Sample records for elements na mg

  1. Content and distribution of macro- and micro-elements in the body of pasture-fed young horses.

    PubMed

    Grace, N D; Pearce, S G; Firth, E C; Fennessy, P F

    1999-03-01

    To determine the content and distribution of Na, K, Ca, P, Mg, S, Cu, Mn, Fe and Zn in the body of pasture-fed young horses and then use a factorial model to calculate the dietary mineral requirements for growth. Twenty-one foals were killed at about 150 days of age and the organs, soft tissues, skin and bones and a sample of muscle were dissected out and weighted. The mineral concentrations of elements in all soft tissues and bones were measured by inductively coupled emission spectrometry. The total mineral element composition associated with a tissue was determined from the weight of tissue and its mineral element concentration. Expressed as a percent of total body mineral elements, muscle contained 20% Na, 78% K, 32% Mg, 62% Cu, 36% Mn and 57% Zn, bone contained 47% Na, 99% Ca, 81% P, 62% Mg, 30% Mn and 28% Zn while the organs accounted for a smaller percentage ranging from 0.06% for Ca to 26% for Fe. In liver Cu accounted for 9.2% of total body Cu. Each kilogram of empty body weight was associated with 1.0 g Na, 2.5 g K, 17.1 g Ca, 10.1 g P, 0.4 g Mg, 1.1 mg Cu, 0.39 mg Mn, 52.5 mg Fe and 21.4 mg Zn. The mineral element content of body weight gain is a component used in the factorial model to determine dietary mineral element requirements for growth. The calculated dietary mineral requirements, expressed per kg dry matter, for a 200 kg horse gaining 1.0 kg/day were 1.0 g Na, 2.1 g K, 4.6 g Ca, 3.5 g P, 0.7 g Mg, 4.5 mg Cu and 25 mg Zn.

  2. Concentrations of macro- and micro-elements in the milk of pasture-fed thoroughbred mares.

    PubMed

    Grace, N D; Pearce, S G; Firth, E C; Fennessy, P F

    1999-03-01

    To determine the changes in Ca, P, Mg, Na, K, S, Cu, Fe and Zn concentrations of milk during the lactation in pasture-fed Thoroughbred mares and then calculate the dietary mineral requirements of the sucking foal and the lactating mare. Milk was sampled on days 1, 3, 7, 14, 21, 28 and at various times between 55 to 65, 85 to 95 and 135 to 150 days after parturition from 21 pasture-fed mares. The concentrations of macro- and micro-elements in the milk were determined by inductively coupled plasma emission spectrometry. Concentrations (mg/L) of these elements were highest in colostrum (Mg 302, Na 561, K 955, S 1035, Cu 0.76, Fe 0.79 and Zn 5.5) except for Ca (1245) and P (895), which where highest on day 7. The mean milk mineral element concentrations (mg/L) over days 55 to 150 were Ca 843, P 543, Mg 47, Na 120, K 590, S 219, Cu 0.19, Fe 0.34 and Zn 2.1. The mean plasma element concentrations (mg/L) over the same period were Ca 120, P 77.1, Mg 17.0, Na 3110, K 168, S 983, Cu 1.1, Fe 1.5 and Zn 0.49. Concentration gradients between plasma and milk were observed and, in the case of Ca, P, Mg, K and Zn, their concentrations in milk were greater than those in plasma, while a reverse situation was observed for Na, S, Cu and Fe. With the exception of Ca and P, the highest concentrations of mineral elements were observed in the colostrum. The nursing foal should have access to good pasture or creep feed, because the intakes of Ca, P and Cu from milk may be less than optimum to meet the daily mineral element requirements.

  3. TheoSSA - Model WD Spectra on Demand: The Impact of Ne, Na, Mg, and Iron-group Elements on the Balmer Lines

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Rauch, T.

    2015-06-01

    The registered German Astrophysical Virtual Observatory (GAVO) service TheoSSA provides easy access to synthetic stellar spectra. This GAVO database contains already ten thousands of these, which were calculated with different chemical compositions of the elements H to Ni. In addition to the database, it is possible to calculate individual spectra for hot, compact stars based on the Tübingen NLTE Model-Atmosphere Package (TMAP) via the TMAW service. The TMAW models were, in the pilot phase, restricted to the elements H, He, C, N, and O. Now, TMAW is extended to additionally consider opacities from Ne, Na, and Mg. Soon, TMAW will also be able to include the opacities from the so-called iron-group elements (Ca - Ni). We describe the improvements and show the impact of Ne, Na, Mg, and iron-group elements on the Balmer lines.

  4. The influence of manganese treatment on the distribution of metal elements in rats and the protection by sodium para-amino salicylic acid.

    PubMed

    Yuan, Zong-Xiang; Chen, Hai-Bin; Li, Shao-Jun; Huang, Xiao-Wei; Mo, Yu-Huan; Luo, Yi-Ni; He, Sheng-Nan; Deng, Xiang-Fa; Lu, Guo-Dong; Jiang, Yue-Ming

    2016-07-01

    Manganese (Mn) overexposure induced neurological damages, which could be potentially protected by sodium para-aminosalicylic acid (PAS-Na). In this study, we systematically detected the changes of divalent metal elements in most of the organs and analyzed the distribution of the metals in Mn-exposed rats and the protection by PAS-Na. Sprague Dawley (SD) rats received intraperitoneal injections of 15mg/kg MnCl2·4H2O (5d/week for 3 weeks), followed by subcutaneous (back) injections of PAS-Na (100 and 200mg/kg, everyday for 5 weeks). The concentrations of Mn and other metal elements [Iron (Fe), Copper (Cu), Zinc (Zn), Magnesium (Mg), Calcium (Ca)] in major organs (liver, spleen, kidney, thighbone and iliac bone, cerebral cortex, hippocampus and testes) and blood by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Mn overexposure significantly increased Mn in most organs, Fe and Zn in liver, Fe and Mg in blood; however decreased Fe, Cu, Zn, Mg and Ca in cortex, Cu and Zn in kidney, Cu and Mg in iliac bone, and Zn in blood. In contrast, PAS-Na treatment restored most changes particularly in cortex. In conclusion, excessive Mn exposure disturbed the balance of other metal elements but PAS-Na post-treatments could restore these alterations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents

    NASA Astrophysics Data System (ADS)

    Geerken, Esmee; de Nooijer, Lennart Jan; van Dijk, Inge; Reichart, Gert-Jan

    2018-04-01

    Accurate reconstructions of seawater salinity could provide valuable constraints for studying past ocean circulation, the hydrological cycle and sea level change. Controlled growth experiments and field studies have shown the potential of foraminiferal Na / Ca as a direct salinity proxy. Incorporation of minor and trace elements in foraminiferal shell carbonate varies, however, greatly between species and hence extrapolating calibrations to other species needs validation by additional (culturing) studies. Salinity is also known to impact other foraminiferal carbonate-based proxies, such as Mg / Ca for temperature and Sr / Ca for sea water carbonate chemistry. Better constraints on the role of salinity on these proxies will therefore improve their reliability. Using a controlled growth experiment spanning a salinity range of 20 units and analysis of element composition on single chambers using laser ablation-Q-ICP-MS, we show here that Na / Ca correlates positively with salinity in two benthic foraminiferal species (Ammonia tepida and Amphistegina lessonii). The Na / Ca values differ between the two species, with an approximately 2-fold higher Na / Ca in A. lessonii than in A. tepida, coinciding with an offset in their Mg content ( ˜ 35 mmol mol-2 versus ˜ 2.5 mmol mol-1 for A. lessonii and A. tepida, respectively). Despite the offset in average Na / Ca values, the slopes of the Na / Ca-salinity regressions are similar between these two species (0.077 versus 0.064 mmol mol-1 change per salinity unit). In addition, Mg / Ca and Sr / Ca are positively correlated with salinity in cultured A. tepida but show no correlation with salinity for A. lessonii. Electron microprobe mapping of incorporated Na and Mg of the cultured specimens shows that within chamber walls of A. lessonii, Na / Ca and Mg / Ca occur in elevated bands in close proximity to the primary organic lining. Between species, Mg banding is relatively similar, even though Mg content is 10 times lower and that variation within the chamber wall is much less pronounced in A. tepida. In addition, Na banding is much less prominent in this species than it is in A. lessonii. Inter-species differences in element banding reported here are hypothesized to be caused by differences in biomineralization controls responsible for element uptake.

  6. Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Stuper-Szablewska, Kinga; Sobieralski, Krzysztof; Magdziak, Zuzanna; Goliński, Piotr

    2013-01-01

    The aim of the study was to compare accumulation efficiency of Al, Ba and nutritional elements (Ca, Fe, K, Mg, Mn, Na) exhibited by six edible mushrooms collected in particular regions of Poland during the last 20 years. The studied mushroom species were Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, Leccinum aurantiacum, Suillus luteus and Xerocomus badius. The highest and the lowest concentrations of the elements in tested mushroom species were 11 - 410, 34 - 337, 16785 - 34600, 140 - 607, 12 - 75 and 16 - 143 mg kg(-1)d.m., respectively. The highest average concentrations of Al, Mg and Mn were observed in Suillus luteus fruiting bodies, while for Ba, Ca, K and Na it was in Lactarius deliciosus. BCF >1 was found for K and Mg in all tested mushroom species and additionally for the highest Ca and Na concentrations of all tested mushroom species except for C. cibarius and S. luteus, respectively. For the other tested elements (Al, Ba, Fe and Mn) BCF values < 1 were recorded.

  7. Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and [sup 234]U/[sup 238]U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Matthews, M.; Wasserburg, G.J.; Chen, J.H.

    1993-01-01

    A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographic and trace element analyses on a suite of Pleistocene samples that had previously been studied from [sup 234]U, [sup 230]Th, and U-[sup 230]Th ages (Chen et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles aremore » highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial [delta][sup 234]U, are generally correlated (Chen et al., 1991). As all these diagenetic changes involve the recystallization and deposition of aragonite, the authors infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the [sup 234]U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U-[sup 230]Th dating. The basic problem of identifying a priori unaltered coral skeletons for [sup 230]Th dating is not yet resolved. 64 refs., 16 figs., 5 tabs.« less

  8. Content and Bioaccumulation of Nine Mineral Elements in Ten Mushroom Species of the Genus Boletus

    PubMed Central

    Wang, Xue-Mei; Zhang, Ji; Li, Tao; Wang, Yuan-Zhong; Liu, Hong-Gao

    2015-01-01

    Concentrations and bioconcentration potential of nine elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) in ten species of wild edible Boletus and the corresponding underlying soils were analyzed. The analyses were performed using inductively coupled plasma atomic emission spectrophotometer. Boletus showed relative abundant contents of P, K, Fe, Mg, Ca, and Na and less of Zn, Cu, and Mn. Caps compared to stalks were enriched in P, K, Cu, Mg, and Zn, while stalks were enriched in Mn. The elements such as P and K were accumulated (BCF > 1), while Ca, Fe, Mg, Mn, and Na were excluded (BCF < 1) in the fruiting bodies. The correlation analysis indicated high correlations between Cu, Mn, Ca, and Fe in the mushrooms as compared to the corresponding soils. Significant correlations were also obtained between Cu-P (r = 0.775), Fe-P (r = 0.728), and Zn-P (r = 0.76) for caps and Cu-Mg (r = 0.721), Fe-Mg (r = 0.719), Zn-Mg (r = 0.824), and Zn-P (r = 0.818) for stalks. The results of this study imply that ability of fungi to accumulate elements from substrate could be influenced by mushroom species and underlying soil substrates. PMID:26146585

  9. Content and Bioaccumulation of Nine Mineral Elements in Ten Mushroom Species of the Genus Boletus.

    PubMed

    Wang, Xue-Mei; Zhang, Ji; Li, Tao; Wang, Yuan-Zhong; Liu, Hong-Gao

    2015-01-01

    Concentrations and bioconcentration potential of nine elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) in ten species of wild edible Boletus and the corresponding underlying soils were analyzed. The analyses were performed using inductively coupled plasma atomic emission spectrophotometer. Boletus showed relative abundant contents of P, K, Fe, Mg, Ca, and Na and less of Zn, Cu, and Mn. Caps compared to stalks were enriched in P, K, Cu, Mg, and Zn, while stalks were enriched in Mn. The elements such as P and K were accumulated (BCF > 1), while Ca, Fe, Mg, Mn, and Na were excluded (BCF < 1) in the fruiting bodies. The correlation analysis indicated high correlations between Cu, Mn, Ca, and Fe in the mushrooms as compared to the corresponding soils. Significant correlations were also obtained between Cu-P (r = 0.775), Fe-P (r = 0.728), and Zn-P (r = 0.76) for caps and Cu-Mg (r = 0.721), Fe-Mg (r = 0.719), Zn-Mg (r = 0.824), and Zn-P (r = 0.818) for stalks. The results of this study imply that ability of fungi to accumulate elements from substrate could be influenced by mushroom species and underlying soil substrates.

  10. Comparative evaluation of some commercially available brands of pharmaceutical preparations for Na, K and Mg concentrations.

    PubMed

    Hayat, Sikander; Chughtai, Muhammad Ismail; Ansari, Tariq Mahmood; Kamal, Ghulam Mustafa

    2012-04-01

    A study was carried out to investigate the concentrations of macro-elements (Na(+), K(+) and Mg(+2)) in twelve commercially available pharmaceutical preparations used as sex stimulant, by Atomic Absorption Spectrophotometer. A wet digestion method was adopted to prepare the samples. The results indicated that sodium concentration was maximum (3702 ± 29 μg g(-1)) in LB and minimum (495 ± 06 μg g(-1)) in H-E-H. Potassium concentration was maximum (6337 ± 13 μg g(-1)) in NBA while minimum (150 ± 06 μg g(-1)) in ZGRA. Magnesium concentration was maximum in V-100 (9226 ± 11 μg g(-1)) and minimum in FGRA (1194 ± 25 μg g(-1)). The concentration of macro-elements in the imported herbal preparations was in the order of Mg

  11. Elemental composition of commercial sea cucumbers (holothurians).

    PubMed

    Wen, J; Hu, C

    2010-01-01

    Toxic and essential elements in 11 different sea cucumber species were determined and compared with daily intake recommendations and maximum allowed levels. The contents of macro-elements contents in dried sea cucumber samples were found to be 25,000-152,000 mg kg(-1) for Na, 4000-8600 mg kg(-1) for Mg, 1100-5200 mg kg(-1) for K, 15,000-68,000 mg kg(-1) and 36,300-251,000 mg kg(-1) for Cl. Trace element concentrations in dried sea cucumber samples were found to be 11-100 mg kg(-1) for Zn, 41-660 mg kg(-1) for Fe, 3-74 mg kg(-1) for Cu, 1.1-16 mg kg(-1) for Mn, 1.4-3.7 mg kg(-1) for Se, 1.1-9.6 mg kg(-1) for Cr, and 0.3-5.1 mg kg(-1) for Ni. All sea cucumber species were rich sources of Na, Cl, Mg, Ca, Fe, Cu, Se and Cr for human consumption. Regarding contaminants, As, Cd and Pb concentrations in dried sea cucumbers were in the ranges of 1.1-6.1, 0.03-0.06 and 0.11-0.69 mg kg(-1), respectively. Moreover, Hg values of 11 sea cucumbers were below the detection limit (0.01 mg kg(-1)).

  12. [Analysis of mineral elements in different organs at different harvesting times of Schizonepeta tenuifolia on ICP-AES].

    PubMed

    Shan, Ming-Qiu; Yu, Sheng; Yu, Li-Xia; Ding, An-Wei

    2014-02-01

    To study the main storage organ of each mineral element in Schizonepeta tenuifolia, and explain its reasonable harvesting time and medicinal parts in view of mineral elements. The mineral elements of Schizonepeta tenuifolia in different organs at different harvesting times were determined by ICP-AES technique. The mineral elements, K, Ca, Na, P, Mg, Mn, Zn, Cu, Fe, Mo, were determined in the study. The results showed that at different harvesting times, (1) the contents of K, P, Cu in fringe and the contents of Mg, Ca, Na, Fe, Mn, Zn in leaf were highest among different organs. (2) among the macroelements, the contents of K and Ca were highest while the content of Na was lowest; among the microelements, the content of Fe was highest while the content of Mo was lowest. (3) in item, the proportion of K:P was highest while the proportion of Zn: Cu was lowest; in fringe, the proportions of Ca:Mg and Fe:Mn were lowest. (4) within the harvest period, variations of the mineral elements were not obvious. In the stem of Schizonepeta tenuifolia, the contents of every mineral elements were lower than other organs, including leaves and spikes. Considering the mineral elements, the correlations of harvesting time and content change were not remarkable.

  13. Trace elements and electrolytes in human resting mixed saliva after exercise

    PubMed Central

    Chicharro, J. L.; Serrano, V.; Urena, R.; Gutierrez, A. M.; Carvajal, A.; Fernandez-, H; Lucia, A.

    1999-01-01

    OBJECTIVES: Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the effect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. METHODS: Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. RESULTS: After exercise, Mg and Na levels showed a significant increase (p < 0.05) while Mn levels fell (p < 0.05). Zn/Cu molar ratios were unaffected by exercise. CONCLUSIONS: Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings. 


 PMID:10378074

  14. Four reference soil and rock samples for measuring element availability in the Western Energy Regions

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.

    1980-01-01

    Attaining acceptable precision in extractable element determinations is more difficult than in total element determinations. In total element determinations, dissolution of the sample is qualitatively checked by the clarity of the solution and the absence of residues. These criteria cannot be used for extracts. Possibilities for error are introduced in virtually every step in soil extractions. Therefore, the use of reference materials whose homogeneity and element content are reasonably well known is essential for determination of extractable elements. In this report, estimates of homogeneity and element content are presented for four reference samples. Bulk samples of about 100 kilograms of each sample were ground to pass an 80-mesh sieve. The samples were homogenized and split using a Jones-type splitter. Fourteen splits of each reference sample were analyzed for total content of Ca, Co, Cu, Fe, K, Mg, Mn, Na, and Zn; DTPA-extractable Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn; exchangeable Ca, Mg, K, and Na; cation exchange capacity water-saturation-extractable Ca, Mg, K, Na, C1, and SO4; soil pH; and hot-water-extractable boron. Error measured between splits was small, indicating that the samples were homogenized adequately and that the laboratory procedure provided reproducible results.

  15. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation: 1. major and minor element variation

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Kullmer, O.; Schrenk, F.; Ssemmanda, I.; Mertz, D. F.

    2011-05-01

    Bioapatite in mammalian teeth is readily preserved in continental sediments and represents a very important archive for reconstructions of environment and climate evolution. This project intends to provide a detailed data base of major, minor and trace element and isotope tracers for tooth apatite using a variety of microanalytical techniques. The aim is to identify specific sedimentary environments and to improve our understanding on the interaction between internal metabolic processes during tooth formation and external nutritional control and secondary alteration effects. Here, we use the electron microprobe, to determine the major and minor element contents of fossil and modern molar enamel, cement and dentin from hippopotamids. Most of the studied specimens are from different ecosystems in Eastern Africa, representing modern and fossil lakustrine (Lake Kikorongo, Lake Albert, and Lake Malawi) and modern fluvial environments of the Nile River system. Secondary alteration effects in particular FeO, MnO, SO3 and F concentrations, which are 2 to 10 times higher in fossil than in modern enamel; secondary enrichments in fossil dentin and cement are even higher. In modern and fossil enamel, along sections perpendicular to the enamel-dentin junction (EDJ) or along cervix-apex profiles, P2O5 and CaO contents and the CaO/P2O5 ratios are very constant (StdDev ~1 %). Linear regression analysis reveals very tight control of the MgO (R2∼0.6), Na2O and Cl variation (for both R2>0.84) along EDJ-outer enamel rim profiles, despite large concentration variations (40 % to 300 %) across the enamel. These minor elements show well defined distribution patterns in enamel, similar in all specimens regardless of their age and origin, as the concentration of MgO and Na2O decrease from the enamel-dentin junction (EDJ) towards the outer rim, whereas Cl displays the opposite variation. Fossil enamel from hippopotamids which lived in the saline Lake Kikorongo have a much higher MgO/Na2O ratio (∼1.11) than those from the Neogene fossils of Lake Albert (MgO/Na2O∼0.4), which was a large fresh water lake like those in the western Branch of the East African Rift System today. Similarly, the MgO/Na2O ratio in modern enamel from the White Nile River (∼0.36), which has a Precambrian catchment of dominantly granite and gneisses and passes through several saline zones, is higher than that from the Blue Nile River, whose catchment is the Neogene volcanic Ethiopian Highland (MgO/Na2O∼0.22). Thus, particularly MgO/Na2O might be a sensitive fingerprint for environments where river and lake water have suffered strong evaporation. Enamel formation in mammals takes place at successive mineralization fronts within a confined chamber where ion and molecule transport is controlled by the surrounding enamel organ. During the secretion and maturation phases the epithelium generates different fluid composition, which in principle, should determine the final composition of enamel apatite. This is supported by co-linear relationships between MgO, Cl and Na2O which can be interpreted as binary mixing lines. However, if maturation starts after secretion is completed the observed element distribution can only be explained by recrystallization of existing and addition of new apatite during maturation. Perhaps the initial enamel crystallites precipitating during secretion and the newly formed bioapatite crystals during maturation equilibrate with a continuously evolving fluid. During crystallization of bioapatite the enamel fluid becomes continuously depleted in MgO and Na2O, but enriched in Cl which results in the formation of MgO, and Na2O-rich, but Cl-poor bioapatite near the EDJ and MgO- and Na2O-poor, but Cl-rich bioapatite at the outer enamel rim. The linkage between lake and river water composition, bioavailability of elements for plants, animal nutrition and tooth formation is complex and multifaceted. The quality and limits of the MgO/Na2O and other proxies have to be established with systematic investigations relating chemical distribution patterns to sedimentary environment and to growth structures developing as secretion and maturation proceed during tooth formation.

  16. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 1: Major and minor element variation

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Kullmer, O.; Schrenk, F.; Ssemmanda, I.; Mertz, D. F.

    2012-01-01

    Bioapatite in mammalian teeth is readily preserved in continental sediments and represents a very important archive for reconstructions of environment and climate evolution. This project provides a comprehensive data base of major, minor and trace element and isotope tracers for tooth apatite using a variety of microanalytical techniques. The aim is to identify specific sedimentary environments and to improve our understanding on the interaction between internal metabolic processes during tooth formation and external nutritional control and secondary alteration effects. Here, we use the electron microprobe to determine the major and minor element contents of fossil and modern molar enamel, cement and dentin from Hippopotamids. Most of the studied specimens are from different ecosystems in Eastern Africa, representing modern and fossil lacustrine (Lake Kikorongo, Lake Albert, and Lake Malawi) and modern fluvial environments of the Nile River system. Secondary alteration effects - in particular FeO, MnO, SO3 and F concentrations - are 2 to 10 times higher in fossil than in modern enamel; the secondary enrichment of these components in fossil dentin and cement is even higher. In modern and fossil enamel, along sections perpendicular to the enamel-dentin junction (EDJ) or along cervix-apex profiles, P2O5 and CaO contents and the CaO/P2O5 ratios are very constant (StdDev ∼1%). Linear regression analysis reveals tight control of the MgO (R2∼0.6), Na2O and Cl variation (for both R2>0.84) along EDJ-outer enamel rim profiles, despite large concentration variations (40% to 300%) across the enamel. These minor elements show well defined distribution patterns in enamel, similar in all specimens regardless of their age and origin, as the concentration of MgO and Na2O decrease from the enamel-dentin junction (EDJ) towards the outer rim, whereas Cl displays the opposite trend. Fossil enamel from Hippopotamids which lived in the saline Lake Kikorongo have a much higher MgO/Na2O ratio (∼1.11) than those from the Neogene fossils of Lake Albert (MgO/Na2O∼0.4), which was a large fresh water lake like those in the western Branch of the East African Rift System today. Similarly, the MgO/Na2O ratio in modern enamel from the White Nile River (∼0.36), which has a Precambrian catchment of dominantly granites and gneisses and passes through several saline zones, is higher than that from the Blue Nile River, whose catchment is the Neogene volcanic Ethiopian Highland (MgO/Na2O∼0.22). Thus, particularly MgO/Na2O might be a sensitive fingerprint for environments where river and lake water have suffered strong evaporation. Enamel formation in mammals takes place at successive mineralization fronts within a confined chamber where ion and molecule transport is controlled by the surrounding enamel organ. During the secretion and maturation phases the epithelium generates different fluid composition, which in principle, should determine the final composition of enamel apatite. This is supported by co-linear relationships between MgO, Cl and Na2O which can be interpreted as binary mixing lines. However, if maturation starts after secretion is completed, the observed element distribution can only be explained by equilibration of existing and addition of new apatite during maturation. It appears the initial enamel crystallites precipitating during secretion and the newly formed bioapatite crystals during maturation equilibrate with a continuously evolving fluid. During crystallization of bioapatite the enamel fluid becomes continuously depleted in MgO and Na2O, but enriched in Cl which results in the formation of MgO, and Na2O-rich, but Cl-poor bioapatite near the EDJ and MgO- and Na2O-poor, but Cl-rich bioapatite at the outer enamel rim. The linkage between lake and river water compositions, bioavailability of elements for plants, animal nutrition and tooth formation is complex and multifaceted. The quality and limits of the MgO/Na2O and other proxies have to be established with systematic investigations relating chemical distribution patterns to sedimentary environment and to growth structures developing as secretion and maturation proceed during tooth formation.

  17. Determination of elements in hospital waste with neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Dwijananti, P.; Astuti, B.; Alwiyah; Fianti

    2018-03-01

    The producer of the biggest B3 waste is hospital. The waste is from medical and laboratory activities. The purpose of this study is to determine the elements contained in the liquid waste from hospital and calculate the levels of these elements. This research was done by analysis of the neutron activation conducted at BATAN Yogyakarta. The neutron activation analysis is divided into two stages: activation of the samples using neutron sources of reactor Kartini, then chopping by using a set of tools, gamma spectrometer with HPGe detector. Qualitative and quantitative analysis were done by matching the gamma spectrum peak to the Neutron Activation Table. The sample was taken from four points of the liquid waste treatment plant (WWTP) Bhakti Wira Tamtama Semarang hospital. The results showed that the samples containing elements of Cr, Zn, Fe, Co, and Na, with the levels of each element is Cr (0.033 - 0.075) mg/L, Zn (0.090 - 1.048) mg/L, Fe (2.937-37.743) mg/L, Co (0.005-0.023) mg/L, and Na (61.088-116.330) mg/L. Comparing to the standard value, the liquid is safe to the environment.

  18. Ca removal and Mg recovery from flue gas desulfurization (FGD) wastewater by selective precipitation.

    PubMed

    Xia, Min; Ye, Chunsong; Pi, Kewu; Liu, Defu; Gerson, Andrea R

    2017-11-01

    Selective removal of Ca and recovery of Mg by precipitation from flue gas desulfurization (FGD) wastewater has been investigated. Thermodynamic analysis of four possible additives, Na 2 CO 3 , Na 2 C 2 O 4 , NaF and Na 2 SO 4 , indicated that both carbonate and oxalate could potentially provide effective separation of Ca via precipitation from Mg in FGD wastewater. However, it was found experimentally that the carbonate system was not as effective as oxalate in this regard. The oxalate system performed considerably better, with Ca removal efficiency of 96% being obtained, with little Mg inclusion at pH 6.0 when the dosage was ×1.4 the stoichiometric requirement. On this basis, the subsequent recovery process for Mg was carried out using NaOH with two-step precipitation. The product was confirmed to be Mg(OH) 2 (using X-ray diffraction and thermo gravimetric analysis) with elemental analysis suggesting a purity of 99.3 wt.%.

  19. [Analysis of mineral elements of sunflower (Helianthus annuus L.) grown on saline land in Hetao Irrigation District by ICP-AES].

    PubMed

    Tong, Wen-Jie; Chen, Fu; Wen, Xin-Ya

    2014-01-01

    The absorption and accumulation of ten mineral elements in four kinds of organs (root, steam, leaf and flower disc) in Helianthus annuus L. plants cultured in Hetao Irrigation District under different level of salinity stress were determined by ICP-AES with wet digestion (HNO3 + HClO4). The results showed that: (1) The contents of Fe, Mn, Zn, Ca, and Na were highest in roots, so was K in stems, B and Mg in leaves and P in flower discs, while no significant difference was detected in the content of Cu among these organs; (2) The cumulants of Ca, Mg, P, Cu, B and Zn were highest in flower discs, so were Na, Fe and Mn in roots and K in stems; (3) In sunflower plants, the proportion of mineral element cumulant for K : Ca : Mg : P : Na was 16.71 : 5.23 : 3.86 : 1.23 : 1.00, and for Zn : Fe : B : Mn: Cu was 56.28 : 27.75 : 1.93 : 1.17 : 1.00, respectively; (4) The effect of salinity stress on absorption of mineral elements differed according to the kind of organ and element, root was the most sensitive to soil salt content, followed by stem and leaf, and the effect on flower disc seemed complex.

