Science.gov

Sample records for elements mediate mitogen-activated

  1. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression

    PubMed Central

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-01-01

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  2. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses.

    PubMed

    Yang, Yanyan; Kim, Seung Cheol; Yu, Tao; Yi, Young-Su; Rhee, Man Hee; Sung, Gi-Ho; Yoo, Byong Chul; Cho, Jae Youl

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  3. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982

  4. p38 mitogen-activated protein kinase mediates sidestream cigarette smoke-induced endothelial permeability.

    PubMed

    Low, Brad; Liang, Mei; Fu, Jian

    2007-07-01

    Second-hand smoke is associated with increased risk of cardiovascular diseases. So far, little is known about the signaling mechanisms of second-hand smoke-induced vascular dysfunction. Endothelial junctions are fundamental structures important for maintaining endothelial barrier function. Our study showed that sidestream cigarette smoke (SCS), a major component of second-hand smoke, was able to disrupt endothelial junctions and increase endothelial permeability. Sidestream cigarette smoke stimulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and myosin light chain (MLC). A selective inhibitor of p38 MAPK (SB203580) prevented SCS-induced loss of endothelial barrier integrity as evidenced by transendothelial resistance measurements. Resveratrol, an antioxidant that was able to inhibit SCS-induced p38 MAPK and MLC phosphorylation, also protected endothelial cells from the damage. Thus, p38 MAPK mediates SCS-induced endothelial permeability. Inhibition of p38 MAPK may have therapeutic potential for second-hand smoke-induced vascular injury.

  5. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants.

    PubMed

    Lee, Hyoung Yool; Back, Kyoungwhan

    2016-04-01

    Melatonin enhances pathogen resistance by inducing the expression of a number of plant defense-related genes. To examine whether the melatonin-mediated pathogen resistance is associated with mitogen-activated protein kinase (MAPK) cascades, Arabidopsis and tobacco leaves were treated with melatonin and investigated for MAPK activation using an antiphospho-p44/42 MAPK (Erk1/2) monoclonal antibody. Two MAPKs, MPK3 and MPK6, were activated rapidly and transiently by 1 μm melatonin treatment in Arabidopsis. Its tobacco ortholog MAPKs were also activated. The activation of MPK3 and MPK6 by 2-hydroxymelatonin and N-acetylserotonin was also observed, albeit to a lesser degree than that by melatonin. Furthermore, MAPK activation by melatonin was uncoupled from G-protein signaling, because melatonin efficiently activated two MAPKs in a G-protein β knockout mutant (agb1). Suppression of both MPK3 and MPK6 in transgenic Arabidopsis exhibited significant decreases in the induction of defense-related gene expression and pathogen resistance relative to wild-type plants. Using an array of MAP kinase kinase (MKK) knockout mutants, we found that four MKKs, namely MKK4, MKK5, MKK7, and MKK9, are responsible for the activation of MPK3 and MPK6 by melatonin, indicating that melatonin-mediated innate immunity is triggered by MAPK signaling through MKK4/5/7/9-MPK3/6 cascades.

  6. Mitogen-activated protein kinase p38 mediates regulation of chondrocyte differentiation by parathyroid hormone.

    PubMed

    Zhen, X; Wei, L; Wu, Q; Zhang, Y; Chen, Q

    2001-02-16

    Parathyroid hormone (PTH) and its related peptide regulate endochondral ossification by inhibiting chondrocyte differentiation toward hypertrophy. However, the intracellular pathway for transducing PTH/PTH-related peptide signals in chondrocytes remains unclear. Here, we show that this pathway is mediated by mitogen-activated protein kinase (MAPK) p38. Incubation of hypertrophic chondrocytes with PTH (1-34) induces an inhibition of p38 kinase activity in a time- and dose-dependent manner. Inhibition of protein kinase C prevents PTH-induced p38 MAPK inhibition, whereas inhibition of protein kinase A has no effect. Thus, protein kinase C, but not protein kinase A, is required for the inhibition of p38 MAPK by PTH. Treatment of hypertrophic chondrocytes by PTH or by p38 MAPK inhibitor SB203580 up-regulates Bcl-2, suggesting that Bcl-2 lies downstream of p38 MAPK in the PTH signaling pathway. Inhibition of p38 MAPK in hypertrophic chondrocytes by either PTH, SB303580, or both together leads to a decrease of hypertrophic marker type X collagen mRNA and an increase of the expression of prehypertrophic marker cartilage matrix protein. Therefore, inhibition of p38 converts a hypertrophic cell phenotype to a prehypertrophic one, thereby preventing precocious chondrocyte hypertrophy. Taken together, these data suggest a major role for p38 MAPK in transmitting PTH signals to regulate chondrocyte differentiation.

  7. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    USDA-ARS?s Scientific Manuscript database

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  8. Hyperosmolar sodium chloride, p38 mitogen activated protein and cytokine-mediated inflammation.

    PubMed

    Dinarello, Charles A

    2009-01-01

    Although there is increasing clinical evidence that high salt intake contributes to cardiovascular events and deaths seemingly independent of hypertension, the molecular mechanism for increased atherogenesis remains unclear. Vessel wall inflammation secondary to proinflammatory cytokines is one mechanism for atherogenesis. The role of mitogen activated protein kinase (MAPK) p38 in cytokine production such as IL-1, TNF-alpha, and IL-8 are well established. The link between inflammation and salt intake likely includes p38 MAPK as hyperosmolar sodium chloride triggers phosphorylation of p38 MAPK and stimulates gene expression and synthesis of proinflammatory cytokines. Hence a possible link of high salt intake, inflammation, and atherogenesis may be one molecular mechanism for the association of high salt intake and cardiovascular events.

  9. Mitogen-activated protein kinase signaling controls basal and oncostatin M-mediated JUNB gene expression.

    PubMed

    Hicks, Mellissa J; Hu, Qiuping; Macrae, Erin; DeWille, James

    2015-05-01

    The mitogen-activated protein kinase (MAPK) pathway is aberrantly activated in many human cancers, including breast cancer. Activation of MAPK signaling is associated with the increased expression of a wide range of genes that promote cell survival, proliferation, and migration. This report investigated the influence of MAPK signaling on the regulation and expression of JUNB in human breast cancer cell lines. JUNB has been associated with tumor suppressor and oncogenic functions, with most reports describing JUNB as an oncogene in breast cancer. Our results indicated that JUNB expression is elevated in MCF10A(met), SKBR3, and MDA-MB-231 human breast cancer cell lines compared to nontransformed MCF10A mammary epithelial cells. Increased RAS/MAPK signaling in MCF10A(met) cells correlates with the increased association of RNA polymerase II (Pol II) phosphorylated on serine 5 (Pol IIser5p) with the JUNB proximal promoter. Pol IIser5p is the "transcription initiating" form of Pol II. Treatment with U0126, a MAPK pathway inhibitor, reduces Pol IIser5p association with the JUNB proximal promoter and reduces JUNB expression. Oncostatin M (OSM) enhances MAPK and STAT3 signaling and significantly induces JUNB expression. U0126 treatment reduces OSM-induced Pol IIser5p binding to the JUNB proximal promoter and JUNB expression, but does not reduce pSTAT3 levels or the association of pSTAT3 with the JUNB proximal promoter. These results demonstrate that the MAPK pathway plays a primary role in the control of JUNB gene expression by promoting the association of Pol IIser5p with the JUNB proximal promoter.

  10. Mitogen-Activated Protein Kinases Mediate Upregulation of Hypothalamic AT1 Receptors in Heart Failure Rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Weiss, Robert M.; Felder, Robert B.

    2009-01-01

    In heart failure (HF), angiotensin type-1 receptor (AT1-R) expression is upregulated in brain regions regulating sympathetic drive, blood pressure and body fluid homeostasis. However, the mechanism by which brain AT1-R are upregulated in HF remains unknown. The present study examined the hypothesis that the angiotensin II (ANG II)-triggered mitogen-activated protein kinases (MAPK) p44/42, p38 and c-Jun N-terminal kinase (JNK) contribute to upregulation of the AT1-R in the hypothalamus of rats with HF. AT1-R protein, AT1-R mRNA and AT1-R immunoreactivity increased in the paraventricular nucleus of hypothalamus (PVN) and the subfornical organ (SFO) of rats with ischemia-induced HF, compared with sham-operated controls. Phosphorylated p44/42 MAPK, JNK, and p38 MAPK also increased in PVN and SFO. A 4-week intracerebroventricular (ICV) infusion of the AT1-R antagonist losartan decreased AT1-R protein and phosphorylation of p44/42 MAPK, JNK and p38 MAPK in the HF rats. A 4-week ICV infusion of the p44/42 MAPK inhibitor PD98059 or the JNK inhibitor SP600125 significantly decreased AT1-R protein and AT1-R immunoreactivity in the PVN and SFO, but the p38 MAPK inhibitor SB203580 did not. Treatment with ICV losartan, PD98059 and SP600125 had no effect on AT1-R expression by Western blot in sham-operated rats. In untreated HF rats 4 weeks after coronary ligation, a 3-hour ICV infusion of PD98059, SP600125 or losartan reduced AT1-R mRNA in PVN and SFO. These data indicate that MAPK plays an important role in the upregulation of AT1-R in the rat forebrain in heart failure, and suggest that ANG II upregulates its own receptor by this mechanism. PMID:18768402

  11. Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction.

    PubMed

    Takahashi, Yoshihiro; Berberich, Thomas; Miyazaki, Atsushi; Seo, Shigemi; Ohashi, Yuko; Kusano, Tomonobu

    2003-12-01

    Polyamines (PAs) play important roles in cell proliferation, growth and environmental stress responses of all living organisms. In this study, we examine whether these compounds act as signal mediators. Spermine (Spm) specifically activated protein kinases of tobacco leaves, which were identified as salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), using specific antibodies. Upon Spm treatment, upregulation of WIPK, but not SIPK, was observed. Spm-induced mitogen-activated protein kinases (MAPKs) activation and WIPK upregulation were prevented upon pre-treatment with antioxidants and Ca2+ channel blockers. Additionally, Spm specifically stimulated expression of the alternative oxidase (AOX) gene, which was disrupted by these antioxidants and Ca2+ channel blockers. Bongkrekic acid (BK), an inhibitor of the opening of mitochondrial permeability transition (PT) pores, suppressed MAPKs activation and accumulation of WIPK and AOX mRNA. Our data collectively suggest that Spm causes mitochondrial dysfunction via a signalling pathway in which reactive oxygen species and Ca2+ influx are involved. As a result, the phosphorylation activities of the two MAPK enzymes SIPK and WIPK are stimulated.

  12. Mitogen-activated Protein Kinase Signaling Mediates Phosphorylation of Polycomb Ortholog Cbx7*

    PubMed Central

    Wu, Hsan-au; Balsbaugh, Jeremy L.; Chandler, Hollie; Georgilis, Athena; Zullow, Hayley; Shabanowitz, Jeffrey; Hunt, Donald F.; Gil, Jesus; Peters, Gordon; Bernstein, Emily

    2013-01-01

    Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function. PMID:24194518

  13. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    SciTech Connect

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J. . E-mail: pestka@msu.edu

    2006-06-15

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1{beta} intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38{sup +} cells. DON-induced p38 activation occurred exclusively in the CD14{sup +} monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response.

  14. Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages.

    PubMed

    Gumireddy, Kiranmai; Reddy, C Damodar; Swamy, Narasimha

    2003-09-01

    Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway.

  15. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3*

    PubMed Central

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P.; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T.; Arumäe, Urmas; Lindholm, Dan

    2016-01-01

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. PMID:26984409

  16. p38 Mitogen-Activated Protein Kinase-Dependent and -Independent Signaling of mRNA Stability of AU-Rich Element-Containing Transcripts

    PubMed Central

    Frevel, Mathias A. E.; Bakheet, Tala; Silva, Aristobolo M.; Hissong, John G.; Khabar, Khalid S. A.; Williams, Bryan R. G.

    2003-01-01

    Adenylate/uridylate-rich element (ARE)-mediated mRNA turnover is an important regulatory component of gene expression for innate and specific immunity, in the hematopoietic system, in cellular growth regulation, and for many other cellular processes. This diversity is reflected in the distribution of AREs in the human genome, which we have established as a database of more than 900 ARE-containing genes that may utilize AREs as a means of controlling cellular mRNA levels. The p38 mitogen-activated protein kinase (MAP kinase) pathway has been implicated in regulating the stability of nine ARE-containing transcripts. Here we explored the entire spectrum of ARE-containing genes for p38-dependent regulation of ARE-mediated mRNA turnover with a custom cDNA array containing probes for 950 ARE mRNAs. The human monocytic cell line THP-1 treated with lipopolysaccharide (LPS) was used as a reproducible cellular model system that allowed us to precisely control the conditions of mRNA induction and decay in the absence and presence of the p38 inhibitor SB203580. This approach allowed us to establish an LPS-induced ARE mRNA expression profile in human monocytes and determine the half-lives of 470 AU-rich mRNAs. Most importantly, we identified 42 AU-rich genes, previously unrecognized, that show p38-dependent mRNA stabilization. In addition to a number of cytokines, several interesting novel AU-rich transcripts likely to play a role in macrophage activation by LPS exhibited p38-dependent transcript stabilization, including macrophage-specific colony-stimulating factor 1, carbonic anhydrase 2, Bcl2, Bcl2-like 2, and nuclear factor erythroid 2-like 2. Finally, the identification of the p38-dependent upstream activator MAP kinase kinase 6 as a member of this group identifies a positive feedback loop regulating macrophage signaling via p38 MAP kinase-dependent transcript stabilization. PMID:12509443

  17. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59.

    PubMed

    Li, Fangjun; Li, Maoying; Wang, Ping; Cox, Kevin L; Duan, Liusheng; Dever, Jane K; Shan, Libo; Li, Zhaohu; He, Ping

    2017-09-01

    Drought is a key limiting factor for cotton (Gossypium spp.) production, as more than half of the global cotton supply is grown in regions with high water shortage. However, the underlying mechanism of the response of cotton to drought stress remains elusive. By combining genome-wide transcriptome profiling and a loss-of-function screen using virus-induced gene silencing, we identified Gossypium hirsutum GhWRKY59 as an important transcription factor that regulates the drought stress response in cotton. Biochemical and genetic analyses revealed a drought stress-activated mitogen-activated protein (MAP) kinase cascade consisting of GhMAP3K15-Mitogen-activated Protein Kinase Kinase 4 (GhMKK4)-Mitogen-activated Protein Kinase 6 (GhMPK6) that directly phosphorylates GhWRKY59 at residue serine 221. Interestingly, GhWRKY59 is required for dehydration-induced expression of GhMAPK3K15, constituting a positive feedback loop of GhWRKY59-regulated MAP kinase activation in response to drought stress. Moreover, GhWRKY59 directly binds to the W-boxes of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2 (GhDREB2), which encodes a dehydration-inducible transcription factor regulating the plant hormone abscisic acid (ABA)-independent drought response. Our study identified a complete MAP kinase cascade that phosphorylates and activates a key WRKY transcription factor, and elucidated a regulatory module, consisting of GhMAP3K15-GhMKK4-GhMPK6-GhWRKY59-GhDREB2, that is involved in controlling the cotton drought response. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Stevioside induced cytotoxicity in colon cancer cells via reactive oxygen species and mitogen-activated protein kinase signaling pathways-mediated apoptosis.

    PubMed

    Ren, Hai-Peng; Yin, Xiao-Yan; Yu, Hai-Ying; Xiao, Hai-Feng

    2017-04-01

    The role of mitogen-activated protein kinase (MAPK) signaling pathways in cell growth and differentiation has been well established. The present study aimed to investigate the anti-proliferative effect of stevioside on human colon cancer HT-29 cells. Additionally, the effect of stevioside on cell cycle arrest and MAPK signaling pathways in HT-29 cells was explored. Stevioside was observed to significantly inhibit cancer cell growth at a dose of 5 µM at 48 and 72 h. A dose-dependent increase in the apoptosis rate was observed with cell cycle arrest at G2/M phase. In addition, caspase-9 and caspase-3 activity also increased. An increase in reactive oxygen species (ROS) production and a decrease in the mitochondrial membrane potential indicated that the mitochondrial-mediated intrinsic pathway is responsible for apoptotic activity. These results were additionally verified by the elevated expression level of phosphorylated p38 and extracellular signal-regulated kinase mitogen-activated protein kinases (MAPKs). Additionally, by inhibiting ROS production and MAPK activation, the antiproliferative effect of stevioside was suppressed, confirming the hypothesis that ROS and MAPK proteins induce apoptosis in human colon cancer HT-29 cells.

  19. Stevioside induced cytotoxicity in colon cancer cells via reactive oxygen species and mitogen-activated protein kinase signaling pathways-mediated apoptosis

    PubMed Central

    Ren, Hai-Peng; Yin, Xiao-Yan; Yu, Hai-Ying; Xiao, Hai-Feng

    2017-01-01

    The role of mitogen-activated protein kinase (MAPK) signaling pathways in cell growth and differentiation has been well established. The present study aimed to investigate the anti-proliferative effect of stevioside on human colon cancer HT-29 cells. Additionally, the effect of stevioside on cell cycle arrest and MAPK signaling pathways in HT-29 cells was explored. Stevioside was observed to significantly inhibit cancer cell growth at a dose of 5 µM at 48 and 72 h. A dose-dependent increase in the apoptosis rate was observed with cell cycle arrest at G2/M phase. In addition, caspase-9 and caspase-3 activity also increased. An increase in reactive oxygen species (ROS) production and a decrease in the mitochondrial membrane potential indicated that the mitochondrial-mediated intrinsic pathway is responsible for apoptotic activity. These results were additionally verified by the elevated expression level of phosphorylated p38 and extracellular signal-regulated kinase mitogen-activated protein kinases (MAPKs). Additionally, by inhibiting ROS production and MAPK activation, the antiproliferative effect of stevioside was suppressed, confirming the hypothesis that ROS and MAPK proteins induce apoptosis in human colon cancer HT-29 cells. PMID:28454400

  20. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1

    PubMed Central

    Zhu, Weiguo; Oxford, Gerry S.

    2009-01-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells coexpressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wildtype or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 coexpressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85α (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF. PMID:17324588

  1. Stress-responsive JNK mitogen-activated protein kinase mediates aspirin-induced suppression of B16 melanoma cellular proliferation

    PubMed Central

    Ordan, Orly; Rotem, Ronit; Jaspers, Ilona; Flescher, Eliezer

    2003-01-01

    Available anticancer drugs do not seem to modify the prognosis of metastatic melanoma. Salicylate and acetyl salicylic acid (aspirin) were found to suppress growth in a number of transformed cells, that is, prostate and colon. Therefore, we studied the direct effects of aspirin on metastatic B16 melanoma cells. Aspirin at a plasma-attainable and nontoxic level suppressed the proliferation of B16 cells. Aspirin induced the activation of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Inhibition of JNK, but not p38, decreased the suppressive effect of aspirin upon the proliferation of B16 cells. The aspirin-induced reduction in B16 proliferation was cumulative over time. Aspirin and the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) induced B16 cell death synergistically. In addition to the murine B16 cell line, the proliferation of SK-28 human melanoma cells was also suppressed by aspirin. In conclusion, aspirin suppresses the proliferation of metastatic B16 cells in a JNK-dependent mechanism. PMID:12684272

  2. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1.

    PubMed

    Zhu, Weiguo; Oxford, Gerry S

    2007-04-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells co-expressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wild-type or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 co-expressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85alpha (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF.

  3. Mitogen-Activated Protein Kinase Hog1 Mediates Adaptation to G1 Checkpoint Arrest during Arsenite and Hyperosmotic Stress▿

    PubMed Central

    Migdal, Iwona; Ilina, Yulia; Tamás, Markus J.; Wysocki, Robert

    2008-01-01

    Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest. PMID:18552285

  4. Angiotensin II Triggered p44/42 Mitogen-Activated Protein Kinase Mediates Sympathetic Excitation in Heart Failure Rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Weiss, Robert M.; Felder, Robert B.

    2009-01-01

    Angiotensin II (ANG II), acting via angiotensin type 1 receptors (AT1-R) in the brain, activates the sympathetic nervous system in heart failure (HF). We recently reported that ANG II stimulates mitogen-activated protein kinase (MAPK) to upregulate brain AT1-R in HF rats. In this study we tested the hypothesis that ANG II-activated MAPK signaling pathways contribute to sympathetic excitation in HF. Intracerebroventricular (ICV) administration of PD98059 and UO126, two selective p44/42 MAPK inhibitors, induced significant decreases in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) in HF rats, but had no effect on these variables in SHAM rats. Pretreatment with losartan attenuated the effects of PD98059. ICV administration of the p38 MAPK inhibitor SB203580 and the c-Jun N-terminal kinase inhibitor SP600125 had no effect on MAP, HR or RSNA in HF. The phosphatidylinositol-3 kinase inhibitor LY294002 induced a small decrease in MAP and HR, but no change in RSNA. Immunofluorescent staining demonstrated increased p44/42 MAPK activity in neurons of the paraventricular nucleus of the hypothalamus (PVN) of HF rats, co-localized with Fra-like activity (indicating chronic neuronal excitation). ICV PD98059 and UO126 reduced Fra-like activity in PVN neurons in HF rats. In confirmatory acute studies, ICV ANG II increased MAP, HR and RSNA in baroreceptor-denervated rats and Fra-LI immunoreactivity in the PVN of neurally intact rats. Central administration of PD98059 markedly reduced these responses. These data demonstrate that intracellular p44/42 MAPK activity contributes to ANG II-induced PVN neuronal excitation and augmented sympathetic nerve activity in rats with HF. PMID:18574076

  5. Commitment to the CD4 lineage mediated by extracellular signal-related kinase mitogen-activated protein kinase and lck signaling.

    PubMed

    Sharp, L L; Hedrick, S M

    1999-12-15

    The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.

  6. Oncogenic K-Ras and Basic Fibroblast Growth Factor Prevent FAS-Mediated Apoptosis in Fibroblasts through Activation of Mitogen-Activated Protein Kinase

    PubMed Central

    Kazama, Hirotaka; Yonehara, Shin

    2000-01-01

    By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis. PMID:10662780

  7. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress.

    PubMed

    Xing, Yu; Chen, Wei-hua; Jia, Wensuo; Zhang, Jianhua

    2015-09-01

    Superoxide dismutases (SODs) are involved in plant adaptive responses to biotic and abiotic stresses but the upstream signalling process that modulates their expression is not clear. Expression of two iron SODs, FSD2 and FSD3, was significantly increased in Arabidopsis in response to NaCl treatment but blocked in transgenic MKK5-RNAi plant, mkk5. Using an assay system for transient expression in protoplasts, it was found that mitogen-activated protein kinase kinase 5 (MKK5) was also activated in response to salt stress. Overexpression of MKK5 in wild-type plants enhanced their tolerance to salt treatments, while mkk5 mutant exhibited hypersensitivity to salt stress in germination on salt-containing media. Moreover, another kinase, MPK6, was also involved in the MKK5-mediated iron superoxide dismutase (FSD) signalling pathway in salt stress. The kinase activity of MPK6 was totally turned off in mkk5, whereas the activity of MPK3 was only partially blocked. MKK5 interacted with the MEKK1 protein that was also involved in the salt-induced FSD signalling pathway. These data suggest that salt-induced FSD2 and FSD3 expressions are influenced by MEKK1 via MKK5-MPK6-coupled signalling. This MAP kinase cascade (MEKK1, MKK5, and MPK6) mediates the salt-induced expression of iron superoxide dismutases.

  8. Mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors sensitize reduced glucocorticoid response mediated by TNF{alpha} in human epidermal keratinocytes (HaCaT)

    SciTech Connect

    Onda, Kenji . E-mail: knjond@ps.toyaku.ac.jp; Nagashima, Masahiro; Kawakubo, Yo; Inoue, Shota; Hirano, Toshihiko; Oka, Kitaro

    2006-12-08

    Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) {alpha} reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNF{alpha} was not accompanied by changes in mRNA expressions of GR isoforms ({alpha} or {beta}). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNF{alpha}. Additionally, we observed that TNF{alpha} reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNF{alpha}-mediated GC insensitivity. Our data suggest that overexpression of TNF{alpha} leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.

  9. p38 mitogen-activated protein kinase mediates hyperosmolarity-induced vasoconstriction through myosin light chain phosphorylation and actin polymerization in rat aorta.

    PubMed

    Sasahara, Tomoya; Yayama, Katsutoshi; Okamoto, Hiroshi

    2013-01-01

    Hyperosmotic stress induces the contractile response of vascular smooth muscle cells (VSMCs). Previous studies have demonstrated that cytoskeleton reorganization and Rho/Rho-kinase-mediated inactivation of myosin light chain phosphatase (MLCP) play an important role in hyperosmotic vasoconstriction, but the precise mechanism is unknown. This study aimed to investigate the contractile response of endothelium-denuded rings of rat aortas to hyperosmolar sucrose (160 mM) in the presence or absence of inhibitors for various protein kinases. We found that the hyperosmotic constriction of aortic rings was attenuated not only by ML-7 or hydroxyfasudil, specific inhibitor for myosin light chain kinase (MLCK) or Rho-kinase, respectively, but also by SB203580, a specific inhibitor for p38 mitogen-activated kinase (p38 MAPK). Hyperosmolar sucrose evoked a transient increase in cytosolic free Ca(2+) in rat VSMCs, and this response was not affected by SB203580. Western blot analysis of proteins extracted from rings showed that the hyperosmolar sucrose stimulated phosphorylation of the Rho-kinase-mediated myosin phosphatase target subunit 1, myosin light chain (MLC), and p38 MAPK. The experiments performed using a combination of the kinase inhibitors showed that hyperosmolarity-induced MLC phosphorylation is partially mediated via the SB203580-sensitive pathway and is independent of both MLCK and Rho-kinase-mediated inactivation of MLCP. Furthermore, the hyperosmolarity-induced increase in the F-actin/G-actin ratio in rings was attenuated not only by hydroxyfasudil but also by SB203580. These results suggest that p38 MAPK is involved in hyperosmotic vasoconstriction via stimulation of MLC phosphorylation and cytoskeleton reorganization through pathways independent of activation of MLCK and/or Rho-kinase-mediated mechanisms.

  10. Fungal Allergen β-Glucans Trigger p38 Mitogen-Activated Protein Kinase–Mediated IL-6 Translation in Lung Epithelial Cells

    PubMed Central

    Neveu, Wendy A.; Bernardo, Edgar; Allard, Jenna L.; Nagaleekar, Viswas; Wargo, Matthew J.; Davis, Roger J.; Iwakura, Yoichiro; Whittaker, Laurie A.

    2011-01-01

    In addition to immune cells, airway epithelial cells can contribute to and shape the immune response in the lung by secreting specific cytokines. IL-6 is a key factor in determining the effector fate of CD4+ T cells. Here we show that under basal conditions, the IL-6 gene is already highly expressed in lung epithelial cells, but not in immune cells resident in the lung. However, upon exposure of the lungs to fungal allergens, the direct contact of β-glucans present in the fungus cell wall with lung epithelial cells is sufficient to trigger the rapid synthesis and secretion of IL-6 protein. This posttranscriptional regulation of IL-6 in response to fungal extracts is mediated by the p38 mitogen-activated protein kinase pathway. The inhalation of β-glucans with a nonallergenic antigen is sufficient to provide an adjuvant effect that leads to mucous hyperplasia in the airways. Thus, β-glucans may constitute a common determinant of the fungal and plant-derived allergens responsible for some of the pathological features in allergic asthma. PMID:21642586

  11. p38 mitogen-activated protein kinase activation in amygdala mediates κ opioid receptor agonist U50,488H-induced conditioned place aversion.

    PubMed

    Zan, G-Y; Wang, Q; Wang, Y-J; Chen, J-C; Wu, X; Yang, C-H; Chai, J-R; Li, M; Liu, Y; Hu, X-W; Shu, X-H; Liu, J-G

    2016-04-21

    κ opioid receptor agonists produce aversive effects in rodents, however the underlying mechanisms remain unclear. Activation of p38 mitogen-activated protein kinase (MAPK) has been discovered to play a critical role in the modulation of affective behaviors. The present study was undertaken to detect the possible involvement of p38 MAPK in the aversive effects induced by κ opioid receptor activation. We found that the κ opioid receptor agonist trans-(±)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzenacetamide methanesulfonate salt (U50,488H) produced significant place aversion in mice as measured by the conditioned place preference procedure, accompanied with significant p38 MAPK activation in the amygdala, but not in the nucleus accumbens and hippocampus. Stereotaxic microinjection of the p38 MAPK inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridy-l)-1H-imidazole (SB203580) into amygdala significantly inhibited p38 MAPK activation and completely blocked the conditioned place aversion in mice. Thus, these results suggested that activation of p38 MAPK in the amygdala was required to mediate κ opioid receptor-induced aversive behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction.

    PubMed

    Origlia, Nicola; Righi, Massimo; Capsoni, Simona; Cattaneo, Antonino; Fang, Fang; Stern, David M; Chen, John Xi; Schmidt, Ann Marie; Arancio, Ottavio; Yan, Shi Du; Domenici, Luciano

    2008-03-26

    Soluble amyloid-beta (Abeta) peptide is likely to play a key role during early stages of Alzheimer's disease (AD) by perturbing synaptic function and cognitive processes. Receptor for advanced glycation end products (RAGE) has been identified as a receptor involved in Abeta-induced neuronal dysfunction. We investigated the role of neuronal RAGE in Abeta-induced synaptic dysfunction in the entorhinal cortex, an area of the brain important in memory processes that is affected early in AD. We found that soluble oligomeric Abeta peptide (Abeta42) blocked long-term potentiation (LTP), but did not affect long-term depression, paired-pulse facilitation, or basal synaptic transmission. In contrast, Abeta did not inhibit LTP in slices from RAGE-null mutant mice or in slices from wild-type mice treated with anti-RAGE IgG. Similarly, transgenic mice expressing a dominant-negative form of RAGE targeted to neurons showed normal LTP in the presence of Abeta, suggesting that neuronal RAGE functions as a signal transducer for Abeta-mediated LTP impairment. To investigate intracellular pathway transducing RAGE activation by Abeta, we used inhibitors of stress activated kinases. We found that inhibiting p38 mitogen-activated protein kinase (p38 MAPK), but not blocking c-Jun N-terminal kinase activation, was capable of maintaining LTP in Abeta-treated slices. Moreover, Abeta-mediated enhancement of p38 MAPK phosphorylation in cortical neurons was reduced by blocking antibodies to RAGE. Together, our results indicate that Abeta impairs LTP in the entorhinal cortex through neuronal RAGE-mediated activation of p38 MAPK.

  13. Sphingosine Kinase Mediates Vascular Endothelial Growth Factor-Induced Activation of Ras and Mitogen-Activated Protein Kinases

    PubMed Central

    Shu, Xiaodong; Wu, Weicheng; Mosteller, Raymond D.; Broek, Daniel

    2002-01-01

    Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor. PMID:12391145

  14. A Role for p38 Mitogen-activated Protein Kinase-mediated Threonine 30-dependent Norepinephrine Transporter Regulation in Cocaine Sensitization and Conditioned Place Preference*

    PubMed Central

    Mannangatti, Padmanabhan; NarasimhaNaidu, Kamalakkannan; Damaj, Mohamad Imad; Ramamoorthy, Sammanda; Jayanthi, Lankupalle Damodara

    2015-01-01

    The noradrenergic and p38 mitogen-activated protein kinase (p38 MAPK) systems are implicated in cocaine-elicited behaviors. Previously, we demonstrated a role for p38 MAPK-mediated norepinephrine transporter (NET) Thr30 phosphorylation in cocaine-induced NET up-regulation (Mannangatti, P., Arapulisamy, O., Shippenberg, T. S., Ramamoorthy, S., and Jayanthi, L. D. (2011) J. Biol. Chem. 286, 20239–20250). The present study explored the functional interaction between p38 MAPK-mediated NET regulation and cocaine-induced behaviors. In vitro cocaine treatment of mouse prefrontal cortex synaptosomes resulted in enhanced NET function, surface expression, and phosphorylation. Pretreatment with PD169316, a p38 MAPK inhibitor, completely blocked cocaine-mediated NET up-regulation and phosphorylation. In mice, in vivo administration of p38 MAPK inhibitor SB203580 completely blocked cocaine-induced NET up-regulation and p38 MAPK activation in the prefrontal cortex and nucleus accumbens. When tested for cocaine-induced locomotor sensitization and conditioned place preference (CPP), mice receiving SB203580 on cocaine challenge day or on postconditioning test day exhibited significantly reduced cocaine sensitization and CPP. A transactivator of transcription (TAT) peptide strategy was utilized to test the involvement of the NET-Thr30 motif. In vitro treatment of synaptosomes with TAT-NET-Thr30 (wild-type peptide) completely blocked cocaine-mediated NET up-regulation and phosphorylation. In vivo administration of TAT-NET-Thr30 peptide but not TAT-NET-T30A (mutant peptide) completely blocked cocaine-mediated NET up-regulation and phosphorylation. In the cocaine CPP paradigm, mice receiving TAT-NET-Thr30 but not TAT-NET-T30A on postconditioning test day exhibited significantly reduced cocaine CPP. Following extinction, TAT-NET-Thr30 when given prior to cocaine challenge significantly reduced reinstatement of cocaine CPP. These results demonstrate that the direct inhibition of p38

  15. Effect of Hyperketonemia (Acetoacetate) on Nuclear Factor-κB and p38 Mitogen-Activated Protein Kinase Activation Mediated Intercellular Adhesion Molecule 1 Upregulation in Endothelial Cells

    PubMed Central

    Rains, Justin L.

    2015-01-01

    Abstract Background: Hyperketonemia is a pathological condition observed in patients with type 1 diabetes and ketosis-prone diabetes (KPD), which results in increased blood levels of acetoacetate (AA) and β-hydroxybutyrate (BHB). Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. We examined the hypothesis that hyperketonemia activates the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that regulate intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured with AA (0–8 mM) or BHB (0–10 mM) for 0–24 hr. Western blotting was used to determine NF-κB activation in whole-cell lysates. ICAM-1 expression was measured using flow cytometry. Results: Results show a 2.4-fold increase in NF-κB activation in cells treated with 8 mM AA compared to the control. BHB had little or no effect on NF-κB activation. Pretreatment with a reactive oxygen species (ROS) inhibitor [N-acetyl-l-cysteine (NAC)] reduced NF-κB to near-control levels. The expression of AA-induced ICAM-1 was significantly reduced when cells were pretreated with either NAC or p38 MAPK inhibitor. Conclusions: These results suggest that NF-κB and p38 MAPK mediate upregulation of ICAM-1 expression in endothelial cells exposed to elevated levels of AA, which may contribute to the development of vascular disease in diabetes. PMID:25489974

  16. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade.

    PubMed

    Liu, Yidong; Ren, Dongtao; Pike, Sharon; Pallardy, Stephen; Gassmann, Walter; Zhang, Shuqun

    2007-09-01

    Plant defense against pathogens often includes rapid programmed cell death known as the hypersensitive response (HR). Recent genetic studies have demonstrated the involvement of a specific mitogen-activated protein kinase (MAPK) cascade consisting of three tobacco MAPKs, SIPK, Ntf4 and WIPK, and their common upstream MAPK kinase (MAPKK or MEK), NtMEK2. Potential upstream MAPKK kinases (MAPKKKs or MEKKs) in this cascade include the orthologs of Arabidopsis MEKK1 and tomato MAPKKKalpha. Activation of the SIPK/Ntf4/WIPK pathway induces cell death with phenotypes identical to pathogen-induced HR at macroscopic, microscopic and physiological levels, including loss of membrane potential, electrolyte leakage and rapid dehydration. Loss of membrane potential in NtMEK2(DD) plants is associated with the generation of reactive oxygen species (ROS), which is preceded by disruption of metabolic activities in chloroplasts and mitochondria. We observed rapid shutdown of carbon fixation in chloroplasts after SIPK/Ntf4/WIPK activation, which can lead to the generation of ROS in chloroplasts under illumination. Consistent with a role of chloroplast-generated ROS in MAPK-mediated cell death, plants kept in the dark do not accumulate H(2)O(2) in chloroplasts after MAPK activation, and cell death is significantly delayed. Similar light dependency was observed in HR cell death induced by tobacco mosaic virus, which is known to activate the same MAPK pathway in an N-gene-dependent manner. These results suggest that activation of the SIPK/Ntf4/WIPK cascade by pathogens actively promotes the generation of ROS in chloroplasts, which plays an important role in the signaling for and/or execution of HR cell death in plants.

  17. p38 Mitogen-Activated Protein Kinase Mediates Lipopolysaccharide and Tumor Necrosis Factor Alpha Induction of Shiga Toxin 2 Sensitivity in Human Umbilical Vein Endothelial Cells▿ †

    PubMed Central

    Stone, Matthew K.; Kolling, Glynis L.; Lindner, Matthew H.; Obrig, Tom G.

    2008-01-01

    Escherichia coli O157:H7 Shiga toxin 2 (Stx2), one of the causative agents of hemolytic-uremic syndrome, is toxic to endothelial cells, including primary cultured human umbilical vein endothelial cells (HUVEC). This sensitivity of cells to Stx2 can be increased with either lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). The goal of the present study was to identify the intracellular signaling pathway(s) by which LPS and TNF-α sensitize HUVEC to the cytotoxic effects of Stx2. To identify these pathways, specific pharmacological inhibitors and small interfering RNAs were tested with cell viability endpoints. A time course and dose response experiment for HUVEC exposure to LPS and TNF-α showed that a relatively short exposure to either agonist was sufficient to sensitize the cells to Stx2 and that both agonists stimulated intracellular signaling pathways within a short time. Cell viability assays indicated that the p38 mitogen-activated protein kinase (MAPK) inhibitors SB202190 and SB203580 and the general protein synthesis inhibitor cycloheximide inhibited both the LPS and TNF-α sensitization of HUVEC to Stx2, while all other inhibitors tested did not inhibit this sensitization. Additionally, SB202190 reduced the cellular globotriaosylceramide content under LPS- and TNF-α-induced conditions. In conclusion, our results show that LPS and TNF-α induction of Stx2 sensitivity in HUVEC is mediated through a pathway that includes p38 MAPK. These results indicate that inhibition of p38 MAPK in endothelial cells may protect a host from the deleterious effects of Stx2. PMID:18086809

  18. Inhibition of activator protein 1 by barbiturates is mediated by differential effects on mitogen-activated protein kinases and the small G proteins ras and rac-1.

    PubMed

    Humar, Matjaz; Andriopoulos, Nikolaos; Pischke, Soeren E; Loop, Torsten; Schmidt, Rene; Hoetzel, Alexander; Roesslein, Martin; Pahl, Heike L; Geiger, Klaus K; Pannen, Benedikt H J

    2004-12-01

    Barbiturates are known to suppress protective immunity, and their therapeutic use is associated with nosocomial infections. Although barbiturates inhibit T cell proliferation, differentiation, and cytokine synthesis, only thiobarbiturates markedly reduce the activation of immune regulatory transcription factors such as nuclear factor-kappaB and nuclear factor of activated T cells. In this study, we investigated barbiturate-mediated effects on the regulation of the transcription factor activator protein 1 (AP-1) in primary T lymphocytes. We show that both thiobarbiturates and their oxy-analogs inhibit AP-1-dependent gene expression and AP-1 complex formation at clinically relevant doses. Furthermore, mitogen-activated protein (MAP) kinase activity, which transcriptionally and posttranslationally regulates AP-1 complex formation, is suppressed by most barbiturates. CD3/CD28- or phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced p38 and extracellular signal-regulated kinase 1/2 phosphorylation or c-jun NH2-terminal kinase (JNK) 1/2 kinase activity was significantly diminished by pentobarbital, thiamylal, secobarbital, or methohexital treatment. These barbiturates also inhibited the initiators of the MAP kinase cascade, the small G proteins ras and rac-1, and prevented binding to their partners raf-1 and PAK, respectively. Thiopental, unlike the other barbiturates, only reduced ras and JNK activity upon direct CD3/CD28 receptor engagement. Contrarily, upon PMA/ionomycin stimulation, thiopental blocked AP-1-dependent gene expression independently of the small G protein ras and MAP kinases, thus suggesting an additional, unknown mechanism of AP-1 regulation. In conclusion, our results contribute to the explanation of a clinically manifested immune suppression in barbiturate-treated patients and support the idea of a MAP kinase-independent regulation of AP-1 by PKC and calcium in human T cells.

  19. UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53.

    PubMed

    Chouinard, Nadine; Valerie, Kristoffer; Rouabhia, Mahmoud; Huot, Jacques

    2002-07-01

    Human keratinocytes respond to UV rays by developing a fast adaptive response that contributes to maintaining their functions and survival. We investigated the role of the mitogen-activated protein kinase pathways in transducing the UV signals in normal human keratinocytes. We found that UVA, UVB or UVC induced a marked and persistent activation of p38, whereas c-Jun N-terminal kinase or extracellular signal-regulated kinase were less or not activated respectively. Inhibition of p38 activity by expression of a dominant-negative mutant of p38 or with SB203580 impaired cell viability and led to an increase in UVB-induced apoptosis. This sensitization to apoptosis was independent of caspase activities. Inhibition of p38 did not sensitize transformed HaCaT keratinocytes to UVB-induced apoptosis. In normal keratinocytes, expression of a dominant-negative mutant of p53 increased UVB-induced cell death, pointing to a role for p53. In these cells, UVB triggered a p38-dependent phosphorylation of p53 on Ser-15. This phosphorylation was associated with an SB203580-sensitive accumulation of p53, even in the presence of a serine phosphatase inhibitor. Accumulated p53 was localized mainly in the cytoplasm, independently of CRM1 nuclear export. In HaCaT cells, p53 was localized exclusively in the nucleus and its distribution and level were not affected by UVB or p38 inhibition. However, UVB induced an SB203580-insensitive phosphorylation on Ser-15 of mutated p53. Overall, our results suggest that, in normal human keratinocytes, protection against UVB depends on p38-mediated phosphorylation and stabilization of p53 and is tightly associated with the cytoplasmic sequestration of wild-type p53. We conclude that the p38/p53 pathway plays a key role in the adaptive response of normal human keratinocytes against UV stress.

  20. Cellular mechanisms by which oxytocin mediates ovine endometrial prostaglandin F2alpha synthesis: role of G(i) proteins and mitogen-activated protein kinases.

    PubMed

    Burns, P D; Mendes, J O; Yemm, R S; Clay, C M; Nelson, S E; Hayes, S H; Silvia, W J

    2001-10-01

    Oxytocin stimulates a rapid increase in ovine endometrial prostaglandin (PG) F2alpha synthesis. The overall objective of these experiments was to investigate the cellular mechanisms by which oxytocin induces endometrial PGF2alpha synthesis. The objective of experiment 1 was to determine whether G(i) proteins mediate oxytocin-induced PGF2alpha synthesis. Uteri were collected from four ovary-intact ewes on Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. Pertussis toxin, an inhibitor of G(i) proteins, had no effect on the ability of oxytocin to induce PGF2alpha synthesis (P > 0.10). The objective of experiment 2 was to determine whether any of the three mitogen-activated protein kinases (MAPKs), extracellular signal regulated protein kinase (ERK1/2), c-Jun N-terminal/stress-activated protein kinase (JNK/SAPK), or p38 MAPK, mediate oxytocin-induced PGF(2alpha) synthesis. Eleven ovary-intact ewes were given an injection of oxytocin (10 IU; i.v.; n = 5) or physiological saline (i.v.; n = 6) on Day 15 postestrus. Uteri were collected 15 min after injection and caruncular endometrium was dissected. Endometrial homogenates were prepared and subjected to Western blotting. Membranes were probed for both total and phosphorylated forms of all three classes of MAPK. All classes of MAPK were detected in ovine endometrium, but oxytocin treatment had no effect on the expression of these proteins (P > 0.10). ERK1/2 was the only phosphorylated MAPK detected and its concentrations were higher in oxytocin-treated ewes (P < 0.01). The objective of experiment 3 was to further investigate the role of ERK1/2 during oxytocin-induced PGF2alpha synthesis. Uteri were collected from four ovary-intact ewes on Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. PD98059, a specific inhibitor of ERK1/2 activity, blocked the ability of oxytocin to stimulate PGF(2alpha synthesis in a dose

  1. Oxytocin- and vasopressin-induced growth of human small-cell lung cancer is mediated by the mitogen-activated protein kinase pathway.

    PubMed

    Péqueux, C; Keegan, B P; Hagelstein, M-T; Geenen, V; Legros, J-J; North, W G

    2004-12-01

    Malignant growth of small-cell lung carcinoma is promoted by various neuroendocrine autocrine/paracrine loops. Therefore, to interfere with this mitogenic process, it is crucial to elucidate the mechanisms involved. It is known that the oxytocin (OT) and vasopressin (VP) genes, normally transcriptionally restricted in their expression, are activated in small-cell lung cancer (SCLC), concomitantly with expression of their receptors (OTR, V1aR, V1bR/V3R and V2R). The aim of the present study was to characterize, in concentrations close to physiological and pharmacological conditions, intracellular signalling events triggered by OT and VP binding to their specific receptors in SCLC cells and to identify factors mediating OT- and VP-induced mitogenic effects on SCLC. Known agonists for OTR ([Thr4,Gly7]OT) and V1aR (F180), in addition to OT and VP, were able to elicit increases in cytosolic Ca2+ levels and this effect could be blocked using an OTR antagonist (OVTA) or a V1aR antagonist (SR49059) respectively. There was no activation of the cAMP pathway detected after VP, dDAVP (a V2R agonist), or OT treatment. Stimulation of SCLC cells with OT and VP led to an increase of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, maximal at 5 min, and the subsequent phosphorylation of its downstream target p90 ribosomal S6 kinase (p90RSK). Pre-incubation with OVTA and SR49059, and with inhibitors of phospholipase C (PLC), protein kinase C (PKC), mitogen-activated protein kinase/ERK kinase (MEK) 1/2 and a Ca2+ chelator significantly reduced OT- and VP-induced ERK1/2 phosphorylations. OVTA, SR49059 as well as MEK1/2 and PKC inhibitors also downregulated OT- and VP-induced p90RSK phosphorylation. In [3H]thymidine-uptake experiments, we subsequently observed that PLC, Ca2+, PKC and ERK1/2 are absolutely required for the OT- and VP-stimulated SCLC cellular growth process. In conclusion, the results presented here indicate that OT- and VP-induced mitogenic effects on

  2. Mitogen-activated protein kinases p38 and JNK mediate Actinobacillus pleuropneumoniae exotoxin ApxI-induced apoptosis in porcine alveolar macrophages.

    PubMed

    Wu, Chi-Ming; Chen, Zeng-Weng; Chen, Ter-Hsin; Liao, Jiunn-Wang; Lin, Cheng-Chung; Chien, Maw-Sheng; Lee, Wei-Cheng; Hsuan, Shih-Ling

    2011-08-05

    Actinobacillus pleuropneumoniae exotoxins (Apx) are major virulence factors that play important roles in the pathogenesis of pleuropneumonia in swine. A previous study has demonstrated that native ApxI at low concentrations induces apoptosis in primary porcine alveolar macrophages (PAMs) via a caspase-3-dependent pathway. However, the molecular mechanisms underlying ApxI-induced apoptosis remain largely unknown. In this study, it was shown that ApxI treatment in PAMs rapidly induced phosphorylation of both p38 and JNK, members of the mitogen-activated protein kinase family. Application of a selective p38 or JNK inhibitor significantly reduced ApxI-induced apoptosis, indicating the involvement of p38 and JNK pathways in this event. Furthermore, activation of both caspase-8 and -9 were observed in ApxI-stimulated PAMs. Inhibition of caspase-8 and caspase-9 activity significantly protected PAMs from ApxI-induced apoptosis. In addition, Bid activation was also noted in ApxI-treated PAMs, and inhibition of caspase-8 suppressed the activation of Bid and caspase-9, suggesting that ApxI was able to activate the caspases-8-Bid-caspase-9 pathway. Notably, inhibition of p38 or JNK pathway greatly attenuated the activation of caspases-3, -8, and -9. This study is the first to demonstrate that ApxI-induced apoptosis of PAMs involves the activation of p38 and JNK, and engages the extrinsic and intrinsic apoptotic pathways.

  3. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway

    PubMed Central

    Yang, Ning; Shi, Juan-Juan; Wu, Feng-Ping; Li, Mei; Zhang, Xin; Li, Ya-Ping; Zhai, Song; Jia, Xiao-Li; Dang, Shuang-Suo

    2017-01-01

    AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on α-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway. PMID:28275300

  4. Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence.

    PubMed

    Zhang, Yushan; Liu, Jian; Chai, Jinyu; Xing, Da

    2016-01-01

    Methyl jasmonate (MeJA) is a potent promoter of plant senescence. ORESARA3 (ORE3)/ETHYLENE INSENSITIVE2 (EIN2), a protein similar to the members of the disease-related Nramp metal transporter family, is involved in cross-talk among several senescence processes related to abscisic acid, ethylene, MeJA, age and darkness. Nevertheless, the mechanism involved in the regulation of ORE3/EIN2 in exogenous MeJA-induced leaf senescence remains unclear. The C-terminal end of ORE3/EIN2 (CEND) was cleaved from ORE3/EIN2 located in the endoplasmic reticulum and then transferred to the nucleus during MeJA-induced senescence. Further analyses showed that mitogen-activated protein kinase 6 (MPK6) promoted CEND cleavage and nuclear translocation. Nuclear CEND accumulated ETHYLENE INSENSITIVE3 (EIN3), a transcription factor that accelerates MeJA-induced leaf senescence wherein ORESARA9 (ORE9) expression was suppressed in ein3, ore3, and mpk6 mutant plants. ChIP experiments revealed that EIN3 bound directly to the ORE9 promoter and this binding was enhanced in MeJA-induced leaf senescence. This study revealed the effect of the signalling pathway involving MPK6-ORE3-EIN3-ORE9 on regulating leaf senescence and provided insights into the mechanism of MeJA in promoting leaf senescence in Arabidopsis thaliana.

  5. Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome.

    PubMed

    Hamel, Louis-Philippe; Benchabane, Meriem; Nicole, Marie-Claude; Major, Ian T; Morency, Marie-Josée; Pelletier, Gervais; Beaudoin, Nathalie; Sheen, Jen; Séguin, Armand

    2011-11-01

    Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.

  6. Involvement of mitogen-activated protein kinases and protein kinase C in regulation of antioxidant response element activity in human keratinocytes.

    PubMed

    Zhu, Ming; Zhang, Yuesheng; Bowden, G Tim

    2006-12-08

    Antioxidant response element (ARE) is a unique cis-acting regulatory sequence located in the upstream regions of many genes encoding anticarcinogenic/antioxidant proteins. Induction of ARE dependent genes plays an important role in protection of cells against oxidative damage. However, the signaling mechanism(s) involved in regulating transcription of ARE dependent gene expression has not been clearly defined. In this study, we identified protein kinases that are involved in regulation of ARE activity by using specific pharmacological inhibitors of protein kinases in engineered human HaCaT keratinocytes, which stably express the ARE-driven green fluorescent protein (GFP) as a reporter. When HaCaT/GFP cells were treated with tert-butylhydroquinone (tBHQ), a well-known ARE activator, GFP expression was up-regulated in time and dose dependent manner, indicating that tBHQ activates the ARE in these cells. Treatment of cells with SB202190 (a specific inhibitor of p38), staurosporine (a wide-spectrum inhibitor of PKC) or rottlerin (a specific inhibitor of PKCdelta) all augmented ARE activation by tBHQ. These results suggest that p38 and PKC, especially PKCdelta, play inhibitory roles in ARE activation in human keratinocytes. Furthermore, UVB irradiation minimally affects the basal ARE activity but significantly suppresses tBHQ induced ARE activation, indicating that UVB irradiation interrupts tBHQ signaling. Interestingly, treatment of HaCaT/GFP cells with SP600125 (a specific inhibitor of JNK) could reverse UVB mediated suppression of ARE activation by tBHQ. This suggests that the suppressive effect of UVB on ARE activation by tBHQ is mediated by a JNK pathway(s). These findings provide useful information for developing novel strategies for skin cancer chemoprotection through ARE activation.

  7. Megakaryocytic Maturation in Response to Shear Flow Is Mediated by the Activator Protein 1 (AP-1) Transcription Factor via Mitogen-activated Protein Kinase (MAPK) Mechanotransduction.

    PubMed

    Luff, Stephanie A; Papoutsakis, Eleftherios T

    2016-04-08

    Megakaryocytes (MKs) are exposed to shear flow as they migrate from the bone marrow hematopoietic compartment into circulation to release pro/preplatelets into circulating blood. Shear forces promote DNA synthesis, polyploidization, and maturation in MKs, and platelet biogenesis. To investigate mechanisms underlying these MK responses to shear, we carried out transcriptional analysis on immature and mature stem cell-derived MKs exposed to physiological shear. In immature (day (d)9) MKs, shear exposure up-regulated genes related to growth and MK maturation, whereas in mature (d12) MKs, it up-regulated genes involved in apoptosis and intracellular transport. Following shear-flow exposure, six activator protein 1 (AP-1) transcripts (ATF4,JUNB,JUN,FOSB,FOS, andJUND) were up-regulated at d9 and two AP-1 proteins (JunD and c-Fos) were up-regulated both at d9 and d12. We show that mitogen-activated protein kinase (MAPK) signaling is linked to both the shear stress response and AP-1 up-regulation. c-Jun N-terminal kinase (JNK) phosphorylation increased significantly following shear stimulation, whereas JNK inhibition reduced shear-induced JunD expression. Although p38 phosphorylation did not increase following shear flow, its inhibition reduced shear-induced JunD and c-Fos expression. JNK inhibition reduced fibrinogen binding and P-selectin expression of d12 platelet-like particles (PLPs), whereas p38 inhibition reduced fibrinogen binding of d12 PLPs. AP-1 expression correlated with increased MK DNA synthesis and polyploidization, which might explain the observed impact of shear on MKs. To summarize, we show that MK exposure to shear forces results in JNK activation, AP-1 up-regulation, and downstream transcriptional changes that promote maturation of immature MKs and platelet biogenesis in mature MKs.

  8. Stress-activated protein kinase-mediated down-regulation of the cell integrity pathway mitogen-activated protein kinase Pmk1p by protein phosphatases.

    PubMed

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Gacto, Mariano; Cansado, José

    2007-11-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process.

  9. Stress-activated Protein Kinase-mediated Down-Regulation of the Cell Integrity Pathway Mitogen-activated Protein Kinase Pmk1p by Protein Phosphatases

    PubMed Central

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Cansado, José

    2007-01-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process. PMID:17761528

  10. Ceramide Mediates Ox-LDL-Induced Human Vascular Smooth Muscle Cell Calcification via p38 Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Song, Yan; Wu, Weikang; Yu, Huimin; Wang, Sheng; Chen, Yanling; Ye, Meihong; Lu, Lihe

    2013-01-01

    Vascular calcification is associated with significant cardiovascular morbidity and mortality, and has been demonstrated as an actively regulated process resembling bone formation. Oxidized low density lipoprotein (Ox-LDL) has been identified as a regulatory factor involved in calcification of vascular smooth muscle cells (VSMCs). Additionally, over-expression of recombinant human neutral sphingomyelinase (N-SMase) has been shown to stimulate VSMC apoptosis, which plays an important role in the progression of vascular calcification. The aim of this study is to investigate whether ceramide regulates Ox-LDL-induced calcification of VSMCs via activation of p38 mitogen-activated protein kinase (MAPK) pathway. Ox-LDL increased the activity of N-SMase and the level of ceramide in cultured VSMCs. Calcification and the osteogenic transcription factor, Msx2 mRNA expression were reduced by N-SMase inhibitor, GW4869 in the presence of Ox-LDL. Usage of GW4869 inhibited Ox-LDL-induced apoptosis in VSMCs, an effect which was reversed by C2-ceramide. Additionally, C2-ceramide treatment accelerated VSMC calcification, with a concomitant increase in ALP activity. Furthermore, C2-ceramide treatment enhanced Ox-LDL-induced VSMC calcification. Addition of caspase inhibitor, ZVAD-fmk attenuated Ox-LDL-induced calcification. Both Ox-LDL and C2-ceramide treatment increased the phosphorylation of p38 MAPK. Inhibition of p38 MAPK by SB203580 attenuated Ox-LDL-induced calcification of VSMCs. These data suggest that Ox-LDL activates N-SMase-ceramide signaling pathway, and stimulates phosphorylation of p38 MAPK, leading to apoptosis in VSMCs, which initiates VSMC calcification. PMID:24358176

  11. Inhibition of matrix metalloproteinase activity in DU145 human prostate cancer cells by flavonoids from lowbush blueberry (Vaccinium angustifolium): possible roles for protein kinase C and mitogen-activated protein-kinase-mediated events.

    PubMed

    Matchett, Michael D; MacKinnon, Shawna L; Sweeney, Marva I; Gottschall-Pass, Katherine T; Hurta, Robert A R

    2006-02-01

    Regulation of the matrix metalloproteinases (MMPs) is crucial to regulate extracellular matrix (ECM) proteolysis which is important in metastasis. This study investigated the mechanism(s) by which three flavonoid-enriched fractions from lowbush blueberry (Vaccinium angustifolium) down-regulate MMP activity in DU145 human prostate cancer cells. Metalloproteinase activity was evaluated from cells exposed to "crude," anthocyanin-enriched (AN) and proanthocyanidin-enriched (PAC) fractions. Differential down-regulation of MMPs was observed. The activity of the endogenous tissue inhibitors of metalloproteinases (TIMPs) from these cells was also evaluated. Increases in TIMP-1 and TIMP-2 activity were observed in response to these fractions. The possible involvement of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase pathways in the flavonoid-mediated decreases in MMP activity was observed. These findings indicate that blueberry flavonoids may use multiple mechanisms in down-regulating MMP activity in these cells.

  12. Roles of mitogen-activated protein kinase and phosphoinositide 3'-kinase in ErbB2/ErbB3 coreceptor-mediated heregulin signaling.

    PubMed

    Vijapurkar, Ulka; Kim, Myong-Soo; Koland, John G

    2003-04-01

    ErbB2/HER2 and ErbB3/HER3, two members of the ErbB/HER family, together constitute a heregulin coreceptor complex that elicits a potent mitogenic and transforming signal. Among known intracellular effectors of the ErbB2/ErbB3 heregulin coreceptor are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. Activation of the distinct MAPK and PI 3-kinase signaling pathways by the ErbB2/ErbB3 coreceptor in response to heregulin and their relative contributions to the mitogenic and transformation potentials of the activated coreceptor were investigated here. To this end, cDNAs encoding the wild-type ErbB3 protein (ErbB3-WT) and ErbB3 proteins with amino acid substitutions in either the Shc-binding site (ErbB3-Y1325F), the six putative PI 3-kinase-binding sites (ErbB3-6F), or both (ErbB3-7F) were generated and expressed in NIH-3T3 cells to form functional ErbB2/ErbB3 heregulin coreceptors. While the coreceptor incorporating ErbB3-WT activated both the MAPK and the PI 3-kinase signaling pathways, those incorporating ErbB3-Y1325F or ErbB3-6F activated either PI 3-kinase or MAPK, respectively. The ErbB2/ErbB3-7F coreceptor activated neither. Elimination of either signaling pathway lowered basal and eliminated heregulin-dependent expression of cyclin D1, which was in each case accompanied by an attenuated mitogenic response. Selective elimination of the PI 3-kinase pathway severely impaired the ability of heregulin to transform cells expressing the coreceptor, whereas attenuation of the MAPK pathway had a lesser effect. Thus, while both pathways contributed in a roughly additive manner to the mitogenic response elicited by the activated ErbB2/ErbB3 coreceptor, the PI 3-kinase pathway predominated in the induction of cellular transformation.

  13. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    PubMed

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD.

  14. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1.

    PubMed

    Randall, Matthew J; Spiess, Page C; Hristova, Milena; Hondal, Robert J; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and

  15. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages.

    PubMed

    Qin, Yiru; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Qiu, Jia-Xuan; Duan, Wei; Yang, Tianxin; Zhou, Shu-Feng

    2015-01-02

    The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.

  16. Manassantin B isolated from Saururus chinensis inhibits cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Fyn-mediated nuclear factor-kappaB and mitogen activated protein kinase pathways in bone marrow derived-mast cells.

    PubMed

    Lu, Yue; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    The authors investigated the effect of manassantin B (Man B) isolated from Saururus chinensis (S. chinensis) on cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation in mouse bone marrow derived-mast cells (BMMCs). Man B inhibited the generation of PGD2 dose-dependently by inhibiting COX-2 expression in immunoglobulin E (IgE)/Ag-stimulated BMMCs. To elucidate the mechanism responsible for the inhibition of COX-2 expression by Man B, the effects of Man B on the activation of nuclear factor-kappaB (NF-κB), a transcription factor essential and mitogen-activated protein kinases (MAPKs) for COX-2 induction, were examined. Man B attenuated the nuclear translocation of NF-κB p65 and its DNA-binding activity by inhibiting inhibitors of kappa Bα (IκBα) degradation and concomitantly suppressing IκB kinase (IKK) phosphorylation. In addition, Man B suppressed phosphorylation of MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38. It was also found that Man B suppressed Fyn kinase activation and consequent downstream signaling processes, including those involving Syk, Gab2, and Akt. Taken together, the present results suggest that Man B suppresses COX-2 dependent PGD2 generation by primarily inhibiting Fyn kinase in FcεRI-mediated mast cells.

  17. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  18. Artemisia asiatica Nakai Attenuates the Expression of Proinflammatory Mediators in Stimulated Macrophages Through Modulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways.

    PubMed

    Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun

    2015-08-01

    The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity.

  19. Artemisia asiatica Nakai Attenuates the Expression of Proinflammatory Mediators in Stimulated Macrophages Through Modulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun

    2015-01-01

    Abstract The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361

  20. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by the p38 mitogen-activated protein kinase pathway

    PubMed Central

    Dohgu, Shinya; Banks, William A.

