal, Andrzej; Sak, Jarosław J; Załuska, Wojciech

    2017-04-21

    According to some authors, serum selenium levels are strongly associated with the severity of liver diseases, including liver cirrhosis. The aim of this study was to determine the relationship between the concentration of selenium and pro-inflammatory and profibrotic cytokines-interleukin-6 (IL-6) and growth differentiation factor 15 (GDF-15) in patients with alcoholic liver cirrhosis. The parameters studied were determined in the serum of 99 patients with alcoholic liver cirrhosis divided based on the severity of disease according to the Child-Turcotte-Pugh criteria. In patients with liver cirrhosis, the serum selenium concentration was statistically lower, whereas serum IL-6 and GDF-15 concentrations were higher than those in the control group. Moreover, the concentration of selenium negatively correlated with the levels of GDF-15 and IL-6. The above results may indicate a role of selenium deficiency in the pathogenesis and progression of alcoholic liver disease.

  7. Biofortification and phytoremediation of selenium in China

    PubMed Central

    Wu, Zhilin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Yuan, Linxi; Yin, Xuebin; Li, Miao

    2015-01-01

    Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed. PMID:25852703

  8. Field evidence of selenium bioreduction in a uranium-contaminated aquifer.

    PubMed

    Williams, Kenneth H; Wilkins, Michael J; N'Guessan, A Lucie; Arey, Bruce; Dodova, Elena; Dohnalkova, Alice; Holmes, Dawn; Lovley, Derek R; Long, Philip E

    2013-06-01

    Removal of selenium from groundwater was documented during injection of acetate into a uranium-contaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0 m(-2) tubing day(-1). Removal was inferred to result from the activity of a mixed microbial community within the biofilms capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.

  9. Field evidence of selenium bioreduction in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams , K. H.; Wilkins, Michael J.; N'Guessan, A. Lucie

    2013-06-01

    Removal of selenium from groundwater was documented during injection of acetate into a uraniumcontaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0m-2 tubing day-1. Removal was inferred to result from the activity of a mixed microbial community within the biofilmsmore » capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.« less

  10. A systematic review and meta-analysis of the circulatory, erythrocellular and CSF selenium levels in Alzheimer's disease: A metal meta-analysis (AMMA study-I).

    PubMed

    Reddy, Varikasuvu Seshadri; Bukke, Suman; Dutt, Naveen; Rana, Puneet; Pandey, Arun Kumar

    2017-07-01

    Available studies in the literature on the selenium levels in Alzheimer's disease (AD) are inconsistent with some studies reporting its decrease in the circulation, while others reported an increase or no change as compared to controls. The objective of this study was to perform a meta-analysis of circulatory (plasma/serum and blood), erythrocyte and cerebrospinal fluid (CSF) selenium levels in AD compared controls. We also performed a meta-analysis of the correlation coefficients (r) to demonstrate the associations between selenium and glutathione peroxidase (GPx) in AD patients. All major databases were searched for eligible studies. We included 12 case-control/observational studies reporting selenium concentrations in AD and controls. Pooled-overall effect size as standardized mean difference (SMD) and pooled r-values were generated using Review Manager 5.3 and MedCalc 15.8 software. Random-effects meta-analysis indicated a decrease in circulatory (SMD=-0.44), erythrocellular (SMD=-0.52) and CSF (SMD=-0.14) selenium levels in AD patients compared to controls. Stratified meta-analysis demonstrated that the selenium levels were decreased in both the subgroups with (SMD=-0.55) and without (SMD=-0.37) age matching between AD and controls. Our results also demonstrated a direct association between decreased selenium levels and GPx in AD. This meta-analysis suggests that circulatory selenium concentration is significantly lower in AD patients compared to controls and this decrease in selenium is directly correlated with an important antioxidant enzyme, the GPx, in AD. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Evaluation of trace elements in selected foods and dietary intake by young children in Thailand.

    PubMed

    Nookabkaew, S; Rangkadilok, N; Akib, C A; Tuntiwigit, N; Saehun, J; Satayavivad, J

    2013-01-01

    Elemental concentrations in rice, animal products, eggs, vegetables, fruits, infant formulas and drinking water were determined in 667 food samples randomly collected from local markets, big supermarkets and grocery stores in Bangkok, Thailand, during the period October 2005-August 2008. Samples were digested with nitric acid and analysed by inductively coupled plasma-mass spectrometry. Arsenic and cadmium levels in most foods were below the maximum levels as set by international organisations. Filtered and bottled drinking water, rice, vegetables and banana contained low concentrations of arsenic, cadmium and lead. Non-polished rice had higher magnesium, calcium, manganese, iron and selenium concentrations than polished rice. Banana was a major source for manganese and selenium. Pig kidney and liver contained high levels of arsenic and cadmium. Manganese, cadmium, lead and aluminium concentrations in soybean milk could also be of concern. With respect to food safety for children, the amounts of arsenic and cadmium ingested with poultry, pig liver or rice corresponded to high weekly or monthly intake.