  20. Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    NASA Astrophysics Data System (ADS)

    Gómez Martín, J. C.; Bones, D. L.; Carrillo-Sánchez, J. D.; James, A. D.; Trigo-Rodríguez, J. M.; Fegley, B., Jr.; Plane, J. M. C.

    2017-02-01

    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (I.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles.

  1. Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and 234U /238U

    NASA Astrophysics Data System (ADS)

    Bar-Matthews, M.; Wasserburg, G. J.; Chen, J. H.

    1993-01-01

    A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographie and trace element analyses on a suite of Pleistocene samples that had previously been studied for 234U, 230Th, and U- 230Th ages ( CHEN et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). The normal texture exhibited by modern corals under OM consists of fine needles of aragonite forming a radial-fibrous pattern around a central dark line (center of calcification). This pattern can also be seen in many fossil corals. In most cases, the central dark line partially disappears during diagenesis, the radialfibrous pattern is obscured, and there is a distinct coarsening of the radial fabric of aragonite to unoriented platy or equant aragonite crystals. SEM images show diagenetic textures ranging from dense structureless images of the coralline matrix, with sharp boundaries at the septa walls, to the development of (1) a patchy distribution of dissolution micropores partially filled with aragonite fibers in the matrix, (2)aragonite needles coming from selvages in the septa walls which radiate into the septa voids. Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles are highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial δ 234U, are generally correlated ( CHEN et al., 1991). As all these diagenetic changes involve the recrystallization and deposition of aragonite, we infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the 234U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U- 230Th dating. The basic problem of identifying a priori unaltered coral skeletons for 230Th dating is not yet resolved.

  2. Evaluation of potable groundwater quality in some villages of Adilabad in Andhra Pradesh, India.

    PubMed

    Rasheed, M A; Radha, B Anu; Rao, P L Srinivasa; Lakshmi, M; Chennaiah, J Bala; Dayal, A M

    2012-07-01

    Reconnaissance hydrochemical survey was conducted in some villages of Adilabad district, Andhra Pradesh to assess the quality of groundwater, which is mainly used for drinking purpose. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and rare earth elements in water samples. The data showed the variation of the investigated parameters in samples as follows: pH 6.92 to 8.32, EC 192 to 2706 microS cm(-1), TDS 129.18 to 1813.02 ppm. The pH of the waters was within the permissible limits whereas EC and TDS were above the permissible limits of World Health Organization (WHO). Total 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) were analyzed using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The concentration of elements in water samples ranged between 0.063 to 0.611 mg l(-1) for B, 11.273 to 392 mg l(-)1 for Na, 5.871 to 77.475 mg l(-1) for Mg, 0.035 to 1.905 mg l(-1) for Al, 0.752 to 227.893 mg l(-1) for K, 11.556 to 121.655 mg l(-1) for Ca and 0.076 to 0.669 mg l(-1) for Fe respectively. The concentrations of Na, Mg, Al, K, Ca, and Fe exceeded the permissible limits of WHO and BIS guidelines for drinking water quality. In the present study, Bhimavaram, Kazipalli, Kannepalli and Chennur areas of the Adilabad are especially prone to geogenic contamination. Overall water quality was found unsatisfactory for drinking purposes.

  3. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.

  4. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis.

    PubMed

    Jafri, Azliana Jusnida Ahmad; Arfuzir, Natasha Najwa Nor; Lambuk, Lidawani; Iezhitsa, Igor; Agarwal, Renu; Agarwal, Puneet; Razali, Norhafiza; Krasilnikova, Anna; Kharitonova, Maria; Demidov, Vasily; Serebryansky, Evgeny; Skalny, Anatoly; Spasov, Alexander; Yusof, Ahmad Pauzi Md; Ismail, Nafeeza Mohd

    2017-01-01

    Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL -1 ). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL -1 ) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez Martín, J. C.; Bones, D. L.; Carrillo-Sánchez, J. D.

    2017-02-20

    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, precludemore » equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles.« less

  6. The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis.

    PubMed

    Zaichick, Sofia; Zaichick, Vladimir

    2010-01-01

    To understand the role of major, minor, and trace elements in the etiology of bone diseases including osteoporosis, it is necessary to determine the normal levels and age-related changes of bone chemical elements. The effect of age and gender on 38 chemical element contents in intact iliac crest of 84 apparently healthy 15-55 years old women (n=38) and men (n=46) was investigated by neutron activation analysis. Mean values (M+/-SEM) for mass fraction (on dry weight basis) of Ca, Cl, Co, Fe, K, Mg, Mn, Na, P, Rb, Sr, and Zn for both female and male taken together were Ca - 169+/-3g/kg, Cl - 1490+/-43 mg/kg, Co - 0.0073+/-0.0024 mg/kg, Fe - 177+/-24 mg/kg, K - 1820+/-79 mg/kg, Mg - 1840+/-48 mg/kg, Mn - 0.316+/-0.013 mg/kg, Na - 4970+/-87 mg/kg, P - 79.7+/-1.5 g/kg, Rb - 1.89+/-0.22 mg/kg, Sr - 312+/-15 mg/kg, and Zn - 65.9+/-3.4 mg/kg, respectively. The upper limit of mean contents of Cs, Eu, Hg, Sb, Sc, and Se were Cs < or = 0.09 mg/kg, Eu < or = 0.005 mg/kg, Hg < or = 0.005 mg/kg, Sb < or = 0.004 mg/kg, Sc < or = 0.001 mg/kg, and Se < or = 0.1mg/kg, respectively. In all bone samples the contents of Ag, As, Au, Ba, Br, Cd, Ce, Cr, Gd, Hf, La, Lu, Nd, Sm, Ta, Tb, Th, U, Yb, and Zr were under detection limits. The Ca, Mg, and P contents decrease with age, regardless of gender. Higher Ca, Mg, P, and Sr mass fractions as well as lower Fe content are typical of female iliac crest as compared to those in male bone. Copyright 2009 Elsevier GmbH. All rights reserved.

  7. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy).

    PubMed

    Alaimo, M G; Dongarrà, G; La Rosa, A; Tamburo, E; Vasquez, G; Varrica, D

    2018-08-15

    The aim of this study was to determine and compare the content of 28 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, Tl, U, V and Zn) in fruiting bodies of Boletus aereus Bull. and Clitopilus prunulus P. Kumm collected from eleven unpolluted sites of Sicily (Italy) and, also to relate the abundance of chemical elements in soil with their concentration in mushrooms. Median concentrations of the most abundant elements in Boletus aereus ranged from 31,290 μg/g (K) to 107 μg/g (Zn) in caps and from 24,009 μg/g (K) to 57 μg/g (Zn) in stalks with the following abundance order: K > Na > Ca > Mg > Fe > Al > Rb > Zn. The same elements, in the whole fruiting body of Clitopilus prunulus samples, varied in the range 54,073-92 μg/g following the abundance order: K > Na > Mg > Ca > Fe > Al > Rb > Zn. Metal contents in Boletus aereus and in the whole fruiting body of Clitopilus prunulus, collected from the same sampling sites, showed statistically significant differences for most elements. In particular, Clitopilus prunulus contained around two to four times more Co, Cr, Fe, Mg, Mo, Pb, U and V than caps and stalks of Boletus aereus species which, in turn, was from two to four times more enriched in Cu, Se and Tl. Thus, the elemental content of Boletus aereus and Clitopilus prunulus appeared to be species-dependent. The distribution of chemical elements in Boletus aereus was not uniform throughout the whole fruiting body as most elements were significantly bioconcentrated in caps. Furthermore, the fruit bodies of Boletus aereus from the volcanic soil differed both in major and minor elements concentrations from those collected from sedimentary soils. Cadmium and lead concentrations were below the threshold limits for wild mushrooms proposed by EU Directives (2008 and 2015). The elemental content was not significantly influenced by soil pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.

    PubMed

    Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z

    2000-12-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  9. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-09-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2 02 digested system was used to completely decomposed the organic compounds effectually by microwave digestion. 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camrnara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaves of Lantana camara were more than that in the root and the branch. The contents of Fe and Na in the root of Lantana camara were more than that in the leaves and the branch. The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity,which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  10. Biomineralogy of human urinary calculi (kidney stones) from some geographic regions of Sri Lanka.

    PubMed

    Chandrajith, Rohana; Wijewardana, Geethika; Dissanayake, C B; Abeygunasekara, Anurudha

    2006-08-01

    Kidney stones (urinary calculi) have become a global scourge since it has been recognized as one of the most painful medical problems. Primary causative factors for the formation of these stones are not clearly understood, though they are suspected to have a direct relationship to the composition of urine, which is mainly governed by diet and drinking water. Sixty nine urinary calculi samples which were collected from stone removal surgeries were analyzed chemically for their Na, K, Ca, Mg, Cu, Zn, Pb, Fe and phosphate contents. Structural and mineralogical properties of stones were studied by XRD and FT-IR methods. The mean contents of trace elements were 1348 mg kg(-1) (Na); 294 mg kg(-1) (K); 32% (Ca); 1426 mg kg(-1) (Mg); 8.39 mg kg(-1) (Mn); 258 mg kg(-1) (Fe); 67 mg kg(-1) (Cu); 675 mg kg(-1) (Zn); 69 mg kg(-1) (Pb); and 1.93% (PO (4) (3-) ). The major crystalline constituent in the calculi of Sri Lanka is calcium oxalate monohydrate. Principal component analysis was used to identify the multi element relationships in kidney stones. Three components were extracted and the first component represents positively correlated Na-K-Mg-PO (4) (3-) whereas the second components represent the larger positively weighted Fe-Cu-Pb. Ca-Zn correlated positively in the third component in which Mn-Cu correlated negatively. This study indicates that during the crystallization of human urinary stones, Ca shows more affinity towards oxalates whereas other alkali and alkaline earths precipitate with phosphates.

  11. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Sun, Bonan; Xing, Mingwei

    2016-02-01

    This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P < 0.05) in chicken exposed to As2O3 compared to control chicken, while Mg, Si, K, As and Cd decreased significantly (P < 0.05). These results suggest that ICP-MS determination of elements in chicken tissues enables a rapid analysis with good precision and accuracy. Supplementation of high levels of As affected levels of 20 elements (Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health.

  12. Frequency distribution and correlation among mineral elements in Lycium andersonii from the northern Mojave Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Romney, E,M.; Alexander, G.V.

    1980-01-01

    Two hundred samples of leaves of Lycium andersonii A. Gray, each representing one plant and divided among six different locations, were assayed by emission spectrography. Information for 12 different elements is reported in terms of concentrations, frequency distribution, correlations, and some soil characteristics. The objective was to ascertain the nature of variability for mineral elements within a species. Composition varied significantly for all 12 elements among locations, all within about 20 km. At least part of the variation was due to soil characteristics. Samples from Rock Valley were highest in K, Na, and Li, which effect is associated with volcanicmore » outcrop. Samples from Mercury Valley were highest in P, Mg, Ba, and B. At least Mg is related to the soil composition. Correlation coefficients between element pairs were often very different for all 200 samples versus those obtained for individual locations. Some of the values for all 200 samples together proved to be artifacts. The highest correlation was for Ca x Sr (positive) and next was Ca x Mg (also positive). Most correlations were slightly or strongly positive (24 to 32). Only P x Ca, Ca x Na, Ca x B, and Sr x P seemed to be significantly negative of the 32 correlations examined. Frequency distribution patterns where common populations were grouped were often normally distributed. Li, as previously reported, and Na, Cu, Mn,and B and Ba at some locations were not normally distributed. Wide variations in the concentrations of individual elements in leaves of these species were encountered.« less

  13. X-ray microanalysis of rotavirus-infected mouse intestine: A new concept of diarrhoeal secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, A.J.; Osborne, M.P.; Haddon, S.J.

    1990-05-01

    Neonatal mice were infected at 7 days of age with rotavirus (epizootic diarrhea of infant mice (EDIM) virus) and killed at 24-h intervals postinfection (PI). Cytoplasmic concentrations of Na, Mg, P, S, Cl, K, and Ca intestinal epithelial cells from infected and age-matched control animals were measured by x-ray microanalysis. In villus tip cells, Ca concentration increased at 24-96 h PI; Na concentration increased at 24-72 h PI; Ca and Na concentrations were near normal by 168 h PI. K concentration decreased 24-72 h PI, and Cl concentration decreased 48-96 h PI. In crypt cells, changes were observed without amore » discernible pattern: at 96 h PI, Na, Mg, S, and Cl concentrations increased and K concentration decreased; at 120 h PI, the concentrations of all elements except Na and Ca increased. In villus base cells, the mean concentrations of all elements except Ca peaked at 48-72 h PI and at 120 h PI. Na and Cl concentrations increased dramatically in some cells from 48 h PI onward. All the above concentration values were obtained from freeze-dried specimens and expressed in millimoles per kilogram of dry weight. Conversion of a limited number of data, pertaining to villus base cells, from dry weight to wet weight was possible. This conversion revealed that villus base cells in infected animals were more hydrated than corresponding cells from control animals. Also, the Na and Cl concentrations in mmol/kg H2O were significantly higher in villus base cells from infected animals than in those from corresponding controls: 137 +/- 7 versus 38 +/- 4 (Na) and 121 +/- 5 versus 89 +/- 6 (Cl). Wet weight concentrations of other elements were either the same (Mg) or lower (P, S, and K) after infection with virus.« less

  14. A comparison of the techniques of PIXE, PIGE and INAA by reference to the elemental analysis of porcine brain samples

    NASA Astrophysics Data System (ADS)

    Stedman, J. D.; Spyrou, N. M.

    1994-12-01

    The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.

  15. Elemental and carbonaceous characterization of TSP and PM10 during Middle Eastern dust (MED) storms in Ahvaz, Southwestern Iran.

    PubMed

    Shahsavani, Abbas; Yarahmadi, Maryam; Hadei, Mostafa; Sowlat, Mohammad Hossein; Naddafi, Kazem

    2017-08-21

    Middle Eastern dust (MED) storms carry large amounts of dust particles to the Southern and Western cities of Iran. This study aimed to characterize the elemental and carbonaceous composition of total suspended particles (TSP) and PM 10 in Ahvaz, Iran. TSP and PM 10 samples were collected using two separate high-volume air samplers. The sampling program was performed according to EPA guidelines and resulted in 72 samples. Twenty-eight elements and two carbonaceous components in TSP and PM 10 were measured. Over the entire study period, the mean concentration (SD) of TSP and PM 10 was 1548.72 μg/m 3 (1965.11 μg/m 3 ) and 1152.35 μg/m 3 (1510.34 μg/m 3 ), respectively. The order of concentrations of major species were Si > Al > Ca > OC > Na > B > Zn > Mn > K > Mg and Si > Ca > Al > Na > OC > B > K > Mn > Cu > Mg for TSP and PM 10 , respectively. Almost all elements (except for Cd, Cr, and Cu) and carbonaceous components (except for organic carbon) had dust days/non-dust days (DD/NDD) ratios higher than 1, implying that all components are somehow affected by dust storms. Crustal elements constituted the major portion of particles for both TSP and PM 10 in both DDs and NDDs. The enrichment factor of elements such as Ca, Fe, K, Mg, Na, and Ti was near unity. Species such as Al, Ca, Fe, K, Na, Si, and EC had high correlation coefficients in both TSP and PM 10 (except for EC). In conclusion, Ahvaz is exposed to high concentrations of TSP and PM 10 during the MED period. Immediate actions must be planned to decrease the high concentrations of particulate matter in Ahvaz's ambient air.

  16. Geographical traceability of virgin olive oils from south-western Spain by their multi-elemental composition.

    PubMed

    Beltrán, María; Sánchez-Astudillo, María; Aparicio, Ramón; García-González, Diego L

    2015-02-15

    The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chapter 1. Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Kanagy, Leslie K.; Cree, Mark E.

    2006-01-01

    A new analytical method for the determination of elements in filtered aqueous matrices using inductively coupled plasma-mass spectrometry (ICP-MS) has been implemented at the U.S. Geological Survey National Water Quality Laboratory that uses collision/reaction cell technology to reduce molecular ion interferences. The updated method can be used to determine elements in filtered natural-water and other filtered aqueous matrices, including whole-water, biota, sediment, and soil digestates. Helium or hydrogen is used as the collision or reaction gas, respectively, to eliminate or substantially reduce interferences commonly resulting from sample-matrix composition. Helium is used for molecular ion interferences associated with the determination of As, Co, Cr, Cu, K, Mg, Na, Ni, V, W and Zn, whereas hydrogen is used for Ca, Fe, Se, and Si. Other elements that are not affected by molecular ion interference also can be determined simply by not introducing a collision/reaction gas into the cell. Analysis time is increased by about a factor of 2 over the previous method because of the additional data acquisition time in the hydrogen and helium modes. Method detection limits for As, Ca, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Se, Si (as SiO2), V, W, and Zn, all of which use a collision/reaction gas, are 0.06 microgram per liter (?g/L) As, 0.04 milligram per liter (mg/L) Ca, 0.02 ?g/L Co, 0.02 ?g/L Cr, 0.04 ?g/L Cu, 1 ?g/L Fe, 0.007 mg/L K, 0.009 mg/L Mg, 0.09 mg/L Na, 0.05 ?g/L Ni, 0.04 ?g/L Se, 0.03 mg/L SiO2, 0.05 ?g/L V, 0.03 ?g/L W, and 0.04 ?g/L Zn. Most method detection limits are lower or relatively unchanged compared to earlier methods except for Co, K, Mg, Ni, SiO2, and Tl, which are less than a factor of 2 higher. Percentage bias for samples spiked at about one-third and two-thirds of the concentration of the highest calibration standard ranged from -8.1 to 7.9 percent for reagent water, -14 to 21 percent for surface water, and -16 to 16 percent for ground water. The percentage bias for reagent water spiked at trace-element concentrations of 0.5 to 3 ?g/L averaged 4.4 percent with a range of -6 to 16 percent, whereas the average percentage bias for Ca, K, Mg, Na, and SiO2 was 1.4 percent with a range of -4 to 10 percent for spikes of 0.5 to 3 mg/L. Elemental results for aqueous standard reference materials compared closely to the certified concentrations; all elements were within 1.5 F-pseudosigma of the most probable concentration. In addition, results from 25 filtered natural-water samples and 25 unfiltered natural-water digestates were compared with results from previously used methods using linear regression analysis. Slopes from the regression analyses averaged 0.98 and ranged from 0.87 to 1.29 for filtered natural-water samples; for unfiltered natural-water digestates, the average slope was 1.0 and ranged from 0.83 to 1.22. Tests showed that accurate measurements can be made for samples having specific conductance less than 7,500 microsiemens per centimeter (?S/cm) without dilution; earlier ICP-MS methods required dilution for samples with specific conductance greater than 2,500 ?S/cm.

  18. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  19. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    PubMed Central

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  20. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-10-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  1. Resonant Proton Capture on Sodium-23 and Elemental Variations in Globular Cluster Stars

    NASA Astrophysics Data System (ADS)

    Cesaratto, John Michael

    Globular clusters represent some of the oldest stellar bodies in the universe. As such, they are used as testing grounds for theories of stellar evolution and nucleosynthesis. Astronomical observations have shown star-to-star abundance variation in light-mass elements in all Galactic globular clusters. Standard stellar evolution models do not predict these variations. For instance, there exists a pronounced anticorrelation between Na and O in the cluster stars that is not observed in similar, isolated field stars. The current explanations for these observations are that a preexisting massive star could have polluted the interstellar medium where a younger star was born, or that stars undergo some additional mixing beyond dredge-up. Theoreticians rely on nuclear physics input in the form of thermonuclear reaction rates to edit or propose new theories predicting these abundance anomalies. The 23Na + p reaction is a bridge between the NeNa cycle and the MgAl cycle, but large uncertainties exist in the 23Na(p, gamma)24Mg reaction rate for burning temperatures relevant to red giant branch and asymptotic giant branch stars. The uncertainties arise from an expected, but unobserved resonance at Ecmr = 138 keV. A new high-intensity, low-energy electron cyclotron resonance (ECR) ion source at the Laboratory for Experimental Nuclear Astrophysics (LENA) has increased sensitivity for measuring this reaction. After many attempts and long measurement periods, a marginal signal (90% confidence level) has been observed from the resonance and a new strength has been established. This new strength marks a factor of 70 reduction from the previous strength upper limit. The strength has also been calculated as an upper limit at 95% confidence level. New reaction rates have been calculated for the 23Na(p, gamma)24Mg and 23 Na(p, alpha)20Ne reactions and the recommended value for the 23Na(p, gamma) 24Mg rate has been reduced by over an order of magnitude at T 9 = 0.07. This will have implications for the processing of material between the NeNa and MgAl cycles in stellar models.

  2. Trace elements in lenses of normal Wistar Kyoto rats

    NASA Astrophysics Data System (ADS)

    Kinoshita, Akio; Gong, Huaqing; Amemiya, Tsugio; Takaya, Kenichi; Tozu, Miyako; Ohashi, Yoshiharu

    2003-01-01

    Chemical analysis of the element and organic substance at the site of pathological changes due to aging is one of the approaches of cataract research. Time of flight secondary ion mass spectrometry (TOF-SIMS) microscopy is expected to analyze elements and organic substances in the lens. The purpose of the present study is to compare elements and organic substances in the lenses of normal 4-month-old rats with those of normal 15-month-old rats by means of a TOF-SIMS microscope. The present study showed that the concentration of Ca and Fe was significantly higher, and that of Na and Mg was significantly lower in 15-month-old rats than that in 4-month-old rats. No changes were found in the concentration of K. The present study also showed that the equator contained more Ca, Na and Mg than the nucleus; in contrast, the Cu concentration was higher in the nucleus than in the equator. In 15-month-old rats, Mg and Vit. A in the equator and Zn in the nucleus were significantly lower than those in 4-month-old rats. TOF-SIMS microscopy could detect elemental changes in the rat lens with age, and is expected to be useful approach of cataract studies.

  3. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components

    USGS Publications Warehouse

    Papp, C.S.E.; Harms, T.F.

    1985-01-01

    In order to find the most efficient digestion method for the total elemental recovery in peat, ten samples were subjected to different techniques and analysed for Ca, Mg, Fe, AI, Na, K, Mn, P, Zn, Cu, Li, Cd, Co, Ni, Pb and Si using atomic-absorption spectrophotometry. The most satisfactory procedures were dry ashing followed by hydrofluoric acid treatment and wet digestion using a mixture of hot nitric, perchloric and hydrofluoric acids. The wet digestion offers the advantage of a single decomposition method for the determination of Ca, Mg, Fe, AI, K, Na, Mn, Cu, Li, Zn and P. An alkaline fusion technique was required for the determination of Si. Hydrogen peroxide was used to separate the peat into its organic and inorganic components, leading to the total recovery of the elements for both fractions.

  4. ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.

    PubMed

    Juranović Cindrić, Iva; Krizman, Ivona; Zeiner, Michaela; Kampić, Štefica; Medunić, Gordana; Stingeder, Gerhard

    2012-12-15

    The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 μg g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 μg g(-1) for Zn, 0.7-2.8 μg g(-1) for Sr. The range of Mn in peel 4-6 μg g(-1) is higher compared to whole apple from 0.7 to 1.7 μg g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 μg g(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Thermodynamic investigation of the effect of alkali metal impuries on the processing of aluminum and magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun

    2006-12-01

    Aluminum and magnesium alloys are widely used in the automobile and aerospace industries as structural materials due to their light weight, high specific strength and good formability. However, they suffer from the poor hot rolling characteristics due to undesired impurities like calcium, potassium, lithium and sodium. They increase the hydrogen solubility in the melt and promote the formation of porosity in aluminum castings. During fabrication of aluminum alloys, they cause the hot-shortness and embrittlement due to cracking. They also led to "blue haze" corrosion which promotes the discoloration of aluminum under humid condition. The removal of these elements increases overall melt loss of aluminum alloys when aluminum products are remelted and recast. Na is one of the common impurities in the Al and Mg alloys. In industry, primary Al is produced by the Hall-Heroult process, through the electrolysis of the mixture of molten alumina and cryolite (Al2O3+Na 3AlF6), the latter being added to lower the melting point. Therefore, Al inevitably contains some Na (>0.002%) without further treatment. The Na content in Al is influenced by the thermodynamics and kinetics of the electrolysis. Similarly, in the electrolytic production and subsequent processing of Mg, Mg is commonly in contact with molten salt mixtures of NaCl and MgCl 2. Consequently, 2--20 wt. ppm Na is often found in Mg alloys. Besides originating from the industrial production process, Na can be introduced in laboratory experiments from alumina crucibles by the reaction between the molten Al-Mg alloys and the Na2O impurity in the alumina crucible. The trace element K plays a similar role in Al alloys although it is seldom discussed. No systematic theoretic research has been carried out to investigate the behavior of these impurities during the processing of aluminum alloys. The thermodynamic description of the Al-Ca-K-Li-Mg-Na system is needed to understand the effects of Ca, K, Li and Na on phase stability of aluminum and magnesium alloys. As the first step of the thermodynamic description of the high-order system, the constitutive-binary systems were modeled in the present work using the CALPHAD technique combined with first-principles calculations. Then, ternaries and higher order systems can be modeled. For ternary systems without experimental data, the thermodynamic description is extrapolated by combining three constitutive-binary systems. Alkali-metal induced high temperature embrittlement (HTE) and loss of ductility were investigated in Al-Li, Al-Mg and Mg-Li alloys. It was discovered that the alkali-metal-rich liquid-2 phase is the cause of HTE and the loss of ductility is proportional to the mole fraction of the liquid phase and the grain size. The calculated results are consistent with experimental observations in the literature and were used to determine HTE safe and sensitive zones, maximum and critical hot-rolling temperatures and the maximum allowable Na content in alloys, which can be used to industrial processing of Al and Mg alloys. The degree of HTE is proportional to the mole fraction of the liquid-2 phase and the grain size.

  6. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  7. A Comparative Study on Macro- and Microelement Bioaccumulation Properties of Leaves and Bark of Quercus petraea and Pinus sylvestris.

    PubMed

    Klink, Agnieszka; Polechońska, Ludmiła; Dambiec, Małgorzata; Białas, Kamila

    2018-01-01

    Trees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied. Results showed that for both species leaves contained more macroelements (Ca, K, Mg), whereas the bark was richer in most trace metals (Cd, Cr, Cu, Fe, and Pb). However, trees studied differed with respect to element content. Oak bark and leaves were more effective in accumulating macro- and trace elements (bark Cd, Co, Cr, Cu, K, Mg, Mn, Na, Ni, Pb and leaves Ca, Cr, Cu, Fe, K, Mg, Na, Ni) than Scots pine tissues. Nevertheless, foliar metal accumulation index of these species was similar, suggesting that their overall ability to accumulate trace metals was similar.

  8. Application of inorganic element ratios to chemometrics for determination of the geographic origin of welsh onions.

    PubMed

    Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi

    2004-09-22

    The composition of concentration ratios of 19 inorganic elements to Mg (hereinafter referred to as 19-element/Mg composition) was applied to chemometric techniques to determine the geographic origin (Japan or China) of Welsh onions (Allium fistulosum L.). Using a composition of element ratios has the advantage of simplified sample preparation, and it was possible to determine the geographic origin of a Welsh onion within 2 days. The classical technique based on 20 element concentrations was also used along with the new simpler one based on 19 elements/Mg in order to validate the new technique. Twenty elements, Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, and Tl, in 244 Welsh onion samples were analyzed by flame atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry. Linear discriminant analysis (LDA) on 20-element concentrations and 19-element/Mg composition was applied to these analytical data, and soft independent modeling of class analogy (SIMCA) on 19-element/Mg composition was applied to these analytical data. The results showed that techniques based on 19-element/Mg composition were effective. LDA, based on 19-element/Mg composition for classification of samples from Japan and from Shandong, Shanghai, and Fujian in China, classified 101 samples used for modeling 97% correctly and predicted another 119 samples excluding 24 nonauthentic samples 93% correctly. In discriminations by 10 times of SIMCA based on 19-element/Mg composition modeled using 101 samples, 220 samples from known production areas including samples used for modeling and excluding 24 nonauthentic samples were predicted 92% correctly.

  9. Analysis of some chosen elements of cerebrospinal fluid and serum in amyotrophic lateral sclerosis patients by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Ostachowicz, B.; Lankosz, M.; Tomik, B.; Adamek, D.; Wobrauschek, P.; Streli, C.; Kregsamer, P.

    2006-11-01

    Trace elements play an important role in the human central nervous system. Significant variations of the concentration of trace elements in body fluids may occur in neurodegenerative diseases. In the present work an investigation of the elemental composition of the serum, and the cerebrospinal fluid in amyotrophic lateral sclerosis patients and a control group was performed. For the analysis of the body fluids Total reflection X-ray Fluorescence (TXRF) spectrometry was used. The samples were taken during routine diagnostic procedures. Na, Mg, Cl, K, Ca, Cu, Zn, and Br were determined in both fluids. In order to validate the results of analysis a serum standard reference material was measured. A t-test was applied to check if the mean concentrations of the elements are different for ALS and the control group. For the serum samples higher values for Br were found in the ALS group, for the cerebrospinal fluid lower values of Na, Mg and Zn as well as higher Ca values were found in the ALS group compared to the control group.