    2008-01-01

    Chronic systemic inflammation in the late stage of human immunodeficiency virus type-1 (HIV-1) infection could increase neuroinvasion of infected monocytes and cell-free virus, causing an aggravation of neurological disorders in AIDS patients. We previously showed that the peripheral administration of lipopolysaccharide (LPS) enhanced the uptake across the blood-brain barrier (BBB) of the HIV-1 viral protein gp120. Brain microvessel endothelial cells are targets of LPS. Here, we investigated whether the direct interaction between LPS and the BBB also affected HIV-1 transport using primary mouse brain microvessel endothelial cells (BMECs). LPS produced a dose (1–100 μg/mL)- and time (0.5–4 hr)-dependent increase in HIV-1 transport and a decrease in transendothelial electrical resistance (TEER). Whereas indomethacin (cyclooxygenase inhibitor) and L-NAME (NO synthase inhibitor) did not affect the LPS-induced changes in HIV-1 transport or TEER, pentoxifylline (TNF-αinhibitor) attenuated the decrease in TEER induced by LPS, but not the LPS-induced increase in HIV-1 transport. LPS also increased the phosphorylation of p44/42 MAPK and p38 MAPK but not that of JNK. U0126 (p44/42 MAPK inhibitor) and SP600125 (JNK inhibitor) did not inhibit the LPS-induced increase in HIV-1 transport although U0126 attenuated the reduction in TEER. SB203580 (p38 MAPK inhibitor) inhibited the LPS-induced increase in HIV-1 transport without affecting TEER. Thus, LPS-enhanced HIV-1 transport is independent of changes in TEER and so is attributed to increased transcellular trafficking of HIV-1 across the BBB. These results show that LPS increases HIV-1 transcellular transport across the BBB by a pathway that is mediated by p38 MAPK phosphorylation in BMECs. PMID:18295207

  1. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    PubMed

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Filamin-A binds to the carboxyl-terminal tail of the calcium-sensing receptor, an interaction that participates in CaR-mediated activation of mitogen-activated protein kinase.

    PubMed

    Hjälm, G; MacLeod, R J; Kifor, O; Chattopadhyay, N; Brown, E M

    2001-09-14

    The G protein-coupled, extracellular calcium-sensing receptor (CaR) regulates parathyroid hormone secretion and parathyroid cellular proliferation as well as the functions of diverse other cell types. The CaR resides in caveolae-plasma membrane microdomains containing receptors and associated signaling molecules that are thought to serve as cellular "message centers." An additional mechanism for coordinating cellular signaling is the presence of scaffold proteins that bind and organize components of signal transduction cascades. With the use of the yeast two-hybrid system, we identified filamin-A (an actin-cross-linking, putative scaffold protein that binds mitogen-activated protein kinase (MAPK) components activated by the CaR) as an intracellular binding partner of the CaR's carboxyl (COOH)-terminal tail. A direct interaction of the two proteins was confirmed by an in vitro binding assay. Moreover, confocal microscopy combined with two color immunofluorescence showed co-localization of the CaR and filamin-A within parathyroid cells as well as HEK-293 cells stably transfected with the CaR. Deletion mapping localized the sites of interaction between the two proteins to a stretch of 60 amino acid residues within the distal portion of the CaR's COOH-terminal tail and domains 14 and 15 in filamin-A, respectively. Finally, introducing the portion of filamin-A interacting with the CaR into CaR-transfected HEK-293 cells using protein transduction with a His-tagged, Tat-filamin-A fusion protein nearly abolished CaR-mediated activation of ERK1/2 MAPK but had no effect on ERK1/2 activity stimulated by ADP. Therefore, the binding of the CaR's COOH-terminal tail to filamin-A may contribute to its localization in caveolae, link it to the actin-based cytoskeleton, and participate in CaR-mediated activation of MAPK.

  3. Amphotericin B-Induced Renal Tubular Cell Injury Is Mediated by Na+ Influx through Ion-Permeable Pores and Subsequent Activation of Mitogen-Activated Protein Kinases and Elevation of Intracellular Ca2+ Concentration▿

    PubMed Central

    Yano, Takahisa; Itoh, Yoshinori; Kawamura, Eiko; Maeda, Asuka; Egashira, Nobuaki; Nishida, Motohiro; Kurose, Hitoshi; Oishi, Ryozo

    2009-01-01

    Amphotericin B (AMB) is one of the most effective antifungal agents; however, its use is often limited by the occurrence of adverse events, especially nephrotoxicity. The present study was designed to determine the possible mechanisms underlying the nephrotoxic action of AMB. The exposure of a porcine proximal renal tubular cell line (LLC-PK1 cells) to AMB caused cell injury, as assessed by mitochondrial enzyme activity, the leakage of lactate dehydrogenase, and tissue ATP depletion. Propidium iodide uptake was enhanced, while terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was not affected by AMB, suggesting a lack of involvement of apoptosis in AMB-induced cell injury. The cell injury was inhibited by the depletion of membrane cholesterol with methyl-β-cyclodextrin, which lowered the extracellular Na+ concentration or the chelation of intracellular Ca2+. The rise in the intracellular Ca2+ concentration may be mediated through the activation of the ryanodine receptor (RyR) on the endoplasmic reticulum and the mitochondrial Na+-Ca2+ exchanger, since cell injury was attenuated by dantrolene (an RyR antagonist) and CGP37157 (an Na+-Ca2+ exchanger inhibitor). Moreover, AMB-induced cell injury was reversed by PD169316 (a p38 mitogen-activated protein [MAP] kinase inhibitor), c-Jun N-terminal kinase inhibitor II, and PD98059 (a MEK1/2 inhibitor). The phosphorylations of these MAP kinases were enhanced by AMB in a calcium-independent manner, suggesting the involvement of MAP kinases in AMB-induced cell injury. These findings suggest that Na+ entry through membrane pores formed by the association of AMB with membrane cholesterol leads to the activation of MAP kinases and the elevation of the intracellular Ca2+ concentration, leading to renal tubular cell injury. PMID:19139282

  4. Pomegranate fruit extract modulates UV-B-mediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign.

    PubMed

    Afaq, Farrukh; Malik, Arshi; Syed, Deeba; Maes, Daniel; Matsui, Mary S; Mukhtar, Hasan

    2005-01-01

    Excessive exposure of solar ultraviolet (UV) radiation, particularly its UV-B component, to humans causes many adverse effects that include erythema, hyperplasia, hyperpigmentation, immunosuppression, photoaging and skin cancer. In recent years, there is increasing use of botanical agents in skin care products. Pomegranate derived from the tree Punica granatum contains anthocyanins (such as delphinidin, cyanidin and pelargonidin) and hydrolyzable tannins (such as punicalin, pedunculagin, punicalagin, gallagic and ellagic acid esters of glucose) and possesses strong antioxidant and anti-inflammatory properties. Recently, we have shown that pomegranate fruit extract (PFE) possesses antitumor promoting effects in a mouse model of chemical carcinogenesis. To begin to establish the effect of PFE for humans in this study, we determined its effect on UV-B-induced adverse effects in normal human epidermal keratinocytes (NHEK). We first assessed the effect of PFE on UV-B-mediated phosphorylation of mitogen-activated protein kinases (MAPK) pathway in NHEK. Immunoblot analysis demonstrated that the treatment of NHEK with PFE (10-40 microg/mL) for 24 h before UV-B (40 mJ/cm(2)) exposure dose dependently inhibited UV-B-mediated phosphorylation of ERKl/2, JNK1/2 and p38 protein. We also observed that PFE (20 microg/mL) inhibited UV-B-mediated phosphorylation of MAPK in a time-dependent manner. Furthermore, in dose- and time-dependent studies, we evaluated the effect of PFE on UV-B-mediated activation of nuclear factor kappa B (NF-kappaB) pathway. Using Western blot analysis, we found that PFE treatment of NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated degradation and phosphorylation of IkappaBalpha and activation of IKKalpha. Using immunoblot analysis, enzyme-linked immunosorbent assay and electrophoretic mobility shift assay, we found that PFE treatment to NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated nuclear translocation and

  5. c-Jun NH2-terminal kinase activating kinase 1/mitogen-activated protein kinase kinase 4-mediated inhibition of SKOV3ip.1 ovarian cancer metastasis involves growth arrest and p21 up-regulation.

    PubMed

    Lotan, Tamara; Hickson, Jonathan; Souris, Jeffrey; Huo, Dezheng; Taylor, Jennifer; Li, Terry; Otto, Kristen; Yamada, Seiko Diane; Macleod, Kay; Rinker-Schaeffer, Carrie W

    2008-04-01

    In many patients without clinical metastases, cancer cells have already escaped from the primary tumor and entered a distant organ. A long-standing question in metastasis research is why some disseminated cancer cells fail to complete steps of metastatic colonization for extended periods of time. Our laboratory identified c-Jun NH(2)-terminal kinase activating kinase 1/mitogen-activated protein kinase kinase 4 (JNKK1/MKK4) as a metastasis suppressor protein in a mouse xenograft model of experimental i.p. ovarian cancer metastasis. In this model, expression of JNKK1/MKK4 via activation of p38 delays formation of >or=1-mm implants and prolongs animal survival. Here, we elucidate the time course of this delay as well as the biological mechanisms underpinning it. Using the Gompertz function to model the net accumulation of experimental omental metastases, we show that MKK4-expressing implants arise, on average, 30 days later than controls. Quantitative real-time PCR shows that MKK4 expression does not have a substantial effect on the number of cancer cells initially adhering to the omentum, and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling analysis shows that there is no increase in apoptosis in these cells. Instead, immunohistochemical quantitation of cell cycle proteins reveals that MKK4-expressing cells fail to proliferate once they reach the omentum and up-regulate p21, a cell cycle inhibitor. Consistent with the time course data, in vitro kinase assays and in vivo passaging of cell lines derived from macroscopic metastases show that the eventual outgrowth of MKK4-expressing cells is not due to a discrete selection event. Rather, the population of MKK4-expressing cells eventually uniformly adapts to the consequences of up-regulated MKK4 signaling.

  6. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B.

    PubMed

    Yadav, Prem N; Liu, Zhihua; Rafi, Mohamed M

    2003-06-01

    The diarylheptanoid 7-(4'-hydroxy-3'-methoxyphenyl)-1-phenylhept-4-en-3-one (HMP) is a naturally occurring phytochemical found in lesser galangal (Alpinia officinarum). In the present study, we have demonstrated the anti-inflammatory properties of this compound on mouse macrophage cell line (RAW 264.7) and human peripheral blood mononuclear cells (PBMCs) in vitro. Treatment of RAW 264.7 cells with HMP (6.25-25 microM) significantly inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production. This compound also inhibited the release of LPS-induced proinflammatory cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) from human PB-MCs in vitro. In addition, Western blotting and reverse transcription-polymerase chain reaction analysis demonstrated that HMP decreased LPS-induced inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and mRNA expression in RAW 264.7 cells. Furthermore, HMP treatment also reduced nuclear factor-kappa B (NF-kappa B) DNA binding induced by LPS in RAW 264.7 cells. To elucidate the molecular mechanism for inhibition of proinflammatory mediators by HMP (25 microM), we have studied the effect of HMP on LPS-induced p38 and p44/42 mitogen-activated protein kinase (MAPK). We observed that the phosphorylation of p44/42 MAPK in LPS-stimulated RAW 264.7 cells was markedly inhibited by HMP, whereas activation of p38 MAPK was not affected. These results suggested that HMP from lesser galangal suppressed the LPS-induced production of NO, IL-1 beta, and TNF-alpha and expression of iNOS and COX-2 gene expression by inhibiting NF-kappa B activation and phosphorylation of p44/42 MAPK.

  7. P2X4-receptor mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation

    PubMed Central

    Trang, Tuan; Beggs, Simon; Wan, Xiang; Salter, Michael W.

    2013-01-01

    Microglia in the dorsal horn of the spinal cord are increasingly recognized as being crucial in the pathogenesis of pain hypersensitivity following injury to a peripheral nerve. It is known that P2X4 purinoceptors (P2X4Rs) cause the release of brain-derived neurotrophic factor (BDNF) from microglia, which is necessary for maintaining pain hypersensitivity after nerve injury. However, there is a critical gap in understanding how activation of microglial P2X4Rs leads to the release of BDNF. Here we show that stimulating P2X4Rs with ATP evokes a biphasic release of BDNF from microglia: an early phase occurs within 5 min, whereas a late phase peaks 60 min after ATP-stimulation. Concomitant with the late phase of release is an increased level of BDNF within the microglia. Both phases of BDNF release and the accumulation within the microglia are dependent upon extracellular Ca2+. The late phase of BDNF release and accumulation, but not the early phase of release, are suppressed by inhibiting transcription and translation, indicating that activation of P2X4R causes an initial release of a pre-existing pool of BDNF followed by an increase in de novo synthesis of BDNF. The release of BDNF is abolished by inhibiting SNARE-mediated exocytosis. Furthermore, we find that the P2X4R-evoked release and synthesis of BDNF are dependent upon activation of p38-mitogen activated protein kinase (MAPK). Together, our findings provide a unifying mechanism for pain hypersensitivity following peripheral nerve injury through P2X4R-evoked increase in Ca2+ and activation of p38-MAPK leading to the synthesis and exocytotic release of BDNF from microglia. PMID:19295157

  8. Angiotensin II–Induced MMP-2 Activity and MMP-14 and Basigin Protein Expression Are Mediated via the Angiotensin II Receptor Type 1–Mitogen-Activated Protein Kinase 1 Pathway in Retinal Pigment Epithelium

    PubMed Central

    Pons, Marianne; Cousins, Scott W.; Alcazar, Oscar; Striker, Gary E.; Marin-Castaño, Maria E.

    2011-01-01

    Accumulation of various lipid-rich extracellular matrix (ECM) deposits under the retinal pigment epithelium (RPE) has been observed in eyes with age-related macular degeneration (AMD). RPE-derived matrix metalloproteinase (MMP)-2, MMP-14, and basigin (BSG) are major enzymes involved in the maintenance of ECM turnover. Hypertension (HTN) is a systemic risk factor for AMD. It has previously been reported that angiotensin II (Ang II), one of the most important hormones associated with HTN, increases MMP-2 activity and its key regulator, MMP-14, in RPE, inducing breakdown of the RPE basement membrane, which may lead to progression of sub-RPE deposits. Ang II exerts most of its actions by activating the mitogen-activated protein kinase (MAPK) signaling pathway. Herein is explored the MAPK signaling pathway as a potential key intracellular modulator of Ang II–induced increase in MMP-2 activity and MMP-14 and BSG protein expression. It was observed that Ang II stimulates phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK in RPE cells and ERK/p38 and Jun N-terminal kinase (JNK) in mice. These effects were mediated by Ang II type 1 receptors. Blockade of ERK or p38 MAPK abrogated the increase in MMP-2 activity and MMP-14 and BSG proteins in ARPE-19 cells. A better understanding of the molecular events by which Ang II induces ECM dysregulation is of critical importance to further define its contribution to the progression of sub-RPE deposits in AMD patients with HTN. PMID:21641389

  9. The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata.

    PubMed

    Yago, Jonar Ingan; Lin, Ching-Hsuan; Chung, Kuang-Ren

    2011-09-01

    Fungi respond and adapt to different environmental stimuli via signal transduction systems. We determined the function of a yeast SLT2 mitogen-activated protein (MAP) kinase homologue (AaSLT2) in Alternaria alternata, the fungal pathogen of citrus. Analysis of the loss-of-function mutant indicated that AaSLT2 is required for the production of a host-selective toxin, and is crucial for fungal pathogenicity. Moreover, the A. alternata slt2 mutants displayed hypersensitivity to cell wall-degrading enzymes and chemicals such as Calcofluor white and Congo red. This implicates an important role of AaSLT2 in the maintenance of cell wall integrity in A. alternata. The A. alternata slt2 mutants were also hypersensitive to a heteroaromatic compound, 2-chloro-5-hydroxypyridine, and a plant growth regulator, 2,3,5-triiodobenzoic acid. Developmentally, the AaSLT2 gene product was shown to be critical for conidial formation and hyphal elongation. Compared with the wild-type, the mutants produced fewer but slightly larger conidia with less transverse septae. The mutants also accumulated lower levels of melanin and chitin. Unlike the wild-type progenitor, the A. alternata slt2 mutants produced globose, swollen hyphae that did not elongate in a straight radial direction. All defective phenotypes in the mutant were restored by transformation and expression of a wild-type copy of AaSLT2 under the control of its endogenous promoter. This study highlights an important role of the AaSLT2 MAP kinase-mediated signalling pathway, regulating diverse physiological, developmental and pathological functions, in the tangerine pathotype of A. alternata. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  10. Molecular Characterization and Mitogenic Activity of a Lectin from Purse Crab Philyra Pisum

    PubMed Central

    Na, Jong Cheon; Park, Byung Tae; Chung, Woo Hyuk

    2011-01-01

    A lectin from the hemolymph of purse crab, Philyra pisum, was found to have anti-proliferative activity on human lung cancer cells by our laboratory. In this study, P. pisum lectin (PPL) was molecularly characterized including molecular mass, amino acid sequences, amino acid composition, and the effects of metal ions, temperature, and pH on the activity. We found that PPL showed mitogenic activity on human lymphocytes and BALB/c mouse splenocytes. The mitogenic activity (maximum stimulation index, SI=9.57±0.59) of PPL on human lymphocytes was higher than that of a standard well-known plant mitogen, concanavalin A (maximum SI=8.80±0.59). The mitogenic activity mediated by PPL is required for optimum dosing, and higher or lower concentrations caused decreases in mitogenic response. PPL also induced mitogenic activity on mouse splenocytes, however, the maximum SI (1.77±0.09) on mouse splenocytes of PPL was lower than that (2.14±0.15) of concanavalin A. In conclusion, PPL is a metal ion-dependent monomer lectin with mitogenic activity, and could be used as a lymphocyte or splenocyte stimulator. PMID:21994481

  11. A superoxide-mediated mitogen-activated protein kinase phosphatase-1 degradation and c-Jun NH(2)-terminal kinase activation pathway for luteolin-induced lung cancer cytotoxicity.

    PubMed

    Bai, Lang; Xu, Xiuling; Wang, Qiong; Xu, Shanling; Ju, Wei; Wang, Xia; Chen, Wenshu; He, Weiyang; Tang, Hong; Lin, Yong

    2012-04-01

    Although luteolin is identified as a potential cancer therapeutic and preventive agent because of its potent cancer cell-killing activity, the molecular mechanisms by which its cancer cell cytotoxicity is achieved have not been well elucidated. In this report, luteolin-induced cellular signaling was systematically investigated, and a novel pathway for luteolin's lung cancer killing was identified. The results show that induction of superoxide is an early and crucial step for luteolin-induced apoptotic and nonapoptotic death in lung cancer cells. The c-Jun N-terminal kinase (JNK) was potently activated after superoxide accumulation. Suppression of superoxide completely blocked luteolin-induced JNK activation, which was well correlated to alleviation of luteolin's cytotoxicity. Although luteolin slightly stimulated the JNK-activating kinase mitogen-activated protein kinase kinase 7, the latter was not dependent on superoxide. We further found that luteolin triggers a superoxide-dependent rapid degradation of the JNK-inactivating phosphatase mitogen-activated protein kinase phosphatase-1 (MKP-1). Introduction of a degradation-resistant MKP-1 mutant effectively attenuated luteolin-induced JNK activation and cytotoxicity, suggesting that inhibition of the JNK suppressor MKP-1 plays a major role in luteolin-induced lung cancer cell death. Taken together, our results unveil a novel pathway consisting of superoxide, MKP-1, and JNK for luteolin's cytotoxicity in lung cancer cells, and manipulation of this pathway could be a useful approach for applying luteolin for lung cancer prevention and therapy.

  12. Cellular reprogramming through mitogen-activated protein kinases

    PubMed Central

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression—including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes. PMID:26579181

  13. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo.

  14. Implications of mitogen-activated protein kinase signaling in glioma.

    PubMed

    Pandey, Vimal; Bhaskara, Vasantha Kumar; Babu, Phanithi Prakash

    2016-02-01

    Gliomas are the most common primary central nervous system tumors. Gliomas originate from astrocytes, oligodendrocytes, and neural stem cells or their precursors. According to WHO classification, gliomas are classified into four different malignant grades ranging from grade I to grade IV based on histopathological features and related molecular aberrations. The induction and maintenance of these tumors can be attributed largely to aberrant signaling networks. In this regard, the mitogen-activated protein kinase (MAPK) network has been widely studied and is reported to be severely altered in glial tumors. Mutations in MAPK pathways most frequently affect RAS and B-RAF in the ERK, c-Jun N-terminal kinase (JNK), and p38 pathways leading to malignant transformation. Also, it is linked to both inherited and sequential accumulations of mutations that control receptor tyrosine kinase (RTK)-activated signal transduction pathways, cell cycle growth arrest pathways, and nonresponsive cell death pathways. Genetic alterations that modulate RTK signaling can also alter several downstream pathways, including RAS-mediated MAP kinases along with JNK pathways, which ultimately regulate cell proliferation and cell death. The present review focuses on recent literature regarding important deregulations in the RTK-activated MAPK pathway during gliomagenesis and progression.

  15. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  16. Mitogen-activated protein kinase-regulated AZI1 - an attractive candidate for genetic engineering.

    PubMed

    Pitzschke, Andrea; Datta, Sneha; Persak, Helene

    2014-01-01

    Mitogen-activated protein kinases and their targets have been in the limelight of plant stress research. Signaling pathways mediating the responses to multiple stresses deserve particular attention. In a recent study, we reported AZI1, a member of the lipid transfer protein family, to play a role in MPK3-mediated responses to salt stress in Arabidopsis thaliana. MPK3 controls AZI1 at the transcriptional and posttranslational level. The AZI1 protein has several properties that make it very attractive for genetic engineering. A model of multi-level control of AZI1 by MPK3 is proposed, and strategies toward optimizing AZI1 protein properties are briefly discussed.

  17. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    PubMed

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  18. Evidence That Formation of Vimentin·Mitogen-activated Protein Kinase (MAPK) Complex Mediates Mast Cell Activation following FcϵRI/CC Chemokine Receptor 1 Cross-talk*

    PubMed Central

    Toda, Masako; Kuo, Chuan-Hui; Borman, Satty K.; Richardson, Ricardo Micheler; Inoko, Akihito; Inagaki, Masaki; Collins, Andrea; Schneider, Klaus; Ono, Santa Jeremy

    2012-01-01

    Accumulating evidence points to cross-talk between FcϵRI and CC chemokine receptor (CCR)-mediated signaling pathways in mast cells. Here, we propose that vimentin, a protein comprising type III intermediate filament, participates in such cross-talk for CCL2/monocyte chemotactic protein 1 (MCP-1) production in mast cells, which is a mechanism for allergic inflammation. Co-stimulation via FcϵRI, using IgE/antigen, and CCR1, using recombinant CCL3/macrophage inflammatory protein-1α (MIP-1α), increased expression of phosphorylated, disassembled, and soluble vimentin in rat basophilic leukemia (RBL)-2H3 cells expressing human CCR1 (RBL-CCR1 cells) and bone marrow-derived murine mast cells, both models of mucosal type mast cells. Furthermore, co-stimulation enhanced production of CCL2 as well as phosphorylation of MAPK. Treating the cells with p38 MAPK inhibitor SB203580, but not with MEK inhibitor PD98058, reduced CCL2 production, suggesting that p38 MAPK, but not ERK1/2, plays a critical role in the chemokine production. Immunoprecipitation analysis showed that vimentin interacts with phosphorylated ERK1/2 and p38 MAPKs in the co-simulated cells. Preventing disassembly of the vimentin by aggregating vimentin filaments using β,β′-iminodipropionitrile reduced the interaction of vimentin with phosphorylated MAPKs as well as CCL2 production in the cells. Taken together, disassembled vimentin interacting with phosphorylated p38 MAPK could mediate CCL2 production in mast cells upon FcϵRI and CCR1 activation. PMID:22613718

  19. Reactivation of Mitogen-activated Protein Kinase (MAPK) Pathway by FGF Receptor 3 (FGFR3)/Ras Mediates Resistance to Vemurafenib in Human B-RAF V600E Mutant Melanoma*

    PubMed Central

    Yadav, Vipin; Zhang, Xiaoyi; Liu, Jiangang; Estrem, Shawn; Li, Shuyu; Gong, Xue-Qian; Buchanan, Sean; Henry, James R.; Starling, James J.; Peng, Sheng-Bin

    2012-01-01

    Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma. PMID:22730329

  20. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis.

    PubMed

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-02-26

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy.

  1. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis*

    PubMed Central

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy. PMID:26724804

  2. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    PubMed Central

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2004-01-01

    The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy. PMID:15219238

  3. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid.

    PubMed

    Lu, C; Han, M-H; Guevara-Garcia, A; Fedoroff, N V

    2002-11-26

    Abscisic acid (ABA) mediates plant responses to environmental stress, particularly to water status. During germination, the embryo emerges from dormancy as the ABA concentration declines. Exposure to exogenous ABA during germination arrests development rapidly, but reversibly, enabling seedlings to withstand early water stress without loss of viability. Postgermination proteolytic degradation of the essential ABI5 transcription factor is interrupted by perception of an increase in ABA concentration, leading to ABI5 accumulation and reactivation of embryonic genes. Making use of the ABA-hypersensitive hyl1 mutant of Arabidopsis, we show that the ABA signal is transmitted to the transcriptional apparatus through mitogen-activated protein kinase signaling.

  4. Inhibition of estrogen receptor {beta}-mediated human telomerase reverse transcriptase gene transcription via the suppression of mitogen-activated protein kinase signaling plays an important role in 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2}-induced apoptosis in cancer cells

    SciTech Connect

    Kondoh, Kei; Tsuji, Naoki; Asanuma, Koichi; Kobayashi, Daisuke; Watanabe, Naoki

    2007-10-01

    The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-{gamma} plays a role in cancer development in addition to its role in glucose metabolism. The natural ligand of PPAR-{gamma}, namely, 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), has been shown to possess antineoplastic activity in cancer cells. However, the mechanism underlying its antineoplastic activity remains to be elucidated. Inhibition of the expression of human telomerase reverse transcriptase (hTERT), a major determinant of telomerase activity, reportedly induces rapid apoptosis in cancer cells. In this study, we investigated the effect of 15d-PGJ{sub 2} on hTERT expression. We found that 15d-PGJ{sub 2} induced apoptosis in the MIAPaCa-2 pancreatic cancer cells and dose-dependently decreased hTERT mRNA and protein expression. Down-regulation of hTERT expression by hTERT-specific small inhibitory RNA also induced apoptosis. Furthermore, 15d-PGJ{sub 2} attenuated the DNA binding of estrogen receptor (ER). MIAPaCa-2 expressed only ER{beta}, and although its expression did not decrease due to 15d-PGJ{sub 2}, its phosphorylation was suppressed. Additionally, a mitogen-activated protein kinase (MAPK) kinase inhibitor decreased ER{beta} phosphorylation, and 15d-PGJ{sub 2} attenuated MAPK activity. We conclude that hTERT down-regulation by 15d-PGJ{sub 2} plays an important role in the proapoptotic property of the latter. Furthermore, 15d-PGJ{sub 2} inhibits ER{beta}-mediated hTERT gene transcription by suppressing ER{beta} phosphorylation via the inhibition of MAP kinase signaling.

  5. Treponema denticola activates mitogen-activated protein kinase signal pathways through Toll-like receptor 2.

    PubMed

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-12-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production.

  6. Mitogen-activated protein kinases in male reproductive function

    PubMed Central

    Li, Michelle W.M.; Mruk, Dolores D.; Cheng, C. Yan

    2009-01-01

    Recent studies have shown that male reproductive function is modulated via the mitogen-activated protein kinase (MAPK) cascade. The MAPK cascade is involved in numerous male reproductive processes, including spermatogenesis, sperm maturation and activation, capacitation and acrosome reaction, before fertilization of the oocyte. In this review, we discuss the latest findings in this rapidly developing field regarding the role of MAPK in male reproduction in animal models and in human spermatozoa in vitro. This research will facilitate the design of future studies in humans, although much work is needed before this information can be used to manage male infertility and environmental toxicant-induced testicular injury in men, such as blood–testis-barrier disruption. PMID:19303360

  7. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades

    PubMed Central

    Fey, Dirk; Croucher, David R.; Kolch, Walter; Kholodenko, Boris N.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to

  8. Substrate thiophosphorylation by Arabidopsis mitogen-activated protein kinases.

    PubMed

    Leissing, Franz; Nomoto, Mika; Bocola, Marco; Schwaneberg, Ulrich; Tada, Yasuomi; Conrath, Uwe; Beckers, Gerold J M

    2016-02-24

    Mitogen-activated protein kinase (MPK) cascades are important to cellular signaling in eukaryotes. They regulate growth, development and the response to environmental challenges. MPK cascades function via reversible phosphorylation of cascade components, MEKK, MEK, and MPK, but also by MPK substrate phosphorylation. Using mass spectrometry, we previously identified many in vivo MPK3 and MPK6 substrates in Arabidopsis thaliana, and we disclosed their phosphorylation sites. We verified phosphorylation of several of our previously identified MPK3/6 substrates using a nonradioactive in vitro labeling assay. We engineered MPK3, MPK4, and MPK6 to accept bio-orthogonal ATPγS analogs for thiophosphorylating their appropriate substrate proteins. Subsequent alkylation of the thiophosphorylated amino acid residue(s) allows immunodetection using thiophosphate ester-specific antibodies. Site-directed mutagenesis of amino acids confirmed the protein substrates' site-specific phosphorylation by MPK3 and MPK6. A combined assay with MPK3, MPK6, and MPK4 revealed substrate specificity of the individual kinases. Our work demonstrates that the in vitro-labeling assay represents an effective, specific and highly sensitive test for determining kinase-substrate relationships.

  9. Evidence of mitogenic activity in periodontitis-associated bacteria.

    PubMed Central

    Donaldson, S L; Ranney, R R; Tew, J G

    1983-01-01

    This study examines several periodontitis-associated bacterial isolates for the presence of mitogenic activity, as indicated by their capacity to stimulate unsensitized lymphocytes to undergo blastogenesis. Germfree mouse spleen cells responded vigorously to all of the bacterial sonic extracts tested. The kinetics and dose responses to these activators in germfree mouse spleen cell cultures paralleled those seen with the standard murine B-cell mitogen, Escherichia coli lipopolysaccharide. In contrast, Streptokinase-Streptodornase (Varidase; Lederle Laboratories) antigen elicited no response. Human cord blood lymphocytes also responded upon stimulation with these same bacterial isolates but failed to respond to Streptokinase-Streptodornase. The frequency, magnitude, and kinetics of these cord blood lymphocyte responses were remarkably similar to those seen with adult peripheral blood lymphocytes. However, in this and previous studies, individuals with unresponsive peripheral blood lymphocytes have been observed. Studies were initiated to determine whether these unresponsive leukocyte preparations truly lacked the capacity to respond to these bacteria or whether unresponsiveness reflected the presence of a regulatory cell population in these cultures. After the removal of the adherent cells from unresponsive peripheral blood lymphocyte cultures, the nonadherent cells were found to be responsive. Therefore, peripheral blood lymphocyte responsiveness appears to be regulated via an adherent cell population. The removal of adherent cells from unresponsive cord blood lymphocyte preparations resulted in a less consistent alteration to responsiveness. However, cord blood lymphocyte preparations unresponsive at a standard cell density were shown to be responsive at altered cell densities. PMID:6605923

  10. Manganese modulation of MAPK pathways: effects on upstream mitogen activated protein kinase kinases (MKKs) and mitogen activated kinase phosphatase-1 (MKP-1) in microglial cells

    PubMed Central

    Crittenden, Patrick L.; Filipov, Nikolay M.

    2010-01-01

    Multiple studies demonstrate that manganese (Mn) exposure potentiates inflammatory mediator output from activated glia; this increased output is associated with enhanced mitogen activated protein kinase (MAPK: p38, ERK, and JNK) activity. We hypothesized that Mn activates MAPK by activating the kinases upstream of MAPK, i.e., MKK-3/6, MKK-1/2, and MKK-4 (responsible for activation of p38, ERK, and JNK, respectively), and/or by inhibiting a major phosphatase responsible for MAPK inactivation, MKP-1. Exposure of N9 microglia to Mn (250μM), LPS (100 ng/ml), or Mn+LPS increased MKK-3/6 and MKK-4 activity at 1 h; the effect of Mn+LPS on MKK-4 activation was greater than the rest. At 4 h, Mn, LPS, and Mn+LPS increased MKK-3/6 and MKK-1/2 phosphorylation, whereas MKK-4 was activated only by Mn and Mn+LPS. Besides activating MKK-4 via Ser257/Thr261 phosphorylation, Mn (4 h) prevented MKK-4’s phosphorylation on Ser80, which negatively regulates MKK-4 activity. Exposure to Mn or Mn+LPS (1 h) decreased both mRNA and protein expression of MKP-1, the negative MAPK regulator. In addition, we observed that at 4 h, but not at 1 h, a time point coinciding with increased MAPK activity, Mn+LPS markedly increased TNF-α , IL-6, and Cox-2 mRNA, suggesting a delayed effect. The fact that all three major groups of MKKs, MKK-1/2, MKK-3/6, and MKK-4 are activated by Mn suggests that Mn-induced activation of MAPK occurs via traditional mechanisms, which perhaps involve the MAPKs farthest upstream, MKKKs (MAP3Ks). In addition, for all MKKs, Mn-induced activation was persistent at least for 4 h, indicating a long-term effect. PMID:20589745

  11. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis

    PubMed Central

    Kim, Sun Ho; Kim, Ho Soo; Bahk, Sunghwa; An, Jonguk; Yoo, Yeji; Kim, Jae-Yean

    2017-01-01

    Abstract The expression of CBF (C-repeat-binding factor) genes is required for freezing tolerance in Arabidopsis thaliana. CBFs are positively regulated by INDUCER OF CBF EXPRESSION1 (ICE1) and negatively regulated by MYB15. These transcription factors directly interact with specific elements in the CBF promoters. Mitogen-activated protein kinase (MAPK/MPK) cascades function upstream to regulate CBFs. However, the mechanism by which MPKs control CBF expression during cold stress signaling remains unknown. This study showed that the activity of MYB15, a transcriptional repressor of cold signaling, is regulated by MPK6-mediated phosphorylation. MYB15 specifically interacts with MPK6, and MPK6 phosphorylates MYB15 on Ser168. MPK6-induced phosphorylation reduced the affinity of MYB15 binding to the CBF3 promoter and mutation of its phosphorylation site (MYB15S168A) enhanced the transcriptional repression of CBF3 by MYB15. Furthermore, transgenic plants overexpressing MYB15S168A showed significantly reduced CBF transcript levels in response to cold stress, compared with plants overexpressing MYB15. The MYB15S168A-overexpressing plants were also more sensitive to freezing than MYB15-overexpressing plants. These results suggest that MPK6-mediated regulation of MYB15 plays an important role in cold stress signaling in Arabidopsis. PMID:28510716

  12. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance.

    PubMed

    Yamamizo, Chihiro; Kuchimura, Kazuo; Kobayashi, Akira; Katou, Shinpei; Kawakita, Kazuhito; Jones, Jonathan D G; Doke, Noriyuki; Yoshioka, Hirofumi

    2006-02-01

    Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.

  13. The mitogen-activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1.

    PubMed

    Ahmadpour, Doryaneh; Maciaszczyk-Dziubinska, Ewa; Babazadeh, Roja; Dahal, Sita; Migocka, Magdalena; Andersson, Mikael; Wysocki, Robert; Tamás, Markus J; Hohmann, Stefan

    2016-10-01

    Arsenite is widely present in nature; therefore, cells have evolved mechanisms to prevent arsenite influx and promote efflux. In yeast (Saccharomyces cerevisiae), the aquaglyceroporin Fps1 mediates arsenite influx and efflux. The mitogen-activated protein kinase (MAPK) Hog1 has previously been shown to restrict arsenite influx through Fps1. In this study, we show that another MAPK, Slt2, is transiently phosphorylated in response to arsenite influx. Our findings indicate that the protein kinase activity of Slt2 is required for its role in arsenite tolerance. While Hog1 prevents arsenite influx via phosphorylation of T231 at the N-terminal domain of Fps1, Slt2 promotes arsenite efflux through phosphorylation of S537 at the C terminus. Our data suggest that Slt2 physically interacts with Fps1 and that this interaction depends on phosphorylation of S537. We hypothesize that Hog1 and Slt2 may affect each other's binding to Fps1, thereby controlling the opening and closing of the channel.

  14. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis

    PubMed Central

    Schett, G; Zwerina, J; Firestein, G

    2009-01-01

    Chronic inflammatory processes are based on a sustained and tightly regulated communication network among different cells types. This network comprises extracellular mediators such as cytokines, chemokines and matrix-degrading proteases, which orchestrate the participation of cells in the chronic inflammatory process. The mirrors of this outside communication world are intracellular transcription factor pathways, which shuttle information about inflammatory stimuli to the cell nucleus. This review examines the function of one key signal transduction pathway of inflammation—the p38 mitogen-activated protein kinases (p38MAPK). The signalling pathway is considered as crucial for the induction and maintenance of chronic inflammation, and its components thus emerge as interesting molecular targets of small molecule inhibitors for controlling inflammation. This review not only summarises the current knowledge of activation, regulation and function of the p38MAPK pathway but also examines the role of this pathway in clinical disease. It gives an overview of current evidence of p38MAPK activation in inflammatory arthritis and elaborates the key molecular determinants which contribute to p38MAPK activation in joint disease. PMID:17827184

  15. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways

    PubMed Central

    Zhao, Hongyan; Liu, Wei; Wang, Yi; Dai, Nannan; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Bian, Jianchun

    2015-01-01

    Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs. PMID:26425111

  16. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana

    PubMed Central

    Sheikh, Arsheed H.; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K.; Scheel, Dierk; Lee, Justin

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  17. MsERK1: a mitogen-activated protein kinase from a flowering plant.

    PubMed Central

    Duerr, B; Gawienowski, M; Ropp, T; Jacobs, T

    1993-01-01

    The induction of proliferation and differentiation in cultured mammalian cells is mediated by a cascade of protein phosphorylations. A key enzyme in this signaling pathway is mitogen-activated protein (MAP) kinase (or ERK, extracellular signal-regulated kinase). We report the recovery of a full-length cDNA clone encoding a MAP kinase from alfalfa. We have named the 44-kD protein encoded by this clone MsERK1. Recombinant MsERK1 (rMsERK1), when overexpressed in Escherichia coli, is recognized by antibodies raised against MAP kinases from rat, Xenopus, and sea star and by anti-phosphotyrosine antibodies. Site-directed mutagenesis of MsERK1 demonstrated that Tyr-215 is either directly or indirectly responsible for recognition of the protein by anti-phosphotyrosine antibodies. Semipurified rMsERK1 phosphorylated itself and a model substrate, myelin basic protein, in vitro, but the Tyr-215 mutant did neither. Genomic DNA gel blot analysis suggested that the gene that encodes MsERK1 is either a member of a small multigene family or a member of a polymorphic allelic series in alfalfa. Because MAP kinase activation has been associated with mitotic stimulation in animal systems, such an enzyme may play a role in the mitogenic induction of symbiotic root nodules on alfalfa by Rhizobium signal molecules. PMID:8439746

  18. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    PubMed

    Lassowskat, Ines; Böttcher, Christoph; Eschen-Lippold, Lennart; Scheel, Dierk; Lee, Justin

    2014-01-01

    Mitogen-activated protein kinases (MAPKs) target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3, and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses) is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phospho)proteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g., WRKY transcription factors and proteins encoded by the genes from the "PEN" pathway required for penetration resistance to filamentous pathogens). Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org).

  19. Biological Significance of Nuclear Localization of Mitogen-activated Protein Kinase Pmk1 in Fission Yeast*

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M. Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-01-01

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level. PMID:22685296

  20. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast.

    PubMed

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-07-27

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.

  1. p38 mitogen-activated protein kinase activation by ultraviolet A radiation in human dermal fibroblasts.

    PubMed

    Le Panse, Rozen; Dubertret, Louis; Coulomb, Bernard

    2003-08-01

    UVA radiation penetrates deeply into the skin reaching both the epidermis and the dermis. We thus investigated the effects of naturally occurring doses of UVA radiation on mitogen-activated protein kinase (MAPK) activities in human dermal fibroblasts. We demonstrated that UVA selectively activates p38 MAPK with no effect on extracellular-regulated kinases (ERK1-ERK2) or JNK-SAPK (cJun NH2-terminal kinase-stress-activated protein kinase) activities. We then investigated the signaling pathway used by UVA to activate p38 MAPK. L-Histidine and sodium azide had an inhibitory effect on UVA activation of p38 MAPK, pointing to a role of singlet oxygen in transduction of the UVA effect. Afterward, using prolonged cell treatments with growth factors to desensitize their signaling pathways or suramin to block growth factor receptors, we demonstrated that UVA signaling pathways shared elements with growth factor signaling pathways. In addition, using emetine (a translation inhibitor altering ribosome functioning) we detected the involvement of ribotoxic stress in p38 MAPK activation by UVA. Our observations suggest that p38 activation by UVA in dermal fibroblasts involves singlet oxygen-dependent activation of ligand-receptor signaling pathways or ribotoxic stress mechanism (or both). Despite the activation of these two distinct signaling mechanisms, the selective activation of p38 MAPK suggests a critical role of this kinase in the effects of UVA radiation.

  2. Timing of mitogen-activated protein kinase (MAPK) activation in the rat pineal gland.

    PubMed

    Ho, A K; Price, D M; Terriff, D; Chik, C L

    2006-06-27

    Activation of members of the mitogen-activated protein kinase (MAPK) family of signaling cascades is a tightly controlled event in rat pinealocytes. Cell culture studies indicate that whereas the NE-->cGMP activation of p42/44MAPK is rapid and transient, the NE-->cAMP activation of p38MAPK is slower and more sustained. The decline in the p42/44MAPK response is in part due to the induction of MAPK phosphatase-1 by NE. In comparison, p38MAPK activation is tightly coupled to the synthesis and degradation of an upstream element in its activation cascade. Whole animal studies confirm activation of p42/44MAPK occurring during the early part of night and precedes p38MAPK activation. Studies with selective MAPK inhibitors reveal a modulating effect of MAPKs on arylalkylamine-N-acetyltransferse (AA-NAT) activity, with involvement of p42/44MAPK in the induction of AA-NAT and p38MAPK participating in the amplitude and duration of the AA-NAT response. These effects of p42/44MAPK and p38MAPK on AA-NAT activity match their timing of activation. Taken together, our studies on the timing of MAPK activation and regulation of AA-NAT by MAPKs add to the importance of MAPKs in regulating the circadian biology of the pineal gland.

  3. Zinc differentially regulates mitogen-activated protein kinases in human T cells.

    PubMed

    Hönscheid, Andrea; Dubben, Svenja; Rink, Lothar; Haase, Hajo

    2012-01-01

    Zinc is an essential nutrient with remarkable importance for immunity, in particular for T-cell function. This is, at least in part, based on an involvement of zinc ions in immune cell signal transduction; dynamic changes of the intracellular free zinc concentration have recently been recognized as signaling events. Because the molecular targets of zinc signals remain incompletely understood, we investigated the impact of elevated intracellular free zinc on mitogen-activated protein kinase (MAPK) activity and MAPK-dependent cytokine production in human T-cells. p38 was activated by treatment with zinc and the ionophore pyrithione, whereas ERK1/2 and c-Jun N-terminal kinases were unaffected. In contrast, after T-cell receptor stimulation with antibodies against CD3, ERK1/2-phosphorylation was selectively suppressed by intracellular zinc. Mechanisms that had been shown to mediate zinc-effects in other cells, such as activation of the Src kinase Lck, inhibition of the protein tyrosine phosphatase CD45 or MAPK phosphatases and cyclic nucleotide/protein kinase A signaling were not involved. This indicates that the differential impact of zinc on the MAPK families in T-cells is mediated by mechanisms that differ from the ones observed in other cell types. Further investigation of the activation of p38 by zinc demonstrated that this MAPK is responsible for the zinc-mediated activation of CREB and mRNA expression of the Th1 cytokines interferon-gamma and interleukin-2. In conclusion, regulation of MAPK activity contributes to the impact of zinc on T-cell function.

  4. Bioinformatics identification and transcript profile analysis of the mitogen-activated protein kinase gene family in the diploid woodland strawberry Fragaria vesca

    PubMed Central

    Wei, Wei; Chai, Zhuangzhuang; Xie, Yinge; Gao, Kuan; Cui, Mengyuan; Jiang, Ying

    2017-01-01

    Mitogen-activated protein kinases (MAPKs) play essential roles in mediating biotic and abiotic stress responses in plants. However, the MAPK gene family in strawberry has not been systematically characterized. Here, we performed a genome-wide survey and identified 12 MAPK genes in the Fragaria vesca genome. Protein domain analysis indicated that all FvMAPKs have typical protein kinase domains. Sequence alignments and phylogenetic analysis classified the FvMAPK genes into four different groups. Conserved motif and exon-intron organization supported the evolutionary relationships inferred from the phylogenetic analysis. Analysis of the stress-related cis-regulatory element in the promoters and subcellular localization predictions of FvMAPKs were also performed. Gene transcript profile analysis showed that the majority of the FvMAPK genes were ubiquitously transcribed in strawberry leaves after Podosphaera aphanis inoculation and after treatment with cold, heat, drought, salt and the exogenous hormones abscisic acid, ethephon, methyl jasmonate, and salicylic acid. RT-qPCR showed that six selected FvMAPK genes comprehensively responded to various stimuli. Additionally, interaction networks revealed that the crucial signaling transduction controlled by FvMAPKs may be involved in the biotic and abiotic stress responses. Our results may provide useful information for future research on the function of the MAPK gene family and the genetic improvement of strawberry resistance to environmental stresses. PMID:28562633

  5. Centrally administered lipopolysaccharide elicits sympathetic excitation via NAD(P)H oxidase-dependent mitogen-activated protein kinase signaling

    PubMed Central

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Felder, Robert B.

    2010-01-01

    Objective The mechanisms by which inflammation activates sympathetic drive in heart failure and hypertension remain ill-defined. In this study, an intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) was used to induce the expression of cytokines and other inflammatory mediators in the brain, in the absence of other excitatory mediators, and the downstream signaling pathways leading to sympathetic activation were examined using ICV injections of blocking or inhibiting agents. Methods and Results In anesthetized rats, ICV injection of LPS (5 µg) increased (p<0.05) renal sympathetic nerve activity, blood pressure and heart rate. LPS increased (p<0.05) hypothalamic mRNA for NAD(P)H oxidase subunits p47 phox and gp91phox, NAD(P)H-oxidase-dependent superoxide generation, hypothalamic mRNA for tumor necrosis factor (TNF)-α, cyclooxygenase-2 (COX-2), and cerebrospinal fluid (CSF) levels of TNF-α and prostaglandin E2 (PGE2). In the paraventricular nucleus of hypothalamus, dihydroethidium staining for superoxide expression and c-Fos activity (indicating neuronal excitation) increased. The superoxide scavenger tempol significantly (p<0.05) diminished the expression of inflammatory mediators, as well as superoxide expression and neuronal excitation in paraventricular nucleus. SB203580 (p38 mitogen-activated protein kinase inhibitor) also reduced the expression of inflammatory mediators in hypothalamus and CSF. Tempol, apocynin (NAD(P)H oxidase inhibitor), SB203580 and NS398 (COX-2 inhibitor) all reduced CSF PGE2 and the sympatho-excitatory response to LPS. LPS also increased angiotensin II type 1 receptor mRNA, a response blocked by apocynin and tempol but not by SB203580. Conclusion These findings suggest that central inflammation in pathophysiological conditions activates the sympathetic nervous system via NAD(P)H-oxidase and p38 mitogen-activated protein kinase dependent synthesis of PGE2. PMID:20027123

  6. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    SciTech Connect

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg{sup 2+} ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn{sup 2+}); and (3) by inducing reactive oxygen species (ROS). Hg{sup 2+} causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn{sup 2+} release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn{sup 2+} or Hg{sup 2+}. Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg{sup 2+}-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg{sup 2+} that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  7. Mitogenic activation of human prostate-derived fibromuscular stromal cells by bradykinin

    PubMed Central

    Walden, Paul D; Lefkowitz, Gary K; Ittmann, Michael; Lepor, Herbert; Monaco, Marie E

    1999-01-01

    Biologically active kinin peptides are released from precursor kininogens by kallikreins. Kinins act on kinin receptors to mediate diverse biological functions including smooth muscle contraction, inflammation, pain and mitogenicity. All components of the kallikrein-kinin system exist in human male genital secretions suggesting that these molecules participate in physiological and pathophysiological genitourinary function. The objective of this study was to assess the consequences of kinin action on prostate cells.Primary cultures of prostate secretory epithelial (PE) and prostate fibromuscular stromal (PS) cells were established from human prostate tissue. Transcripts encoding both the human B1 and B2 bradykinin receptor subtypes were detected in human prostate transition-zone tissue and in cultured cells by RT–PCR. In receptor binding assays, the B1 subtype predominated on PE cell membranes and the B2 subtype predominated on PS cell membranes. In PS cells, but not in PE cells, BK induced significant inositol phosphate accumulation and [3H]-thymidine uptake. These responses were mediated through the B2 receptor subtype.The use of signal transduction inhibitors indicated that mitogenic activation by BK occurred through both protein kinase C (PKC) and protein tyrosine kinase dependent mechanisms. PMA (phorbol 12-myristate 13-acetate) produced maximal [3H]-thymidine uptake by PS cells, resulted in cell elongation and caused the α-actin fibres present in PS smooth muscle cells to became organized into parallel arrays along the length of the elongated cells.In summary, the prostate contains a functional kallikrein-kinin system, which could be significant in physiological and pathophysiological prostate function. PMID:10369476

  8. Opioid-induced mitogen-activated protein kinase signaling in rat enteric neurons following chronic morphine treatment.

    PubMed

    Duraffourd, Celine; Kumala, Erica; Anselmi, Laura; Brecha, Nicholas C; Sternini, Catia

    2014-01-01

    Opioids, acting at μ opioid receptors, are commonly used for pain management. Chronic opioid treatment induces cellular adaptations, which trigger long-term side effects, including constipation mediated by enteric neurons. We tested the hypothesis that chronic opioid treatment induces alterations of μ opioid receptor signaling in enteric neurons, which are likely to serve as mechanisms underlying opioid-induced constipation. In cultured rat enteric neurons, either untreated (naïve) or exposed to morphine for 4 days (chronic), we compared the effect of morphine and DAMGO (D-Ala2,MePhe4,Gly-ol5 enkephalin) on μ opioid receptor internalization and downstream signaling by examining the activation of the mitogen-activated protein kinase/extracellular signal-regulated kinases 1 and 2 (MAPK/ERK) pathway, cAMP accumulation and transcription factor cAMP Response Element-Binding protein (CREB) expression. μ opioid receptor internalization and MAPK/ERK phosphorylation were induced by DAMGO, but not morphine in naïve neurons, and by both opioids in chronic neurons. MAPK/ERK activation was prevented by the receptor antagonist naloxone, by blocking receptor trafficking with hypertonic sucrose, dynamin inhibitor, or neuronal transfection with mutated dynamin, and by MAPK inhibitor. Morphine and DAMGO inhibited cAMP in naïve and chronic enteric neurons, and induced desensitization of cAMP signaling. Chronic morphine treatment suppressed desensitization of cAMP and MAPK signaling, increased CREB phosphorylation through a MAPK/ERK pathway and induced delays of gastrointestinal transit, which was prevented by MAPK/ERK blockade. This study showed that opioids induce endocytosis- and dynamin-dependent MAPK/ERK activation in enteric neurons and that chronic morphine treatment triggers changes at the receptor level and downstream signaling resulting in MAPK/ERK-dependent CREB activation. Blockade of this signaling pathway prevents the development of gastrointestinal motility

  9. Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type 1

    SciTech Connect

    Brandi, M.L.; Aurbach, G.D.; Fitzpatrick, L.A.; Quarto, R.; Spiegel, A.M.; Bliziotes, M.M.; Norton, J.A.; Doppman, J.L.; Marx, S.J.

    1986-05-15

    Hyperplasia of the parathyroid glands is a central feature of familial multiple endocrine neoplasia type 1. We used cultured bovine parathyroid cells to test for mitogenic activity in plasma from patients with this disorder. Normal plasma stimulated (/sup 3/H)thymidine incorporation, on the average, to the same extent as it was stimulated in a plasma-free control culture. This contrasted with the results of the tests with plasma from patients with familial multiple endocrine neoplasia type 1, in which parathyroid mitogenic activity increased 2400 percent over the control value (P less than 0.001). Plasma from these patients also stimulated the proliferation of bovine parathyroid cells in culture, whereas plasma from normal subjects inhibited it. Parathyroid mitogenic activity in plasma from the patients with familial multiple endocrine neoplasia type 1 was greater than that in plasma from patients with various other disorders, including sporadic primary hyperparathyroidism (with adenoma, hyperplasia, or cancer of the parathyroid), sporadic primary hypergastrinemia, sporadic pituitary tumor, familial hypocalciuric hypercalcemia, and multiple endocrine neoplasia type 2 (P less than 0.05). Parathyroid mitogenic activity in the plasma of patients with familial multiple endocrine neoplasia type 1 persisted for up to four years after total parathyroidectomy. The plasma also had far more mitogenic activity in cultures of parathyroid cells than did optimal concentrations of known growth factors or of any parathyroid secretagogue. This mitogenic activity had an apparent molecular weight of 50,000 to 55,000. We conclude that primary hyperparathyroidism in familial multiple endocrine neoplasia type 1 may have a humoral cause.

  10. Sertraline, an antidepressant, induces apoptosis in hepatic cells through the mitogen-activated protein kinase pathway.

    PubMed

    Chen, Si; Xuan, Jiekun; Wan, Liqing; Lin, Haixia; Couch, Letha; Mei, Nan; Dobrovolsky, Vasily N; Guo, Lei

    2014-02-01

    Sertraline is generally used for the treatment of depression and is also approved for the treatment of panic, obsessive-compulsive, and posttraumatic stress disorders. Previously, using rat primary hepatocytes and isolated mitochondria, we demonstrated that sertraline caused hepatic cytotoxicity and mitochondrial impairment. In the current study, we investigated and characterized molecular mechanisms of sertraline toxicity in human hepatoma HepG2 cells. Sertraline decreased cell viability and induced apoptosis in a dose- and time-dependent manner. Sertraline activated the intrinsic checkpoint protein caspase-9 and caused the release of cytochrome c from mitochondria to cytosol; this process was Bcl-2 family dependent because antiapoptotic Bcl-2 family proteins were decreased. Pretreatment of the HepG2 cells with caspase-3, caspase-8, and caspase-9 inhibitors partially but significantly reduced the release of lactate dehydrogenase, indicating that sertraline-induced apoptosis is mediated by both intrinsic and extrinsic apoptotic pathways. Moreover, sertraline markedly increased the expression of tumor necrosis factor (TNF) and the phosphorylation of JNK, extracellular signal-regulated kinase (ERK1/2), and p38. In sertraline-treated cells, the induction of apoptosis and cell death was shown to be the result of activation of JNK, but not ERK1/2 or p38 in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, silencing MAP4K4, the upstream kinase of JNK, attenuated both apoptosis and cell death caused by sertraline. Taken together, our findings suggest that sertraline induced apoptosis in HepG2 cells at least partially via activation of the TNF-MAP4K4-JNK cascade signaling pathway.

  11. Effect of prolonged hydroxytamoxifen treatment of MCF-7 cells on mitogen activated kinase cascade.

    PubMed

    Rabenoelina, Fanjaniriana; Semlali, Abdelhabib; Duchesne, Marie-Josèphe; Freiss, Gilles; Pons, Michel; Badia, Eric

    2002-04-10

    Resistance to the antiestrogen tamoxifen is the main stumbling block for the success of breast cancer therapy. We focused our study on cellular alterations induced by a prolonged treatment with the active tamoxifen metabolite hydroxytamoxifen (OHT). We show that a prolonged OHT treatment (for up to 7 days) led to a progressive increase in the level of phosphorylated p44/42 mitogen activated kinase (MAP kinase) induced by 10(-7) M TPA stimulation, without any significant change in the protein level. This effect was also observed in MCF-7 cells grown first in medium containing dextran-coated charcoal-treated FCS (DCC medium) for 20 days prior to OHT treatment, indicating a specific effect of the antiestrogen and not an effect of estrogen deprivation. It was prevented by cotreatment with estradiol and not observed in the estrogen receptor negative HeLa cell line, suggesting that it was mediated by the estrogen receptor. TPA induced phosphorylation of MEK1/2 was also raised by OHT treatment, without any change in their protein level or Raf-1 and H-Ras levels. When the MCF-7R OHT resistant cell line was grown in antiestrogen containing medium, the level of phosphorylated p44/42 MAP kinase was also high but reversed when the antiestrogen was removed. The 2 other MAP kinase, JNK and P38 pathways were not affected in the same way by OHT treatment. In conclusion, our data reveal that a prolonged OHT treatment, by increasing p44/42 MAPK activity, affects a key step in the growth control of MCF-7 cells, although not sufficiently to overcome the growth inhibitory effect of the drug. Copyright 2002 Wiley-Liss, Inc.

  12. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling.

    PubMed

    Alagramam, Kumar N; Stepanyan, Ruben; Jamesdaniel, Samson; Chen, Daniel H-C; Davis, Rickie R

    2014-01-01

    Noise-induced hearing loss (NIHL) is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL) broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control) or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK) signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  13. Mitogen-Activated Protein Kinase Phosphatase 1 Disrupts Proinflammatory Protein Synthesis in Endotoxin-Adapted Monocytes

    PubMed Central

    Brudecki, Laura; Ferguson, Donald A.; McCall, Charles E.

    2013-01-01

    Autotoxic production of proinflammatory mediators during early sepsis induces excessive inflammation, and their later suppression may limit the immune response. We previously reported that sepsis differentially represses transcription and translation of tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) to reprogram sepsis inflammation. This switch is gene specific and plays a crucial role in the clinically relevant syndrome of endotoxin adaptation/tolerance, multiorgan failure, and poor sepsis outcome. To further define the mechanisms responsible for translation disruption that follows inflammation induction, we used THP-1 human promonocytes as a model of Toll-like receptor 4 (TLR4) responses found in sepsis. We showed that phosphorylation-dependent activation of p38 mitogen-activated protein kinase (MAPK) and translation disruption of TNF-α and IL-6 follow increased MAPK phosphatase 1 (MKP-1) expression and that MKP-1 knockdown rephosphorylates p38 and restores the capacity to translate TNF-α and IL-6 mRNAs. We also observed that the RNA-binding protein motif 4 (RBM4), a p38 MAPK target, accumulates in an unphosphorylated form in the cytosol in endotoxin-adapted cells, suggesting that dephosphorylated RBM4 may function as a translational repressor. Moreover, MKP-1 knockdown promotes RBM4 phosphorylation, blocks its transfer from the nucleus to the cytosol, and reverses translation repression. We also found that microRNA 146a (miR-146a) knockdown prevents and miR-146a transfection induces MKP-1 expression, which lead to increases or decreases in TNF-α and IL-6 translation, respectively. We conclude that a TLR4-, miR-146a-, p38 MAPK-, and MKP-1-dependent autoregulatory pathway regulates the translation of proinflammatory genes during the acute inflammatory response by spatially and temporally modifying the phosphorylation state of RBM4 translational repressor protein. PMID:23825193

  14. Evolutionary history of mitogen-activated protein kinase (MAPK) genes in Lotus, Medicago, and Phaseolus.

    PubMed

    Neupane, Achal; Nepal, Madhav P; Benson, Benjamin V; Macarthur, Kenton J; Piya, Sarbottam

    2013-11-01

    Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution.

  15. The Mitogen Activated Protein Kinase Pathway Facilitates Resistance to the Src Inhibitor, Dasatinib, in Thyroid Cancer

    PubMed Central

    Beadnell, Thomas C.; Mishall, Katie M.; Zhou, Qiong; Riffert, Stephen M.; Wuensch, Kelsey E.; Kessler, Brittelle E.; Corpuz, Maia L.; Jing, Xia; Kim, Jihye; Wang, Guoliang; Tan, Aik Choon; Schweppe, Rebecca E.

    2016-01-01

    Advanced stages of papillary and anaplastic thyroid cancer represent a highly aggressive subset, in which there are currently few effective therapies. We and others have recently demonstrated that c-Src is a key mediator of growth, invasion, and metastasis, and therefore represents a promising therapeutic target in thyroid cancer. However clinically, Src inhibitor efficacy has been limited, and therefore further insights are needed to define resistance mechanisms and determine rational combination therapies. We have generated four thyroid cancer cell lines with a greater than 30-fold increase in acquired resistance to the Src inhibitor, dasatinib. Upon acquisition of dasatinib-resistance, the two RAS-mutant cell lines acquired the c-Src gatekeeper mutation (T341M), whereas the two BRAF-mutant cell lines did not. Accordingly, Src signaling was refractory to dasatinib treatment in the RAS-mutant dasatinib-resistant cell lines. Interestingly, activation of the Mitogen Activated Protein (MAP) Kinase pathway was increased in all four of the dasatinib-resistant cell lines, likely due to B-Raf and c-Raf dimerization. Furthermore, MAP2K1/MAP2K2 (MEK1/2) inhibition restored sensitivity in all four of the dasatinib-resistant cell lines, and overcome acquired resistance to dasatinib in the RAS-mutant Cal62 cell line, in vivo. Together, these studies demonstrate that acquisition of the c-Src gatekeeper mutation and MAP Kinase pathway signaling play important roles in promoting resistance to the Src inhibitor, dasatinib. We further demonstrate that up-front combined inhibition with dasatinib and MEK1/2 or ERK1/2 inhibitors drives synergistic inhibition of growth and induction of apoptosis, indicating that combined inhibition may overcome mechanisms of survival in response to single agent inhibition. PMID:27222538

  16. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases

    PubMed Central

    Qian, Feng; Deng, Jing; Wang, Gang; Ye, Richard D.; Christman, John W.

    2016-01-01

    Mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) is exclusively regulated by p38 MAPK in vivo. Upon activation of p38 MAPK, MK2 binds with p38 MAPK, leading to phosphorylation of TTP, Hsp27, Akt and Cdc25 that are involved in regulation of various essential cellular functions. In this review, we discuss current knowledge about molecular mechanisms of MK2 in regulation of TNF-α production, NADPH oxidase activation, neutrophil migration, and DNA-damage-induced cell cycle arrest which are involved in the molecular pathogenesis of acute lung injury, pulmonary fibrosis, and non-small-cell lung cancer. Collectively current and emerging new information indicate that developing MK2 inhibitors and blocking MK2-mediated signal pathways is a potential therapeutic strategy for treatment of inflammatory and fibrotic lung diseases and lung cancer. PMID:26119506

  17. The Emerging Role of p38 Mitogen-Activated Protein Kinase in Multiple Sclerosis and Its Models

    PubMed Central

    Krementsov, Dimitry N.; Thornton, Tina M.

    2013-01-01

    Multiple sclerosis (MS), the most common disabling neurologic disease of young adults, is considered a classical T cell-mediated disease and is characterized by demyelination, axonal damage, and progressive neurological dysfunction. The currently available disease-modifying therapies are limited in their efficacy, and improved understanding of new pathways contributing to disease pathogenesis could reveal additional novel therapeutic targets. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is known to be triggered by stress stimuli and to contribute to inflammatory responses. Importantly, a number of recent studies have identified this signaling pathway as a central player in MS and its principal animal model, experimental allergic encephalomyelitis. Here, we review the evidence from mouse and human studies supporting the role of p38 MAPK in regulating key immunopathogenic mechanisms underlying autoimmune inflammatory disease of the central nervous system and the potential of targeting this pathway as a disease-modifying therapy in MS. PMID:23897428

  18. Interleukin-4 and granulocyte-macrophage colony-stimulating factor mediates the upregulation of soluble vascular endothelial growth factor receptor-1 in RAW264.7 cells-a process in which p38 mitogen-activated protein kinase signaling has an important role.