  12. Trace elements have beneficial, as well as detrimental effects on bone homeostasis.

    PubMed

    Zofkova, I; Davis, M; Blahos, J

    2017-07-18

    The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.

  13. Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh

    2017-04-01

    The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.

  14. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tercia G; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M

    2016-06-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hginorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hginorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hginorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Selenium and other elements in freshwater fishes from the irrigated San Joaquin Valley, California

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; May, T.W.

    1992-01-01

    Arsenic (As), chromium (Cr), mercury (Hg), and selenium (Se) were measured in composite whole-body samples of five fishes — bluegill (Lepomis macrochirus), common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), largemouth bass (Micropterus salmoides), and Sacramento blackfish (Orthodon microlepidotus) — from the San Joaquin River system to determine if concentrations were elevated from exposure to agricultural subsurface (tile) drainage. Except for Cr, the concentrations of these elements in fishes from one or more sites were elevated; however, only Se approached concentrations that may adversely affect survival, growth, or reproduction in warm water fishes. Moreover, only Se among the four measured elements exhibited a geographic (spatial) pattern that coincided with known inflows of tile drainage to the San Joaquin River and its tributaries. Historical data from the Grassland Water District (Grasslands; a region exposed to concentrated tile drainage) suggested that concentrations of Se in fishes were at maximum during or shortly after 1984 and have been slightly lower since then. The recent decline of Se concentrations in fishes from the Grasslands could be temporary if additional acreages of irrigated lands in this portion of the San Joaquin Valley must be tile-drained to protect agricultural crops from rising groundwater tables.

  16. Organochlorine compounds and trace elements in fish tissue and ancillary data for the Connecticut, Housatonic, and Thames river basins study unit, 1992-94

    USGS Publications Warehouse

    Coles, J.F.

    1996-01-01

    Concentrations of organochlorine compounds and trace elements were assayed in fish tissue collected from the Connecticut, Housatonic, and Thames River Basins Study Unit, 1992-94. These data were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the study unit. Ancillary data included are land-use categories by percentage of the sampling-site basins and the size, gender, and age of the individual fish collected for this study. Concentrations of 28 organochlorine compounds in composited whole fish samples were measured at 32 sites, and concentrations of 22 trace elements in composited fish liver samples were measured at 14 of the 32 sites. Most frequently detected organochlorines were DDT related compounds at 31 sites, total PCBs at 28 sites, and chlordane related compounds at 25 sites. Concentrations of total PCBs in fish tissue were generally higher at the large river sites than at the smaller tributary sites. Concentrations of chlordane-related compounds in fish tissue were higher at sites from more urbanized basins than at sites from predominately agriculture and forested basins. Concentrations of the DDT related compounds were undifferentiated among sites comprising different land uses. Trace elements detected at all 14 sites included boron, copper, iron, manganese, molybdenum, selenium, and zinc. Trace elements detected at 10 or more sites included arsenic, mercury, silver, strontium, and vanadium. Antimony, beryllium, and uranium were not detected at any site.

  17. [Effects of organic selenium supplement on glutathione peroxidase activities: a meta-analysis of randomized controlled trials].

    PubMed

    Jiang, Xia; Dong, Jiayi; Wang, Bo; Yin, Xuebin; Qin, Liqiang

    2012-01-01

    To study the effects of organic selenium supplementation on glutathione peroxidase (GPx) activities. Randomized controlled trials (RCT) published from January 1988 to December 2010 on the relationship between organic selenium supplementation and GPx activities were collected. Meta-analysis was applied to estimate the combined standardized mean difference (SMD) and 95% confidence interval (95% CI). A total of 10 RCTs were included. The number of studies observing GPx activities in plasma, erythrocyte and platelet was 8, 5 and 5, respectively. Compared with the controls, the combined SMD (95% CI) of GPx activities in plasma, erythrocyte and platelet of subjects supplemented with organic selenium was 0.46 (0.09 - 0.83), 0.36 (0.02 - 0.69) and 0.56 (-0.02 - 1.15). Supplementation with organic selenium increases GPx activities in healthy adults.

  18. Selenium and Lung Cancer: A Systematic Review and Meta Analysis

    PubMed Central

    Fritz, Heidi; Kennedy, Deborah; Fergusson, Dean; Fernandes, Rochelle; Cooley, Kieran; Seely, Andrew; Sagar, Stephen; Wong, Raimond; Seely, Dugald