  10. Accumulating pollutants in conifer needles on an Atlantic island - a case study with Pinus canariensis on Tenerife, Canary Islands.

    PubMed

    Tausz, Michael; Trummer, Walter; Goessler, Walter; Wonisch, Astrid; Grill, Dieter; Naumann, Simone; Jiménez, Maria Soledad; Morales, Domingo

    2005-08-01

    Concentrations of potential pollutant elements Na, Cl, and S were investigated in needles of Pinus canariensis grown at 55 field plots in Tenerife. Microelement concentrations (including heavy metals) were measured at a subset of 18 plots. Na and Cl concentrations were high at low elevations (up to 8 mg g(-1) Cl and 5.5 mg g(-1) Na). Na/Cl ratio close to standard seawater indicated sea spray influence up to 1200 m a.s.l. Only at few plots, sulphur concentrations indicated possible pollutant impact. Cluster and correlation analyses identified a related group of V, As, Cr, Fe, Mo, Ni, Cu, Pb, and Al, possibly related to traffic exhaust aggregated with soil particles. Mainly north-eastern, lower elevated plots were exposed to those immissions, but metal concentrations were generally low compared to data from other studies. In conclusion, seawater and soil particles explained most of the element distribution pattern in pine needles in Tenerife, but strong indications for some effect of local sources of air pollutants were detected.

  11. Evaluation of carbonate diagenesis: A comparative study of minor elements, trace elements, and rare-earth elements (REE + Y) between Pleistocene corals and matrices from Grand Cayman, British West Indies

    NASA Astrophysics Data System (ADS)

    Li, Rong; Jones, Brian

    2014-12-01

    On Grand Cayman, the Pleistocene Ironshore Formation consists of six unconformity-bounded units of limestones that have been partially or completely altered to calcite by post-depositional meteoric diagenesis. In order to examine the diagenetic history from the perspective of geochemical elements, the concentrations of minor element (Sr, Na, Mg), trace elements (Ba, Fe, Mn, Al, Si), and rare-earth elements (REE) and yttrium (Y) were determined for 105 corals and 84 matrices collected from the Rogers Wreck Point (RWP), Western Onshore area (WO), and offshore George Town (GT) areas. With the transformation of aragonite to calcite, the Sr, Na, and Ba values decreased, but Mg increased, which are indicative of diagenetic alteration in an open water system. Due to intrinsic "vital effects" and the extrinsic diagenetic environment, the variations of Sr, Na, Ba, and Mg concentrations between Acropora and Montastrea from the GT area are different to those of their counterparts from RWP and WO. The signatures of Sr, Na, Ba, and Mg are in good agreement with the diagenetic history as determined from petrographic and stable isotopic criteria. The REE + Y (REY) concentrations (ΣREY) are higher in the matrices (0.2-6.9 ppm, average 2.6 ppm) than in the associated corals (0.1-5.4 ppm, average 0.6 ppm). Shale-normalized REY patterns of the Pleistocene Ironshore Formation are similar to those of oxygenated seawater, which are characterized by (1) light REE depletion relative to heavy REE (average DySN/SmSN = 1.7, n = 35), (2) positive La anomalies (average Pr/Pr* = 1.17, n = 53), and (3) negative Ce anomalies (average Ce/Ce* = 0.49, n = 53). The preserved seawater-like REY distribution pattern, the lack of correlation between ΣREY and mineralogy, and the lack of correlation between ΣREY and diagenesis-sensitive stable oxygen isotope (δ18O) indicate that meteoric diagenesis did not have a major impact on the REY distribution patterns. The matrices and corals in the GT area, compared to their counterparts from RWP and WO, have relatively less depleted LREE and lower Y in REY distribution pattern, suggesting contamination by minor amounts of detrital sediments. This is supported by the fact that limestones from the GT area contain abnormally high contents of detrital elements (Al, Si). The variations in ΣREY in carbonate rocks from locality to locality probably reflect variations that existed in the local depositional environments where these deposits originally formed.

  12. Magnetite as the indicator of ore genesis for the Huangshaping polymetallic deposit, southern Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Ding, T.; Ma, D.; Lu, J.; Zhang, R.

    2017-12-01

    Huangshaping polymetallic deposit, located in southern Hunan Province, China, hosts abundant W-Mo-Pb-Zn mineralization which linked with the skarn system located between late Mesozoic high-K calc-alkaline to shoshonitic granitoids and the Carboniferous carbonate in this deposit. In this study, concentrations of trace and minor elements of the magnetites from different skarn stages are obtained by in situ LA-ICP-MS analysis, in order to further understand the polymetallic mineralization processes within this deposit. The generally high concentrations of spinel elements, including Mg, Al, Ti, Mn, V, Cr, Co, Ni, Ga, Ge, and Sn, in all magnetites from this deposit suggest that these elements are incorporated into magnetite lattice by substituting Fe3+ and/or Fe2+. However, the various concentrations of Na, Si, K, Ca, and W elements in magnetites, combining the abnormal time-resolved analytical signals of LA-ICP-MS analyses, suggest that these elements are significantly affected by the fluid inclusions in magnetites. Two groups of magnetites can be further distinguished based on their trace and minor elements concentrations: Group-1 magnetites, including those in medium grain garnets and calcite, have obvious lower Na, Si, K, Ca, Sn, W, but higher Mg, Al, Ti, V, Co, Ni, Zn concentrations compared with Group-2 magnetites, which including those in coarse grain garnets, tremolite, and bulk magnetite ores. This suggests that the hydrothermal fluids where Group-2 magnetites precipitated are evolved magmatic fluids which have undergone the crystal fractionation during the early skarn stages (eg. Garnet and tremolite), the high Na, Si, K, and Ca in the hydrothermal fluids probably result from the dissolution of the host rocks, such as limestone, sandstone, and evaporite horizons in this deposit. However, the Group-1 magnetites probably precipitated in the hydrothermal fluids with low salinity, which result the low Na, Si, K, and Ca in these magnitites. Furthermore, these fluids might have undergone large scale circulation, the extraction from Zn-rich metamorphic basement and Mg, Al-rich strata probably have provided abundant Mg, Al, Zn in the hydrothermal fluids where Group-1 magnetites precipitated. As a conclusion, this study suggests that the compositions of magnetites can be the proxies of ore genesis.

  13. Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA

    NASA Astrophysics Data System (ADS)

    França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.

    2010-10-01

    The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.

  14. Mineral Composition and Nutritive Value of Isotonic and Energy Drinks.

    PubMed

    Leśniewicz, Anna; Grzesiak, Magdalena; Żyrnicki, Wiesław; Borkowska-Burnecka, Jolanta

    2016-04-01

    Several very popular brands of isotonic and energy drinks consumed for fluid and electrolyte supplementation and stimulation of mental or physical alertness were chosen for investigation. Liquid beverages available in polyethylene bottles and aluminum cans as well as products in the form of tablets and powder in sachets were studied. The total concentrations of 21 elements (Ag, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Sr, Ti, V, and Zn), both essential and toxic, were simultaneously determined in preconcentrated drink samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) equipped with pneumatic and ultrasonic nebulizers. Differences between the mineral compositions of isotonic and energy drinks were evaluated and discussed. The highest content of Na was found in both isotonic and energy drinks, whereas quite high concentrations of Mg were found in isotonic drinks, and the highest amount of calcium was quantified in energy drinks. The concentrations of B, Co, Cu, Ni, and P were higher in isotonic drinks, but energy drinks contained greater quantities of Ag, Cr, Zn, Mn, and Mo and toxic elements, as Cd and Pb. A comparison of element contents with micronutrient intake and tolerable levels was performed to evaluate contribution of the investigated beverages to the daily diet. The consumption of 250 cm(3) of an isotonic drink provides from 0.32% (for Mn) up to 14.8% (for Na) of the recommended daily intake. For the energy drinks, the maximum recommended daily intake fulfillment ranged from 0.02% (for V) to 19.4 or 19.8% (for Mg and Na).

  15. [Alleviation effects of melatonin and Ca2+ on melon seedlings under salt stress].

    PubMed

    Gao, Qing Hai; Guo, Yuan Yuan; Wu, Yan; Jia, Shuang Shuang

    2017-06-18

    To assess the role of exogenous melatonin (MT) and Ca 2+ in melon under salt stress, the content of mineral elements (Cl - , Na + , K + , Mg 2+ , Ca 2+ ), the values of Na + /K + , Na + /Ca 2+ , Na + /Mg 2+ , the activity of H + -ATP, the accumulation of osmotic substances and membrane lipid peroxidation in melon under salt stress were investigated in the environmental conditions (day/night 25/18 ℃) controlled by artificial climate chamber. The results showed that salt stress significantly inhibited growth of the melon seedlings with the increased contents of Cl - and Na + in roots and lea-ves, and the decreased contents of K + , Mg 2+ and Ca 2+ , compared with the control. Under salt stress, exogenous application of MT or Ca 2+ remarkably reduced the contents of Cl - and Na + in roots and leaves, increased the contents of K + , Mg 2+ and Ca 2+ , and decreased values of Na + /K + , Na + /Ca 2+ and Na + /Mg 2+ . Additionally, exogenous melatonin or Ca 2+ increased H + -ATP activity and osmotic adjustments, and further alleviated cell membrane injuries imposed by salt stress, displaying lower MDA content and relative conductivity. Collectively, this work suggested that single or combined applications of exogenous MT and Ca 2+ effectively reduced the content of Cl - and Na + , improved ion balance by enhancing H + -ATP activity, and increased the content of osmotic adjustment substances for ameliorating membrane lipid peroxidation, thereby enhancing plant adaptation to salt stress, especially combined applications of exogenous MT and Ca 2+ . Our results further showed that the combined application of exogenous MT and Ca 2+ resulted in a synergistic effect on increasing salt tolerance in melon seedlings.

  16. Inorganic profile of some Brazilian medicinal plants obtained from ethanolic extract and ''in natura'' samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.O.M.; de Sousa, P.T.; Salvador, V.L.R.

    The Anadenathera macrocarpa, Schinus molle, Hymenaea courbaril, Cariniana legalis, Solidago microglossa and Stryphnodendron barbatiman, were collected ''in natura'' samples (leaves, flowers, barks and seeds) from different commercial suppliers. The pharmaco-active compounds in ethanolic extracts had been made by the Mato Grosso Federal University (UFMT). The energy-dispersive x-ray fluorescence (ED-XRF) spectrometry was used for the elemental analysis in different parts of the plants and respective ethanolic extracts. The Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, P, Rb, S, Sr and Zn concentrations were determined by the fundamental parameters method. Some specimens showed a similar inorganic profile for ''in natura''more » and ethanolic extract samples and some ones showed a distinct inorganic profile. For example, the Anadenathera macrocarpa showed a similar concentration in Mg, P, Cu, Zn and Rb elements in ''in natura'' and ethanolic extract samples; however very different concentration in Na, S, Cl, K , Ca, Mn, Fe and Sr was observed in distinctive samples. The Solidago microglossa showed the K, Ca, Cl, S, Mg, P and Fe elements as major constituents in both samples, suggesting that the extraction process did not affect in a considerable way the ''in natura'' inorganic composition. The elemental composition of the different parts of the plants (leaves, flowers, barks and seeds) has been also determined. For example, the Schinus molle specimen showed P, K, Cl and Ca elements as major constituents in the seeds, Mg, K and Sr in the barks and Mg, S, Cl and Mn in the leaves, demonstrating a differentiated elementary distribution. These inorganic profiles will contribute to evaluate the quality control of the Brazilian herbaceous trade and also will assist to identify which parts of the medicinal plants has greater therapeutic effect.« less

  17. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions.

    PubMed

    Falandysz, J; Kunito, T; Kubota, R; Bielawski, L; Frankowska, A; Falandysz, Justyna J; Tanabe, S

    2008-12-01

    Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.

  18. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  19. Short-term low-severity spring grassland fire impacts on soil extractable elements and soil ratios in Lithuania.

    PubMed

    Pereira, Paulo; Cerda, Artemi; Martin, Deborah; Úbeda, Xavier; Depellegrin, Daniel; Novara, Agata; Martínez-Murillo, Juan F; Brevik, Eric C; Menshov, Oleksandr; Comino, Jesus Rodrigo; Miesel, Jessica

    2017-02-01

    Spring grassland fires are common in boreal areas as a consequence of slash and burn agriculture used to remove dry grass to increase soil nutrient properties and crop production. However, few works have investigated fire impacts on these grassland ecosystems, especially in the immediate period after the fire. The objective of this work was to study the short-term impacts of a spring grassland fire in Lithuania. Four days after the fire we established a 400m 2 sampling grid within the burned area and in an adjacent unburned area with the same topographical, hydrological and pedological characteristics. We collected topsoil samples immediately after the fire (0months), 2, 5, 7 and 9months after the fire. We analysed soil pH, electrical conductivity (EC), major nutrients including calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), and the minor elements aluminium (Al), manganese (Mn), iron (Fe) and zinc (Zn). We also calculated the soil Na and K adsorption ratio (SPAR), Ca:Mg and Ca:Al. The results showed that this low-severity grassland fire significantly decreased soil pH, Al, and Mn but increased EC, Ca, Mg, and K,. There was no effect on Na, Fe, and Zn. There was a decrease of EC, Ca, Mg, and Na from 0months after the fire until 7months after the fire, with an increase during the last sampling period. Fire did not significantly affect SPAR. Ca:Mg decreased significantly immediately after the fire, but not to critical levels. Ca:Al increased after the fire, reducing the potential effects of Al on plants. Overall, fire impacts were mainly limited to the immediate period after the fire. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique.

    PubMed

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-06-01

    To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.

  1. Compositional Trends in Acid Fluids of Copahue Volcano, Argentina: Evidence for a failed eruption in 2004?

    NASA Astrophysics Data System (ADS)

    Kading, T. J.; Brophy, M.; Varekamp, J. C.

    2008-12-01

    The concentrations and fluxes of major, minor, and trace elements in the crater lake, volcanic spring, and acidified watershed of Copahue Volcano, Neuquen province, Argentina, have been monitored over the last decade. The 2000 Copahue eruption resulted in enhanced S/Cl, increased concentrations and fluxes of rock forming elements (especially Mg and Na) with strongly raised Mg/Cl and Mg/K values. The degree of LREE enrichment decreased and a pronounced Eu anomaly developed in the fluids (Eu/Eu*> rock values). These patterns are explained as the result of hot acid fluid attack on newly intruded magma, with early dissolution of olivine (Mg spike) and plagioclase (Na spike, Eu anomaly). Similar compositional changes were observed in water samples taken in November, 2004, but no eruption occurred. These may be the signals of a small magmatic intrusion into the hydrothermal system, which failed to continue into an eruption. The compositional changes of Copahue volcanic fluids over the last decade will be discussed in the context of chemical signals of an actual and a suspected 'failed eruption'.

  2. Discovering new materials and new phenomena with evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Oganov, Artem

    Thanks to powerful evolutionary algorithms, in particular the USPEX method, it is now possible to predict both the stable compounds and their crystal structures at arbitrary conditions, given just the set of chemical elements. Recent developments include major increases of efficiency and extensions to low-dimensional systems and molecular crystals (which allowed large structures to be handled easily, e.g. Mg(BH4)2 and H2O-H2) and new techniques called evolutionary metadynamics and Mendelevian search. Some of the results that I will discuss include: 1. Theoretical and experimental evidence for a new partially ionic phase of boron, γ-B and an insulating and optically transparent form of sodium. 2. Predicted stability of ``impossible'' chemical compounds that become stable under pressure - e.g. Na3Cl, Na2Cl, Na3Cl2, NaCl3, NaCl7, Mg3O2 and MgO2. 3. Novel surface phases (e.g. boron surface reconstructions). 4. Novel dielectric polymers, and novel permanent magnets confirmed by experiment and ready for applications. 5. Prediction of new ultrahard materials and computational proof that diamond is the hardest possible material.

  3. Inorganic Macro- and Micronutrients in "Superberries" Black Chokeberries (Aronia melanocarpa) and Related Teas.

    PubMed

    Juranović Cindrić, Iva; Zeiner, Michaela; Mihajlov-Konanov, Darija; Stingeder, Gerhard

    2017-05-18

    Black chokeberries ( Aronia melanocarpa ) are considered to be functional food containing high amounts of anthocyanins, phenols, antioxidants, vitamins and minerals. Whereas organic compounds are well studied, there is little research on the mineral composition of the chokeberries. Thus, the presented study is focused on the determination of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr and Zn in black chokeberry fruits and infusions to study the metals' extractability. The nutrients Ca, K and Mg are present in the fruits (dried matter) at g/kg level, whereas the other elements are present from µg/kg up to mg/kg level. The extraction yields of the metals from the infusion range from 4 (Al, Mn) up to 44% (Na). The toxic elements present do not pose any health risk when berries or infusions are consumed. Concluding, Aronia berries, as well as infusions derived from them, are a good dietary source of essential metals in addition to the organic compounds also contained.

  4. A preliminary analysis of trace-elemental signatures in statoliths of different spawning cohorts for Dosidicus gigas off EEZ waters of Chile

    NASA Astrophysics Data System (ADS)

    Liu, Bilin; Chen, Xinjun; Fang, Zhou; Hu, Song; Song, Qian

    2015-12-01

    We applied solution-based ICP-MS method to quantify the trace-elemental signatures in statoliths of jumbo flying squid, Dosidius gigas, which were collected from the waters off northern and central Chile during the scientific surveys carried out by Chinese squid jigging vessels in 2007 and 2008. The age and spawning date of the squid were back-calculated based on daily increments in statoliths. Eight elemental ratios (Sr/Ca, Ba/Ca, Mg/Ca, Mn/Ca, Na/Ca, Fe/Ca, Cu/Ca and Zn/Ca) were analyzed. It was found that Sr is the second most abundant element next to Ca, followed by Na, Fe, Mg, Zn, Cu, Ba and Mn. There was no significant relationship between element/Ca and sea surface temperature (SST) and sea surface salinity (SSS), although weak negative or positive tendency was found. MANOVA analysis showed that multivariate elemental signatures did not differ among the cohorts spawned in spring, autumn and winter, and no significant difference was found between the northern and central sampling locations. Classification results showed that all individuals of each spawned cohorts were correctly classified. This study demonstrates that the elemental signatures in D. gigas statoliths are potentially a useful tool to improve our understanding of its population structure and habitat environment.

  5. [Effect of nano-selenium on the activities of glutathione peroxidase and type-I deiodinase in the liver of weanling pigs].

    PubMed

    Zhang, Hongmei; Xia, Meisheng; Hu, Caihong

    2007-02-01

    To study the effects of nano elemental selenium (Nano-Se) or sodium selenite (Na2SeO3) on the activities of glutathione peroxidase (GSH-Px) and Type-I deiodinase in the liver. A total of 234 weanling pigs (Duroc x Landrace x Yorkshire) at an average initial body weight of 8.3 kg were allocated to 13 treatments. The thirteen dietary treatments were basal diet only (containing 0.04 mg/kg Se), basal diet + 0.1, 0.2, 0.3, 0.4, 0.5, 1.0 mg/kg Se as Na2SeO3 or Nano-Se, respectively. The results were as follows: Supplementation with 1.0 mg/ kg Se as Na2SeO3 reduced (P < 0.05) growth performance and GSH-Px activities as compared with the addition of a concentration range of 0.20-0.40 mg/kg Se. When Nano-Se was added to the diet, the growth and GSH-Px activities remained steady at the peak value as at a concentration of 1.0 mg/kg Se; There were no difference in the activities of GSH-Px between the treatments of Nano-Se and Na2SeO3 when added concentration of Se was 0.10-0.40 mg/kg. The pigs had higher (P < 0.05) activities of GSH-Px at a concentration range of 0.50 and 1.0 mg/kg as Nano-Se than Na2SeO3; Supplentation with Se increased the activity of Type- I deiodinase in liver, however, the increased extent was affected by neither Se sources nor added concentration of Se. The results implicated that for the best concentration range of Weinberg curve, Nano-Se is wider than Na2SeO3.

  6. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Zhongping; Li, Liangliang; Jiang, Zhaohua

    2009-04-01

    The ceramic coatings containing Ca and P were prepared on AZ91D Mg alloy by plasma electrolytic oxidation technique in NaOH system and Na 2SiO 3 system, respectively. The phase composition, morphology and the element distribution of the coatings was studied by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of the coatings was examined by polarizing curve methods in a 0.9% NaCl solution. In NaOH system, there were a large number of micro-holes distributing evenly on the surface of the coating, and the coating was mainly composed of Mg, Al, P and Ca. In Na 2SiO 3 system, the micro-holes in the coatings were reduced greatly in number and the distribution of the micro-holes was uneven, and the coating was mainly composed of Mg, Al, Si, P and Ca. The ratio of Ca/P in the coating can be controlled by the adjustment of the technique parameters to a certain extent. The adjustment of the concentration of Ca 2+ in the electrolyte was an effective method to change the ratio of Ca/P in the coating in both systems; the reaction time and the working voltage for the adjustment of the ratio of Ca/P in the coating was more suitable for the NaSi 2O 3 system than the NaOH system. The polarizing curve tests showed the coatings improved the corrosion resistance of the AZ91D Mg alloy in 0.9% NaCl solution by nearly two orders of magnitude.

  7. Effects of wastewater irrigation on chemical and physical properties of Petroselinum crispum.

    PubMed

    Keser, Gonca; Buyuk, Gokhan

    2012-06-01

    The present study was carried out to assess the impact of wastewater on parsley (Petroselinum crispum). The parameters determined for soil were pH, electrical conductivity (EC), soil organic matter (SOM), nutrient elements (Ca, Mg, Na, K, Mn, Cu, Zn, and Fe), and heavy metals (Cd, Cr, Ni, and Pb), while the parameters determined for the plant included pigment content, dry matter, nutrient element, and heavy metals. SOM, EC, and clay contents were higher, and pH was slightly acidic in soil treated with wastewater compared to control soil. The enrichment factors (EF) of the nutrient elements in contaminated soil are in the sequence of Na (2) > Ca (1.32) > Mn = Mg (1.17) > Cu (1.11) > Zn (1.08) > Fe (1.07) > K (0.93), while EF in parsley are Na (6.63) > Ca (1.60) > Mg (1.34) > Zn (1.15) > Fe (0.95) > Cu = K (0.90) > Mn (0.85). Application of wastewater significantly decreased dry matter, while photosynthetic pigment content increased in parsley. The enrichment of the heavy metals is in the sequence: Cd (1.142) > Pb (1.131) > Ni (1.112) > Cr (1.095). P. crispum shows a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant. Thus, although the wastewater irrigation in parsley production aims to produce socioeconomic benefits, study results indicated that municipal wastewater is not suitable for irrigation of parsley because it has negative effects on plant and causes heavy metal accumulation.

  8. Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity

    USGS Publications Warehouse

    Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.

    1993-01-01

    Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.

  9. Overview Of 100 Sols Of Chemcam Operations At Gale Crater

    NASA Astrophysics Data System (ADS)

    Maurice, Sylvestre; Wiens, Roger; MSL Science Team

    2013-04-01

    The Curiosity rover carries the ChemCam instrument suite, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument that can analyze the chemical composition of geological samples at distances up to 7 meters from the rover, and a high resolution camera for context imaging (RMI). In the first 100 sols after landing, ChemCam performed 343 single point measurements on approximately 50 different rocks or soil areas, for over 12,000 laser shots. Each time at least two RMI images are acquired before and after the laser shots to visualize the area of investigation and the geological context. LIBS lines are identified using primarily a martian dedicated database; to date, ChemCam has detected unambiguously major elements (Si, Al, Fe, Mg, Ca, Na, K, O), minor/trace elements of interest (Li, Cr, Mn, Rb, Sr, Ba, Ti, S, C, H). These observations allow a qualitative/quantitative assessment of the presence of dust (first few shots), the sample surface composition and chemical heterogeneity with depth. Several techniques have been developed to analyze ChemCam's data: (1) Univariate analysis refers to peak height studies of well-chosen LIBS lines and a training dataset to build calibration curves. Peak ratios K/Si, Na/Si, Al/Si, Fe+Mg/Si, or Mg/Mg+Fe have been calculated from the onboard calibration targets. The technique also applies to minor and trace elements which yield low intensity emission lines, such as Lin, Rb, H, C. (2) Multivariate methods give better results in terms of elemental composition, since they examine simultaneously and statistically several peaks of the same elements. A Partial Least Squares (PLS) regression algorithm is used for rapid major-element abundance determination. (3) Composition trends, clusters and end-members can also be identified using component analysis methods. Independent Component Analysis (ICA) identifies components that are directly related to Chemical elements: Al, Ca, Fe, H, K, Mg, Na, O, Si, Ti, but also mixture like a "soil" component. On top of this classification, clustering methods such as k-means and hierarchical clustering allow the differentiation and filation of different geochemical populations encountered so far at Mars. The ChemCam instruments are performing very well. The 100-sol dataset is rich of thousands of spectra and hundreds of images. We will present a status of the data set acquired during that period, a review of the analysis techniques and an introduction to the results which have been obtained so far.

  10. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  11. Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES.

    PubMed

    Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Liu, Xin; Yin, Jun-Yi; Huang, Dan-Fei; Zhang, Hui; Xie, Ming-Yong

    2013-04-15

    The contents of 18 kinds of mineral elements in Cyclocarya paliurus polysaccharide samples were determined by ICP-AES. The limits of detection (LOD) of the method for 18 elements were in the range of 0.01-3.80 mg/kg. The average recoveries obtained by the standard addition method were found between 94.34% and 105.69% (RSD, 1.01-4.23%). The results showed that C. paliurus polysaccharides were abundant in major and trace elements which are healthy for human body. The contents of Ca, Al, Mg, K, Fe, Mn and P were very high, ranging from 274.5±10.3 to 5980.0±102.7 mg/kg, while the contents of Zn, Na, Se, Cr, Pb, Cu and As ranged from 0.9±0.1 to 37.1±4.2 mg/kg. Finally, the levels of Ni, Cd, V and Co were not detected in the samples. ICP-AES is a simple, precise and efficient method for the determination of many mineral elements in polysaccharide samples simultaneously. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Chemical Abundances of Two Stars in the Large Magellanic Cloud Globular Cluster NGC 1718

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; McWilliam, Andrew; Wallerstein, George

    2017-05-01

    Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC 1718 are presented, based on high-resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC 1718 to be a fairly metal-rich cluster, with an average [Fe/H] ˜ -0.55 ± 0.01. The two red giants appear to have primordial O, Na, Mg and Al abundances, with no convincing signs of a composition difference between the two stars - hence, based on these two stars, NGC 1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC 1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxy's field stars. Similar to the field stars, NGC 1718 is found to be mildly deficient in explosive α-elements, but moderately to strongly deficient in O, Na, Mg, Al and Cu, elements that form during hydrostatic burning in massive stars. NGC 1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor asymptotic giant branch stars.

  13. [Analysis of inorganic elements in hydroponic Taraxacum mongolicum grown under different spectrum combinations by ICP-AES].

    PubMed

    Chen, Xiao-li; Morewane, M B; Xue, Xu-zhang; Guo, Wen-zhong; Wang, Li-chun

    2015-02-01

    Dandelion (Taraxacum mongolicum) was hydroponically cultured in a completely enclosed plant factory, in which fluorescence and LED emitting spectra of different bands were used as the sole light source for plant growth. Effects of spectral component on the growth of dandelion were studied and the contents of ten inorganic elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu and B in dandelion were analyzed by ICP-AES technology. The results showed that: (1) Under the condition of similar photosynthetic active radiation (PAR), single R or combined spectrums of FLRB were beneficial for biomass accumulation, while single B was the contrary; (2) Macroelements content ratio in Taraxacum mongolicum grown under FLwas K:Ca:P:Mg : Na=79.74:32.39:24.32:10.55:1.00, microelements content ratio was Fe:Mn:B:Zn:Cu = 9.28:9.71:3.82:2.08:1.00; (3) Red light (peak at 660 nm) could promote the absorptions of Ca, Fe, Mn, Zn, while absorption of Cu was not closely related to spectral conditions; (4) Thehighest accumulation of Ca, Na, Mn and Zn were obtained in aerial parts of Taraxacum mongolicum plants grown under pure red spectrum R, while the accumulation of the rest six elements reached the highest level under the mixed spectrum FLRB.

  14. CHEMICAL ABUNDANCES OF MEMBER STARS IN THE OPEN CLUSTER NGC 2632 (PRAESEPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. L.; Chen, Y. Q.; Zhao, G.

    2015-11-15

    Based on high-resolution, high signal-to-noise ratio spectra, we present abundances of 17 elements (Fe, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Y, Zr, Ba, La) for six stars (one Am star, one F dwarf star, and four GK giant stars) and radial velocities for 18 proper-motion selected member stars in the open cluster NGC 2632. In the Am star, s-process elements Y and Ba are clearly overabundant, which may be considered as an indicator of a peculiar Am star. The average [Fe/H] is 0.16 ± 0.06 from four GK giant member stars, which is similarmore » to that of solar-type stars in the literature. As compared with dwarf stars, significant overabundances are found for Na, Mg, and Ba elements in our giant stars, which can be explained by the evolutionary effect. We also detect a star-to-star scatter of [Na/Fe] ratios among four giants which locate approximately at the same position in the CMD. Finally, we perform an analysis on the possible connection between the abundance and spatial structure of NGC 2632, but we find no inhomogeneous abundance among different clumps of stars in this cluster based on our limited sample.« less

  15. Surface effects of corrosive media on hardness, friction, and wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Rengstorff, G. W. P.; Ishigaki, H.