    PubMed

    Xia, Lin; Dong, Zhaogang; Zhang, Yun; Zhang, Xiaoying; Song, Xiaobin; Sun, Mingxia; Hu, Yingwei; Liu, Shaohua; Wang, Ketao; Qu, Xun; Wei, Fengcai

    2016-06-01

    Soluble vascular endothelial growth factor receptor-1 (sVEGFR1) antagonizes angiogenesis by inhibiting the biological function of vascular endothelial growth factor (VEGF). Immature dendritic cells (imDCs) express high levels of sVEGFR1 during development and are antiangiogenic. This study aimed to investigate the changes in VEGFR1, sVEGFR1, and VEGF levels during the development of imDCs and explore the underlying signaling mechanisms. To model the differentiation of imDCs from monocytes, RAW264.7 cells, a murine monocyte/macrophage cell line, were stimulated by interleukin-4 (IL-4; 10 ng/mL, 20 ng/mL, and 40 ng/mL) and/or by granulocyte-macrophage colony-stimulating factor (GM-CSF; 10 ng/mL, 20 ng/mL, and 50 ng/mL) and/or pretreated by the p38 inhibitor SB203580. The levels of VEGFR1, sVEGFR1, and VEGF were detected by reverse transcription polymerase chain reaction (RT-PCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). IL-4 increased the VEGFR1 mRNA and sVEGFR1 levels in RAW264.7 (p < 0.05). This increase was inhibited by SB203580. Granulocyte-macrophage colony-stimulating factor increased the sVEGFR1 levels, but it had no significant effect on VEGFR1 mRNA levels. SB203580 decreased the expression of VEGFR1 mRNA induced by GM-CSF, whereas sVEGFR1 was unaffected. IL-4 had a greater effect on sVEGFR1 levels, compared to GM-CSF. IL-4 and GM-CSF increased sVEGFR1 levels, but did not significantly effect VEGF expression, and led to the antiangiogenesis properties of monocytes. p38 Mitogen-activated protein kinase signaling has an important role in the process. Copyright © 2014. Published by Elsevier B.V.

  19. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses

    USDA-ARS?s Scientific Manuscript database

    Forage and turf grasses are continually cut and grazed by livestock, however very little is known concerning the perception or molecular responses to wounding. Mechanical wounding rapidly activated a 46 kDa and a 44 kDa mitogen-activated protein kinase (MAPK) in six different grass species. In the m...

  20. Inhibition of a signaling pathway in cardiac muscle cells by active mitogen-activated protein kinase kinase.

    PubMed Central

    Thorburn, J; Carlson, M; Mansour, S J; Chien, K R; Ahn, N G; Thorburn, A

    1995-01-01

    Signaling via the Ras pathway involves sequential activation of Ras, Raf-1, mitogen-activated protein kinase kinase (MKK), and the extracellular signal-regulated (ERK) group of mitogen-activated protein (MAP) kinases. Expression from the c-Fos, atrial natriuretic factor (ANF), and myosin light chain-2 (MLC-2) promoters during phenylephrine-induced cardiac muscle cell hypertrophy requires activation of this pathway. Furthermore, constitutively active Ras or Raf-1 can mimic the action of phenylephrine in inducing expression from these promoters. In this study, we tested whether constitutively active MKK, the molecule immediately downstream of Raf, was sufficient to induce expression. Expression of constitutively active MKK induce ERK2 kinase activity and caused expression from the c-Fos promoter, but did not significantly activate expression of reporter genes under the control of either the ANF or MLC-2 promoters. Expression of CL100, a phosphatase that inactivates ERKs, prevented expression from all of the promoters. Taken together, these data suggest that ERK activation is required for expression from the Fos, ANF, and MLC-2 promoters but MKK and ERK activation is sufficient for expression only from the Fos promoter. Constitutively active MKK synergized with phenylephrine to increase expression from a c-Fos- or an AP1-driven reporter. However, active MKK inhibited phenylephrine- and Raf-1-induced expression from the ANF and MLC-2 promoters. A DNA sequence in the MLC-2 promoter that is a target for inhibition by active MKK, but not CL100, was mapped to a previously characterized DNA element (HF1) that is responsible for cardiac specificity. Thus, activation of cardiac gene expression during phenylephrine-induced hypertrophy requires ERK activation but constitutive activation by MKK can inhibit expression by targeting a DNA element that controls the cardiac specificity of gene expression. PMID:8589450

  1. Role of mitogen-activated protein kinases and nuclear factor-kappa B in 1,3-dichloro-2-propanol-induced hepatic injury

    PubMed Central

    Lee, In-Chul; Lee, Sang-Min; Ko, Je-Won; Park, Sung-Hyeuk; Shin, In-Sik; Moon, Changjong; Kim, Sung-Ho

    2016-01-01

    In this study, the potential hepatotoxicity of 1,3-dichloro-2-propanol and its hepatotoxic mechanisms in rats was investigated. The test chemical was administered orally to male rats at 0, 27.5, 55, and 110 mg/kg body weight. 1,3-Dichloro-2-propanol administration caused acute hepatotoxicity, as evidenced by an increase in serum aminotransferases, total cholesterol, and total bilirubin levels and a decrease in serum glucose concentration in a dose-dependent manner with corresponding histopathological changes in the hepatic tissues. The significant increase in malondialdehyde content and the significant decrease in glutathione content and antioxidant enzyme activities indicated that 1,3-dichloro-2-propanol-induced hepatic damage was mediated through oxidative stress, which caused a dose-dependent increase of hepatocellular apoptotic changes in the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and immunohistochemical analysis for caspase-3. The phosphorylation of mitogen-activated protein kinases caused by 1,3-dichloro-2-propanol possibly involved in hepatocellular apoptotic changes in rat liver. Furthermore, 1,3-dichloro-2-propanol induced an inflammatory response through activation of nuclear factor-kappa B signaling that coincided with the induction of pro-inflammatory mediators or cytokines in a dose-dependent manner. Taken together, these results demonstrate that hepatotoxicity may be related to oxidative stress-mediated activation of mitogen-activated protein kinases and nuclear factor-kappa B-mediated inflammatory response. PMID:27051440

  2. Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception.

    PubMed

    Meza-Canales, Ivan D; Meldau, Stefan; Zavala, Jorge A; Baldwin, Ian T

    2017-07-01

    Herbivory-induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (AC ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1-5 ribulose-1,5-bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12-oxo-phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen-activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen-activated protein kinase 4 in CO2 -mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid-mediated defence responses, also elicit 12-oxo-phytodienoic acid-mediated changes in stomatal conductance and AC , an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack. © 2016 John Wiley & Sons Ltd.

  3. Germ cell mitogenic activity is associated with nerve growth factor-like protein(s).

    PubMed

    Onoda, M; Pflug, B; Djakiew, D

    1991-12-01

    The mitogenicity of germ cell proteins released from round spermatids (RS) and pachytene spermatocytes (PS) was investigated. Germ cells were isolated by centrifugal elutriation from 90-day-old rat testes and incubated in a supplement enriched culture media that lacked exogenous proteins. The conditioned culture media of RS and PS were dialysed/concentrated and lyophilized to prepare RS protein (RSP) and PS protein (PSP). Mitogenic activity of RSP and PSP was determined by 3H-thymidine incorporation into Swiss 3T3 fibroblasts. RSP and PSP stimulated 3H-thymidine incorporation by fibroblasts in a dose-dependent manner. At a higher concentration of RSP (300 micrograms/ml), fibroblast proliferation was stimulated from 6- to 20-fold of control cultures, whereas PSP (300 micrograms/ml) stimulated fibroblast proliferation 2.5-fold of control cultures. Since RSP exhibited substantially greater mitogenic activity than PSP we further investigated the RSP mitogenic substance(s) by immunoneutralization with antibodies against several growth factors. The mitogenic activity of RSP was significantly reduced by treatment with nerve growth factor (NGF) antibody, while neither the treatment of RSP with acidic fibroblast growth factor (aFGF) antibody, nor basic fibroblast growth factor (bFGF) antibody significantly modified the mitogenic activity of RSP. Interestingly, murine NGF-beta, recombinant human NGF-beta, and bovine serum albumin (BSA) did not exhibit mitogenic activity on 3T3 fibroblasts. Nevertheless, the presence of a NGF-like protein in RS and PS was confirmed by indirect immunofluorescence staining with a murine NGF antibody. Subsequently, a Western blot analysis with the NGF antibody identified two immunoreactive bands of 41 +/- 2 kDa and 51 +/- 1 kDa in both RSP and PSP under reduced conditions. These germ cell NGF-like proteins were apparently different from similarly prepared murine and human NGFs (13 kDa) in their molecular weight. Furthermore, neurite outgrowth

  4. Human IFN-gamma up-regulates IL-2 receptors in mitogen-activated T lymphocytes.

    PubMed Central

    Rodriguez, M A; De Sanctis, J B; Blasini, A M; Leon-Ponte, M; Abadi, I

    1990-01-01

    This study examined the role of human recombinant interferon-gamma (rIFN-gamma) in the expression of interleukin-2 receptors (IL-2R) by human T lymphocytes. rIFN-gamma enhanced total numbers of IL-2R in mitogen-activated but not resting T cells. Scatchard plot analysis indicated that rIFN-gamma increased both high- and low-affinity receptors, with a predominant effect on the latter. Phytohaemagglutinin (PHA)-activated T cells treated with IFN-gamma showed higher IL-2 binding and greater IL-2 internalization and degradation than cells treated with PHA alone. There was a corresponding increase of mitogen-driven proliferative responses, indicating an increase of functional receptors in IFN-treated cultures. IFN-gamma may influence T-cell activation and proliferation by enhancing expression of IL-2R and promoting IL-2 uptake by mitogen-activated lymphocytes. PMID:2110548

  5. Metabolic and cytoskeletal modulation of transferrin receptor mobility in mitogen-activated human lymphocytes.

    PubMed Central

    Galbraith, G M; Galbraith, R M

    1980-01-01

    The transferrin receptors which appear on mitogen-activated human peripheral blood lymphocytes were found by the use of immunofluorescence techniques to display temperature-dependent patching and capping reactions upon binding of transferrin. Lateral mobility of ligand-occupied membrane sites was accompanied by both shedding and endocytosis of receptor-transferrin complexes. In the presence of sodium azide or the microfilament inhibitor cytochalasin B, cap formation and shedding were markedly inhibited. In contrast, endocytosis of patched receptor-ligand complexes was inhibited by azide and microtubule inhibitors, including colchicine, vinblastine and vincristine. Co-capping experiments performed to elucidate further the alterations in membrane configuration involved in these reactions failed to reveal any topographical relationship between transferrin receptors and lectin-binding sites in these cells. These studied indicate that temperature-dependent mobility of transferrin receptors upon mitogen-activated peripheral blood lymphocytes is dependent upon the integrity of the cytoskeletal system and metabolic function of the cell. PMID:6258830

  6. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    SciTech Connect

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A. )

    1990-11-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ((3H)thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens.

  7. Mechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells.

    PubMed Central

    Sudhir, K; Wilson, E; Chatterjee, K; Ives, H E

    1993-01-01

    The effects of extracellular matrix proteins and mechanical strain on the mitogenic activity of angiotensins I and II (AI and AII) were examined in cultured rat vascular smooth muscle (VSM) cells. VSM cells on various extracellular matrices were exposed to AII (1 microM) for 48 h. On plastic, AII induced only a 1.6-fold increase in [3H]thymidine incorporation, but on fibronectin- or type I collagen-coated plastic, the response to AII was enhanced from two- to fourfold. On a type I collagen-coated silicone elastomer, to which mechanical strain was applied, [3H]thymidine incorporation dramatically increased to a maximum of 53-fold. Dup 753 (10(-5) M) blocked the AII-induced increase in DNA synthesis. AI also increased DNA synthesis in VSM cells, and this response was also enhanced by mechanical strain. Mitogenic activity of AI was blocked by ramiprilat (10(-5) M), indicating that its mitogenic activity was via conversion to AII. The synergy between AII and strain was completely eliminated by neutralizing antibodies to PDGF AB (3 micrograms/ml). Furthermore, the mitogenic effect of AII in unstrained cells was also synergistic with submaximal concentrations of PDGF AB (1 ng/ml). Thus, the synergy between AII and mechanical strain probably results from synergism between AII and PDGF secreted in response to strain. PMID:8254054

  8. Transcriptional Regulation of the SMK1 Mitogen-Activated Protein Kinase Gene during Meiotic Development in Saccharomyces cerevisiae

    PubMed Central

    Pierce, Michael; Wagner, Marisa; Xie, Jianxin; Gailus-Durner, Valérie; Six, John; Vershon, Andrew K.; Winter, Edward

    1998-01-01

    Meiotic development (sporulation) in Saccharomyces cerevisiae is characterized by an ordered pattern of gene expression, with sporulation-specific genes classified as early, middle, mid-late, or late depending on when they are expressed. SMK1 encodes a mitogen-activated protein kinase required for spore morphogenesis that is expressed as a middle sporulation-specific gene. Here, we identify the cis-acting DNA elements that regulate SMK1 transcription and characterize the phenotypes of mutants with altered expression patterns. The SMK1 promoter contains an upstream activating sequence (UASS) that specifically interacts with the transcriptional activator Abf1p. The Abf1p-binding sites from the early HOP1 and the middle SMK1 promoters are functionally interchangeable, demonstrating that these elements do not play a direct role in their differential transcriptional timing. Timing of SMK1 expression is determined by another cis-acting DNA sequence termed MSE (for middle sporulation element). The MSE is required not only for activation of SMK1 transcription during middle sporulation but also for its repression during vegetative growth and early meiosis. In addition, the SMK1 MSE can repress vegetative expression in the context of the HOP1 promoter and convert HOP1 from an early to a middle gene. SMK1 function is not contingent on its tight transcriptional regulation as a middle sporulation-specific gene. However, promoter mutants with different quantitative defects in SMK1 transcript levels during middle sporulation show distinct sporulation phenotypes. PMID:9742114

  9. The p38 mitogen-activated protein kinase cascade modulates T helper type 17 differentiation and functionality in multiple sclerosis

    PubMed Central

    Di Mitri, Diletta; Sambucci, Manolo; Loiarro, Maria; De Bardi, Marco; Volpe, Elisabetta; Cencioni, Maria Teresa; Gasperini, Claudio; Centonze, Diego; Sette, Claudio; Akbar, Arne N; Borsellino, Giovanna; Battistini, Luca

    2015-01-01

    The p38 mitogen-activated protein kinase cascade is required for the induction of a T helper type 17 (Th17) -mediated autoimmune response, which underlies the development and progression of several autoimmune diseases, such as experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis (MS). However, the contribution of p38 phosphorylation to human Th cell differentiation has not been clarified. Here we demonstrate that the p38 signalling pathway is implicated in the generation of Th17 lymphocytes from human CD4+ CD27+ CD45RA+ naive T cells, both in healthy donors and in patients affected by the relapsing–remitting form of MS. Our data also indicate that p38 activation is essential for interleukin-17 release from central memory lymphocytes and committed Th17 cell clones. Furthermore, CD4+ T cells isolated from individuals with relapsing–remitting MS display an altered responsiveness of the p38 cascade, resulting in increased p38 phosphorylation upon stimulation. These findings suggest that the p38 signalling pathway, by modulating the Th17 differentiation and response, is involved in the pathogenesis of MS, and open new perspectives for the use of p38 inhibitors in the treatment of Th17-mediated autoimmune diseases. PMID:26095162

  10. Mitogen activated protein kinase 14-1 regulates serum glucocorticoid kinase 1 during seawater acclimation in Atlantic killifish, Fundulus heteroclitus.

    PubMed

    Notch, Emily G; Chapline, Chris; Flynn, Erin; Lameyer, Tess; Lowell, Alyson; Sato, Denry; Shaw, Joseph R; Stanton, Bruce A

    2012-08-01

    The Atlantic killifish (Fundulus heteroclitus) is an environmental sentinel organism used extensively for studies of environmental toxicants and osmoregulation. Previous research in our laboratory has shown that acute acclimation to seawater is mediated by an increase in SGK1. SGK1 promotes the trafficking of CFTR chloride channels from intracellular vesicles to the plasma membrane of the gill within the first hour in seawater resulting in increased chloride secretion. Although we have shown that the increase in gill SGK1 does not require activation of the glucocorticoid receptor, the mechanisms that mediate the rise SGK1 during acute acclimation is unknown. To test the hypothesis that mitogen activated protein kinase (MAPK14) is responsible for the rise in SGK1 we identified the coding sequence of killifish MAPK14-1 and designed a translational blocking vivo-morpholino targeting MAPK14-1. Injection of the MAPK14-1 vivo-morpholino resulted in a 30% reduction of MAPK14-1 and a 45% reduction in phosphorylated-MAPK14-1 protein in the gill of killifish transitioned from freshwater to seawater. Knock down of phosphorlyated-MAPK14-1 completely blocked the rise in SGK1 mRNA and protein in the killifish gill, providing the first direct and in vivo evidence that MAPK14-1 is necessary for acute seawater acclimation.

  11. Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; Ye, Fuzhou; Qin, Qiwei

    2011-06-01

    Iridoviruses are large DNA viruses that infect invertebrates and poikilothermic vertebrates, and result in significant economic losses in aquaculture production, and drastic declines in amphibian populations. Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in farm-raised soft-shelled turtles (Trionyx sinensis). In the present study, the mechanisms of STIV-induced cell death and the roles of the mitogen-activated protein kinase (MAPK) signaling pathway were investigated. STIV infection evoked typical apoptosis in fish cells, as demonstrated by the formation of apoptotic bodies, positive terminal deoxynucleotidyl transferase-mediated nicked-end labeling, and caspase-3 activation. The translocation of cytochrome c from mitochondria to cytoplasm, and caspase-9 activation suggested that a mitochondria-mediated pathway was involved in STIV-induced apoptosis. Moreover, MAPK pathways, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK signaling were activated during STIV infection. Using specific inhibitors, we found that MAPK signaling molecules, including ERK, JNK and p38 MAPK, were important for virus release, whereas, only ERK and p38 MAPK were involved in STIV-induced apoptosis by modulating caspase-3 activity. Taken together, our findings shed light on the roles of the MAPK signaling pathway in iridovirus-induced apoptosis and virus replication, which provides new insights into understanding iridovirus-host interaction.

  12. Review article: mitogen-activated protein kinases in chronic intestinal inflammation - targeting ancient pathways to treat modern diseases.

    PubMed

    Waetzig, G H; Schreiber, S

    2003-07-01

    Conventional treatment of chronic inflammatory disorders, including inflammatory bowel diseases, employs broad-range anti-inflammatory drugs. In order to reduce the side-effects and increase the efficacy of treatment, several strategies have been developed in the last decade to interfere with intercellular and intracellular inflammatory signalling processes. The highly conserved mitogen-activated protein kinase pathways regulate most cellular processes, particularly defence mechanisms such as stress reactions and inflammation. In this review, we provide an overview of the current knowledge of the specificity and interconnection of mitogen-activated protein kinase pathways, their functions in the gut immune system and published and ongoing studies on the role of mitogen-activated protein kinases in inflammatory bowel disease. The development of mitogen-activated protein kinase inhibitors and their use for the therapy of inflammatory disorders is a paradigm of the successful bridging of the gap between basic research and clinical practice.

  13. Mitogen-activated protein kinase phosphatase-1 inhibition and sustained extracellular signal-regulated kinase 1/2 activation in camptothecin-induced human colon cancer cell death

    PubMed Central

    Lee, Minyoung; Young Kim, Sun; Kim, JongGuk; Kim, Hak-Su; Kim, Sang-Man; Kim, Eun Ju

    2013-01-01

    Camptothecins are commonly used chemotherapeutics; in some models, they enhance signaling via the mitogen-activated protein kinase (MAPK) pathway through effects on upstream kinases. To evaluate the impact of camptothecin (CPT) on MAPKs in human colon cancer, we studied HCT116 and CaCo2 colon cancer cells. We found that HCT116 cells highly express mitogen-activated protein kinase phosphatase-1 (MKP1), which selectively inactivates extracellular signal-regulated kinase (ERK), whereas MKP1 levels were undetectable in CaCo2 cells. CPT did not affect ERK activity in CaCo2 cells, but did induce a striking increase in ERK activity in HCT116 cells in association with a corresponding decrease in MKP1. The reduction in MKP1 expression occurred at a posttranscriptional level and was blocked by the proteasome inhibitor MG132, whereas that CPT-induced downregulation of MKP1 was not due to proteasome-mediated degradation. Treatment of HCT116 cells with CPT induced a sustained activation of nuclear ERK, which was required for CPT-induced apoptosis. P38 and JNK activity were unaffected by CPT, suggesting that the effects of CPT are mediated specifically by ERK. These results suggest that targeting dual-specificity MAPK phosphatases in colon cancer cells may be a viable strategy for optimizing camptothecin-based therapeutic protocols. PMID:24005240

  14. Essential Elements of Child Protection Mediation.

    ERIC Educational Resources Information Center

    Barsky, Allan Edward

    This study investigated the effectiveness of the process of mediation in child protection (CP) and the essential aspects which may contribute to developing more effective working relationships with child welfare families. The study focused on neutrality, one of the primary aspects of CP mediation. Interviews were conducted with 17 adult family…

  15. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    PubMed Central

    Brumlik, Michael J.; Pandeswara, Srilakshmi; Ludwig, Sara M.; Murthy, Kruthi; Curiel, Tyler J.

    2011-01-01

    Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known. PMID:21637385

  16. Propranolol Targets Hemangioma Stem Cells via cAMP and Mitogen-Activated Protein Kinase Regulation

    PubMed Central

    Munabi, Naikhoba C.O.; England, Ryan W.; Edwards, Andrew K.; Kitajewski, Alison A.; Tan, Qian Kun; Weinstein, Andrew; Kung, Justin E.; Wilcox, Maya; Kitajewski, Jan K.; Shawber, Carrie J.

    2016-01-01

    Infantile hemangiomas (IHs) are the most common vascular tumor and arise from a hemangioma stem cell (HemSC). Propranolol has proved efficacious for problematic IHs. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist that can lower cAMP levels and activate the mitogen-activated protein kinase (MAPK) pathway downstream of βARs. We found that HemSCs express β1AR and β2AR in proliferating IHs and determined the role of these βARs and the downstream pathways in mediating propranolol’s effects. In isolated HemSCs, propranolol suppressed cAMP levels and activated extracellular signal-regulated kinase (ERK)1/2 in a dose-dependent fashion. Propranolol, used at doses of <10−4 M, reduced cAMP levels and decreased HemSC proliferation and viability. Propranolol at ≥10−5 M reduced cAMP levels and activated ERK1/2, and this correlated with HemSC apoptosis and cytotoxicity at ≥10−4 M. Stimulation with a βAR agonist, isoprenaline, promoted HemSC proliferation and rescued the antiproliferative effects of propranolol, suggesting that propranolol inhibits βAR signaling in HemSCs. Treatment with a cAMP analog or a MAPK inhibitor partially rescued the HemSC cell viability suppressed by propranolol. A selective β2AR antagonist mirrored propranolol’s effects on HemSCs in a dose-dependent fashion, and a selective β1AR antagonist had no effect, supporting a role for β2AR signaling in IH pathobiology. In a mouse model of IH, propranolol reduced the vessel caliber and blood flow assessed by ultrasound Doppler and increased activation of ERK1/2 in IH cells. We have thus demonstrated that propranolol acts on HemSCs in IH to suppress proliferation and promote apoptosis in a dose-dependent fashion via β2AR perturbation, resulting in reduced cAMP and MAPK activation. Significance The present study investigated the action of propranolol in infantile hemangiomas (IHs). IHs are the most common vascular tumor in children and have been proposed to arise from

  17. Propranolol Targets Hemangioma Stem Cells via cAMP and Mitogen-Activated Protein Kinase Regulation.

    PubMed

    Munabi, Naikhoba C O; England, Ryan W; Edwards, Andrew K; Kitajewski, Alison A; Tan, Qian Kun; Weinstein, Andrew; Kung, Justin E; Wilcox, Maya; Kitajewski, Jan K; Shawber, Carrie J; Wu, June K

    2016-01-01

    Infantile hemangiomas (IHs) are the most common vascular tumor and arise from a hemangioma stem cell (HemSC). Propranolol has proved efficacious for problematic IHs. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist that can lower cAMP levels and activate the mitogen-activated protein kinase (MAPK) pathway downstream of βARs. We found that HemSCs express β1AR and β2AR in proliferating IHs and determined the role of these βARs and the downstream pathways in mediating propranolol's effects. In isolated HemSCs, propranolol suppressed cAMP levels and activated extracellular signal-regulated kinase (ERK)1/2 in a dose-dependent fashion. Propranolol, used at doses of <10(-4) M, reduced cAMP levels and decreased HemSC proliferation and viability. Propranolol at ≥10(-5) M reduced cAMP levels and activated ERK1/2, and this correlated with HemSC apoptosis and cytotoxicity at ≥10(-4) M. Stimulation with a βAR agonist, isoprenaline, promoted HemSC proliferation and rescued the antiproliferative effects of propranolol, suggesting that propranolol inhibits βAR signaling in HemSCs. Treatment with a cAMP analog or a MAPK inhibitor partially rescued the HemSC cell viability suppressed by propranolol. A selective β2AR antagonist mirrored propranolol's effects on HemSCs in a dose-dependent fashion, and a selective β1AR antagonist had no effect, supporting a role for β2AR signaling in IH pathobiology. In a mouse model of IH, propranolol reduced the vessel caliber and blood flow assessed by ultrasound Doppler and increased activation of ERK1/2 in IH cells. We have thus demonstrated that propranolol acts on HemSCs in IH to suppress proliferation and promote apoptosis in a dose-dependent fashion via β2AR perturbation, resulting in reduced cAMP and MAPK activation. The present study investigated the action of propranolol in infantile hemangiomas (IHs). IHs are the most common vascular tumor in children and have been proposed to arise from a hemangioma

  18. Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Verhein, Kirsten C.; Salituro, Francesco G.; Ledeboer, Mark W.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction. PMID:24058677

  19. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.

    PubMed

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A K; Dickschat, Jeroen S; Fleißner, André

    2015-06-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi.

  20. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response.

    PubMed

    Furlan, Giulia; Nakagami, Hirofumi; Eschen-Lippold, Lennart; Jiang, Xiyuan; Majovsky, Petra; Kowarschik, Kathrin; Hoehenwarter, Wolfgang; Lee, Justin; Trujillo, Marco

    2017-03-09

    Crosstalk between post-translational modifications such as ubiquitination and phosphorylation play key roles in controlling the duration and intensity of signalling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signalling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and thus autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.

  1. Dual p38/JNK mitogen activated protein kinase inhibitors prevent ozone-induced airway hyperreactivity in guinea pigs.

    PubMed

    Verhein, Kirsten C; Salituro, Francesco G; Ledeboer, Mark W; Fryer, Allison D; Jacoby, David B

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, i.p.) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction.

  2. Mating and Pathogenic Development of the Smut Fungus Ustilago maydis Are Regulated by One Mitogen-Activated Protein Kinase Cascade

    PubMed Central

    Müller, Philip; Weinzierl, Gerhard; Brachmann, Andreas; Feldbrügge, Michael; Kahmann, Regine

    2003-01-01

    In the phytopathogenic fungus Ustilago maydis, pheromone-mediated cell fusion is a prerequisite for the generation of the infectious dikaryon. The pheromone signal elevates transcription of the pheromone genes and elicits formation of conjugation hyphae. Cyclic AMP and mitogen-activated protein kinase (MAPK) signaling are involved in this process. The MAPK cascade is presumed to be composed of Ubc4 (MAPK kinase kinase), Fuz7 (MAPK kinase), and Ubc3/Kpp2 (MAPK). We isolated the kpp4 gene and found it to be allelic to ubc4. Epistasis analyses with constitutively active alleles of kpp4 and fuz7 substantiate that Kpp4, Fuz7, and Kpp2/Ubc3 are components of the same module. Moreover, we demonstrate that Fuz7 activates Kpp2 and shows interactions in vitro. Signaling via this cascade regulates expression of pheromone-responsive genes, presumably through acting on the transcription factor Prf1. Interestingly, the same cascade is needed for conjugation tube formation, and this process does not involve Prf1. In addition, fuz7 as well as kpp4 deletion strains are nonpathogenic, while kpp2 deletion mutants are only attenuated in pathogenesis. Here we show that strains expressing the unphosphorylatable allele kpp2T182A/Y184F are severely affected in tumor induction and display defects in early infection-related differentiation. PMID:14665454

  3. Mitogen-activated protein kinase phosphatase 1 is involved in tamoxifen resistance in MCF7 cells.

    PubMed

    Ma, Gang; Pan, Yixia; Zhou, Can; Sun, Ruifang; Bai, Jingjing; Liu, Peijun; Ren, Yu; He, Jianjun

    2015-11-01

    Tamoxifen resistance is a major clinical problem for ER-positive breast cancer, but the underlying mechanism is not completely elucidated. In the present study, we reported that mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1), a member of the family of MKPs, is involved in tamoxifen resistance. We found that MKP1 expression increased in tamoxifen resistant MCF7 cells. To explore the possible role of MKP1 in tamoxifen resistance, siRNA targeting MKP1 was transfected into tamoxifen resistant MCF7 cells. To our surprise, knockdown of MKP-1 promoted cell death induced by tamoxifen. On the other hand, the MKP1 overexpressed MCF7 cell clone was established and MKP1 overexpression effectively attenuated MCF7 cell death induced by tamoxifen. In addition, we revealed that MKP1 inhibited tamoxifen‑mediated JNK activation in tamoxifen resistant MCF7 and MCF7 cells, and by this mechanism MKP1 was able to inhibit tamoxifen-induced cell death. We also showed that combined appliaction of MKP1 inhibitor triptolide and tamoxifen can effectively increase tamoxifen sensitivity in tamoxifen resistant MCF7 cells. Collectively, our results indicated that MKP-1 can attenuate tamoxifen-induced cell death through inhibiting the JNK signal pathway, which represents a novel mechanism of tamoxifen resistance in MCF7 cells.

  4. Mitogen-activated protein kinase-dependent and -independent routes control shedding of transmembrane growth factors through multiple secretases.

    PubMed Central

    Montero, Juan Carlos; Yuste, Laura; Díaz-Rodríguez, Elena; Esparís-Ogando, Azucena; Pandiella, Atanasio

    2002-01-01

    Solubilization of a number of membrane proteins occurs by the action of cell-surface proteases, termed secretases. Recently, the activity of these secretases has been reported to be controlled by the extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) and the p38 mitogen-activated protein kinase (MAPK) routes. In the present paper, we show that shedding of membrane-anchored growth factors (MAGFs) may also occur through MAPK-independent routes. In Chinese-hamster ovary cells, cleavage induced by protein kinase C (PKC) stimulation was largely insensitive to inhibitors of the ERK1/ERK2 and p38 routes. Other reagents such as sorbitol or UV light stimulated MAGF cleavage independent of PKC. The action of sorbitol on cleavage was only partially prevented by the combined action of inhibitors of the p38 and ERK1/ERK2 routes, indicating that sorbitol can also stimulate shedding by MAPK-dependent and -independent routes. Studies in cells devoid of activity of the secretase tumour necrosis factor-alpha-converting enzyme (TACE) indicated that this protease had an essential role in PKC- and ERK1/ERK2-mediated shedding. However, secretases other than TACE may also cleave MAGFs since sorbitol could still induce shedding in these cells. These observations suggest that cleavage of MAGFs is a complex process in which multiple secretases, activated through different MAPK-dependent and -independent routes, are involved. PMID:11931648

  5. p38γ Mitogen-Activated Protein Kinase Is a Key Regulator in Skeletal Muscle Metabolic Adaptation in Mice

    PubMed Central

    Pogozelski, Andrew R.; Geng, Tuoyu; Li, Ping; Yin, Xinhe; Lira, Vitor A.; Zhang, Mei; Chi, Jen-Tsan; Yan, Zhen

    2009-01-01

    Regular endurance exercise induces skeletal muscle contractile and metabolic adaptations, conferring salutary health benefits, such as protection against the metabolic syndrome. The plasticity of skeletal muscle has been extensively investigated, but how the adaptive processes are precisely controlled is largely unknown. Using muscle-specific gene deletion in mice, we now show that p38γ mitogen-activated protein kinase (MAPK), but not p38α and p38β, is required for endurance exercise-induced mitochondrial biogenesis and angiogenesis, whereas none of the p38 isoforms are required for IIb-to-IIa fiber-type transformation. These phenotypic findings were further supported by microarray and real-time PCR analyses revealing contractile activity-dependent p38γ target genes, including peroxisome proliferator-activated receptor γ co-activator-1α (Pgc-1α) and vascular endothelial growth factor (Vegf), in skeletal muscle following motor nerve stimulation. Gene transfer-mediated overexpression of a dominant negative form of p38γ, but not that of p38α or p38β, blocked motor nerve stimulation-induced Pgc-1α transcription. These findings provide direct evidence for an obligated role of p38γ MAPK-PGC-1α regulatory axis in endurance exercise-induced metabolic adaptation, but not contractile adaptation, in skeletal muscle. PMID:19936205

  6. Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase

    PubMed Central

    Bhardwaj, Deepak; Sheikh, Arsheed Hussain; Sinha, Alok Krishna

    2011-01-01

    We here report in Pisum sativum system a novel protein-protein interaction of β-subunit of heterotrimeric G-proteins (PsGβ) with a Mitogen activated protein kinase (PsMPK3) during cDNA library screening by yeast-two-hybrid assay. The transcript of these two genes also showed co-regulation under abscisic acid (ABA) and methyl jasmonate (MeJA) treatments. The protein-protein interaction was further validated by performing one-to-one interaction and β-galactosidase assay in yeast system. β-subunit of G-proteins from a heterologous system Oryzae sativa also showed interaction with PsMPK3. The interaction between PsGβ and PsMPK3 was further confirmed by in vitro protein-protein interaction. This suggested that MPK3 function as effector molecule for Gβ, which may helps in the regulation of stomatal functioning. These findings also provide an evidence for a possible cross-talk between MPK3 and G-protein-mediated signaling pathways in plants. PMID:21350337

  7. Mitogen-Activated Protein Kinase Phosphatase 3 (MKP-3)–Deficient Mice Are Resistant to Diet-Induced Obesity

    PubMed Central

    Feng, Bin; Jiao, Ping; Helou, Ynes; Li, Yujie; He, Qin; Walters, Matthew S.; Salomon, Arthur

    2014-01-01

    Mitogen-activated protein kinase phosphatase 3 (MKP-3) is a negative regulator of extracellular signal–related kinase signaling. Our laboratory recently demonstrated that MKP-3 plays an important role in obesity-related hyperglycemia by promoting hepatic glucose output. This study shows that MKP-3 deficiency attenuates body weight gain induced by a high-fat diet (HFD) and protects mice from developing obesity-related hepatosteatosis. Triglyceride (TG) contents are dramatically decreased in the liver of MKP-3−/− mice fed an HFD compared with wild-type (WT) controls. The absence of MKP-3 also reduces adiposity, possibly by repressing adipocyte differentiation. In addition, MKP-3−/− mice display increased energy expenditure, enhanced peripheral glucose disposal, and improved systemic insulin sensitivity. We performed global phosphoproteomic studies to search for downstream mediators of MKP-3 action in liver lipid metabolism. Our results revealed that MKP-3 deficiency increases the phosphorylation of histone deacetylase (HDAC) 1 on serine 393 by 3.3-fold and HDAC2 on serine 394 by 2.33-fold. Activities of HDAC1 and 2 are increased in the livers of MKP-3−/− mice fed an HFD. Reduction of HDAC1/2 activities is sufficient to restore TG content of MKP-3−/− primary hepatocytes to a level similar to that in WT cells. PMID:24722245

  8. Fluorescence polarization binding assay to develop inhibitors of inactive p38alpha mitogen-activated protein kinase.

    PubMed

    Munoz, Lenka; Selig, Roland; Yeung, Yiu To; Peifer, Christian; Hauser, Dominik; Laufer, Stefan

    2010-06-01

    Development of inhibitors that target inactive kinase conformations is becoming a more attractive approach to kinase inhibitor research. The major advantage of this methodology is that targeting the inactive conformation reduces competition with high intracellular adenosine triphosphate (ATP) concentrations. p38alpha Mitogen-activated protein kinase (MAPK) signaling has been identified as the principal mediator of inflammation associated with a spectrum of disorders (e.g., arthritis, Alzheimer's disease, various malignancies). To allow identification and development of p38alpha MAPK inhibitors that preferentially bind to the inactive conformation, a novel fluorescence polarization-based binding assay is presented. The assay is homogeneous, requires low amounts of the kinase and fluoroprobe, and does not rely on radioactivity. It may, therefore, offer an inexpensive alternative to current p38alpha MAPK inhibitor screening methods. The validation of the system with known p38alpha MAPK inhibitors confirmed that the binding assay, rather than the conventional enzyme activity assay, correlates with cellular efficacy. Finally, we show that pyridinyl imidazoles that potently bind to the inactive p38alpha MAPK prevent activation of p38 MAPK in living cells, suggesting that pyridinyl imidazoles other than SB203580 are able to induce the DFG-out conformation that is incompatible with activation (where DFG is a single-letter amino acid code for the aspartate-phenylalanine-glycine sequence at the start of the activation loop). Copyright 2010 Elsevier Inc. All rights reserved.

  9. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially

    PubMed Central

    Vantaggiato, Chiara; Formentini, Ivan; Bondanza, Attilio; Bonini, Chiara; Naldini, Luigi; Brambilla, Riccardo

    2006-01-01

    Background The mitogen-activated protein (MAP) kinases p44ERK1 and p42ERK2 are crucial components of the regulatory machinery underlying normal and malignant cell proliferation. A currently accepted model maintains that ERK1 and ERK2 are regulated similarly and contribute to intracellular signaling by phosphorylating a largely common subset of substrates, both in the cytosol and in the nucleus. Results Here, we show that ablation of ERK1 in mouse embryo fibroblasts and NIH 3T3 cells by gene targeting and RNA interference results in an enhancement of ERK2-dependent signaling and in a significant growth advantage. By contrast, knockdown of ERK2 almost completely abolishes normal and Ras-dependent cell proliferation. Ectopic expression of ERK1 but not of ERK2 in NIH 3T3 cells inhibits oncogenic Ras-mediated proliferation and colony formation. These phenotypes are independent of the kinase activity of ERK1, as expression of a catalytically inactive form of ERK1 is equally effective. Finally, ectopic expression of ERK1 but not ERK2 is sufficient to attenuate Ras-dependent tumor formation in nude mice. Conclusion These results reveal an unexpected interplay between ERK1 and ERK2 in transducing Ras-dependent cell signaling and proliferation. Whereas ERK2 seems to have a positive role in controlling normal and Ras-dependent cell proliferation, ERK1 probably affects the overall signaling output of the cell by antagonizing ERK2 activity. PMID:16805921

  10. Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers[W

    PubMed Central

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Duplessis, Sébastien; Ellis, Brian E.

    2012-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens. PMID:22517321

  11. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells.

    PubMed

    Wang, Yajing; Wang, Zhaoxia; Zhou, Ying; Liu, Liming; Zhao, Yangxing; Yao, Chenjiang; Wang, Lianyun; Qiao, Zhongdong

    2006-02-01

    To evaluate the effect of nicotine on endothelium dysfunction and development of vascular diseases, we investigated the influence on adhesion molecular expression mediated by nicotine and the mechanism of this effect in human umbilical vein endothelial cells (HUVECs). The result showed that nicotine could induce surface/soluble vascular cell adhesion molecule (VCAM-1) and endothelial selectin (E-selectin) expression in a time-response decline manner and the peak appeared at 15 min. This action could be mediated by mitogen-activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/ERK1/2) and MAPK/p38 because their activation could be distinctly blocked by MAPK inhibitors, PD098059 or SB203580. Mecamylamine (non-selective nicotinic receptor inhibitor), alpha-bungarotoxin (alpha7 nicotinic receptor inhibitor) could block Ca2+ accumulation, and then, prevented the phosphorylation on ERK1/2 and p38. They also inhibited the surface/soluble VCAM-1, E-selectin production of HUVECs modulated by nicotine. Therefore, we concluded that: (i) nicotine obviously up-regulates VCAM-1 and E-selectin expression at 15 min in HUVECs, (ii) nicotine activates HUVECs triggered by the ERK1/2 and p38 phosphorylation with an involvement of intracellular calcium mobilization chiefly mediated by alpha7 nicotinic receptor, (iii) intracellular Ca2+ activates a sequential pathway from alpha7 nicotinic receptor to the phosphorylation of ERK1/2, p38. These elucidate that nicotine activates HUVECs through fast signal transduction pathway and arguments their capacity of adhesion molecular production. Further more nicotine may contribute its influence to the progression of vascular disease such as atherosclerotic lesion.

  12. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress.

    PubMed

    Kumar, Kundan; Rao, Kudupudi Prabhakara; Sharma, Pallavi; Sinha, Alok Krishna

    2008-10-01

    Mitogen activated protein kinase cascade plays a crucial role in various biotic and abiotic stresses, hormones, cell division and developmental processes. MAP kinase kinase being integral part of this cascade performs an important function of integrating upstream signals to mitogen activated protein kinase for further appropriate cellular responses. We here report cloning of five MAP kinase kinase members from Oryza sativa indica cultivar var. Pusa Basmati 1, namely MAP kinase kinases 1, 3, 4, 6 and 10-2. All these members, except MKK10-2 possess fully canonical motif structures of MAP kinase kinase. The deduced amino acid sequence showed changes at certain position within japonica and indica variety of rice. Analysis of transcript regulation by quantitative real time PCR revealed that these five members are differentially regulated by cold, heat, salinity and drought stresses. MAP kinase kinases 4 and 6 are strongly regulated by cold and salt stresses while MAP kinase kinase 1 is regulated by salt and drought stresses. MAP kinase kinase 10-2 is regulated only by cold stress. The study provides the indication of involvement of specific MAP kinase kinase in different abiotic stress signaling and also possible cross talks that exist during the signaling processes.

  13. Protodioscin ameliorates fructose-induced renal injury via inhibition of the mitogen activated protein kinase pathway.

    PubMed

    Shen, Jinyang; Yang, Xiaolin; Meng, Zhaoqing; Guo, Changrun

    2016-11-15

    High dietary fructose can cause metabolic syndrome and renal injury. The effects of protodioscin on metabolic syndrome and renal injury were investigated in mice receiving high-dose fructose. Mice received 30% (w/v) fructose in water and standard chow for 6 weeks to induce metabolic syndrome and were divided into four groups to receive carboxymethylcellulose sodium, allopurinol (5 mg/kg) and protodioscin (5 and 10 mg/kg) continuously for 6 weeks, respectively. The glucose intolerance, serum uric acid (UA), blood urea nitrogen (BUN), creatinine (Cr), total cholesterol (TC), triglyceride (TG), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined. Protodioscin significantly improved glucose intolerance and reduced the levels of serum UA, BUN, Cr, TC and TG. Histological examinations showed that protodioscin ameliorated glomerular and tubular pathological changes. Protodioscin significantly reduced renal concentrations of IL-1β, IL-6 and TNF-α by inhibiting the activation of nuclear factor-κB, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. In addition, the effect of protodioscin on the mitogen activated protein kinases (MAPK) pathway was examined. Taken together, protodioscin is a potential drug candidate for high dietary fructose-induced metabolic syndrome and renal injury. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. A vaccine carrier derived from Neisseria meningitidis with mitogenic activity for lymphocytes.

    PubMed Central

    Liu, M A; Friedman, A; Oliff, A I; Tai, J; Martinez, D; Deck, R R; Shieh, J T; Jenkins, T D; Donnelly, J J; Hawe, L A

    1992-01-01

    Protein carriers vary in their ability to increase the immunogenicity of poorly immunogenic or T-lymphocyte-independent antigens. We examined one such carrier, the outer membrane protein complex derived from Neisseria meningitidis serogroup B strain B11, in an attempt to determine why this outer membrane protein complex was more immunogenic in young infants and in relevant animal models than two other carriers used in conjugates made with Haemophilus influenzae type b polysaccharide, a T-cell-independent antigen. A single protein of the outer membrane protein complex, the class 2 porin protein, was purified and shown to function as a T-helper lymphocyte carrier protein. Unexpectedly, it was also found to have mitogenic activity for lymphocytes that was not due to lipopolysaccharide. This mitogenic activity appears to date to be unique to this carrier protein of the carrier proteins tested and may contribute to the ability of the H. influenzae type b conjugate vaccine made with the outer membrane protein complex to generate IgG anti-polysaccharide antibody responses in mice and infant monkeys and protective immune responses in infants less than 6 months of age. Images PMID:1533934

  15. Dobesilate diminishes activation of the mitogen - activated protein kinase ERK1/2 in glioma cells

    PubMed Central

    Cuevas, P; Diaz-González, Diana; Garcia-Martin-Córdova, C; Sánchez, I; Lozano, Rosa Maria; Giménez-Gallego, G; Dujovny, M

    2006-01-01

    Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management. PMID:16563234

  16. BRO1, a novel gene that interacts with components of the Pkc1p-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae.

    PubMed Central

    Nickas, M E; Yaffe, M P

    1996-01-01

    Yeast cells with mutations in BRO1 display phenotypes similar to those caused by deletion of BCK1, a gene encoding a MEK kinase that functions in a mitogen-activated protein kinase pathway mediating maintenance of cell integrity. bro1 cells exhibit a temperature-sensitive growth defect that is suppressed by the addition of osmotic stabilizers or Ca2+ to the growth medium or by additional copies of the BCK1 gene. At permissive temperatures, bro1 mutants are sensitive to caffeine and respond abnormally to nutrient limitation. A null mutation in BRO1 is synthetically lethal with null mutations in BCK1, MPK1, which encodes a mitogen-activated protein kinase that functions downstream of Bck1p, or PKC1, a gene encoding a protein kinase C homolog that activates Bck1p. Analysis of the isolated BRO1 gene revealed that it encodes a novel, 97-kDa polypeptide which contains a putative SH3 domain-binding motif and is homologous to a protein of unknown function in Caenorhabditis elegans. PMID:8649366

  17. Hypericin, the active component of St. John's wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway.

    PubMed

    Chang, Yi; Wang, Su-Jane

    2010-05-25

    Changes in central glutamate neurotransmission are involved in the pathophysiology of depression and in the mechanism of antidepressants. In this study, the effect of hypericin, a major active constituent of St. John's wort that is widely used in the treatment of depression, on the release of glutamate from nerve terminals purified from rat cerebral cortex was examined. Result showed that hypericin inhibited the release of glutamate evoked by 4-aminopyridine in a concentration-dependent manner. Further experiments revealed that hypericin-mediated inhibition of glutamate release (i) results from a reduction of vesicular exocytosis, not from an inhibition of Ca2+-independent efflux via glutamate transporter; (ii) is not due to an alternation of nerve terminal excitability; (iii) is associated with a decrease in presynaptic N- and P/Q-type voltage-dependent Ca2+ channel activity; and (iv) appears to involve the suppression of mitogen-activated protein kinase pathway. These results are the first to suggest that, in rat cerebrocortical nerve terminals, hypericin suppresses voltage-dependent Ca2+ channel and mitogen-activated protein kinase activity and in so doing inhibits evoked glutamate release. This finding may provide important information regarding the beneficial effects of St. John's wort in the brain.

  18. Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK111[OPEN

    PubMed Central

    Eschen-Lippold, Lennart; Jiang, Xiyuan; Elmore, James Mitch; Mackey, David; Shan, Libo

    2016-01-01

    To establish infection, pathogens deliver effectors into host cells to target immune signaling components, including elements of mitogen-activated protein kinase (MPK) cascades. The virulence function of AvrRpt2, one of the first identified Pseudomonas syringae effectors, involves cleavage of the plant defense regulator, RPM1-INTERACTING PROTEIN4 (RIN4), and interference with plant auxin signaling. We show now that AvrRpt2 specifically suppresses the flagellin-induced phosphorylation of Arabidopsis (Arabidopsis thaliana) MPK4 and MPK11 but not MPK3 or MPK6. This inhibition requires the proteolytic activity of AvrRpt2, is associated with reduced expression of some plant defense genes, and correlates with enhanced pathogen infection in AvrRpt2-expressing transgenic plants. Diverse AvrRpt2-like homologs can be found in some phytopathogens, plant-associated and soil bacteria. Employing these putative bacterial AvrRpt2 homologs and inactive AvrRpt2 variants, we can uncouple the inhibition of MPK4/MPK11 activation from the cleavage of RIN4 and related members from the so-called nitrate-induced family as well as from auxin signaling. Thus, this selective suppression of specific mitogen-activated protein kinases is independent of the previously known AvrRpt2 targets and potentially represents a novel virulence function of AvrRpt2. PMID:27208280

  19. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K.

    PubMed

    Sun, Yu; Ishibashi, Minako; Seimon, Tracie; Lee, Mingsum; Sharma, Sudarshana M; Fitzgerald, Katherine A; Samokhin, Andriy O; Wang, Yibin; Sayers, Scott; Aikawa, Masanori; Jerome, W Gray; Ostrowski, Michael C; Bromme, Dieter; Libby, Peter; Tabas, Ira A; Welch, Carrie L; Tall, Alan R

    2009-02-27

    The molecular events linking lipid accumulation in atherosclerotic plaques to complications such as aneurysm formation and plaque disruption are poorly understood. BALB/c-Apoe(-/-) mice bearing a null mutation in the Npc1 gene display prominent medial erosion and atherothrombosis, whereas their macrophages accumulate free cholesterol in late endosomes and show increased cathepsin K (Ctsk) expression. We now show increased cathepsin K immunostaining and increased cysteinyl proteinase activity using near infrared fluorescence imaging over proximal aortas of Apoe(-/-), Npc1(-/-) mice. In mechanistic studies, cholesterol loading of macrophage plasma membranes (cyclodextrin-cholesterol) or endosomal system (AcLDL+U18666A or Npc1 null mutation) activated Toll-like receptor (TLR) signaling, leading to sustained phosphorylation of p38 mitogen-activated protein kinase and induction of p38 targets, including Ctsk, S100a8, Mmp8, and Mmp14. Studies in macrophages from knockout mice showed major roles for TLR4, following plasma membrane cholesterol loading, and for TLR3, after late endosomal loading. TLR signaling via p38 led to phosphorylation and activation of the transcription factor Microphthalmia transcription factor, acting at E-box elements in the Ctsk promoter. These studies suggest that free cholesterol enrichment of either plasma or endosomal membranes in macrophages leads to activation of signaling via various TLRs, prolonged p38 mitogen-activated protein kinase activation, and induction of Mmps, Ctsk, and S100a8, potentially contributing to plaque complications.

  20. The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent.

    PubMed

    Whitfield, Timothy W; Shi, Xiangdang; Sun, Wei-Lun; McGinty, Jacqueline F

    2011-01-19

    Cocaine-mediated neuroadaptations in the prefrontal cortical-nucleus accumbens pathway underlie drug-seeking in animals with a cocaine self-administration (SA) history. Neuroplasticity in the cortico-accumbens pathway is regulated, in part, by the expression and availability of neurotrophic factors, such as BDNF. We have previously demonstrated that infusion of BDNF into the dorsomedial prefrontal cortex (dmPFC) immediately after the last of 10 cocaine SA sessions attenuates contextual, cue- and cocaine prime-induced reinstatement of cocaine-seeking (Berglind et al., 2007) and normalizes cocaine-induced disruption of glutamatergic transmission in the nucleus accumbens (Berglind et al., 2009). In the present study, the suppressive effect of intra-dmPFC BDNF on cocaine-seeking is shown to depend on Trk receptor-mediated activation of extracellular signal-regulated kinase (ERK) signaling in the dmPFC. The tyrosine kinase inhibitor, K252a, and the mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), prevented BDNF's suppressive effects on cocaine-seeking. Vehicle-infused rats with a cocaine SA history showed significant decreases in ERK and cyclic AMP response element binding protein (CREB), but not Akt, phosphorylation after the final cocaine SA session that were reversed by intra-dmPFC BDNF. Additionally, BDNF's ability to normalize cocaine-mediated decreases in ERK and CREB phosphorylation was blocked by U0126, demonstrating that ERK/MAPK activation mediated the behavioral effects. This study elucidates a mechanism whereby BDNF/TrkB (tropomyosin receptor kinase B) activates ERK-regulated CREB phosphorylation in the dmPFC to counteract the neuroadaptations induced by cocaine SA and subsequent relapse to cocaine-seeking.

  1. The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity.

    PubMed

    Kang, Sining; Yang, Fan; Li, Lin; Chen, Huamin; Chen, She; Zhang, Jie

    2015-03-01

    Pathogen-associated molecular patterns (PAMPs) are recognized by plant pattern recognition receptors to activate PAMP-triggered immunity (PTI). Mitogen-activated protein kinases (MAPKs), as well as other cytoplasmic kinases, integrate upstream immune signals and, in turn, dissect PTI signaling via different substrates to regulate defense responses. However, only a few direct substrates of these signaling kinases have been identified. Here, we show that PAMP perception enhances phosphorylation of BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1), a transcription factor involved in brassinosteroid (BR) signaling pathway, through pathogen-induced MAPKs in Arabidopsis (Arabidopsis thaliana). BES1 interacts with MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and is phosphorylated by MPK6. bes1 loss-of-function mutants display compromised resistance to bacterial pathogen Pseudomonas syringae pv tomato DC3000. BES1 S286A/S137A double mutation (BES1(SSAA)) impairs PAMP-induced phosphorylation and fails to restore bacterial resistance in bes1 mutant, indicating a positive role of BES1 phosphorylation in plant immunity. BES1 is phosphorylated by glycogen synthase kinase3 (GSK3)-like kinase BR-insensitive2 (BIN2), a negative regulator of BR signaling. BR perception inhibits BIN2 activity, allowing dephosphorylation of BES1 to regulate plant development. However, BES1(SSAA) does not affect BR-mediated plant growth, suggesting differential residue requirements for the modulation of BES1 phosphorylation in PTI and BR signaling. Our study identifies BES1 as a unique direct substrate of MPK6 in PTI signaling. This finding reveals MAPK-mediated BES1 phosphorylation as another BES1 modulation mechanism in plant cell signaling, in addition to GSK3-like kinase-mediated BES1 phosphorylation and F box protein-mediated BES1 degradation.

  2. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

    SciTech Connect

    Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu

    2004-11-01

    The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important

  3. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    PubMed Central

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  4. Evidence for a role of mitogen-activated protein kinase 3/mitogen-activated protein kinase in the development of testicular ischemia-reperfusion injury.

    PubMed

    Minutoli, Letteria; Antonuccio, Pietro; Romeo, Carmelo; Nicòtina, Piero Antonio; Bitto, Alessandra; Arena, Salvatore; Polito, Francesca; Altavilla, Domenica; Turiaco, Nunzio; Cutrupi, Antonio; Zuccarello, Biagio; Squadrito, Francesco

    2005-10-01

    Mitogen-activated protein kinase (MAPK) 3/MAPK1 (also known as ERK1/ERK2) plays an important role in the signal transduction pathways. To our knowledge, however, its role in the development of testicular ischemia-reperfusion injury has not yet been investigated. Therefore, we studied the pattern of MAPK3/MAPK1 activation in a experimental model of testicular ischemia-reperfusion injury. We also investigated MAPK8 to understand whether an association exists between these two MAPKs. Adult male Sprague-Dawley rats were subjected to 1 h of testicular ischemia followed by 24 h of reperfusion or to a sham testicular ischemia-reperfusion. Animals were randomized to receive PD98059, which is an inhibitor of MAPK3/MAPK1 (10 mg/kg i.p. administered immediately after detorsion), or its vehicle. The time course of MAPK3/MAPK1, MAPK8, and tumor necrosis factor (TNF; also known as TNF alpha) expression and a histological examination in both the ischemic-reperfused testis and the contralateral one were performed. In both testes, MAPK3/MAPK1 and MAPK8 expression appeared following 10 min of reperfusion and reached their highest activation after 30 min. The MAPK levels slowly decreased, and no significant expression of either kinase was observed following 2 h of reperfusion. Expression of TNF was evident after 1 h of reperfusion and reached its maximum increase after 3 h. PD98059 blunted MAPK3/MAPK1 and MAPK8, reduced TNF expression, and improved the testicular damage caused by ischemia-reperfusion injury in both testes. These data emphasize that MAPK3/MAPK1 has a role in testicular damage and that its blockade might have a future therapeutic role for the management of patients with unilateral testicular torsion.

  5. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  6. [Acupuncture-moxibustion and mitogen-activated protein kinase signal transduction pathways].

    PubMed

    Tiano, Shen; Zhong-Ren, Li

    2012-03-01

    The Literatures on mechanism of acupuncture from the aspect of mitogen-activated protein kinase (MAPK) signal transduction pathways are analyzed in this paper. And the result shows that many acupuncture effects are closely related with the regulation of MAPK signal transduction pathway. However, the current studies only cover limited aspects, and there problems still existed in the experiment designation. Acupuncture and electroacupuncture are often adopted for the treatment group, while moxibustion is not applied for most of them. There are not unified wave model, frequency and stimulation period for electroacupuncture. And the studies still remain in simple confirmation and proper inference. In the future, the domain of researches should be further wid ened and the experiment designation further perfected. Therefore, the therapeutic effect of acupuncture in clinic will be greatly improved through researches on MAPK signal transduction pathway and the production mechanism of acupuncture effect.

  7. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  8. Spatio-temporal regulation of mitogen-activated protein kinase (MAPK) signalling by protein phosphatases.

    PubMed

    Karlsson, M; Mandl, M; Keyse, S M

    2006-11-01

    ERK (extracellular-signal-regulated kinase) is a MAPK (mitogen-activated protein kinase), which regulates diverse physiological functions including cell proliferation, differentiation, transformation and survival. It is now clear that in addition to the duration and magnitude of signalling through this MAPK pathway, the spatial restriction of MAPK activity plays a key role in determining the physiological outcome of signalling. Recent work has led to the discovery of MAPK-binding proteins, which contain either nuclear localization signals or nuclear export signals. These include MAPK activators and specific protein phosphatases, which may act to both regulate MAPK activity and the subcellular localization of their substrate. This represents a mechanism by which signalling in response to extracellular stimuli may be modulated in terms of both magnitude/duration and spatial restriction thus allowing differential access of the activated MAPK to target proteins and the interpretation of this information by cells to determine an appropriate physiological response.

  9. Ornithine decarboxylase, mitogen-activated protein kinase and matrix metalloproteinase-2 expressions in human colon tumors

    PubMed Central

    Nemoto, Takahiro; Kubota, Shunichiro; Ishida, Hideyuki; Murata, Nobuo; Hashimoto, Daijo

    2005-01-01

    AIM: To investigate the expressions of ornithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors. METHODS: ODC activity, MMP-2 expression, and mitogen-activated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively. RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels. CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC. PMID:15918191

  10. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  11. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke.

    PubMed

    Sun, Jing; Nan, Guangxian

    2016-05-01

    Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury.

  12. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    PubMed

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  13. Mitogen-activated protein kinase cascades in signaling plant growth and development.

    PubMed

    Xu, Juan; Zhang, Shuqun

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions.

  14. Mitogenic activity of the cell walls of mycobacteria, nocardia, corynebacteria and anaerobic coryneforms.

    PubMed

    Azuma, I; Taniyama, T; Sugimura, K; Aladin, A; Yamamura, Y

    1976-08-01

    The mitogenic activity of the cell walls prepared from Mycobacterium bovis BCG, Nocardia rubra, Corynebacterium diphtheriae PW8, and four species of Propionibacterium, Corynebacterium parvum ATCC 11829, Propionibacterium acnes C7, Propionibacterium granulosum ATCC 25564 and Propionibacterium avidum ATCC 25577, were investigated. These cell walls were active as mitogens on normal spleen cells, anti-O sera-treated spleen cells, macrophage-depleted spleen cells of C57BL/6J mice and cortisone-treated thymocytes of C57BL/6J mice. It was also shown that these cell walls were mitogenic on spleen cells and macrophage-depleted spleen cells of congenitally athymic (nude) mice. The above results suggest that the cell walls investigated in this study act as mitogens on both thymus-derived lymphocytes (T-cells) and bone marrow-derived lymphocytes (B-cells).

  15. Complexity of the primary genetic response to mitogenic activation of human T cells

    SciTech Connect

    Zipfel, P.F.; Siebenlist, U. ); Irving, S.G.; Kelly, K. )

    1989-03-01

    The authors describe the isolation and characterization of more than 60 novel cDNA clones that constitute part of the immediate genetic response to resting human peripheral blood T cells after mitogen activation. This primary response was highly complex, both in the absolute number of inducible genes and in the diversity of regulation. Although most of the genes expressed in activated T cells were shared with the activation response of normal human fibroblasts, a significant number were more restricted in tissue specificity and thus likely encode or effect the differentiated functions of activated T cells. The activatable genes could be further differentiated on the basis of kinetics of induction, response to cycloheximide, and sensitivity to the immunosuppressive drug cylcosporin A. It is of note that cyclosporin A inhibited the expression of more than 10 inducible genes, which suggests that this drug has a broad genetic mechanism of action.

  16. Defining mitogen-activated protein kinase pathways with mass spectrometry-based approaches.

    PubMed

    Powell, David W; Pierce, William M; McLeish, Kenneth R

    2005-01-01

    Mitogen-activated protein kinases are a group of ubiquitously expressed kinase pathways that have been conserved from yeast through humans. They control a large number of critical cell functions. Identification of targets of those kinases is necessary to define signal transduction pathways that lead to cell responses. The application of a number of mass spectrometry-based techniques to the identification of phosphoproteins is reviewed. A new proteomic approach is described for the identification of the downstream targets of specific kinases that combines phosphorylation of cell lysates in in vitro kinase reactions by active recombinant kinase with protein separation by two-dimensional (2D) gel electrophoresis or SDS-PAGE and phosphoprotein identification by MALDI-TOF mass spectrometry or by phosphopeptide enrichment and tandem mass spectrometry. The results suggested that a combination of multiple approaches will be required to fully identify phosphoproteomes. (c) 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:847-864, 2005.