    2011-01-01

    Background Selenium is a natural health product widely used in the treatment and prevention of lung cancers, but large chemoprevention trials have yielded conflicting results. We conducted a systematic review of selenium for lung cancers, and assessed potential interactions with conventional therapies. Methods and Findings Two independent reviewers searched six databases from inception to March 2009 for evidence pertaining to the safety and efficacy of selenium for lung cancers. Pubmed and EMBASE were searched to October 2009 for evidence on interactions with chemo- or radiation-therapy. In the efficacy analysis there were nine reports of five RCTs and two biomarker-based studies, 29 reports of 26 observational studies, and 41 preclinical studies. Fifteen human studies, one case report, and 36 preclinical studies were included in the interactions analysis. Based on available evidence, there appears to be a different chemopreventive effect dependent on baseline selenium status, such that selenium supplementation may reduce risk of lung cancers in populations with lower baseline selenium status (serum<106 ng/mL), but increase risk of lung cancers in those with higher selenium (≥121.6 ng/mL). Pooling data from two trials yielded no impact to odds of lung cancer, OR 0.93 (95% confidence interval 0.61–1.43); other cancers that were the primary endpoints of these trials, OR 1.51 (95%CI 0.70–3.24); and all-cause-death, OR 0.93 (95%CI 0.79–1.10). In the treatment of lung cancers, selenium may reduce cisplatin-induced nephrotoxicity and side effects associated with radiation therapy. Conclusions Selenium may be effective for lung cancer prevention among individuals with lower selenium status, but at present should not be used as a general strategy for lung cancer prevention. Although promising, more evidence on the ability of selenium to reduce cisplatin and radiation therapy toxicity is required to ensure that therapeutic efficacy is maintained before any broad clinical recommendations can be made in this context. PMID:22073154

  19. Cross sectional study of serum selenium concentration and esophageal squamous dysplasia in western Kenya.

    PubMed

    Pritchett, Natalie R; Burgert, Stephen L; Murphy, Gwen A; Brockman, John D; White, Russell E; Lando, Justus; Chepkwony, Robert; Topazian, Mark D; Abnet, Christian C; Dawsey, Sanford M; Mwachiro, Michael M

    2017-12-08

    Low serum selenium status has been associated with increased risk of esophageal squamous cell carcinoma (ESCC). East Africa is a region of high ESCC incidence and is known to have low soil selenium levels, but this association has not previously been evaluated. In this study we assessed the association of serum selenium concentration and the prevalence of esophageal squamous dysplasia (ESD), the precursor lesion of ESCC, in a cross-sectional study of subjects from Bomet, Kenya. 294 asymptomatic adult residents of Bomet, Kenya completed questionnaires and underwent endoscopy with Lugol's iodine staining and biopsy for detection of ESD. Serum selenium concentrations were measured by instrumental neutron activation analysis. Odds ratios (OR) and confidence intervals (95% CI) for associations between serum selenium and ESD were calculated using unconditional logistic regression. The mean serum selenium concentration was 85.5 (±28.3) μg/L. Forty-two ESD cases were identified (14% of those screened), including 5 (12%) in selenium quartile 1 (Q1), 5 (12%) in Q2, 15 (36%) in Q3, and 17 (40%) in Q4. Higher serum selenium was associated with prevalence of ESD (Q4 vs Q1: OR: 3.03; 95% CI: 1.05-8.74) and this association remained after adjusting for potential confounders (Q4 vs Q1: OR: 3.87; 95% CI: 1.06-14.19). This is the first study to evaluate the association of serum selenium concentration and esophageal squamous dysplasia in an African population at high risk for ESCC. We found a positive association between higher serum selenium concentration and prevalence of ESD, an association contrary to our original hypothesis. Further work is needed to better understand the role of selenium in the etiology of ESCC in this region, and to develop effective ESCC prevention and control strategies.

  20. Effects of piping irrigation laterals on selenium and salt loads, Montrose Arroyo Basin, western Colorado

    USGS Publications Warehouse

    Butler, D.L.

    2001-01-01

    Selenium and salinity are water-quality issues in the Upper Colorado River Basin. Certain water bodies in the lower Gunnison River Basin, including the lower Gunnison River and the Uncompahgre River, exceed the State standard for selenium of 5 micrograms per liter. Remediation methods to reduce selenium and salt loading in the lower Gunnison River Basin were examined. A demonstration project in Montrose Arroyo, located in the Uncompahgre River Basin near Montrose, was done during 1998-2000 to determine the effects on selenium and salt loads in Montrose Arroyo from replacing 8.5 miles of open-ditch irrigation laterals with 7.5 miles of pipe. The participants in the project were the National Irrigation Water Quality Program, the Colorado River Basin Salinity Control Program, the Uncompahgre Valley Water Users Association, and the U.S. Geological Survey. The placing of five laterals in pipe significantly decreased selenium loads in Montrose Arroyo. The selenium load at the outflow monitoring site was about 194 pounds per year less (28-percent decrease) in the period after the laterals were placed in pipe. More than 90 percent of the decrease in selenium load was attributed to a decrease in ground-water load. Salt loads also decreased because of the lateral project, but by a smaller percentage than the selenium loads. The salt load at the outflow site on Montrose Arroyo was about 1,980 tons per year less in the post-project period than in the pre-project period. All of the effects of the demonstration project on selenium and salt loads probably were not measured by this study because some of the lateral leakage that was eliminated had not necessarily discharged to Montrose Arroyo upstream from the monitoring sites. A greater decrease in selenium loads relative to salt loads may have been partially the result of decreases in selenium concentrations in ground water in some areas.

Top