    1985-01-01

    Hardness, friction, and wear experiments were conducted with magnesium oxide exposed to various corrosive media and also with elemental iron and nickel exposed to water and NaOH. Chlorides such as MgCl2 and sodium containing films were formed on cleaved magnesium oxide surfaces. The MgCl2 films softened the magnesium oxide surfaces and caused high friction and great deformation. Hardness was strongly influenced by the pH value of the HCl-containing solution. The lower the pH, the lower the microhardness. Neither the pH value of nor the immersion time in NaOH containing, NaCl containing, and HNO3 containing solutions influenced the microhardness of magnesium oxide. NaOH formed a protective and low friction film on iron surfaces. The coefficient of friction and the wear for iron were low at concentrations of NaOH higher than 0.01 N. An increase in NaOH concentration resulted in a decrease in the concentration of ferric oxide on the iron surface. It took less NaOH to form a protective, low friction film on nickel than on iron.

  16. The peculiar Na-O anticorrelation of the bulge globular cluster NGC 6440

    NASA Astrophysics Data System (ADS)

    Muñoz, C.; Villanova, S.; Geisler, D.; Saviane, I.; Dias, B.; Cohen, R. E.; Mauro, F.

    2017-08-01

    Context. Galactic globular clusters (GCs) are essential tools for understanding the earliest epoch of the Milky Way, since they are among the oldest objects in the Universe and can be used to trace its formation and evolution. Current studies using high-resolution spectroscopy for many stars in each of a large sample of GCs allow us to develop a detailed observational picture of their formation and their relation with the Galaxy. However, it is necessary to complete this picture by including GCs that belong to all major Galactic components, including the bulge. Aims: Our aim is to perform a detailed chemical analysis of the bulge GC NGC 6440 in order to determine if this object has multiple populations (MPs) and investigate its relation with the bulge of the Milky Way and with the other Galactic GCs, especially those associated with the bulge, which are largely poorly studied. Methods: We determined the stellar parameters and the chemical abundances of light elements (Na, Al), iron-peak elements (Fe, Sc, Mn, Co, Ni), α-elements (O, Mg, Si, Ca, Ti) and heavy elements (Ba, Eu) in seven red giant members of NGC 6440 using high-resolution spectroscopy from FLAMES-UVES. Results: We found a mean iron content of [Fe/H] =-0.50 ± 0.03 dex in agreement with other studies. We found no internal iron spread. On the other hand, Na and Al show a significant intrinsic spread, but the cluster has no significant O-Na anticorrelation nor does it exhibit a Mg-Al anticorrelation. The α-elements show good agreement with the bulge field star trend, although they are at the high alpha end and are also higher than those of other GCs of comparable metallicity. The heavy elements are dominated by the r-process, indicating a strong contribution by SNeII. The chemical analysis suggests an origin similar to that of the bulge field stars.

  17. Assessment of 28 trace elements and 17 amino acid levels in muscular tissues of broiler chicken (Gallus gallus) suffering from arsenic trioxide.

    PubMed

    Li, Si-Wen; He, Ying; Zhao, Hong-Jing; Wang, Yu; Liu, Juan-Juan; Shao, Yi-Zhi; Li, Jing-Lun; Sun, Xiao; Zhang, Li-Na; Xing, Ming-Wei

    2017-10-01

    The contents of 28 trace elements, 17 amino acid were evaluated in muscular tissues (wings, crureus and pectoralis) of chickens in response to arsenic trioxide (As 2 O 3 ). A total of 200 one-day-old male Hy-line chickens were fed either a commercial diet (C-group) or an As 2 O 3 supplement diet containing 7.5mg/kg (L-group), 15mg/kg (M-group) or 30mg/kg (H-group) As 2 O 3 for 90 days. The elements content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Under As 2 O 3 exposure, the concentration of As were elevated 8.87-15.76 fold, 7.93-15.63 fold and 5.94-12.45 fold in wings, crureus and pectoralis compared to the corresponding C-group, respectively. 19 element levels (lithium (Li), magnesium (Mg), aluminum (Al), silicon (Si), kalium (K), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), selenium (Se), strontium (Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), mercury (Hg) and lead (Pb), 9 element levels (K, Co, Ni, Cu, As, Se, Sr, Sn, Ba and Hg) and 4 element levels (Mn, cobalt (Co), As, Sr and Ba) were significantly increased (P < 0.05) in wing, crureus and pectoralis, respectively. 2 element levels (sodium (Na) and zinc (Zn)), 5 element levels (Li, Na, Si, titanium (Ti and Cr), 13 element levels (Li, Na, Mg, K, V, Cr, iron (Fe), Cu, Zn, Mo, Sn, Hg and Pb) were significantly decreased (P < 0.05) in wing muscle, crureus and pectoralis, respectively. Additionally, in crureus and pectoralis, the content of total amino acids (TAA) was no significant alterations in L and M-group and then increased approximately 10.2% and 7.6% in H-group, respectively (P < 0.05). In wings, the level of total amino acids increased approximately 10% in L-group, whereas it showed unchanged in M and H-group compared to the corresponding C-group. We also observed that significantly increased levels of proline, cysteine, aspartic acid, methionine along with decrease in the tyrosine levels in muscular tissues compared to the corresponding C-group. In conclusion, the residual of As in the muscular tissues of chickens were dose-dependent and disrupts trace element homeostasis, amino acids level in muscular tissues of chickens under As 2 O 3 exposure. Additionally, the response (trace elements and amino acids) were different in wing, thigh and pectoral of chick under As 2 O 3 exposure. This study provided references for further study of heavy metal poisoning and may be helpful to understanding the toxicological mechanism of As 2 O 3 exposure in muscular tissues of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  19. The effect of environmentally friendly hot-dipping auxiliary on the morphology of alloy coatings

    NASA Astrophysics Data System (ADS)

    Chen, Suhong; Guo, Kai; Zhu, Yi; Gao, Feng; Han, Zhijun

    2017-10-01

    Zn-Al-Mg-RE hot-dip alloy coatings which prepared by the environmentally friendly plating auxiliary were investigated by X-ray diffraction (XRD), SEM analysis and salt spray measurement. Significant variation in coating surface morphology and element content are observed with increasing content of Al and Mg in this paper. A reinforced ternary eutectic Zn-Al-MgZn2 is confirmed which attribute to improvement metallographic structure derived from certain ternary eutectic reaction in alloy solidification. For Mg-containing coatings, the enhanced corrosion resistance is observed by corrosion resistance test in salt spray at 35°C with 5% NaCl in terms of corrosion weight changes. It is found that the incorporation of 3 wt.% Mg and 0.1 wt.% rare earth element in to Zn-Al-Mg-RE bath caused structural refinement of the crystal and also helped to achieve excellent surface morphology.

  20. [Analysis of changes in minerals contents during cider fermentation process by inductively coupled plasma mass spectrometry].

    PubMed

    Ye, Meng-qi; Yue, Tian-li; Gao, Zhen-peng; Yuan, Ya-hong; Nie, Gang

    2015-01-01

    The changes in mineral elements during cider fermentation process were determined using ICP-MS. The results showed that the main minerals in the fermentation liquor included K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr and B. The content of K was the highest in both the apple juice and the cider, being 1 853. 83 and 1 654. 38 mg . L-1 respectively. The content of minerals was in dynamic changes along with the fermentation process. As a whole, during 72-120 h and 144-216 h, most of the minerals contents underwent great fluctuation. Especially when fermented for 192 h, the content of most of the minerals reached peak value or valley value. The content of Fe and Zn achieved their peak value, while the content of K, Na, Ca, Mg, Mn and B achieved valley value. But during the following 24 h, the content of minerals underwent a sharp reversal. After fermentation, the content of K, Mg, Cu, Zn and B decreased significantly, while the content of Na, Ca, Mn, Fe and Sr did not change significantly. The correlational analysis was conducted to evaluate the correlation between the mineral elements, and the result showed that the correlation between Ca and Mn was the most significant, with the correlation index reaching 0. 924. The information of this study will supply sufficient data for the fermentation process control and quality improvement of cider.

  1. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    NASA Astrophysics Data System (ADS)

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A < 37 μm, and 37 < B < 50 μm) before elemental analysis. Major, minor and trace elements namely, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Ti, V and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from <0.3 μg g-1 (Sb) to 14.6 ± 0.6% (Ca). Ions concentrations in the soluble fraction measured at mg g-1 levels were in the order Cl- > Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  2. Utilization of GIS modeling in geoenvironmental studies of Qaroun Lake, El Fayoum Depression, Egypt

    NASA Astrophysics Data System (ADS)

    Attia, Abdelaal H.; El-Sayed, Salah Abdelwahab; El-Sabagh, Moustafa E.

    2018-02-01

    Qaroun Lake, the study area, is a natural protectorate located at the northern part of El Fayoum Depression, Egypt. An integrated approach including hydrochemistry, mineralogy of sediments and GIS analysis and modeling was conducted in order to determine the different geoenvironmental parameters affecting the lake environmental system. Forty two environmental water and sediment samples were collected from the lake and relevant drains in 2013. The water samples were analyzed for major ions and trace elements and the sediment ones were analyzed for clay and non-clay minerals. This study showed that the saline water of the lake (31490 < TDS < 45100 mg/l) typically is Na-Cl-SO4 water possessing primary salinity properties dominated by alkalies and strong acids. The order of ionic dominance was Na+ > Mg2+ > Ca2+ > K+ - Cl- > SO42- > HCO3- > CO32-. The water salt assemblages were KCl - NaCl - Na2SO4 - MgSO4 - CaSO4 - Ca(HCO3)2 reflecting a mixed water type. The contents of NaCl, Na2SO4 and MgSO4 salts were found to be fully controlled with the lake depths. The hydrogeochemical investigations revealed that the evaporation concentration is the primary process of the lake water evolution. The presence of trace elements in the lake water is essentially of allochtonous origin. The GIS-based maps indicated that the concentrations of Zn, Co, Mo, Pb, F and Cd elements in water had increased in the eastern part of the lake; meanwhile, the contents of NO3- ions had increased in the southwestern part indicating that these parts were the most vulnerable to the potential pollution with such elements. The XRD analysis revealed the existence of different mineral assemblages (quartz, kaolinite, goethite, calcite, halite, hematite, feldspar, gypsum, dolomite and saponite) in bottom sediments. The mineral concentrations varied greatly from place to another place along the lake and their distributions were asymmetric. The dominant minerals were the quartz and calcite. The mineralogical compositions of sediments were highly affected by the natural and man-mad activities. The most effective processes were the type of the water and solid materials coming from the northern geologic formations (by the northern winds) and from the eastern and southern drains. The land coverage change detection maps indicated the positive and negative changes in the lake area and its surroundings during the period of 1987-2000. The positive change in the area of the lake was about 12.63 km2 along the northern part of the lake, while the negative one was about 4.56 km2 in the southern parts. Based on the obtained results, some recommendations were presented to avoid the detrimental effects originated from the natural and human activities.

  3. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  4. Inorganic Macro- and Micronutrients in “Superberries” Black Chokeberries (Aronia melanocarpa) and Related Teas

    PubMed Central

    Juranović Cindrić, Iva; Zeiner, Michaela; Mihajlov-Konanov, Darija; Stingeder, Gerhard

    2017-01-01

    Black chokeberries (Aronia melanocarpa) are considered to be functional food containing high amounts of anthocyanins, phenols, antioxidants, vitamins and minerals. Whereas organic compounds are well studied, there is little research on the mineral composition of the chokeberries. Thus, the presented study is focused on the determination of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr and Zn in black chokeberry fruits and infusions to study the metals’ extractability. The nutrients Ca, K and Mg are present in the fruits (dried matter) at g/kg level, whereas the other elements are present from µg/kg up to mg/kg level. The extraction yields of the metals from the infusion range from 4 (Al, Mn) up to 44% (Na). The toxic elements present do not pose any health risk when berries or infusions are consumed. Concluding, Aronia berries, as well as infusions derived from them, are a good dietary source of essential metals in addition to the organic compounds also contained. PMID:28524107

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayigit, A.I.; Bulut, Y.; Karayigit, G.

    A total of 48 samples, feed coals (FCs), fly ashes (FAs) and bottom ashes (BAs), which were systematically collected once a week over an eight-week period from boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity from Soma power plant, have been evaluated for major and trace elements (Al, Ca, Fe, K, Mg, Mn, Na, Ti, S, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Cs, Ga, Ge, Hf, Hg, Li, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Se, Sn, Sr, Ta, Th, Tl, U, V, Y, Zn, Zr, and REEs) to get information onmore » behavior during coal combustion. This study indicates that some elements such as Hg, Bi, Cd, As, Pb, Ge, Tl, Sn, Zn, Sb, B show enrichments in FAs relative to the BAs in both group boiler units. In addition to these, Cs, Lu, Tm, and Ga in Units B1-4 and S in Units B5-6 also have enrichments in FAs. Elements showing enrichments in BAs in both group boiler units are Ta, Mn, Nb. In addition to these, Se, Ca, Mg, Na, Fe in Units B1-4 and Cu in Units B5-6 also have enrichments in BAs. The remaining elements investigated in this study have no clear segregation between FAs and BAs. Mass balance calculations with the two methods show that some elements, S, Ta, Hg, Se, Zn, Na, Ca in Units B1-4, and Hg, S, Ta, Se, P in Units B5-6, have volatile behavior during coal combustion in the Soma power plant. This study also implies that some elements, Sb and Tb in Units B1-4 and Sb in Units B5-6, have relatively high retention effects in the combustion residues from the Soma power plant.« less

  6. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.

    PubMed

    Kojta, Anna K; Falandysz, Jerzy

    2016-06-01

    The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Abnormal spermatogenesis following sodium fluoride exposure is associated with the downregulation of CREM and ACT in the mouse testis.

    PubMed

    Wang, Chong; Chen, Yan; Manthari, Ram Kumar; Wang, Jundong

    2018-04-01

    cAMP response element modulator (CREM) is involved in regulating gene expression in normal spermatogenesis. The transcriptional activity of CREM is partly regulated by activator of CREM in the testis (ACT). To investigate the effects of different concentrations of sodium fluoride (NaF) on the gene and protein expression of CREM and ACT in the mouse testis, sexually mature male Kunming mice were exposed to 50, 100, or 150 mg/L NaF in their drinking water for 90 days. NaF reduced the sperm count and viability and increased the percentage of malformed sperm in a dose-dependent manner. The mRNA expression of CREM and ACT was markedly downregulated in the NaF-treated groups. Furthermore, immunohistochemistry revealed that CREM and ACT proteins were decreased significantly in the 50, 100, and 150 mg/L NaF-treated groups compared to the control group. These findings indicate that the decreased gene and protein expression of CREM and ACT in the testis is associated with an impairment of reproductive functions by NaF.

  8. Effect of P, Na, Mg, and Ag content on the in vitro bioactivity, wettability and mechanical strength of sol-gel glasses

    NASA Astrophysics Data System (ADS)

    Bouhazma, S.; Chajri, S.; Herradi, S.; Khaldi, M.; El Hachadi, A.; El Bali, B.; Lachkar, M.

    2018-03-01

    Bioactive glasses of the type SiO2-CaO, SiO 2 -CaO-P2O5, and SiO2-CaO-P2O5-MO (M = Na, Mg, or Ag) were obtained by the sol-gel processing method. The obtained materials was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). Contact angle and surface tension variation with time were determined at 25°C, respectively, by the sessile and pendant drop techniques, for distinct testing liquids: water, diiodomethane, formamide, and simulated body fluid (SBF). The in vitro studies showed that all gel-glasses compositions produced were bioactive. In the present work, three effects of elements (Mg, Na, Ag) in the glass were detected: (i) good mechanical strength with satisfactory biodegradability, (ii) formation of hydroxyapatite, which may promote good bone bonding and (iii) the good wettability.

  9. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to manuka honey.

    PubMed

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.

  10. Determination of Mineral, Trace Element, and Pesticide Levels in Honey Samples Originating from Different Regions of Malaysia Compared to Manuka Honey

    PubMed Central

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869

  11. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites.

    PubMed

    Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan

    2011-01-01

    This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.

  12. Application of ICP-OES for evaluating energy extraction and production wastewater discharge impacts on surface waters in Western Pennsylvania.

    PubMed

    Pancras, Joseph Patrick; Norris, Gary A; Landis, Matthew S; Kovalcik, Kasey D; McGee, John K; Kamal, Ali S

    2015-10-01

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated. Published by Elsevier B.V.

  13. Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert

    PubMed Central

    He, Mingzhu; Song, Xin; Tian, Fuping; Zhang, Ke; Zhang, Zhishan; Chen, Ning; Li, Xinrong

    2016-01-01

    Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions. PMID:26818575

  14. Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert.

    PubMed

    He, Mingzhu; Song, Xin; Tian, Fuping; Zhang, Ke; Zhang, Zhishan; Chen, Ning; Li, Xinrong

    2016-01-28

    Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions.

  15. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics.

    PubMed

    Yücel, Yasin; Sultanoğlu, Pınar

    2013-09-01

    Chemical characterisation has been carried out on 45 honey samples collected from Hatay region of Turkey. The concentrations of 17 elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ca, K, Mg and Na were the most abundant elements, with mean contents of 219.38, 446.93, 49.06 and 95.91 mg kg(-1) respectively. The trace element mean contents ranged between 0.03 and 15.07 mg kg(-1). Chemometric methods such as principal component analysis (PCA) and cluster analysis (CA) techniques were applied to classify honey according to mineral content. The first most important principal component (PC) was strongly associated with the value of Al, B, Cd and Co. CA showed eight clusters corresponding to the eight botanical origins of honey. PCA explained 75.69% of the variance with the first six PC variables. Chemometric analysis of the analytical data allowed the accurate classification of the honey samples according to origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle

    DOE PAGES

    Bindi, Luca; Tamarova, Anastasia; Bobrov, Andrey V.; ...

    2016-02-02

    In this study, we report on the coexistence between Na-rich ringwoodite and bridgmanite in the system MgSiO 3-Na 2CO 3-Al 2O 3 at 24 GPa and 1700 °C. In our experiments ringwoodite incorporates up to 4.4 wt% Na 2O, with Na entering the octahedral site together with Si, according to the mechanism: Mg 2+ → 2/3Na + + 1/3Si 4+. The volume of the unit cell increases along with the Na content. A similar behavior is observed for the unit-cell volume of Na-bearing bridgmanite, although the mechanism of Na incorporation into this structure remains unknown because of the lack ofmore » sufficient crystallographic data. Na 2O is compatible in ringwoodite relative to bridgmanite with a partition coefficient (D) of 5 (+5/-4), but is incompatible in ringwoodite relative to carbonate-rich melt/fluid, with the D value ranging between 0.5 and 0.1. Al is highly enriched in bridgmanite relative to the other coexisting phases. Carbonatitic melt metasomatism in the deep transition zone may lead to local Na-enrichment, and ringwoodite may be an important host for Na in the deep transition zone. Subsequent convection or subduction of metasomatized mantle may lead to enrichment of alkaline elements in the upper and lower mantle.« less

  17. Melt inclusion evidence for the relative timing of assimilation and crystallisation in high MgO lavas, Mull, Scotland

    NASA Astrophysics Data System (ADS)

    Peate, D. W.; Ukstins Peate, I.; Rowe, M. C.; Thompson, J. M.; Kerr, A. C.

    2010-12-01

    Whole rock data on the Mull Plateau Group lavas (Scotland) show that the most primitive lavas (MgO >8 wt%) are the most crustally contaminated. One model is that hot, high-MgO magmas flow turbulently during ascent allowing more assimilation to occur than in the laminar flow regime expected for cooler, more viscous, lower-MgO magmas. We present data on rehomogenized olivine-hosted melt inclusions from four representative high-MgO flows to investigate the nature of the assimilation process in more detail. One complication on Mull is the potential effect of pervasive hydrothermal metamorphism on whole rock compositions. Melt inclusions are more protected against alteration effects within their host olivine crystal, and potentially allow more robust estimates of magmatic liquid compositions. Low sulphur contents were used to screen for degassed / breached inclusions, and the compositions of unbreached inclusions were corrected for post-entrapment crystallisation and Fe-loss. The four whole rock samples show a limited variation in Na2O (2.4-2.8 wt%) and K2O (0.23-0.29 wt%) despite a wide range in immobile element contents (e.g. Zr 62-126 ppm, Nb 2.4-4.6 ppm). In contrast, the melt inclusions show a far greater variability in Na2O (1.8-4.0 wt%) and K2O (0.02-0.35 wt%) and coherent positive correlations between K and Na. Melt inclusions from different samples show systematic correlations between alkalis (K+Na) and incompatible element ratios such as Zr/Y and La/Sm, indicating that the melt inclusions are recording magmatic values for fluid mobile elements such as K and Na. For the two most incompatible element enriched samples, the whole rock analysis is similar to the melt inclusions except for lower Na and higher Ba that are related to alteration. Therefore, any crustal assimilation in these magmas must have take place prior to the growth of the olivines in the samples. For the two more depleted samples, the melt inclusions have less contaminated compositions than the whole rocks, and also show broad trends of increasing K/Ti (extent of assimilation) with decreasing Fo% of the host olivine (extent of differentiation). For these samples, significant crustal assimilation must have taken place both during and after growth of the olivines in the samples. Melt inclusions from individual samples show limited variability in Zr/Y compared with K/Ti, indicating that aggregation of melts from different parts of the melting column must have occurred at deeper levels prior to growth of the olivines in the samples. Reconnaissance H2O and CO2 analyses by SIMS allow estimates to be made of minimum inclusion entrapment depths of at least 3 to 7 km. Although it is apparent that whole rock compositional variations still capture the broad details of crustal assimilation and melting histories for Mull lavas despite the variable effects of hydrothermal alteration, we demonstrate that melt inclusion data can more clearly resolve details of these magmatic processes.

  18. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  19. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  20. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Li, W.

    2016-12-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces absorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the arctic atmosphere, which need to be incorporated into atmospheric chemical models in the arctic troposphere.

  1. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema.

    PubMed

    Amin, Mohammad Nurul; Liza, Kaniz Fatema; Sarwar, Md Shahid; Ahmed, Jamiuddin; Adnan, Md Tareek; Chowdhury, Manjurul Islam; Hossain, Mohammad Zahid; Islam, Mohammad Safiqul

    2015-09-01

    The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.

  2. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  3. The Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean: evidence from analyses of OIB-type basalts and OIB-derived phonolites in northern Tibet

    NASA Astrophysics Data System (ADS)

    Fan, Jian-Jun; Li, Cai; Liu, Jin-Heng; Wang, Ming; Liu, Yi-Ming; Xie, Chao-Ming

    2017-12-01

    In this paper, we present new major and trace element chemical data for the basalts and phonolites of the Nare ocean island fragment (NaOI), as well as zircon U-Pb age data and Hf isotope compositions for the NaOI phonolites in the middle segment of the Bangong-Nujiang Suture Zone, northern Tibet. Our aim is to assess the genesis of these rocks and to reconstruct the Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean (BNTO). The NaOI retains an ocean island-type double-layered structure comprising a basaltic basement and an oceanic sedimentary cover sequence (conglomerate and limestone, the latter accompanied by layers of erupted phonolite near the top of the sequence). The basalts in the NaOI are enriched in light rare earth elements and high field strength elements (Nb, Ta, Zr, Hf, and Ti), and they exhibit chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns similar to those of ocean island basalts. Taking into consideration their high Dy/Yb, Sm/Yb, and La/Sm ratios, we conclude that the NaOI basalts were derived from the partial melting of garnet peridotite in the mantle. The NaOI phonolites have LREE-enriched chondrite-normalized REE patterns with negative Eu anomalies (Eu/Eu* = 0.41-0.43) and primitive mantle-normalized trace element patterns with enrichments in Nb, Ta, Zr, and Hf, and depletions in Ba, U, Sr, P, and Ti. Given the high contents of Nb (172-256 ppm), Ta (11.8-16.0 ppm), Zr (927-1117 ppm), and Hf (20.8-26.9 ppm), and the very low contents of MgO (0.11-0.25 wt%), the very low Mg# values (5-10), and the near-zero contents of Cr (1.27-7.59 ppm), Ni (0.43-7.19 ppm), and Co (0.11-0.38 ppm), and the small and homogeneously positive ɛ Hf(t) values (+ 4.9 to + 9.5), we infer that the NaOI phonolites were formed by the fractional crystallization of an OIB-derived mafic parent magma. The phonolites of the NaOI contain zircons that yielded U-Pb ages of 239 and 242 Ma, indicating that the NaOI formed during the Middle Triassic. These data, combined with data from modern ocean islands (e.g., Canary Islands, Cape Verde, Fernando de Noronha, Tristan da Cunha, and Gough in the Atlantic Ocean, and Society and Austral-Cook in the Pacific Ocean), lead us to infer that the BNTO was open for a long time before the Middle Triassic, and that the ocean had already developed into a mature ocean with a thick oceanic lithosphere by at least the Middle Triassic.

  4. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.

  5. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  6. Soil salination indicators

    USDA-ARS?s Scientific Manuscript database

    Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...

  7. Chemical data and statistical interpretations for rocks and ores from the Ranger uranium mine, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J. Thomas; Frishman, David

    1983-01-01

    Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.

  8. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    PubMed

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  9. Elemental composition of Arctic soils and aerosols in Ny-Ålesund measured using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Gibaek; Yoon, Young-Jun; Kim, Hyun-A.; Cho, Hee-joo; Park, Kihong

    2017-08-01

    Two laser-induced breakdown spectroscopy (LIBS) systems (soil LIBS and aerosol LIBS) were used to determine the elemental composition of soils and ambient aerosols less than 2.5 μm in Ny-Ålesund, Svalbard (the world's most northerly human settlement). For soil LIBS measurements, matrix effects such as moisture content, soil grain size, and surrounding gas on the LIBS response were minimized. When Ar gas was supplied onto the soil sample surfaces, a significant enhancement in LIBS emission lines was observed. Arctic soil samples were collected at 10 locations, and various elements (Al, Ba, C, Ca, Cu, Fe, H, K, Mg, Mn, N, Na, O, Pb, and Si) were detected in soils. The elemental distribution in arctic soils was clearly distinguishable from those in urban and abandoned mining soils in Korea. Moreover, the concentrations of most of anthropogenic metals were fairly low, and localized sources in extremely close proximity affected the elevated level of Cu in the soil samples derived from Ny-Ålesund. The number of elements detected in aerosols (C, Ca, H, K, Mg, Na, and O) was lower than those determined in soils. The elements in aerosols can mainly originate from minerals and sea salts. The elemental distribution in aerosols was also clearly distinguishable from that in soils, suggesting that the resuspension of local soil particles by wind erosion into aerosols was minimal. The daily variation of particle number concentration (RSD = 71%) and the elements in aerosols (RSD = 25%) varied substantially, possibly due to fluctuating air masses and meteorological conditions.

  10. [Distribution of chemical elements in whole blood and plasma].

    PubMed

    Barashkov, G K; Zaĭtseva, L I; Kondakhchan, M A; Konstantinova, E A

    2003-01-01

    The distribution factor (Fd) of 35 elements of plasma and whole blood in 26 healthy men and women was detected by ICP-OES. Usilig this parameter the elements were subdivided in 3 pools. 9 of them have Fd higher than 1.5 ("elements of plasma"-Ag, Ca, Cu, In, Li, Na, Se, Si, Sr); 6 have lower than 0.5 ("elements of blood cells"-Fe, K, Mn, Ni, V, Zn), other 20-about 1 ("blood elements"). Fd of all elements depends on ionic radius. Elements of 2nd sub-groups of all groups of Mendeleev's periodic table ("heavy metals") depend on the similar law: "with growing of ionic radius the concentration of elements in plasma enhances". In alkaline metals Fd depends on the opposite law:" with growing of ionic radius of alkaline metal the quantity of elements in blood cells enhance". Dependence of Fd on the value of atomic mass in periods or in exterior electronic cloud (s-, p-, d-, f-) was not established. The table of distribution of all detected elements in whole blood in relation to 8 macroelements (Ca, Mg, K, Na, S, P, Fe, Zn,) is presented, as a basic diagnostic criteria in metal-ligand homeostasis disturbance.

  11. Trace element and strontium isotope characteristics of volcanic rocks from Isla Tortuga: a young seamount in the Gulf of California

    USGS Publications Warehouse

    Batiza, Rodey; Futa, K.; Hedge, C.E.