  17. Mitogen-activated protein kinase in Pfiesteria piscicida and its growth rate-related expression.

    PubMed

    Lin, Senjie; Zhang, Huan

    2003-01-01

    A full-length cDNA (1,434 bp) of mitogen-activated protein kinase (MAPK), a key molecule of a signal transduction cascade, was isolated from the estuarine heterotrophic dinoflagellate Pfiesteria piscicida. This cDNA (Ppmapk1) encoded a protein (PpMAPK1) of 428 amino acid residues that shared about 30 to 40% amino acid similarity with MAPKs in other organisms. Phylogenetic analysis indicated that PpMAPK1 was tightly clustered with MAPK3 in protozoans. Using reverse transcription-PCR, expression of this gene was evaluated for P. piscicida cultures grown under different conditions. While salinity shock, heat shock, starvation, and a subsequent encounter with prey did not appear to affect expression of this gene, Ppmapk1 expression level was correlated with growth rate, suggesting involvement of this gene in the regulation of cell proliferation in the organism.

  18. Prostaglandins from Cytosolic Phospholipase A2α/Cyclooxygenase-1 Pathway and Mitogen-activated Protein Kinases Regulate Gene Expression in Candida albicans-infected Macrophages*

    PubMed Central

    Yun, Bogeon; Lee, HeeJung; Jayaraja, Sabarirajan; Suram, Saritha; Murphy, Robert C.; Leslie, Christina C.

    2016-01-01

    In Candida albicans-infected resident peritoneal macrophages, activation of group IVA cytosolic phospholipase A2 (cPLA2α) by calcium- and mitogen-activated protein kinases triggers the rapid production of prostaglandins I2 and E2 through cyclooxygenase (COX)-1 and regulates gene expression by increasing cAMP. In C. albicans-infected cPLA2α−/− or COX-1−/− macrophages, expression of Il10, Nr4a2, and Ptgs2 was lower, and expression of Tnfα was higher, than in wild type macrophages. Expression was reconstituted with 8-bromo-cAMP, the PKA activator 6-benzoyl-cAMP, and agonists for prostaglandin receptors IP, EP2, and EP4 in infected but not uninfected cPLA2α−/− or COX-1−/− macrophages. In C. albicans-infected cPLA2α+/+ macrophages, COX-2 expression was blocked by IP, EP2, and EP4 receptor antagonists, indicating a role for both prostaglandin I2 and E2. Activation of ERKs and p38, but not JNKs, by C. albicans acted synergistically with prostaglandins to induce expression of Il10, Nr4a2, and Ptgs2. Tnfα expression required activation of ERKs and p38 but was suppressed by cAMP. Results using cAMP analogues that activate PKA or Epacs suggested that cAMP regulates gene expression through PKA. However, phosphorylation of cAMP-response element-binding protein (CREB), the cAMP-regulated transcription factor involved in Il10, Nr4a2, Ptgs2, and Tnfα expression, was not mediated by cAMP/PKA because it was similar in C. albicans-infected wild type and cPLA2α−/− or COX-1−/− macrophages. CREB phosphorylation was blocked by p38 inhibitors and induced by the p38 activator anisomycin but not by the PKA activator 6-benzoyl-cAMP. Therefore, MAPK activation in C. albicans-infected macrophages plays a dual role by promoting the cPLA2α/prostaglandin/cAMP/PKA pathway and CREB phosphorylation that coordinately regulate immediate early gene expression. PMID:26841868

  19. Analysis of mitogen-activated protein kinase pathways used by interleukin 1 in tissues in vivo: activation of hepatic c-Jun N-terminal kinases 1 and 2, and mitogen-activated protein kinase kinases 4 and 7.

    PubMed Central

    Finch, A; Davis, W; Carter, W G; Saklatvala, J

    2001-01-01

    The effects of interleukin 1 (IL-1) are mediated by the activation of protein kinase signalling pathways, which have been well characterized in cultured cells. We have investigated the activation of these pathways in rabbit liver and other tissues after the systemic administration of IL-1alpha. In liver there was 30-40-fold activation of c-Jun N-terminal kinase (JNK) and 5-fold activation of both JNK kinases, mitogen-activated protein kinase (MAPK) kinase (MKK)4 and MKK7. IL-1alpha also caused 2-3-fold activation of p38 MAPK and degradation of the inhibitor of nuclear factor kappaB ('IkappaB'), although no activation of extracellular signal-regulated protein kinase (ERK) (p42/44 MAPK) was observed. The use of antibodies against specific JNK isoforms showed that, in liver, short (p46) JNK1 and long (p54) JNK2 are the predominant forms activated, with smaller amounts of long JNK1 and short JNK2. No active JNK3 was detected. A similar pattern of JNK activation was seen in lung, spleen, skeletal muscle and kidney. Significant JNK3 activity was detectable only in the brain, although little activation of the JNK pathway in response to IL-1alpha was observed in this tissue. This distribution of active JNK isoforms probably results from a different expression of JNKs within the tissues, rather than from a selective activation of isoforms. We conclude that IL-1alpha might activate a more restricted set of signalling pathways in tissues in vivo than it does in cultured cells, where ERK and JNK3 activation are often observed. Cultured cells might represent a 'repair' phenotype that undergoes a broader set of responses to the cytokine. PMID:11139391

  20. A glucuronic acid binding leguminous lectin with mitogenic activity toward mouse splenocytes.

    PubMed

    Chan, Yau Sang; Wong, Jack Ho; Ng, Tzi Bun

    2011-02-01

    A dimeric 64-kDa lectin was purified from seeds of French bean (Phaseolus vulgaris) cultivar number 1. The purification protocol entailed Q-Sepharose, Affi-gel blue gel, Mono S and Superdex 75. The lectin-enriched fraction was adsorbed on Q-Sepharose and Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Hemagglutinating activity was adsorbed on Mono S and eluted with a linear 0.3-1 M NaCl gradient. Gel filtration on Superdex 75 yielded a single absorbance peak which appeared as a single 32-kDa in sodium dodecyl sulfate poylacylamide gel electrophoresis. Full hemagglutinating activity was observed when the lectin was exposed to a pH ranging from 3 to 11. About 50% activity remained at pH 12, and about 25% at pH 0 to pH 2. Activity was totally abolished at pH 13-14. The activity was completely preserved when the ambient temperature was 20 °C-60 °C. However, only 50% and 12.5% of the activity remained at 65 °C and 70 °C, respectively. Activity was barely discernible at 75 °C and completely abrogated at and above 80 °C. Hemagglutinating activity of the lectin was inhibited by glucuronic acid. Maximum mitogenic activity of the lectin toward murine splenocytes occurred at a lectin concentration of 0.488 µM. The mitogenic activity was nearly eliminated in the presence of 250 mM glucuronic acid. The lectin did not exhibit antiproliferative activity toward hepatoma (HepG2) cells, breast cancer (MCF7) cells, and nasopharynegeal carcinoma CNE stage 1 and stage 2 cells. It was also devoid of significant anti-HIV reverse transcriptase activity.

  1. p38delta Mitogen-activated protein kinase is essential for skin tumor development in mice.

    PubMed

    Schindler, Eva M; Hindes, Anna; Gribben, Erin L; Burns, Carole J; Yin, Yan; Lin, Meei-Hua; Owen, Robert J; Longmore, Gregory D; Kissling, Grace E; Arthur, J Simon C; Efimova, Tatiana

    2009-06-01

    Activating Ras mutations occur in a large portion of human tumors. Yet, the signaling pathways involved in Ras-induced tumor formation remain incompletely understood. The mitogen-activated protein kinase pathways are among the best studied Ras effector pathways. The p38 mitogen-activated protein kinase isoforms are important regulators of key biological processes including cell proliferation, differentiation, survival, inflammation, senescence, and tumorigenesis. However, the specific in vivo contribution of individual p38 isoforms to skin tumor development has not been elucidated. Recent studies have shown that p38delta, a p38 family member, functions as an important regulator of epidermal keratinocyte differentiation and survival. In the present study, we have assessed the effect of p38delta deficiency on skin tumor development in vivo by subjecting p38delta knockout mice to a two-stage 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate chemical skin carcinogenesis protocol. We report that mice lacking p38delta gene exhibited a marked resistance to development of 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin papillomas, with increased latency and greatly reduced incidence, multiplicity, and size of tumors compared with wild-type mice. Our data suggest that the underlying mechanism for reduced susceptibility to skin carcinogenesis in p38delta-null mice involves a defect in proliferative response associated with aberrant signaling through the two major transformation-promoting pathways: extracellular signal-regulated kinase 1/2-activator protein 1 and signal transducer and activator of transcription 3. These findings strongly suggest an in vivo role for p38delta in promoting cell proliferation and tumor development in epidermis and may have therapeutic implication for skin cancer.

  2. Detection of mutations in the mitogen-activated protein kinase pathway in human melanoma.

    PubMed

    Alsina, Janivette; Gorsk, David H; Germino, F Joseph; Shih, Weichung; Lu, Shou-En; Zhang, Zhi-Gang; Yang, Jin-Ming; Hait, William N; Goydos, James S

    2003-12-15

    Recent studies suggest that activating point mutations in B-RAF may commonly occur in melanoma. We devised a method to detect point mutations in heterogeneous tissues containing both wild-type and mutant B-RAF and N-RAS genes by using site-directed mutagenesis to introduce new restrictions sites in the cDNA sequence when the specific point mutations are present. We used this technique to determine the incidence of mitogen-activated protein kinase (MAPK) mutations in human melanoma. We screened 85 melanoma samples for the most common B-RAF and N-RAS mutations found in melanoma using a site-directed mutagenesis-based detection technique. Western blotting was used to evaluate downstream up-regulation of the mitogen-activated protein kinase pathway in these tissues. Thirty-three samples (7 of 25 primaries, 15 of 25 regional metastases, 5 of 25 nodal metastases, and 6 of 10 distant metastases) harbored the V599E B-RAF mutation (39%), 12 contained a Q61R N-RAS mutation and 5 a Q61K N-RAS mutation. Western blotting with antiphosphorylated extracellular signal-regulated kinase 1/2 antibodies demonstrated up-regulation of the MAPK pathway in samples containing activating B-RAF or N-RAS mutations compared with wild-type samples. This method of detection was sensitive and specific with no false positives. Activating mutations of the MAPK pathway were present in approximately 60% of samples tested and caused activation of this cellular pathway that appears to be important in the pathogenesis of melanoma.

  3. Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice.

    PubMed

    Song, Chun-Qing; Li, Yingxiang; Mou, Haiwei; Moore, Jill; Park, Angela; Pomyen, Yotsawat; Hough, Soren; Kennedy, Zachary; Fischer, Andrew; Yin, Hao; Anderson, Daniel G; Conte, Darryl; Zender, Lars; Wang, Xin Wei; Thorgeirsson, Snorri; Weng, Zhiping; Xue, Wen

    2017-04-01

    suppressor genes not previously associated with liver cancer (Nf1, Plxnb1, Flrt2, and B9d1). CRISPR-mediated knockout of Nf1, a negative regulator of RAS, accelerated liver tumor formation in mice. Loss of Nf1 or activation of RAS up-regulated the liver progenitor cell markers HMGA2 and SOX9. RAS pathway inhibitors suppressed the activation of the Hmga2 and Sox9 genes that resulted from loss of Nf1 or oncogenic activation of RAS. Knockdown of HMGA2 delayed formation of xenograft tumors from cells that expressed oncogenic RAS. In human HCCs, low levels of NF1 messenger RNA or high levels of HMGA2 messenger RNA were associated with shorter patient survival time. Liver cancer cells with inactivation of Plxnb1, Flrt2, and B9d1 formed more tumors in mice and had increased levels of mitogen-activated protein kinase phosphorylation. Using a CRISPR-based strategy, we identified Nf1, Plxnb1, Flrt2, and B9d1 as suppressors of liver tumor formation. We validated the observation that RAS signaling, via mitogen-activated protein kinase, contributes to formation of liver tumors in mice. We associated decreased levels of NF1 and increased levels of its downstream protein HMGA2 with survival times of patients with HCC. Strategies to inhibit or reduce HMGA2 might be developed to treat patients with liver cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities?

    PubMed

    Rovida, Elisabetta; Stecca, Barbara

    2015-12-01

    The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.

  5. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger

    PubMed Central

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A. K.; Dickschat, Jeroen S.

    2015-01-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi. PMID:25888553

  6. Mitogen-activated protein kinase is required for the behavioural desensitization that occurs after repeated injections of angiotensin II.

    PubMed

    Vento, Peter J; Daniels, Derek

    2012-12-01

    Angiotensin II (Ang II) acts on central angiotensin type 1 (AT(1)) receptors to increase water and saline intake. Prolonged exposure to Ang II in cell culture models results in a desensitization of the AT(1) receptor that is thought to involve receptor internalization, and a behavioural correlate of this desensitization has been shown in rats after repeated central injections of Ang II. Specifically, rats given repeated injections of Ang II drink less water than control animals after a subsequent test injection of Ang II. In the same conditions, however, repeated injections of Ang II have no effect on Ang II-induced saline intake. Given earlier studies indicating that separate intracellular signalling pathways mediate Ang II-induced water and saline intake, we hypothesized that the desensitization observed in rats may be incomplete, leaving the receptor able to activate mitogen-activated protein (MAP) kinases (ERK1/2), which play a role in Ang II-induced saline intake without affecting water intake. In support of this hypothesis, we found no difference in MAP kinase phosphorylation after an Ang II test injection in rats given prior treatment with repeated injections of vehicle, Ang II or Sar(1),Ile(4),Ile(8)-Ang II (SII), an Ang II analogue that activates MAP kinase without G protein coupling. In addition, we found that pretreatment with the MAP kinase inhibitor U0126 completely blocked the desensitizing effect of repeated Ang II injections on water intake. Furthermore, Ang II-induced water intake was reduced to a similar extent by repeated injections of Ang II or SII. The results suggest that G protein-independent signalling is sufficient to produce behavioural desensitization of the angiotensin system and that the desensitization requires MAP kinase activation.

  7. Brominated Flame Retardants, Tetrabromobisphenol A and Hexabromocyclododecane, Activate Mitogen-Activated Protein Kinases (MAPKs) in Human Natural Killer Cells

    PubMed Central

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.

    2014-01-01

    NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744

  8. Cocaine Up-regulation of the Norepinephrine Transporter Requires Threonine 30 Phosphorylation by p38 Mitogen-activated Protein Kinase*

    PubMed Central

    Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S .; Ramamoorthy, Sammanda; Jayanthi, Lankupalle D.

    2011-01-01

    The norepinephrine (NE) transporter (NET) regulates NE signaling by rapidly clearing synaptic NE. Cocaine binds NET and modulates NE transport. These actions contribute to rewarding effects and abuse liability of cocaine. Activation of mitogen-activated protein kinase (MAPK) cascades is implicated in cocaine-induced neuroadaptations. However, the role of MAPK and the mechanisms involved in cocaine modulation of NET are not clear. Acute intra-peritoneal injections of cocaine (20 mg/kg body weight) to rats resulted in increased NE uptake by prefrontal cortex (PFC) synaptosomes with a parallel increase in the surface expression of endogenous NET. Cocaine also enhanced the immunoreactivity of phospho-p38 MAPK in the PFC synaptosomes without affecting the total p38 MAPK. In vitro cocaine (30–50 μm) treatment of rat PFC synaptosomes increased native NET function, surface expression, and phosphorylation in a manner sensitive to p38 MAPK inhibition by PD169316. We next examined cocaine-elicited effects on wild-type human NET (hNET) expressed heterologously in human placental trophoblast cells to gain more insights into the mechanisms involved. Cocaine treatment of hNET expressing human placental trophoblast cells up-regulated the function, surface expression, and phosphorylation of hNET in a PD169316-sensitive manner. In addition, cocaine inhibited constitutive endocytosis of hNET. Mutational analysis of serine and threonine residues revealed that substitution of threonine 30, located at the amino terminus of hNET with alanine (T30A-hNET), abolished cocaine-induced up-regulation of NET function, surface expression, and phosphorylation. Furthermore, cocaine did not alter T30A-hNET endocytosis. These studies identify a novel molecular mechanism that cocaine-activated p38 MAPK-mediated phosphorylation of NET-T30 dictates surface NET availability, and hence, NE transport. PMID:21498515

  9. Cocaine up-regulation of the norepinephrine transporter requires threonine 30 phosphorylation by p38 mitogen-activated protein kinase.

    PubMed

    Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S; Ramamoorthy, Sammanda; Jayanthi, Lankupalle D

    2011-06-10

    The norepinephrine (NE) transporter (NET) regulates NE signaling by rapidly clearing synaptic NE. Cocaine binds NET and modulates NE transport. These actions contribute to rewarding effects and abuse liability of cocaine. Activation of mitogen-activated protein kinase (MAPK) cascades is implicated in cocaine-induced neuroadaptations. However, the role of MAPK and the mechanisms involved in cocaine modulation of NET are not clear. Acute intra-peritoneal injections of cocaine (20 mg/kg body weight) to rats resulted in increased NE uptake by prefrontal cortex (PFC) synaptosomes with a parallel increase in the surface expression of endogenous NET. Cocaine also enhanced the immunoreactivity of phospho-p38 MAPK in the PFC synaptosomes without affecting the total p38 MAPK. In vitro cocaine (30-50 μM) treatment of rat PFC synaptosomes increased native NET function, surface expression, and phosphorylation in a manner sensitive to p38 MAPK inhibition by PD169316. We next examined cocaine-elicited effects on wild-type human NET (hNET) expressed heterologously in human placental trophoblast cells to gain more insights into the mechanisms involved. Cocaine treatment of hNET expressing human placental trophoblast cells up-regulated the function, surface expression, and phosphorylation of hNET in a PD169316-sensitive manner. In addition, cocaine inhibited constitutive endocytosis of hNET. Mutational analysis of serine and threonine residues revealed that substitution of threonine 30, located at the amino terminus of hNET with alanine (T30A-hNET), abolished cocaine-induced up-regulation of NET function, surface expression, and phosphorylation. Furthermore, cocaine did not alter T30A-hNET endocytosis. These studies identify a novel molecular mechanism that cocaine-activated p38 MAPK-mediated phosphorylation of NET-T30 dictates surface NET availability, and hence, NE transport.

  10. Modulation of mitogen-activated protein kinases (MAPK) activity in response to different immune stimuli in haemocytes of the common periwinkle Littorina littorea.

    PubMed

    Iakovleva, Nadya V; Gorbushin, Alexander M; Storey, Kenneth B

    2006-09-01

    The modulation of mitogen-activated protein kinase (MAPK) activity in haemocytes of the common periwinkle (Littorina littorea) in response to immune challenges by lipopolysaccharide from Echerichia coli (LPS), mannan from baker's yeast Saccharomyces cerevisiae and secretory-excretory products (SEP) of trematodes Himasthla elongata (Echinostomatidae) or after the treatment with phorbol ester (PMA) has been studied by Western blotting using affinity purified rabbit polyclonal antibodies. Exposure of the cells in suspension to PMA, LPS and mannan triggered an activation of p38 and ERK2. The JNK-mediated cascade was modulated differently by the elicitors examined. PMA treatment caused a transient activation of the JNK54 isoform, LPS exposure resulted in a decrease in activity of JNK46, and mannan had no effect on JNK phosphorylation status. Incubation of periwinkle haemocytes in culture medium containing trematode SEP did not affect the activity of any MAPK.

  11. Mitogen-activated protein kinase activity is involved in effector functions triggered by the CD94/NKG2-C NK receptor specific for HLA-E.

    PubMed

    Carretero, M; Llano, M; Navarro, F; Bellón, T; López-Botet, M

    2000-10-01

    The CD94/NKG2C heterodimer constitutes an activating receptor involved in NK cell-mediated recognition of the class lb molecule HLA-E. It transduces the triggering signal through an ITAM-bearing molecule, DAP12/KARAP, coupled non-covalently to the receptor. Here we show that specific engagement of the receptor complex expressed on the surface of an NK clone induced the phosphorylation of mitogen-activated protein kinase (MAPK). By the use of the MEK inhibitor PD098059 we demonstrate that the MAPK pathway participates in the CD94-dependent TNF-alpha production and cytotoxicity. Moreover, we transferred the activating function by transfection of the heterologous RBL cell line with CD94/NKG2-C/DAP12. In this system, cross-linking of the receptor induced calcium mobilization, serotonin release and phosphorylation of MAPK.

  12. Areca (betel) nut extract activates mitogen-activated protein kinases and NF-kappaB in oral keratinocytes.

    PubMed

    Lin, Shu-Chun; Lu, Suu-Yi; Lee, Szu-Ying; Lin, Chi-Yen; Chen, Chun-Hsien; Chang, Kuo-Wei

    2005-09-10

    Areca (betel) was recently proved a carcinogenic substance by the International Agency for Research on Cancer. However, the signaling impact of areca in oral keratinocyte is still obscure. Mitogen-activated protein kinase superfamilies, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinases (JNK) and p38, together with transcription factor NF-kappaB, are important signaling elements. We examined the activation of these signaling pathways in OECM-1 and SAS oral keratinocytes, treated with ripe areca nut extract (ANE). In both cells, a rapid increase in JNK1 activity at 0.5 hr was noted following treatment of ANE. ERK was profoundly activated during 0.5-2 hr in OECM-1 cells. Contrasting p38 activity was noted in these 2 cells. In both cells, ANE also activated NF-kappaB pathway in a biphasic manner, particularly for SAS cells. NF-kappaB was activated by approximately 2- to 4-fold at 0.5-1 hr and a plateau or slight decrease of activity existed between 1 and 6 hr. Later, another higher episode of NF-kappaB activity was raised. This was accompanied with the rapid degradation in cytosolic IkappaBalpha as well as an increase of nuclear NF-kappaB in both cells. ANE treatment did not activate epidermal growth factor receptor signaling system, but blockage of NF-kappaB activation rendered the suppression of ANE-modulated COX-2 upregulation in OECM-1. This study identified that ANE affected interactive signaling systems in oral keratonocytes that could be the pathogenetic basis for areca.

  13. Doxorubicin attenuates serotonin-induced long-term synaptic facilitation by phosphorylation of p38 mitogen-activated protein kinase.

    PubMed

    Liu, Rong-Yu; Zhang, Yili; Coughlin, Brittany L; Cleary, Leonard J; Byrne, John H

    2014-10-01

    Doxorubicin (DOX) is an anthracycline used widely for cancer chemotherapy. Its primary mode of action appears to be topoisomerase II inhibition, DNA cleavage, and free radical generation. However, in non-neuronal cells, DOX also inhibits the expression of dual-specificity phosphatases (also referred to as MAPK phosphatases) and thereby inhibits the dephosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK), two MAPK isoforms important for long-term memory (LTM) formation. Activation of these kinases by DOX in neurons, if present, could have secondary effects on cognitive functions, such as learning and memory. The present study used cultures of rat cortical neurons and sensory neurons (SNs) of Aplysia to examine the effects of DOX on levels of phosphorylated ERK (pERK) and phosphorylated p38 (p-p38) MAPK. In addition, Aplysia neurons were used to examine the effects of DOX on long-term enhanced excitability, long-term synaptic facilitation (LTF), and long-term synaptic depression (LTD). DOX treatment led to elevated levels of pERK and p-p38 MAPK in SNs and cortical neurons. In addition, it increased phosphorylation of the downstream transcriptional repressor cAMP response element-binding protein 2 in SNs. DOX treatment blocked serotonin-induced LTF and enhanced LTD induced by the neuropeptide Phe-Met-Arg-Phe-NH2. The block of LTF appeared to be attributable to overriding inhibitory effects of p-p38 MAPK, because LTF was rescued in the presence of an inhibitor (SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]) of p38 MAPK. These results suggest that acute application of DOX might impair the formation of LTM via the p38 MAPK pathway. Copyright © 2014 the authors 0270-6474/14/3413289-12$15.00/0.

  14. Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes.

    PubMed

    Coward, William R; Marei, Ayman; Yang, AiLi; Vasa-Nicotera, Mariuca M; Chow, Sek C

    2006-05-01

    Statins, which inhibit 3-hydroxy-3-methylglutaryl CoA reductase, have been shown recently to promote proinflammatory responses. We show in this study that both atorvastatin and simvastatin induced proinflammatory responses in mitogen-activated PBMCs by increasing the number of T cells secreting IFN-gamma. This is abolished by the presence of mevalonate, suggesting that statins act specifically by blocking the mevalonate pathway for cholesterol synthesis to promote the proinflammatory response. Both statins at low concentrations induced a dose-dependent increase in the number of IFN-gamma-secreting T cells in mitogen-activated PBMCs, whereas at higher concentrations the effect was abolished. The proinflammatory effect of statins was not seen in purified T cells per se activated with mitogen. However, conditioned medium derived from statin-treated PBMCs enhanced the number of IFN-gamma-secreting cells in activated purified T cells. This effect was not blocked by mevalonate, but was abolished by neutralizing Abs to IL-18 and IL-12. Similarly, the up-regulation of IFN-gamma-secreting T cells in PBMCs costimulated with statins and mitogens was blocked by the neutralizing anti-IL-18 and anti-IL-12. We showed that simvastatin stimulates the secretion of IL-18 and IL-1beta in monocytes. Active caspase-1, which is required for the processing and secretion of IL-18 and IL-1beta, was activated in simvastatin-treated monocytes. This was blocked by mevalonate and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone. Taken together, the proinflammatory response mediated by statins in activated PBMCs is mediated mainly via the activation of caspase-1 and IL-18 secretion in the monocytes and to a lesser extent by IL-12.

  15. Effects of insulin on pharmacodynamics of immunosuppressive drugs against mitogen-activated human peripheral blood mononuclear cells.

    PubMed

    Chen, Shuiling; Sugiyama, Kentaro; Inamura, Mariko; Tanaka, Sachiko; Onda, Kenji; Yin, Huijun; Hirano, Toshihiko

    2016-10-01

    Diabetes mellitus is one of the most common causes of chronic renal failure. Immunosuppressive efficacies of glucocorticoids, calcineurin inhibitors, and mycophenolic acid are possibly affected by insulin after renal transplantation in these patients. We investigated the effects of insulin on responses of mitogen-activated human peripheral blood mononuclear cells (PBMCs) to several immunosuppressive drugs. Antiproliferative efficacies of prednisolone, hydrocortisone, cyclosporine, tacrolimus, and mycophenolic acid against concanavalin A-stimulated PBMCs were evaluated in the presence of physiological (5 μunits/mL) and super physiological (50 μunits/mL) concentrations of insulin. Insulin-receptor expressions on PBMCs were evaluated by flow cytometry. Insulin itself had no effects on the mitogen-induced proliferation of PBMCs. The IC50 values of cyclosporine against the mitogen-activated PBMCs in the presence of 5 or 50 μunits/mL insulin were significantly higher than those of cyclosporine without insulin (p < 0.05). The IC50 values of mycophenolic acid significantly increased by 50 μunits/mL insulin (p < 0.01). Insulin receptors were detected on the mitogen-activated CD4(+)/CD14(+ )cells in PBMCs. These results indicate that insulin at even physiological concentration attenuates suppressive efficacies of several immunosuppressive drugs against mitogen-activated proliferation of human PBMCs, possibly via insulin receptors. Insulin used in dialysis patients accompanying diabetes mellitus is suggested to attenuate efficacies of immunosuppressive drugs after renal transplantation.

  16. p38 mitogen-activated protein kinase plays a key role in regulating MAPKAPK2 expression

    SciTech Connect

    Sudo, Tatsuhiko . E-mail: sudo@riken.jp; Kawai, Kayoko; Matsuzaki, Hiroshi; Osada, Hiroyuki

    2005-11-18

    One of three major families of the mitogen-activated kinases (MAPK), p38 as well as JNK, has been shown to transduce extracellular stress stimuli into cellular responses by phospho-relay cascades. Among p38 families, p38{alpha} is a widely characterized isoform and the biological phenomena are explained by its kinase activity regulating functions of its downstream substrates. However, its specific contributions to each phenomenon are yet not fully elucidated. For better understanding of the role of MAPKs, especially p38{alpha}, we utilized newly established mouse fibroblast cell lines originated from a p38{alpha} null mouse, namely, a parental cell line without p38{alpha} gene locus, knockout of p38{alpha} (KOP), Zeosin-resistant (ZKOP), revertant of p38{alpha} (RKOP), and Exip revertant (EKOP). EKOP is smaller in size but grows faster than the others. Although comparable amounts of ERK and JNK are expressed in each cell line, ERK is highly phosphorylated in EKOP even in normal culture conditions. Serum stimulation after serum starvation led to ERK phosphorylation in RKOP and ZKOP, but not in EKOP as much. On the contrary, relative phosphorylation level of JNK to total JNK in response to UV was low in RKOP. And its phosphorylation as well as total JNK is slightly lower in EKOP. RKOP is less sensitive to UV irradiation as judged by the survival rate. Stress response upon UV or sorbitol stimuli, leading to mitogen activate protein kinase activated kinase 2 (MAPKAPK2) phosphorylation, was only observed in RKOP. Further experiments reveal that MAPKAPK2 expression is largely suppressed in ZKOP and EKOP. Its expression was recovered by re-introduction of p38{alpha}. The loss of MAPKAPK2 expression accompanied by the defect of p38{alpha} is confirmed in an embryonic extract prepared from p38{alpha} null mice. These data demonstrate that p38 signal pathway is regulated not only by phosphorylation but also by modulation of the expression of its component. Together, we have

  17. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling.

    PubMed

    Varghese, Finny S; Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A; Merits, Andres; McInerney, Gerald M; Ng, Lisa F P; Ahola, Tero

    2016-11-01

    Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase

  18. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.

    PubMed

    Rundén-Pran, E; Tansø, R; Haug, F M; Ottersen, O P; Ring, A

    2005-01-01

    Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the

  19. [Art-therapy in anorexia: the mediative elements?].

    PubMed

    Jarrige, Maïtè; Calestrémé, Marie; Sudres, Jean-Luc

    2015-01-01

    Art does not have any inherent curative property; it is used as a therapeutic medium. Three mediative elements, depending on their specificities, have a role to play in the intrapsychic and interpersonal transformation of the patient: the creation the art-therapist and the group of participants. This article looks at the different components of art-therapy used in the treatment of anorexia.

  20. Distinct Roles for Mitogen-Activated Protein Kinase Signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in Regulating the Peak Time and Amplitude of the Plant General Stress Response1[W][OPEN

    PubMed Central

    Bjornson, Marta; Benn, Geoffrey; Song, Xingshun; Comai, Luca; Franz, Annaliese K.; Dandekar, Abhaya M.; Drakakaki, Georgia; Dehesh, Katayoon

    2014-01-01

    To survive environmental challenges, plants have evolved tightly regulated response networks, including a rapid and transient general stress response (GSR), followed by well-studied stress-specific responses. The mechanisms underpinning the GSR have remained elusive, but a functional cis-element, the rapid stress response element (RSRE), is known to confer transcription of GSR genes rapidly (5 min) and transiently (peaking 90–120 min after stress) in vivo. To investigate signal transduction events in the GSR, we used a 4xRSRE:LUCIFERASE reporter in Arabidopsis (Arabidopsis thaliana), employing complementary approaches of forward and chemical genetic screens, and identified components regulating peak time versus amplitude of RSRE activity. Specifically, we identified a mutant in CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) with reduced RSRE activation, verifying this transcription factor’s role in activation of the RSRE-mediated GSR. Furthermore, we isolated a mutant in MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) KINASE KINASE1 (mekk1-5), which displays increased basal and an approximately 60-min earlier peak of wound-induced RSRE activation. The double mekk1/camta3 mutant positioned CAMTA3 downstream of MEKK1 and verified their distinct roles in GSR regulation. mekk1-5 displays programmed cell death and overaccumulates reactive oxygen species and salicylic acid, hallmarks of the hypersensitive response, suggesting that the hypersensitive response may play a role in the RSRE phenotype in this mutant. In addition, chemical inhibition studies suggest that the MAPK network is required for the rapid peak of the RSRE response, distinguishing the impact of chronic (mekk1-5) from transient (chemical inhibition) loss of MAPK signaling. Collectively, these results reveal underlying regulatory components of the plant GSR and further define their distinct roles in the regulation of this key biological process. PMID:25157030

  1. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.

    PubMed

    Yeh, Chuan-Ming; Hsiao, Lin-June; Huang, Hao-Jen

    2004-09-01

    Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been evidenced that MAPKs play a role in the signaling of biotic and abiotic stresses, plant hormones, and cell cycle cues. However, the effect of heavy metals on plant MAPKs has not been well examined. The Northern blot analysis of OsMAPK mRNA levels has shown that only OsMAPK2, but not OsMAPK3 and OsMAPK4, expressed in suspension-cultured cells in response to 100-400 microM Cd treatments. The OsMAPK2 transcripts increased within 12 h upon 400 microM Cd treatment. In addition, we found that 42- and 50-kDa MBP kinases were significantly activated by Cd treatment in rice suspension-cultured cells. And 40-, 42-, 50- and 64-kDa MBP kinases were activated in rice roots. Furthermore, GSH inhibits Cd-induced 40-kDa MBP kinase activation. By immunoblot analysis and immunoprecipitation followed by in-gel kinase assay, we confirmed that Cd-activated 42-kDa MBP kinase is a MAP kinase. Our results suggest that a MAP kinase cascade may function in the Cd-signalling pathway in rice.

  2. Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo

    PubMed Central

    Kim, Yoosik; Iagovitina, Antonina; Ishihara, Keisuke; Fitzgerald, Kate M.; Deplancke, Bart; Papatsenko, Dmitri; Shvartsman, Stanislav Y.

    2013-01-01

    Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets. PMID:23822503

  3. p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes

    PubMed Central

    Haines, Jeffery D.; Fulton, Debra L.; Richard, Stephane; Almazan, Guillermina

    2015-01-01

    We have previously shown that p38 mitogen-activated protein kinase (p38 MAPK) is important for oligodendrocyte (OLG) differentiation and myelination. However, the precise cellular mechanisms by which p38 regulates OLG differentiation remain largely unknown. To determine whether p38 functions in part through transcriptional events in regulating OLG identity, we performed microarray analysis on differentiating oligodendrocyte progenitors (OLPs) treated with a p38 inhibitor. Consistent with a role in OLG differentiation, pharmacological inhibition of p38 down-regulated the transcription of genes that are involved in myelin biogenesis, transcriptional control and cell cycle. Proliferation assays showed that OLPs treated with the p38 inhibitor retained a proliferative capacity which could be induced upon application of mitogens demonstrating that after two days of p38-inhibition OLGs remained poised to continue mitosis. Together, our results suggest that the p38 pathway regulates gene transcription which can coordinate OLG differentiation. Our microarray dataset will provide a useful resource for future studies investigating the molecular mechanisms by which p38 regulates oligodendrocyte differentiation and myelination. PMID:26714323

  4. Identification and Analysis of Mitogen-Activated Protein Kinase (MAPK) Cascades in Fragaria vesca

    PubMed Central

    Zhou, Heying; Ren, Suyue; Han, Yuanfang; Zhang, Qing; Qin, Ling; Xing, Yu

    2017-01-01

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules in eukaryotes, including yeasts, plants and animals. MAPK cascades are responsible for protein phosphorylation during signal transduction events, and typically consist of three protein kinases: MAPK, MAPK kinase, and MAPK kinase kinase. In this current study, we identified a total of 12 FvMAPK, 7 FvMAPKK, 73 FvMAPKKK, and one FvMAPKKKK genes in the recently published Fragaria vesca genome sequence. This work reported the classification, annotation and phylogenetic evaluation of these genes and an assessment of conserved motifs and the expression profiling of members of the gene family were also analyzed here. The expression profiles of the MAPK and MAPKK genes in different organs and fruit developmental stages were further investigated using quantitative real-time reverse transcription PCR (qRT-PCR). Finally, the MAPK and MAPKK expression patterns in response to hormone and abiotic stresses (salt, drought, and high and low temperature) were investigated in fruit and leaves of F. vesca. The results provide a platform for further characterization of the physiological and biochemical functions of MAPK cascades in strawberry. PMID:28805715

  5. Acute hypertension activates mitogen-activated protein kinases in arterial wall.

    PubMed Central

    Xu, Q; Liu, Y; Gorospe, M; Udelsman, R; Holbrook, N J

    1996-01-01

    Mitogen-activated protein (MAP) kinases are rapidly activated in cells stimulated with various extracellular signals by dual phosphorylation of tyrosine and threonine residues. They are thought to play a pivotal role in transmitting transmembrane signals required for cell growth and differentiation. Herein we provide evidence that two distinct classes of MAP kinases, the extracellular signal-regulated kinases (ERK) and the c-Jun NH2-terminal kinases (JNK), are transiently activated in rat arteries (aorta, carotid and femoral arteries) in response to an acute elevation in blood pressure induced by either restraint or administration of hypertensive agents (i.e., phenylephrine and angiotensin II). Kinase activation is followed by an increase in c-fos and c-jun gene expression and enhanced activating protein 1 (AP-1) DNA-binding activity. Activation of ERK and JNK could contribute to smooth muscle cell hypertrophy/hyperplasia during arterial remodeling due to frequent and/or persistent elevations in blood pressure. PMID:8567974

  6. A homotetrameric agglutinin with antiproliferative and mitogenic activities from haricot beans.

    PubMed

    Ho Wong, Jack; Ng, T B

    2005-12-15

    A homotetrameric agglutinin with a molecular mass of 130 kDa was isolated from seeds of the haricot bean. The agglutinin was isolated using a procedure that involved ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel and gel filtration by fast protein liquid chromatography on Superdex 200. Haricot bean agglutinin was adsorbed on DEAE-cellulose and Affi-gel blue gel. The hemagglutinating activity of the agglutinin was stable up to 40 degrees C. It underwent a 40% decline when the temperature was raised to 50 degrees C and a complete loss when the temperature was further increased to 80 degrees C. The hemagglutinating activity exhibited a time-dependent loss in activity when the agglutinin was incubated at 100 degrees C for different durations. No activity was discernible when the agglutinin was left at 100 degrees C for 1 min. The activity also underwent a decline in the presence of 500 mM FeCl(3) and CaCl(2). Haricot bean agglutinin manifested a weaker mitogenic activity than concanavalin A toward mouse splenocytes. It exhibited antiproliferative activity toward the tumor cell lines M1 [leukemia], HepG2 [hepatoma] and L1210 [leukemia] cells.

  7. MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein.

    PubMed

    Masuda, K; Shima, H; Watanabe, M; Kikuchi, K

    2001-10-19

    Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) negatively regulate MAPK activity. In the present study, we have identified a novel MKP, designated MKP-7, and mapped it to human chromosome 12p12. MKP-7 possesses a long C-terminal stretch containing both a nuclear export signal and a nuclear localization signal, in addition to the rhodanese-like domain and the dual specificity phosphatase catalytic domain, both of which are conserved among MKP family members. When expressed in mammalian cells MKP-7 protein was localized exclusively in the cytoplasm, but this localization became exclusively nuclear following leptomycin B treatment or introduction of a mutation in the nuclear export signal. These findings indicate that MKP-7 is the first identified leptomycin B-sensitive shuttle MKP. Forced expression of MKP-7 suppressed activation of MAPKs in COS-7 cells in the order of selectivity, JNK p38 > ERK. Furthermore, a mutant form MKP-7 functioned as a dominant negative particularly against the dephosphorylation of JNK, suggesting that MKP-7 works as a JNK-specific phosphatase in vivo. Co-immunoprecipitation experiments and histological analysis suggested that MKP-7 determines the localization of MAPKs in the cytoplasm.

  8. Muscarinic activation of mitogen-activated protein kinase in PC12 cells.

    PubMed

    Berkeley, J L; Levey, A I

    2000-08-01

    Muscarinic acetylcholine receptors (mAChRs) activate many downstream signaling pathways, some of which can lead to mitogen-activated protein kinase (MAPK) phosphorylation and activation. MAPKs play roles in regulating cell growth, differentiation, and synaptic plasticity. Here, the activation of MAPK was examined in PC12 cells endogenously expressing mAChRs. Western blot analysis using a phosphospecific MAPK antibody revealed a dose-dependent and atropine-sensitive increase in MAPK phosphorylation in cells stimulated with carbachol (CCh). The maximal response occurred after 5 min and was rapidly reduced to baseline. To investigate the receptors responsible for CCh activation of MAPK in PC12 cells, the mAChR subtypes present were determined using RT-PCR and immunoprecipitation. RT-PCR was used to amplify fragments of the appropriate sizes for m1, m4, and m5, and the identities of the bands were confirmed with restriction digests. Immunoprecipitation using subtype-specific antibodies showed that approximately 95% of the expressed receptors were m4, whereas the remaining approximately 5% were m1 and m5. A highly specific m1 toxin completely blocked MAPK phosphorylation in response to CCh stimulation. The mAChR-induced MAPK activation was abolished by protein kinase C down-regulation and partially inhibited by pertussis toxin. Although m1 represents a small proportion of the total mAChR population, pharmacological evidence suggests that m1 is responsible for MAPK activation in PC12 cells.

  9. Deletion of mitogen-activated protein kinase 1 inhibits development and growth of Toxoplasma gondii.

    PubMed

    Cao, Lili; Wang, Zedong; Wang, Shuchao; Li, Jiping; Wang, Xinglong; Wei, Feng; Liu, Quan

    2016-02-01

    Mitogen-activated protein kinases (MAPKs) regulate key signaling events in a variety of eukaryotic cells. Toxoplasma gondii, the causative agents of toxoplasmosis, possesses a p38α MAPK homologue, MAPK1, which is an important manipulator of host immunity and virulence in mice. In this work, we showed an increased transcript level of MAPK1 in T. gondii during bradyzoite differentiation induced by alkaline treatment and heat shock in vitro, suggesting that MAPK1 may be associated with bradyzoite differentiation. The biological roles of MAPK1 of T. gondii were investigated by construction of a MAPK1 deletion mutant (Δmapk1) and a complementation mutant with restored MAPK1 expression using a type I strain. Knockout of MAPK1 resulted in markedly defective bradyzoite differentiation, host-cell attachment and parasite replication in vitro, and the inability to cause lethal infection in a murine model of acute toxoplasmosis, with lower parasite burden in infected tissues, showing that MAPK1 is associated with the acute virulence of parasite in mice. Complementation of MAPK1-deficient parasites restored bradyzoite development, attachment, replication, and virulence. Our findings demonstrate that MAPK1 is involved in asexual development and growth of T. gondii.

  10. Identification, nomenclature, and evolutionary relationships of mitogen-activated protein kinase (MAPK) genes in soybean.

    PubMed

    Neupane, Achal; Nepal, Madhav P; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S; Reese, R Neil; Benson, Benjamin V

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution.

  11. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  12. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Agostini, Bryan

    2014-01-01

    Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and cross-talk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK cross-talk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases. PMID:24924700

  13. Role of circadian activation of mitogen-activated protein kinase in chick pineal clock oscillation.

    PubMed

    Sanada, K; Hayashi, Y; Harada, Y; Okano, T; Fukada, Y

    2000-02-01

    A circadian pacemaker generates a rhythm with a period of approximately 24 hr even in the absence of environmental time cues. Several photosensitive neuronal tissues such as the retina and pineal gland contain the autonomous circadian pacemaker together with the photic-input pathway responsible for entrainment of the pacemaker to the daily light/dark cycle. We show here that, in constant darkness, chick pineal mitogen-activated protein kinase (MAPK) exhibited an in vivo circadian rhythm in tyrosine phosphorylation and in enzymatic activity with a peak during subjective night. Phosphorylated and hence activated MAPK was rapidly dephosphorylated after light illumination during the nighttime when light induces a phase-shift of the pacemaker. The circadian rhythmicity in MAPK phosphorylation was also observed in the cultured pineal gland, and importantly, MAPK kinase inhibitor treatment during subjective night not only shifted the time-of-peak of MAPK phosphorylation but also induced a remarkable phase-delay of the circadian pacemaker. These results indicate an important role of MAPK for time keeping in circadian clock systems.

  14. Spatial and temporal regulation of mitogen-activated protein kinase phosphorylation in the mouse suprachiasmatic nucleus.

    PubMed

    Nakaya, Michio; Sanada, Kamon; Fukada, Yoshitaka

    2003-06-06

    Circadian and photic regulation of mitogen-activated protein kinase (MAPK) has been shown to associate closely with the function of the circadian clock in vertebrate clock tissues such as the mouse suprachiasmatic nucleus (SCN). Here we show that, in the central region of the mouse SCN, MAPK exhibited circadian and daily rhythms in phosphorylation with a peak at (subjective) night, and this activation was sustained for at least 8 h. In contrast, in the dorsomedial region of the SCN, MAPK showed an overt rhythm in phosphorylation with a transient peak at early subjective day, which was antiphase to that in the central region. Noticeably, the phospho-MAPK-immunoreactive cells observed in the dorsomedial region were distributed from the rostral to the caudal end of the SCN, whereas those observed in the central region were localized within the middle SCN along the rostral-caudal axis. Furthermore, a 15-min light pulse given at subjective night transiently evoked MAPK phosphorylation throughout the ventrolateral region of the SCN peaking within 15 min after the light onset, whereas nighttime-phosphorylated MAPK signals in the central-middle SCN become undetectable within 60 min after the light onset. Thus, the mode of circadian and photic regulation of MAPK phosphorylation varies remarkably among the three subregions within the SCN, suggesting divergent and cell type-specific roles of MAPK in the clock system of the mouse SCN.

  15. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.

    PubMed Central

    Stokoe, D; Campbell, D G; Nakielny, S; Hidaka, H; Leevers, S J; Marshall, C; Cohen, P

    1992-01-01

    A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates. Images PMID:1327754

  16. An Inhibition of p38 Mitogen Activated Protein Kinase Delays the Platelet Storage Lesion

    PubMed Central

    Skripchenko, Andrey; Awatefe, Helen; Thompson-Montgomery, Dedeene; Myrup, Andrew; Turgeon, Annette; Wagner, Stephen J.

    2013-01-01

    Background and Objectives Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK). Another MAPK, extracellular signal-related kinase (ERK), is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. Materials and Methods A single Trima apheresis platelet unit (n = 12) was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20–24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. Results Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. Conclusion Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage. PMID:23967093

  17. Sustained mitogen-activated protein kinase activation with Aggregatibacter actinomycetemcomitans causes inflammatory bone loss.

    PubMed

    Dunmyer, J; Herbert, B; Li, Q; Zinna, R; Martin, K; Yu, H; Kirkwood, K L

    2012-10-01

    Aggregatibacter actinomycetemcomitans is a gram-negative facultative capnophile involved in pathogenesis of aggressive forms of periodontal disease. In the present study, we interrogated the ability of A. actinomycetemcomitans to stimulate innate immune signaling and cytokine production and established that A. actinomycetemcomitans causes bone loss in a novel rat calvarial model. In vitro studies indicated that A. actinomycetemcomitans stimulated considerable production of soluble cytokines, tumor necrosis factor-α, interleukin-6 and interleukin-10 in both primary bone marrow-derived macrophages and NR8383 macrophages. Immunoblot analysis indicated that A. actinomycetemcomitans exhibits sustained activation of all major mitogen-activated protein kinase (MAPK) pathways, as well as the negative regulator of MAPK signaling, MAPK phosphatase-1 (MKP-1), for at least 8 h. In a rat calvarial model of inflammatory bone loss, high and low doses of formalin-fixed A. actinomycetemcomitans were microinjected into the supraperiosteal calvarial space for 1-2 weeks. Histological staining and micro-computed tomography of rat calvariae revealed a significant increase of inflammatory and fibroblast infiltrate and increased bone resorption as measured by total lacunar pit formation. From these data, we provide new evidence that fixed whole cell A. actinomycetemcomitans stimulation elicits a pro-inflammatory host response through sustained MAPK signaling, leading to enhanced bone resorption within the rat calvarial bone.

  18. Suppressed expression of mitogen-activated protein kinases in hyperthermia induced defective neural tube.

    PubMed

    Zhang, Tianliang; Leng, Zhaoting; Liu, Wenjing; Wang, Xia; Yan, Xue; Yu, Li

    2015-05-06

    Neural tube defects (NTDs) are common congenital malformations. Mitogen-activated protein kinases (MAPKs) pathway is involved in many physiological processes. HMGB1 has been showed closely associated with neurulation and NTDs induced by hyperthermia and could activate MAPKs pathway. Since hyperthermia caused increased activation of MAPKs in many systems, the present study aims to investigate whether HMGB1 contributes to hyperthermia induced NTDs through MAPKs pathway. The mRNA levels of MAPKs and HMGB1 between embryonic day 8.5 and 10 (E8.5-10) in hyperthermia induced defective neural tube were detected by real-time quantitative polymerase chain reaction (qPCR). By immunofluorescence and western blotting, the expressions of HMGB1 and phosphorylated MAPKs (ERK1/2, JNK and p38) in neural tubes after hyperthermia were studied. The mRNA levels of MAPKs and HMGB1, as well as the expressions of HMGB1 along with phosphorylated JNK, p38 and ERK, were downregulated in NTDs groups induced by hyperthermia compared with control. The findings suggested that HMGB1 may contribute to hyperthermia induced NTDs formation through decreased cell proliferation due to inhibited phosphorylated ERK1/2 MAPK.

  19. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Ventura-Arroyo, Jairo Agustín; Arreguín-Cano, Juan Antonio; Ostoa-Pérez, María Fernanda

    2014-08-01

    Infective endocarditis is caused by oral commensal bacteria which are important etiologic agents in this disease and can induce release of nitric oxide (NO), promoting an inflammatory response in the endocardium. In this study, we investigated the properties of kaempherol, epigallocatechin, apigenin, and naringin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from Streptococcus sanguinis. NO production was measured with the Griess method. Expression of inducible nitric oxide synthase (iNOS) was detected by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, western blot assays and immunofluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, and activity of the mitogen activated protein (MAP) kinases extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK). And the effects of these flavonoids on cell viability were also assessed. Our results showed that flavonoids blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA. Moreover, the flavonoids showed no cytotoxic effects and blocked NF-κB translocation and IκB degradation and inhibited LTA-induced NF-κB promoter activity, iNOS expression and NO production. In conclusion these effects are consistent with some of the observed anti-inflammatory properties of other flavonoids.

  20. Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway

    PubMed Central

    Mi, Xiangquan; Wang, Chunming; Sun, Chao; Chen, Xu; Huo, Xiang; Zhang, Yiming; Li, Gang; Xu, Bo; Zhang, Jun; Xie, Jianxin; Wang, Zhenhua; Li, Ji

    2017-01-01

    Xanthohumol as a natural polyphenol demonstrates an anticancer activity, but its underlying mechanism remains unclear. In this study, we showed that xanthohumol (XN) induces paraptosis of leukemia cells. The paraptosis is one cell death which is characterized by dilation of the endoplasmic reticulum and/or mitochondria. The results demonstrated that XN treatment significantly inhibited cell proliferation and triggered extensive cytoplasmic vacuolation of HL-60 leukemia cells, but it did not cause the cleavage of caspase-3 protein or apoptosis. In contrast, XN treatment resulted in LC3-II accumulation through blocking of autophagosome maturation. Interestingly, the induction of cytoplasmic vacuolization by XN is not associated with autophagy modulated by XN, therefore, XN-induced cell death of HL-60 leukemia cells is not the classical apoptotic cell death. Intriguingly, XN treatment triggered the dilatation of endoplasma reticulum (ER) and induced ER stress by upregulating C/EBP homologous protein and unfolded protein response regulator Grp78/Bip. Furthermore, XN treatment triggered p38 mitogen activated protein kinase and its specific inhibitor inhibited the paraptosis of HL-60 leukemia cells by XN. In conclusion, we for the first time demonstrated that XN treatment can induce paraptosis of leukemia cells through activation of p38 MAPK signaling. PMID:28415750

  1. Interaction between two rice mitogen activated protein kinases and its possible role in plant defense

    PubMed Central

    2013-01-01

    Background The canonical mitogen activated protein kinase (MAPK) signaling pathway plays a vital role in carrying out the normal growth and development of the plant. The pathway, connecting the upstreams signal with the downstream target is considered to be linear, mostly starting with a MAPKKK and ending in a MAPK. Results Here we report a novel interaction between two rice MAPKs, OsMPK20-4 and OsMPK3 suggesting the complex nature of the pathway rather than a linear one at individual steps. The interaction between OsMPK20-4 and OsMPK3 found by yeast two-hybrid analysis was confirmed in planta by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. The interaction is specific and is phosphorylation independent. The results suggest a role of the interaction between OsMPK20-4 and OsMPK3 in basic plant defense. Conclusions The current novel work showing the physical interaction between two plant MAPKs, OsMPK20-4 and OsMPK3 is the diversion from the dogma of a typical MAPK cascade thereby opening a new dimension to the MAPK signal transduction. PMID:23984709

  2. The Role of Specific Mitogen-Activated Protein Kinase Signaling Cascades in the Regulation of Steroidogenesis

    PubMed Central

    Manna, Pulak R.; Stocco, Douglas M.

    2011-01-01

    Mitogen-activated protein kinases (MAPKs) comprise a family of serine/threonine kinases that are activated by a large variety of extracellular stimuli and play integral roles in controlling many cellular processes, from the cell surface to the nucleus. The MAPK family includes four distinct MAPK cascades, that is, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinase or stress-activated protein kinase, and ERK5. These MAPKs are essentially operated through three-tiered consecutive phosphorylation events catalyzed by a MAPK kinase kinase, a MAPK kinase, and a MAPK. MAPKs lie in protein kinase cascades. The MAPK signaling pathways have been demonstrated to be associated with events regulating the expression of the steroidogenic acute regulatory protein (StAR) and steroidogenesis in steroidogenic tissues. However, it has become clear that the regulation of MAPK-dependent StAR expression and steroid synthesis is a complex process and is context dependent. This paper summarizes the current level of understanding concerning the roles of the MAPK signaling cascades in the regulation of StAR expression and steroidogenesis in different steroidogenic cell models. PMID:21637381

  3. Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors.

    PubMed

    Duffy, Austin; Kummar, Shivaani

    2009-12-01

    The Raf-mitogen activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) protein kinase signaling cascade is an important intracellular pathway whose activation influences many fundamental cellular processes and whose aberrancy is associated with cancer cell growth. In addition to activation from within by, for example, Raf mutations, this pathway is frequently activated from above by mutated Ras or epidermal growth factor receptor (EGFR). Given the near ubiquity of derangements affecting at least part of this network in cancer, there is a strong and clear rationale for interrupting it. In recent times, in colorectal and lung cancer, Ras and EGFR mutant status have been shown to be critically important and mutually exclusive predictors of response to anti-EGFR therapies. These developments underline the importance of targeting downstream effectors, and MEK inhibition has been the subject of intense scientific and clinical research for some time now. This article reviews the current status of MEK inhibitors with regard to their clinical development.

  4. Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis.

    PubMed

    Lawan, Ahmed; Zhang, Lei; Gatzke, Florian; Min, Kisuk; Jurczak, Michael J; Al-Mutairi, Mashael; Richter, Patric; Camporez, Joao Paulo G; Couvillon, Anthony; Pesta, Dominik; Roth Flach, Rachel J; Shulman, Gerald I; Bennett, Anton M

    2015-01-01

    The liver plays a critical role in glucose metabolism and communicates with peripheral tissues to maintain energy homeostasis. Obesity and insulin resistance are highly associated with nonalcoholic fatty liver disease (NAFLD). However, the precise molecular details of NAFLD remain incomplete. The p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) regulate liver metabolism. However, the physiological contribution of MAPK phosphatase 1 (MKP-1) as a nuclear antagonist of both p38 MAPK and JNK in the liver is unknown. Here we show that hepatic MKP-1 becomes overexpressed following high-fat feeding. Liver-specific deletion of MKP-1 enhances gluconeogenesis and causes hepatic insulin resistance in chow-fed mice while selectively conferring protection from hepatosteatosis upon high-fat feeding. Further, hepatic MKP-1 regulates both interleukin-6 (IL-6) and fibroblast growth factor 21 (FGF21). Mice lacking hepatic MKP-1 exhibit reduced circulating IL-6 and FGF21 levels that were associated with impaired skeletal muscle mitochondrial oxidation and susceptibility to diet-induced obesity. Hence, hepatic MKP-1 serves as a selective regulator of MAPK-dependent signals that contributes to the maintenance of glucose homeostasis and peripheral tissue energy balance. These results also demonstrate that hepatic MKP-1 overexpression in obesity is causally linked to the promotion of hepatosteatosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Hepatic Mitogen-Activated Protein Kinase Phosphatase 1 Selectively Regulates Glucose Metabolism and Energy Homeostasis

    PubMed Central

    Lawan, Ahmed; Zhang, Lei; Gatzke, Florian; Min, Kisuk; Jurczak, Michael J.; Al-Mutairi, Mashael; Richter, Patric; Camporez, Joao Paulo G.; Couvillon, Anthony; Pesta, Dominik; Roth Flach, Rachel J.; Shulman, Gerald I.

    2014-01-01

    The liver plays a critical role in glucose metabolism and communicates with peripheral tissues to maintain energy homeostasis. Obesity and insulin resistance are highly associated with nonalcoholic fatty liver disease (NAFLD). However, the precise molecular details of NAFLD remain incomplete. The p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) regulate liver metabolism. However, the physiological contribution of MAPK phosphatase 1 (MKP-1) as a nuclear antagonist of both p38 MAPK and JNK in the liver is unknown. Here we show that hepatic MKP-1 becomes overexpressed following high-fat feeding. Liver-specific deletion of MKP-1 enhances gluconeogenesis and causes hepatic insulin resistance in chow-fed mice while selectively conferring protection from hepatosteatosis upon high-fat feeding. Further, hepatic MKP-1 regulates both interleukin-6 (IL-6) and fibroblast growth factor 21 (FGF21). Mice lacking hepatic MKP-1 exhibit reduced circulating IL-6 and FGF21 levels that were associated with impaired skeletal muscle mitochondrial oxidation and susceptibility to diet-induced obesity. Hence, hepatic MKP-1 serves as a selective regulator of MAPK-dependent signals that contributes to the maintenance of glucose homeostasis and peripheral tissue energy balance. These results also demonstrate that hepatic MKP-1 overexpression in obesity is causally linked to the promotion of hepatosteatosis. PMID:25312648

  6. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease.

    PubMed

    Wancket, Lyn M; Frazier, W Joshua; Liu, Yusen

    2012-02-13

    Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dermatophytes Activate Skin Keratinocytes via Mitogen-Activated Protein Kinase Signaling and Induce Immune Responses

    PubMed Central

    Achterman, Rebecca R.; Moyes, David L.; Thavaraj, Selvam; Smith, Adam R.; Blair, Kris M.

    2015-01-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. PMID:25667269

  8. Activation of the Smk1 Mitogen-Activated Protein Kinase by Developmentally Regulated Autophosphorylation

    PubMed Central

    Whinston, Elizabeth; Omerza, Gregory; Singh, Amrita; Tio, Chong Wai

    2013-01-01

    Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in Saccharomyces cerevisiae that controls spore morphogenesis. Similar to other MAPKs, it is controlled by dual phosphorylation of its T-X-Y activation motif. However, Smk1 is not phosphorylated by a prototypical MAPK kinase. Here, we show that the T residue in Smk1's activation motif is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase, Cak1. The Y residue is autophosphorylated in an independent intramolecular reaction that requires the meiosis-specific protein Ssp2. Although both SMK1 and SSP2 are expressed as middle-meiosis-specific genes, Smk1 protein starts to accumulate before Ssp2. Thus, Smk1 exists in a low-activity (pT) form early in sporulation and a high-activity (pT/pY) form later in the program. Ssp2 must be present when Smk1 is being produced to activate the autophosphorylation reaction, suggesting that Ssp2 acts through a transitional intermediate form of Smk1. These findings provide a mechanistic explanation for how Smk1 activity thresholds are generated. They demonstrate that intramolecular autophosphorylation of MAPKs can be regulated and suggest new mechanisms for coupling MAPK outputs to developmental programs. PMID:23207907

  9. Mitogen-activated Protein Kinase Phosphatase (Mkp)-1 Protects Mice against Acetaminophen-induced Hepatic Injury

    PubMed Central

    Wancket, Lyn M.; Meng, Xiaomei; Rogers, Lynette K.; Liu, Yusen

    2012-01-01

    c-Jun N-terminal kinase (JNK) activation promotes hepatocyte death during acetaminophen overdose, a common cause of drug-induced liver failure. While mitogen-activated protein kinase (MAPK) phosphatase (Mkp)-1 is a critical negative regulator of JNK MAPK, little is known about the role of Mkp-1 during hepatotoxicity. In this study, we evaluated the role of Mkp-1 during acute acetaminophen toxicity. Mkp-1+/+ and Mkp-1−/− mice were dosed ip with vehicle or acetaminophen at 300 mg/kg (for mechanistic studies) or 400 mg/kg (for survival studies). Tissues were collected 1–6 hr post 300 mg/kg dosing to assess glutathione levels, organ damage, and MAPK activation. Mkp-1−/− mice exhibited more rapid plasma clearance of acetaminophen than did Mkp-1+/+ mice, indicated by a quicker decline of plasma acetaminophen level. Moreover, Mkp-1−/− mice suffered more severe liver injury, indicated by higher plasma alanine transaminase activity and more extensive centrilobular apoptosis and necrosis. Hepatic JNK activity in Mkp-1−/− mice was higher than in Mkp-1+/+ mice. Finally, Mkp-1−/− mice displayed a lower overall survival rate and shorter median survival time after dosing with 400 mg/kg acetaminophen. The more severe phenotype exhibited by Mkp-1−/− mice indicates that Mkp-1 plays a protective role during acute acetaminophen overdose, potentially through regulation of JNK. PMID:22623522

  10. Mitogen-activated protein kinases participate in determination of apical-basal symmetry in Pisum sativum.

    PubMed

    Winnicki, Konrad; Polit, Justyna Teresa; Żabka, Aneta; Maszewski, Janusz

    2017-03-01

    Mitogen-activated protein kinases (MAPKs) are implicated in various processes in plants. Apart from response to biotic and abiotic stresses they are involved in regulation of embryo development. Although MAPKs were found to be indispensable during embryo development it has never been established at which stages of embryogenesis and in which regions of a plant embryo activated MAPKs can be observed. Here, we show that apical and basal regions display activation of the same types of MAPKs and the only difference concerns the level of their phosphorylation and cellular localization. Dually-phosphorylated MAPKs were found in nuclei of the apical region of an embryo both at the early and late cotyledonary stage while no immunofluorescence signals were detected in nuclei of the basal region. However, in this case phosphorylated MAPKs were immunodetected in cytoplasm in the apical domain of cortex cells, indicating their role in auxin transport from the basal to apical region of an embryo. Furthermore, obtained data indicate that nuclear localization of activated MAPKs may result from epigenetic modifications and polar auxin transport. The presented data and previous studies lead to the conclusion that activated MAPKs and their cellular localization define apical and basal regions during formation of an apical-basal axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases

    PubMed Central

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J.; Hastie, C. James; Lamont, Douglas J.; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J.; Keyse, Stephen M.; Cuenda, Ana

    2016-01-01

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  12. Dermatophytes activate skin keratinocytes via mitogen-activated protein kinase signaling and induce immune responses.