    1979-01-01

    Isla Tortuga is a small isolated central volcano which is located near an actively spreading trough in the Gulf of California. The basalt lavas from Tortuga which have the highest Mg/Fe and Ni contents have trace element abundances and ratios and 87Sr/86Sr which are similar to those of mid-ocean ridge tholeiite. The major element, rare earth element and Sr abundances of fractionated tholeiite (low Mg/Fe) and tholeiitic andesite of Tortuga are consistent with an origin by closed-system fractional crystallization. This hypothesis is not supported by K, Na, Rb and Ba abundances in the lavas nor by their variable 87Sr/86Sr (0.7024-0.7035). It is proposed that the apparent decoupling of light rare earth elements, other incompatible trace elements and 87Sr/86Sr is due to contamination of some Tortuga magmas while they are fractionated in a high-level crustal magma chamber. The mantle source of least-contaminated, high Mg/Fe basalt lavas of Tortuga is similar, although not identical to the source of normal mid-ocean ridge tholeiite; significant differences exist. The reasons for these differences are not yet known. ?? 1979.

  12. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  13. Multi-elements determination in medical and edible Alpinia oxyphylla and Morinda officinalis and their decoctions by ICP-MS.

    PubMed

    Zhao, Xiangsheng; Wei, Jianhe; Shu, Xiaoyan; Kong, Weijun; Yang, Meihua

    2016-12-01

    Contents of twenty elements (Mg, K, Ca, Na, Fe, Al, Zn, Ba, Mn, Cu, Mo, Cr, Ni, As, Se, Cd, Hg, Tl, Pb and V) in two medical and edible plant species, Alpinia oxyphylla and Morinda officinalis were simultaneously determined by inductively coupled plasma-mass spectrometry (ICP-MS) method after microwave digestion with HNO 3 -H 2 O 2 (6:1, v/v) as the digestion solvent. Certified standard reference material Poplar leaf was used to assess the accuracy of the method. The greatest contents of Mg, K, Ca, Al, Fe and Na were found in dried Alpinia oxyphylla and Morinda officinalis samples. The contents of five heavy metals including Pb, Cd, As, Hg and Cu in Alpinia oxyphylla did not exceed the limits. The contents of Pb in 76.67% samples and Cd in two batches of Morinda officinalis samples exceeded the limits set by Chinese Pharmacopeia. The contents of the selected elements in different parts (leaves, stems, roots and fruits) of Alpinia oxyphylla varied considerably. The highest concentrations of Mg, Ca, Mn and Se were found in the leaves of Alpinia oxyphylla, at the same time, while, the contents of 9 elements including Cd, Cr, Cu, As, Pb in the roots were the highest. The transfer ratios of selected elements from both species of herbs into their decoctions were reduced. Especially for the heavy metals, the transfer ratios were below 30% except As (79.73%) in Morinda officinalis. The results showed that decoction of the samples may reduce the intake of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. AGB subpopulations in the nearby globular cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Cottrell, P. L.; Momany, Y.; Casagrande, L.

    2018-03-01

    It has been well established that Galactic Globular clusters (GCs) harbour more than one stellar population, distinguishable by the anticorrelations of light-element abundances (C-N, Na-O, and Mg-Al). These studies have been extended recently to the asymptotic giant branch (AGB). Here, we investigate the AGB of NGC 6397 for the first time. We have performed an abundance analysis of high-resolution spectra of 47 red giant branch (RGB) and eight AGB stars, deriving Fe, Na, O, Mg, and Al abundances. We find that NGC 6397 shows no evidence of a deficit in Na-rich AGB stars, as reported for some other GCs - the subpopulation ratios of the AGB and RGB in NGC 6397 are identical, within uncertainties. This agrees with expectations from stellar theory. This GC acts as a control for our earlier work on the AGB of M4 (with contrasting results), since the same tools and methods were used.

  15. Low magnesium diet alters distribution of macroelements and trace elements in tissues and organs of female rats.

    PubMed

    Zheltova, Anastasia A; Kharitonova, Maria V; Iezhitsa, Igor N; Serebryansky, Eugeny P; Evsyukov, Oleg Y; Spasov, Alexander A; Skalny, Anatoly V

    2017-01-01

    The aim of the present study was to assess whether dietary magnesium deficiency can alter distribution of macroelements and trace elements in different organs and tissues. Experiments were carried out on 12 adult female Wistar rats, which were fed either a diet with low Mg content (≤20mgkg -1 of diet) (LMgD) or a diet with daily recommended Mg content (≈500mgkg -1 ) as control group (CG) for 70 days. On the 70th day of the experiment heart, aorta, femoral skeletal muscle, forebrain, cerebellum, pituitary gland, thyroid gland, ovaries, uterus, liver, kidneys, and spleen were taken for analysis of mineral content. Concentrations of Fe and Ca were measured by inductively coupled plasma-atomic emission spectrometry, and levels of Na, K, Mg, Co, Cu, Zn, Ni, Se, I were determined by inductively coupled plasma mass spectrometry. On the 70th day, LMgD led to significant reduction of Mg level in red blood cells, plasma, aorta, uterus and thyroid gland compared to CG as well as resulted in significant decrease of Mg/Ca ratio in kidneys, spleen and ovaries. Contrary to this, an increase of Mg/Ca ratio was found in cerebellum of LMgD group. Significant decrease of K concentration was shown in aorta of LMgD animals compared to CG whereas myocardial K concentration was increased in LMgD group. Na level was two-fold higher in skeletal muscles of rats that received LMgD in comparison to CG (p=0.006). Increased concentrations of Fe in ovaries and uterus were found in LMgD. Mg restriction did not affect Zn concentration in any of tasted tissues. Se level was higher in spleen and lower in uterus of LMgD animals compared to CG. MgD was accompanied by increased level of Co in skeletal muscles and decreased its level in kidneys and uterus. LMgD feeding was associated with decreased concentrations of Ni in heart, thyroid gland, spleen, uterus and Co in heart, aorta, liver, kidneys, spleen and ovaries. The changes of Mg, K, Co content were accompanied by dramatic (10-fold) decrease of I concentration in aorta of LMgD animals. LMgD causes decrease of I content in ovaries and increase of I level in uterus vs CG. Thus, distribution of macroelements (Ca, Na, K) was weakly affected by Mg restriction that led to the most evident alterations of Co and Ni tissue levels. Moreover, mineral balance of uterus seems to be the most susceptible to low Mg intake. Hypomagnesaemia resulted in significant changes of 5 studied trace elements (Fe, Se, Cu, Ni and Co). Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. [Correlation analysis and evaluation of inorganic elements in Angelica sinensis and its correspondence soil from different regions].

    PubMed

    Yan, Hui; Duan, Jin-ao; Qian, Da-wei; Su, Shu-lan; Song, Bing-sheng; He, Zi-qing

    2011-04-01

    Evaluate the relationship between the inorganic elements and the genuineness, invigoration efficacy of this medicinal material by qualitative and quantitative analysis of the inorganic elements in Angelica sinensis and its correspondence soil. The contents of 14 kinds of inorganic elements from 40 samples from 4 main habits of Angelica sinensis in China were determined by the method of ICP-AES. In Angelica sinensis and its correspondence soil, significant positive correlations existed between each pair of Ca, Na, Ni. The enrichment coefficients of Mg by Angelica sinensis was a certain peculiarity. The analysis showed that Zn, Cu, Mn, Mg were distincter to Angelica sinensis's geo-authentic than other elements. The results seemly confirmed that the Mingui was considered as geo-authentic crude drugs by traditional knowledge. The inorganic elements in Angelica sinensis may be correlated with its geo-authentic certainly. This result can provide scientific basis for understanding of Angelica sinensis's geo-authentic nature and the active material base.

  17. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  18. Natural contamination with arsenic and other trace elements in groundwater of the Central-West region of Chaco, Argentina.

    PubMed

    Blanes, Patricia S; Buchhamer, Edgar E; Giménez, María C

    2011-01-01

    This study covered the central agricultural region of the Chaco province, which lacks a permanent river networks. However, during the rainy period there is localized groundwater recharge. About 84 groundwater samples were taken during the period April-December 2007. These groundwater samples were collected from two different depths: 62 samples from shallow wells (4 to 20 m) and 24 samples from deep wells (20 to 100 m). Chemical variables were determined: pH, specific conductance, total dissolved solid, hardness, alkalinity, HCO(3)-, CO(3)(2-), SO(4)(2-), Cl-, NO(3)-, NO(2) -, NH(4)+, F-, As((tot)), Na+, K+, Ca2+, Mg2+, Fe, Cu, Ni, Pb and Zn. The chemical composition of groundwater in the study area is dominantly sodium bicarbonate and sodium chloride bicarbonate, comprising more than 60% (52/86) of shallow and deep groundwater samples. Of the 86 analyzed groundwater samples, 88% exceeded the WHO (World Health Organization) and CAA (Código Alimentario Argentino) standards (10 μg/L) for As (arsenic) and 9% exceeded the WHO standard (1.5 mg/L) for F(-).Groundwater highly contaminated with As (max. 1,073 μg/L) and F- (max. 4.2 mg/L) was found in shallow aquifer. The contaminated groundwater is characterized by high pH (max. 8.9), alkalinity (max. HCO(3)- 1,932 mg/L), SO(4)(2-) (max. 11,862 mg/L), Na(+) (max. 3,158 mg/L), Cl(-) (max. 10,493 mg/L) and electric conductivity greater than 33.3 μS/cm. Other associated elements (Ni, Pb, Cu and Zn) are present in low concentrations, except for Fe that in 32% of samples exceeded the guideline value of 0.3 mg/L suggested by the CAA.

  19. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  20. Trace elements and metals in farmed sea bass and gilthead bream from Tenerife Island, Spain.

    PubMed

    Rubio, C; Jalilli, A; Gutiérrez, A J; González-Weller, D; Hernández, F; Melón, E; Burgos, A; Revert, C; Hardisson, A

    2011-11-01

    The aim of this study was to determine the levels of metals (Ca, K, Na, Mg) and trace metals (Ni, Fe, Cu, Mn, Zn, Pb, Cd) in two fish species (gilthead bream [Sparus aurata] and sea bass [Dicentrarchus labrax]) collected from fish farms located along the coast of Tenerife Island. Ca, K, Na, Mg, Fe, Cu, Zn, and Mn were measured by flame atomic absorption spectrometry, whereas Pb, Cd, and Ni were determined using graphite furnace atomic absorption spectrometry. Mean Fe, Cu, Mn, and Zn contents were 3.09, 0.59, 0.18, and 8.11 mg/kg (wet weight) in S. aurata and 3.20, 0.76, 0.24, and 10.11 mg/kg (wet weight) in D. labrax, respectively. In D. labrax, Ca, K, Na, and Mg levels were 1,955, 2,787, 699.7, and 279.2 mg/kg (wet weight), respectively; in S. aurata, they were 934.7, 3,515, 532.8, and 262.8 mg/kg (wet weight), respectively. The Pb level in S. aurata was 7.28 ± 3.64 μg/kg (wet weight) and, in D. labrax, 4.42 ± 1.56 μg/kg (wet weight). Mean Cd concentrations were 3.33 ± 3.93 and 1.36 ± 1.53 μg/kg (wet weight) for D. labrax and S. aurata, respectively. All Pb and Cd levels measured were well below the accepted European Commission limits, 300 and 50 μg/kg for lead and cadmium, respectively.

  1. Role of glycemic elements of Cynodon dactylon and Musa paradisiaca in diabetes management.

    PubMed

    Rai, Prashant Kumar; Jaiswal, Dolly; Rai, Nilesh K; Pandhija, Shiwani; Rai, A K; Watal, Geeta

    2009-09-01

    The study defined the scientific evaluation of glycemic elements of extracts of Cynodon dactylon and Musa paradisiaca. A dose of 500 mg/kg body weight (bw) of C. dactylon produced maximum falls of 23.2% and 22.8% in blood glucose levels of normoglycemic rats during studies of fasting blood glucose and glucose tolerance, respectively, whereas the same dose of M. paradisiaca produced a rise of 34.9% and 18.4%. In diabetic rats during glucose tolerance tests, a fall of 27.8% and a rise of 17.5% were observed with the same dose of C. dactylon and M. paradisiaca, respectively. Laser-induced breakdown spectroscopy used for detection of glycemic elements present in both the extracts indicated that C. dactylon was rich in magnesium (Mg), whereas M. paradisiaca was rich in potassium (K) and sodium (Na), comparatively, suggesting thereby the defined roles of these elements in diabetes management.

  2. Surface-structural Control on Minor Element Zoning and Growth Mechanism in Synthetic Magmatic Clinopyroxene

    NASA Astrophysics Data System (ADS)

    Paquette, J.; Deakin, M.; Baker, D. R.

    2006-12-01

    Because in situ observations of actively growing surfaces are technically impractical, our understanding of crystal growth mechanisms at hydrothermal and magmatic conditions lags behind that of minerals that can be grown from aqueous solutions at or near room temperature. Growing silicate minerals from hydrous synthetic carbonate melts offers the opportunity to relate directly minor element incorporation to their surface microtopography. Natural hydrothermal diopside was used to seed experiments in which synthetic clinopyroxene crystals were grown at 800 degrees C and 10 kbars for 24 hours, from alkaline melts modelled after the lavas of the Tanzanian volcano Oldoinyo Lengai. The melts were prepared from Na2CO3, K2CO3, CaCO3, MgCO3 and Fe3O4 reagents. One run was anhydrous and the others contained either 2.5 or 5 wt. % H2O. Euhedral tabular crystals ranging in size from 100 to 300 ìm across were found in all three runs, hand-picked and freed from their carbonate matrix by overnight immersion in dilute acetic acid. The crystals consist of \\{110\\} prism, \\{100\\} and \\{001\\} pinacoids and a \\{111\\} dipyramid. AFM images resolved a distinct surface microtopography on each form: arrays of broad macrosteps on \\{100\\}, lens- shaped islands on \\{001\\} facets and striated fiber-like crystallites on \\{110\\}. EMP analyses of polished grain mounts show that compositional zoning of Na and Fe occurs not only among non-equivalent growth sectors but also within single \\{100\\} sectors. Electron microprobe maps of sequentially polished sections indicate that zoning within \\{100\\} sectors reflects differential uptake of Na and Fe on symmetrically non-equivalent steps. Near the crystal surface, the non- equivalent coeval vicinal faces of growth hillocks on \\{100\\} are either diopside-like, Na.007Ca1.00(Mg0.754Fe2+0.22Mn2+0.013Al_{0.003)Si2.00O6 , or acmitic, Ca0.63Na0.35(Mg0.64Fe3+ 0.36)Al0.01Si1.99O6 in composition. Step-specific incorporation of minor elements in a clinopyroxene face has only been documented once, in a hydrothermal diopside from Orford (Quebec), where Fe(II) and Mn(II) were differentially incorporated on steps oriented parallel to [010] on \\{100\\} faces. This natural example and our synthetic crystals reflect growth regimes where minor element incorporation was limited by surface-structural kinetics rather than diffusion- controlled kinetics. Such step-specific surface-structural control has never been reported in clinopyroxenes grown from silicate melts. Is it present, but more subtle, or do silicate melts promote a significantly different growth regime? Comparing zoning patterns in synthetic silicates grown from carbonate versus silicate melts could put new constraints on current models of element partitioning.

  3. Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Andonovska, Katerina Bačeva

    2017-02-23

    Distributions of a total of 21 elements were monitored in significantly lead-zinc polluted area using moss species (Hypnum cupressiforme and Camptothecium lutescens) used interchangeably, covering a denser sampling network. Interspecies comparison was conducted using Box-Cox transformed values, due to their skewed distribution. The median concentrations of trace elements in the both mosses examined decreased in the following order: Fe>Mn>Zn>Pb>Cu>Ni∼Cr∼As>Co>Cd>Hg. For almost all analyzed elements, H. cupressiforme revealed higher bio-accumulative abilities. For arsenic contents was obtained ER-value in favor of C. lutescens. The ER for the element contents according to the distance from the pollution source in selected areas was significantly enriched for the anthropogenic introduced elements As, Cd, Cu, Pb and Zn. After Box-Cox transformation of the content values, T B was significantly different for As (4.82), Cd (3.84), Cu (2.95), Pb (4.38), and Zn (4.23). Multivariate factor analysis singled out four elemental associations: F1 (Al-Co-Cr-Fe-Li-Ni-V), F2 (Cd-Pb-Zn), F3 (Ca-Mg-Na-P) and F4 (Cu) with a total variance of 89%. Spatial distribution visualized the hazardously higher contents of "hot spots" of Cd > 1.30 mg/kg, Cu > 22 mg/kg, Pb > 130 mg/kg and Zn > 160 mg/kg. Therefore, main approach in moss biomonitoring should be based on data management of the element distribution by reducing the effect of extreme values (considering Box-Cox data transformation); the interspecies variation in sampling media does not deviate in relation to H. cupressiforme vs. C. lutescens.

  4. Determination of bioavailable macro- and microelements from agricultural soil using different extractants

    NASA Astrophysics Data System (ADS)

    Milićević, Tijana; Relić, Dubravka; Popović, Aleksandar

    2015-04-01

    Translocation of elements from soil to plant has a major impact on the growing plants and on their quality in any agricultural field. In this study, soil samples were collected from agricultural area Radmilovac, Serbia during grapevine season in 2013. Bioavailable elements from soil to plant (grapevine) were isolated by five different extractants: 0.11 mol L-1 CH3COOH, 0.05 mol L-1 Na-EDTA, 0.01 mol L-1 CaCl2, 1 mol L-1 NH4NO3 and distilled water during 2 and 16 h. Concentrations of 22 bioavailable macroelements: Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si and microelements: B, Be, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V, Zn were determined by ICP-OES. The best extractant for Al, B, Be, Mg, Mo, Si and Zn was CH3COOH, Na-EDTA for Ca, Cd, Co, Cu, Fe, K, Mn, Ni, P, Pb, V, and distilled water for Na and S. Acetic acid has been proven to be an aggressive extractant and it can be used for isolation of higher concentrations of plant bioavailable elements from soil, rather than distilled water, CaCl2 and NH4NO3. The acidity of CH3COOH enhances the extraction of bioavailable fraction of microelements from various substrates and destruction of carbonates as well. However, it can be concluded that there is no unique extractant for isolation of the most bioavailable fraction for all elements from the soil. It can be noticed that the most common concentrations of macroelements, K and Mn, are in correlation with concentrations of microelements, Cd, Co, Ni and Zn. This indicates that the most of their concentrations in soils are followed by microelements, whose concentrations are much lower than concentrations of macroelements. However, as these correlations are the most common, it can be concluded that the pairs of macro- and microelements (e.g. Mn-Cd, Mn-Co, Ni-Cd, Ni-Co, Ni-Mn, Zn-Cd, Zn-Co, Zn-Mn, Zn-Ni) have the same source in soil and can be isolated by the same extractant. It is interesting to note that the concentrations of Ca and Mg extracted from soil using CH3COOH are in correlation and that neither of these macroelements is in correlation with the concentration of microelements isolated with the same extractant. The concentrations of Cu and S extracted from soil by distilled water during 16 h are in correlation. These elements could have entered only through the soil surface layer while grapevines were primarily treated by fungicide copper(II)-sulphate. In addition, the concentration of S is correlated with the concentrations of Mn, P and Na. It can be assumed that the correlation between these elements points to their origin from the pesticides used in agriculture production.

  5. Early chemical enrichment of the Galactic dwarf satellites from a homogeneous and NLTE abundance analysis

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila; Jablonka, Pascale; Sitnova, Tatyana; Pakhomov, Yuri; North, Pierre

    2018-06-01

    We review recent abundance results for very metal-poor (VMP, -4 ≤ [Fe/H] ≤ -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo comparison sample that were obtained based on high-resolution spectroscopic datasets, homogeneous and accurate atmospheric parameters, and the non-local thermodynamic equilibrium (NLTE) line formation for 10 chemical species. A remarkable gain of using such an approach is the reduction, compared to a simple compilation of the literature data, of the spread in abundance ratios at given metallicity within each galaxy and from one to the other. We show that all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] \\simeq 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. In our classical dSphs, we observe the dichotomy in the [Sr/Ba] versus [Ba/H] diagram, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr at the earliest evolution stages of these galaxies. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≈ -1.3 and [Ba/Mg] ≈ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.

  6. Determining baseline element composition of lichens. II. Hypogymnia enteromorpha and Usnea spp. at Redwood National Park, California

    USGS Publications Warehouse

    Gough, L.P.; Jackson, L.L.; Sacklin, J.A.

    1988-01-01

    Hypogymnia enteromorpha and Usnea spp. were collected in the Little Bald Hills ultramafic region of Redwood National Park, California, to establish element-concentration norms. Baselines are presented for Ba, Ca, Cu, Mn, Ni, P, Sr, V, and Zn for both lichen species; for Li, Mg, and K for H. enteromorpha; and for Al, Ce, Cr, Co, Fe, Na, and Ti for Usnea. Element concentrations of future collections of this same material can be used to monitor possible air quality changes anticipated from mining activities planned nearby. The variability in the element concentrations was partitioned between geographical distance increments and sample preparation and analysis procedures. In general, most of this variability was found in samples less than a few hundreds of meters apart rather than those at about 1 km apart. Therefore, except for Ba and Co, no large geographical element-concentration trends were observed. Samples of both species contained elevated levels of Ni and Mg, which probably reflect the ultramafic terrain over which they occur.

  7. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars withmore » [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.« less

  8. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro

    2017-08-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  9. Reconstructing paleosalinity in the Sacramento-San Joaquin Delta of California using major elements in peat

    NASA Astrophysics Data System (ADS)

    Drexler, J. Z.; Alpers, C. N.; Taylor, H. E.; Windham-Myers, L.; Neymark, L. A.; Paces, J. B.

    2010-12-01

    Marshes in the Sacramento-San Joaquin Delta, the most landward extent of the San Francisco Estuary, started forming around ~6,700 years ago. Currently, Delta marshes are classified as tidal freshwater, however it is unknown to what degree the salinity regime has varied between brackish and fresh conditions since marsh development. This information is important to managers considering major changes to the flow regime in the Delta, because such changes could impact the future sustainability of endangered species such as the Delta smelt (Hypomesus transpacificus), which live in or just upstream of the mixing zone between fresh and brackish water. The main goal of the Rates and Evolution of PEat Accretion through Time project (REPEAT II) is to reconstruct paleosalinity regimes in the Delta. We are using elemental concentrations of Na, Ca, K, and Mg (the major cations in ocean water) in peat profiles to develop a quantitative index of salinity for the past 6000+ years. We are normalizing the elemental concentrations to Ti (a proxy for inorganic sediment content because it is inversely correlated with loss on ignition, a measure of peat organic content) to correct for bias in elemental concentrations caused by variations in the inorganic sediment content of peat through time. Plots of Ti-normalized element concentration vs. peat depth (or age) indicate that Browns Island, a brackish marsh on the western edge of the Delta, has experienced significant variations in salinity through the millennia. Vertical peat profiles show a spatial trend of decreasing salinity from west (bay-side) to east (landward) (i.e., Browns Island > Sherman Island > Franks Wetland ≧ Bacon Channel Island). During the period from 2300 to 500 calibrated years before present, Na concentrations in peat at Browns Island indicate a particularly saline period, with peat containing up to 3 wt. % Na. In the last 100 years or so, salinity at Browns Island has apparently decreased and the Na content of peat has stabilized at between 0.6 and 1 wt. % Na. We are currently analyzing the roots of live plants collected along a salinity gradient (range of means from ~0.2 to 20 ppt) in the San Francisco Estuary to determine concentrations of Na, Ca, K, and Mg in root material and the empirical relationships between root chemistry and ambient salinity levels. Because the organic component of peat is largely made up of roots that have decomposed in situ, we anticipate using these empirical relationships to quantify salinity regimes in the Delta through time.

  10. Assessment of groundwater quality from Bankura I and II Blocks, Bankura District, West Bengal, India

    NASA Astrophysics Data System (ADS)

    Nag, S. K.; Das, Shreya

    2017-10-01

    Hydrochemical evaluation of groundwater has been conducted in Bankura I and II Blocks to analyze and determining groundwater quality in the area. Thirty-six groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. The constituents have the following ranges in the water: pH 6.4-8.6, electrical conductivity 80-1900 μS/cm, total hardness 30-730 mg/l, TDS 48-1001 mg/l, Ca2+ 4.2-222.6 mg/l, Na+ 2.33-103.33 mg/l, Mg2+ 1.56-115.36 mg/l, K+ 0.67-14 mg/l and Fe BDL-2.53 mg/l, {HCO}3^{ - } 48.8-1000.4 mg/l, Cl- 5.6-459.86 mg/l and {SO}4^{ = } BDL-99.03 mg/l. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). Sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), total hardness (TH), and permeability index (PI) were calculated as derived parameters, to investigate the ionic toxicity. Concerned chemical parameters when plotted in the U.S. Salinity diagram indicate that waters are of C1-S1, C2-S1 and C3-S1 types, i.e., low salinity and low sodium which is good for irrigation. The values of Sodium Adsorption Ratio indicate that the groundwater of the area falls under the category of low sodium hazard. So, there is neither salinity nor toxicity problem of irrigation water, and hence the ground water can safely be used for long-term irrigation. The chemical parameters when plotted in Piper's trilinear diagram are found to concentrate in the central and west central part of the diamond-shaped field. Based on the analytical results, groundwater in the area is found to be generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO3 > Cl > SO4 and Ca > Na > Mg > K > Fe. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). According to Gibbs diagrams samples fall in the rock dominance field and the chemical quality of groundwater is related to the lithology of the area. The alkaline earth elements (Ca and Mg) occur in greater abundance than alkaline elements (Na and K). A comparative study of our analytical results with the WHO standards of drinking water indicate that the present waters are also good for drinking purposes.

  11. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  12. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragaglia, A.; Carretta, E.; Gratton, R. G.

    We present the first chemical composition study of two unevolved stars in the globular cluster NGC 2808, obtained with the X-shooter spectrograph at VLT. NGC 2808 shows three discrete, well-separated main sequences. The most accepted explanation for this phenomenon is that their stars have different helium contents. We observed one star on the bluest main sequence (bMS, claimed to have a high helium content, Y {approx}0.4) and the other on the reddest main sequence (rMS, consistent with a canonical helium content, Y = 0.245). We analyzed features of NH, CH, Na, Mg, Al, and Fe. While Fe, Ca, and othermore » elements have the same abundances in the two stars, the bMS star shows a huge enhancement of N, a depletion of C, an enhancement of Na and Al, and a small depletion of Mg with respect to the rMS star. This is exactly what is expected if stars on the bMS formed from the ejecta produced by an earlier stellar generation in the complete CNO and MgAl cycles whose main product is helium. The elemental abundance pattern differences in these two stars are consistent with the differences in the helium content suggested by the color-magnitude diagram positions of the stars.« less

  14. Simulated effects of acidic solutions on element dynamics in monsoon evergreen broad-leaved forest at Dinghushan, China. Part 1: dynamics of K, Na, Ca, Mg and P.

    PubMed

    Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2007-03-01

    Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal-fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October 2000 to July 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO4(2-), NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO4(2-) added accumulated in the soil. Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of, the leaf K, Ca and Mg concentrations when the treatment acidity increased. Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.

  15. Effect of different bile salts on the relative hypoglycemia of witepsol W35 suppositories containing insulin in diabetic Beagle dogs.

    PubMed

    Hosny, E A; Al-Shora, H I; Elmazar, M M

    2001-09-01

    Insulin suppositories were formulated using Witepsol W35 as a base to investigate the effect of various bile salts/acids on the plasma glucose concentration of diabetic beagle dogs. Comparison of the effect of these formulations was made with that produced by insulin subcutaneous injections. Of the bile salts/acids studied, incorporation of 100 mg of deoxycholic acid (DCA), sodium cholate (NaC), or sodium deoxycholate (NaDC) with insulin (10 U/Kg) showed that suppositories containing NaDC produced the highest area under the curve (AUC) and relative hypoglycemia (RH) of 290 +/- 83 mg%h and 28% +/- 8.1%, respectively. To study the optimum amount of NaDC in insulin suppositories to produce the highest RH, 50-200 mg/suppository were used, and we found that 150 mg NaDC produced 35% +/- 13% RH. We also studied the influence of different doses of insulin (5-20 U/kg) in the presence of NaDC (100 mg). It was found that increase of the insulin dose was accompanied by an increase in AUC and maximum reduction in plasma glucose level Cmax. A combination of NaDC (100 mg) and NaC (50 mg) produced an AUC of 252 +/- 13mg%h and an RH of 49% +/- 2.6%, which were higher than produced by either of its individual components (NaC 50 mg or NaDC 100 mg) when used alone or when compared with an equivalent amount of NaDC (150 mg). When the effect of sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC) was studied, it was found that an insulin suppository containing 100 mg of either NaTC or NaTDC produced an RH equivalent to that produced previouslY with a mixture of NaDC (100 mg) and NaC (50 mg). On the other hand, NaC (50 mg) did not improve the hypoglycemic effect of NaTC any further. In conclusion, a relative hYpoglycemia of about 50% can be reached using insulin suppositories containing Witepsol W35 as a base and NaDC plus NaC (100 mg plus 50 mg, respectively), NaTDC (100mg), or NaTC (100 mg) as rectal absorption enhancers of insulin. A desirable hypoglycemia, expressed as Cmax, and/or AUC can be reached by adjusting the insulin dose in the formulation according to the degree of hyperglycemia.