    PubMed

    Achterman, Rebecca R; Moyes, David L; Thavaraj, Selvam; Smith, Adam R; Blair, Kris M; White, Theodore C; Naglik, Julian R

    2015-04-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. Copyright © 2015, Achterman et al.

  13. Secretin induces neurite outgrowth of PC12 through cAMP-mitogen-activated protein kinase pathway.

    PubMed

    Kim, Hyeon Soo; Yumkham, Sanatombi; Kim, Sun-Hee; Yea, Kyungmoo; Shin, You Chan; Ryu, Sung Ho; Suh, Pann-Ghill

    2006-02-28

    The gastrointestinal functions of secretin have been fairly well established. However, its function and mode of action within the nervous system remain largely unclear. To gain insight into this area, we have attempted to determine the effects of secretin on neuronal differentiation. Here, we report that secretin induces the generation of neurite outgrowth in pheochromocytoma PC12 cells. The expressions of Tau and beta-tubulin, neuronal differentiation markers, are increased upon secretin stimulation. In addition, secretin induces sustained mitogen-activated protein kinase (MAPK) activation and also stimulates the cAMP secretion. Moreover, the neurite outgrowth elicited by secretin is suppressed to a marked degree in the presence of either PD98059, a specific MAPK/ERK kinase (MEK) inhibitor, or H89, a specific protein kinase A (PKA) inhibitor. Taken together, these observations demonstrate that secretin induces neurite outgrowth of PC12 cells through cAMP- MAPK pathway, and provide a novel insight into the manner in which secretin participates in neuritogenesis.

  14. Myocardial protection evoked by hyperoxic exposure involves signaling through nitric oxide and mitogen activated protein kinases.

    PubMed

    Ruusalepp, Arno; Czibik, Gabor; Flatebø, Torun; Vaage, Jarle; Valen, Guro

    2007-07-01

    Hyperoxic exposure in vivo (> 95% oxygen) attenuates ischemia-reperfusion injury, but the signaling mechanisms of this cardioprotection are not fully determined. We studied a possible role of nitric oxide (NO) and mitogen activated protein kinases (MAPK) in hyperoxic protection. Mice (n = 7-9 in each group) were kept in normoxic or hyperoxic environments for 15 min prior to harvesting the heart and Langendorff perfusion with global ischemia (45 min) and reperfusion (60 min). Endpoints were cardiac function and infarct size. Additional hearts were collected to evaluate MAPK phosphorylation (immunoblot). The nitric oxide synthase inhibitor L-NAME, the ERK1/2 inhibitor PD98059 and the p38 MAPK inhibitor FR167653 were injected intraperitoneally before hyperoxia or normoxia. Hyperoxia improved postischemic functional recovery and reduced infarct size (p < 0.05). Hyperoxic exposure caused cardiac phosphorylation of the MAPK family members p38 and ERK1/2, but not JNK. L-NAME, PD98059 and FR167653 all reduced the protection afforded by hyperoxic exposure, but did not influence performance or infarction in hearts of normoxic mice. The hyperoxia-induced phosphorylation of ERK1/2 and p38 was reduced by L-NAME and both MAPK inhibitors. Nitric oxide triggers hyperoxic protection, and ERK1/2 and p38 MAPK are involved in signaling of protection against ischemia-reperfusion injury.

  15. Genetic analysis of rolled, which encodes a Drosophila mitogen-activated protein kinase.

    PubMed Central

    Lim, Y M; Nishizawa, K; Nishi, Y; Tsuda, L; Inoue, Y H; Nishida, Y

    1999-01-01

    Genetic and molecular characterization of the dominant suppressors of D-raf(C110) on the second chromosome identified two gain-of-function alleles of rolled (rl), which encodes a mitogen-activated protein (MAP) kinase in Drosophila. One of the alleles, rl(Su23), was found to bear the same molecular lesion as rl(Sem), which has been reported to be dominant female sterile. However, rl(Su23) and the current stock of rl(Sem) showed only a weak dominant female sterility. Detailed analyses of the rl mutations demonstrated moderate dominant activities of these alleles in the Torso (Tor) signaling pathway, which explains the weak dominant female sterility observed in this study. The dominant rl mutations failed to suppress the terminal class maternal-effect mutations, suggesting that activation of Rl is essential, but not sufficient, for Tor signaling. Involvement of rl in cell proliferation was also demonstrated by clonal analysis. Branching and integration of signals in the MAP kinase cascade is discussed. PMID:10511556

  16. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.

    PubMed

    Prochazka, Radek; Blaha, Milan

    2015-01-01

    In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.

  17. Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo

    NASA Astrophysics Data System (ADS)

    Kim, Yoosik; Iagovitina, Antonina; Ishihara, Keisuke; Fitzgerald, Kate M.; Deplancke, Bart; Papatsenko, Dmitri; Shvartsman, Stanislav Y.

    2013-06-01

    Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets.

  18. Crosstalk between estrogen receptor and mitogen-activated protein kinase signaling in the development and progression of endometrial cancer.

    PubMed

    Zhou, Long; Cai, Bin; Bao, Wei; He, Yin-Yan; Chen, Xiao-Yue; Yang, Yi-Xia; Liu, Xue-Lian; Wan, Xiao-Ping

    2011-11-01

    The objectives of the study were to evaluate the role of mitogen-activated protein kinase (MAPK) signaling in normal, hyperplastic, and neoplastic endometrium in relation to estrogen receptor (ER) status and to investigate whether 17β-estradiol (E2) and tamoxifen (TAM) mediate the proliferation and apoptosis of endometrial cancer cells through the MAPK pathway. The expressions of phosphorylated and total extracellular signal-regulated kinases 1/2 (phosphorylated extracellular signal-regulated kinase 1/2 [p-ERK1/2] and total ERK1/2 [t-ERK1/2]) were analyzed with immunohistochemistry in normal, hyperplastic, and neoplastic endometrium. The expression levels of p-ERK1/2 and t-ERK1/2 in RL95-2 and KLE after stimulation by E2, progesterone (P), and TAM were detected by Western blotting. The effects of E2 and TAM in combination with MAPK pathway inhibitors on the growth and apoptosis of endometrial cancer cells were examined by the MTS assay and flow cytometry analysis. The expression level of p-ERK1/2 was significantly associated with the International Federation of Gynecology and Obstetrics stage (P = 0.0072). The ratio of phosphorylated/total ERK1/2 was higher in ER-positive endometrial cancer tissues and cells (P < 0.05). 17β-Estradiol increased ERK1/2 phosphorylation, and TAM decreased ERK1/2 phosphorylation in endometrial cancer cell lines within 30 minutes (P < 0.05). The MEK1/2 inhibitor, U0126, and the stress-activated protein kinase/c-Jun NH2-terminal kinase inhibitor, SP600125, significantly suppressed the proliferation of human endometrial cancer cell lines RL95-2 and KLE induced by E2 (P < 0.05). The level of TAM-induced apoptosis was greater in KLE than in RL95-2 cells, and the p38 cascade was involved in the TAM-induced apoptosis of both cell lines (P < 0.05). The cross-talk between MAPK signaling and ER status might exert a key role in progression of endometrial cancer. Furthermore, the effects of E2 or TAM on the proliferation or apoptosis of ER

  19. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  20. Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; DeFea, Kathryn

    2009-01-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR2) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR2 and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR2-Leu37Ser38, rPAR2-Ala37–38, and rPAR2-Ala39–42 were compared with the trypsin-revealed wild-type rPAR2 TL sequence, S37LIGRL42—. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR2 and rPAR2-Ala39–42 triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR2-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR2-Ala37–38 nor rPAR2-Leu37Ser38 constructs recruited β-arrestins-1 or -2 in response to trypsin stimulation, whereas both β-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered β-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Gαi (pertussis toxin), Gαq [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3′-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the proteolytically revealed TL sequence(s) and the mode

  1. P38 mitogen-activated protein kinase promotes dedifferentiation of primary articular chondrocytes in monolayer culture.

    PubMed

    Rosenzweig, Derek H; Ou, Sing J; Quinn, Thomas M

    2013-04-01

    Articular cartilage is an avascular tissue with poor regenerative capacity following injury, a contributing factor to joint degenerative disease. Cell-based therapies for cartilage tissue regeneration have rapidly advanced; however, expansion of autologous chondrocytes in vitro using standard methods causes 'dedifferentiation' into fibroblastic cells. Mitogen-activated protein kinase (MAPK) signalling is crucial for chondrocyte metabolism and matrix production, and changes in MAPK signals can affect the phenotype of cultured cells. We investigated the effects of inhibition of MAPK signalling on chondrocyte dedifferentiation during monolayer culture. Blockade of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signalling caused a significant increase in cartilage gene expression, however, also caused up-regulation of fibrotic gene expression. Inhibition of p38 MAPK (p38) caused a significant up-regulation of collagen type II while suppressing collagen type I expression. P38 inhibition also resulted in consistently more organized secretion of collagen type II protein deposits on cell culture surfaces. Follow-on pellet culture of treated cells revealed that MAPK inhibition reduced cell migration from the pellet. ERK and JNK inhibition caused more collagen type I accumulation in pellets versus controls while p38 inhibition strongly promoted collagen type II accumulation with no effect on collagen type I. Blockade of all three MAPKs caused increased GAG content in pellets. These results indicate a role for MAPK signalling in chondrocyte phenotype loss during monolayer culture, with a strong contribution from p38 signalling. Thus, blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell-based therapies. © 2013 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. P38 mitogen-activated protein kinase promotes dedifferentiation of primary articular chondrocytes in monolayer culture

    PubMed Central

    Rosenzweig, Derek H; Ou, Sing J; Quinn, Thomas M

    2013-01-01

    Articular cartilage is an avascular tissue with poor regenerative capacity following injury, a contributing factor to joint degenerative disease. Cell-based therapies for cartilage tissue regeneration have rapidly advanced; however, expansion of autologous chondrocytes in vitro using standard methods causes ‘dedifferentiation’ into fibroblastic cells. Mitogen-activated protein kinase (MAPK) signalling is crucial for chondrocyte metabolism and matrix production, and changes in MAPK signals can affect the phenotype of cultured cells. We investigated the effects of inhibition of MAPK signalling on chondrocyte dedifferentiation during monolayer culture. Blockade of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signalling caused a significant increase in cartilage gene expression, however, also caused up-regulation of fibrotic gene expression. Inhibition of p38 MAPK (p38) caused a significant up-regulation of collagen type II while suppressing collagen type I expression. P38 inhibition also resulted in consistently more organized secretion of collagen type II protein deposits on cell culture surfaces. Follow-on pellet culture of treated cells revealed that MAPK inhibition reduced cell migration from the pellet. ERK and JNK inhibition caused more collagen type I accumulation in pellets versus controls while p38 inhibition strongly promoted collagen type II accumulation with no effect on collagen type I. Blockade of all three MAPKs caused increased GAG content in pellets. These results indicate a role for MAPK signalling in chondrocyte phenotype loss during monolayer culture, with a strong contribution from p38 signalling. Thus, blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell-based therapies. PMID:23480786

  3. Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway.

    PubMed Central

    Rouyez, M C; Boucheron, C; Gisselbrecht, S; Dusanter-Fourt, I; Porteu, F

    1997-01-01

    Thrombopoietin (TPO) is the major regulator of both growth and differentiation of megakaryocytes. We previously showed that both functions can be generated by TPO in the megakaryoblastic cell line UT7, in which murine Mpl was introduced, and are independently controlled by distinct regions of the cytoplasmic domain of Mpl. Particularly, residues 71 to 94 of this domain (deleted in the mutant mpl delta3) were found to be required for megakaryocytic maturation but dispensable for proliferation. We show here that TPO-induced differentiation in UT7 cells is tightly dependent on a strong, long-lasting activation of the mitogen-activated protein kinase (MAPK) pathway. Indeed, (i) in UT7-mpl cells, TPO induced a strong activation of extracellular signal-regulated kinases (ERK) which was persistent until at least 4 days in TPO-containing medium; (ii) a specific MAPK kinase (MEK) inhibitor inhibited TPO-induced megakaryocytic gene expression; (iii) the Mpl mutant mpl delta3, which displayed no maturation activity, transduced only a weak and transient ERK activation in UT7 cells; and (iv) TPO-induced megakaryocytic differentiation in UT7-mpl delta3 cells was partially restored by expression of a constitutively activated mutant of MEK. The capacity of TPO to trigger a strong and prolonged MAPK signal depended on the cell in which Mpl was introduced. In BAF3-mpl cells, TPO triggered a weak and transient ERK activation, similar to that induced in UT7-mpl delta3 cells. In these cells, no difference in MAPK activation was found between normal Mpl and mpl delta3. Thus, depending on the cellular context, several distinct regions of the cytoplasmic domain of Mpl and signaling pathways may contribute to generate quantitative variations in MAPK activation. PMID:9271377

  4. A Fluorescence-Based Thermal Shift Assay Identifies Inhibitors of Mitogen Activated Protein Kinase Kinase 4

    PubMed Central

    Krishna, Sankar N.; Luan, Chi-Hao; Mishra, Rama K.; Xu, Li; Scheidt, Karl A.; Anderson, Wayne F.; Bergan, Raymond C.

    2013-01-01

    Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small molecules that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biologically relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chemically diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4's crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors. PMID:24339940

  5. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase

    PubMed Central

    Mandal, Goutam; Sharma, Mansi; Kruse, Martin; Sander-Juelch, Claudia; Munro, Laura Anne; Wang, Yong; Vilg, Jenny Veide; Tamás, Markus J; Bhattacharjee, Hiranmoy; Wiese, Martin; Mukhopadhyay, Rita

    2012-01-01

    Summary Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defense against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen-activated protein kinase, LmjMPK2. Leishmania parasites co-expressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo-osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr197 and this phosphorylation requires LmjMPK2 activity. Lys42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. L. mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild type cells. This is the first report where a parasite aquaglyceroporin activity is post-translationally modulated by a MAP kinase. PMID:22779703

  6. Isolation and characterization of a novel lectin with mitogenic activity from Pleurotus ferulae.

    PubMed

    Xu, Cheng-Jian; Wang, Yue-Xiang; Niu, Bo-Nan; Liu, Bing; Li, Ying-Biao; Wang, Xue-Ming; Lu, Shi-Ling

    2014-07-01

    Lectins are the tools for the determination of sugar chain structure. Recently, lectin arrays have become a popular new technology; therefore, lectins with specific sugar-binding properties are required. The objective of the study was to isolate a novel lectin from Pleurotus ferulae mushrooms and characterize its various biological activities. A novel lectin was extracted with deionized water, precipitated from the aqueous extract using 75% saturated (NH4)2SO4, and subjected on DEAE-cellulose followed by affinity chromatography on sepharose-6B. The activity was tested using hemagglutination assays, and carbohydrate-binding specificity was determined by glycan microarray analysis. Its effects on the mitogenic activity of mouse splenocytes were determined by MTT assay. The novel lectin was adsorbed on ion-exchange chromatography DEAE-cellulose and shown as a band with the molecular mass of 17.5 kDa on a SDS-PAGE and as a single 35.0-kDa peak in gel filtration on Superdex G-75. The hemagglutinating activity of the lectin was inhibited by D-glucose, lactose, D-galactose, and galactosamine. The lectin was stable on 60°C. The hemagglutinating activity of lectin was reduced by 50% at 70°C. At 80°C, it was further reduced to 6.25% of its original activity. The hemagglutinating activity was the highest at pH 6-9. Moreover, its hemagglutinating activity was inhibited by Mg2+ and Ca2+ ions. The lectin isolated from P. ferulae in the current study possessed highly potent hemagglutinating and proliferative activities toward mouse splenocytes.

  7. Lactotransferrin expression is downregulated and affects the mitogen-activated protein kinase pathway in gastric cancer.

    PubMed

    Luo, Gengqiu; Zhou, Yanhong; Yi, Wei; Yi, Hong

    2015-05-01

    Gastric cancer (GC) is the second leading cause of cancer-associated mortality worldwide. In advanced and metastatic GC, conventional chemotherapy results in limited efficacy and the average survival rate is currently approximately 10 months. Dysregulated activation of numerous genes, including zinc finger, DHHC-type containing 14; caspase-associated recruitment domain-containing protein; and Ras association domain family member 10, have been implicated in GC. The tumor suppressor function of lactotransferrin (LTF) has been reported in a variety of tumors, including GC, nasopharyngeal carcinoma (NPC) and prostate cancer. However, the mechanism of the tumor suppressor function of LTF in GC remains unclear. In the present study, the expression levels of LTF in patient GC tissue samples were investigated using reverse transcription-quantitative polymerase chain reaction, and it was demonstrated that the LTF mRNA expression level in GC tissue samples was reduced by ~20-fold compared with the adjacent non-cancerous tissues (t=4.56, P<0.01). A similar trend in LTF protein expression was observed by western blot analysis. Furthermore, the present study demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway intermediates p38, c-Jun N-terminal kinase (JNK) and c-Jun were highly expressed in GC tissue samples, and indicated that LTF downregulation may be associated with the dysregulation of the MAPK signaling pathway in GC tissues. In addition, the present study indicated that LTF overexpression reduced the expression of p38, JNK2 and c-Jun in the GC cell line, SGC7901. The present study demonstrates that LTF expression is downregulated in GC tissues and that LTF may serve an important role in the dysregulation of the MAPK signaling pathway.

  8. Induction of mitogen-activated protein kinases is proportional to the amount of pressure overload.

    PubMed

    Esposito, Giovanni; Perrino, Cinzia; Schiattarella, Gabriele Giacomo; Belardo, Lorena; di Pietro, Elisa; Franzone, Anna; Capretti, Giuliana; Gargiulo, Giuseppe; Pironti, Gianluigi; Cannavo, Alessandro; Sannino, Anna; Izzo, Raffaele; Chiariello, Massimo

    2010-01-01

    Pressure overload has been shown to induce mitogen activated protein kinases (MAPKs) and reactivate the atrial natriuretic factor in the heart. To test the sensitivity of these signals to pressure overload, we assayed the activity of MAPKs extracellular signal-regulated kinase, c-Jun N-terminal kinase 1, and p38 in protein lysates from the left ventricle (LV) or white blood cells (WBC) isolated from aortic banded mice with varying levels of pressure overload. In separated mice we measured atrial natriuretic factor mRNA levels by Northern blotting. As expected, a significant induction of atrial natriuretic factor mRNA levels was observed after aortic banding, and it significantly correlated with the trans-stenotic systolic pressure gradient but not with the LV weight:body weight ratio. In contrast, a significant correlation with systolic pressure gradient or LV weight:body weight ratio was observed for all of the MAPK activity detected in LV samples or WBCs. Importantly, LV activation of MAPKs significantly correlated with their activation in WBCs from the same animal. To test whether MAPK activation in WBCs might reflect uncontrolled blood pressure levels in humans, we assayed extracellular signal-regulated kinase, c-Jun N-terminal kinase 1, and p38 activation in WBCs isolated from normotensive volunteers, hypertensive patients with controlled blood pressure values, or hypertensive patients with uncontrolled blood pressure values. Interestingly, in hypertensive patients with controlled blood pressure values, LV mass and extracellular signal-regulated kinase phosphorylation were significantly reduced compared with those in hypertensive patients with uncontrolled blood pressure values. These results suggest that MAPKs are sensors of pressure overload and that extracellular signal-regulated kinase activation in WBCs might be used as a novel surrogate biomarker of uncontrolled human hypertension.

  9. Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway

    PubMed Central

    Buck, Vicky; Quinn, Janet; Pino, Teresa Soto; Martin, Humberto; Saldanha, Jose; Makino, Kozo; Morgan, Brian A.; Millar, Jonathan B.A.

    2001-01-01

    The Schizosaccharomyces pombe stress-activated Sty1p/Spc1p mitogen-activated protein (MAP) kinase regulates gene expression through the Atf1p and Pap1p transcription factors, homologs of human ATF2 and c-Jun, respectively. Mcs4p, a response regulator protein, acts upstream of Sty1p by binding the Wak1p/Wis4p MAP kinase kinase kinase. We show that phosphorylation of Mcs4p on a conserved aspartic acid residue is required for activation of Sty1p only in response to peroxide stress. Mcs4p acts in a conserved phospho-relay system initiated by two PAS/PAC domain-containing histidine kinases, Mak2p and Mak3p. In the absence of Mak2p or Mak3p, Sty1p fails to phosphorylate the Atf1p transcription factor or induce Atf1p-dependent gene expression. As a consequence, cells lacking Mak2p and Mak3p are sensitive to peroxide attack in the absence of Prr1p, a distinct response regulator protein that functions in association with Pap1p. The Mak1p histidine kinase, which also contains PAS/PAC repeats, does not regulate Sty1p or Atf1p but is partially required for Pap1p- and Prr1p-dependent transcription. We conclude that the transcriptional response to free radical attack is initiated by at least two distinct phospho-relay pathways in fission yeast. PMID:11179424

  10. Impaired activation of mitogen-activated protein kinases after hemorrhagic shock.

    PubMed

    Khadaroo, Rachel G; Lu, Ziyue; Powers, Kinga A; Papia, Giuseppe; Kapus, Andras; Rotstein, Ori D

    2002-08-01

    Patients sustaining major trauma are at risk of developing organ dysfunction. We have previously shown that resuscitated hemorrhagic shock primes for increased lung injury in response to lippolysaccharide (LPS), in part by preventing upregulation of the counterinflammatory cytokine IL-10. Because the mitogen-activated protein kinase (MAPK) family is known to participate in LPS signaling, we hypothesized that altered upstream signaling through these kinases might contribute to impaired LPS-simulated IL-10 release after shock and resuscitation. Rats were bled to a mean arterial pressure of 40 mm Hg and maintained for 1 hour, then resuscitated. Alveolar macrophages were retrieved at the end of resuscitation and exposed to LPS (0.5 microg/mL). Western blotting for p38, extracellular-regulated protein kinase, and c-Jun NH2-terminal kinase was performed on whole cell lysates. In some studies, the alveolar macrophages were preincubated with the p38 inhibitor or the extracellular-regulated protein kinase inhibitor before LPS stimulation. IL-10 levels were measured by enzyme-linked immunosorbent assay. LPS caused an early activation in all members of the MAPK family, whereas antecedent shock both delayed and attenuated the LPS induction. To discern whether this reduction in LPS-stimulated MAPK activation after shock might contribute to reduced IL-10, specific inhibitors were used. Inhibition of p38 MAPK completely inhibited LPS-induced IL-10 production, whereas blockade of extracellular-regulated protein kinase pathway had no effect. Shock resuscitation impairs LPS-induced activation of the members of the MAPK family. For the critical counterinflammatory cytokine IL-10, inhibition of p38 activation appears to contribute to the reduced levels of this cytokine in response to LPS. This study provides in vitro evidence for altered signaling through p38 MAPK, as a mechanism leading to failed upregulation of a counterinflammatory cytokine, and thus the propagation of an

  11. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat.

  12. Destabilization, oligomerization and inhibition of the mitogenic activity of acidic fibroblast-growth factor by aurintricarboxylic acid.

    PubMed

    Lozano, R M; Rivas, G; Giménez-Gallego, G

    1997-08-15

    The triphenylmethane derivative aurintricarboxylic acid has been used to inhibit angiogenesis, vascular smooth muscle cell proliferation and cell transformation, an effect that has been attributed to its relatively nonspecific inhibitory activity of protein-nucleic acid interactions. Here, we show that this compound binds to acidic fibroblast growth factor, a prototypic member of a family of protein mitogens activated by heparin, altering its physicochemical properties and decreasing its mitogenic activity. Counteraction of the effects of aurintricarboxylic acid by heparin shows that the two compounds have opposite and reversible effects on acidic fibroblast growth factor structure and biological activity. The studies reported here may contribute to a deeper understanding of the inhibition of fibroblast-growth-factor-dependent mitogenesis of relevance to future pharmacologic developments.

  13. Carboxyl-terminus of the amyloid protein precursor and ERbeta are required for estrogenic effect in activating mitogen-activated protein kinase.

    PubMed

    Lim, Hwa J; Lim, Chul J; Hwang, Dae Y; Lee, Su H; Min, Sae H; Song, Youn S; Seo, Su J; Park, Hye K; Sheen, Yhun Y; Cho, Jung S; Kim, Yong K

    2004-05-01

    Estrogen influences the processing of the amyloid beta precursor protein (APP) in the pathogenesis of Alzheimer's disease, and this effect is mediated by estrogen receptors (ERs) in activating mitogen-activated protein kinase (MAPK)-signaling pathway. To test whether the estrogenic effect on both carboxyl-terminal amino acid fragment (C-terminal) of APP (APP-C105)- and ERbeta-mediated MAPK activation in in vitro, two hybrid genes containing each human ERbeta and APP-C105 gene fused to the neuron-specific enolase (NSE) promoter were constructed and were transfected to the neuronal SK-N-MC cells. Western blot shows that the activation of JNK-signaling pathway, but not p38 and ERK, is dependent on ERbeta through estrogen treatment and APP-C105 is also mediated through estrogen in activating MAPK-signaling pathway. The results suggest that ERbeta and APP-C105 derived from APP are necessary for estrogenic effect in activating MAPK-signaling pathway.

  14. Mitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad.

    PubMed

    Eisenmann, Kathryn M; VanBrocklin, Matthew W; Staffend, Nancy A; Kitchen, Susan M; Koo, Han-Mo

    2003-12-01

    Mitogen-activated protein kinase (MAPK) signaling regulates fundamental cellular functions including proliferation, differentiation, and survival. We have demonstrated previously that inhibiting MAPK signaling induces apoptosis in melanoma cells but not in normal melanocytes, suggesting that the MAPK pathway propagates essential survival signals in melanoma cells. Here, we report that the 90-kDa ribosomal S6 kinase (RSK), a downstream effector in the MAPK signaling cascade, phosphorylates and inactivates the Bcl-2 homology 3-only proapoptotic protein Bad, thereby mediating a MAPK-dependent tumor-specific survival signal in melanoma cells. The MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK)/RSK MAPK signaling module is constitutively hyperactivated, and Bad is maintained in its inactive state by phosphorylation at Ser(75) in a MEK/ERK/RSK-dependent manner in melanoma cells. In contrast, in normal melanocytes, Bad is highly phosphorylated at multiple residues (Ser(75), Ser(99), and Ser(118)) in a MAPK pathway-independent manner. Importantly, ectopic expression of a constitutively activated RSK mutant abrogates Bad activation and renders melanoma cells resistant to apoptosis induced by a MEK inhibitor. Furthermore, overexpressing alanine-substituted (S75A) Bad further sensitizes melanoma cells to MEK inhibitor-induced apoptosis. Our results suggest that the MAPK pathway mediates melanoma-specific survival signaling by differentially regulating RSK-mediated phosphorylation of the proapoptotic protein Bad and may present potentially selective therapeutic targets for the treatment of melanomas.

  15. Involvement of epidermal growth factor receptors and mitogen-activated protein kinase in progestin-induction of sperm hypermotility in Atlantic croaker through membrane progestin receptor-alpha.

    PubMed

    Tan, Wenxian; Thomas, Peter

    2015-10-15

    The intracellular pathways mediating rapid, nongenomic progestin stimulation of sperm motility remain unclear. The role of epidermal growth factor receptors (Egfr and ErbB2) and mitogen-activated protein kinase (Mapk) in membrane progestin receptor-alpha (mPRα)-mediated progestin stimulation of sperm hypermotility was examined in a teleost, Atlantic croaker. Inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase (MMP) with Ilomastat, abolished progestin-initiated sperm hypermotility by 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S; 20 nM) and a specific mPRα agonist, Org OD 02-0 (20 nM). Pretreatment of croaker sperm with EGFR inhibitors, AG1478 (5 μM) and RG13022 (50 μM), the ErbB2 inhibitor, AG879 (5 nM), or the MEK1/2 inhibitor, U0126 (500 nM) blocked progestin stimulation of sperm motility. Levels of phosphorylated extracellular-related kinase 1 and 2 (P-Erk1/2) were increased after 20β-S treatment. These results demonstrate that progestin-mediated hypermotility via mPRα in croaker sperm involves activation of the Egfr, ErbB2 and Mapk pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module.

    PubMed Central

    Marcus, S; Polverino, A; Barr, M; Wigler, M

    1994-01-01

    We present genetic evidence for complex formation of STE5 and the STE11, STE7, and FUS3 protein kinases, the pheromone-responsive mitogen-activated protein kinase module of Saccharomyces cerevisiae. Interaction between STE5 and STE11 is not dependent on STE7, and interaction between STE5 and STE7 does not require STE11. The N-terminal regulatory domain of STE11 is both necessary and sufficient for interaction with STE5. Interaction between STE7 and STE11 is bridged by STE5, suggesting the formation of a multiprotein complex. We also demonstrate biochemical interaction between STE5 and STE11 by using a combination of bacterially expressed fusion proteins and extracts prepared from yeast. Our results suggest that STE5 is a scaffolding protein that facilitates interactions between components of the pheromone-responsive mitogen-activated protein kinase module. We further propose that such scaffolding proteins serve to inhibit cross-talk between functionally unrelated mitogen-activated protein kinase modules within the same cell. Images PMID:8052657

  17. Changes in resting mitogen-activated protein kinases following resistance exercise overreaching and overtraining.

    PubMed

    Nicoll, Justin X; Fry, Andrew C; Galpin, Andrew J; Sterczala, Adam J; Thomason, Donald B; Moore, Christopher A; Weiss, Lawrence W; Chiu, Loren Z F

    2016-12-01

    Many physiological maladaptations persist after overreaching and overtraining resistance exercise (RE). However, no studies have investigated changes in mitogen-activated protein kinases (MAPK) after overtraining in humans, despite their critical role regulating exercise-induced muscular adaptations. The purpose of this study was to describe the changes in total and resting phosphorylation status of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38-MAPK following a period of RE overreaching or overtraining. Following 2-4 weeks of normal training (low volume/low intensity), two groups of males performed either a high-power overreaching protocol (HPOR n = 6, mean ± SD, age 23 ± 3.4 years, mass 86.5 ± 17.7 kg, height 1.77 ± 0.06 m) or high-intensity overtraining protocol (HIOT n = 8, age 19.8 ± 1.8 years, mass 76.8 ± 6.7 kg, height 1.8 ± 0.06 m). Resting muscle biopsies were obtained at baseline (BL; end of normal training period) and 24 h after the final session of stressful training (i.e., HPOR or HIOT programs). Total MAPK and ratio of phosphorylated/total (p-MAPK)- ERK1/2, JNK, and p38-MAPK were analyzed via western blotting. 2 × 2 (group × time) ANOVA determined differences in MAPK between BL and post-training protocols. Compared to BL, total-ERK increased after HPOR, but decreased after HIOT (p ≤ 0.05). p-ERK1/2/total-ERK increased after HIOT (p ≤ 0.05). The ratio of p-JNK/total-JNK and p-ERK1/2/total-ERK decreased after HPOR (p ≤ 0.05); however, this result was primarily due to increased total MAPK content. p-p38-MAPK decreased after HPOR (p ≤ 0.05). Total and p-MAPK are differentially expressed after HPOR and HIOT RE. These changes are likely involved in the maladaptation reported in overreaching and overtraining exercise. This is the first study describing altered MAPK in RE overtrained and overreached humans.

  18. [Expression and role of mitogen activated protein kinases signaling pathway in lung injury induced by phosgene].

    PubMed

    Shao, Yi-ru; Shen, Jie; Yuan, Zhen; He, Dai-kun; Zhang, Lin

    2012-04-01

    This study aimed to investigate the expression and role of the mitogen activated protein kinases (ERK1/2, P38, JNK) in phosgene induced lung injury in rats in vivo. 30 male wistar rats were randomized into the group as follows, Gas inhalation control group, Phosgene inhalation group, and the following groups of the inhibitors of MAPK, involving SP600125, PD98059 and SB203580, 6 animals in each group, we copy the model of phosgene-induced lung injury, used the directional flow-inhalation device, the air control group inhaled the air, and the intervention groups were given PD98059 (intraperitoneal injection), SB203580 (hypodermic injection), SP600125 (intravenous) respectively before the inhalation of phosgene. The locations and quantities of three subfamilies of MAPKs (ERK1/2, P38, JNK) and p-MAPKs (p-ERK1/2, p-P38, p-JNK) were analyzed by immunohistochemistry and Western Blot analysis respectively; The histopathological changes of lung tissues, the number of neutrophil cells and the W/D were examined. There were rare p-ERK1/2, p-P38 and p-JNK positive expression in alveolar and airway epithelial cells in control group. while the positive cells increased strikingly in phosgene inhalation groups, these cells involved in this process mainly included alveolar epithelial cells, air way epithelial cells, pleural mesothelial cells, infiltrative inflammatory cells, interstitium fibrocytes. After the intervention of the specific inhibitor, the positive cells decreased. As Western Blot analysis show, Protein quantities of p-P38 and p-JNK were higher in phosgene inhalation groups than those in control group, and the differences were significant (P < 0.05). Protein quantities of p-ERK1/2, p-P38 and p-JNK were lower in intervention groups than phosgene inhalation group, and the differences were significant (P < 0.05, P < 0.01). The lung injury in phosgene inhalation groups was more severer compared with the control group, the typical pathological characters of acute lung injury

  19. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  20. Phosphorylation by p38 Mitogen-Activated Protein Kinase Promotes Estrogen Receptor α Turnover and Functional Activity via the SCFSkp2 Proteasomal Complex

    PubMed Central

    Bhatt, Shweta; Xiao, Zhen; Meng, Zhaojing

    2012-01-01

    The nuclear hormone receptor estrogen receptor α (ERα) mediates the actions of estrogens in target cells and is a master regulator of the gene expression and proliferative programs of breast cancer cells. The presence of ERα in breast cancer cells is crucial for the effectiveness of endocrine therapies, and its loss is a hallmark of endocrine-insensitive breast tumors. However, the molecular mechanisms underlying the regulation of the cellular levels of ERα are not fully understood. Our findings reveal a unique cellular pathway involving the p38 mitogen-activated protein kinase (p38MAPK)-mediated phosphorylation of ERα at Ser-294 that specifies its turnover by the SCFSkp2 proteasome complex. Consistently, we observed an inverse relationship between ERα and Skp2 or active p38MAPK in breast cancer cell lines and human tumors. ERα regulation by Skp2 was cell cycle stage dependent and critical for promoting the mitogenic effects of estradiol via ERα. Interestingly, by the knockdown of Skp2 or the inhibition of p38MAPK, we restored functional ERα protein levels and the control of gene expression and proliferation by estrogen and antiestrogen in ERα-negative breast cancer cells. Our findings highlight a novel pathway with therapeutic potential for restoring ERα and the responsiveness to endocrine therapy in some endocrine-insensitive ERα-negative breast cancers. PMID:22431515

  1. Rit-mediated Stress Resistance Involves a p38-Mitogen- and Stress-activated Protein Kinase 1 (MSK1)-dependent cAMP Response Element-binding Protein (CREB) Activation Cascade*

    PubMed Central

    Shi, Geng-Xian; Cai, Weikang; Andres, Douglas A.

    2012-01-01

    The cAMP response element (CRE)-binding protein (CREB) is a key regulatory factor of gene transcription, and plays an essential role in development of the central nervous system and for neuroprotection. Multiple signaling pathways have been shown to contribute to the regulation of CREB-dependent transcription, including both ERK and p38 mitogen-activated protein (MAP) kinases cascades. Recent studies have identified the Ras-related small G-protein, Rit, as a central regulator of a p38-MK2-HSP27 signaling cascade that functions as a critical survival mechanism for cells adapting to stress. Here, we examine the contribution of Rit-p38 signaling to the control of stress-dependent gene transcription. Using a pheochromocytoma cell model, we find that a novel Rit-p38-MSK1/2 pathway plays a critical role in stress-mediated CREB activation. RNAi-mediated Rit silencing, or inhibition of p38 or MSK1/2 kinases, was found to disrupt stress-mediated CREB-dependent transcription, resulting in increased cell death. Furthermore, ectopic expression of active Rit stimulates CREB-Ser133 phosphorylation, induces expression of the anti-apoptotic Bcl-2 and BclXL proteins, and promotes cell survival. These data indicate that the Rit-p38-MSK1/2 signaling pathway may have an important role in the stress-dependent regulation of CREB-dependent gene expression. PMID:23038261

  2. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-γ uses a different signaling pathway

    PubMed Central

    Kovarik, Pavel; Stoiber, Dagmar; Eyers, Patrick A.; Menghini, Rossella; Neininger, Armin; Gaestel, Matthias; Cohen, Philip; Decker, Thomas

    1999-01-01

    STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK. PMID:10570180

  3. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators.

    PubMed

    Chew, Wee-Siong; Ong, Wei-Yi

    2016-01-01

    Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.

  4. A Review of Signal Transduction of Endothelin-1 and Mitogen-activated Protein Kinase-related Pain for Nanophysiotherapy.

    PubMed

    Lee, Lim-Kyu; Kim, Ju-Hyun; Kim, Mee-Young; Lee, Jeong-Uk; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Noh, Ji-Woong; Kwak, Taek-Yong; Jang, Sung-Ho; Lee, Tae-Hyun; Kim, Bokyung; Kim, Junghwan

    2014-05-01

    [Purpose] An understanding of pain is very important in the study of nanophysiotherapy. In this review, we summarize the mechanisms of endothelin-1 (ET-1)- and mitogen-activated protein kinase (MAPK)-related pain, and suggest their applications in pain physiotherapy. [Method] This review focuses on the signal transduction of pain and its mechanisms. [Results] Our reviews show that mechanisms of ET-1- and MAPK-related pain exist. [Conclusions] In this review article, we carefully discuss the signal transduction in ET-1- and MAPK-related pain with reference to pain nanophysiotherapy from the perspective of nanoparticle-associated signal transduction.

  5. A mitogen-activated protein kinase kinase inhibitor induced compound skin toxicity with oedema in metastatic malignant melanoma.

    PubMed

    Thomas, C L; Mortimer, P S; Larkin, J M; Basu, T N; Gore, M E; Fearfield, L

    2016-04-01

    We report three cases of skin toxicity associated with oral mitogen-activated protein kinase kinase (MEK) inhibitor treatment for metastatic malignant melanoma (MM). All three patients developed oedema, and a single patient experienced eyelash trichomegaly. This is the first known report of eyelash trichomegaly secondary to MEK inhibitor use. We also discuss possible mechanisms for MEK inhibitor-associated oedema development. This series supports the role of the dermatologist in the screening and management of patients in the rapidly developing oncology setting, as new targeted agents can give rise to marked skin toxicity.

  6. Effects of transforming growth factor-[beta] and budesonide on mitogen-activated protein kinase activation and apoptosis in airway epithelial cells.

    PubMed

    Pelaia, Girolamo; Cuda, Giovanni; Vatrella, Alessandro; Fratto, Donatella; Grembiale, Rosa D; Tagliaferri, Pierosandro; Maselli, Rosario; Costanzo, Francesco S; Marsico, Serafino A

    2003-07-01

    Airway epithelial cells play a central role in the inflammatory, apoptotic, and remodeling processes associated with asthma. Within this context, a key function is exerted by transforming growth factor-beta (TGF-beta), whose biological effects are mediated at least in part by mitogen-activated protein kinases (MAPKs). The aim of our study was to investigate, in primary cultures of human bronchial epithelial cells (HBEC), the effects of TGF-beta (10 ng/ml) on both MAPK activation and apoptosis, in the presence or absence of a pretreatment with budesonide (10-8 M). MAPK activation was detected by Western blotting, using anti-phospho-MAPK monoclonal antibodies, which specifically recognize the phosphorylated, active forms of these enzymes. Apoptosis was assayed by caspase-3 activation and fluorescence microscopy, using annexin-V (An-V) and propidium iodide (PI) as markers of cell death. Our results show that TGF-beta induced a marked ( reverse similar 9-fold) increase in p38 MAPK phosphorylation, and also dramatically enhanced cell death, which was completely prevented by specific MAPK inhibitors. Both MAPK activation and apoptosis were effectively inhibited by budesonide (BUD), thereby suggesting that the powerful antiapoptotic action of inhaled glucocorticoids may be very important for their protective role against epithelial injury, which represents a key pathogenic event in asthma.

  7. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses.

    PubMed

    Zhang, Huajian; Li, Deqing; Wang, Meifang; Liu, Jiewen; Teng, Wenjun; Cheng, Baoping; Huang, Qian; Wang, Min; Song, Wenwen; Dong, Suomeng; Zheng, Xiaobo; Zhang, Zhengguang

    2012-12-01

    Many bacterial, fungal, and oomycete species secrete necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) that trigger programmed cell death (PCD) and innate immune responses in dicotyledonous plants. However, how NLP induce such immune responses is not understood. Here, we show that silencing of the MAPKKKα-MEK2-WIPK mitogen-activated protein kinase (MAPK) cascade through virus-induced gene silencing compromises hydrogen peroxide accumulation and PCD induced by Nep1(Mo) from Magnaporthe oryzae. WIPK interacts with NbWRKY2, a transcription factor in Nicotiana benthamiana, in vitro and in vivo, suggesting an effector pathway that mediates Nep1(Mo)-induced cell death. Unexpectedly, salicylic acid-induced protein kinase (SIPK)- and NbWRKY2-silenced plants showed impaired Nep1(Mo)-induced stomatal closure, decreased Nep1(Mo)-promoted nitric oxide (NO) production in guard cells, and a reduction in Nep1(Mo)-induced resistance against Phytophthora nicotianae. Expression studies by real-time polymerase chain reaction suggested that the MEK2-WIPK-NbWRKY2 pathway regulated Nep1(Mo)triggered NO accumulation could be partly dependent on nitrate reductase, which was implicated in NO synthesis. Taken together, these studies demonstrate that the MAPK cascade is involved in Nep1(Mo)-triggered plant responses and MAPK signaling associated with PCD exhibits shared and distinct components with that for stomatal closure.

  8. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae.

    PubMed

    Wang, Yonglin; Tian, Longyan; Xiong, Dianguang; Klosterman, Steven J; Xiao, Shuxiao; Tian, Chengming

    2016-03-01

    The fungus Verticillium dahliae has gained worldwide notoriety as a destructive plant pathogen, causing vascular wilt diseases on diverse plant species. V. dahliae produces melanized resting bodies, known as microsclerotia, which can survive for 15 years in the soil, and are thus critically important in its disease cycle. However, the molecular mechanisms that underpin microsclerotia formation, survival, and germination remain poorly understood. In this study, we observed that deletion of VdHog1 (ΔVdHog1), encoding a homolog of a high-osmolarity glycerol (HOG) response mitogen-activated protein kinase, displayed decreased numbers of melanized microsclerotia in culture, heightened sensitivity to hyperosmotic stress, and increased resistance to the fungicide fludioxonil. Through RNA-Seq analysis, we identified 221 genes differentially expressed in the ΔVdHog1 strain. Interestingly, the expression levels of genes involved in melanin biosynthesis, as well as the hydrophobin gene VDH1, involved in the early stage of microsclerotia formation, were significantly decreased in the ΔVdHog1 strains relative to the wild-type expression levels. The ΔVdHog1 strains exhibited decreased virulence relative to the wild type strain on smoke tree seedlings. These results indicate that VdHog1 regulates hyperosmotic stress responses in V. dahliae, and establishes the Hog1-mediated pathway as a target to further probe the up- and downstream processes that regulate asexual development in this fungus.

  9. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells.

    PubMed

    Guon, Tae Eun; Chung, Ha Sook

    2017-08-01

    The present study was performed to determine the effect of Moringa oleifera fruit extract on the apoptosis of human melanoma A2058 cells. A2058 cells were treated for 72 h with Moringa oleifera fruit extract at 50-100 µg/ml, and cell viability with apoptotic changes was examined. The involvement of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) was examined. It was revealed that Moringa oleifera fruit extract significantly inhibited the cell viability and promoted apoptosis of A2058 cells in a concentration-dependent manner. Moringa oleifera fruit extract-treated A2058 cells exhibited increased activities of cleaved caspase-9 and caspase-3. It also caused an enhancement of MAPK phosphorylation and ROS production. The pro-apoptotic activity of Moringa oleifera fruit extract was significantly reversed by pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125, extracellular-signal-regulated kinase (ERK) inhibitor PD98058 or ROS inhibitor N-acetyl-L-cysteine. Taken together, Moringa oleifera fruit extract is effective in inducing mitochondrial apoptosis of A2058 cells, which is mediated through induction of ROS formation, and JNK and ERK activation. Moringa oleifera fruit extract may thus have therapeutic benefits for human melanoma A2058 cells.

  10. Atorvastatin promotes human monocyte differentiation toward alternative M2 macrophages through p38 mitogen-activated protein kinase-dependent peroxisome proliferator-activated receptor γ activation.

    PubMed

    Zhang, Ou; Zhang, Jinying

    2015-05-01

    M1 and M2 macrophages are detectable in human atherosclerotic lesions, and M2 macrophages are present at locations distant from the lipid core in more stable zones of the plaque and appear to exert anti-inflammatory properties on M1 macrophages. Peroxisome proliferator-activated receptor (PPAR) γ promotes the differentiation of monocytes into anti-inflammatory M2 macrophages. Although both statins and PPARγ ligands have been reported to protect against the progression of atherosclerosis, no data are currently available regarding the implication of statins in the alternative differentiation of human monocytes. In the present study, we hypothesized that atorvastatin may exert novel effects to prime human monocytes toward an anti-inflammatory alternative M2 phenotype. To this aim, we first found that abundant M2 markers were expressed in human circulating monocytes after atorvastatin treatment. Moreover, atorvastatin was able to induce PPARγ expression and activation in human monocytes in vivo and in vitro, resulting in priming primary human monocytes differentiation into M2 macrophages with a more pronounced paracrine anti-inflammatory activity in M1 macrophages. Additional data with molecular approaches revealed that p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) 1/2 activation was involved in atorvastatin-mediated PPARγ activation and enhanced alternative M2 macrophage phenotype. Collectively, our data demonstrated that atorvastatin promotes human monocyte differentiation toward alternative M2 macrophages via p38 MAPK-dependent PPARγ activation.

  11. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    PubMed Central

    HU, SHAN; HUANG, LIMING; MENG, LIWEI; SUN, HE; ZHANG, WEI; XU, YINGCHUN

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  12. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate.

    PubMed

    Gomez-Lazaro, M; Galindo, M F; Melero-Fernandez de Mera, R M; Fernandez-Gómez, F J; Concannon, C G; Segura, M F; Comella, J X; Prehn, J H M; Jordan, J

    2007-03-01

    Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington's disease and ischemic stroke. We have shown previously that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative stress, cytochrome c release, and apoptotic cell death. Expression of a green fluorescent protein-Bax fusion protein in SH-SY5Y neuroblastoma cells demonstrated a Bax redistribution from the cytosol to mitochondria after 12 to 24 h of malonate treatment that coincided with mitochondrial potential collapse and chromatin condensation. Inhibition of Bax translocation using furosemide, as well as Bax gene deletion, afforded significant protection against malonate-induced apoptosis. Further experiments revealed that malonate induced a prominent increase in the level of activated p38 mitogen-activated protein (MAP) kinase and that treatment with the p38 MAP kinase inhibitor SKF86002 potently blocked malonate-induced Bax translocation and apoptosis. Treatment with vitamin E diminished ROS production, reduced the activation status of p38 MAP kinase, inhibited Bax translocation, and protected against malonate-induced apoptosis. Our data suggest that malonate-induced ROS production and subsequent p38 MAP kinase activation mediates the activation of the pro-apoptotic Bax protein to induce mitochondrial membrane permeabilization and neuronal apoptosis.

  13. p62(dok), a negative regulator of Ras and mitogen-activated protein kinase (MAPK) activity, opposes leukemogenesis by p210(bcr-abl).

    PubMed

    Di Cristofano, A; Niki, M; Zhao, M; Karnell, F G; Clarkson, B; Pear, W S; Van Aelst, L; Pandolfi, P P

    2001-08-06

    p62(dok) has been identified as a substrate of many oncogenic tyrosine kinases such as the chronic myelogenous leukemia (CML) chimeric p210(bcr-abl) oncoprotein. It is also phosphorylated upon activation of many receptors and cytoplamic tyrosine kinases. However, the biological functions of p62(dok) in normal cell signaling as well as in p210(bcr-abl) leukemogenesis are as yet not fully understood. Here we show, in hemopoietic and nonhemopoietic cells derived from p62(dok)-(/)- mice, that the loss of p62(dok) results in increased cell proliferation upon growth factor treatment. Moreover, Ras and mitogen-activated protein kinase (MAPK) activation is markedly sustained in p62(dok)-(/)- cells after the removal of growth factor. However, p62(dok) inactivation does not affect DNA damage and growth factor deprivation-induced apoptosis. Furthermore, p62(dok) inactivation causes a significant shortening in the latency of the fatal myeloproliferative disease induced by retroviral-mediated transduction of p210(bcr-abl) in bone marrow cells. These data indicate that p62(dok) acts as a negative regulator of growth factor-induced cell proliferation, at least in part through downregulating Ras/MAPK signaling pathway, and that p62(dok) can oppose leukemogenesis by p210(bcr-abl).

  14. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members.

    PubMed Central

    Frost, J A; Xu, S; Hutchison, M R; Marcus, S; Cobb, M H

    1996-01-01

    The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. PMID:8668187

  15. p42/p44 Mitogen-activated protein kinase signal transduction pathway: a novel target for the treatment of hormone-resistant prostate cancer?

    PubMed

    Koul, Hari K; Maroni, Paul D; Meacham, Randall B; Crawford, David; Koul, Sweaty

    2004-12-01

    Prostate cancer is the second leading cause of cancer deaths in men. Conventional therapies produce a high rate of cure for patients with localized prostate cancer, but there is no cure once the disease has spread beyond the prostate. Androgen withdrawal remains the only treatment for these men with clinically advanced disease; however, most of these men, who initially respond to hormone ablation therapy, fail and the disease progresses. There is at present no effective treatment for hormone-independent prostate cancer. Several lines of evidence suggest a role of p42/p44 mitogen-activated protein kinase (p42/p44 MAP kinase) signal transduction pathways in prostate cancer. At the molecular level, a variety of genetic alterations lead to an epigenetic mechanism by which a feedback autocrine loop between membrane receptors and associated ligands serves as an essential component of the growth, proliferation, and metastasis of prostate cancer at an advanced and androgen-independent stage. Peptide growth factors are known to exert their effects by a complex array of mechanisms primarily mediated by the p42/p44 MAP kinase signal transduction pathway. Thus, we hypothesized that MAP kinase signal transduction pathways could serve as new and novel targets in prostate cancer therapy. In this article we provide an overview of the role played by MAP kinase signal transduction in the prostate.

  16. The immunosuppressive effect of Gamisanghyulyunbueum through inhibition of mitogen-activated protein kinase and nuclear factor activation in MOLT-4 cells.

    PubMed

    Shin, Hye-Young; Jeong, Hyun-Ja; Na, Ho-Jeong; Kim, Hong-Joon; Moon, Goo; Shin, Tae-Yong; Yang, Deok-Chun; Hong, Seung-Heon; Kim, Hyung-Min

    2005-07-01

    Gamisanghyulyunbueum (GSHYBE) has been used clinically to treat skin related disease in South Korea. We investigated GSHYBE-mediated changes in downstream T cell signal transduction. To determine the mechanism of inhibition, we have studied many of the major pathways in phytohemagglutinin (PHA)-activated T cell. We show that among the mitogen-activated protein kinase family activation of phosphorylation of extra cellular signal-regulated kinase 1/2 (ERK1/2, p44/42) and p38, but not c-jun NH2-terminal kinase is inhibited. In activated MOLT-4 cells, the nuclear localization of nuclear factor of activated T cells (NFATc) was blocked by GSHYBE (1 mg/ml). Also, degradation of inhibitor kappaB-alpha and transactivation by nuclear factor-kappaB (NF-kappaB)/Rel A were impaired by GSHYBE (1 mg/ml). Furthermore, interlukin (IL)-2, IL-4 and Interferen (IFN)-gamma secretion by PHA activated MOLT-4 cells and peripheral blood mononuclear cells (PBMC) were significantly diminishes following GSHYBE treatment (1 mg/ml). Also, oral administration of GSHYBE inhibited IL-2 secretion in skin allergic reaction. In conclusion, our data indicate that GSHYBE treatment of T cells inhibits ERK1/2 and p38 activation and nuclear translocation of NFATc, NF-kappaB, resulting in diminished secretion of IL-2.

  17. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    PubMed

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  18. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae.

    PubMed Central

    Mösch, H U; Roberts, R L; Fink, G R

    1996-01-01

    RAS2val19, a dominant activated form of Saccharomyces cerevisiae Ras2, stimulates both filamentous growth and expression of a transcriptional reporter FG(TyA)::lacZ but does not induce the mating pathway reporter FUS1::lacZ. This induction depends upon elements of the conserved mitogen-activated protein kinase (MAPK) pathway that is required for both filamentous growth and mating, two distinct morphogenetic events. Full induction requires Ste20 (homolog of mammalian p65PAK protein kinases), Ste11 [an MEK kinase (MEKK) or MAPK kinase (MEK) kinase], Ste7 (MEK or MAPK kinase), and the transcription factor Ste12. Moreover, the Rho family protein Cdc42, a conserved morphogenetic G protein, is also a potent regulator of filamentous growth and FG(TyA)::lacZ expression in S. cerevisiae. Stimulation of both filamentous growth and FG(TyA)::lacZ by Cdc42 depends upon Ste20. In addition, dominant negative CDC42Ala118 blocks RAS2val19 activation, placing Cdc42 downstream of Ras2. Our results suggest that filamentous growth in budding yeast is regulated by an evolutionarily conserved signaling pathway that controls cell morphology. Images Fig. 1 Fig. 2 Fig. 3 PMID:8643578

  19. Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Martín-García, Rebeca; Madrid, Marisa; Vicente-Soler, Jero; Soto, Teresa; Gacto, Mariano; Pérez, Pilar

    2014-01-01

    The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade. PMID:24820419

  20. Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding.

    PubMed

    Powell, David W; Rane, Madhavi J; Joughin, Brian A; Kalmukova, Ralitsa; Hong, Jeong-Ho; Tidor, Bruce; Dean, William L; Pierce, William M; Klein, Jon B; Yaffe, Michael B; McLeish, Kenneth R

    2003-08-01

    Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2) mediates multiple p38 MAPK-dependent inflammatory responses. To define the signal transduction pathways activated by MAPKAPK2, we identified potential MAPKAPK2 substrates by using a functional proteomic approach consisting of in vitro phosphorylation of neutrophil lysate by active recombinant MAPKAPK2, protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and phosphoprotein identification by peptide mass fingerprinting with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and protein database analysis. One of the eight candidate MAPKAPK2 substrates identified was the adaptor protein, 14-3-3zeta. We confirmed that MAPKAPK2 interacted with and phosphorylated 14-3-3zeta in vitro and in HEK293 cells. The chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated p38-MAPK-dependent phosphorylation of 14-3-3 proteins in human neutrophils. Mutation analysis showed that MAPKAPK2 phosphorylated 14-3-3zeta at Ser-58. Computational modeling and calculation of theoretical binding energies predicted that both phosphorylation at Ser-58 and mutation of Ser-58 to Asp (S58D) compromised the ability of 14-3-3zeta to dimerize. Experimentally, S58D mutation significantly impaired both 14-3-3zeta dimerization and binding to Raf-1. These data suggest that MAPKAPK2-mediated phosphorylation regulates 14-3-3zeta functions, and this MAPKAPK2 activity may represent a novel pathway mediating p38 MAPK-dependent inflammation.

  1. Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy.

    PubMed

    Guo, Xiaolan; Cui, Ruibing; Zhao, Jianjian; Mo, Rui; Peng, Lei; Yan, Ming

    2016-11-15

    The reactive oxygen species(ROS)/mitogen-activated protein kinase (MAPK) destroyed autophagy and the reactive oxygen species/mitogen-activated protein kinase (MAPK) pathway are considered closely related to ethanol-induced hepatocellular injury. Previous work indicated that corosolic acid, the natural extracts of leaves of the banaba tree, Lagerstroemia speciosa L., could protect the liver against ethanol-induced damage, but the underlying mechanism is unclear. In the study we found that corosolic acid significantly inhibited ethanol-induced apoptosis, increased level of tumor necrosis factor-α(TNF-α) and reactive oxygen species accumulation in vitro. Corosolic acid inhibited ethanol-activated p38 and c-Jun N-terminal kinase MAPK signaling in BRL-3A and HepG2 cells as well as in experimental rats. Corosolic acid restored the ethanol-suppressed expression of autophagy-related genes, including beclin-1 and the ratio of microtubule-associated protein light chain 3II/I (LC3II/I) via AMP-activated protein kinase (AMPK) activation both in vitro and in vivo. In experimental rats, corosolic acid ameliorated the detrimental histopathological findings. Corosolic acid may protect the liver against ethanol-induced injury by modulation of MAPK signaling and autophagy activation. These findings suggested that corosolic acid might be a promising agent in treatment of alcoholic liver diseases.

  2. Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Xiong, Wei; Luo, Yu; Wu, Lin; Liu, Feng; Liu, Huadong; Li, Jianghua; Liao, Bihong; Dong, Shaohong

    2016-01-01

    Vascular neointimal hyperplasia and remodeling arising from local inflammation are characteristic pathogeneses of proliferative cardiovascular diseases, such as atherosclerosis and post angioplasty restenosis. The molecular mechanisms behind these pathological processes have not been fully determined. The adipokine chemerin is associated with obesity, metabolism, and control of inflammation. Recently, chemerin has gained increased attention as it was found to play a critical role in the development of cardiovascular diseases. In this study, we investigated the effects of chemerin on the regulation of vascular smooth muscle cells and carotid neointimal formation after angioplasty. We found that circulating chemerin levels increased after carotid balloon injury, and that knockdown of chemerin significantly inhibited the proliferative aspects of vascular smooth muscle cells induced by platelet-derived growth factor-BB and pro-inflammatory chemokines in vitro as well as prohibited carotid neointimal hyperplasia and pro-inflammatory chemokines in vivo after angioplasty. Additionally, inhibition of chemerin down-regulated the expression of several proteins, including phosphorylated p38 mitogen-activated protein kinase, phosphorylated extracellular signal regulated kinase 1/2, nuclear factor-kappa B p65, and proliferation cell nuclear antigen. The novel finding of this study is that chemerin stimulated vascular smooth muscle cells proliferation and carotid intimal hyperplasia through activation of the mitogen-activated protein kinase signaling pathway, which may lead to vascular inflammation and remodeling, and is relevant to proliferative cardiovascular diseases. PMID:27792753

  3. ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco.

    PubMed

    Cai, Guohua; Wang, Guodong; Wang, Li; Pan, Jiaowen; Liu, Yang; Li, Dequan

    2014-01-01

    As an important intracellular signaling module, the mitogen-activated protein kinase (MAPK) cascades have been previously implicated in signal transduction during plants responsing to various environmental stresses as well as pathogen attack. The mitogen-activated protein kinase kinase acts as the convergent point of MAPK cascades during a variety of stress signaling. In this study, a novel MAPKK gene, ZmMKK1, in maize (Zea mays L.) belonging to group A MAPKK was isolated and functionally characterized. ZmMKK1 was mainly localized in the cytoplasm and its constitutive kinase-active form ZmMKK1DD was localized in both cytoplasm and nucleus. QRT-PCR analysis uncovered that ZmMKK1 expression was triggered by abiotic and biotic stresses and exogenous signaling molecules. Moreover, hydrogen peroxide (H2O2) and Ca(2+) mediated 12°C-induced up-regulated expressing of ZmMKK1 at mRNA level. Ectopic expression of ZmMKK1 in tobacco (Nicotiana tabacum) conferred tolerance to chilling stress by higher antioxidant enzyme activities, more accumulation of osmoregulatory substances and more significantly up-expression of ROS-related and stress-responsive genes compared with empty vector control plants. Furthermore, ZmMKK1 played differential functions in biotrophic versus necrotrophic pathogen-induced responses. These results suggested ZmMKK1 played a crucial role in chilling stress and pathogen defense in plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening.

    PubMed

    Asif, Mehar Hasan; Lakhwani, Deepika; Pathak, Sumya; Bhambhani, Sweta; Bag, Sumit K; Trivedi, Prabodh Kumar

    2014-03-01

    Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database.

  5. Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways

    PubMed Central

    McGuire, Victoria A.; Rosner, Dalya; Ananieva, Olga; Ross, Ewan A.; Elcombe, Suzanne E.; Naqvi, Shaista; van den Bosch, Mirjam M. W.; Monk, Claire E.; Ruiz-Zorrilla Diez, Tamara; Clark, Andrew R.

    2016-01-01

    ABSTRACT Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA. PMID:27795299

  6. Long-Acting β2-Agonists Increase Fluticasone Propionate-Induced Mitogen-Activated Protein Kinase Phosphatase 1 (MKP-1) in Airway Smooth Muscle Cells

    PubMed Central

    Manetsch, Melanie; Rahman, Md. Mostafizur; Patel, Brijeshkumar S.; Ramsay, Emma E.; Rumzhum, Nowshin N.; Alkhouri, Hatem; Ge, Qi; Ammit, Alaina J.

    2013-01-01

    Mitogen-activated protein kinase phosphatase 1 (MKP-1) represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol), alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone) in primary human airway smooth muscle (ASM) cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. Together, long-acting β2-agonists increased fluticasone-induced MKP-1 and modulated ASM synthetic function (measured by interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion). As IL-6 expression (like MKP-1) is cAMP/adenylate cyclase-mediated, the long-acting β2-agonist formoterol increased IL-6 mRNA expression and secretion. Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα). Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type. PMID:23533638

  7. Long-acting β2-agonists increase fluticasone propionate-induced mitogen-activated protein kinase phosphatase 1 (MKP-1) in airway smooth muscle cells.

    PubMed

    Manetsch, Melanie; Rahman, Md Mostafizur; Patel, Brijeshkumar S; Ramsay, Emma E; Rumzhum, Nowshin N; Alkhouri, Hatem; Ge, Qi; Ammit, Alaina J

    2013-01-01

    Mitogen-activated protein kinase phosphatase 1 (MKP-1) represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol), alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone) in primary human airway smooth muscle (ASM) cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. Together, long-acting β2-agonists increased fluticasone-induced MKP-1 and modulated ASM synthetic function (measured by interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion). As IL-6 expression (like MKP-1) is cAMP/adenylate cyclase-mediated, the long-acting β2-agonist formoterol increased IL-6 mRNA expression and secretion. Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα). Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type.

  8. Cross-talk between protein kinase A and mitogen-activated protein kinases signalling in the adaptive changes observed during morphine withdrawal in the heart.