  16. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Baudelet, Matthieu; Yu, Jin; Bossu, Myriam; Jovelet, Julien; Wolf, Jean-Pierre; Amodeo, Tanguy; Fréjafon, Emeric; Laloi, Patrick

    2006-10-01

    Using femtosecond laser-induced breakdown spectroscopy, the authors have analyzed five different species of bacterium. Line emissions from six trace mineral elements, Na, Mg, P, K, Ca, and Fe, have been clearly detected. Their intensities correspond to relative concentrations of these elements contained in the analyzed samples. The authors demonstrate that the concentration profile of trace elements allows unambiguous discrimination of different bacteria. Quantitative differentiation has been made by representing bacteria in a six-dimension hyperspace with each of its axis representing a detected trace element. In such hyperspace, representative points of different species of bacterium are gathered in different and distinct volumes.

  17. Trace and Ultra-trace Elements in the Deepest Part of the Vostok Ice Core, Antarctica: Geochemical Characterization of the Sub-glacial Lake Environment

    NASA Astrophysics Data System (ADS)

    Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.

    2016-12-01

    We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.

  18. Bioaugmentation in growing plants for lunar bases

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Burlak, O.; Rogutskyy, I.; Vasilenko, A.; Mytrokhyn, O.; Lukashov, D.; Foing, B.; Kozyrovska, N.

    2011-03-01

    Microorganisms may be a key element in a precursory scenario of growing pioneer plants for extraterrestrial exploration. They can be used for plant inoculation to leach nutritional elements from regolith, to alleviate lunar stressors, as well as to decompose both lunar rocks and the plant straw in order to form a protosoil. Bioleaching capacities of both French marigold (Tagetes patula L.) and the associated bacteria in contact with a lunar rock simulant (terrestrial anorthosite) were examined using the model plant-bacteria microcosms under controlled conditions. Marigold accumulated K, Na, Fe, Zn, Ni, and Cr at higher concentrations in anorthosite compared to the podzol soil. Plants inoculated with the consortium of well-defined species of bacteria accumulated higher levels of K, Mg, and Mn, but lower levels of Ni, Cr, Zn, Na, Ca, Fe, which exist at higher levels in anorthosite. Bacteria also affected the Са/Mg and Fe/Mn ratios in the biomass of marigold grown on anorthosite. Despite their growth retardation, the inoculated plants had 15% higher weight on anorthosite than noninoculated plants. The data suggest that the bacteria supplied basic macro-and microelements to the model plant.

  19. Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey.

    PubMed

    Vural, Alaaddin

    2015-08-01

    Kırkpavli alteration area (Gümüşhane, Northeast Turkey) is contaminated by heavy metals such as Cd, Pb, As, Cu and Zn. The quantity of accumulation of heavy metal trace elements and macroelements in 32 leaves of Rosa canina of the Kırkpavli alteration area has been studied within the scope of geochemical studies. Element contents of samples were assessed using various parameters including descriptive statistics, factor analysis, correlation coefficients and bioaccumulation factor. Concentrations were detected in the acceptable range for Mo, Cu, Pb, Ni, As, Cd, Sb, P, Ti, Na, Se and Sn. Concentrations of Co, Mn, Ba and Hg were detected close to the acceptable values, whereas Zn, Fe, Sr, V, Ca, Cr, Mg, B, Al, K, W, Sc, Cs and Rb concentrations were detected above the acceptable values. Principal component analysis was used to identify the elements that have a close relationship with each other and/or similar origins. It has been concluded that Zn, Cu, As and Mo content of the plant were related to hydrothermal alteration process and they behaved together, whereas Mn and Fe were especially products of weathering conditions, also behaved together. In terms of macroelements, Ca, Mg and Na had similar behaviour, while P and K had the same correlation.

  20. Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS.

    PubMed

    Sabel, Nina; Dietz, Wolfram; Lundgren, Ted; Nietzsche, Sandor; Odelius, Hans; Rythén, Marianne; Rizell, Sara; Robertson, Agneta; Norén, Jörgen G; Klingberg, Gunilla

    2009-01-01

    There is an interest to analyze the chemical composition of enamel in teeth from patients with different developmental disorders or syndromes and evaluate possible differences compared to normal composition. For this purpose, it is essential to have reference material. The aim of this study was to, by means of X-ray micro analyses (XRMA) and secondary ion mass spectrometry (SIMS), present concentration gradients for C, O, P and Ca and F, Na, Mg, Cl, K and Sr in normal enamel of primary teeth from healthy individuals. 36 exfoliated primary teeth from 36 healthy children were collected, sectioned, and analyzed in the enamel and dentin with X-ray micro analyses for the content of C, O, P and Ca and F, Na MgCl, K and Sr. This study has supplied reference data for C, O, P and Ca in enamel in primary teeth from healthy subjects. No statistically significant differences in the elemental composition were found between incisors and molars.The ratio Ca/P is in concordance with other studies. Some elements have shown statistically significant differences between different levels of measurement. These results may be used as reference values for research on the chemical composition of enamel and dentin in primary teeth from patients with different conditions and/or syndromes.

  1. Chemistry of impact events on Mercury

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Alexey A.

    2018-01-01

    Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.

  2. Mineral and Anti-Nutritional Contents of Niger Seed (Guizotia abyssinica (L.f.) Cass., Linseed (Linumusitatissimum L.) and Sesame (Sesamumindicum L.) Varieties Grown in Ethiopia.

    PubMed

    Deme, Tesfaye; Haki, Gulelat D; Retta, Nigussie; Woldegiorgis, Ashagrie; Geleta, Mulatu

    2017-04-01

    Oilseeds are rich sources of micronutrients and contribute to combating malnutrition caused by micronutrient deficiency. The objective of this study was to investigate the mineral and anti-nutritional contents of different varieties of niger seed, linseed and sesame. Five niger seed, eight linseed and ten sesame varieties were used. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) was used for mineral analysis and the standard method was adopted to estimate tannin and phytate. Twelve mineral elements; Ca, K, Mg, Na, P, B, Cu, Fe, Mn, S, Se and Zn were analyzed for each oilseed variety. In niger seed, phosphorous was the most abundant mineral element ranging from 661 to 867 mg/100 g and selenium was the least, ranging from 0.1 to 0.33 mg/100 g. Potassium was recorded in the range of 502 to 732 mg/100 g for linseed varieties. Calcium was the most common mineral element in sesame (1112 to 1787 mg/100 g). The average phytate contents of niger seed, linseed and sesame varieties were353 mg/100 g, 104 mg/100 g and 285 mg/100 g, respectively. Tannin ranged from 91 to 201 mg/100 g, 96 to 695 mg/100 g and 85 to 660 mg/100 g in niger seed, linseed and sesame, respectively. In conclusion, there is a significant variation among the varieties within each crop species as well as among the different oilseeds in terms of their mineral and anti-nutritional contents.

  3. Baseline element concentrations in soils and plants, Wattenmeer National Park, North and East Frisian Islands, Federal Republic of Germany

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.; van den Boom, G.

    1992-01-01

    Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.

  4. A simplified soil extraction sequence to monitor the main and trace element speciation in soil after compost and mineral fertilizer additions upon the composition of wheat grains

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Erhart, Eva

    2016-04-01

    High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate-soluble Fe together with P and S was independent from oxalate-soluble Al-Mn-Si. In the crops, all element levels were within a non-contaminated and non-deficient range, therefore correlations with concentrations as well as loads in the wheat grains where largely not pronounced. Maximum correlations between plant and soil data were obtained with Li and Be. The load data (concentration times yield, given in g/ha) were much more intercorrelated than the concentrations. Regarding the same element, correlation coefficients between loads and respective concentrations were larger than 0,800 for Al, Ba, Cd, Co, Cr, Li, Mo, Na, Ni, Se, and Sr, which means the transfer remained independent from the load. In case of Ca, Mg, P, S, Zn, however, correlation coefficients between loads and concentrations were < 0,500, thus the transfer was not constant because of obvious metabolic influences. The proposed method of soil characterization was applied at a field trial here for the first time, and offers new possibilities of intercorrelations between plant uptake and geochemical soil fractions.

  5. Elemental analysis of different varieties of rice samples using XRF technique

    NASA Astrophysics Data System (ADS)

    Kaur, Jaspreet; Kumar, Anil

    2016-05-01

    Rice is most consumed staple food in the world providing over 21% of the calorie intake of world's population having high yielding capacity. Elements detected in rice are Al, As, Br, Cd, Cl, Co, Cs, Cu, Fe, Hg, K, Mg, Mn, Mo, Rb, Se and Zn by using Instrumental Neutron Activation with k0 standardization (R. Jayasekera etal,2004). Some of these trace elements are C, H, O, N, S, Ca, P, K, Na, Cl, Mn, Ti, Mg, Cu, Fe, Ni, Si and Zn are essential for growth of human physique The deficiency or excess of these elements in food is known to cause a variety of malnutrition or health disorders in the world. Every year, various varieties of rice are launched by Punjab Agriculture University, Ludhiana. The main purpose of which is to increases the yield to attain the maximum profit. But this leads to changing the elemental concentration in them, which may affect the human health according to variation in the nutrition values. The main objective is to study the presence of elemental concentration in various varieties of rice using EDXRF technique.

  6. Effects of chemical elements in the trophic levels of natural salt marshes.

    PubMed

    Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina

    2016-06-01

    The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.

  7. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.

    PubMed

    Ebel, H; Hollstein, M; Günther, T

    2004-12-15

    The effect of imipramine on Mg2+ efflux in NaCl medium (Na+/Mg2+ antiport), on Mg2+ efflux in choline.Cl medium (choline/Mg2+ antiport) and on Mg2+ efflux in sucrose medium (Cl- -coupled Mg2+ efflux) was investigated in rat erythrocytes. In non-Mg2+-loaded rat erythrocytes, imipramine stimulated Na+/Mg2+ antiport but inhibited choline/Mg2+ antiport and Cl- -coupled Mg2+ efflux. The same effect could be obtained by several other compounds structurally related to imipramine. These drugs contain a cyclic hydrophobic ring structure to which a four-membered secondary or tertiary amine side chain is attached. At a physiological pH, the amine side chain expresses a cationic choline-like structure. The inhibitory effect on choline/Mg2+ antiport is lost when the amine side chain is modified or abandoned, pointing to competition of the choline-like side chain with choline or another cation at the unspecific choline antiporter or at the Cl- -coupled Mg2+ efflux. Other related drugs either stimulated Na+/Mg2+ antiport and choline/Mg2+ antiport, or they were ineffective. For stimulation of Na+/Mg2+ antiport and choline/Mg2+ antiport, there is no specific common structural motif of the drugs tested. The effects of imipramine on Na+/Mg2+ antiport and choline/Mg2+ antiport are not mediated by PKCalpha but are caused by a direct reaction of imipramine with these transporters. By increasing the intracellular Mg2+ concentration, the stimulation of Na+/Mg2+ antiport at a physiological intracellular Mg2+ concentration changed to an inhibition of Na+/Mg2+ antiport. This effect can be explained by the hypothesis that Mg2+ loading induced an allosteric transition of the Mg2+/Mg2+ exchanger with low Na+/Mg2+ antiport capacity to the Na+/Mg2+ antiporter with high Na+/Mg2+ antiport capacity. Both forms of the Mg2+ exchanger may be differently affected by imipramine.

  8. Water quality mapping and assessment, and weathering processes of selected aflaj in Oman.

    PubMed

    Ghrefat, Habes Ahmad; Jamarh, Ahmad; Al-Futaisi, Ahmed; Al-Abri, Badr

    2011-10-01

    There are more than 4,000 falaj (singular of a peculiar dug channel) distributed in different regions in Oman. The chemical characteristics of the water in 42 falaj were studied to evaluate the major ion chemistry; geochemical processes controlling water composition; and suitability of water for drinking, domestic, and irrigation uses. GIS-based maps indicate that the spatial distribution of chemical properties and concentrations vary within the same region and the different regions as well. The molar ratios of (Ca + Mg)/Total cations, (Na + K)/Total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO₃ + SO₄), and Na/Cl reveal that the water chemistry of the majority of aflaj are dominated by carbonate weathering and evaporite dissolution, with minor contribution of silicate weathering. The concentrations of most of the elements were less than the permissible limits of Omani standards and WHO guidelines for drinking water and domestic use and do not generally pose any health and environmental problems. Some aflaj in ASH Sharqiyah and Muscat regions can be used for irrigation with slight to severe restriction because of the high levels of electrical conductivity, total dissolved solids, chloride, and sodium absorption ratio.

  9. Axially and radially viewed inductively coupled plasmas — a critical review

    NASA Astrophysics Data System (ADS)

    Brenner, I. B.; Zander, A. T.

    2000-08-01

    The present status of axially viewed inductively coupled plasmas (ICP) is reviewed with special emphasis placed on the analytical performance of currently available systems. Descriptions are given of the various designs of the plasma-spectrometer configuration. Conventional figures of merit such as limits of detection, background behavior, interferences due to easily ionized elements (EIE), Ca and acids, and the Mg II 280.270 nm/Mg I 285.213 nm intensity ratio, are used to compare the performance of axially viewed and radially viewed ICPs. Various modes of sample introduction, including conventional pneumatic and ultrasonic nebulization (USN), thermospray and a direct injection probe will be described. For axially viewed ICPs, limits of detection (LOD) are improved by factors varying from approximately 2 to 30. Additional improvements by factors of 2-20 can be obtained using USN. The improvement factors generally depend on energy potentials of the spectral lines and the element. Although limits of detection in the presence of Ca and Na are degraded relative to an aqueous solution 10-30-fold, USN LODs using an axially viewed ICP are improved relative to those obtained using a pneumatic nebulizer for solutions containing Ca and Na. With normal aerosol load and under robust plasma conditions (as evidenced by Mg II/Mg I intensity ratios >8), EIE, Ca and mineral acid induced interferences are relatively small and are similar in axial and conventional radial configurations. However, interferences due to Ca are larger than those caused by Na due to the larger amount of energy required to dissociate the matrix. Matrix effects increase considerably when an USN is employed. For robust plasmas, ICP operating conditions and performance for multi-element quantitative analysis do not differ significantly from those of conventional radial configurations. In cases where robustness decreases, matrix interferences should be taken into account when establishing optimum conditions for operation. In robust axially viewed ICPs, a single internal standard can compensate for ionic line intensity suppression due to Na. However, owing to the variable influence of Ca on spectral response, more than one internal standard is required to compensate for these matrix effects. In this situation, linear energy potential-interference functions can be used to improve accuracy using spectral lines varying over wide ranges of energy potentials. In axially viewed ICPs, Mg II/ Mg I ratios vary widely as a function of applied RF power, aerosol flow rates and load, diameter of the central torch injector, and composition of the aspirated solution. The highest values of 9-13 have been observed for a pure aqueous solution using conventional nebulization and argon carrier flow rates (0.5-0.7 ml min -1) and forward powers of 1.2-1.5 kW. Mg II/Mg I ratios decrease when the RF power decreases, when Na and Ca are added to the plasma, and when the aerosol load is increased. A low value of 2 was obtained when the carrier gas flow rate was high and when the aerosol load was high using an USN. The use of a copper metal skimmer below the analytical observation zone to isolate the axial channel of the ICP and to deflect the outer cool fringe results in 5-20 times improvement of the LODs compared to those obtained using a conventional configuration (a normal radially viewed ICP). A direct He purged plasma-spectrometer interface for end-on detection of the vacuum UV (VUV) emission from the axial region of an ICP allows the determination of Cl, Br and other analytes in the μg l -1 range. The characteristics of a secondary discharge at the orifice of a Cu cone when the axial channel of the ICP is extracted into a vacuum chamber will be discussed. The characteristics of the emission in the Mach disk region extracted from the axial column will be surveyed. Several applications and techniques are described: determination of major, minor and trace elements in geological, environmental and biological materials, analysis of brines, nuclear materials and organic solvents and solutions. Several unique techniques are described: elemental speciation, determination of the halides and other analytes with VUV spectral lines using a He purged direct plasma-spectrometer interface. Direct solids analysis using slurries, laser and spark ablation and direct solids insertion further extends the scope of axially viewed ICPs.

  10. Elemental content of Vietnamese rice. Part 2. Multivariate data analysis.

    PubMed

    Kokot, S; Phuong, T D

    1999-04-01

    Rice samples were obtained from the Red River region and some other parts of Vietnam as well as from Yanco, Australia. These samples were analysed for 14 elements (P, K, Mg, Ca, Mn, Zn, Fe, Cu, Al, Na, Ni, As, Mo and Cd) by ICP-AES, ICP-MS and FAAS as described in Part 1. This data matrix was then submitted to multivariate data analysis by principal component analysis to investigate the influences of environmental and crop cultivation variables on the elemental content of rice. Results revealed that geographical location, grain variety, seasons and soil conditions are the most likely significant factors causing changes in the elemental content between the rice samples. To assess rice quality according to its elemental content and physio-biological properties, a multicriteria decision making method (PROMETHEE) was applied. With the Vietnamese rice, the sticky rice appeared to contain somewhat higher levels of nutritionally significant elements such as P, K and Mg than the non-sticky rice. Also, rice samples grown during the wet season have better levels of nutritionally significant mineral elements than those of the dry season, but in general, the wet season seemed to provide better overall elemental and physio-biological rice quality.

  11. Bhasmas: unique ayurvedic metallic-herbal preparations, chemical characterization.

    PubMed

    Kumar, A; Nair, A G C; Reddy, A V R; Garg, A N

    2006-03-01

    Bhasmas are unique Ayurvedic metallic preparations with herbal juices/fruits, known in the Indian subcontinent since the seventh century BC and widely recommended for treatment of a variety of chronic ailments. Twenty bhasmas based on calcium, iron, zinc, mercury, silver, potassium, arsenic, copper, tin, and gemstones were analyzed for up to 18 elements by instrumental neutron activation analysis, including their C, H, N, and S contents. In addition to the major constituent element found at % level, several other essential elements such as Na, K, Ca, Mg, V, Mn, Fe, Cu, and Zn have also been found in microg/g amounts and ultratrace (ng/g) amounts of Au and Co. These seem to remain chelated with organic ligands derived from medicinal herbs. The bhasmas are biologically produced nanoparticles and are taken along with milk, butter, honey, or ghee (a preparation from milk); thus, this makes these elements easily assimilable, eliminating their harmful effects and enhancing their biocompatibility. Siddha Makaradhwaja, a mercury preparation is found to be stoichiometrically HgS without any traces of any other element. Similarly, Swet Parpati is stoichiometrically KNO3 but is found to have Mn, Cu, Zn, Na, P, and Cl as well. An attempt has been made to correlate the metallic contents with their medicinal importance. Na and K, the two electrolytic elements, seem to be well correlated, although K/Na varies in a wide range from 0.06 to 95, with specifically low values for Ca-, Fe-, and Zn-based bhasmas. K/P also varies in a wide range from 0.23 to 12, although for most bhasmas (n = 12), it is 2.3 +/- 1.2. Further, Fe/Mn is linearly correlated (r = 0.96) with Fe in nine noniron bhasmas.

  12. A Compilation of Metals and Trace Elements Extracted from Materials Relevant to Pharmaceutical Applications such as Packaging Systems and Devices.

    PubMed

    Jenke, Dennis; Rivera, Christine; Mortensen, Tammy; Amin, Parul; Chacko, Molly; Tran, Thang; Chum, James

    2013-01-01

    Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions and the levels of 32 metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The extracting solvents included aqueous mixtures at low and high pH and an organic solvent mixture (40/60 ethanol water). The sealed vessel extractions were performed by placing an appropriate portion of the test articles and an appropriate volume of extracting solution in inert extraction vessels and exposing the extraction units (and associated extraction blanks) to defined conditions of temperature and duration. The levels of extracted target elements were measured by inductively coupled plasma atomic emission spectroscopy. The overall reporting threshold for most of the targeted elements was 0.05 μg/mL, which corresponds to 0.5 μg/g for the most commonly utilized extraction stoichiometry (1 g of material per 10 mL of extracting solvent). The targeted elements could be classified into four major groups depending on the frequency with which they were present in the over 250 extractions reported in this study. Thirteen elements (Ag, As, Be, Cd, Co, Ge, Li, Mo, Ni, Sn, Ti, V, and Zr) were not extracted in reportable quantities from any of the test articles under any of the extraction conditions. Eight additional elements (Bi, Cr, Cu, Mn, Pb, Sb, Se, and Sr) were rarely extracted from the test articles at reportable levels, and three other elements (Ba, Fe, and P) were infrequently extracted from the test articles at reportable levels. The remaining eight elements (Al, B, Ca, Mg, Na, S, Si, and Zn) were more frequently present in the extracts in reportable quantities. These general trends in accumulation behavior were compared to compiled lists of elements of concern as impurities in pharmaceutical products. Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions, and the levels of thirty-two metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The targeted elements could be classified into four major groups depending on the frequency with which they were present in the extractions reported in this study: those elements that were not extracted in reportable quantities from any of the test articles under any of the extraction conditions, those elements that were rarely extracted from the test articles at reportable levels, those elements that were infrequently extracted from the test articles at reportable levels, and those elements that were more frequently present in the extracts in reportable quantities.

  13. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    PubMed

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017. Published by Elsevier GmbH.

  14. [Analysis of the mineral elements of Lactuca sativa under the condition of different spectral components].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Wang, Li-Chun; Li, Liang; Chen, Fei

    2013-08-01

    Mineral elements absorption and content of Lactuca sativa under different spectral component conditions were studied by ICP-AES technology. The results showed that: (1) For Lactuca sativa, the average proportion for Ca : Mg : K : Na : P was 5.5 : 2.5 : 2.3 : 1.5 : 1.0, the average proportion for Fe : Mn : Zn : Cu : B was 25.9 : 5.9 : 2.8 : 1.1 : 1.0; (2) The absorptions for K, P, Ca, Mg and B are the largest under the LED treatment R/B = 1 : 2.75, red light from fluorescent lamps and LED can both promote the absorptions of Fe and Cu; (3)The LED treatments exhibiting relatively higher content of mineral elements are R/B = 1 : 2.75 and R/W = 1 : 1 while higher dry matter accumulations are R/B = 1 : 2.75 and B/W = 1 : 1.

  15. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Kuroiwa, Takayoshi; Chiba, Koichi

    2011-01-01

    A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 µm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.

  16. Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth

    NASA Astrophysics Data System (ADS)

    Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric

    2018-03-01

    The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post nebular volatilization.

  17. GIS-based prediction of stream chemistry using landscape composition, wet areas, and hydrological flow pathways

    NASA Astrophysics Data System (ADS)

    Tiwari, Tejshree; Lidman, Fredrik; Laudon, Hjalmar; Lidberg, William; Ågren, Anneli M.

    2017-01-01

    Landscape morphology exerts strong, scale-dependent controls on stream hydrology and biogeochemistry in heterogeneous catchments. We applied three descriptors of landscape structure at different spatial scales based on new geographic information system tools to predict variability in stream concentrations for a wide range of solutes (Al, Ba, Be, Ca, Fe, K, Mg, Na, S, Si, Sr, Sc, Co, Cr, Ni, Cu, As, Se, Rb, Y, Cd, Sb, Cs, La, Pb, Th, U, DOC, and Cl) using a linear regression analysis. Results showed that less reactive elements, which can be expected to behave more conservatively in the landscape (e.g., Na, K, Ca, Mg, Cl, and Si), generally were best predicted from the broader-scale description of landscape composition (areal coverage of peat, tills, and sorted sediments). These results highlight the importance of mineral weathering as a source of some elements, which was best captured by landscape-scale descriptors of catchment structure. By contrast, more nonconservative elements (e.g., DOC, Al, Cd, Cs, Co, Th, Y, and U), were best predicted by defining wet areas and/or flow path lengths of different patches in the landscape. This change in the predictive models reflect the importance of peat deposits, such as organic-rich riparian zones and mire ecosystems, which are favorable environments for biogeochemical reactions of more nonconservative elements. As such, using this understanding of landscape influences on stream chemistry can provide improved mitigation strategies and management plans that specifically target source areas, so as to minimize mobilization of undesired elements into streams.

  18. Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, southern Tunisia.

    PubMed

    Bahloul, Moez; Chabbi, Iness; Dammak, Rim; Amdouni, Ridha; Medhioub, Khaled; Azri, Chafai

    2015-12-01

    The present study investigates the geochemical behaviour of PM10 aerosol constituents (Cl, Na, Si, Al, Ca, Fe, Mg, Mn, Pb, Zn, S) at Sfax City (Tunisia) under succeeding meteorological conditions, including short-lived anticyclonic, cyclonic and prolonged anticyclonic situations. The results revealed daily total concentrations fluctuating between 4.07 and 88.51 μg/m(3). The highest level recorded was noted to occur under the effect of the short-lived anticyclonic situation characterized by low wind speeds. It was 1.5 times higher than those recorded during cyclonic and long-lived anticyclonic situations characterized by moderate to high wind speeds. During the cyclonic situation, the marked increase of (Na and Cl) concentrations is associated with relatively high sea wind speeds (6 to 9 m/s), which are in turn responsible for a slight increase of crustal elements such as Al, Ca, Si, Fe and Mg, by the entrainment in the air of dust from roads and undeveloped areas. During the two anticyclonic situations, the simultaneous increase (due to communal transport) of crustal (Ca, Si, Al, Fe, Mg) and man-made (Mn, S, Pb, Zn) elements was noted to be associated with the dominance of terrigenious wind flows with speeds varying between 1.5 and 4 m/s. However, the significant contribution rates observed for Cl under the prevalence of such winds as compared to other crustal elements such as Fe suggested the influence of the sebkhas of Southern Tunisia.

  19. Production technology of an electrolyte for Na/S batteries

    NASA Astrophysics Data System (ADS)

    Heimke, G.; Mayer, H.; Reckziegel, A.

    1982-05-01

    The trend to develop a cheap electrochemical electric battery and the development of the Na/S system are discussed. The main element in this type of battery is the beta Al2O3 solid electrolyte. Characteristics for this material of first importance are: specific surface, density of green and of sintered material, absence of cracks, gas permeability, resistance to flexion, purity, electrical conductivity, crystal structure and dimensions. Influence of production method on all these characteristics were investigated, e.g., method of compacting powder, tunnel kiln sintering versus static chamber furnace sintering, sintering inside a container or not, and type of kiln material when sintering in a container. In the stationary chamber furnace, beta alumina ceramics were produced with a density of 3.2 g/cm3, a mechanical strength higher than 160 MPa, and an electrical conductivity of about 0.125 Ohm-1cm-1 at 300 C. The best kiln material proved to be MgO and MgAl2O3.MgO ceramics.

  20. First Direct Measurement of C 12 ( C 12 , n ) Mg 23 at Stellar Energies

    DOE PAGES

    Bucher, B.; Tang, X. D.; Fang, X.; ...

    2015-06-25

    Neutrons produced by the carbon fusion reaction 12C( 12C,n) 23Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. Here in this paper, we present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C( 12C,p) 23Na . The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate,more » we find that 12C ( 12C,n) 23Mg is crucial to the production of Na and Al in pop-III pair instability supernovae. It also plays a nonnegligible role in the production of weak s -process elements, as well as in the production of the important galactic γ-ray emitter 60Fe.« less

  1. Mineral Systems, Their Types, and Distribution in Nature: 2. Products of Contemporary Fumarole Activity at Tolbachik Volcano (Russia) and Vulcano (Italy)

    NASA Astrophysics Data System (ADS)

    Krivovichev, V. G.; Charykova, M. V.

    2017-12-01

    The number of mineral species in which a certain chemical element is species-defining (according to statistical data up to 2015) has been specified. Seventy chemical elements are species-defining for 5044 minerals. The following chemical elements lead in the composition of minerals (number of mineral species in parentheses): oxygen (4115), hydrogen (2800), silicon (1471), calcium (1167), sulfur (1056), aluminium (985), sodium (949), iron (945), copper (636), phosphorus (597), arsenic (594), and magnesium (571). The distribution of mineral species by various systems in the products of contemporary fumarole activity at two volcanoes, Tolbachik in Kamchatka, Russia, and Vulcano in Sicily, Italy, has been compared. These locations were also compared for the distribution of species-defining elements. Thus, it has been determined that in fumaroles of both volcanoes, Tl, S, Cl, F and Na are "excessive," present in minerals in elevated amounts, whereas H, Ca, Fe, and Mn are "deficient." The abundance of Cu, Se, V, Mg, Zn, As, and F in minerals at Tolbachik is higher than the global mean values of these elements in the Earth's crust, whereas the abundance is significantly lower at Vulcano. Sn, I, Br, K, Pb, Al, Fe, and Bi demonstrate the opposite behavior. Comparison of the Yadovitaya and Arsenatnaya fumaroles at the Tolbachik volcano showed that the products of the former are richer in H, Cl, Cu, S, K, O, Al, Fe, and Pb, and poorer in As, Ca, Mg, and Na as species-defining elements. In addition, V-and Mo-bearing minerals are found only at Yadovitaya, whereas minerals containing F, Ti, B, Te, and Zn are known only at Arsenatnaya.

  2. Recognition of spectral identifier from green coffee beans of arabica and robusta varieties using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.

  3. Effects of perinatal fluoride exposure on the expressions of miR-124 and miR-132 in hippocampus of mouse pups.

    PubMed

    Wang, Jixiang; Zhang, Yuliang; Guo, Zhenzhen; Li, Rui; Xue, Xingchen; Sun, Zilong; Niu, Ruiyan

    2018-04-01

    To investigate the effects of perinatal fluoride exposure on learning and memory ability of mouse offspring, ICR female mice were received different doses of sodium fluoride (0, 25, 50, 100 mg/L NaF) from pregnant day 7 to lactational day 21. Pups were exposed to fluoride through the cord blood and breast milk. Open field test showed that compared to the control group, perinatal fluoride exposure significantly decreased the number of entries into the center zone in 100 mg/L NaF group. In the eight-arm maze test, the number of working memory errors, reference memory errors, and the total arm entries were significantly increased in fluoride treatment groups, compared to the control group. Additionally, 100 mg/L NaF significantly elevated the expression levels of miR-124, miR-132, and DiGeorge syndrome chromosomal region 8 (DGCR8) in hippocampus of mouse pups at postnatal day (PND) 21. Contrarily, methyl CpG binding protein 2 (MeCP2) were dramatically reduced in 50 and 100 mg/L NaF groups, while cAMP-response element binding protein (CREB) mRNA level was significantly decreased in all fluoride groups. These findings suggested that the impairment of learning and memory in mouse offspring induced by perinatal fluoride exposure may partly result from the enhanced miR-124 and miR-132 and the alterations of their target genes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOEpatents

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  5. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  6. Characterization of Croatian Rape (Brassica sp.) Honey by Pollen Spectrum, Physicochemical Characteristics, and Multielement analysis by ICP-OES.

    PubMed

    Rajs, Blanka Bilić; Flanjak, Ivana; Mutić, Jelena; Vukojević, Vesna; Đurđić, Slađana; Primorac, Ljiljana

    2017-07-01

    Rape (Brassica sp.) unifloral honey from Croatia was characterized by certain physicochemical parameters, micro- and macroelement content, and pollen spectrum, as determined in 21 honey samples. The Brassica sp. pollen type was predominant in the analyzed samples and ranged between 60 and 98%, with Trifolium spp., Robinia pseudoacacia, Rosaceae, Helianthus annuus, Salix spp., and Taraxacum officinale as the main accompanying pollen types. The electrical conductivity mean value was 0.22 ± 0.05 mS/cm and the glucose/fructose ratio mean value was 1.1 ± 0.07, whereas sucrose was absent in the samples. The most abundant macroelement was potassium (K) (268.49 mg/kg), followed by phosphorus (P) (60.23 mg/kg), calcium (Ca) (54.02 mg/kg), sodium (Na) (22.52 mg/kg), sulfur (S) (15.79 mg/kg), and magnesium (Mg) (12.58 mg/kg). Toxic elements were mainly bellow the LODs; only arsenic (As) concentration was detectable in higher amount (0.233 mg/kg), which may be related to the high arsenic concentration in the soil and groundwater of eastern Croatia. The differences between the two harvesting seasons observed in a large number of elements could be related to climatic and soil conditions and different nectar yields originating from the associated plant species.

  7. Concentration of stable elements in food products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montford, M.A.; Shank, K.E.; Hendricks, C.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentrationmore » of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed.« less

  8. Mineral content of the honey produced in Zulia state, Venezuela.

    PubMed

    Sulbarán de Ferrer, Betzabé; Ojeda de Rodríguez, Graciela; Peña, Jorge; Martínez, Janeth; Morán, María

    2004-09-01

    The mineral content of the honey produced in five zones of the Zulia state, Venezuela, during dry and rainy seasons was determined. The analyzed elements were: sodium, potassium (by emission spectroscopy), calcium, magnesium, copper, iron, manganese (by atomic absorption spectroscopy), phosphorus (phosphate ions, by colorimetric method), and ash content of raw honey samples directly collected from different beekeepers. The mean values for Na, K, Ca, Mg, Cu, Fe, Mn, and P were 353+84; 1774+138; 237+66; 52+24; 0.76+0.43; 13.5+10.23; 0.92+0.42 and 1642+323 mg/kg respectively. The mean ash content was 0.431+0.15%. Potassium was the most abundant of the elements determined. This results confirm that Zulian honey can be considered a good source of minerals.

  9. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1978-01-01

    The reactions between partially stabilized zirconia, containing 8 weight-percent yttria, and oxides and sulfates of various elements were studied at 1200, 1300, and 1400 C for times to 800, 400, and 200 hours, respectively. These oxides and sulfates represent impurities and additives potentially present in gas turbine fuels or impurities in the turbine combustion air as well as the elements of the substrate alloys in contact with zirconia. Based on the results, these compounds can be classified in four groups: (1) compounds which did not react with zirconia (Na2SO4, K2SO4, Cr2O3, Al2O3 and NiO); (2) compounds that reached completely with both zirconia phases (CaO, BaO, and BaSO4); (3) compounds that reacted preferentially with monoclinic zirconia (Na2O, K2O, CoO, Fe2O3, MgO, SiO2, and ZnO); and (4) compounds that reacted preferentially with cubic zirconia (V2O5, P2O5).

  10. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  11. [Analysis of effects of salt stress on absorption and accumulation of mineral elements in Elymus spp. using atomic absorption spectrophotometer].

    PubMed

    Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin

    2008-12-01

    Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.

  12. Total content and bioavailability of plant essential nutrients and heavy metals in top-soils of an industrialized area of Northwestern Greece

    NASA Astrophysics Data System (ADS)

    Barouchas, Pantelis; Avramidis, Pavlos; Salachas, Georgios; Koulopoulos, Athanasios; Christodoulopoulou, Kyriaki; Liopa-Tsakalidi, Aglaia

    2017-04-01

    Thirty surface soil samples from northwestern Greece in the Ptolemais-Kozani basin, were collected and analyzed for their total content in thirteen elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Cd, Cr, Cu, Ni, Pb, Zn) by ICP-AES and bioavailable content from a plant nutrition scope of view for (Ca, Fe, K, Mg, Mn, Na, P, Zn) by AAS and colorimetric techniques. Particle size distribution, Cation Exchange Capacity (CEC) and the magnetic susceptibility, in a low and a high frequency (at 47kHz and 0.47kHz), of soil samples were measured also in order to correlate the results. Total carbonates were tested by the pressure technique (BD Inventions, FOGII digital soil calcimeter). The concentrations of these elements were compared with international standards and guidelines. The results indicated that Cu, Cd, Zn and Pb are found enriched in the top soils of the study area, mainly as a consequence of natural processes from the surrounding rocks. Moreover, the bioavailability of some of these elements with a plant nutrition interest was tested and results indicate that they do not pose an immediate threat to the environment or crops as it all demonstrated values in an adequate range. Magnetic susceptibility in low and high frequency was correlated with clay content.

  13. The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

    PubMed

    Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando

    2014-09-01

    This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®

  14. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayyad, M. H.; Saleem, M.; Shah, M.

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.

  15. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sayyad, M. H.; Saleem, M.; Shah, M.; Shaikh, N. M.; Baig, M. A.

    2008-05-01

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.

  16. Trace Elements Characteristic Based on ICP-AES and the Correlation of Flavonoids from Sparganii rhizoma.

    PubMed

    Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan

    2018-04-01

    The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.

  17. Elemental analysis of different varieties of rice samples using XRF technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Jaspreet, E-mail: gillpreet05051812@gmail.com; Kumar, Anil, E-mail: gilljaspreet06@gmail.com

    Rice is most consumed staple food in the world providing over 21% of the calorie intake of world’s population having high yielding capacity. Elements detected in rice are Al, As, Br, Cd, Cl, Co, Cs, Cu, Fe, Hg, K, Mg, Mn, Mo, Rb, Se and Zn by using Instrumental Neutron Activation with k0 standardization (R. Jayasekera etal,2004). Some of these trace elements are C, H, O, N, S, Ca, P, K, Na, Cl, Mn, Ti, Mg, Cu, Fe, Ni, Si and Zn are essential for growth of human physique The deficiency or excess of these elements in food is knownmore » to cause a variety of malnutrition or health disorders in the world. Every year, various varieties of rice are launched by Punjab Agriculture University, Ludhiana. The main purpose of which is to increases the yield to attain the maximum profit. But this leads to changing the elemental concentration in them, which may affect the human health according to variation in the nutrition values. The main objective is to study the presence of elemental concentration in various varieties of rice using EDXRF technique.« less

  18. Effect of organic and conventional rearing system on the mineral content of pork.

    PubMed

    Zhao, Yan; Wang, Donghua; Yang, Shuming

    2016-08-01

    Dietary composition and rearing regime largely determine the trace elemental composition of pigs, and consequently their concentration in animal products. The present study evaluates thirteen macro- and trace element concentrations in pork from organic and conventional farms. Conventional pigs were given a commercial feed with added minerals; organic pigs were given a feed based on organic feedstuffs. The content of macro-elements (Na, K, Mg and Ca) and some trace elements (Ni, Fe, Zn and Sr) in organic and conventional meat samples showed no significant differences (P>0.05). Several trace element concentrations in organic pork were significantly higher (P<0.05) compared to conventional pork: Cr (808 and 500μg/kg in organic and conventional pork, respectively), Mn (695 and 473μg/kg) and Cu (1.80 and 1.49mg/kg). The results showed considerable differences in mineral content between samples from pigs reared in organic and conventional systems. Our results also indicate that authentication of organic pork can be realized by applying multivariate chemometric methods such as discriminant analysis to this multi-element data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE

    USGS Publications Warehouse

    Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.

    1997-01-01

    The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.

  20. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    NASA Astrophysics Data System (ADS)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  1. Legal aspects and technical alternatives for the treatment of reservoir brines at the Activo Luna oilfield, Mexico.

    PubMed

    Birkle, Peter; Cid Vázquez, Adolfo L; Fong Aguilar, J L

    2005-01-01

    Deep formation water, extracted as an undesired byproduct from on-shore production wells at the Activo Luna oilfield and processed in adjacent oil fields, are highly enriched in salt minerals, especially in sodium chloride (NaCl) (262 000 mg/L), but also in metals and nonmetals, such as strontium (Sr) (2068 mg/L), bromine (Br) (2034 mg/L), boron (B) (396 mg/ L), iodine (I) (43.4 mg/L), selenium (Se) (3.74 mg/L), and arsenic (As) (0.55 mg/L). Direct reinjection of the brine underground is not possible because of elevated pressure conditions within the petroleum reservoir. The disposal into near shore areas of the Gulf of Mexico without treatment must be rejected because of a) elevated concentrations of some toxic elements, such as B, silver (Ag), thallium (Tl), Se and cadmium (Cd), which exceed permissible limits of environmental legislation for surface discharge (Official Mexican norms NOM-001-ECOL-1998 and CE-CCA-001/89), and b) differences in density that could cause the descent of hypersaline fluid to the ocean floor, potentially affecting the diversity and survival of the benthic ecosystem. Conventional treatment techniques, such as microfiltration or reverse osmosis, are not suitable for the Activo Luna brines because of their extreme mineralization, which will cause pressure conditions exceeding 200 bars across the membrane. As an alternative process, the evaporation of the entire brine volume of approximately 200 m3/day by solar ponds or industrial crystallization plants is suggested. The residual precipitated residuals are composed mainly of chlorine (Cl) (9460 tons/year), sodium (Na) (4230 tons/ year), calcium (Ca) (1028 tons/year), potassium (K) (207 tons/year), and magnesium (Mg) (65.8 tons/year). As an alternative to its disposal on a dumpsite, some special minerals (especially NaCl, Mg, Sr, and Br) could be recovered for its economic value.

  2. Profile and bioconcentration of minerals by King Bolete (Boletus edulis) from the Płocka Dale in Poland.

    PubMed

    Frankowska, Aneta; Ziółkowska, Joanna; Bielawski, Leszek; Falandysz, Jerzy

    2010-01-01

    This study aimed to provide basic data on the composition of metallic elements, including toxicologically important Cd and Hg, in popular and prized wild King Bolete mushrooms. We investigated the importance of soil substratum as a source of these metals. ICP-OES and CV-AAS were applied to determine the profile of Al, Ba, Ca, Cd, Cu, Fe, Hg, K, Mg, Mn, Na, Sr and Zn in caps and stipes of King Bolete mushroom and in the surface layer of soil (0-10 cm) from the Płocka Dale area of Poland. Hg, Cu, Cd, Zn, Mg and K exhibited bioconcentration factors (BCF) > 1. Specifically, Hg, Cu and Cd (mean BCFs for caps were 110, 19 and 16, respectively) were efficiently bioconcentrated by King Bolete, while other elements were bioexcluded (BCF < 1). Cadmium was present in the caps at mean levels of 5.5 ± 2.4 mg kg(-1) dry weight (dw) and mercury at levels of 4.9 ± 1.4 mg kg(-1) dw, both occurring at elevated concentrations in those King Bolete mushrooms surveyed.

  3. Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate Statistical Analysis approach.

    PubMed

    Rakotondrabe, Felaniaina; Ndam Ngoupayou, Jules Remy; Mfonka, Zakari; Rasolomanana, Eddy Harilala; Nyangono Abolo, Alexis Jacob; Ako Ako, Andrew

    2018-01-01

    The influence of gold mining activities on the water quality in the Mari catchment in Bétaré-Oya (East Cameroon) was assessed in this study. Sampling was performed within the period of one hydrological year (2015 to 2016), with 22 sampling sites consisting of groundwater (06) and surface water (16). In addition to measuring the physicochemical parameters, such as pH, electrical conductivity, alkalinity, turbidity, suspended solids and CN - , eleven major elements (Na + , K + , Ca 2+ , Mg 2+ , NH 4 + , Cl - , NO 3 - , HCO 3 - , SO 4 2- , PO 4 3- and F - ) and eight heavy metals (Pb, Zn, Cd, Fe, Cu, As, Mn and Cr) were also analyzed using conventional hydrochemical methods, Multivariate Statistical Analysis and the Heavy metal Pollution Index (HPI). The results showed that the water from Mari catchment and Lom River was acidic to basic (5.4050mg NO 3 - /L. This water was found as two main types: calcium magnesium bicarbonate (CaMg-HCO 3 ), which was the most represented, and sodium bicarbonate potassium (NaK-HCO 3 ). As for trace elements in surface water, the contents of Pb, Cd, Mn, Cr and Fe were higher than recommended by the WHO guidelines, and therefore, the surface water was unsuitable for human consumption. Three phenomena were responsible for controlling the quality of the water in the study area: hydrolysis of silicate minerals of plutono-metamorphic rocks, which constitute the geological basement of this area; vegetation and soil leaching; and mining activities. The high concentrations of TSS and trace elements found in this basin were mainly due to gold mining activities (exploration and exploitation) as well as digging of rivers beds, excavation and gold amalgamation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy System

    NASA Astrophysics Data System (ADS)

    Hasselquist, Sten; Shetrone, Matthew D.; Smith, Verne V.; Holtzman, Jon A.; McWilliam, Andrew; APOGEE Team

    2018-06-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze the chemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] > -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function. We then exploit the unique chemical abundance patters of the Sgr core to trace stars belonging to the Sgr tidal streams elsewhere in the Milky Way.

  5. Geochemical properties of topsoil around the coal mine and thermoelectric power plant.

    PubMed

    Stafilov, Trajče; Šajn, Robert; Arapčeska, Mila; Kungulovski, Ivan; Alijagić, Jasminka

    2018-03-19

    The results of the systematic study of the spatial distribution of trace metals in surface soil over the Bitola region, Republic of Macedonia, known for its coal mine and thermo-electrical power plant activities are reported. The investigated region (3200 km 2 ) is covered by a sparse sampling grid of 5 × 5 km, but in the urban zone and around the thermoelectric power plant the sampling grid is denser (1 × 1 km). In total, 229 soil samples from 149 locations were collected including top-soil (0-5 cm) and bottom-soil samples (20-30 cm and 0-30 cm). Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was applied for the determinations of 21 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V and Zn). Based on the results of factor analyses, three geogenic associations of elements have been defined: F1 (Fe, Ni, V, Co, Cr, Mn and Li), F2 (Zn, B, Cu, Cd, Na and K) and F3 (Ca, Sr, Mg, Ba and Al). Even typical trace metals such as As, Cd, Cu, Ni, P, Pb and Zn are not isolated into anthropogenic geochemical associations by multivariate statistical methods still show some trends of local anthropogenic enrichment. The distribution maps for each analyzed element is showing the higher content of these elements in soil samples collected around the thermoelectric power plants than their average content for the soil samples collected from the whole Bitola Region. It was found that this enrichment is a result of the pollution by fly ash from coal burning which deposited near the plant having a high content of these elements.

  6. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation.

    PubMed

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.

  7. Serum concentrations of trace elements and their relationships with paraoxonase-1 in morbidly obese women.

    PubMed

    Luciano-Mateo, Fedra; Cabré, Noemí; Nadal, Martí; García-Heredia, Anabel; Baiges-Gaya, Gerard; Hernández-Aguilera, Anna; Camps, Jordi; Joven, Jorge; Domingo, José Luis

    2018-07-01

    The metabolic alterations associated with obesity include mineral dysregulation. Essential trace elements are nutrients with a relevant function in a large number of cellular processes and multiple roles in the correct functioning of metabolic enzymes. Paraoxonase-1 (PON1) is an antioxidant and anti-inflammatory enzyme that is compromised in obesity. In the present study, the potential alterations in trace elements in morbidly obese women were assessed in relation to serum PON1 activity and concentration, as well as to other obesity-related comorbidities such as diabetes mellitus and fatty liver. We recruited 41 morbidly obese women and 51 control individuals. The serum concentrations of 30 elements, PON1 paraoxonase and lactonase activities, and PON1 concentration were measured. We observed significant alterations in the levels of As, Ba, Cu, Ca, Fe, Mg, Na, Se, Sr, and Zn in obese women; some of them (As, Ca, Cr, Cu, Mg, and Se) being significantly correlated with serum PON1 values. The most relevant changes were observed in the concentrations of As, Sr and Mg, the last of which was also significantly associated with diabetes mellitus. The current results raise the possibility that increased ingestion and/or storage of a number of trace elements may be factors predisposing to obesity-related comorbidities and metabolic alterations. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. [Age and gender characteristics of the content of macro- and trace elements in the organisms of the children from the European North].

    PubMed

    Soroko, S I; Maksimova, I A; Protasova, O V

    2014-01-01

    By means of the nuclear-emission spectral analysis with inductively connected argon plasma were studied the contents of 28 macro- and trace elements (Al, Ag, Li, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Mg, Mn, Na, Ni, Mo, P, Zn, Se, Tl, Pb, Sr, S, Si) in the hair of children and teenagers living in the European North of the Russian Federation (Arkhangelsk region). There were revealed both: decrease and increase of some elements' contents. Also were revealed the dynamics of mentioned elements contents in the hair of the same children in different years. Significant individual variability of the macro and trace elements' status of children-northerners and some gender dependence were revealed.

  9. Variation in biochemical constituents and master elements in common seaweeds from Alexandria Coast, Egypt, with special reference to their antioxidant activity and potential food uses: prospective equations.

    PubMed

    Ismail, Mona M; El Zokm, Gehan M; El-Sayed, Abeer A M

    2017-11-25

    Biochemical constituents and master elements (Pb, Cr, Cd, Fe, Cu, Zn, Hg, B, Al, SO 4 2- , Na, K, Li, Ca, Mg, and F) were investigated in six different seaweed species from Abu Qir Bay in the Egyptian Mediterranean Sea coast. The moisture level ranged from 30.26% in Corallina mediterranea to 77.57% in Padina boryana. On dry weight basis, the ash contents varied from 25.53% in Jania rubens to 88.84% in Sargassum wightii. The protein contents fluctuated from 8.26% in S. wightii to 28.01% in J. rubens. Enteromorpha linza showed the highest lipids (4.66%) and carbohydrate contents (78.95%), whereas C. mediterranea had the lowest lipid (0.5%), and carbohydrate contents (38.12%). Chlorophylls and carotenoid contents varied among the species. Total antioxidant capacity of the tested green seaweeds had the highest activities followed by brown and red seaweeds which had a similar trend of phenol and tannins contents. High reducing power was observed in all tested seaweeds extract except Ulva lactuca. Brown species had the highest amount of elements followed by red and green seaweeds. Notably, SO 4 2- recorded the highest level in the tested green species (108.05 mg/g dry weight (DW)). The Ca/Mg and K/Na ratios reflected highly significant difference between seaweed species. This study keeps an eye on 29 parameters and by applying stepwise multiple regression analysis, prospective equations have been set to describe the interactions between these parameters inside seaweeds. Accordingly, the tested seaweeds can be recommended as a source of healthy food with suitable ion quotient and estimated daily intake values.

  10. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  11. Novel pre-treatment of zeolite materials for the removal of sodium ions: potential materials for coal seam gas co-produced wastewater.

    PubMed

    Santiago, Oscar; Walsh, Kerry; Kele, Ben; Gardner, Edward; Chapman, James

    2016-01-01

    Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na(+) (1156 mg/L), low concentrations of Ca(2+) (28.3 mg/L) and Mg(2+) (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na(+) ions of 16.16 mEq/100 g, while a treated zeolite using NH4 (+) using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na(+) capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4 (+) pre-treatment represents an effective treatment to reduce Na(+) concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.

  12. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    NASA Astrophysics Data System (ADS)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  13. Recovery of gallium and vanadium from gasification fly ash.

    PubMed

    Font, Oriol; Querol, Xavier; Juan, Roberto; Casado, Raquel; Ruiz, Carmen R; López-Soler, Angel; Coca, Pilar; García Peña, Francisco

    2007-01-31

    The Puertollano Integrated Coal Gasification Combined Cycle (IGCC) Power Plant (Spain) fly ash is characterized by a relatively high content of Ga and V, which occurs mainly as Ga2O3 and as Ga3+ and V3+ substituting for Al3+ in the Al-Si fly ash glass matrix. Investigations focused on evaluating the potential recovery of Ga and V from these fly ashes. Several NaOH based extraction tests were performed on the IGCC fly ash, at different temperatures, NaOH/fly ash (NaOH/FA) ratios, NaOH concentrations and extraction times. The optimal Ga extraction conditions was determined as 25 degrees C, NaOH 0.7-1 M, NaOH/FA ratio of 5 L/kg and 6 h, attaining Ga extraction yields of 60-86%, equivalent to 197-275 mg of Ga/kg of fly ash. Re-circulation of leachates increased initial Ga concentrations (25-38 mg/L) to 188-215 mg/L, while reducing both content of impurities and NaOH consumption. Carbonation of concentrated Ga leachate demonstrated that 99% of the bulk Ga content in the leachate precipitates at pH 7.4. At pH 10.5 significant proportions of impurities, mainly Al (91%), co-precipitate while >98% of the bulk Ga remains in solution. A second carbonation of the remaining solution (at pH 7.5) recovers the 98.8% of the bulk Ga. Re-dissolution (at pH 0) of the precipitate increases Ga purity from 7 to 30%, this being a suitable Ga end product for further purification by electrolysis. This method produces higher recovery efficiency than currently applied for Ga on an industrial scale. In contrast, low V extraction yields (<64%) were obtained even when using extreme alkaline extraction conditions, which given the current marked price of this element, limits considerably the feasibility of V recovery from IGCC fly ash.

  14. The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis. II. Early chemical enrichment

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.; Jablonka, P.; Sitnova, T.; Pakhomov, Yu.; North, P.

    2017-12-01

    We present the non-local thermodynamic equilibrium (NLTE) abundances of up to 10 chemical species in a sample of 59 very metal-poor (VMP, -4 ≤ [Fe/H] ≾-2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo. Our results are based on high-resolution spectroscopic datasets and homogeneous and accurate atmospheric parameters determined in Paper I. We show that once the NLTE effects are properly taken into account, all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] ≃ 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. The dichotomy in the [Sr/Ba] versus [Ba/H] diagram is observed in the classical dSphs, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr. We show that Sr in the massive galaxies is well correlated with Mg suggesting a strong link to massive stars and that its origin is essentially independent of Ba, for most of the [Ba/H] range. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≃-1.3 and [Ba/Mg] ≃-1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] <-2, is the strongest. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A89

  15. Compositional variability of the aerosols collected on Kerkennah Islands (central Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, A.; Masmoudi, M.; Quisefit, J. P.; Alfaro, S. C.

    2016-03-01

    The aim of the present study is to investigate the seasonal variability of the aerosol concentrations and origins in central Tunisia. Four field campaigns were carried out in 2010/2011 to collect air-suspended particles on the Kerkennah Islands. The elemental composition (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Pb, Ni, V, and As) of the particles collected in summer (June and July), autumn (September and November), winter (February and March), and spring (April and May) is determined by X-ray fluorescence analysis. Examination of the enrichment factors (EF) of all elements indicate that Al, Fe, Si, Ca, Ti, Mn, and Cr are mainly derived from soil sources, whereas Na and Cl are mostly of marine origin. Other elements such as K and Mg or S and P have multiple origins (Marine/crustal and crustal/anthropogenic, respectively). Finally, V, Cu, Ni, As, and Pb appear to be produced by anthropogenic activities. Based on the inter-elemental correlations, the mass concentrations of mineral dust (MD), sea-salt (SS) and anthropogenic (non-crustal and non-marine) sulfates (NSS) are quantified. MD, SS and NSS display significant inter-seasonal differences: on the one hand, MD and SS are the highest in spring and the lowest in winter, probably because of the seasonal change in meteorological conditions. On the other hand, NSS and Cu concentrations are above their autumn and winter values in spring and summer, which suggests the existence of a common source of the combustion type for these two pollutants.

  16. [Application of ICP-MS to Identify the Botanic Source of Characteristic Honey in South Yunnan].

    PubMed

    Wei, Yue; Chen, Fang; Wang, Yong; Chen, Lan-zhen; Zhang, Xue-wen; Wang, Yan-hui; Wu, Li-ming; Zhou, Qun

    2016-01-01

    By adopting inductively coupled plasma mass spectrometry (ICP-MS) combined with chemometric analysis technology, 23 kinds of minerals in four kinds of characteristic honey derived from Yunnan province were analyzed. The result showed that 21 kinds of mineral elements, namely Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Tl and Pb, have significant differences among different varieties of honey. The results of principal component analysis (PCA) showed that the cumulative variance contribution rate of the first four main components reached 77.74%, seven kinds of elements (Mg, Ca, Mn, Co, Sr, Cd, Ba) from the first main component contained most of the honey information. Through the stepwise discriminant analysis, seven kinds of elements (Mg, K, Ca, Cr, Mn, Sr, Pb) were filtered. out and used to establish the discriminant function model, and the correct classification rates of the proposed model reached 90% and 86.7%, respectively, which showed elements contents could be effectively indicators to discriminate the four kinds characteristic honey in southern Yunnan Province. In view of all the honey samples were harvested from apiaries located at south Yunnan Province where have similar climate, soil and other environment conditions, the differences of the mineral elements contents for the honey samples mainly due to their corresponding nectariferous plant. Therefore, it is feasible to identify honey botanical source through the differences of mineral elements.

  17. Nanogeochemistry of hydrothermal magnetite

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin

    2018-06-01

    Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.

  18. Crystal structure and europium luminescence of NaMgH3-xFx

    NASA Astrophysics Data System (ADS)

    Pflug, Christian; Franz, Alexandra; Kohlmann, Holger

    2018-02-01

    The solid solution series NaMgH3-xFx (x = 0, 0.5, 1, 1.5, 2, 2.5, 3) was synthesized by solid-state reactions under hydrogen gas pressure from binary ionic hydrides, fluorides and magnesium. Rietveld refinement based on X-ray powder diffraction data revealed the GdFeO3-structure type for all compounds and a trend of lattice parameters according to Vegard's law. The anion distribution in NaMgD2F and NaMgD1.5F1.5 was found to be statistical by Rietveld refinement based on neutron powder diffraction data. Photoluminescence measurements on europium(II) substituted NaMgH3-xFx revealed a strong red shift of the emission wavelength (λem = 665 nm for NaMgH2F:Eu) in comparison to violet emitting NaMgF3:Eu.

  19. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula

    USGS Publications Warehouse

    Pereira, P.; beda, X.; Martin, D.; Mataix-Solera, J.; Guerrero, C.