    PubMed

    Almela, P; Atucha, N M; Milanés, M V; Laorden, M L

    2009-09-01

    Our previous studies have shown that morphine withdrawal induced an increase in the expression of protein kinase (PK) A and mitogen-activated extracellular kinase (MAPK) pathways in the heart during morphine withdrawal. The purpose of the present study was to evaluate the interaction between PKA and extracellular signal-regulated kinase (ERK) signaling pathways mediating the cardiac adaptive changes observed after naloxone administration to morphine-dependent rats. Dependence on morphine was induced by a 7-day subcutaneous implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (2 mg/kg). ERK1/2 and tyrosine hydroxylase (TH) phosphorylation was determined by quantitative blot immunolabeling using phosphorylation state-specific antibodies. Naloxone-induced morphine withdrawal activates ERK1/2 and phosphorylates TH at Ser31 in the right and left ventricle, with an increase in the mean arterial blood pressure and heart rate. When N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), a PKA inhibitor, was infused, concomitantly with morphine, it diminished the expression of ERK1/2. In contrast, the infusion of calphostin C (a PKC inhibitor) did not modify the morphine withdrawal-induced activation of ERK1/2. The ability of morphine withdrawal to activate ERK that phosphorylates TH at Ser31 was reduced by HA-1004. The present findings demonstrate that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation (phosphorylation) of TH.

  9. ICAM-1-induced expression of proinflammatory cytokines in astrocytes: involvement of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways.

    PubMed

    Lee, S J; Drabik, K; Van Wagoner, N J; Lee, S; Choi, C; Dong, Y; Benveniste, E N

    2000-10-15

    ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.

  10. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation.

    PubMed

    Zadran, Sohila; Jourdi, Hussam; Rostamiani, Karoline; Qin, Qingyu; Bi, Xiaoning; Baudry, Michel

    2010-01-20

    Calpain is a calcium-dependent protease that plays a significant role in synaptic plasticity, cell motility, and neurodegeneration. Two major calpain isoforms are present in brain, with mu-calpain (calpain1) requiring micromolar calcium concentrations for activation and m-calpain (calpain2) needing millimolar concentrations. Recent studies in fibroblasts indicate that epidermal growth factor (EGF) can activate m-calpain independently of calcium via mitogen-activated protein kinase (MAPK)-mediated phosphorylation. In neurons, MAPK is activated by both brain-derived neurotrophic factor (BDNF) and EGF. We therefore examined whether these growth factors could activate m-calpain by MAPK-dependent phosphorylation using cultured primary neurons and HEK-TrkB cells, both of which express BDNF and EGF receptors. Calpain activation was monitored by quantitative analysis of spectrin degradation and by a fluorescence resonance energy transfer (FRET)-based assay, which assessed the truncation of a calpain-specific peptide flanked by the FRET fluorophore pair DABCYL and EDANS. In both cell types, BDNF and EGF rapidly elicited calpain activation, which was completely blocked by MAPK and calpain inhibitors. BDNF stimulated m-calpain but not mu-calpain serine phosphorylation, an effect also blocked by MAPK inhibitors. Remarkably, BDNF- and EGF-induced calpain activation was preferentially localized in dendrites and dendritic spines of hippocampal neurons and was associated with actin polymerization, which was prevented by calpain inhibition. Our results indicate that, in cultured neurons, both BDNF and EGF activate m-calpain by MAPK-mediated phosphorylation. These results strongly support a role for calpain in synaptic plasticity and may explain why m-calpain, although widely expressed in CNS, requires nonphysiological calcium levels for activation.

  11. Focal adhesion kinase and mitogen-activated protein kinases are involved in chondrocyte activation by the 29-kDa amino-terminal fibronectin fragment.

    PubMed

    Gemba, Takefumi; Valbracht, Jean; Alsalameh, Saifeddin; Lotz, Martin

    2002-01-11

    The 29-kDa amino-terminal fibronectin fragment (FN-f) has a potent chondrolytic effect and is thought to be involved in cartilage degradation in arthritis. However, little is known about signal transduction pathways that are activated by FN-f. Here we demonstrated that FN-f induced nitric oxide (NO) production from human articular chondrocytes. Expression of inducible nitric-oxide synthase (iNOS) mRNA and NO production were observed at 6 and 48 h after FN-f treatment, respectively. Interleukin-1beta (IL-1beta) mRNA up-regulation was stimulated by FN-f in human chondrocytes. To address the possibility that FN-f-induced NO release is mediated by IL-1beta production, the effect of IL-1 receptor antagonist (IL-1ra) was determined. IL-1ra partially inhibited FN-f-induced NO release although it almost completely inhibited IL-1beta-induced NO release. Tyrosine phosphorylation of focal adhesion kinase was induced transiently by FN-f treatment. Blocking antibodies to alpha(5) or beta(1) integrin and Arg-Gly-Asp-containing peptides did not inhibit FN-f-induced NO production. PP2, a Src family kinase inhibitor, or cytochalasin D, which selectively disrupts the network of actin filaments, inhibited both FAK phosphorylation and NO production induced by FN-f, but the phosphatidylinositol 3-kinase inhibitor wortmannin had no effect. Analysis of mitogen-activated protein kinases (MAPK) showed activation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase, and p38 MAPK. High concentrations of SB203580, which inhibit both JNK and p38 MAPK, and PD98059 a selective inhibitor of MEK1/2 that blocks ERK activation, inhibited FN-f induced NO production. These data suggest that focal adhesion kinase and MAPK mediate FN-f induced activation of human articular chondrocytes.

  12. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta

    DTIC Science & Technology

    2005-06-01

    proteins. Free Radical Biology and Medicine 38:375-387, 2005. 11 Principal Investigator: Bakin, Andrei V. Award #DAMD 17-02-1-0602 5. Varga AE, Stourman...CL, Freeman ML. Smad3-ATF3 signaling mediates TGF-03 suppression of genes encoding phase ii detoxifying proteins. Free Radical Biology and Medicine 38

  13. Activation of Mitogen-Activated Protein Kinases and Cyclic AMP Response Element-Binding Protein in Synaptic Plasticity

    DTIC Science & Technology

    1997-07-11

    concentration of dantrolene perfused for 60 min prior to stimulation of slices has been found to be effective in inhjbiting physiological responses in...SOpM in 0.1% DMSO) were used, slices were perfused for 30-40 min in the antagonist prior to delivery of HFS. DMSO (O.1%) had no effect on basal...signaling pathways. Science 260:181-186. 10. Barondes SH (1970) Is the amnesic effect of cycloheximide due to specific interference with a 146 process in

  14. p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy

    PubMed Central

    Escós, Alejandra; Risco, Ana; Alsina-Beauchamp, Dayanira; Cuenda, Ana

    2016-01-01

    The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK) family. p38MAPK signaling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer. PMID:27148533

  15. Thrombopoietin potentiates agonist-stimulated activation of p38 mitogen-activated protein kinase in human platelets.

    PubMed

    Ezumi, Y; Nishida, E; Uchiyama, T; Takayama, H

    1999-07-22

    Thrombopoietin (TPO) plays a crucial role in megakaryocyte differentiation and platelet production. c-Mpl, a receptor for TPO, is also expressed in terminally differentiated platelets. We investigated the effects of TPO on activation of p38 mitogen-activated protein kinase in human platelets. Thrombin, a thrombin receptor agonist peptide, a thromboxane A(2) analogue, collagen, crosslinking the glycoprotein VI, ADP, and epinephrine, but not phorbol 12, 13-dibutyrate activated p38. TPO did not activate p38 by itself, whereas TPO pretreatment potentiated the agonist-induced activation of p38. TPO did not promote phosphorylation of Hsp27 and cytosolic phospholipase A(2) by itself, but enhanced thrombin-induced phosphorylation of them. The specific p38 inhibitor SB203580 strongly inhibited such phosphorylation. Thus, TPO possesses the priming effect on p38 activation in human platelets and could affect platelet functions through the p38 pathway.

  16. p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy.

    PubMed

    Escós, Alejandra; Risco, Ana; Alsina-Beauchamp, Dayanira; Cuenda, Ana

    2016-01-01

    The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK) family. p38MAPK signaling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer.

  17. Cyclooxygenase-2 Induction by Amino Acid Deprivation Requires p38 Mitogen-Activated Protein Kinase in Human Glioma Cells.

    PubMed

    Li, Zhiwen; Chang, Chi-Ming; Wang, Lanfang; Zhang, Ping; Shu, Hui-Kuo G

    2017-04-21

    Glioblastomas (GBMs) are malignant brain tumors that can outstrip nutrient supplies due to rapid growth. Cyclooxygenase-2 (COX-2) has been linked to GBMs and may contribute to their aggressive phenotypes. Amino acid starvation results in COX-2 mRNA and protein induction in multiple human glioma cell lines in a process requiring p38 mitogen-activated protein kinase (p38-MAPK) and the Sp1 transcription factor. Increased vascular endothelial growth factor expression results from starvation-dependent COX-2 induction. These data suggest that COX-2 induction with amino acid deprivation may be a part of the adaptation of glioma cells to these conditions, and potentially alter cellular response to anti-neoplastic therapy.

  18. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  19. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases.

    PubMed

    Hari, Sanjay B; Merritt, Ethan A; Maly, Dustin J

    2014-05-22

    Most potent protein kinase inhibitors act by competing with ATP to block the phosphotransferase activity of their targets. However, emerging evidence demonstrates that ATP-competitive inhibitors can affect kinase interactions and functions in ways beyond blocking catalytic activity. Here, we show that stabilizing alternative ATP-binding site conformations of the mitogen-activated protein kinases (MAPKs) p38α and Erk2 with ATP-competitive inhibitors differentially, and in some cases divergently, modulates the abilities of these kinases to interact with upstream activators and deactivating phosphatases. Conformation-selective ligands are also able to modulate Erk2's ability to allosterically activate the MAPK phosphatase DUSP6, highlighting how ATP-competitive ligands can control noncatalytic kinase functions. Overall, these studies underscore the relationship between the ATP-binding and regulatory sites of MAPKs and provide insight into how ATP-competitive ligands can be designed to confer graded control over protein kinase function.

  20. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis.

    PubMed

    Acharya, U; Mallabiabarrena, A; Acharya, J K; Malhotra, V

    1998-01-23

    We have developed an assay using permeabilized cells to monitor fragmentation of the Golgi complex that occurs during mitosis. Golgi stacks, in permeabilized interphase normal rat kidney (NRK) cells, upon incubation with mitotic extracts undergo extensive fragmentation, and the fragmented Golgi membranes are dispersed throughout the cytoplasm. We find that the continued presence of p34cdc2, the mitosis initiation kinase, is not necessary for Golgi fragmentation. Instead, fragmentation depends on cytosolic mitogen-activated protein kinase kinase 1 (MEK1 or MAPKK1). However, the known cytoplasmic substrates for MEK1, ERK1, and ERK2 are not required for this process. Interestingly, we find a Golgi-associated ERK, which we propose as the likely target for MEK1 in Golgi fragmentation.

  1. Botulinum Toxin Complex Increases Paracellular Permeability in Intestinal Epithelial Cells via Activation of p38 Mitogen-Activated Protein Kinase

    PubMed Central

    MIYASHITA, Shin-ichiro; SAGANE, Yoshimasa; INUI, Ken; HAYASHI, Shintaro; MIYATA, Keita; SUZUKI, Tomonori; OHYAMA, Tohru; WATANABE, Toshihiro; NIWA, Koichi

    2013-01-01

    ABSTRACT Clostridium botulinum produces a large toxin complex (L-TC) that increases paracellular permeability in intestinal epithelial cells by a mechanism that remains unclear. Here, we show that mitogen-activated protein kinases (MAPKs) are involved in this permeability increase. Paracellular permeability was measured by FITC-dextran flux through a monolayer of rat intestinal epithelial IEC-6 cells, and MAPK activation was estimated from western blots. L-TC of C. botulinum serotype D strain 4947 increased paracellular dextran flux and activated extracellular signal-regulated kinase (ERK), p38, but not c-Jun N-terminal kinase (JNK) in IEC-6 cells. The permeability increase induced by L-TC was abrogated by the p38 inhibitor SB203580. These results indicate that L-TC increases paracellular permeability by activating p38, but not JNK and ERK. PMID:23884081

  2. Hemoglobin receptor protein from Porphyromonas gingivalis induces interleukin-8 production in human gingival epithelial cells through stimulation of the mitogen-activated protein kinase and NF-κB signal transduction pathways.

    PubMed

    Fujita, Yuki; Nakayama, Masaaki; Naito, Mariko; Yamachika, Eiki; Inoue, Tetsuyoshi; Nakayama, Koji; Iida, Seiji; Ohara, Naoya

    2014-01-01

    Periodontitis is an inflammatory disease of polymicrobial origin affecting the tissues supporting the tooth. The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, triggers a series of host inflammatory responses that promote the destruction of periodontal tissues. Among the virulence factors of P. gingivalis, hemoglobin receptor protein (HbR) is a major protein found in culture supernatants. In this study, we investigated the roles of HbR in the production of inflammatory mediators. We found that HbR induced interleukin-8 (IL-8) production in the human gingival epithelial cell line Ca9-22. p38 mitogen-activated protein kinase (MAPK) and extracellular signal-related kinase 1/2 (Erk1/2) were activated in HbR-stimulated Ca9-22 cells. Inhibitors of p38 MAPK (SB203580) and Erk1/2 (PD98059) blocked HbR-induced IL-8 production. Additionally, HbR stimulated the translocation of NF-κB-p65 to the nucleus, consistent with enhancement of IL-8 expression by activation of the NF-κB pathway. In addition, small interfering RNA (siRNA) targeting activating transcription factor 2 (ATF-2) or cyclic AMP-response element-binding protein (CREB) inhibited HbR-induced IL-8 production. Moreover, pretreatment with SB203580 and PD98059 reduced HbR-induced phosphorylation of CREB and ATF-2, respectively. Combined pretreatment with an inhibitor of NF-κB (BAY11-7082) and SB203580 was more efficient in inhibiting the ability of HbR to induce IL-8 production than pretreatment with either BAY11-7082 or SB203580 alone. Thus, in Ca9-22 cells, the direct activation of p38 MAPK and Erk1/2 by HbR caused the activation of the transcription factors ATF-2, CREB, and NF-κB, thus resulting in the induction of IL-8 production.

  3. Possible effect of lysophosphatidic acid on cell proliferation and involvement of lysophosphatidic acid and lysophosphatidic acid receptors in mechanical stretch-induced mitogen-activated protein kinase.

    PubMed

    Kawashima, Yohei; Kushida, Nobuhiro; Kokubun, Shuko; Ogawa, Soichiro; Shiomi, Homare; Ishibashi, Kei; Aikawa, Ken; Ikegami, Kentaro; Nomiya, Masanori; Yamaguchi, Osamu

    2015-08-01

    To determine whether lysophosphatidic acid activates the mitogen-activated protein kinase and increases DNA synthesis in human bladder smooth muscle cells, and to examine the involvement of lysophosphatidic acid and lysophosphatidic acid receptor in mechanical stretch-induced mitogen-activated protein kinase activation in cultured human bladder smooth muscle cells. TaqMan reverse transcription polymerase chain reaction was used to determine the mRNA expression levels of six lysophosphatidic acid receptor subtypes. Mitogen-activated protein kinase activity enhanced by either lysophosphatidic acid or mechanical stretch was measured by western blotting. The effect of lysophosphatidic acid on DNA synthesis was assessed by 5-bromo-2'-deoxy-uridine incorporation assay. Lysophosphatidic acid 1 subtype mRNA was predominantly expressed (96%). Lysophosphatidic acid activated the mitogen-activated protein kinase in a concentration-dependent manner. C-jun NH2 -terminal kinase showed the highest activity among the three subsets of the mitogen-activated protein kinase family members (c-jun NH2 -terminal kinase, extracellular signal-regulated kinases, p38). Lysophosphatidic acid also increased incorporation of 5-bromo-2'-deoxy-uridine. These responses were suppressed by Ki16425 (lysophosphatidic acid receptor antagonist). Mechanical stretch mainly induced c-jun NH2 -terminal kinase activation. This activation was partially inhibited by Ki16425. Lysophosphatidic acid might activate the c-jun NH2 -terminal kinase component of the mitogen-activated protein kinase family and DNA synthesis through lysophosphatidic acid receptors (presumably, through lysophosphatidic acid 1) in human bladder smooth muscle cells. The present study also implicates the involvement of lysophosphatidic acid and lysophosphatidic acid receptors in mechanical stretch-induced c-jun NH2 -terminal kinase activation. Lysophosphatidic acid receptor can be partially activated by mechanical stretching through

  4. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway.

    PubMed

    Nofer, J R; Junker, R; Pulawski, E; Fobker, M; Levkau, B; von Eckardstein, A; Seedorf, U; Assmann, G; Walter, M

    2001-04-01

    In this study we found that HDL acts as a potent and specific mitogen in vascular smooth muscle cells (VSMC) by stimulating entry into S-phase and DNA synthesis in a time- and concentration-dependent manner, induction of cyclins D1, E, and A, as well as activation of cyclin D-dependent kinases as inferred from phosphorylation of the retinoblastoma protein (pRb). Moreover, HDL induced activation of the mitogen-activated protein kinase pathway including Raf-, MEK-1, and ERK1/2, as well as the expression of proto-oncogen c-fos, which is controlled by ERK1/2. PD98059, an inhibitor of MEK-1 blocked the mitogenic activity of HDL and cyclin D1 expression. HDL-induced VSMC proliferation, cell cycle progression, cyclin D1 expression, and activation of the Raf-1/MEK-1/ERK1/2 cascade were blocked by preincubation of cells with pertussis toxin indicating involvement of trimeric G-protein. By contrast, none of these responses was inhibited by the protein kinase C inhibitor, GF109203X. The mitogenic effects of native HDL were not mimicked by apo A-I, reconstituted HDL containing apo A-I, or cholesterol-containing liposomes. In conclusion, HDL possesses an intrinsic property to induce G-protein- and MAP-kinase-dependent proliferation and cell cycle progression in VSMC. The strong and specific mitogenic effect of HDL should be taken into account, when therapeutic strategies to elevate the plasma level of these lipoproteins are developed.

  5. Fibroblast growth factors 7 and 10 are involved in ameloblastoma proliferation via the mitogen-activated protein kinase pathway

    PubMed Central

    NAKAO, YU; MITSUYASU, TAKESHI; KAWANO, SHINTARO; NAKAMURA, NORIFUMI; KANDA, SHIORI; NAKAMURA, SEIJI

    2013-01-01

    Ameloblastoma is an epithelial benign tumor of the odontogenic apparatus and its growth mechanisms are not well understood. Fibroblast growth factor (FGF) 3, FGF7 and FGF10, which are expressed by the neural crest-derived ectomesenchymal cells, induce the proliferation of odontogenic epithelial cells during tooth development. Therefore, we examined the expression and function of these FGFs in ameloblastoma. We examined 32 cases of ameloblastoma as well as AM-1 cells (an ameloblastoma cell line) and studied the expression of FGF3, FGF7, FGF10 and their specific receptors, namely, FGF receptor (FGFR) 1 and FGFR2. Proliferation, mitogen-activated protein kinase (MAPK) signaling and PI3K signaling were examined in AM-1 cells after the addition of FGF7, FGF10 and these neutralizing antibodies. The expression of FGF7, FGF10, FGFR1 and FGFR2 was detected in ameloblastoma cells and AM-1 cells, while that of FGF3 was not. FGF7 and FGF10 stimulated AM-1 cell proliferation and phosphorylation of p44/42 MAPK. However, Akt was not phosphorylated. Blocking the p44/42 MAPK pathway by using a specific mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor (U0126) completely neutralized the effects of FGF7 and FGF10 on AM-1 cell proliferation. However, Anti FGF7 and FGF10 neutralizing antibodies did not decrease cell proliferation and MAPK phosphorylation of AM-1 cells. These results suggested that FGF7 and FGF10 are involved in the proliferation of ameloblastoma cells through the MAPK pathway. PMID:24002438

  6. Fibroblast growth factors 7 and 10 are involved in ameloblastoma proliferation via the mitogen-activated protein kinase pathway.

    PubMed

    Nakao, Yu; Mitsuyasu, Takeshi; Kawano, Shintaro; Nakamura, Norifumi; Kanda, Shiori; Nakamura, Seiji

    2013-11-01

    Ameloblastoma is an epithelial benign tumor of the odontogenic apparatus and its growth mechanisms are not well understood. Fibroblast growth factor (FGF) 3, FGF7 and FGF10, which are expressed by the neural crest-derived ectomesenchymal cells, induce the proliferation of odontogenic epithelial cells during tooth development. Therefore, we examined the expression and function of these FGFs in ameloblastoma. We examined 32 cases of ameloblastoma as well as AM-1 cells (an ameloblastoma cell line) and studied the expression of FGF3, FGF7, FGF10 and their specific receptors, namely, FGF receptor (FGFR) 1 and FGFR2. Proliferation, mitogen-activated protein kinase (MAPK) signaling and PI3K signaling were examined in AM-1 cells after the addition of FGF7, FGF10 and these neutralizing antibodies. The expression of FGF7, FGF10, FGFR1 and FGFR2 was detected in ameloblastoma cells and AM-1 cells, while that of FGF3 was not. FGF7 and FGF10 stimulated AM-1 cell proliferation and phosphorylation of p44/42 MAPK. However, Akt was not phosphorylated. Blocking the p44/42 MAPK pathway by using a specific mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor (U0126) completely neutralized the effects of FGF7 and FGF10 on AM-1 cell proliferation. However, Anti FGF7 and FGF10 neutralizing antibodies did not decrease cell proliferation and MAPK phosphorylation of AM-1 cells. These results suggested that FGF7 and FGF10 are involved in the proliferation of ameloblastoma cells through the MAPK pathway.

  7. Homology modeling and ligand docking of Mitogen-activated protein kinase-activated protein kinase 5 (MK5)

    PubMed Central

    2013-01-01

    Background Mitogen-activated protein kinase-activated protein kinase 5 (MK5) is involved in one of the major signaling pathways in cells, the mitogen-activated protein kinase pathway. MK5 was discovered in 1998 by the groups of Houng Ni and Ligou New, and was found to be highly conserved throughout the vertebrates. Studies, both in vivo and in vitro, have shown that it is implicated in tumor suppression as well as tumor promotion, embryogenesis, anxiety, locomotion, cell motility and cell cycle regulation. Methods In order to obtain a molecular model of MK5 that can be used as a working tool for development of chemical probes, three MK5 models were constructed and refined based on three different known crystal structures of the closely related MKs; MK2 [PDB: 2OZA and PDB: 3M2W] and MK3 [PDB: 3FHR]. The main purpose of the present MK5 molecular modeling study was to identify the best suited template for making a MK5 model. The ability of the generated models to effectively discriminate between known inhibitors and decoys was analyzed using receiver operating characteristic (ROC) curves. Results According to the ROC curve analyzes, the refined model based on 3FHR was most effective in discrimination between known inhibitors and decoys. Conclusions The 3FHR-based MK5 model may serve as a working tool for development of chemical probes using computer aided drug design. The biological function of MK5 still remains elusive, but its role as a possible drug target may be elucidated in the near future. PMID:24034446

  8. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    PubMed

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  9. Verotoxin activates mitogen-activated protein kinase in human peripheral blood monocytes: role in apoptosis and proinflammatory cytokine release

    PubMed Central

    Cameron, Pamela; Smith, Susan J; Giembycz, Mark A; Rotondo, Dino; Plevin, Robin

    2003-01-01

    In this study, we examined the role of mitogen-activated protein (MAP) kinases in the effects of verotoxins (VTs), from Escherichia coli O157:H7, upon both apoptosis and the release of tumour necrosis factor alpha (TNF-α) and granulocyte–macrophage colony-stimulated factor (GM-CSF) from human monocytes. Both VT1 and VT2 stimulated a weak, transient increase in c-Jun-N-terminal kinase (JNK) activity and a strong activation of both p38 mitogen-activated protein kinase (MAP kinase) and extracellular-regulated kinase (ERK) activity in human monocytes, which was sustained in the case of p38 MAP kinase. Stimulation of human monocytes with VT2 (100 ng ml−1) did not result in an increase in apoptosis; however, the toxin stimulated the release of both TNF-α and GM-CSF. Pretreatment of human monocytes with the p38 MAP kinase inhibitor SB203580, at concentrations from 100 nM to 10 μM, significantly decreased the VT1- and VT2-induced TNF-α and GM-CSF release from monocytes. In contrast, inhibition of MEK1 with PD98059 only significantly decreased GM-CSF release. Pretreatment of monocytes with SP600125 inhibited both GM-CSF and TNF-α production; however, significant effects upon p38 MAP kinase and ERK activation were observed. Taken together, these results suggest a role for p38 MAP kinase and ERK in cytokine generation in response to the verotoxins. A role for JNK remains undetermined. PMID:14597601

  10. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-{kappa}B

    SciTech Connect

    Bezdecny, Steven A.; Karmaus, Peer; Roth, Robert A.; Ganey, Patricia E. . E-mail: ganey@msu.edu

    2007-06-15

    Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A{sub 2} with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of {sup 3}H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-{kappa}B and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A{sub 2}, reduced {sup 3}H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter {sup 3}H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-{kappa}B. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-{kappa}B prevented the 2244-TCB-mediated

  11. OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc | Office of Cancer Genomics

    Cancer.gov

    Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein-protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network.

  12. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt.

    PubMed

    McDaneld, T G; Spurlock, D M

    2008-11-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein (ASB) 15 is a novel ASB gene family member predominantly expressed in skeletal muscle. We have previously reported that overexpression of ASB15 delays differentiation and alters protein turnover in mouse C(2)C(12) myoblasts. However, the extent of ASB15 regulation of differentiation and molecular pathways underlying this activity are unknown. The extracellular signal-regulated kinase (Erk) 1/2 and phosphatidylinositol-3 kinase-Akt (PI3K/Akt; Akt is also known as protein kinase B) signaling pathways have a role in skeletal muscle growth. Activation (phosphorylation) of the Erk1/2 signaling pathway promotes proliferation, whereas activation of the PI3K/Akt signaling pathway promotes myoblast differentiation. Accordingly, we tested the hypothesis that ASB15 controls myoblast differentiation through its regulation of these kinases. Stably transfected myoblasts overexpressing ASB15 (ASB15+) demonstrated decreased differentiation, whereas attenuation of ASB15 expression (ASB15-) increased differentiation. However, ASB15+ cells had less abundance of the phosphorylated mitogen-activated protein kinase (active) form, despite decreased differentiation relative to control myoblasts (ASB15Con). The mitogen-activated protein kinase kinase inhibitor, U0126, effectively decreased mitogen-activated protein kinase phosphorylation and stimulated differentiation in ASB15- and ASB15Con cells. However, inhibition of the Erk1/2 pathway was unable to overcome the inhibitory effect of overexpressing ASB15 on differentiation (ASB15+), suggesting that the Erk1/2 pathway is likely not the predominant mediator of ASB15 activity on differentiation. Expression of ASB15 also altered phosphorylation of the PI3K/Akt pathway, as ASB15+ and ASB15- cells had decreased and increased Akt phosphorylation, respectively. These data were consistent with observed differences in differentiation. Administration of IGF-I, a PI3K

  13. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis

    PubMed Central

    Uimari, Outi; Rahmioglu, Nilufer; Nyholt, Dale R.; Vincent, Katy; Missmer, Stacey A.; Becker, Christian; Morris, Andrew P.; Montgomery, Grant W.

    2017-01-01

    Abstract STUDY QUESTION Do genome-wide association study (GWAS) data for endometriosis provide insight into novel biological pathways associated with its pathogenesis? SUMMARY ANSWER GWAS analysis uncovered multiple pathways that are statistically enriched for genetic association signals, analysis of Stage A disease highlighted a novel variant in MAP3K4, while top pathways significantly associated with all endometriosis and Stage A disease included several mitogen-activated protein kinase (MAPK)-related pathways. WHAT IS KNOWN ALREADY Endometriosis is a complex disease with an estimated heritability of 50%. To date, GWAS revealed 10 genomic regions associated with endometriosis, explaining <4% of heritability, while half of the heritability is estimated to be due to common risk variants. Pathway analyses combine the evidence of single variants into gene-based measures, leveraging the aggregate effect of variants in genes and uncovering biological pathways involved in disease pathogenesis. STUDY DESIGN, SIZE, DURATION Pathway analysis was conducted utilizing the International Endogene Consortium GWAS data, comprising 3194 surgically confirmed endometriosis cases and 7060 controls of European ancestry with genotype data imputed up to 1000 Genomes Phase three reference panel. GWAS was performed for all endometriosis cases and for Stage A (revised American Fertility Society (rAFS) I/II, n = 1686) and B (rAFS III/IV, n = 1364) cases separately. The identified significant pathways were compared with pathways previously investigated in the literature through candidate association studies. PARTICIPANTS/MATERIALS, SETTING, METHODS The most comprehensive biological pathway databases, MSigDB (including BioCarta, KEGG, PID, SA, SIG, ST and GO) and PANTHER were utilized to test for enrichment of genetic variants associated with endometriosis. Statistical enrichment analysis was performed using the MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT Associations) software

  14. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways.

    PubMed

    Xing, Li-Zhi; Ni, Huai-Jun; Wang, Yu-Ling

    2017-03-13

    MAPK signaling pathways are crucial in regulating osteogenesis, a genetic disorder affecting the bones. Quercitrin, a type of flavonoid, is widely distributed in nature and involved in many pharmacological activities. But its osteoprotective functions and mechanism in osteoporosis are far from being understood clearly. In this paper, the MAPK upregulation was observed in the ovariectomy-induced bone loss. Quercitrin was found to downregulate MAPK signaling pathways and prevent the ovariectomy-induced deterioration of bone mineral density (BMD), trabecular microstructure, and bone mechanical characteristics. In this study, quercitrin was seen to prevent the progression of the postmenopausal osteoporosis among the rats, which may be mediated by the downregulated MAPK signaling pathways.

  15. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats.

    PubMed

    Shao, Yiye; Wang, Cuicui; Hong, Zhen; Chen, Yinghui

    2016-03-01

    It is widely recognized that P-glycoprotein (P-gp) mediates drug resistance in refractory epilepsy. However, the molecular mechanism underlying the up-regulation of P-gp expression remains unclear. Our previous studies have demonstrated that p38 mitogen-activated protein kinase (MAPK) regulates P-gp expression in cultured K562 cells. However, a lack of in vivo research leaves unanswered questions regarding whether p38MAPK regulates P-gp expression or drug resistance in refractory epilepsy. This in vivo study examined the effects of p38MAPK on the expression of P-gp and mdr1 in the rat brain and quantified antiepileptic drug (AED) concentrations in the hippocampal extracellular fluid. In addition, the role of p38MAPK in electrical and behavioral activity in a rat epilepsy model was studied. The results indicated that p38MAPK inhibition by SB202190 reduced P-gp expression, while increasing AED concentration in the hippocampal extracellular fluid in refractory epileptic rats. SB202190 also reduced the resistance to AEDs in drug-resistant rats and significantly reduced the severity of seizure activity. These results suggest that p38MAPK could participate in drug resistance in refractory epilepsy through the regulation of P-gp. We show that the specific inhibitor of p38MAPK could down-regulate the expression of multidrug transporter (P-glycoprotein) in blood-brain barrier, increase the concentration of antiepileptic drugs in the hippocampal extracellular fluid and reduce anti-epileptic drug resistance in refractory epileptic rats. We propose that the p38MAPK signaling pathway participates in drug resistance in refractory epilepsy through the regulation of P-glycoprotein expression. © 2015 International Society for Neurochemistry.

  16. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses

    PubMed Central

    Virk, Nasar; Li, Dayong; Tian, Limei; Huang, Lei; Hong, Yongbo; Li, Xiaohui; Zhang, Yafen; Liu, Bo; Zhang, Huijuan; Song, Fengming

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV) while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis. PMID:26222830

  17. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Zhang, Zhi-Hua; Wei, Shun-Guang; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2013-04-01

    Blood-borne angiotensin II (ANG II) can upregulate p44/42 mitogen-activated protein kinase (MAPK) signaling and ANG II type-1 receptors in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center. We tested the hypothesis that brain p44/42 MAPK signaling contributes to the development of ANG II-induced hypertension. The ANG II infusion (120 ng/kg per min, subcutaneously) induced increases in phosphorylated p44/42 MAPK and ANG II type-1 receptors in the PVN after 1 week, before the onset of hypertension, that were sustained as hypertension developed during a 2- or 3-week infusion protocol. Bilateral PVN microinjections of small interfering RNAs for p44/42 MAPK, at the onset of the ANG II infusion or 1 week later, prevented the early increase in p44/42 MAPK activity. The early treatment normalized ANG II type-1 receptor expression in the PVN and attenuated the hypertensive response to the 2-week infusion of ANG II. The later small interfering RNA microinjections had a transient effect on ANG II type-1 receptor expression in PVN and no effect on the hypertensive response to the 3-week infusion of ANG II. The early treatment also normalized the pressure response to ganglionic blockade. The ANG II infusion induced increases in mRNA for proinflammatory cytokines that were not affected by either small interfering RNA treatment. These results suggest that the full expression of ANG II-induced hypertension depends on p44/42 MAPK-mediated effects. A potential role for p44/42 MAPK in modulating the ANG II-induced central inflammatory response might also be considered. MAPK signaling in PVN may be a novel target for early intervention in the progression of ANG II-dependent hypertension.

  18. Engagement of Toll-like receptor 2 enhances interleukin (IL)-17(+) autoreactive T cell responses via p38 mitogen-activated protein kinase signalling in dendritic cells.

    PubMed

    Wei, R; Dong, L; Xiao, Q; Sun, D; Li, X; Nian, H

    2014-11-01

    Functional analysis of single Toll-like receptors (TLRs) in vivo is necessary to understand how they shape the ocular inflammation involved in uveitis. In this study we explored the role and mechanisms of TLR-2 agonists on the autoreactive T helper type 17 (Th17) response in experimental autoimmune uveitis (EAU). Treatment by peptidoglycan (PGN), a specific TLR-2 agonist, remarkably increased mRNA levels of Th17-lineage genes interleukin (IL)-17A, IL-21 and RAR-related orphan receptor (ROR)γt and promoted antigen-specific Th17 response in EAU mice. A mixture of PGN and interphotoreceptor retinoid-binding protein peptide (IRBP161-180 ) could effectively induce EAU in the absence of complete Freund's adjuvant (CFA). PGN treatment also enhanced the pathogenic activities of activated antigen-specific Th17 cells in vivo. PGN significantly increased the production of IL-1β, IL-6 and IL-23 of dendritic cells (DCs) and enhanced their ability to promote IL-17(+) uveitogenic T cells. Enhanced immunostimulatory activities of PGN-DCs depend upon p38 activation. Inhibition of p38 mitogen-activated protein kinase (MAPK) activity dramatically decreased IL-17 gene expression and antigen-specific Th17 responses stimulated by PGN-DCs. Our findings suggest that PGN treatment dramatically promotes the IL-17(+) uveitogenic T cell responses via enhancing the immunostimulatory activities of DCs. This effect may be mediated, at least in part, by activation of the p38 signalling pathway in DCs. © 2014 British Society for Immunology.

  19. Evidence of a New Role for the High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway in Yeast: Regulating Adaptation to Citric Acid Stress†

    PubMed Central

    Lawrence, Clare L.; Botting, Catherine H.; Antrobus, Robin; Coote, Peter J.

    2004-01-01

    Screening the Saccharomyces cerevisiae disruptome, profiling transcripts, and determining changes in protein expression have identified an important new role for the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in the regulation of adaptation to citric acid stress. Deletion of HOG1, SSK1, PBS2, PTC2, PTP2, and PTP3 resulted in sensitivity to citric acid. Furthermore, citric acid resulted in the dual phosphorylation, and thus activation, of Hog1p. Despite minor activation of glycerol biosynthesis, the inhibitory effect of citric acid was not due to an osmotic shock. HOG1 negatively regulated the expression of a number of proteins in response to citric acid stress, including Bmh1p. Evidence suggests that BMH1 is induced by citric acid to counteract the effect of amino acid starvation. In addition, deletion of BMH2 rendered cells sensitive to citric acid. Deletion of the transcription factor MSN4, which is known to be regulated by Bmh1p and Hog1p, had a similar effect. HOG1 was also required for citric acid-induced up-regulation of Ssa1p and Eno2p. To counteract the cation chelating activity of citric acid, the plasma membrane Ca2+ channel, CCH1, and a functional vacuolar membrane H+-ATPase were found to be essential for optimal adaptation. Also, the transcriptional regulator CYC8, which mediates glucose derepression, was required for adaptation to citric acid to allow cells to metabolize excess citrate via the tricarboxylic acid (TCA) cycle. Supporting this, Mdh1p and Idh1p, both TCA cycle enzymes, were up-regulated in response to citric acid. PMID:15060153

  20. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress.

    PubMed

    Lawrence, Clare L; Botting, Catherine H; Antrobus, Robin; Coote, Peter J

    2004-04-01

    Screening the Saccharomyces cerevisiae disruptome, profiling transcripts, and determining changes in protein expression have identified an important new role for the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in the regulation of adaptation to citric acid stress. Deletion of HOG1, SSK1, PBS2, PTC2, PTP2, and PTP3 resulted in sensitivity to citric acid. Furthermore, citric acid resulted in the dual phosphorylation, and thus activation, of Hog1p. Despite minor activation of glycerol biosynthesis, the inhibitory effect of citric acid was not due to an osmotic shock. HOG1 negatively regulated the expression of a number of proteins in response to citric acid stress, including Bmh1p. Evidence suggests that BMH1 is induced by citric acid to counteract the effect of amino acid starvation. In addition, deletion of BMH2 rendered cells sensitive to citric acid. Deletion of the transcription factor MSN4, which is known to be regulated by Bmh1p and Hog1p, had a similar effect. HOG1 was also required for citric acid-induced up-regulation of Ssa1p and Eno2p. To counteract the cation chelating activity of citric acid, the plasma membrane Ca(2+) channel, CCH1, and a functional vacuolar membrane H(+)-ATPase were found to be essential for optimal adaptation. Also, the transcriptional regulator CYC8, which mediates glucose derepression, was required for adaptation to citric acid to allow cells to metabolize excess citrate via the tricarboxylic acid (TCA) cycle. Supporting this, Mdh1p and Idh1p, both TCA cycle enzymes, were up-regulated in response to citric acid.

  1. Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse

    PubMed Central

    Kim, Jeesun

    2012-01-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm−/− mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm−/− mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm−/− mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm−/− mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm−/− mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm−/− mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  2. 14-3-3beta binds to big mitogen-activated protein kinase 1 (BMK1/ERK5) and regulates BMK1 function.

    PubMed

    Zheng, Qinlei; Yin, Guoyong; Yan, Chen; Cavet, Megan; Berk, Bradford C

    2004-03-05

    Big mitogen-activated kinase 1 (BMK1/ERK5) is a member of the MAPK family activated by growth factors that mediates cell growth and survival. Previous data show that BMK1 can be activated by steady laminar flow and is atheroprotective by preventing endothelial cells from undergoing apoptosis. The primary structure of BMK1 is distinct from other MAPK members by virtue of a unique long C-tail, suggesting specific mechanisms of regulation. To characterize regulatory mechanisms for BMK1 function, we identified binding proteins by yeast two-hybrid analysis. Among these proteins, the scaffolding protein 14-3-3 was identified. BMK1 bound to 14-3-3beta in vitro and in vivo as demonstrated by glutathione S-transferase (GST)-14-3-3beta fusion protein pull-down assays and coimmunoprecipitation. Phosphorylation of BMK1 was most likely required for this interaction. GST-14-3-3beta pull-down assays using truncated constructs of BMK1 and site-directed BMK1 mutants demonstrated that the interaction requires serine 486 within the C terminus of BMK1. BMK1 bound to 14-3-3beta basally, and the interaction was greatly abrogated when BMK1 was activated. The interaction of 14-3-3beta and BMK1 inhibited kinase activities stimulated by constitutively active (CA)-MEK5 and epidermal growth factor. Mutation of serine 486 (BMK1-S486A) prevented the interaction with 14-3-3beta and enhanced BMK1 activity upon epidermal growth factor stimulation. These data demonstrate an inhibitory function for 14-3-3beta binding to BMK1 and show that serine 486 phosphorylation represents a novel regulatory mechanism for BMK1.

  3. Phytic acid down-regulates IL-8 secretion from colonic epithelial cells by influencing mitogen-activated protein kinase signaling pathway.

    PubMed

    Wawszczyk, Joanna; Orchel, Arkadiusz; Kapral, Małgorzata; Hollek, Andrzej; Weglarz, Ludmiła

    2012-01-01

    Phytic acid (IP6) is an essential component of high fiber diet physiologically present in human large gut. It has been recognized to possess various significant health benefits effects including chemopreventive and have antineoplastic activity against various types of cancer. Moreover, its role in immune response through modulation of the secretion of proinflammatory cytokines and chemokines has been postulated. One of the signal transduction pathways involved in a variety of inflammatory responses is p38 mitogen-activated protein kinase (MAPK) pathway. The aim of this study was to examine effect of IP6 on human p38alpha MAP kinase activity and the expression of gene encoding p38 MAP kinase in unstimulated and IL-1beta-stimulated Caco-2 cells. Furthermore, the role of signaling pathways involving p38 MAP kinase in IP6-induced down-regulation of IL-8 secretion by unstimulated and IL-1beta-stimulated cells in the presence of p38 MAP kinase activator (anisomycin) and inhibitor (SB 203580) was evaluated. IP6 inhibited activity of recombinant p38 MAPK activity in dose-dependent manner. Treatment of cells with IP6 for 3 h resulted in decreased p38 MAP kinase expression in both unstimulated and stimulated with IL-1beta cells. The similar level of p38alpha mRNA was found in untreated and treated with IP6 cells after 6 and 12 h. Incubation of Caco-2 cells with anisomycin resulted in upregulation of IL-8 secretion and their pretreatment with anisomycin prior to IP6 addition showed down-regulation of IL-8 secretion compared to cells treated with anisomycin alone. The findings of this study show that p38 MAPK could be one of the molecular targets for IP6 in the intestinal epithelial cells and that IP6 inhibitory effect on IL-8 secretion by Caco-2 cells could be mediated by its inhibition of p38 activity.

  4. Effects of active bufadienolide compounds on human cancer cells and CD4+CD25+Foxp3+ regulatory T cells in mitogen-activated human peripheral blood mononuclear cells.

    PubMed

    Yuan, Bo; He, Jing; Kisoh, Keishi; Hayashi, Hideki; Tanaka, Sachiko; Si, Nan; Zhao, Hai-Yu; Hirano, Toshihiko; Bian, Baolin; Takagi, Norio

    2016-09-01

    The growth inhibitory effects of bufadienolide compounds were investigated in two intractable cancer cells, a human glioblastoma cell line U-87 and a pancreatic cancer cell line SW1990. Among four bufadienolide compounds, a dose-dependent cytotoxicity was observed in these cancer cells after treatment with gamabufotalin and arenobufagin. The IC50 values of the two compounds were 3-5 times higher in normal peripheral blood mononuclear cells (PBMCs) than these values for both cancer cell lines. However, similar phenomena were not observed for two other bufadienolide compounds, telocinobufagin and bufalin. These results thus suggest that gamabufotalin and arenobufagin possess selective cytotoxic activity against tumor cells rather than normal cells. Moreover, a clear dose-dependent lactate dehydrogenase (LDH) release, a well-known hallmark of necrosis, was observed in both cancer cells treated with gamabufotalin, suggesting that gamabufotalin-mediated cell death is predominantly associated with a necrosis-like phenotype. Of most importance, treatment with as little as 8 ng/ml of gamabufotalin, even an almost non-toxic concentration to PBMCs, efficiently downregulated the percentages of CD4+CD25+Foxp3+ regulator T (Treg) cells in mitogen-activated PBMCs. Given that Treg cells play a critical role in tumor immunotolerance by suppressing antitumor immunity, these results suggest that gamabufotalin may serve as a promising candidate, as an adjuvant therapeutic agent by manipulating Treg cells to enhance the efficacy of conventional anticancer drugs and lessen their side-effects. These findings provide insights into the clinical application of gamabufotalin for cancer patients with glioblastoma/pancreatic cancer based on its cytocidal effect against tumor cells as well as its depletion of Treg cells.

  5. Mitogen-activated protein kinase 1 from disk abalone (Haliotis discus discus): Roles in early development and immunity-related transcriptional responses.

    PubMed

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-12-01

    Mitogen-activated protein kinase (MAPK) is involved in the regulation of cellular events by mediating signal transduction pathways. MAPK1 is a member of the extracellular-signal regulated kinases (ERKs), playing roles in cell proliferation, differentiation, and development. This is mainly in response to growth factors, mitogens, and many environmental stresses. In the current study, we have characterized the structural features of a homolog of MAPK1 from disk abalone (AbMAPK1). Further, we have unraveled its expressional kinetics against different experimental pathogenic infections or related chemical stimulants. AbMAPK1 harbors a 5' untranslated region (UTR) of 23 bps, a coding sequence of 1104 bps, and a 3' UTR of 448 bp. The putative peptide comprises a predicted molecular mass of 42.2 kDa, with a theoretical pI of 6.28. Based on the in silico analysis, AbMAPK1 possesses two N-glycosylation sites, one S_TK catalytic domain, and a conserved His-Arg-Asp domain (HRD). In addition, a conservative glycine rich ATP-phosphate-binding loop and a threonine-x-tyrosine motif (TEY) important for the autophosphorylation were also identified in the protein. Homology assessment of AbMAPK1 showed several conserved regions, and ark clam (Aplysia californica) showed the highest sequence identity (87.9%). The phylogenetic analysis supported close evolutionary kinship with molluscan orthologs. Constitutive expression of AbMAPK1 was observed in six different tissues of disk abalone, with the highest expression in the digestive tract, followed by the gills and hemocytes. Highest AbMAPK1 mRNA expression level was detected at the trochophore developmental stage, suggesting its role in abalone cell differentiation and proliferation. Significant modulation of AbMAPK1 expression under pathogenic stress suggested its putative involvement in the immune defense mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Activation of p38 mitogen-activated protein kinase by celecoxib oppositely regulates survivin and gamma-H2AX in human colorectal cancer cells

    SciTech Connect

    Hsiao, P.-W.; Chang, C.-C.; Liu, H.-F.; Tsai, C.-M.; Chiu, Ted H.; Chao, J.-I . E-mail: chaoji@mail.tcu.edu.tw

    2007-07-01

    Cancer cells express survivin that facilitates tumorigenesis. Celecoxib has been shown to reduce human colorectal cancers. However, the role and regulation of survivin by celecoxib in colorectal carcinoma cells remain unclear. Treatment with 40-80 {mu}M celecoxib for 24 h induced cytotoxicity and proliferation inhibition via a concentration-dependent manner in RKO colorectal carcinoma cells. Celecoxib blocked the survivin protein expression and increased the phosphorylation of H2AX at serine-193 ({gamma}-H2AX). The survivin gene knockdown by transfection with a survivin siRNA revealed that the loss of survivin correlated with the expression of {gamma}-H2AX. Meanwhile, celecoxib increased caspase-3 activation and apoptosis. Celecoxib activated the phosphorylation of p38 mitogen-activated protein (MAP) kinase. The phosphorylated proteins of p38 MAP kinase and {gamma}-H2AX were observed in the apoptotic cells. SB203580, a specific p38 MAP kinase inhibitor, protected the survivin protein expression and decreased the levels of {gamma}-H2AX and apoptosis in the celecoxib-exposed cells. The blockade of survivin expression increased the celecoxib-induced cytotoxicity; conversely, overexpression of survivin by transfection with a survivin-expressing vector raised the cancer cell proliferation and resisted the celecoxib-induced cell death. Our results provide for the first time that p38 MAP kinase participates in the down-regulation of survivin and subsequently induces the activation of {gamma}-H2AX for mediating apoptosis following treatment with celecoxib in human colorectal cancer cells.

  7. Inhibition of brain mitogen-activated protein kinase signaling reduces central endoplasmic reticulum stress and inflammation and sympathetic nerve activity in heart failure rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M.; Felder, Robert B.

    2015-01-01

    Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiological mechanisms in hypertension. The present study determined whether ER stress occurs in subfornical organ (SFO) and hypothalamic paraventricular nucleus (PVN) in heart failure (HF), and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (GRP78, ATF6, ATF4, XBP-1, P58IPK and CHOP) in SFO and PVN, which were attenuated by a 4-week intracerebroventricular (ICV) infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580) or JNK (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2 and NF-κB p65 and lower mRNA level of IκB-α in SFO and PVN, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF than SHAM rats, but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week ICV infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the SFO and PVN of rats with ischemia-induced HF, and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF. PMID:26573710

  8. Inhibition of Brain Mitogen-Activated Protein Kinase Signaling Reduces Central Endoplasmic Reticulum Stress and Inflammation and Sympathetic Nerve Activity in Heart Failure Rats.

    PubMed

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M; Felder, Robert B

    2016-01-01

    Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiology of hypertension. This study determined whether ER stress occurs in subfornical organ and hypothalamic paraventricular nucleus in heart failure (HF) and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (glucose-regulated protein 78, activating transcription factor 6, activating transcription factor 4, X-box binding protein 1, P58(IPK), and C/EBP homologous protein) in subfornical organ and paraventricular nucleus, which were attenuated by a 4-week intracerebroventricular infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580), or c-Jun N-terminal kinase (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and nuclear factor-κB p65, and a lower mRNA level of IκB-α, in subfornical organ and paraventricular nucleus, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF rats than in SHAM rats but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week intracerebroventricular infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the subfornical organ and paraventricular nucleus of rats with ischemia-induced HF and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF. © 2015 American Heart Association, Inc.

  9. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system.

    PubMed

    Singh, Raksha; Lee, Jae-Eun; Dangol, Sarmina; Choi, Jihyun; Yoo, Ran Hee; Moon, Jae Sun; Shim, Jae-Kyung; Rakwal, Randeep; Agrawal, Ganesh Kumar; Jwa, Nam-Soo

    2014-01-01

    The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.

  10. Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis.

    PubMed Central

    Ramocki, M B; Johnson, S E; White, M A; Ashendel, C L; Konieczny, S F; Taparowsky, E J

    1997-01-01

    The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal muscle lineage by disrupting MRF function via a mechanism that is independent of the dimerization, DNA binding, and inherent transcriptional activation properties of the proteins. To investigate the intracellular signaling pathway(s) that mediates the inhibition of MRF-induced myogenesis by oncogenic Ras, we tested two transformation-defective H-Ras 12V effector domain variants for their ability to alter terminal differentiation. H-Ras 12V,35S retains the ability to activate the Raf/MEK/mitogen-activated protein (MAP) kinase cascade, whereas H-Ras 12V,40C is unable to interact directly with Raf-1 yet still influences other signaling intermediates, including Rac and Rho. Expression of each H-Ras 12V variant in C3H10T1/2 cells abrogates MyoD-induced activation of the complete myogenic program, suggesting that MAP kinase-dependent and -independent Ras signaling pathways individually block myogenesis in this model system. However, additional studies with constitutively activated Rac1 and RhoA proteins revealed no negative effects on MyoD-induced myogenesis. Similarly, treatment of Ras-inhibited myoblasts with the MEK1 inhibitor PD98059 revealed that elevated MAP kinase activity is not a significant contributor to the H-Ras 12V effect. These data suggest that an additional Ras pathway, distinct from the well-characterized MAP kinase and Rac/Rho pathways known to be important for the transforming function of activated Ras, is primarily responsible for the inhibition of myogenesis by H-Ras 12V. PMID:9199290

  11. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.

    PubMed

    Sun, Wei; Chen, Hao; Wang, Juan; Sun, Hong Wei; Yang, Shu Ke; Sang, Ya Lin; Lu, Xing Bo; Xu, Xiao Hui

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) play important roles in stress responses and development in plants. Maize (Zea mays), an important cereal crop, is a model plant species for molecular studies. In the last decade, several MAPKs have been identified in maize; however, their functions have not been studied extensively. Genome-wide identification and expression analysis of maize MAPK genes could provide valuable information for understanding their functions. In this study, 20 non-redundant maize MAPK genes (ZmMPKs) were identified via a genome-wide survey. Phylogenetic analysis of MAPKs from maize, rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), and tomato (Solanum lycopersicum) classified them into four major classes. ZmMPKs in the same class had similar domains, motifs, and genomic structures. Gene duplication investigations suggested that segmental duplications made a large contribution to the expansion of ZmMPKs. A number of cis-acting elements related to plant development and response to stress and hormones were identified in the promoter regions of ZmMPKs. Furthermore, transcript profile analysis in eight tissues and organs at various developmental stages demonstrated that most ZmMPKs were preferentially expressed in reproductive tissues and organs. The transcript abundance of most ZmMPKs changed significantly under salt, drought, cold, or abscisic acid (ABA) treatments, implying that they might participate in abiotic stress and ABA signaling. These expression analyses indicated that ZmMPKs might serve as linkers between abiotic stress signaling and plant reproduction. Our data will deepen our understanding of the complexity of the maize MAPK gene family and provide new clues to investigate their functions.

  12. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras.

    PubMed Central

    Jaiswal, R K; Moodie, S A; Wolfman, A; Landreth, G E

    1994-01-01

    Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway. Images PMID:7935411

  13. Genome-Wide Identification, Evolution, and Co-expression Network Analysis of Mitogen-Activated Protein Kinase Kinase Kinases in Brachypodium distachyon

    PubMed Central

    Feng, Kewei; Liu, Fuyan; Zou, Jinwei; Xing, Guangwei; Deng, Pingchuan; Song, Weining; Tong, Wei; Nie, Xiaojun

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are the conserved and universal signal transduction modules in all eukaryotes, which play the vital roles in plant growth, development, and in response to multiple stresses. In this study, we used bioinformatics methods to identify 86 MAPKKK protein encoded by 73 MAPKKK genes in Brachypodium. Phylogenetic analysis of MAPKKK family from Arabidopsis, rice, and Brachypodium has classified them into three subfamilies, of which 28 belonged to MEKK, 52 to Raf, and 6 to ZIK subfamily, respectively. Conserved protein motif, exon-intron organization, and splicing intron phase in kinase domains supported the evolutionary relationships inferred from the phylogenetic analysis. And gene duplication analysis suggested the chromosomal segment duplication happened before the divergence of the rice and Brachypodium, while all of three tandem duplicated gene pairs happened after their divergence. We further demonstrated that the MAPKKKs have evolved under strong purifying selection, implying the conservation of them. The splicing transcripts expression analysis showed that the splicesome translating longest protein tended to be adopted. Furthermore, the expression analysis of BdMAPKKKs in different organs and development stages as well as heat, virus and drought stresses revealed that the MAPKKK genes were involved in various signaling pathways. And the circadian analysis suggested there were 41 MAPKKK genes in Brachypodium showing cycled expression in at least one condition, of which seven MAPKKK genes expressed in all conditions and the promoter analysis indicated these genes possessed many cis-acting regulatory elements involved in circadian and light response. Finally, the co-expression network of MAPK, MAPKK, and MAPKKK in Brachypodium was constructed using 144 microarray and RNA-seq datasets, and ten potential MAPK cascades pathway were predicted. To conclude, our study provided the important information for evolutionary and

  14. 8-Cl-cAMP antagonizes mitogen-activated protein kinase activation and cell growth stimulation induced by epidermal growth factor

    PubMed Central

    Budillon, A; Gennaro, E Di; Caraglia, M; Barbarulo, D; Abbruzzese, A; Tagliaferri, P

    1999-01-01

    The growth factor-activated mitogenic pathways are often disregulated in tumour cells and, therefore, they can provide specific molecular targets for novel anti-tumour approaches. 8-Chloro-cAMP (8-Cl-cAMP), a synthetic cAMP analogue, is a novel anti-tumour agent that has recently undergone clinical evaluation. We investigated the effects of 8-CI-cAMP on the epidermal growth factor (EGF)/EGF receptor (EGF-R) signalling in human epidermoid cancer KB cells, which are responsive to the mitogenic stimulus of EGF. We found that the growth-promoting activity of EGF was completely abolished when EGF treatment was performed in combination with 8-CI-cAMP. The inhibition of the EGF-induced proliferation by 8-CI-cAMP was paralleled by the blockade of the EGF-stimulated activation of mitogen-activated protein kinases (MAPK), ERK-1 and ERK-2. Conversely, we found an increase of EGF-R expression and EGF-R tyrosine phosphorylation when KB cells were growth inhibited by 8-Cl-cAMP. Moreover, the activity of Raf-1 and MEK-1 protein kinases, the activators upstream MAPK in the phosphorylation cascade induced by EGF, was not modified in 8-Cl-cAMP-treated cells. We concluded that the impairment of KB cell response to EGF, induced by 8-Cl-cAMP, resides in the specific inhibition of MAPK/ERKs activity while the function of the upstream elements in the EGF-R signalling is preserved. © 1999 Cancer Research Campaign PMID:10584873

  15. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin

    SciTech Connect

    Wu, T.-S.; Yu, F.-Y.; Su, C.-C.; Kan, J.-C.; Chung, C.-P.; Liu, B.-H. . E-mail: bingliu@csmu.edu.tw

    2005-09-01

    Patulin (PAT), a mycotoxin produced by certain species of Penicillium and Aspergillus, is often detectable in moldy fruits and their derivative products. PAT led to a concentration-dependent and time-dependent increase in phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human embryonic kidney (HEK293) cells, human peripheral blood mononuclear cells (PBMCs), and Madin-Darby canine kidney (MDCK) cells. Exposure of HEK293 cells to concentrations above 5 {mu}M PAT for 30 min induced ERK1/2 phosphorylation; activation of ERK1/2 was also observed after 24 h incubation with 0.05 {mu}M of PAT. Treatment of human PBMCs for 30 min with 30 {mu}M PAT dramatically increased the phosphorylated ERK1/2 levels. Both MEK1/2 inhibitors, U0126 and PD98059, suppressed ERK1/2 activation in either HEK293 or MDCK cells. In HEK293 cells, U0126-mediated inhibition of PAT-induced ERK1/2 phosphorylation resulted in a significant decrease in levels of DNA damage, expressed as tail moment values, in the single cell gel electrophoresis assay. Conversely, U0126 did not affect cell viability, lactate dehydrogenase release, and the DNA synthesis rate in PAT-treated cultures. Exposure of HEK293 cells for 90 min to 15 {mu}M PAT elevated the levels of early growth response gene-1 (egr-1) mRNA, but not of c-fos, fosB, and junB mRNAs. These results indicate that in human cells, PAT causes a rapid and persistent activation of ERK1/2 and this signaling pathway plays an important role in mediating PAT-induced DNA damage and egr-1 gene expression.

  16. Comments: Using Design Elements for Increasing the Severity of Causal Mediation Tests

    ERIC Educational Resources Information Center

    Steiner, Peter M.

    2012-01-01

    In this commentary, the author focuses on the use of design elements for increasing the severity of causal mediation tests. The estimation of causal mediation effects from observational data rests on rather stringent assumptions. In introducing and exemplifying ratio-of-mediator-probability weighting (RMPW), Hong and Nomi (henceforth HN) make…

  17. Comments: Using Design Elements for Increasing the Severity of Causal Mediation Tests

    ERIC Educational Resources Information Center

    Steiner, Peter M.

    2012-01-01

    In this commentary, the author focuses on the use of design elements for increasing the severity of causal mediation tests. The estimation of causal mediation effects from observational data rests on rather stringent assumptions. In introducing and exemplifying ratio-of-mediator-probability weighting (RMPW), Hong and Nomi (henceforth HN) make…

  18. Mitogen-activated protein kinase modulates ethanol inhibition of cell adhesion mediated by the L1 neural cell adhesion molecule

    PubMed Central

    Dou, Xiaowei; Wilkemeyer, Michael F.; Menkari, Carrie E.; Parnell, Scott E.; Sulik, Kathleen K.; Charness, Michael E.

    2013-01-01

    There is a genetic contribution to fetal alcohol spectrum disorders (FASD), but the identification of candidate genes has been elusive. Ethanol may cause FASD in part by decreasing the adhesion of the developmentally critical L1 cell adhesion molecule through interactions with an alcohol binding pocket on the extracellular domain. Pharmacologic inhibition or genetic knockdown of ERK2 did not alter L1 adhesion, but markedly decreased ethanol inhibition of L1 adhesion in NIH/3T3 cells and NG108-15 cells. Likewise, leucine replacement of S1248, an ERK2 substrate on the L1 cytoplasmic domain, did not decrease L1 adhesion, but abolished ethanol inhibition of L1 adhesion. Stable transfection of NIH/3T3 cells with human L1 resulted in clonal cell lines in which L1 adhesion was consistently sensitive or insensitive to ethanol for more than a decade. ERK2 activity and S1248 phosphorylation were greater in ethanol-sensitive NIH/3T3 clonal cell lines than in their ethanol-insensitive counterparts. Ethanol-insensitive cells became ethanol sensitive after increasing ERK2 activity by transfection with a constitutively active MAP kinase kinase 1. Finally, embryos from two substrains of C57BL mice that differ in susceptibility to ethanol teratogenesis showed corresponding differences in MAPK activity. Our data suggest that ERK2 phosphorylation of S1248 modulates ethanol inhibition of L1 adhesion by inside-out signaling and that differential regulation of ERK2 signaling might contribute to genetic susceptibility to FASD. Moreover, identification of a specific locus that regulates ethanol sensitivity, but not L1 function, might facilitate the rational design of drugs that block ethanol neurotoxicity. PMID:23431142

  19. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  20. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  1. Postextinction Infusion of a Mitogen-Activated Protein Kinase Inhibitor into the Medial Prefrontal Cortex Impairs Memory of the Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Hugues, Sandrine; Deschaux, Olivier; Garcia, Rene

    2004-01-01

    We investigated whether postextinction training infusion of PD098059, a selective inhibitor of mitogen-activated protein kinase (MAPK) activation, into the medial prefrontal cortex, would impair retention of extinction learning in rats. We found that immediate, but not late (2 or 4 h), postextinction infusion of PD098059 provoked a full return of…

  2. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  3. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  4. Role of mitogen activated protein kinases in skin tumorigenicity of Patulin

    SciTech Connect

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Das, Mukul

    2011-12-15

    WHO has highlighted the need to evaluate dermal toxicity of mycotoxins including Patulin (PAT), detected in several fruits. In this study the skin carcinogenic potential of topically applied PAT was investigated. Single topical application of PAT (400 nmol) showed enhanced cell proliferation ({approx} 2 fold), along with increased generation of ROS and activation of ERK, p38 and JNK MAPKs, in mouse skin. PAT exposure also showed activation of downstream target proteins, c-fos, c-Jun and NF-{kappa}B transcription factors. Further, single topical application of PAT (400 nmol) followed by twice weekly application of TPA resulted in tumor formation after 14 weeks, indicating the tumor initiating activity of PAT. However no tumors were observed when PAT was used either as a complete carcinogen (80 nmol) or as a tumor promoter (20 nmol and 40 nmol) for 25 weeks. Histopathological findings of tumors found in PAT/TPA treated mice showed that these tumors were of squamous cell carcinoma type and similar to those found in the positive control group (DMBA/TPA) along with significant increase of lipid peroxidation and decrease in free sulfydryls, catalase, superoxide dismutase and glutathione reductase activities. The results suggest the possible role of free radicals in PAT mediated dermal tumorigenicity involving MAPKs. -- Highlights: Black-Right-Pointing-Pointer Single topical application of Patulin showed enhanced cell proliferation. Black-Right-Pointing-Pointer Patulin activate MAPKs, c-fos, c-Jun and NF-{kappa}B transcription factors. Black-Right-Pointing-Pointer Patulin showed skin tumor initiating potential. Black-Right-Pointing-Pointer We could not detect skin tumor promoting potential of Patulin at the tested dose. Black-Right-Pointing-Pointer However prolonged exposure of Patulin at a higher dose may promote tumor.

  5. Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells.

    PubMed

    Pandit, Hrishikesh; Thakur, Gargi; Koippallil Gopalakrishnan, Aghila Rani; Dodagatta-Marri, Eswari; Patil, Anushree; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Activation of immune cells and increased serum SP-D is observed in a range of patho-physiological conditions including infections. We speculated if SP-D can modulate systemic immune response via direct interaction with activated PBMCs. In this study, we examined interaction of a recombinant fragment of human SP-D (rhSP-D) on PHA-activated PBMCs. We report a significant downregulation of activation receptors such as TLR2, TLR4, CD11c and CD69 upon rhSP-D treatment. rhSP-D inhibited production of Th1 (TNF-α and IFN-γ) and Th17 (IL-17A) cytokines along with IL-6. Interestingly, levels of IL-2, Th2 (IL-4) and regulatory (IL-10 and TGF-β) cytokines remained unaltered. Analysis of co-stimulatory CD28 and co-inhibitory CTLA4 receptors along with their ligands CD80 and CD86 revealed a selective up-regulation of CTLA4 in the lymphocyte subset. rhSP-D induced apoptosis in the activated but not in non-activated lymphocytes. Blockade of CTLA4 inhibited rhSP-D mediated apoptosis of activated lymphocytes, confirming involvement of CTLA4. We conclude that SP-D restores immune homeostasis. It regulates expression of immunomodulatory receptors and cytokines, which is followed by induction of apoptosis in activated lymphocytes. These findings suggest a critical role of SP-D in immune surveillance against activated immune cells.

  6. Isolation of a glucosamine binding leguminous lectin with mitogenic activity towards splenocytes and anti-proliferative activity towards tumor cells.

    PubMed

    Chan, Yau Sang; Wong, Jack Ho; Fang, Evandro Fei; Pan, Wenliang; Ng, Tzi Bun

    2012-01-01

    A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. "brown kidney bean." The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20 °C-60 °C. However, drastic reduction of the activity occurred at temperatures above 65 °C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0-2, and only residual activity was observed at pH 13-14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC(50) of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response.

  7. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Angiotensin II–Induced Inflammation and Hypertension

    PubMed Central

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A.; Simeone, Stefania M.C.; Pagano, Patrick J.; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L.

    2015-01-01

    Vascular oxidative stress and inflammation play an important role in angiotensin II–induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase–activated protein kinase 2 (MK2), a downstream target of p38 mitogen–activated protein kinase, is involved in angiotensin II–induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II–induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II–induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II–induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II–induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II–induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II–induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and

  8. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells.

    PubMed

    Xie, Yi; Nakanishi, Takeo; Natarajan, Karthika; Safren, Lowell; Hamburger, Anne W; Hussain, Arif; Ross, Douglas D

    2015-03-01

    Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Epidermal growth factor receptor (EGFR) pathway activation also led to an increase in p-CREB and in BCRP promoter reporter activity via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound p-CREB by a point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in several human cancer cell lines following activation of multiple cancer-relevant signaling pathways.

  9. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells

    PubMed Central

    Xie, Yi; Nakanishi, Takeo; Natarajan, Karthika; Safren, Lowell; Hamburger, Anne W.; Hussain, Arif; Ross, Douglas D.

    2015-01-01

    We report a novel cyclic-AMP (cAMP) response element (CRE) in the human BCRP promoter that is functional in human cancer cell lines of multiple lineages. 8Br-cAMP increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Activation of the epidermal growth factor receptor (EGFR) pathway also led to an increase in BCRP promoter reporter activity and to phosphorylation of the c-AMP response element binding protein (CREB) via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound phospho-CREB; point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is also involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in multiple human cancer cell lines following activation of a variety of signaling pathways. PMID:25615818

  10. Cdc42p-Interacting Protein Bem4p Regulates the Filamentous-Growth Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Pitoniak, Andrew; Chavel, Colin A.; Chow, Jacky; Smith, Jeremy; Camara, Diawoye; Karunanithi, Sheelarani; Li, Boyang; Wolfe, Kennith H.

    2014-01-01

    The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response. PMID:25384973

  11. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  12. [Changes of mitogen-activated protein kinase activity in cardiac tissues, Ang II and cardiac hypertrophy in spontaneously hypertensive rats].

    PubMed

    He, K L; Zheng, Q F; Mu, S C; Li, T C; Pang, Y Z; Tang, C S

    1998-10-01

    Mitogen-activated protein kinases (MAPKs) are thought to be critical components in signal transduction pathways in regulation of cell growth and differentiation. The purpose of the present investigation is to study possible involvement of MAPKs in the progress of cardiac hypertrophy in spontaneously hypertensive rats (SHRs) and effects of age on Angiotensin II (Ang II), MAPK activity and cardiac hypertrophy. The animals were divided into three groups: 4 months old WKY rats (n = 8), 4 month old SHRs (n = 8) and 15 month old SHRs (n = 6). Ratio of heart to body weight was measured. Ang II was determined by RIA. MAPK activity in cardiac tissue was assayed by the "in-gel" myelin basic protein phosphorylation. The results show that in comparison with 4 month old WKY rats, Ang II in plasma and cardiac tissues were elevated (216.4%, P < 0.01; 101.2%, P < 0.01) in 4 months old SHRs, while the MAPK activity was increased 107.0% (P < 0.01) with a parallel cardiac hypertrophy (P < 0.01). In comparison with 4 month old SHRs, Ang II and MAPK activity in cardiac tissue of the 15 months old SHRs were decreased (31.3%, P < 0.01; 29.7%, P < 0.05) but the cardiac hypertrophy increased by 38.5% (P < 0.01). MAPK may be involved in the progress of cardiac hypetrophy in SHR and the increased MAPK activity may be partly induced by Ang II.

  13. Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase.

    PubMed Central

    Dickinson, Robin J; Williams, David J; Slack, David N; Williamson, Jill; Seternes, Ole-Morten; Keyse, Stephen M

    2002-01-01

    Mitogen-activated protein kinases (MAPKs) play a vital role in cellular growth control, but far less is known about these signalling pathways in the context of embryonic development. Duration and magnitude of MAPK activation are crucial factors in cell fate decisions, and reflect a balance between the activities of upstream activators and specific MAPK phosphatases (MKPs). Here, we report the isolation and characterization of the murine Pyst3 gene, which encodes a cytosolic dual-specificity MKP. This enzyme selectively interacts with, and is catalytically activated by, the 'classical' extracellular signal-regulated kinases (ERKs) 1 and 2 and, to a lesser extent, the stress-activated MAPK p38alpha. These properties define the ability of this enzyme to dephosphorylate and inactivate ERK1/2 and p38alpha, but not JNK (c-Jun N-terminal kinase) in vivo. When expressed in mammalian cells, the Pyst3 protein is predominantly cytoplasmic. Furthermore, leptomycin B causes a complete redistribution of the protein to the nucleus, implicating a CRM (chromosomal region maintenance)1/exportin 1-dependent nuclear export signal in determining the subcellular localization of this enzyme. Finally, whole-mount in situ hybridization studies in mouse embryos reveal that the Pyst3 gene is expressed specifically in the placenta, developing liver and in migratory muscle cells. Our results suggest that this enzyme may have a critical role in regulating the activity of MAPK signalling during early development and organogenesis. PMID:11988087

  14. Aldosterone regulates cellular turnover and mitogen-activated protein kinase family expression in the neonatal rat kidney.

    PubMed

    Yim, Hyung Eun; Yoo, Kee Hwan; Bae, In Sun; Jang, Gi Young; Hong, Young Sook; Lee, Joo Won

    2009-06-01

    Growing evidence indicates that aldosterone is a potent mitogenic signal regulating genes involved in antiapoptosis, cell proliferation and growth. We investigated the role of endogenous aldosterone in renal development, cell proliferation and apoptosis, and mitogen-activated protein kinase (MAPK) family expression. Newborn rats were treated with either spironolactone (200 mg/kg/d) in olive oil or only olive oil for 7 days. TUNEL assay and proliferating cell nuclear antigen (PCNA) stain were performed on kidney sections. Immunoblots, immunohistochemical (IHC) stain, and reverse transcriptase-PCR for MAPKs were performed. PCNA-positive proliferating cells decreased and apoptotic cells increased significantly with spironolactone (P < 0.05). In the spironolactone-treated group, c-jun N-terminal kinase (JNK)-2 expression increased, whereas extracellular signal regulated kinase (ERK)-2 and p38 expressions decreased in immunoblots (P < 0.05) and IHC stain. ERK-2 and p38 mRNA expressions increased in the spironolactone-treated group (P < 0.05). This study demonstrates that aldosterone blockade in the developing kidney decreases cellular proliferation, increases apoptosis, and modulates the expressions of JNK-2, ERK-2, and p38. Aldosterone possibly participates in renal development and MAPK family may serve as, in part, the signaling intermediate through the mineralocorticoid receptor (MR) in the developing kidney. J. Cell. Physiol. 219: 724-733, 2009. (c) 2009 Wiley-Liss, Inc.

  15. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana.

    PubMed

    Nie, Shengjun; Xu, Huilian

    2016-01-01

    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.

  16. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana

    PubMed Central

    Nie, Shengjun; Xu, Huilian

    2016-01-01

    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses. PMID:27054585

  17. Overexpression of Mitogen-activated protein kinase phosphatase-3 (MKP-3) reduces FoxO1 phosphorylation in mice hypothalamus.

    PubMed

    Rodrigues, Bárbara de Almeida; Kuga, Gabriel Keine; Muñoz, Vitor Rosetto; Gaspar, Rafael Calais; Tavares, Mariana Rosolen; Botezelli, José Diego; da Silva, Adelino Sanchez Ramos; Cintra, Dennys Esper; de Moura, Leandro Pereira; Simabuco, Fernando Moreira; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2017-10-17

    The mitogen-activated kinase phosphatase-3 (MKP-3) has gained great importance in the scientific community by acting as a regulator of the cell cycle through dephosphorylation of FoxO1, an important transcription factor involved in the insulin intracellular signaling cascade. When dephosphorylated and translocated to the nuclei, FoxO1 can promote the transcription of orexigenic neuropeptides (NPY/AgRP) in the hypothalamus, whereas insulin signaling is responsible for the disruption of this process. However, it is not understood if the hypothalamic activation of MKP-3 affects FoxO1 phosphorylation, and we hypothesized that MKP-3 overexpression reduces the capacity of the insulin signal to phosphorylate FoxO1. In the present study, we overexpressed the DUSP6 gene through an injection of adenovirus directly into the hypothalamic third ventricle of Swiss mice. The colocalization of the adenovirus was confirmed by the immunofluorescence assay. Then, MKP-3 overexpression resulted in a significant reduction of hypothalamic FoxO1 phosphorylation after insulin stimulation. This effect was independent of changes in Akt phosphorylation. Thus, the role of MKP-3 in the hypothalamus is closely associated with FoxO1 dephosphorylation and may provide a potential therapeutic target against hypothalamic disorders related to obesity and unbalanced food intake control. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase

    NASA Astrophysics Data System (ADS)

    Koo, Han-Mo; Vanbrocklin, Matt; McWilliams, Mary Jane; Leppla, Stephan H.; Duesbery, Nicholas S.; Vande Woude, George F.

    2002-03-01

    Lethal factor, the principal virulence factor of Bacillus anthracis, inhibits mitogen-activated protein kinase (MAPK) signaling by proteolytically cleaving MAPK kinases. Edema factor, another component of anthrax toxin, is an adenylate cyclase, which increases intracellular cAMP. Inhibition of MAPK signaling with either anthrax lethal toxin (LeTx) or small molecule MAPK kinase inhibitors triggers apoptosis in human melanoma cells. Normal melanocytes do not undergo apoptosis in response to MAPK inhibition but arrest in the G1 phase of the cell cycle. Importantly, in vivo treatment of human melanoma xenograft tumors in athymic nude mice with LeTx results in significant or complete tumor regression without apparent side effects, suggesting that inhibiting the MAPK signaling pathway may be a useful strategy for treating melanoma. Additionally, interrupting MAPK signaling with LeTx and elevating cAMP with anthrax edema toxin in both melanoma cells and melanocytes lead to dramatic melanin production, perhaps explaining the formation of blackened eschars in cutaneous anthrax.

  19. Presenilin-2 regulates the degradation of RBP-Jk protein through p38 mitogen-activated protein kinase.

    PubMed

    Kim, Su-Man; Kim, Mi-Yeon; Ann, Eun-Jung; Mo, Jung-Soon; Yoon, Ji-Hye; Park, Hee-Sae

    2012-03-01

    Transcriptional regulation performs a central role in Notch1 signaling by recombining binding protein Suppressor of Hairless (RBP-Jk)--a signaling pathway that is widely involved in determination of cell fate. Our earlier work demonstrated the possible regulation of the Notch1-RBP-Jk pathway through protein degradation of RBP-Jk; however, the potential regulator for the degradation of RBP-Jk remains to be determined. Here, we report that the expression of endogenous and exogenous RBP-Jk was increased significantly in cells treated with proteasome- and lysosome-specific inhibitors. The effects of these inhibitors on RBP-Jk occurred in a dose- and time-dependent manner. The level of RBP-Jk protein was higher in presenilin-2 (PS2)-knockout cells than in presenilin-1 (PS1)-knockout cells. Furthermore, the level of RBP-Jk was decreased by expression of PS2 in PS1 and PS2 double-knockout cells. We also found that PS1-knockout cells treated with a specific inhibitor of p38 mitogen-activated protein kinase ∂ (MAPK) had significantly increased levels of RBP-Jk. p38 MAPK phosphorylates RBP-Jk at Thr339 by physical binding, which subsequently induces the degradation and ubiquitylation of the RBP-Jk protein. Collectively, our results indicate that PS2 modulates the degradation of RBP-Jk through phosphorylation by p38 MAPK.

  20. Downregulation of mitogen-activated protein kinase 1 of Leishmania donovani field isolates is associated with antimony resistance.

    PubMed

    Ashutosh; Garg, Mansi; Sundar, Shyam; Duncan, Robert; Nakhasi, Hira L; Goyal, Neena

    2012-01-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) on the Indian subcontinent. The mechanisms operating in laboratory-generated strains are somewhat known, but the determinants of clinical antimony resistance are not well understood. By utilizing a DNA microarray expression profiling approach, we identified a gene encoding mitogen-activated protein kinase 1 (MAPK1) for the kinetoplast protozoan Leishmania donovani (LdMAPK1) that was consistently downregulated in antimony-resistant field isolates. The expression level of the gene was validated by real-time PCR. Furthermore, decreased expression of LdMAPK1 was also confirmed at the protein level in resistant isolates. Primary structure analysis of LdMAPK1 revealed the presence of all of the characteristic features of MAPK1. When expressed in Escherichia coli, the recombinant enzyme showed kinase activity with myelin basic protein as the substrate and was inhibited by staurosporine. Interestingly, overexpression of this gene in a drug-sensitive laboratory strain and a resistant field isolate resulted in increased the sensitivity of the transfectants to potassium antimony tartrate, suggesting that it has a role in antimony resistance. Our results demonstrate that downregulation of LdMAPK1 may be in part correlated with antimony drug resistance in Indian VL isolates.

  1. Drugs designed to inhibit human p38 mitogen-activated protein kinase activation treat Toxoplasma gondii and Encephalitozoon cuniculi infection.

    PubMed

    Wei, Shuang; Daniel, Benjamin J; Brumlik, Michael J; Burow, Matthew E; Zou, Weiping; Khan, Imtiaz A; Wadsworth, Scott; Siekierka, John; Curiel, Tyler J

    2007-12-01

    We recently showed that the pyridinylimidazoles SB203580 and SB202190, drugs designed to block human p38 mitogen-activated protein kinase (MAPK) activation, also inhibited replication of the medically important intracellular parasite Toxoplasma gondii in cultured human fibroblasts through a direct effect on the parasite. We now show that additional pyridinylimidazole and imidazopyrimidine p38 MAPK inhibitors inhibit intracellular T. gondii replication in vitro and protect mice against fatal T. gondii infection. Mice surviving infection following treatment with p38 MAPK inhibitors were resistant to subsequent T. gondii challenge, demonstrating induction of protective immunity. Thus, drugs originally developed to block human p38 MAPK activation are useful for treating T. gondii infection without inducing significant immunosuppression. MAPK inhibitors combined with either of the approved anti-Toxoplasma drugs sulfadiazine and pyrimethamine resulted in improved survival among mice challenged with a fatal T. gondii inoculum. A MAPK inhibitor also treated mice infected with the Microsporidium parasite Encephalitozoon cuniculi, suggesting that MAPK inhibitors represent a novel class of agents that may have a broad spectrum of antiparasitic activity. Preliminary studies implicate a T. gondii MAPK homologue as the target of drug action, suggesting possibilities for more-selective agents.

  2. Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale

    PubMed Central

    ROSE, BETH A.; FORCE, THOMAS; WANG, YIBIN

    2013-01-01

    Among the myriad of intra-cellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart. PMID:20959622

  3. Diurnal variation in p42/44 mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Ho, A K; Mackova, M; Price, L; Chik, C L

    2003-10-31

    In this study, we investigated whether there was a diurnal difference in mitogen-activated protein kinase (p42/44(MAPK)) phosphorylation in the rat pineal gland. Under a lighting regimen with 12h of darkness, there was a two- to four-fold increase in phosphorylated levels of MAPK kinase 1/2 (MEK1/2) and p42/44(MAPK) 2h after onset of darkness, an increase that was sustained for 8h. The increases in phosphorylated levels of MEK1/2 and p42/44(MAPK) occurred without increases in MEK1/2 and p42/44(MAPK) proteins. When rats were treated with propranolol 1h before onset of darkness or subjected to continuous light exposure during the dark phase, the nocturnal increase in MEK1/2 and p42/44(MAPK) phosphorylation was reduced. Acute light exposure during darkness caused a decline in MEK1/2 and p42/44(MAPK) phosphorylation within 30 min of light exposure. These results indicate the presence of a diurnal difference in MEK1/2 and p42/44(MAPK) phosphorylation in the rat pineal gland that is under adrenergic control.

  4. The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma.

    PubMed

    Meltser, Inna; Canlon, Barbara

    2010-10-01

    Acoustic trauma is well known to cause peripheral damage with subsequent effects in the central auditory system. The inferior colliculus (IC) is a major auditory center for the integration of ascending and descending information and is involved in noise-induced tinnitus and central hyperactivity. Here we show that the early effects of acoustic trauma, that eventually result in permanent damage to auditory system, lead to a transient activation of BDNF and mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in the IC. In contrast, the early effects of acoustic trauma that result in a temporary damage produced a reversible activation only of p38. The transient activation of MAPK and BDNF in the IC after permanent acoustic trauma is attributed to the plastic changes triggered by a decreased signal input from the damaged periphery. The pattern of MAPK and BDNF activation in the IC is different from that previously described for the cochlea from this laboratory. The differences in the pattern of MAPK and BDNF expression in the IC highlight unique molecular mechanisms underlying temporary and permanent acoustic damage to the central auditory system. (c) 2010 Elsevier Inc. All rights reserved.

  5. The p42/44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment.

    PubMed

    Butcher, Greg Q; Doner, Jeff; Dziema, Heather; Collamore, Minden; Burgoon, Penny W; Obrietan, Karl

    2002-08-16

    In mammals, the suprachiasmatic nuclei (SCN) of the hypothalamus function as the major biological clock. SCN-dependent rhythms of physiology and behavior are regulated by changes in the environmental light cycle. Currently, the second messenger signaling events that couple photic input to clock entrainment have yet to be well characterized. Recent work has revealed that photic stimulation during the night triggers rapid activation of the p42/44 mitogen activated protein kinase (MAPK) pathway in the SCN. The MAPK signal transduction pathway is a potent regulator of numerous classes of transcription factors and has been shown to play a role in certain forms of neuronal plasticity. These observations led us to examine the role of the MAPK pathway in clock entrainment. Here we report that pharmacological disruption of light-induced MAPK pathway activation in the SCN uncouples photic input from clock entrainment, as assessed by locomotor activity phase. In the absence of photic stimulation, transient disruption of MAPK signaling in the SCN did not alter clock-timing properties. We also report that signaling via the Ca(2+)/calmodulin kinase pathway functions upstream of the MAPK pathway, coupling light to activation of the MAPK pathway. Together these results delineate key intracellular signaling events that underlie light-induced clock entrainment.

  6. Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss.

    PubMed

    Herbert, Bethany A; Steinkamp, Heidi M; Gaestel, Matthias; Kirkwood, Keith L

    2017-01-01

    Aggregatibacter actinomycetemcomitans is associated with aggressive periodontal disease, which is characterized by inflammation-driven alveolar bone loss. A. actinomycetemcomitans activates the p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase 2 (MK2) stress pathways in macrophages that are involved in host responses. During the inflammatory process in periodontal disease, chemokines are upregulated to promote recruitment of inflammatory cells. The objective of this study was to determine the role of MK2 signaling in chemokine regulation during A. actinomycetemcomitans pathogenesis. Utilizing a murine calvarial model, Mk2(+/+) and Mk2(-/-) mice were treated with live A. actinomycetemcomitans bacteria at the midsagittal suture. MK2 positively regulated the following macrophage RNA: Emr1 (F4/80), Itgam (CD11b), Csf1r (M-CSF Receptor), Itgal (CD11a), Tnf, and Nos2 Additionally, RNA analysis revealed that MK2 signaling regulated chemokines CCL3 and CCL4 in murine calvarial tissue. Utilizing the chimeric murine air pouch model, MK2 signaling differentially regulated CCL3 and CCL4 in the hematopoietic and nonhematopoietic compartments. Bone resorption pits in calvaria, observed by micro-computed tomography, and osteoclast formation were decreased in Mk2(-/-) mice compared to Mk2(+/+) mice after A. actinomycetemcomitans treatment. In conclusion, these data suggest that MK2 in macrophages contributes to regulation of chemokine signaling during A. actinomycetemcomitans-induced inflammation and bone loss.

  7. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei.

    PubMed

    Chen, Fei; Chen, Xiu-Zhen; Su, Xiao-Yun; Qin, Li-Na; Huang, Zhen-Bang; Tao, Yong; Dong, Zhi-Yang

    2015-10-01

    Eukaryotic mitogen-activated protein kinases (MAPKs) play crucial roles in transducing environmental and developmental signals inside the cell and regulating gene expression, however, the roles of MAPKs remain largely unknown in Trichoderma reesei. T. reesei ime2 (TrIme2) encodes an Ime2-like MAPK in T. reesei. The deletion of the TrIme2 gene led to 90% increase in cellulase activity against filter paper during earlier period time of cellulase induction as well as the extracellular protein production. Compared to the parent strain, the transcriptional levels of the three major cellulase genes cbh1,cbh2, egl1 were increased by about 9 times, 4 times, 2 times, respectively, at 8 h after cellulase induction in the ΔTrIme2 mutant. In addition, the disruption of TrIme2 caused over 50% reduction of the transcript levels of cellulase transcriptional regulators cre1 and xyr1. TrIme2 functions in regulation of the expression of cellulase gene in T.reesei, and is a good candidate for genetically engineering of T. reesei for higher cellulase production.

  8. Quercetin and Cisplatin combined treatment altered cell cycle and mitogen activated protein kinase expressions in malignant mesotelioma cells.

    PubMed

    Demiroglu-Zergeroglu, Asuman; Ergene, Emel; Ayvali, Nurettin; Kuete, Victor; Sivas, Hulya

    2016-08-11

    Malignant mesothelioma is a locally aggressive and highly lethal neoplasm of pleural, peritoneal and pericardial mesothelial cells without successful therapy. Previously, we reported that Quercetin in combination with Cisplatin inhibits cell proliferation and activates caspase-9 and -3 enzymes in different malignant mesothelioma cell lines. Moreover, Quercetin + Cisplatin lead to accumulation of both SPC111 and SPC212 cell lines in S phase. In present work, 84 genes involved in cell growth and proliferation have analysed by using RT(2)-PCR array system and protein profile of mitogen activated protein kinase (MAPK) family proteins investigated by western blots. Our results showed that Quercetin and Quercetin + Cisplatin modulated gene expression of cyclins, cyclin dependent kinases and cyclin dependent kinases inhibitors. In addition genes involved in JNK, p38 and MAPK/ERK pathways were up regulated. Moreover, while p38 and JNK phosphorylations were increased, ERK phosphorylations were decreased after using Quercetin + Cisplatin. This research has clarified our previous results and detailed mechanism of anti-carcinogenic potential of Quercetin alone and incombination with Cisplatin on malignant mesothelioma cells.

  9. Burkholderia pseudomallei invasion and activation of epithelial cells requires activation of p38 mitogen-activated protein kinase.

    PubMed

    Utaisincharoen, P; Arjcharoen, S; Lengwehasatit, I; Limposuwan, K; Sirisinha, S

    2005-01-01

    Burkholderia pseudomallei is a causative agent of melioidosis. This gram-negative bacterium is able to survive inside the macrophages and also able to invade non-phagocytic cells including epithelial cells. Interaction of pathogenic bacteria to the host cells is frequently associated with activation of mitogen-activated protein (MAP) kinases signaling activity. In this study, we demonstrated that B. pseudomallei stimulated p38 MAP kinase of human alveolar lung epithelial cell line (A549). Phosphorylation of p38 was observed after 15 min, attained a maximal level at 60 min after the infection. A specific inhibitor of p38 phosphorylation, SB 203580, was able to inhibit invasion of this bacterium into the cells suggesting that invasion of B. pseudomallei required activation of p38. In contrast, wortmannin which is a specific inhibitor of phosphoinositide 3-kinase (PI3-kinase) failed to inhibit the invasion. Moreover, SB 203580 can also interfere with IkappaBalpha degradation and IL-8 mRNA expression, indicating that the phosphorylation of p38 occurred upstream of NF-kappaB activation. Cytochalasin D, an inhibitor of actin polymerization needed for internalisation of bacteria, did not have any effect on the phosphorylation of p38. These results indicate that B. pseudomallei stimulate phosphorylation of p38 making by initial contact with the cell surface components and do not require internalisation and interaction with intracellular cytoplasmic components of the cells.

  10. P38 Alpha-Selective Mitogen Activated Protein Kinase Inhibitor For Improvement Of Cultured Human Islet Recovery

    PubMed Central

    Omori, Keiko; Todorov, Ivan; Shintaku, Jonathan; Rawson, Jeffrey; Al-Abdullah, Ismail H.; Higgins, Linda S.; Medicherla, Satyanarayana; Kandeel, Fouad; Mullen, Yoko

    2009-01-01

    Objectives We investigated whether the recovery of cultured human islets is improved through the addition of a p38α-selective mitogen activated protein kinase inhibitor, SD-282, to clinically used serum-free culture medium. Methods Immediately after isolation, islets were cultured for 24 hours in medium alone (control) or medium containing DMSO, 0.1 μM or 0.3 μM SD-282. Cytokine expression, apoptotic β cell percentage, and islet function were assessed post-culture. Results Expression of p38 and phosphorylated p38 in islets increased during culture. IL-6 mRNA expression in cultured islets, as well as IL-6, IL-8 and GM-CSF released into the medium were significantly reduced by adding SD-282. The apoptotic β cell percentage was significantly lower in islets cultured with 0.1 μM SD-282, but not 0.3 μM as compared to the control. Stimulation indices measured in vitro were higher, but without significance (p=0.06), and function of transplanted islets in diabetic NODscid mice was also better in 0.1 μM SD-282 group as compared to control. Conclusions Better islet function was obtained by adding 0.1 μM SD-282 to the serum-free culture medium. This improvement was associated with suppression of cytokine production and prevention of β cell apoptosis. However, this beneficial effect was diminished at a higher concentration. PMID:20084046

  11. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  12. Characterization of a mitogen-activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance.

    PubMed

    Shoresh, Michal; Gal-On, Amit; Leibman, Diana; Chet, Ilan

    2006-11-01

    The fungal biocontrol agent Trichoderma asperellum has been recently shown to induce systemic resistance in plants through a mechanism that employs jasmonic acid and ethylene signal transduction pathways. Mitogen-activated protein kinase (MAPK) proteins have been implicated in the signal transduction of a wide variety of plant stress responses. Here we report the identification and characterization of a Trichoderma-induced MAPK (TIPK) gene function in cucumber (Cucumis sativus). Similar to its homologs, wound-induced protein kinase, MPK3, and MPK3a, TIPK is also induced by wounding. Normally, preinoculation of roots with Trichoderma activates plant defense mechanisms, which result in resistance to the leaf pathogen Pseudomonas syringae pv lachrymans. We used a unique attenuated virus vector, Zucchini yellow mosaic virus (ZYMV-AGII), to overexpress TIPK protein and antisense (AS) RNA. Plants overexpressing TIPK were more resistant to pathogenic bacterial attack than control plants, even in the absence of Trichoderma preinoculation. On the other hand, plants expressing TIPK-AS revealed increased sensitivity to pathogen attack. Moreover, Trichoderma preinoculation could not protect these AS plants against subsequent pathogen attack. We therefore demonstrate that Trichoderma exerts its protective effect on plants through activation of the TIPK gene, a MAPK that is involved in signal transduction pathways of defense responses.

  13. Cardiovascular Responses and Differential Changes in Mitogen-Activated Protein Kinases Following Repeated Episodes of Binge Drinking

    PubMed Central

    Gu, Lianzhi; Fink, Anne M.; Chowdhury, Shamim A.K.; Geenen, David L.; Piano, Mariann R.

    2013-01-01

    Aims: Excessive alcohol use in the form of binge drinking is associated with many adverse medical outcomes. Using an animal model, the primary objective of this study was to determine the effects of repeated episodes of binge drinking on myocardial structure, blood pressure (BP) and activation of mitogen-activated protein kinases (MAPKs). The effects of carvedilol, a beta-adrenergic blocker, were also examined in this animal model of binge drinking. Methods: Rats were randomized into three groups: control, binge and binge + carvedilol (20 mg/kg). Animals received intragastric administration of 5 g ethanol/kg in the morning × 4 days (Monday–Thursday) followed by no ethanol on Friday–Sunday. Animals were maintained on the protocol for 5 weeks. BP was measured using radiotelemetry methods. Animals underwent echocardiography at baseline, 2.5 and 5 weeks. Myocardial MAPKs were analyzed at 5 weeks using western blot techniques. Results: Over the course of 5 weeks, binge drinking was associated with significant transient increases in BP that were greater at 4 and 5 weeks compared with earlier time points. Carvedilol treatment significantly attenuated the binge-induced transient increases in BP at 4 and 5 weeks. No significant changes were found in echocardiographic parameters at any time period; however, binge drinking was associated with increased phosphorylation of p38 MAPK, which was blocked by carvedilol treatment. Conclusion: Repeated episodes of binge drinking result in progressive and transient increases in BP, no change in myocardial structure and differential regulation of MAPK activation. PMID:22878590

  14. Downregulation of Mitogen-Activated Protein Kinase 1 of Leishmania donovani Field Isolates Is Associated with Antimony Resistance

    PubMed Central

    Ashutosh; Garg, Mansi; Sundar, Shyam; Duncan, Robert; Nakhasi, Hira L.

    2012-01-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) on the Indian subcontinent. The mechanisms operating in laboratory-generated strains are somewhat known, but the determinants of clinical antimony resistance are not well understood. By utilizing a DNA microarray expression profiling approach, we identified a gene encoding mitogen-activated protein kinase 1 (MAPK1) for the kinetoplast protozoan Leishmania donovani (LdMAPK1) that was consistently downregulated in antimony-resistant field isolates. The expression level of the gene was validated by real-time PCR. Furthermore, decreased expression of LdMAPK1 was also confirmed at the protein level in resistant isolates. Primary structure analysis of LdMAPK1 revealed the presence of all of the characteristic features of MAPK1. When expressed in Escherichia coli, the recombinant enzyme showed kinase activity with myelin basic protein as the substrate and was inhibited by staurosporine. Interestingly, overexpression of this gene in a drug-sensitive laboratory strain and a resistant field isolate resulted in increased the sensitivity of the transfectants to potassium antimony tartrate, suggesting that it has a role in antimony resistance. Our results demonstrate that downregulation of LdMAPK1 may be in part correlated with antimony drug resistance in Indian VL isolates. PMID:22064540

  15. Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum.

    PubMed

    Yin, Yan-Ling; Zhou, Yue; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2016-10-05

    Nitric oxide (NO) and mitogen-activated protein kinase (MPK) play important roles in brassinosteroid (BR)-induced stress tolerance, however, their functions in BR-induced pesticides metabolism remain unclear. Here, we showed that MPK activity and transcripts of SlMPK1 and SlMPK2 were induced by chlorothalonil (CHT), a widely used fungicide, in tomato leaves. However, cosilencing of SlMPK1/2 compromised the 24-epibrassinolide (EBR)-induced upregulation of detoxification genes and CHT metabolism in tomato leaves. In addition, cosilencing of SlMPK1/2 inhibited the accumulation of S-nitrosothiol (SNO), the reservoir of nitric oxide (NO) in plants, whereas tungstate, the inhibitor of nitrate reductase (NR), blocked EBR-induced SNO accumulation and MPK activity. Inhibiting the accumulation of NO by cPTIO, the specific scavenger and tungstate abolished the EBR-induced upregulation of detoxification genes, glutathione accumulation and CHT metabolism. The results showed that MPK and NR-dependent NO were involved in BR-induced CHT metabolism. Notably, there was a positive crosstalk between the MPK and NO production. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chitosan Controls Postharvest Decay on Cherry Tomato Fruit Possibly via the Mitogen-Activated Protein Kinase Signaling Pathway.

    PubMed

    Zhang, Danfeng; Wang, Hongtao; Hu, Yi; Liu, Yongsheng

    2015-08-26

    The inhibitive effects of chitosan on gray mold caused by Botrytis cinerea on cherry tomato fruit were evaluated. Decay incidence was tested on tomato stored at 22 °C. Hydrogen peroxide accumulation, malondialdehyde (MDA) production, peroxidase (POD) activity, and several related gene expressions (including MPK3, MPK6, PR1a1, and PR5) were determined. Results showed that 0.2% of chitosan solution significantly inhibited the tomato gray mold 3 days after inoculation. Hydrogen peroxide accumulated in the fruit epidermal peel along with chitosan treatment, while MDA production was not increased. POD activity was remarkably enhanced by the application of chitosan. The relative expressions of MPK3, MPK6, and PR1a1 were significantly induced in 10 min after chitosan treatment, while PR5 was induced in 20 min. These findings suggested that the effects of chitosan on inhibiting gray mold in cherry tomato fruit were probably associated with the mitogen-activated protein kinase (MAPK) signaling pathway.

  17. Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway.

    PubMed

    Sebolt-Leopold, Judith S

    2008-06-15

    Among mammalian mitogen-activated protein kinase (MAPK) signaling cascades, the extracellular signal-related kinase (ERK) pathway has received the most attention in the oncology drug discovery arena. By virtue of its central role in promoting proliferation, survival, and metastasis, this pathway directly affects both the formation and progression of human tumors. The identification of non-ATP-competitive inhibitors of the MAPK kinase MAPK/ERK kinase (MEK) resulted in the first demonstration that the ERK pathway could be effectively shut down in a highly selective fashion. Subsequent discovery of the oncogenic nature of B-raf kinase led to the escalation of drug discovery efforts revolving around MEK and RAF. The emergence of multiple drug candidates targeting these downstream kinases provides us with the means for validating the importance of the RAS-RAF-MEK-ERK signaling cascade in human tumors. This article highlights the lessons learned in the clinical evaluation of MAPK pathway inhibitors as anticancer agents and the complexities surrounding optimization of their therapeutic potential in light of the challenges posed by genetic heterogeneity within patient populations.

  18. Effects of butyltins on mitogen-activated-protein kinase kinase kinase and Ras activity in human natural killer cells.

    PubMed

    Celada, Lindsay J; Whalen, Margaret M

    2014-09-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT) diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 min of TBT exposure and the MAP3K, ASK1, after 1 h exposures to TBT. In addition, our results suggest that both TBT and DBT affect the regulation of c-Raf.

  19. Cannabinoid receptor 1 contributes to sprouted innervation in endometrial ectopic growth through mitogen-activated protein kinase activation.

    PubMed

    Han, Hongxiu; Liang, Xizi; Wang, Juan; Zhao, Qianqian; Yang, Mei; Rong, Weifang; Zhang, Guohua

    2017-05-15

    The endocannabinoid system regulates neurite outgrowth and neurogenesis during development of the central nervous system. Cannabinoid receptor 1 (CB1R) is expressed in neurons, including the somata and fibers, that innervate the endometrial ectopic cyst in rats. Here, we investigated the contribution of CB1R and its downstream signaling to the innervation of endometrial ectopic growth. We found that intrathecal injection of a CB1R agonist enhanced both the density of protein gene product (PGP) 9.5-immunoreactive sprouted nerve fibers and the protein level of PGP 9.5 of the ectopic cyst, and the CB1R antagonist induced opposite effects. The CB1R agonist increased the expression of phosphorylated extracellular signal-regulated kinase (pERK) and c-Jun N-terminal kinase (pJNK), but not pp38, in dorsal root ganglion (DRG), whereas the CB1R antagonist only decreased the expression of pERK. In cultured DRG neurons, CB1R agonists dose-dependently increased neurite elongation. The mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) and JNK inhibitors, but not the p38 inhibitor, attenuated CB1R agonist-induced neurite elongation. The inhibitions of CB1R and its downstream ERK and JNK signaling pathways may alleviate the sprouted innervation that has been involved in ENDO-associated pain. This finding may provide a new therapeutic target for patients with endometriosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway.

    PubMed

    Langer, Marybeth; Malykhin, Alexander; Maeda, Kenichiro; Chakrabarty, Kaushik; Williamson, Kelly S; Feasley, Christa L; West, Christopher M; Metcalf, Jordan P; Coggeshall, K Mark

    2008-01-01

    We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFalpha; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFalpha production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis.

  1. Molecular Cloning and Characterization of a P38-Like Mitogen-Activated Protein Kinase from Echinococcus granulosus

    PubMed Central

    Lü, Guodong; Li, Jing; Zhang, Chuanshan; Li, Liang; Bi, Xiaojuan; Li, Chaowang; Fan, Jinliang; Lu, Xiaomei; Vuitton, Dominique A.; Wen, Hao; Lin, Renyong

    2016-01-01

    Cystic echinococcosis (CE) treatment urgently requires a novel drug. The p38 mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases, but still have to be characterized in Echinococcus granulosus. We identified a 1,107 bp cDNA encoding a 368 amino acid MAPK protein (Egp38) in E. granulosus. Egp38 exhibits 2 distinguishing features of p38-like kinases: a highly conserved T-X-Y motif and an activation loop segment. Structural homology modeling indicated a conserved structure among Egp38, EmMPK2, and H. sapiens p38α, implying a common binding mechanism for the ligand domain and downstream signal transduction processing similar to that described for p38α. Egp38 and its phosphorylated form are expressed in the E. granulosus larval stages vesicle and protoscolices during intermediate host infection of an intermediate host. Treatment of in vitro cultivated protoscolices with the p38-MAPK inhibitor ML3403 effectively suppressed Egp38 activity and led to significant protoscolices death within 5 days. Treatment of in vitro-cultivated protoscolices with TGF-β1 effectively induced Egp38 phosphorylation. In summary, the MAPK, Egp38, was identified in E. granulosus, as an anti-CE drug target and participates in the interplay between the host and E. granulosus via human TGF-β1. PMID:28095661

  2. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway.

    PubMed

    Trombino, Sonya; Cesario, Alfredo; Margaritora, Stefano; Granone, PierLuigi; Motta, Giovanni; Falugi, Carla; Russo, Patrizia

    2004-01-01

    This study presents data suggesting that both human mesothelioma (cell lines and human mesothelioma biopsies) and human normal mesothelial cells express receptors for acetylcholine and that stimulation of these receptors by nicotine prompted cell growth via activation of nicotinic cholinergic receptors. Thus, these data demonstrate that: (a) human mesothelioma cells and human biopsies of mesothelioma as well as of normal pleural mesothelial cells express functionally alpha-7 nicotinic acethlycholine receptors, evaluated by alpha-bungarotoxin-FITC binding, receptor binding assay, Western blot, and reverse transcription-PCR; (b) choline acetyltransferase immunostaining is present in mesothelioma cells; (c) mesothelioma cell growth is modulated by the cholinergic system in which agonists (i.e., nicotine) has a proliferative effect, and antagonists (i.e., curare) has an inhibitory effect, evaluated by cell cloning, DNA synthesis and cell cycle; (d) nicotine induces Ca(+2) influx, evaluated by [(45)Ca(2+)] uptake, and consequently activation of mitogen-activated protein kinase pathway (extracellular signal-regulated kinase and p90(RSK) phosphorylation), evaluated by Western blot; and (e) apoptosis mechanisms in mesothelioma cells are under the control of the cholinergic system (nicotine antiapoptotic via induction of nuclear factor-kappaB complexes and phosphorylation of Bad at Ser(112); curare proapoptotic via G(0)-G(1) arrest p21(waf-1) dependent but p53 independent). The involvement of the nonneuronal cholinergic system in mesothelioma appears reasonable and open up new therapeutic strategies.

  3. p38 mitogen-activated protein kinase is crucial for bovine papillomavirus type-1 transformation of equine fibroblasts.

    PubMed

    Yuan, ZhengQiang; Gault, Elizabeth A; Campo, M Saveria; Nasir, Lubna

    2011-08-01

    Equine sarcoids represent the most common skin tumours in equids worldwide, characterized by extensive invasion and infiltration of lymphatics, rare regression and high recurrence after surgical intervention. Bovine papillomavirus type-1 (BPV-1) and less commonly BPV-2 are the causative agents of the diseases. It has been demonstrated that BPV-1 viral gene expression is necessary for maintaining the transformation phenotype. However, the underlying mechanism for BPV-1 transformation remains largely unknown, and the cellular factors involved in transformation are not fully understood. Previously mitogen-activated protein kinase (MAPK) signalling pathway has been shown to be important for cellular transformation. This study investigated the role of p38 MAPK (p38) in the transformation of equine fibroblasts by BPV-1. Elevated expression of phosphorylated p38 was observed in BPV-1 expressing fibroblasts due to the expression of BPV-1 E5 and E6. The phosphorylation of the MK2 kinase, a substrate of p38, was also enhanced. Inhibition of p38 activity by its selective inhibitor SB203580 changed cell morphology, reduced the proliferation of sarcoid fibroblasts and inhibited cellular invasiveness, indicating the indispensable role of p38 in BPV-1 transformation of equine fibroblasts. These findings provide new insights into the pathogenesis of equine sarcoids and suggest that p38 could be a potential target for equine sarcoid therapy.

  4. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion.

    PubMed

    George, Margaret D; Wine, Robert N; Lackford, Brad; Kissling, Grace E; Akiyama, Steven K; Olden, Kenneth; Roberts, John D

    2013-12-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to the spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV, as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia, whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading, and that this association can be regulated by factors in the tumor microenvironment.

  5. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  6. On the participation of hippocampal p38 mitogen-activated protein kinase in extinction and reacquisition of inhibitory avoidance memory.

    PubMed

    Rossato, J I; Bevilaqua, L R M; Lima, R H; Medina, J H; Izquierdo, I; Cammarota, M

    2006-11-17

    Inhibitory avoidance (IA) learning relies on the formation of an association between stepping down from a platform present in a certain context (conditioned stimulus; CS) with an aversive unconditioned stimulus (US; i.e. a footshock). A single CS-US pairing establishes a robust long-term memory expressed as an increase in step-down latency at testing. However, repeated retrieval of the avoidance response in the absence of the US induces extinction of IA memory. That is, recurring presentation of the CS alone results in a new learning indicating that the CS no longer predicts the US. Although the signaling pathways involved in the consolidation of IA and other fear-motivated memories have been profusely studied, little is known about the molecular requirements of fear memory extinction. Here we report that, as happens with its consolidation, extinction of IA long-term memory requires activity of the p38 subfamily of mitogen-activated protein kinases (MAPK) in the CA1 region of the dorsal hippocampus. Moreover, we found that inhibition of hippocampal p38MAPK blocked memory reacquisition after extinction without affecting either the increase in IA memory retention induced by a second training session or animal's locomotor/exploratory activity and anxiety state.

  7. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale.

    PubMed

    Rose, Beth A; Force, Thomas; Wang, Yibin

    2010-10-01

    Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.

  8. Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Langer, Marybeth; Malykhin, Alexander; Maeda, Kenichiro; Chakrabarty, Kaushik; Williamson, Kelly S.; Feasley, Christa L.; West, Christopher M.; Metcalf, Jordan P.; Coggeshall, K. Mark

    2008-01-01

    We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis. PMID:19002259

  9. Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus.

    PubMed

    Akashi, Makoto; Hayasaka, Naoto; Yamazaki, Shin; Node, Koichi

    2008-04-30

    The suprachiasmatic nucleus (SCN) is the master circadian pacemaker driving behavioral and physiological rhythms in mammals. Circadian activation of mitogen-activated protein kinase [MAPK; also known as ERK (extracellular signal-regulated kinase)] is observed in vivo in the SCN under constant darkness, although the biological significance of this remains unclear. To elucidate this question, we first examined whether MAPK was autonomously activated in ex vivo SCN slices. Moreover, we investigated the effect of MAPK inhibition on circadian clock gene expression and neuronal firing rhythms using SCN-slice culture systems. We show herein that MAPK is autonomously activated in the SCN, and our data demonstrate that inhibition of the MAPK activity results in dampened rhythms and reduced basal levels in circadian clock gene expression at the SCN single-neuron level. Furthermore, MAPK inhibition attenuates autonomous circadian neuronal firing rhythms in the SCN. Thus, our data suggest that light-independent MAPK activity contributes to the robustness of the SCN autonomous circadian system.

  10. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  11. Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells.

    PubMed Central

    Husain, S; Abdel-Latif, A A

    1999-01-01

    We have shown previously that cytosolic phospholipase A(2) (cPLA(2)) is responsible for endothelin-1-induced release of arachidonic acid for prostaglandin synthesis in cat iris sphincter smooth muscle (CISM) cells [Husain and Abdel-Latif (1998) Biochim. Biophys. Acta 1392, 127-144]. Here we show that p38 mitogen-activated protein (MAP) kinase, but not p42/p44 MAP kinases, plays an important role in the phosphorylation and activation of cPLA(2) in endothelin-1-stimulated CISM cells. This conclusion is supported by the following findings. Both p38 MAP kinase and p42/p44 MAP kinases were present in the CISM cells and both were activated by endothelin-1. SB203580, a potent specific inhibitor of p38 MAP kinase, but not the p42/p44 MAP kinases specific inhibitor, PD98059, markedly suppressed endothelin-1-enhanced cPLA(2) phosphorylation, cPLA(2) activity and arachidonic acid release. The addition of endothelin-1 resulted in the phosphorylation and activation of cPLA(2). Endothelin-1 stimulated p38 MAP kinase activity in a time- and concentration-dependent manner, and these effects were mediated through the endothelin-A receptor subtype. The protein kinase C (PKC) inhibitor, RO 31-8220, had no inhibitory effect on endothelin-1-induced p38 MAP kinase activation, suggesting that endothelin-1 activation of p38 MAP kinase is independent of PKC. Pertussis toxin inhibited both endothelin-1 and mastoparan stimulation of p38 MAP kinase activity and arachidonic acid release. The inhibitory effects of pertussis toxin are not mediated through cAMP formation. Mastoparan-stimulated [(3)H]arachidonic acid release and cPLA(2) activation was inhibited by SB203580, but not by RO 31-8220. These data suggest that endothelin-1 binds to the endothelin-A receptor to activate the Gi-protein which, through a series of kinases, leads to the activation of p38 MAP kinase and subsequently to phosphorylation and activation of cPLA(2). Activation of cPLA(2) leads to the liberation of arachidonic acid

  12. p38 Mitogen-Activated Protein Kinase (MAPK) Increases Arginase Activity and Contributes to Endothelial Dysfunction in Corpora Cavernosa from Angiotensin-II Treated Mice

    PubMed Central

    Toque, Haroldo A.; Romero, Maritza J.; Tostes, Rita C.; Shatanawi, Alia; Chandra, Surabhi; Carneiro, Zidonia N.; Inscho, Edward W.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2010-01-01

    Introduction Angiotensin II (AngII) activates p38 mitogen-activated protein kinase (MAPK) and elevates arginase activity in endothelial cells. Upregulation of arginase activity has been implicated in endothelial dysfunction by reducing NO bioavailability. However, signaling pathways activated by AngII in the penis are largely unknown. Aim We hypothesized that activation of p38 MAPK increases arginase activity and thus impairs penile vascular function in AngII-treated mice. Methods Male C57BL/6 mice were implanted with osmotic minipumps containing saline or AngII (42 μg/kg/h) for 14 days and co-treated with p38 MAPK inhibitor, SB 203580 (5 μg/kg/day), beginning 2 days before minipump implantation. Systolic blood pressure (SBP) was measured. Corpus cavernosum (CC) tissue was used for vascular functional studies and protein expression levels of p38 MAPK, arginase and constitutive NOS, and arginase activity. Main Outcome Measures Arginase expression and activity; expression of phospho-p38 MAPK, -eNOS and nNOS proteins; endothelium-dependent and nitrergic nerve-mediated relaxations were determined in CC from control and AngII-infused mice. Results AngII increased SBP (22%) and increased CC arginase activity and expression (~2-fold), and phosphorylated P38 MAPK levels (30%) over control. Treatment with SB 203580 prevented these effects. Endothelium-dependent NO-mediated relaxation to acetylcholine was significantly reduced by AngII and this effect was prevented by SB 203580 (P<0.01). AngII (2-week) did not alter nitrergic function. However, SB 203580 significantly increased nitrergic relaxation in both control and AngII tissue at lower frequencies. Maximum contractile responses for phenylephrine and electrical field stimulation were increased by AngII (56% and 171%, respectively), and attenuated by SB 203580 treated. AngII treatment also decreased eNOS phosphorylation at Ser-1177 compared to control. Treatment with SB 203580 prevented all these changes. Conclusion p38

  13. Regulation of cAMP-induced arylalkylamine N-acetyltransferase, Period1, and MKP-1 gene expression by mitogen-activated protein kinases in the rat pineal gland.

    PubMed

    Chansard, Mathieu; Iwahana, Eiko; Liang, Jian; Fukuhara, Chiaki

    2005-10-03

    In rodent pineal glands, sympathetic innervation, which leads to norepinephrine release, is a key process in the circadian regulation of physiology and certain gene expressions. It has been shown that gene expression of the rate-limiting enzyme in the melatonin synthesis arylalkylamine N-acetyltransferase (Aa-Nat), circadian clock gene Period1, and mitogen-activated protein kinase (MAPK) phosphtase-1 (MKP-1), is controlled mainly by a norepinephrine-beta-adrenergic receptor-cAMP signaling cascade in the rat pineal gland. To further dissect the signaling cascades that regulate those gene expressions, we examined whether MAPKs are involved in cAMP-induced gene expression. Western blot and immunohistochemical analyses showed that one of the three MAPKs, c-Jun N-terminal kinase (JNK), was expressed in the pineal, and was phosphorylated by cAMP analogue stimulation with a peak 20 min after start of the stimulation, in vitro. A specific JNK inhibitor SP600125 (Anthra[1,9-cd]pyrazol-6(2H)-one1,9-pyrazoloanthrone), but not its negative control (N1-Methyl-1,9-pyrazoloanthrone), significantly reduced cAMP-stimulated Aa-Nat, Period1, and MKP-1 mRNA levels. Although another MAPK, p38(MAPK), has also been shown to be activated by cAMP stimulation, a p38(MAPK) inhibitor, SB203580 (4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole, HCl), showed no effect on cAMP-induced Aa-Nat and Period1 mRNA levels; whereas SB203580, but not its negative analogue SB202474 (4-Ethyl-2(p-methoxyphenyl)-5-(4'-pyridyl)-IH-imidazole, DiHCl), significantly reduced cAMP-induced MKP-1 mRNA levels. Taken together, our data suggest that cAMP-induced Aa-Nat and Period1 are likely to be mediated by activation of JNK, whereas MKP-1 may be mediated by both p38(MAPK) and JNK activations.

  14. A crucial role for the mitogen-activated protein kinase pathway in nicotinic cholinergic signaling to secretory protein transcription in pheochromocytoma cells.

    PubMed

    Tang, K; Wu, H; Mahata, S K; O'Connor, D T

    1998-07-01

    The mitogen-activated protein kinase (MAPK) pathway plays a pivotal role in intracellular signaling, and this cascade may impinge on cAMP response elements (CREs) of target genes. Both the MAPK pathway and chromogranin A expression may be activated by cytosolic calcium influx, and calcium-dependent signals map onto the chromogranin A promoter proximal CRE. We therefore probed the role of the MAPK pathway in chromogranin A biosynthesis after secretory stimulation of PC12 pheochromocytoma cells by the nicotinic cholinergic pathway, the physiological secretory trigger. Chemical inhibition of either MAPK or MAPK kinase blocked the response of a transfected chromogranin A promoter to nicotine or protein kinase C activation [by phorbol-12-myristate-13-acetate (PMA)], although nicotine-evoked catecholamine secretion was unaffected. Activation of the MAP kinase cascade (Ras, Raf, MAPK, or CREB kinase) by cotransfection of pathway components stimulated the chromogranin A promoter. Cotransfection of MAPK pathway dominant negative mutants (for Raf, MAPK, or CREB kinase) blocked nicotinic or PMA activation of chromogranin A, although a dominant negative Ras mutant was without effect. MAPK pathway enzymatic activity was stimulated by both nicotine and PMA. Point mutations of the chromogranin A CRE suggested that this element was necessary in cis for stimulation by nicotine, PMA, or chemical activation of the MAPK pathway. Transfer of the CRE to a heterologous promoter conferred inducibility by not only nicotine or cAMP but also MAPK activation. Expression of the CREB antagonist KCREB blocked the response of the chromogranin A promoter to nicotine, cAMP, or MAPK pathway activation by either chemical stimulation or cotransfection of active cascade components. Chromogranin A mRNA responded to MAPK pathway manipulation in a fashion similar to the transfected chromogranin A promoter, in both direction and magnitude. We conclude that the MAPK pathway is a necessary intermediate in

  15. Mitogen-activated protein kinase 3/mitogen-activated protein kinase 1 activates apoptosis during testicular ischemia-reperfusion injury in a nuclear factor-kappaB-independent manner.

    PubMed

    Minutoli, Letteria; Antonuccio, Pietro; Polito, Francesca; Bitto, Alessandra; Squadrito, Francesco; Di Stefano, Vincenzo; Nicotina, Piero Antonio; Fazzari, Carmine; Maisano, Daniele; Romeo, Carmelo; Altavilla, Domenica

    2009-02-14

    Nuclear factor kappa-B (NF-kappaB), mitogen-activated protein kinase3/MAPK1 and MAPK8 are involved in testicular ischemia reperfusion injury (testicular-I/R). NF-kappaB knock-out mice (KO) subjected to testicular-I/R have a reduced testicular damage, blunted MAPK8 activation and enhanced MAPK3/MAPK1 activity. To better understand the role of MAPK3/MAPK1 up-regulation during testicular-I/R, we investigated the effects of PD98059, an inhibitor of MAPK3/MAPK1, in KO mice during testicular-I/R. KO and wild-type (WT) animals underwent 1 h testicular ischemia followed by 24 h reperfusion or a sham testicular-I/R. Animals received either PD98059 (5 mg/kg/ip) or its vehicle. MAPK3/MAPK1, BAX, caspase-3 and -9 and TNF-alpha expression were assessed along with histological examination and an immunostaining for protein of apoptosis. Testicular-I/R caused a greater increase in MAPK3/MAPK1 in KO than in WT animals in both testes. KO mice had a lower expression of the apoptotic proteins and TNF-alpha as well as reduced histological damage compared to WT. Immunostaining confirmed the lower expression of BAX in the Leydig cells of KO mice. Administration of PD98059, abrogated MAPK3/MAPK1 expression and slightly reduced TNF-alpha but did not improve or reverse the histological damage in KO. PD98059 significantly reduced the histological damage in WT mice and markedly reduced the apoptotic proteins in KO and WT mice. These results suggest that testicular-I/R triggers also a pathway of organ damage involving MAPK3/MAPK1, TNF-alpha, BAX, caspase-3 and -9 that activates an apoptotic machinery in an NF-kappaB independent manner. These findings should contribute to better understand testicular torsion-induced damage.

  16. Inhibitory effects of Bulnesia sarmienti aqueous extract on agonist-induced platelet activation and thrombus formation involves mitogen-activated protein kinases.

    PubMed

    Kamruzzaman, S M; Endale, Mehari; Oh, Won Jun; Park, Seung-Chun; Kim, Kil-Soo; Hong, Joo Heon; Kwak, Yi-Seong; Yun, Bong-Sik; Rhee, Man Hee

    2010-08-09

    B. sarmienti has long been recognized in folk medicine as a medicinal plant with various medicinal uses. Traditionally, it has been appreciated for the skin-healing properties of its essence. The bark has also been employed to treat stomach and cardiovascular disorders and reported to have antitumor, antioxidant and anti-inflammatory activities. However, information on its antiplatelet activity is limited. To examined the effects of B. sarmienti aqueous extract (BSAE) in platelet physiology. The anti-platelet activity of BSAE was studied using rat platelets for in vitro determination of the extract effect on agonist-induced platelet aggregation, ATP secretion, [Ca(2+)](i) mobilization and MAP kinase phosphorylation. The extract in vivo effects was also examined in arterio-venous shunt thrombus formation in rats, and tail bleeding time in mice. HPLC chromatographic analysis revealed that B. sarmienti extract contained (+)-catechin (C), (-)-epigallocatechin (EGC), (-)-epicatechin (EC), and (-)-epicatechin gallate (ECG). BSAE, significantly and dose dependently, inhibited collagen, thrombin, or ADP-induced platelet aggregation. The 50 percent inhibitory concentrations (IC(50)) of the extract for collagen, thrombin and ADP-induced platelet aggregation were 45.3+/-2.6, 100+/-5.6 and 110+/-4.6 microg/ml, respectively. Collagen activated ATP release and thrombin-induced intracellular Ca(2+) concentration were reduced in BSAE-treated platelets. In addition, the extract in vivo activity showed that BSAE at 100 mg/kg significantly attenuated thrombus formation in rat extracorporeal shunt model while mice tail bleeding time was not affected. Moreover, BSAE attenuated p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. BSAE inhibits platelet activation, granule secretion, aggregation, and thrombus formation without affecting bleeding time, and that this effect is mediated

  17. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells.

    PubMed

    Freeman, S E; Patil, V V; Durham, P L

    2008-12-02

    Elevated nitric oxide (NO) and proton levels in synovial fluid are implicated in joint pathology. However, signaling pathways stimulated by these molecules that mediate inflammation and pain in the temporomandibular joint (TMJ) have not been investigated. The goal of this study was to determine the effect of NO-proton stimulation of rat trigeminal neurons on the in vivo expression of mitogen-activated protein kinases (MAPKs) and phosphatases (MKPs) in trigeminal ganglion neurons and satellite glial cells. Low levels of the active MAPKs extracellular signal-regulated kinase (ERK), Jun amino-terminal kinase (JNK), and p38 were localized in the cytosol of neurons and satellite glial cells in unstimulated animals. However, increased levels of active ERK and p38, but not JNK, were detected in the cytosol and nucleus of V3 neurons and satellite glial cells 15 min and 2 h following bilateral TMJ injections of an NO donor diluted in pH 5.5 medium. While ERK levels returned to near basal levels 24 h after stimulation, p38 levels remained significantly elevated. In contrast to MKP-2 and MKP-3 levels that were barely detectable in neurons or satellite glial cells, MKP-1 staining was readily observed in satellite glial cells in ganglia from unstimulated animals. However, neuronal and satellite glial cell staining for MKP-1, MKP-2, and MKP-3 was significantly increased in response to NO-protons. Increased active ERK and p38 levels as well as elevated MKP levels were also detected in neurons and satellite glial cells located in V2 and V1 regions of the ganglion. Our data provide evidence that NO-proton stimulation of V3 neurons results in temporal and spatial changes in expression of active ERK and p38 and MKPs in all regions of the ganglion. We propose that in trigeminal ganglia these cellular events, which are involved in peripheral sensitization as well as control of inflammatory and nociceptive responses, may play a role in TMJ pathology.

  18. Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.

    PubMed

    Babilonia, Elisa; Li, Dimin; Wang, Zhijian; Sun, Peng; Lin, Dao-Hong; Jin, Yan; Wang, Wen-Hui

    2006-10-01

    It was demonstrated previously that low dietary potassium (K) intake stimulates Src family protein tyrosine kinase (PTK) expression via a superoxide-dependent signaling. This study explored the role of mitogen-activated protein kinase (MAPK) in mediating the effect of superoxide anions on PTK expression and ROMK (Kir 1.1) channel activity. Western blot analysis demonstrated that low K intake significantly increased the phosphorylation of P38 MAPK (P38) and extracellular signal-regulated kinase (ERK) but had no effect on phosphorylation of c-JUN N-terminus kinase in renal cortex and outer medulla. The stimulatory effect of low K intake on P38 and ERK was abolished by treatment of rats with tempol. The possibility that increases in superoxide and related products that are induced by low K intake were responsible for stimulating phosphorylation of P38 and ERK also was supported by the finding that application of H(2)O(2) increased the phosphorylation of ERK and P38 in the cultured mouse collecting duct cells. Simultaneous blocking of ERK and P38 completely abolished the effect of H(2)O(2) on c-Src expression in mouse collecting duct cells. For determination of the role of P38 and ERK in the regulation of ROMK-like small-conductance K (SK) channels, the patch-clamp technique was used to study the effect of inhibiting P38 and ERK on SK channels in the cortical collecting duct from rats that were on a control K diet (1.1%) and on a K-deficient diet for 1 d. Inhibition of ERK, c-JUN N-terminus kinase, or P38 alone had no effect on SK channels. In contrast, simultaneous inhibition of P38 and ERK significantly increased channel activity. The effect of inhibiting MAPK on SK channels was not affected in the presence of herbimycin A, a PTK inhibitor, and was larger in rats that were on a K-deficient diet than in rats that were on a normal-K diet. However, the stimulatory effect of inhibiting ERK and P38 on SK was absent in the cortical collecting duct that was treated with

  19. Mitogen-Activated Protein Kinases Inhibit the ROMK (Kir 1.1)-Like Small Conductance K Channels in the Cortical Collecting Duct

    PubMed Central

    Babilonia, Elisa; Li, Dimin; Wang, Zhijian; Sun, Peng; Lin, Dao-Hong; Jin, Yan; Wang, Wen-Hui

    2010-01-01

    It was demonstrated previously that low dietary potassium (K) intake stimulates Src family protein tyrosine kinase (PTK) expression via a superoxide-dependent signaling. This study explored the role of mitogen-activated protein kinase (MAPK) in mediating the effect of superoxide anions on PTK expression and ROMK (Kir 1.1) channel activity. Western blot analysis demonstrated that low K intake significantly increased the phosphorylation of P38 MAPK (P38) and extracellular signal–regulated kinase (ERK) but had no effect on phosphorylation of c-JUN N-terminus kinase in renal cortex and outer medulla. The stimulatory effect of low K intake on P38 and ERK was abolished by treatment of rats with tempol. The possibility that increases in superoxide and related products that are induced by low K intake were responsible for stimulating phosphorylation of P38 and ERK also was supported by the finding that application of H2O2 increased the phosphorylation of ERK and P38 in the cultured mouse collecting duct cells. Simultaneous blocking of ERK and P38 completely abolished the effect of H2O2 on c-Src expression in mouse collecting duct cells. For determination of the role of P38 and ERK in the regulation of ROMK-like small-conductance K (SK) channels, the patch-clamp technique was used to study the effect of inhibiting P38 and ERK on SK channels in the cortical collecting duct from rats that were on a control K diet (1.1%) and on a K-deficient diet for 1 d. Inhibition of ERK, c-JUN N-terminus kinase, or P38 alone had no effect on SK channels. In contrast, simultaneous inhibition of P38 and ERK significantly increased channel activity. The effect of inhibiting MAPK on SK channels was not affected in the presence of herbimycin A, a PTK inhibitor, and was larger in rats that were on a K-deficient diet than in rats that were on a normal-K diet. However, the stimulatory effect of inhibiting ERK and P38 on SK was absent in the cortical collecting duct that was treated with

  20. A role for protein phosphatase 2A in regulating p38 mitogen activated protein kinase activation and tumor necrosis factor-alpha expression during influenza virus infection.

    PubMed

    Law, Anna H Y; Tam, Alex H M; Lee, Davy C W; Lau, Allan S Y

    2013-04-02

    Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF)-alpha through p38 mitogen activated protein kinase (MAPK). However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1) and protein phosphatase type 2A (PP2A) in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac) infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  1. The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans

    PubMed Central

    Jaimes-Arroyo, Rafael; Lara-Rojas, Fernando; Bayram, Özgür; Valerius, Oliver; Braus, Gerhard H.

    2015-01-01

    Fungi and many other eukaryotes use specialized mitogen-activated protein kinases (MAPK) of the Hog1/p38 family to transduce environmental stress signals. In Aspergillus nidulans, the MAPK SakA and the transcription factor AtfA are components of a central multiple stress-signaling pathway that also regulates development. Here we characterize SrkA, a putative MAPK-activated protein kinase, as a novel component of this pathway. ΔsrkA and ΔsakA mutants share a derepressed sexual development phenotype. However, ΔsrkA mutants are not sensitive to oxidative stress, and in fact, srkA inactivation partially suppresses the sensitivity of ΔsakA mutant conidia to H2O2, tert-butyl-hydroperoxide (t-BOOH), and menadione. In the absence of stress, SrkA shows physical interaction with nonphosphorylated SakA in the cytosol. We show that H2O2 induces a drastic change in mitochondrial morphology consistent with a fission process and the relocalization of SrkA to nuclei and mitochondria, depending on the presence of SakA. SakA-SrkA nuclear interaction is also observed during normal asexual development in dormant spores. Using SakA and SrkA S-tag pulldown and purification studies coupled to mass spectrometry, we found that SakA interacts with SrkA, the stress MAPK MpkC, the PPT1-type phosphatase AN6892, and other proteins involved in cell cycle regulation, DNA damage response, mRNA stability and protein synthesis, mitochondrial function, and other stress-related responses. We propose that oxidative stress induces DNA damage and mitochondrial fission and that SakA and SrkA mediate cell cycle arrest and regulate mitochondrial function during stress. Our results provide new insights into the mechanisms by which SakA and SrkA regulate the remodelling of cell physiology during oxidative stress and development. PMID:25820520

  2. Porins from Salmonella enterica Serovar Typhimurium Activate the Transcription Factors Activating Protein 1 and NF-κB through the Raf-1-Mitogen-Activated Protein Kinase Cascade

    PubMed Central

    Galdiero, Massimiliano; Vitiello, Mariateresa; Sanzari, Emma; D’Isanto, Marina; Tortora, Annalisa; Longanella, Anna; Galdiero, Stefania

    2002-01-01

    In this study we examined the ability of Salmonella enterica serovar Typhimurium porins to activate activating protein 1 (AP-1) and nuclear factor κB (NF-κB) through the mitogen-activated protein kinase (MAPK) cascade, and we identified the AP-1-induced protein subunits. Our results demonstrate that these enzymes may participate in cell signaling pathways leading to AP-1 and NF-κB activation following porin stimulation of cells. Raf-1 was phosphorylated in response to the treatment of U937 cells with porins; moreover, the porin-mediated increase in Raf-1 phosphorylation is accompanied by the phosphorylation of MAPK kinase 1/2 (MEK1/2), p38, extracellular-signal-regulated kinase 1/2, and c-Jun N-terminal kinase. We used three different inhibitors of phosphorylation pathways: 2′-amino-3′-methoxyflavone (PD-098059), a selective inhibitor of MEK1 activator and the MAPK cascade; 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of the p38 pathway; and 7β-acetoxy-1α,6β,9α-trihydroxy-8,13-epoxy-labd-14-en-11-one (forskolin), an inhibitor at the level of Raf-1 kinase. PD-098059 pretreatment of cells decreases AP-1 and NF-κB activation by lipopolysaccharide (LPS) but not by porins, and SB203580 pretreatment of cells decreases mainly AP-1 and NF-κB activation by porins; in contrast, forskolin pretreatment of cells does not affect AP-1 and NF-κB activation following either porin or LPS stimulation. Our data suggest that the p38 signaling pathway mainly regulates AP-1 and NF-κB activation in cells treated with S. enterica serovar Typhimurium porins. Antibody electrophoretic mobility shift assays showed that JunD and c-Fos binding is found in cells treated with porins, in cells treated with LPS, and in unstimulated cells. However, by 30 to 60 min of stimulation, a different complex including c-Jun appears in cells treated with porins or LPS, while the Fra-2 subunit is present only after porin stimulation

  3. Porins from Salmonella enterica serovar Typhimurium activate the transcription factors activating protein 1 and NF-kappaB through the Raf-1-mitogen-activated protein kinase cascade.

    PubMed

    Galdiero, Massimiliano; Vitiello, Mariateresa; Sanzari, Emma; D'Isanto, Marina; Tortora, Annalisa; Longanella, Anna; Galdiero, Stefania

    2002-02-01

    In this study we examined the ability of Salmonella enterica serovar Typhimurium porins to activate activating protein 1 (AP-1) and nuclear factor kappaB (NF-kappaB) through the mitogen-activated protein kinase (MAPK) cascade, and we identified the AP-1-induced protein subunits. Our results demonstrate that these enzymes may participate in cell signaling pathways leading to AP-1 and NF-kappaB activation following porin stimulation of cells. Raf-1 was phosphorylated in response to the treatment of U937 cells with porins; moreover, the porin-mediated increase in Raf-1 phosphorylation is accompanied by the phosphorylation of MAPK kinase 1/2 (MEK1/2), p38, extracellular-signal-regulated kinase 1/2, and c-Jun N-terminal kinase. We used three different inhibitors of phosphorylation pathways: 2'-amino-3'-methoxyflavone (PD-098059), a selective inhibitor of MEK1 activator and the MAPK cascade; 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of the p38 pathway; and 7beta-acetoxy-1alpha,6beta,9alpha-trihydroxy-8,13-epoxy-labd-14-en-11-one (forskolin), an inhibitor at the level of Raf-1 kinase. PD-098059 pretreatment of cells decreases AP-1 and NF-kappaB activation by lipopolysaccharide (LPS) but not by porins, and SB203580 pretreatment of cells decreases mainly AP-1 and NF-kappaB activation by porins; in contrast, forskolin pretreatment of cells does not affect AP-1 and NF-kappaB activation following either porin or LPS stimulation. Our data suggest that the p38 signaling pathway mainly regulates AP-1 and NF-kappaB activation in cells treated with S. enterica serovar Typhimurium porins. Antibody electrophoretic mobility shift assays showed that JunD and c-Fos binding is found in cells treated with porins, in cells treated with LPS, and in unstimulated cells. However, by 30 to 60 min of stimulation, a different complex including c-Jun appears in cells treated with porins or LPS, while the Fra-2 subunit is present only

  4. WNK4 inhibits Ca2+-activated big-conductance potassium channels (BK) via mitogen-activated protein kinase-dependent pathway

    PubMed Central

    Yue, Peng; Zhang, Chengbiao; Lin, Dao-Hong; Sun, Peng; Wang, Wen-Hui

    2013-01-01

    We used the perforated whole-cell recording technique to examine the effect of With-No-Lysine Kinase 4 (WNK4) on the Ca2+ activated big-conductance K channels (BK) in HEK293T cells transfected with BK–α subunit (BK-α). Expression of WNK4 inhibited BK channels and decreased the outward K currents. Coexpression of SGK1 abolished the inhibitory effect of WNK4 on BK channels and restored the outward K currents. Expression of WNK4S1169D//1196D, in which both SGK1-phosphorylation sites (serine 1169 and 1196) were mutated to aspartate, had no effect on BK channels. Moreover, coexpression of SGK1 had no additional effect on K currents in the cells transfected with BKα + WNK4 S1169D//1196D, suggesting that SGK1 reversed WNK4-induced inhibition of BK channels by stimulating WNK4 phosphorylation. Expression of WNK4 but not WNK4 S1169D//1196D increased the phosphorylation of ERK and p38 mitogen-activated protein kinase (MAPK); an effect was abolished by coexpression of SGK1. The role of ERK and p38 MAPK in mediating the effect of WNK4 on BK channels was further suggested by the finding that inhibition of ERK and P38 MAPK completely abolished the inhibitory effect of WNK4 on BK channels. In contrast, inhibition of MAPK failed to abolish the inhibitory effect of WNK4 on ROMK channels in both HEK cells and Xenopus oocytes. Expression of dominant negative dynaminK44A (DynK44A) or treatment of the cells with dynasore, a dynamin inhibitor, not only increased K currents but also largely abolished the inhibitory effect of WNK4 on BK channels. However, inhibition of MAPK still increased the outward K currents in the cells transfected with BKα+WNK4 and treated with dynasore. Similar results were obtained in experiments performed in the native tissue in which inhibition of ERK and p38 MAPK increased BK channel activity in the cortical collecting duct (CCD) treated with dynasore. We concluded that WNK4 inhibited BK channels by stimulating ERK and p38 MAPK and that activation of MAPK

  5. EGb-761 prevents ultraviolet B-induced photoaging via inactivation of mitogen-activated protein kinases and proinflammatory cytokine expression.

    PubMed

    Chen, Chih-Chiang; Chiang, An-Na; Liu, Han-Nan; Chang, Yun-Ting

    2014-07-01

    EGb-761 is an antioxidant and anticarcinogen; however, its role as a photoprotector remains unknown. To determine whether EGb-761 photoprotects human dermal fibroblasts and BALB/c mice skin against ultraviolet B (UVB) light irradiation. To simulate chronic photodamage, shaved BALB/c mice were exposed to UVB irradiation (90mJ/cm(2)) thrice weekly for 3 months. EGb-761 (2mg/cm(2)) was topically applied 1h before irradiation to evaluate its effect. The mechanisms by which EGb-761 protects the skin from photodamage were evaluated by immunohistochemical analysis, enzyme-linked immunosorbent assay (ELISA), and Western blotting. In BALB/c mice, the signs of photoaging or photodamage, such as coarse wrinkle formation, epidermal hyperplasia, and elastic fiber degeneration, markedly reduced with the topical application of EGb-761. Western blot and ELISA revealed that the activation of MMP-1 in cultured fibroblasts markedly diminished after pretreatment with EGb-761. In addition, EGb-761 inhibited UVB-induced overexpression by the fibroblasts of the proinflammatory cytokines, such as interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α. The phosphorylation of the mitogen-activated protein kinase (MAPK) signal transduction pathway components, including extracellular signal-regulated kinase, C-Jun N-terminal kinase, and p38, which are induced by UV irradiation, was significantly inhibited in vivo and in vitro. EGb-761 also diminished the generation of UVB-induced reactive oxygen species (ROS). EGb-761 photoprotects mice and cultured fibroblasts, inhibits the UVB-induced phosphorylation of MAPK pathway components, and reduces the expression of the proinflammatory cytokines by suppressing ROS generation. Thus, topically applied EGb-761 may be a promising photoprotective agent. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Effects of pentylenetetrazole kindling on mitogen-activated protein kinases levels in neocortex and hippocampus of mice.

    PubMed

    Ben, Juliana; de Oliveira, Paulo Alexandre; Gonçalves, Filipe Marques; Peres, Tanara Vieira; Matheus, Filipe Carvalho; Hoeller, Alexandre Ademar; Leal, Rodrigo Bainy; Walz, Roger; Prediger, Rui Daniel

    2014-12-01

    The epileptogenesis process involves cell signaling events associated with neuroplasticity. The mitogen-activated protein kinases (MAPKs) integrate signals originating from a variety of extracellular stimuli and may regulate cell differentiation, survival, cell death and synaptic plasticity. Here we compared the total and phosphorylated MAPKs (ERK1/2, JNK1/2 and p38(MAPK)) levels in the neocortex and hippocampus of adult Swiss male mice quantified by western blotting analysis 48 h after the last injection of pentylenetetrazole (PTZ), according to the kindling protocol (35 mg/kg, i.p., on alternated days, with a total of eight injections). The total levels of the investigated MAPKs and the phospho-p38(MAPK) in the neocortex and hippocampus were not affected by the PTZ injections. The MAPKs phosphorylation levels remain unaltered in PTZ-treated animals without convulsive seizures. The phospho-JNK2 phosphorylation, but not the phospho-JNK1, was increased in the hippocampus of PTZ-treated animals showing 1-3 days with convulsive seizures, whereas no significant changes were observed in those animals with more than 3 days with convulsive seizures. The phospho-ERK1/2 phosphorylation decreased in the neocortex and increased in the hippocampus of animals with 1-4 days with convulsive seizures and became unaltered in mice that showed convulsive seizures for more than 4 days. These findings indicate that resistance to PTZ kindling is associated with unaltered ERK1/2, JNK1/2 and p38(MAPK) phosphorylation levels in the neocortex and hippocampus. Moreover, when the PTZ kindling-induced epileptogenesis manifests behaviorally, the activation of the different MAPKs sub-families shows a variable and non-linear pattern in the neocortex and hippocampus.

  7. Activation of transcription factor AP-1 and mitogen-activated protein kinases in aniline-induced splenic toxicity

    SciTech Connect

    Khan, M. Firoze . E-mail: mfkhan@utmb.edu; Kannan, Subburaj; Wang Jianling

    2006-01-15

    Signaling mechanisms in aniline-induced fibrogenic and/or tumorigenic response in the spleen are not known. Previous studies have shown that aniline exposure leads to iron accumulation and oxidative stress in the spleen, which may cause activation of redox-sensitive transcription factors and regulate the transcription of genes involved in fibrosis and/or tumorigenesis. To test this, male SD rats were treated with 0.5 mmol/kg/day aniline via drinking water for 30 days, and activation of transcription factor AP-1 was determined in the splenocyte nuclear extracts (NEs). AP-1 DNA-binding activity in the NEs of freshly isolated splenocytes from aniline-treated rats increased in comparison to the controls, as determined by electrophoretic mobility shift assay (EMSA). AP-1 binding was also determined in the NEs of cultured splenocytes (2 h and 24 h), which showed even a greater increase in binding activity at 2 h. The specificity of AP-1 binding for relevant DNA motifs was confirmed by competition EMSA and by supershift EMSA using antibodies specific to c-Jun and c-Fos. To further explore the signaling mechanisms in the AP-1 activation, phosphorylation patterns of mitogen-activated protein kinases (MAPKs) were pursued. Aniline exposure induced increases in the phosphorylation of the three classes of MAPKs: extracellular-signal-regulated kinase (ERK 1/2), c-Jun N-terminal kinase (JNK 1/2), and p38 MAPKs. Furthermore, TGF-{beta}1 mRNA expression showed a 3-fold increase in the spleens of aniline-treated rats. These observations suggest a strong association among MAPK phosphorylation, AP-1 activation, and enhanced TGF-{beta}1 gene expression. The observed sequence of events subsequent to aniline exposure could regulate genes that lead to fibrogenic and/or tumorigenic response in the spleen.

  8. Thrombin-induced neuronal protection: role of the mitogen activated protein kinase/ribosomal protein S6 kinase pathway

    PubMed Central

    Hu, Haitao; Yamashita, Shiro; Hua, Ya; Keep, Richard F.; Liu, Wenquan; Xi, Guohua

    2010-01-01

    Our previous studies have found that intracerebral pretreatment with a low dose of thrombin (thrombin preconditioning, TPC) reduces infarct volume and attenuates brain edema after focal cerebral ischemia. In this study, we examined whether TPC protects against the neuronal death induced by oxygen glucose deprivation (OGD), and whether the protection is through thrombin receptors and the p44/42 mitogen activated protein kinases (MAPK)/ribosomal protein S6 kinases (p70 S6K) pathway. Expression of protease-activated receptors (PARs) mRNA was detected in cultured primary rat neurons and thrombin upregulated PAR-1 and PAR-4 mRNA expression. TPC reduced OGD-induced neuronal death (e.g. dead cells: 52.5±5.4% vs. 72.3±7.2% in the control group, n=6, p<0.01). Agonists of PAR-1 and PAR-4 mimicked the effects of thrombin and reduced OGD-induced neuronal death. Pretreatment with thrombin or PAR agonists induced the upregulation of activated p44/42 MAPK and p70S6K (Thr 421/Ser 424). PD98059, an inhibitor of p44/42 MAPK kinase, blocked thrombin-induced upregulation of activated p44/42 MAPK and p70S6K. It also reduced TPC-induced neuronal protection (e.g. dead cells: 68.2±5.2% vs. 56.9±4.6% in vehicle+TPC group, n=6, p<0.05). These results suggest that TPC-induced ischemic tolerance is through activation of thrombin receptors and the p44/42 MAPK/p70S6K pathway. PMID:20846511

  9. Upregulation of early growth response factor-1 by bile acids requires mitogen-activated protein kinase signaling

    SciTech Connect

    Allen, Katryn; Kim, Nam Deuk; Moon, Jeon-OK; Copple, Bryan L.

    2010-02-15

    Cholestasis results when excretion of bile acids from the liver is interrupted. Liver injury occurs during cholestasis, and recent studies showed that inflammation is required for injury. Our previous studies demonstrated that early growth response factor-1 (Egr-1) is required for development of inflammation in liver during cholestasis, and that bile acids upregulate Egr-1 in hepatocytes. What remains unclear is the mechanism by which bile acids upregulate Egr-1. Bile acids modulate gene expression in hepatocytes by activating the farnesoid X receptor (FXR) and through activation of mitogen-activated protein kinase (MAPK) signaling. Accordingly, the hypothesis was tested that bile acids upregulate Egr-1 in hepatocytes by FXR and/or MAPK-dependent mechanisms. Deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) stimulated upregulation of Egr-1 to the same extent in hepatocytes isolated from wild-type mice and FXR knockout mice. Similarly, upregulation of Egr-1 in the livers of bile duct-ligated (BDL) wild-type and FXR knockout mice was not different. Upregulation of Egr-1 in hepatocytes by DCA and CDCA was prevented by the MEK inhibitors U0126 and SL-327. Furthermore, pretreatment of mice with U0126 prevented upregulation of Egr-1 in the liver after BDL. Results from these studies demonstrate that activation of MAPK signaling is required for upregulation of Egr-1 by bile acids in hepatocytes and for upregulation of Egr-1 in the liver during cholestasis. These studies suggest that inhibition of MAPK signaling may be a novel therapy to prevent upregulation of Egr-1 in liver during cholestasis.

  10. Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway.

    PubMed

    Won, Sun-Mi; Park, Youn-Hee; Kim, Hee-Jung; Park, Kwon-Moo; Lee, Won-Jung

    2006-10-31

    Catechins, components of green tea, reduce the incidence of cardiovascular diseases such as atherosclerosis. Angiotensin II (Ang II) is highly implicated in the proliferation of vascular smooth muscle cells (VSMC), resulting in atherosclerosis. The acting mechanisms of the catechins remain to be defined in the proliferation of VSMC induced by Ang II. Here we report that catechin, epicatechin (EC), epicatechingallate (ECG) or epigallocatechingallate (EGCG) significantly inhibits the Ang II-induced [3H]thymidine incorporation into the primary cultured rat aortic VSMC. Ang II increases the phosphorylation of the extracellular signal-regulated protein kinase 1/2 (ERK 1/2), c-jun-N-terminal kinase 1/2 (JNK 1/2), or p38 mitogen-activated protein kinases (MAPKs) and mRNA expression of c-jun and c-fos. The EGCG pretreatment inhibits the Ang II-induced phosphorylation of ERK 1/2, JNK 1/2, or p38 MAPK, and the expression of c-jun or c-fos mRNA. U0126, a MEK inhibitor, SP600125, a JNK inhibitor, or SB203580, a p38 inhibitor, attenuates the Ang II-induced [3H]thymidine incorporation into the VSMC. In conclusion, catechins inhibit the Ang II-stimulated VSMC proliferation via the inhibition of the Ang II-stimulated activation of MAPK and activator protein-1 signaling pathways. The antiproliferative effect of catechins may be associated with the reduced risk of cardiovascular diseases by the intake of green tea. Catechins may be useful in the development of prevention and therapeutics of vascular diseases.

  11. Toward a Comprehensive Phylogenetic Reconstruction of the Evolutionary History of Mitogen-Activated Protein Kinases in the Plant Kingdom

    PubMed Central

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved. PMID:23230446

  12. In silico investigation of new binding pocket for mitogen activated kinase kinase (MEK): Development of new promising inhibitors.

    PubMed

    Yari, Hamed; Ganjalikhany, Mohamad Reza; Sadegh, Hamidreza

    2015-12-01

    It has been previously shown that the inhibition of mitogen activated protein kinase kinase (MEK) contributes to apoptosis and suppression of different cancer cells. Correspondingly, a number of MEK1/2 inhibitors have been designed and evaluated since 2001. However, they did not satisfy essential pharmacokinetic (PK) and pharmacodynamic (PD) properties thus, almost most of them were terminated in pre-clinical or clinical studies. This study aims to design new specific MEK1/2 inhibitors with improved PK/PD profiles to be used as alternative cancer medications. In first part of this study, a comprehensive screening, for the first time, was done on well-known MEK1/2 inhibitors using a number of computational programs such as AutoDock Tools 4.2 (ADT) and AutoDock Vina. Therefore a valuable training dataset as well as a reliable pharmacophore model were provided which were then used to design new inhibitors. According to the results of training dataset, Trametinib was determined as the best inhibitor provided, so far. So, Trametinib was used as the lead structure to design new inhibitors in this study. In second part of this investigation, a set of new allosteric MEK1/2 inhibitors were designed significantly improving the binding energy as well as the ADMET properties, suggesting more specific and stable ligand-receptor complexes. Consequently, the structures 14 and 15 of our inhibitors, as the most potent structures, are great substituents for Trametinib to be used and evaluated in clinical trials as alternative cancer drugs.

  13. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production.

    PubMed

    Liu, Shuying; Hua, Lei; Dong, Sujun; Chen, Hongqi; Zhu, Xudong; Jiang, Jun'e; Zhang, Fang; Li, Yunhai; Fang, Xiaohua; Chen, Fan

    2015-11-01

    Grain size is an important agronomic trait in determining grain yield. However, the molecular mechanisms that determine the final grain size are not well understood. Here, we report the functional analysis of a rice (Oryza sativa L.) mutant, dwarf and small grain1 (dsg1), which displays pleiotropic phenotypes, including small grains, dwarfism and erect leaves. Cytological observations revealed that the small grain and dwarfism of dsg1 were mainly caused by the inhibition of cell proliferation. Map-based cloning revealed that DSG1 encoded a mitogen-activated protein kinase (MAPK), OsMAPK6. OsMAPK6 was mainly located in the nucleus and cytoplasm, and was ubiquitously distributed in various organs, predominately in spikelets and spikelet hulls, consistent with its role in grain size and biomass production. As a functional kinase, OsMAPK6 interacts strongly with OsMKK4, indicating that OsMKK4 is likely to be the upstream MAPK kinase of OsMAPK6 in rice. In addition, hormone sensitivity tests indicated that the dsg1 mutant was less sensitive to brassinosteroids (BRs). The endogenous BR levels were reduced in dsg1, and the expression of several BR signaling pathway genes and feedback-inhibited genes was altered in the dsg1 mutant, with or without exogenous BRs, indicating that OsMAPK6 may contribute to influence BR homeostasis and signaling. Thus, OsMAPK6, a MAPK, plays a pivotal role in grain size in rice, via cell proliferation, and BR signaling and homeostasis.

  14. Stage-specific differential activation of mitogen-activated protein kinases in hypertrophied and failing rat hearts.

    PubMed

    Hayashida, W; Kihara, Y; Yasaka, A; Inagaki, K; Iwanaga, Y; Sasayama, S

    2001-04-01

    Mitogen-activated protein kinases (MAPKs) are involved in the early development of cardiac hypertrophy, but their roles in chronic left ventricular hypertrophy (LVH) are unclear. We studied the angiotensin (Ang) II-induced cardiac MAPK activation of the hypertensive Dahl salt-sensitive (DS) rats in the subacute developing LVH stage, the chronic compensated LVH stage, and the congestive heart failure (CHF) stage. In the isolated, coronary-perfused heart preparation, Ang II infusion (1x10(-6)mol/l) activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38-MAPK in the LV myocardium. No substantial differences were observed in the Ang II-induced ERK activation between the normotensive control DS rats and the hypertensive DS rats in either stage. In contrast, the Ang II-induced activation of JNK and p38-MAPK was augmented in the subacute LVH stage of the hypertensive DS rats, but then progressively attenuated in the chronic LVH and CHF stages. Chronic treatment with an angiotensin converting enzyme inhibitor, temocapril (20 mg/kg/day), ameliorated the responsiveness of the JNK/p38-MAPK activation, suggesting that the decreased JNK/p38-MAPK activation is a consequence of negative feedback regulation for the activated cardiac renin-angiotensin system in chronic LVH and CHF. Thus, the Ang II-induced activation of multiple cardiac MAPK pathways are differentially regulated, depending on the stages of chronic hypertrophic process. The JNK and p38-MAPK activation may be involved in the early development of adaptive LVH. However, the responsiveness of the cardiac JNK/p38-MAPK pathways progressively decreased in chronic LVH and CHF under the chronic activation of tissue renin-angiotensin system.

  15. Cigarette Smoke-induced Left Ventricular Remodelling is Associated with Activation of Mitogen-activated Protein Kinases

    PubMed Central

    Gu, Lianzhi; Pandey, Vikas; Geenen, David L.; Chowdhury, Shamim A. K.; Piano, Mariann R.

    2008-01-01

    Aim To determine the effects of cigarette smoke (CS) exposure on the expression/activation of mitogen-activated protein kinases (MAPKs) (extracellular signal-regulated kinase [ERK1/2], p38-kinase [p38] and c-Jun NH2–terminal protein kinase [JNK]), norepinephrine (NE) levels and myocardial structure and function. Methods Rats were randomised to two groups: CS–exposed (n = 10) or room air (CON) (n = 12). After 5 weeks, the animals underwent echocardiography with pulse-wave Doppler flow measurements. Hearts were removed for microscopy and Western blot analysis. Results CS exposure was associated with significant increases in NE urinary levels and larger ventricular dimensions (mm) (CON = left ventricular end diastolic dimension [LVEDD] 7.99 ± 0.10, LV end systolic dimension [LVESD] 4.55 ± 0.20, CS = LVEDD 8.3 ± 0.10, LVESD 5.3 ± 0.09, p = 0.026, p = 0.003). There was also evidence of systolic dysfunction in the CS-exposed group compared to the CON group (fractional shortening %, CON = 43 ± 2, CS = 36 ± .09, p = 0.010). In CS-exposed hearts, significant increases in phosphorylated p38/total p38 (0.975 ± 0.05) and phosphorylated ERK1/2/totalERK1/2 (1.919 ± 0.050) were found compared to CON hearts (0.464 ± 0.008, 0.459 ± 0.050, respectively). No significant differences were found in JNK levels between the groups. Conclusions Increased NE levels and MAPK activation are associated with CS-related left ventricular remodelling. PMID:18815071

  16. Antioxidative effect of p38 mitogen-activated protein kinase inhibitor in the kidney of hypertensive rat.

    PubMed

    Tojo, Akihiro; Onozato, Maristela Lika; Kobayashi, Naohiko; Goto, Atsuo; Matsuoka, Hiroaki; Fujita, Toshiro

    2005-01-01

    Nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase is regulated by angiotensin II, interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha via p38 mitogen-activated protein kinase (MAPK). We hypothesized that p38 MAPK inhibitor, FR167653, may suppress NAD(P)H oxidase and its oxygen radical production and ameliorate renal damage in Dahl salt-sensitive rats with heart failure (DSHF). DSHF rats were fed with 8% NaCl diet from 6 to 18 weeks old. Eleven-week-old DSHF rats received either vehicle or FR167653 (2 mg/kg per day) for 7 weeks and the renal NAD(P)H oxidase p47phox and nitric oxide synthase (NOS), superoxide production and renal damage were evaluated in comparison with the control Dahl salt-resistant rat fed with 8% NaCl diet. In the kidney of DSHF rat, phosphorylated p38 MAPK was enhanced with an increased IL-1beta and TNF-alpha production compared with control rats. Treatment with FR167653 significantly suppressed p38 MAPK, IL-1beta and TNF-alpha. Renal NAD(P)H oxidase p47phox expression and superoxide production were significantly increased in the DSHF rats and treatment with FR167653 suppressed NAD(P)H oxidase expression and reduced superoxide formation. Renal endothelial and inducible NOS were reduced in DSHF rats compared with control rats, but FR167653 increased NOS and NO production in the kidney. Proteinuria, glomerulosclerosis and interstitial macrophage migration via intercellular adhesion molecule-1 (ICAM-1) were enhanced in DSHF rat and they were ameliorated by FR167653. The inhibition of p38 MAPK by FR167653 reduced renal IL-1beta and TNF-alpha production and ameliorated renal damage in hypertensive rat via suppression of NAD(P)H oxidase and enhanced NO bioavailability.

  17. Contributions of reactive oxygen species and mitogen-activated protein kinase signaling in arsenite-stimulated hemeoxygenase-1 production

    SciTech Connect

    Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G. . E-mail: lhudson@salud.unm.edu

    2007-01-15

    Hemeoxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. HO-1 has cytoprotective activities and arsenite is a potent inducer of HO-1 in many cell types and tissues, including epidermal keratinocytes. We investigated the potential contributions of reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation to arsenite-dependent regulation of HO-1 in HaCaT cells, an immortalized human keratinocyte line. Both epidermal growth factor (EGF) and arsenite stimulated ROS production was detected by dihydroethidium (DHE) staining and fluorescence microscopy. Arsenite induced HO-1 in a time- and concentration-dependent manner, while HO-1 expression in response to EGF was modest and evident at extended time points (48-72 h). Inhibition of EGF receptor, MEK I/II or Src decreased arsenite-stimulated HO-1 expression by 20-30%. In contrast, addition of a superoxide scavenger or inhibition of p38 activity decreased the arsenite-dependent response by 80-90% suggesting that ROS and p38 are required for HO-1 induction. However, ROS generation alone was insufficient for the observed arsenite-dependent response as use of a xanthine/xanthine oxidase system to generate ROS did not produce an equivalent upregulation of HO-1. Cooperation between ERK signaling and ROS generation was demonstrated by synergistic induction of HO-1 in cells co-treated with EGF and xanthine/xanthine oxidase resulting in a response nearly equivalent to that observed with arsenite. These findings suggest that the ERK/MAPK activation is necessary but not sufficient for optimal arsenite-stimulated HO-1 induction. The robust and persistent upregulation of HO-1 may have a role in cellular adaptation to chronic arsenic exposure.

  18. p38γ Mitogen-activated Protein Kinase Suppresses Chondrocyte Production of MMP-13 in Response to Catabolic Stimulation

    PubMed Central

    Long, D.L.; Loeser, R.F.

    2010-01-01

    Summary Objective The signaling protein p38 mitogen-activated protein kinase is required for inflammatory signaling in chondrocytes that regulates MMP production. We sought to determine the role of specific p38 isoforms in chondrocyte catabolic signaling in response to IL-1β and fibronectin fragments. Methods Human articular chondrocytes isolated from normal ankle cartilage from tissue donors or from osteoarthritic knee cartilage obtained during knee replacement were stimulated with IL-1β or fibronectin fragment (Fn-f), with or without pretreatment with p38 inhibitors (SB203580 or BIRB796) or growth factors (IGF-1 and OP-1). p38 isoform phosphorylation was measured by antibody array and immunoblotting. MMP-13 expression was measured by real-time PCR, ELISA, and immunoblotting. Chondrocytes were transfected with plasmids expressing constitutively active (CA) p38γ or with adenovirus expressing dominant negative (DN) p38γ. Results Stimulation of chondrocytes with either IL-1β or Fn-f led to enhanced phosphorylation of p38α and p38γ, with little phosphorylation of p38β or p38δ isoforms. p38α localized to the nucleus and p38γ to the cytosol. Inhibition of both p38α and p38γ with BIRB796 resulted in less inhibition of MMP-13 production in response to IL-1β or FN-f than did inhibition of only p38α with SB203580. Transfection with CAp38γ resulted in decreased MMP-13 production while transduction with DNp38γ resulted in increased MMP-13 production. IGF-1 and OP-1 pretreatment inhibited p38α phosphorylation but not p38γ phosphorylation. Conclusions p38γ is activated by catabolic stimulation of human articular chondrocytes, but interestingly suppresses MMP-13 production. Treatments that increase p38γ activation may be of therapeutic benefit in reducing chondrocyte production of MMP-13. PMID:20633667

  19. Differential Regulation of Proinflammatory Cytokine Expression by Mitogen-Activated Protein Kinases in Macrophages in Response to Intestinal Parasite Infection

    PubMed Central

    Lim, Mei Xing; Png, Chin Wen; Tay, Crispina Yan Bing; Teo, Joshua Ding Wei; Jiao, Huipeng; Lehming, Norbert

    2014-01-01

    Blastocystis is a common enteric protistan parasite that can cause acute, as well as chronic, infection and is associated with irritable bowel syndrome (IBS). However, the pathogenic status of Blastocystis infection remains unclear. In this study, we found that Blastocystis antigens induced abundant expression of proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), in mouse intestinal explants, in mouse colitis colon, and in macrophages. Further investigation utilizing RAW264.7 murine macrophages showed that Blastocystis treatment in RAW264.7 macrophages induced the activation of ERK, JNK, and p38, the three major groups of mammalian mitogen-activated protein (MAP) kinases that play essential roles in the expression of proinflammatory cytokines. ERK inhibition in macrophages significantly suppressed both mRNA and protein expression of IL-6 and TNF-α and mRNA expression of IL-1β. On the other hand, JNK inhibition resulted in reductions in both c-Jun and ERK activation and significant suppression of all three proinflammatory cytokines at both the mRNA and protein levels. Inhibition of p38 suppressed only IL-6 protein expression with no effect on the expression of IL-1β and TNF-α. Furthermore, we found that serine proteases produced by Blastocystis play an important role in the induction of ERK activation and proinflammatory cytokine expression by macrophages. Our study thus demonstrated for the first time that Blastocystis could induce the expression of various proinflammatory cytokines via the activation of MAP kinases and that infection with Blastocystis may contribute to the pathogenesis of inflammatory intestinal diseases through the activation of inflammatory pathways in host immune cells, such as macrophages. PMID:25156742

  20. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway.

    PubMed

    Chang, Yuan-Ching; Hsu, Yi-Chiung; Liu, Chien-Liang; Huang, Shih-Yuan; Hu, Meng-Chun; Cheng, Shih-Ping

    2014-01-01

    Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2) activity and induced activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer.

  1. Expression of p38 mitogen-activated protein kinase (p38MAPK) and pathological change in intussusception.

    PubMed

    Guo, Wan-Liang; Wang, Jian; Liu, Chi; Yang, Fu-Bin; Li, Shao-Wei

    2016-09-01

    The aim of this study was to develop a mouse model and further assess the pathological changes associated with the expression of p38mitogen-activated protein kinase (p38MAPK) in intussusception. Sixty-two adult Balb/C mice were used. A longitudinal incision was made in the middle rectus muscle in the body cavity. The ileum was intussuscepted into the colon. Measurements were taken at the onset of intussusception and at 5, 15, 30, 60, and 120 min. Mucosal impairment was assessed on microscopy. Ten of the intussuscepted mice were used as an ischemia-reperfusion (I/R) model. Immunohistochemistry was used to assess expression of p38MAPK in the I/R model and pediatric patients specimens of intussusception. The intussusception model was successfully established in 46 mice. After 15 min, vascular compromise became visible in these 46 mice. Over time, vascular function worsened. There were significant differences in microscopy injury score in the intestinal mucosa between the 15 min and 30 min groups (P = 0.0006), 30 min and 60 min groups (P = 0.0046), and the 60 min and 120 min groups (P = 0.0050). There was no significant difference between the 5 min and 15 min groups (P = 0.0597). p38MAPK was expressed strongly in pediatric specimens of intussusception. Immunostained sections of intestinal epithelium had significantly higher mean quick score for p38MAPK in the intussusception I/R model group than in the intussusception group and controls (P = 0.0130). On each two-group comparison there was a significant difference between groups (all P < 0.01; Fig. ). The present mouse model can be used to assess the dynamic pathological changes associated with intussusception. I/R is associated with upregulation of p38MAPK in intussusception. © 2016 Japan Pediatric Society.

  2. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling

    PubMed Central

    Lin, Fan; Ding, Haidong; Wang, Jinxiang; Zhang, Hong; Zhang, Aying; Zhang, Yun; Tan, Mingpu; Dong, Wen; Jiang, Mingyi

    2009-01-01

    In maize (Zea mays), abscisic acid (ABA)-induced H2O2 production activates a 46 kDa mitogen-activated protein kinase (p46MAPK), and the activation of p46MAPK also regulates the production of H2O2. However, the mechanism for the regulation of H2O2 production by MAPK in ABA signalling remains to be elucidated. In this study, four reactive oxygen species (ROS)-producing NADPH oxidase (rboh) genes (ZmrbohA–D) were isolated and characterized in maize leaves. ABA treatment induced a biphasic response (phase I and phase II) in the expression of ZmrbohA–D and the activity of NADPH oxidase. Phase II induced by ABA was blocked by pretreatments with two MAPK kinase (MPKKK) inhibitors and two H2O2 scavengers, but phase I was not affected by these inhibitors or scavengers. Treatment with H2O2 alone also only induced phase II, and the induction was arrested by the MAPKK inhibitors. Furthermore, the ABA-activated p46MAPK was partially purified. Using primers corresponding to the sequences of internal tryptic peptides, the p46MAPK gene was cloned. Analysis of the tryptic peptides and the p46MAPK sequence indicate it is the known ZmMPK5. Treatments with ABA and H2O2 led to a significant increase in the activity of ZmMPK5, although ABA treatment only induced a slight increase in the expression of ZmMPK5. The data indicate that H2O2-activated ZmMPK5 is involved in the activation of phase II in ABA signalling, but not in phase I. The results suggest that there is a positive feedback loop involving NADPH oxidase, H2O2, and ZmMPK5 in ABA signalling. PMID:19592501

  3. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Protein Corona of Magnetic Hydroxyapatite Scaffold Improves Cell Proliferation via Activation of Mitogen-Activated Protein Kinase Signaling Pathway.

    PubMed

    Zhu, Yue; Yang, Qi; Yang, Minggang; Zhan, Xiaohui; Lan, Fang; He, Jing; Gu, Zhongwei; Wu, Yao

    2017-03-21

    The beneficial effect of magnetic scaffolds on the improvement of cell proliferation has been well documented. Nevertheless, the underlying mechanisms about the magnetic scaffolds stimulating cell proliferation remain largely unknown. Once the scaffold enters into the biological fluids, a protein corona forms and directly influences the biological function of scaffold. This study aimed at investigating the formation of protein coronas on hydroxyapatite (HA) and magnetic hydroxyapatite (MHA) scaffolds in vitro and in vivo, and consequently its effect on regulating cell proliferation. The results demonstrated that magnetic nanoparticles (MNP)-infiltrated HA scaffolds altered the composition of protein coronas and ultimately contributed to increased concentration of proteins related to calcium ions, G-protein coupled receptors (GPCRs), and MAPK/ERK cascades as compared with pristine HA scaffolds. Noticeably, the enriched functional proteins on MHA samples could efficiently activate of the MAPK/ERK signaling pathway, resulting in promoting MC3T3-E1 cell proliferation, as evidenced by the higher expression levels of the key proteins in the MAPK/ERK signaling pathway, including mitogen-activated protein kinase kinases1/2 (MEK1/2) and extracellular signal regulated kinase 1/2 (ERK1/2). Artificial down-regulation of MEK expression can significantly down-regulate the MAPK/ERK signaling and consequently suppress the cell proliferation on MHA samples. These findings not only provide a critical insight into the molecular mechanism underlying cellular proliferation on magnetic scaffolds, but also have important implications in the design of magnetic scaffolds for bone tissue engineering.

  5. Effects of peripheral inflammation on activation of p38 mitogen-activated protein kinase in the rostral ventromedial medulla.

    PubMed

    Imbe, Hiroki; Okamoto, Keiichiro; Aikawa, Fumiko; Kimura, Akihisa; Donishi, Tomohiro; Tamai, Yasuhiko; Iwai-Liao, Yasutomo; Senba, Emiko

    2007-02-23

    In the present study, the activation of p38 mitogen-activated protein kinase (p38 MAPK) in the rostral ventromedial medulla (RVM) following the injection of complete Freund's adjuvant (CFA) into the rat hindpaw was examined in order to clarify the mechanisms underlying the dynamic changes in the descending pain modulatory system after peripheral inflammation. Phospho-p38 MAPK-immunoreactive (p-p38 MAPK-IR) neurons were observed in the nucleus raphe magnus (NRM) and nucleus reticularis gigantocellularis pars alpha (GiA). Inflammation induced the activation of p38 MAPK in the RVM, with a peak at 30 min after the injection of CFA into the hindpaw, which lasted for 1 h. In the RVM, the number of p-p38 MAPK-IR neurons per section in rats killed at 30 min after CFA injection (19.4+/-2.0) was significantly higher than that in the naive group (8.4+/-2.4) [p<0.05]. At 30 min after CFA injection, about 40% of p-p38 MAPK-IR neurons in the RVM were serotonergic neurons (tryptophan hydroxylase, TPH, positive) and about 70% of TPH-IR neurons in the RVM were p-p38 MAPK positive. The number of p-p38 MAPK- and TPH-double-positive RVM neurons in the rats with inflammation was significantly higher than that in naive rats [p<0.05]. These findings suggest that inflammation-induced activation of p38 MAPK in the RVM may be involved in the plasticity in the descending pain modulatory system following inflammation.

  6. Angiotensin III stimulates ERK1/2 mitogen-activated protein kinases and astrocyte growth in cultured rat astrocytes.

    PubMed

    Clark, Michelle A; Tran, Hsieu; Nguyen, Chinh

    2011-10-01

    Angiotensin (Ang) III is a biologically active metabolite of Ang II with similar effects and receptor binding properties as Ang II. Most Ang III studies delineate physiological effects of the peptide but, the intracellular pathways leading to the actions are unknown and are a focus of these studies. We investigated in cultured brainstem and cerebellum rat astrocytes whether Ang III stimulates ERK1/2 mitogen activated protein (MAP) kinases and astrocyte growth. Ang III significantly stimulated ERK1/2 MAP kinases in a dose- and time-dependent manner. The maximal stimulation occurred with 100 nM Ang III (2.8±0.3 and 2.3±0.1-fold over basal, in brainstem and cerebellum astrocytes, respectively). This stimulation occurred as early as 1 min, and was sustained for at least 15 min. Moreover, inhibition of the ERK1/2 MAP kinase pathway by 10 μM PD98059 attenuated Ang III-induced ERK1/2 phosphorylation. Ang III induction of ERK1/2 occurred via stimulation of the Ang AT(1) receptor since pretreatment with 10 μM Losartan, a selective AT(1) receptor blocker, prevented Ang III-induced ERK1/2 phosphorylation. The selective AT(2) Ang receptor blocker PD123319 was ineffective. Comparable to Ang II, Ang III also stimulated astrocyte growth in a concentration-dependent manner, an effect that occurred via activation of the AT(1) receptor as well. These findings suggest that Ang III has similar effects as Ang II in astrocytes since it rapidly stimulates the phosphorylation of the ERK1/2 MAP kinases and induces astrocyte proliferation through activation of the AT(1) receptor. These studies are important in establishing signaling pathways for Ang III and provide validation of the central role of Ang III.

  7. Inhibition of p38 mitogen-activated protein kinase signaling reduces fibrosis and lipid accumulation after rotator cuff repair.

    PubMed

    Wilde, Jeffrey M; Gumucio, Jonathan P; Grekin, Jeremy A; Sarver, Dylan C; Noah, Andrew C; Ruehlmann, David G; Davis, Max E; Bedi, Asheesh; Mendias, Christopher L

    2016-09-01

    The repair of rotator cuff tears is often complicated by fatty degeneration, which is the combination of lipid accumulation, fibrosis, inflammation, and muscle weakness. A signaling molecule that plays a central role in these processes is p38 mitogen-activated protein kinase (MAPK). The purpose of this study was to evaluate the ability of a small molecule inhibitor of p38 MAPK, SB203580, to reduce fatty degeneration in a preclinical model of rotator cuff injury and repair. Adult rats underwent a bilateral supraspinatus tenotomy that was repaired 30 days later. Rats were treated with SB203580 or vehicle every 2 days, with injections beginning 3 days before surgery and continuing until 7 days after surgery. Two weeks after surgical repair, muscles were analyzed using histology, lipid profiling, gene expression, and permeabilized muscle fiber contractility. Inhibition of p38 MAPK resulted in a nearly 49% reduction in fat accumulation and a 29% reduction in collagen content, along with changes in corresponding genes regulating adipogenesis and matrix accumulation. There was also a marked 40% to 80% decrease in the expression of several proinflammatory genes, including IL1B, IL6, and COX2, and a 360% increase in the anti-inflammatory gene IL10. No differences were observed for muscle fiber force production. Inhibition of p38 MAPK was found to result in a significant decrease in intramuscular lipid accumulation and fibrosis that is usually seen in the degenerative cascade of rotator cuff tears, without having negative effects on the contractile properties of the rotator cuff muscle tissue. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Curcumin increases gelatinase activity in human neutrophils by a p38 mitogen-activated protein kinase (MAPK)-independent mechanism.

    PubMed

    Antoine, Francis; Girard, Denis

    2015-01-01

    Curcumin has been found to possess anti-inflammatory activities and neutrophils, key players in inflammation, were previously found to be important targets to curcumin in a few studies. For example, curcumin was found to induce apoptosis in neutrophils by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. However, the role of curcumin on the biology of neutrophils is still poorly defined. To study the role of curcumin on neutrophil degranulation and to determine the role of p38 MAPK, human neutrophils were freshly isolated from healthy individuals and incubated in vitro with curcumin. Degranulation was studied at three levels: surface expression of granule markers by flow cytometry; release of matrix metallopeptidase-9 (MMP-9 or gelatinase B) enzyme into supernatants by Western blot; and gelatinase B activity by zymography. Activation of p38 MAPK was studied by monitoring its tyrosine phosphorylation levels by western blot and its role by the utilization of a pharmacological inhibitor. The results indicate that curcumin increased the cell surface expression of CD35 (secretory vesicle), CD63 (azurophilic granules), and CD66b (gelatinase granules) in neutrophils. Also, curcumin increased the release and enzymatic activity of gelatinase B in the extracellular milieu and activated p38 MAP kinase in these cells. However, in contrast to fMLP, curcumin-induced enzymatic activity and secretion of gelatinase B were not reversed by use of a p38 inhibitor. Finally, it was found that curcumin was able to enhance phagocytosis. Taken together, the results here demonstrate that curcumin induced degranulation in human neutrophils and that the increased gelatinase activity is not dependent on p38 MAPK activation. Therefore, degranulation is another human neutrophil function that could be modulated by curcumin, as well as phagocytosis.

  9. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia.

    PubMed

    Hu, Li-Fang; Wong, Peter T-H; Moore, Philip K; Bian, Jin-Song

    2007-02-01

    The present study attempts to investigate the effect of H(2)S on lipopolysaccharide (LPS)-induced inflammation in both primary cultured microglia and immortalized murine BV-2 microglial cells. We found that exogenous application of sodium hydrosulfide (NaHS) (a H(2)S donor, 10-300 micro mol/L) attenuated LPS-stimulated nitric oxide (NO) in a concentration-dependent manner. Stimulating endogenous H(2)S production decreased LPS-stimulated NO production, whereas lowering endogenous H(2)S level increased basal NO production. Western blot analysis showed that both exogenous and endogenous H(2)S significantly attenuated the stimulatory effect of LPS on inducible nitric oxide synthase expression, which is mimicked by SB 203580, a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. Exogenously applied NaHS significantly attenuated LPS-induced p38 MAPK phosphorylation in BV-2 microglial cells. Moreover, both NaHS (300 micro mol/L) and SB 203580 (1 micro mol/L) significantly attenuated LPS-induced tumor necrosis factor-alpha secretion, another inflammatory indicator. In addition, NaHS (10-300 micro mol/L) dose-dependently decreased LPS-stimulated NO production in primary cultured astrocytes, suggesting that the anti-neuroinflammatory effect of H(2)S is not specific to microglial cells alone. Taken together, H(2)S produced an anti-inflammatory effect in LPS-stimulated microglia and astrocytes, which may be due to inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways. These findings may have important implications in the treatment of neuroinflammation-related diseases.

  10. Bovine spermatozoa react to in vitro heat stress by activating the mitogen-activated protein kinase 14 signalling pathway.

    PubMed

    Rahman, Mohammad Bozlur; Vandaele, Leen; Rijsselaere, Tom; El-Deen, Mohamed Shehab; Maes, Dominiek; Shamsuddin, Mohammed; Van Soom, Ann

    2014-01-01

    Heat stress has long been recognised as a cause of subfertility in farm animals. The objectives of the present study were to elucidate the effect of heat stress on sperm function and involvement of the mitogen-activated protein kinase (MAPK) 14 signalling pathway. Spermatozoa incubated for 4 h at a physiological temperature (38.5°C) exhibited significantly (P<0.05) reduced motility, plasma membrane integrity and mitochondrial potential compared with non-incubated spermatozoa; the reductions in these parameters were more severe following incubation at a hyperthermic (41°C) temperature (P<0.01). Percentages of fertilisation and embryo development were highly affected in spermatozoa incubated at 41°C compared with non-incubated spermatozoa (P<0.01). Similarly, embryo quality was adversely affected by sperm incubation at 41°C, as indicated by a higher apoptotic cell ratio in Day 7 blastocysts compared with that in the non-incubated control group (14.6% vs 6.7%, respectively; P<0.01). Using SB203580 (10 µgmL(-1)), a specific inhibitor of the p38 MAPK pathway, during sperm hyperthermia reduced MAPK14 activation (24.9% vs 35.6%), increased sperm motility (45.8% vs 26.5%) and reduced DNA fragmentation (16.9% vs 23.4%) compared with the untreated control group, but did not improve subsequent fertilisation and embryo development. In conclusion, heat stress significantly affects the potential of spermatozoa to penetrate oocytes, as well as subsequent embryo development and quality. Notably, the data show that the MAPK14 signalling pathway is largely involved in heat-induced sperm damage. However, further research is needed to elucidate other signalling pathways possibly involved in heat-induced sperm damage.

  11. Stimulation of Periodontal Ligament Stem Cells by Dentin Matrix Protein 1 Activates Mitogen-Activated Protein Kinase and Osteoblast Differentiation

    PubMed Central

    Chandrasekaran, Sangeetha; Ramachandran, Amsaveni; Eapen, Asha; George, Anne

    2013-01-01

    Background Periodontitis can ultimately result in tooth loss. Many natural and synthetic materials have been tried to achieve periodontal regeneration, but the results remain variable and unpredictable. We hypothesized that exogenous treatment with dentin matrix protein 1 (DMP1) activates specific genes and results in phenotypic and functional changes in human periodontal ligament stem cells (hPDLSCs). Methods hPDLSCs were isolated from extracted teeth and cultured in the presence or absence of DMP1. Quantitative polymerase chain reactions were performed to analyze the expression of several genes involved in periodontal regeneration. hPDLSCs were also processed for immunocytochemical and Western blot analysis using phosphorylated extracellular signal-regulated kinase (pERK) and ERK antibodies. Alkaline phosphatase and von Kossa staining were performed to characterize the differentiation of hPDLSCs into osteoblasts. Field emission scanning electron microscopic analysis of the treated and control cell cultures were also performed. Results Treatment with DMP1 resulted in the upregulation of genes, such as matrix metalloproteinase-2, alkaline phosphatase, and transforming growth factor β1. Activation of ERK mitogen-activated protein kinase signaling pathway and translocation of pERK from the cytoplasm to the nucleus was observed. Overall, DMP1-treated cells showed increased expression of alkaline phosphatase, increased matrix, and mineralized nodule formation when compared with untreated controls. Conclusion DMP1 can orchestrate a coordinated expression of genes and phenotypic changes in hPDLSCs by activation of the ERK signaling pathway, which may provide a valuable strategy for tissue engineering approaches in periodontal regeneration. PMID:22612367

  12. MicroRNAs function primarily in the pathogenesis of human anencephaly via the mitogen-activated protein kinase signaling pathway.

    PubMed

    Zhang, W D; Yu, X; Fu, X; Huang, S; Jin, S J; Ning, Q; Luo, X P

    2014-02-20

    Anencephaly is one of the most serious forms of neural tube defects (NTDs), a group of congenital central nervous system (CNS) malformations. MicroRNAs (miRNAs) are involved in diverse biological processes via the post-transcriptional regulation of target mRNAs. Although miRNAs play important roles in the development of mammalian CNS, their function in human NTDs remains unknown. Using a miRNA microarray, we identified a unique expression profile in fetal anencephalic brain tissues, characterized by 70 upregulated miRNAs (ratio ≥ 2) and 7 downregulated miRNAs (ratio ≤ 0.5) compared with healthy human samples. Ten miRNAs with altered expression were selected from the microarray findings for validation with real-time quantitative reverse transcription-polymerase chain reaction. We found that in anencephalic tissues, miR-22, miR-23a, miR-34a, miR-103, miR-125a, miR-132, miR-134, miR-138, and miR-185 were significantly upregulated, while miR-149 was significantly downregulated. Furthermore, 459 potential target genes within the validated miRNAs were revealed using combined four target prediction algorithms in the human genome, and subsequently analyzed with the Molecule Annotation System 3.0. A total of 119 target genes were ultimately identified, including those involved in 22 singular annotations (i.e., transcription, signal transduction, and cell cycle) and 55 functional pathways [i.e., mitogen-activated protein kinase (MAPK) signaling pathway, and actin cytoskeleton regulation]. Six target genes (HNRPU, JAG1, FMR1, EGR3, RUNX1T1, and NDEL1) were chosen as candidate genes and associated with congenital birth abnormalities of the brain structure. Our results, therefore, suggest that miRNA maladjustment mainly contributes to the etiopathogenesis of anencephaly via the MAPK signaling pathway.

  13. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  14. Mitogenic activity of CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, isolated from the marine invertebrate Cucumaria echinata (Holothuroidea).

    PubMed

    Jiang, Zedong; Kim, Daekyung; Yamasaki, Yasuhiro; Yamanishi, Tomohiro; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2010-01-01

    An N-acetylgalactosamine (GalNAc)-specific Ca(2+)-dependent lectin (C-type lectin), isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), CEL-I, showed potent mitogenic activity toward normal mouse spleen cells. The mitogenic activity of CEL-I, which reached a maximum at 100 microg/ml, was inhibited by GalNAc in a concentration-dependent manner. The mitogenic effect of CEL-I at 10 microg/ml on T cell- enriched splenocytes was at a similar level due to a well-known T cell mitogen, concanavalin A (Con A), at 10 microg/ml. Furthermore, CEL-I evoked a mitogenic response from nude mouse spleen cells, while no significant effects of Con A on this cell population were observed over a wide range of concentrations. These results suggest that CEL-I is a potent mitogenic lectin with the ability to stimulate both T and B cells.

  15. Prevention of neuronal apoptosis by phorbol ester-induced activation of protein kinase C: blockade of p38 mitogen-activated protein kinase.

    PubMed

    Behrens, M M; Strasser, U; Koh, J Y; Gwag, B J; Choi, D W

    1999-01-01

    Consistent with previous studies on cell lines and non-neuronal cells, specific inhibitors of protein kinase C induced mouse primary cultured neocortical neurons to undergo apoptosis. To examine the complementary hypothesis that activating protein kinase C would attenuate neuronal apoptosis, the cultures were exposed for 1 h to phorbol-12-myristate-13-acetate, which activated protein kinase C as evidenced by downstream enhancement of the mitogen-activated protein kinase pathway. Exposure to phorbol-12-myristate-13-acetate, or another active phorbol ester, phorbol-12,13-didecanoate, but not to the inactive ester, 4alpha-phorbol-12,13-didecanoate, markedly attenuated neuronal apoptosis induced by serum deprivation. Phorbol-12-myristate-13-acetate also attenuated neuronal apoptosis induced by exposure to beta-amyloid peptide 1-42, or oxygen-glucose deprivation in the presence of glutamate receptor antagonists. The neuroprotective effects of phorbol-12-myristate-13-acetate were blocked by brief (non-toxic) concurrent exposure to the specific protein kinase C inhibitors, but not by a specific mitogen-activated protein kinase 1 inhibitor. Phorbol-12-myristate-13-acetate blocked the induction of p38 mitogen-activated protein kinase activity and specific inhibition of this kinase by SB 203580 attenuated serum deprivation-induced apoptosis. c-Jun N-terminal kinase 1 activity was high at rest and not modified by phorbol-12-myristate-13-acetate treatment. These data strengthen the idea that protein kinase C is a key modulator of several forms of central neuronal apoptosis, in part acting through inhibition of p38 mitogen-activated protein kinase regulated pathways.

  16. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.

    PubMed Central

    Sithanandam, G; Latif, F; Duh, F M; Bernal, R; Smola, U; Li, H; Kuzmin, I; Wixler, V; Geil, L; Shrestha, S

    1996-01-01

    NotI linking clones, localized to the human chromosome 3p21.3 region and homozygously deleted in small cell lung cancer cell lines NCI-H740 and NCI-H1450, were used to search for a putative tumor suppressor gene(s). One of these clones, NL1G210, detected a 2.5-kb mRNA in all examined human tissues, expression being especially high in the heart and skeletal muscle. Two overlapping cDNA clones containing the entire open reading frame were isolated from a human heart cDNA library and fully characterized. Computer analysis and a search of the GenBank database to reveal high sequence identity of the product of this gene to serine-threonine kinases, especially to mitogen-activated protein kinase-activated protein kinase 2, a recently described substrate of mitogen-activated kinases. Sequence identitiy was 72% at the nucleotide level and 75% at the amino acid level, strongly suggesting that this protein is a serine-threonine kinase. Here we demonstrate that the new gene, referred to as 3pK (for chromosome 3p kinase), in fact encodes a mitogen-activated protein kinase-regulated protein serine-threonine kinase with a novel substrate specificity. PMID:8622688

  17. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability

    PubMed Central

    2013-01-01

    Background Iron is an essential nutrient for almost all organisms, and generating iron limiting conditions for pathogens is one of the host defense strategies against microbial infections. Excess of iron can be toxic; therefore, iron uptake is tightly controlled. The high affinity iron uptake system of the opportunistic pathogenic yeast Candida albicans has been shown to be essential for virulence. Several transcription factors and regulators of iron uptake genes were identified, but the knowledge of signaling pathways is still limited. Gene expression profiling of the Δhog1 deletion mutant indicated an involvement of the mitogen activated protein (MAP) kinase Hog1p. However, the function of Hog1p in the response of C. albicans to iron availability was not studied in detail. Thus, we analyzed phenotypic and molecular responses of C. albicans to different iron concentrations particularly with respect to the activity of the Hog1p MAP kinase module. Results We observed flocculation of yeast cells, when the iron ion concentration was equal to or higher than 5 μM. This phenotype was dependent on the MAP kinase Hog1p and the corresponding MAP kinase kinase Pbs2p. Moreover, high extracellular iron ion concentrations led to hyper-phosphorylation of Hog1p. We determined lower amounts of multicopper ferroxidase (MCFO) proteins and lower ferric reductase activity, when the iron ion concentration in the medium was increased. This effect was also observed for the Δhog1 mutant. However, the amounts of MCFO proteins and the cell surface ferric reductase activity were increased in the Δhog1 in comparison to wild type cells. This effect was independent of iron availability in growth media. Conclusions In C. albicans, the MAP kinase Hog1p is part of the network regulating the response of the organism to iron availability. Hog1p was transiently phosphorylated under high iron concentrations and was essential for a flocculent phenotype. Furthermore, deletion of HOG1 led to

  18. Detection of phosphorylated mitogen-activated protein kinase in the developing spinal cord of the mouse embryo

    SciTech Connect

    Teraishi, Toshiya; Miura, Kenji

    2011-09-16

    Highlights: {yields} We det