    2011-01-01

    Wildfire is the major disturbance in Mediterranean forests. Prescribed fire can be an alternative to reduce the amount of fuel and hence decrease the wildfire risk. However the effects of prescribed fire must be studied, especially on ash properties, because ash is an important nutrient source for ecosystem recovery. The aim of this study is to determine the effects of a low severity prescribed fire on water-soluble elements in ash including pH, electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), silica (SiO2) and total sulphur (TS). A prescribed fire was conducted in a cork oak (Quercus suber) (Q.S) forest located in the northeast part of the Iberian Peninsula. Samples were collected from a flat plot of 40??70m mainly composed of Q.S and Quercus robur (Q.R) trees. In order to understand the effects of the prescribed fire on the soluble elements in ash, we conducted our data analysis on three data groups: all samples, only Q.S samples and only Q.R samples. All three sample groups exhibited a significant increase in pH, EC (p<0.001), water-soluble Ca, Mg, Na, SiO2 and TS and a decrease in water-soluble Mn, Fe and Zn. Differences were identified between oak species for water-soluble K, Al and Fe. In Q.S samples we registered a significant increase in the first two elements p<0.001 and p<0.01, respectively, and a non-significant impact in the third, at p<0.05. In Q.R data we identified a non-significant impact on water-soluble K and Al and a significant decrease in water-soluble Fe (p<0.05). These differences are probably due to vegetation characteristics and burn severity. The fire induced a higher variability in the ash soluble elements, especially in Q.S samples, that at some points burned with higher severity. The increase of pH, EC, Ca, Mg, Na and K will improve soil fertility, mainly in the study area where soils are acidic. The application of this low severity prescribed fire will improve soil nutrient status without causing soil degradation and thus is considered to be a good management strategy. ?? 2010 Elsevier Inc.

  20. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula.

    PubMed

    Pereira, Paulo; Ubeda, Xavier; Martin, Deborah; Mataix-Solera, Jorge; Guerrero, César

    2011-02-01

    Wildfire is the major disturbance in Mediterranean forests. Prescribed fire can be an alternative to reduce the amount of fuel and hence decrease the wildfire risk. However the effects of prescribed fire must be studied, especially on ash properties, because ash is an important nutrient source for ecosystem recovery. The aim of this study is to determine the effects of a low severity prescribed fire on water-soluble elements in ash including pH, electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), silica (SiO(2)) and total sulphur (TS). A prescribed fire was conducted in a cork oak (Quercus suber) (Q.S) forest located in the northeast part of the Iberian Peninsula. Samples were collected from a flat plot of 40×70m mainly composed of Q.S and Quercus robur (Q.R) trees. In order to understand the effects of the prescribed fire on the soluble elements in ash, we conducted our data analysis on three data groups: all samples, only Q.S samples and only Q.R samples. All three sample groups exhibited a significant increase in pH, EC (p<0.001), water-soluble Ca, Mg, Na, SiO(2) and TS and a decrease in water-soluble Mn, Fe and Zn. Differences were identified between oak species for water-soluble K, Al and Fe. In Q.S samples we registered a significant increase in the first two elements p<0.001 and p<0.01, respectively, and a non-significant impact in the third, at p<0.05. In Q.R data we identified a non-significant impact on water-soluble K and Al and a significant decrease in water-soluble Fe (p<0.05). These differences are probably due to vegetation characteristics and burn severity. The fire induced a higher variability in the ash soluble elements, especially in Q.S samples, that at some points burned with higher severity. The increase of pH, EC, Ca, Mg, Na and K will improve soil fertility, mainly in the study area where soils are acidic. The application of this low severity prescribed fire will improve soil nutrient status without causing soil degradation and thus is considered to be a good management strategy. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses.

    PubMed

    Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco

    2013-01-01

    To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.

  2. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    DOEpatents

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  3. Development of a certified reference material (NMIJ CRM 7512-a) for the determination of trace elements in milk powder.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Miyashita, Shin-ichi; Kuroiwa, Takayoshi; Inagaki, Kazumi; Chiba, Koichi; Hioki, Akiharu

    2013-01-01

    A certified reference material (CRM), NMIJ CRM 7512-a, was developed for the determination of trace elements in milk powder. At least three independent analytical methods were applied to characterize the certified value of each element; all of these analytical methods were based on microwave acid digestions and carried out using different analytical instruments. The certified value was given on a dry-mass basis, where the dry-mass correction factor was obtained by drying the sample at 65°C for 15 to 25 h. The certified values in the units of mass fractions for 13 elements were as follows: Ca, 8.65 (0.38) g kg(-1); Fe, 0.104 (0.007) g kg(-1); K, 8.41 (0.33) g kg(-1); Mg, 0.819 (0.024) g kg(-1); Na, 1.87 (0.09) g kg(-1); P, 5.62 (0.23) g kg(-1); Ba, 0.449 (0.013) mg kg(-1); Cu, 4.66 (0.23) mg kg(-1); Mn, 0.931 (0.032) mg kg(-1); Mo, 0.223 (0.012) mg kg(-1); Rb, 8.93 (0.31) mg kg(-1); Sr, 5.88 (0.20) mg kg(-1); and Zn, 41.3 (1.4) mg kg(-1), where the numbers in the parentheses are the expanded uncertainties with a coverage factor of 2. The expanded uncertainties were estimated considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the dry-mass correction factor, and the concentrations of the standard solutions for calibration. The concentrations of As (2.1 μg kg(-1)), Cd (0.2 μg kg(-1)), Cr (1.3 μg kg(-1)), Pb (0.3 μg kg(-1)), and Y (64 μg kg(-1)) were given as information values for the present CRM.

  4. The Effect of Impurities on the Processing of Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data thatmore » are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the rejects, the full-scale industrial implementation of the project results would lead to energy savings in excess of 6.2 trillion Btu/year and cost savings of $42.7 million by 2020.« less

  5. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  6. Elemental composition of four farmed fish produced in Portugal.

    PubMed

    Lourenço, Helena M; Afonso, Cláudia; Anacleto, Patrícia; Martins, Maria F; Nunes, Maria L; Lino, Ana R

    2012-11-01

    Farmed gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax), rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima) produced in Portugal were analysed in order to characterize their elemental composition. Atomic absorption (flame and cold vapour) and molecular absorption spectrometry techniques were used to determine all the studied elements. Similar patterns of macro, trace and ultra trace elements were observed for all fish species. The main elements were potassium (K), sodium (Na), phosphorus (P), magnesium (Mg) and calcium (Ca), followed by zinc (Zn), iron (Fe), copper (Cu), chromium (Cr), manganese (Mn) and nickel (Ni). Cadmium (Cd), mercury (Hg) and lead (Pb) concentrations, obtained in this study, allow concluding that these species do not present a hazard for human consumption. In addition, they contain almost all essential elements at concentrations sufficient to suit the dietary reference intake. Nevertheless, P. maxima nutritious trace element content is relatively low compared with the other three species.

  7. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.

    PubMed

    Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto

    2012-09-01

    A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Effects of Alloying Element Ca on the Corrosion Behavior and Bioactivity of Anodic Films Formed on AM60 Mg Alloys

    PubMed Central

    Anawati, Anawati; Asoh, Hidetaka; Ono, Sachiko

    2016-01-01

    Effects of alloying element Ca on the corrosion behavior and bioactivity of films formed by plasma electrolytic oxidation (PEO) on AM60 alloys were investigated. The corrosion behavior was studied by conducting electrochemical tests in 0.9% NaCl solution while the bioactivity was evaluated by soaking the specimens in simulated body fluid (SBF). Under identical anodization conditions, the PEO film thicknesses increased with increasing Ca content in the alloys, which enhanced the corrosion resistance in NaCl solution. Thicker apatite layers grew on the PEO films of Ca-containing alloys because Ca was incorporated into the PEO film and because Ca was present in the alloys. Improvement of corrosion resistance and bioactivity of the PEO-coated AM60 by alloying with Ca may be beneficial for biodegradable implant applications. PMID:28772371

  9. Relativistic Effects and Gold Site Distributions: Synthesis, Structure, and Bonding in a Polar Intermetallic Na6Cd16Au7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Corbett, John D.

    Na{sub 6}Cd{sub 16}Au{sub 7} has been synthesized via typical high-temperature reactions, and its structure refined by single crystal X-ray diffraction as cubic, Fm{bar 3}m, a = 13.589(1) {angstrom}, Z = 4. The structure consists of Cd{sub 8} tetrahedral star (TS) building blocks that are face capped by six shared gold (Au2) vertexes and further diagonally bridged via Au1 to generate an orthogonal, three-dimensional framework [Cd{sub 8}(Au2){sub 6/2}(Au1){sub 4/8}], an ordered ternary derivative of Mn{sub 6}Th{sub 23}. Linear muffin-tin-orbital (LMTO)-atomic sphere approximation (ASA) electronic structure calculations indicate that Na{sub 6}Cd{sub 16}Au{sub 7} is metallic and that {approx}76% of the total crystalmore » orbital Hamilton populations (-ICOHP) originate from polar Cd-Au bonding with 18% more from fewer Cd-Cd contacts. Na{sub 6}Cd{sub 16}Au{sub 7} (45 valence electron count (vec)) is isotypic with the older electron-richer Mg{sub 6}Cu{sub 16}Si{sub 7} (56 vec) in which the atom types are switched and bonding characteristics among the network elements are altered considerably (Si for Au, Cu for Cd, Mg for Na). The earlier and more electronegative element Au now occupies the Si site, in accord with the larger relativistic bonding contributions from polar Cd-Au versus Cu-Si bonds with the neighboring Cd in the former Cu positions. Substantial electronic differences in partial densities-of-states (PDOS) and COHP data for all atoms emphasize these. Strong contributions of nearby Au 5d{sup 10} to bonding states without altering the formal vec are the likely origin of these effects.« less

  10. Minor elements, HREE and d18O distribution in UHP garnets from the Dora-Maira massif (western Alps)

    NASA Astrophysics Data System (ADS)

    Brunet, F.; Chazot, G.; Vielzeuf, D.; Chopin, C.

    2003-04-01

    The spatial distribution of minor elements, HREE and δ18O in garnet can be used as a probe of the availability and mobility of those elements and isotopes at the time of crystal growth, provided that the initial record was not significantly modified by intracrystalline diffusion and that growth took place under nearly constant pressure and temperature conditions. Garnets from three different Dora-Maira rock-types have been studied, (1) nearly pure pyrope (GT1) from the magnesian coesite-bearing quartzites, (2) almandine/pyrope dominant garnets (GT2) from jadeite-quartzite veins which crosscut the Mg-quartzite body, (3) almandine/grossular dominant garnets (GT3) from the country-rock gneiss, sampled in the vicinity of the quartzites. In GT1, minor elements are mainly Fe, Na and P. Na and P are incorporated according to a Na^+ + P5+ = Me2+ + Si4+ substitution with P_2O_5 contents up to 2000 to 2500 ppm. HREE concentrations obtained by LA-ICP-MS, vary by 2 orders of magnitude from core to rim. The δ18O ratio (Cameca 1270, Nancy), around 5 ppm (SMOW), is constant within error throughout the analysed crystals. In GT2, the situation is different since HREE concentrations appear remarkably constant within a given crystal and from one crystal to the other. In contrast with GT1, Na in GT2 is partly charge-balanced by yttrium incorporation. The δ18O ratio in GT2 of around 7 ppm is close to that encountered in GT3 (gneiss) between 7 and 8 ppm. In GT3, phosphorus content is close to detection limit (P_2O_5 below 300 ppm). HREE concentrations are highly variable from one crystal to the other and unfortunately, the size of garnet crystals does not allow profiling. Although δ18O ratio in garnet is imposed by the bulk-rock isotopic composition, HREE distribution is dominated by element availability through the fluid composition and/or absence/presence of accessory phases. The decrease in HREE and P concentration from GT1 cores to rims suggest that these elements are preferentially incorporated into garnet. Garnet growth leads to progressive depletion of these elements in the matrix. There is no significant influx of HREE during UHP garnet growth. The homogeneity of the δ18O ratio within garnet crystals is also an indication of UHP growth in a close metamorphic system. Jadeite-quartzite veins have geochemical characteristics close to that of the country-rock gneiss from which they could originate. They would then represent an evidence of Mg-quartzite and country gneiss interaction at UHP.

  11. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; He, Yongsheng; Teng, Fang-Zhen; Ke, Shan; Hou, Zhenhui; Li, Shuguang

    2018-02-01

    Significant magnesium and iron isotope fractionations were observed in an adjacent gabbro and granite profile from the Dabie Orogen, China. Chilled margin and granitic veins at the gabbro side and gabbro xenoliths in the granite indicate the two intrusions were emplaced simultaneously. The δ26Mg decreases from -0.28 ± 0.04‰ to -0.63 ± 0.08‰ and δ56Fe increases from -0.07 ± 0.03‰ to +0.25 ± 0.03‰ along a ∼16 cm traverse from the contact to the granite. Concentrations of major elements such as Al, Na, Ti and most trace elements also systematically change with distance to the contact. All the observations suggest that weathering, magma mixing, fluid exsolution, fractional crystallization and thermal diffusion are not the major processes responsible for the observed elemental and isotopic variations. Rather, the negatively correlated Mg and Fe isotopic compositions as well as co-variations of Mg and Fe isotopes with Mg# reflect Mg-Fe inter-diffusion driven isotope fractionation, with Mg diffusing from the chilled gabbro into the granitic melt and Fe oppositely. The diffusion modeling yields a characteristic diffusive transport distance of ∼6 cm. Consequently, the diffusion duration, during which the granite may have maintained a molten state, can be constrained to ∼2 My. The cooling rate of the granite is calculated to be 52-107 °C/My. Our study suggests diffusion profiles can be a powerful geospeedometry. The observed isotope fractionations also indicate that Mg-Fe inter-diffusion can produce large stable isotope fractionations at least on a decimeter scale, with implications for Mg and Fe isotope study of mantle xenoliths, mafic dikes, and inter-bedded lavas.

  12. Geochemical landscapes of the conterminous United States; new map presentations for 22 elements

    USGS Publications Warehouse

    Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.

    2001-01-01

    Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.

  13. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  14. Collisional erosion and the non-chondritic composition of the terrestrial planets.

    PubMed

    O'Neill, Hugh St C; Palme, Herbert

    2008-11-28

    The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations. However, the next stage of planetary accretion is the growth of the terrestrial planets from approximately 102 embryos sourced across wide heliocentric distances, involving energetic collisions, in which material may be lost from a growing planet as well as gained. While this may result in averaging out of the 'chondritic' fractionations, it introduces two non-chondritic chemical fractionation processes: post-nebular volatilization and preferential collisional erosion. In the latter, geochemically enriched crust formed previously is preferentially lost. That post-nebular volatilization was widespread is demonstrated by the non-chondritic Mn/Na ratio in all the small, differentiated, rocky bodies for which we have basaltic samples, including the Moon and Mars. The bulk silicate Earth (BSE) has chondritic Mn/Na, but shows several other compositional features in its pattern of depletion of volatile elements suggestive of non-chondritic fractionation. The whole-Earth Fe/Mg ratio is 2.1+/-0.1, significantly greater than the solar ratio of 1.9+/-0.1, implying net collisional erosion of approximately 10 per cent silicate relative to metal during the Earth's accretion. If this collisional erosion preferentially removed differentiated crust, the assumption of chondritic ratios among all RLEs in the BSE would not be valid, with the BSE depleted in elements according to their geochemical incompatibility. In the extreme case, the Earth would only have half the chondritic abundances of the highly incompatible, heat-producing elements Th, U and K. Such an Earth model resolves several geochemical paradoxes: the depleted mantle occupies the whole mantle, is completely outgassed in (40)Ar and produces the observed (4)He flux through the ocean basins. But the lower radiogenic heat production exacerbates the discrepancy with heat loss.

  15. Chemical composition and antioxidant activity of certain Morus species

    PubMed Central

    Imran, Mohammad; Khan, Hamayun; Shah, Mohibullah; Khan, Rasool; Khan, Faridullah

    2010-01-01

    In the present work, the fruits of four Morus species, namely Morus alba (white mulberry), Morus nigra (black mulberry), Morus laevigata (large white fruit), and Morus laevigata (large black fruit), were analyzed for proximate composition, essential minerals, and antioxidant potentials. For this purpose, the ripe fruits were collected from the northern regions of Pakistan. The major nutritional components (moisture, ash, lipids, proteins, fibres, carbohydrates, and total sugar) were found to be in the suitable range along with good computed energy. Total dry weight, pH, and titratable acidity (percent citric acid) were (17.60±1.94)–(21.97±2.34) mg/100 g, (3.20±0.07)–(4.78±0.15), and (0.84±0.40)%–(2.00±0.08)%, respectively. Low riboflavin (vitamin B2) and niacin (vitamin B3) contents were recorded in all the fruits, while ascorbic acid (vitamin C) was in the range from (15.20±1.25) to (17.03±1.71) mg/100 g fresh weight (FW). The mulberry fruits were rich with regard to the total phenol and alkaloid contents, having values of (880±7.20)–(1650±12.25) mg/100 g FW and (390±.22)–(660±5.25) mg/100 g FW, respectively. Sufficient quantities of essential macro-(K, Ca, Mg, and Na) and micro-(Fe, Zn, and Ni) elements were found in all the fruits. K was the predominant element with concentration ranging from (1270±9.36) to (1731±11.50) mg/100 g, while Ca, Na, and Mg contents were (440±3.21)–(576±7.37), (260±3.86)–(280±3.50), and (24±3.51)–(360±4.20) mg/100 g, respectivly. The decreasing order of micro-minerals was Fe>Zn>Ni. The radical scavenging activity of methanolic extract of fruits was concentration-dependent and showed a correlation with total phenolic constituents of the respective fruits. Based on the results obtained, mulberry fruits were found to serve as a potential source of food diet and natural antioxidants. PMID:21121077

  16. A Cerenkov-Range analysis of the isotopic composition of cosmic rays with Z from 6 to 26

    NASA Technical Reports Server (NTRS)

    Fisher, A. J.; Hagen, F. A.; Maehl, R.; Ormes, J. F.

    1975-01-01

    High-altitude balloon data on the isotopic composition of heavy cosmic rays are reported. The experiment used a Cerenkov detector, arrays of scintillators, and a digitized wire spark chamber. Peaks assigned to the mono-isotopic elements F and Na indicate that an absolute mass scale can be derived from the data. Even-Z elements in the Z range from 12 through 16 are represented mainly by alpha-particle nuclei. Neutron-rich components dominate in the case of neon present. Mass histograms are plotted for C, O, N, Ne, Mg, and Fe.

  17. Geochemical patterns in soils of the karst region, Croatia

    USGS Publications Warehouse

    Prohic, E.; Hausberger, G.; Davis, J.C.

    1997-01-01

    Soil samples were collected at 420 locations in a 5-km grid pattern in the Istria and Gorski Kotar areas of Croatia, and on the Croatian islands of Cres, Rab and Krk, in order to relate geochemical variation in the soils to underlying differences in geology, bedrock lithology, soil type, environment and natural versus anthropogenic influences. Specific objectives included assessment of possible agricultural and industrial sources of contamination, especially from airborne effluent emitted by a local power plant. The study also tested the adequacy of a fixed-depth soil sampling procedure developed for meager karstic soils. Although 40 geochemical variables were analyzed, only 15 elements and 5 radionuclides are common to all the sample locations. These elements can be divided into three groups: (1) those of mostly anthropogenic origin -Pb, V, Cu and Cr; (2) those of mixed origin - radionuclides and Zn; and (3) those of mostly geogene origin -Ba, Sr, Ti, Al, Na, Ca, Mg, Fe, Mn, Ni and Co. Variation in Pb shows a strong correlation with the pattern of road traffic in Istria. The distributions of Ca, Na and Mg in the flysch basins of southern Istria and Slovenia are clearly distinguishable from the distributions of these elements in the surrounding carbonate terrains, a consequence of differences in bedrock permeability, type of drainage and pH. The spatial pattern of Cs from the Chernobyl nuclear power plant accident reflects almost exclusively the precipitation in Istria during the days immediately after the explosion. ?? 1997 Elsevier Science B.V.

  18. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: a comparative study at the scale of the Czech Republic.

    PubMed

    Suchara, Ivan; Sucharova, Julie; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-05-01

    Moss (Pleurozium schreberi), grass (Avenella flexuosa), and 1- and 2-year old spruce (Picea abies) needles were collected over the territory of the Czech Republic at an average sample density of 1 site per 290km(2). The samples were analysed for 39 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn) using ICP-MS and ICP-AES techniques (the major nutrients Ca, K, Mg and Na were not analysed in moss). Moss showed by far the highest element concentrations for most elements. Exceptions were Ba (spruce), Mn (spruce), Mo (grass), Ni (spruce), Rb (grass) and S (grass). Regional distribution maps and spatial trend analysis were used to study the suitability of the four materials as bioindicators of anthropogenic contamination. The highly industrialised areas in the north-west and the far east of the country and several more local contamination sources were indicated in the distribution maps of one or several sample materials. At the scale of the whole country moss was the best indicator of known contamination sources. However, on a more local scale, it appeared that spruce needles were especially well suited for detection of urban contamination. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Coarse particle (PM10-2.5) source profiles for emissions from domestic cooking and industrial process in Central India.

    PubMed

    Bano, Shahina; Pervez, Shamsh; Chow, Judith C; Matawle, Jeevan Lal; Watson, John G; Sahu, Rakesh Kumar; Srivastava, Anjali; Tiwari, Suresh; Pervez, Yasmeen Fatima; Deb, Manas Kanti

    2018-06-15

    To develop coarse particle (PM 10-2.5 , 2.5 to 10μm) chemical source profiles, real-world source sampling from four domestic cooking and seven industrial processing facilities were carried out in "Raipur-Bhilai" of Central India. Collected samples were analysed for 32 chemical species including 21 elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Se, V, and Zn) by atomic absorption spectrophotometry (AAS), 8 water-soluble ions (Na + , K + , Mg 2+ , Ca 2+ , Cl - , F - , NO 3 - , and SO 4 2- ) by ion chromatography, ammonium (NH 4 + ) by spectrophotometry, and carbonaceous fractions (OC and EC) by thermal/optical transmittance. The carbonaceous fractions were most abundant fraction in household fuel and municipal solid waste combustion emissions while elemental species were more abundant in industrial emissions. Most of the elemental species were enriched in PM 2.5 (<2.5μm) size fraction as compared to the PM 10-2.5 fraction. Abundant Ca (13-28%) was found in steel-rolling mill (SRM) and cement production industry (CPI) emissions, with abundant Fe (14-32%) in ferro-manganese (FEMNI), steel production industry (SPI), and electric-arc welding emissions. High coefficients of divergence (COD) values (0.46 to 0.88) among the profiles indicate their differences. These region-specific source profiles are more relevant to source apportionment studies in India than profiles measured elsewhere. Copyright © 2018. Published by Elsevier B.V.

  20. Research on The Removal of Scale Ions from Circulating Cooling Wastewater by Chemical Coagulation Process

    NASA Astrophysics Data System (ADS)

    Du, Song; Jin, Wenbiao; Duan, Feng

    2018-06-01

    In this paper, the circulating cooling wastewater was treated by chemical coagulation process through adding NaOH/Na2CO3.The effect of NaOH and Na2CO3 dose on removal of scale ions, such as Ca2+, Mg2+, Ba2+, Sr2+, SiO2, was studied and the removal mechanism was discussed. The results showed that the increase of NaOH dose was beneficial to the removal of above-mentioned scale ions. When NaOH was only added, the removal efficiency of Ca2+, Mg2+, Ba2+, Sr2+, SiO2 was 86.3%, 91.6%, 86.5%, 58.1%, 84.2%, respectively. When 680 mg/L of NaOH and 300 mg/L of Na2CO3 were added, and the effluent pH was above 11.2, the removal efficiency of Ca2+, Mg2+ was 95.8% and 89.4%, respectively, and the concentration of Ca2+and Mg2+ was below 20 mg/L, which met the target of wastewater treatment. Finally the possible removal mechanism of Ca2+, Mg2+, Ba2+, Sr2+and SiO2 was discussed.

  1. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.

    PubMed

    Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae

    2016-04-06

    Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na(0.69)Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg(2+) ions cannot be intercalated in Fe2(CN)6, Na(0.69)Fe2(CN)6 shows reversible intercalation and deintercalation of Mg(2+) ions, although they have the same crystal structure except for the presence of Na(+) ions. This phenomenon is attributed to the fact that Mg(2+) ions are more stable in Na(+)-containing Na(0.69)Fe2(CN)6 than in Na(+)-free Fe2(CN)6, indicating Na(+) ions in Na(0.69)Fe2(CN)6 plays a crucial role in stabilizing Mg(2+) ions. Na(0.69)Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg(2+) and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg(2+) and Na(+) ions as charge carriers.

  2. Research on the relationship between the elements and pharmacological activities in velvet antler using factor analysis and cluster analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Libing

    2017-04-01

    Velvet antler has certain effect on improving the body's immune cells and the regulation of immune system function, nervous system, anti-stress, anti-aging and osteoporosis. It has medicinal applications to treat a wide range of diseases such as tissue wound healing, anti-tumor, cardiovascular disease, et al. Therefore, the research on the relationship between pharmacological activities and elements in velvet antler is of great significance. The objective of this study was to comprehensively evaluate 15 kinds of elements in different varieties of velvet antlers and study on the relationship between the elements and traditional Chinese medicine efficacy for the human. The factor analysis and the factor cluster analysis methods were used to analyze the data of elements in the sika velvet antler, cervus elaphus linnaeus, flower horse hybrid velvet antler, apiti (elk) velvet antler, male reindeer velvet antler and find out the relationship between 15 kinds of elements including Ca, P, Mg, Na, K, Fe, Cu, Mn, Al, Ba, Co, Sr, Cr, Zn and Ni. Combining with MATLAB2010 and SPSS software, the chemometrics methods were made on the relationship between the elements in velvet antler and the pharmacological activities. The first commonality factor F1 had greater load on the indexes of Ca, P, Mg, Co, Sr and Ni, and the second commonality factor F2 had greater load on the indexes of K, Mn, Zn and Cr, and the third commonality factor F3 had greater load on the indexes of Na, Cu and Ba, and the fourth commonality factor F4 had greater load on the indexes of Fe and Al. 15 kinds of elements in velvet antler in the order were elk velvet antler>flower horse hybrid velvet antler>cervus elaphus linnaeus>sika velvet antler>male reindeer velvet antler. Based on the factor analysis and the factor cluster analysis, a model for evaluating traditional Chinese medicine quality was constructed. These studies provide the scientific base and theoretical foundation for the future large-scale rational relation development of velvet antler resources as well as the relationship between the elements and traditional Chinese medicine efficacy for the human.

  3. Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India.

    PubMed

    Abdul, Rasheed M; Mutnuri, Lakshmi; Dattatreya, Patil J; Mohan, Dayal A

    2012-03-01

    A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 10(5) to 18 × 10(7 )cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate that the water is highly contaminated with microorganisms and is hazardous for drinking purposes. Bacteriological pollution of drinking water supplies caused diarrhoeal illness in Bholakpur, which is due to the infiltration of contaminated water (sewage) through cross connection, leakage points, and back siphoning.

  4. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  5. Elemental distribution in ascending aortic after radiotherapy and chemotherapy by Low Energy X-ray Fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Mantuano, A.; Mota, C. L.; Pickler, A.; Sena, G.; Braz, D.; Salata, C.; de Almeida, C. E.; Costa, F. N.; Barroso, R. C.

    2018-05-01

    Breast cancer (BC) is the most frequent cancer and the leading cause of cancer-related mortality in women. The treatment techniques for the BC include chemotherapy (CT) and/or radiotherapy (RT) and can modify elementary the cell matrix by calcificating tissues due to biological and morphological changes. Also, treatments for BC induce cardiotoxicity and it is important to understand the mechanisms involved in order to prevent this late effect in treated breast cancer patients. The high incidence of cardiovascular mortality in breast cancer patients is partially credited to increased intimal and medial calcifications of the aorta. The aim of this work is to investigate the distibution of low atomic number elements such as Magnesium (Mg), due to its importance for the cardiac metabolism; iron (Fe), since BC treatment may be associated with oxidative stress; and Sodium (Na), that is extremely related to the damage of endothelial cells. An optimal technique to observe these changes in aorta tissue is soft X-ray FLuorescence that can provide elemental maps of these important elements. The results performed by Low Energy X-ray Fluorescence LEXRF analyses showed that when the tissue is submitted to treatments with CT and/or RT, some normal structures become disorganized, and consequently the intensity of elemental compounds can be changed. All the experiments were carried out at the TwinMic beamline at Elettra Synchrotron facility using as animal model Wistar rats in order to evaluate the distribution of Na, Mg and Fe in aorta walls of Wistar rats, after BC treatment. Simultaneous acquisition of LEXRF and attenuation coefficient maps suggest that the combined chemotherapy and radiotherapy caused more damage to the aortic tissue as compared to radiation therapy alone. These findings add an in-depth understanding of elemental lack or excess in the tissue and contribute to locate these changes.

  6. Elements in human serum—CCQM-K139

    NASA Astrophysics Data System (ADS)

    Shin, Richard; Dewi, Fransiska; Tong, Benny; Wah, Leung Ho; Saxby, David; Armishaw, Paul; Ivanova, Veronika; Feng, Liuxing; Wang, Jun; Estela del Castillo Busto, M.; Fisicaro, Paola; Rienitz, Olaf; Fung, Wai-Hong; Ho-pan Yau, Michael; Yim, Yong-Hyeon; Buzoianu, Mirella; Can, Suleyman Z.; Ari, Betul; Cankur, Oktay; Goenaga Infante, Heidi; Pérez-Zambra, Ramiro; Ferreira, Elizabeth; Long, Stephen

    2018-01-01

    Elements in human serum serve as important biomarkers and their levels reflect the well-being of an individual. Electrolytes such as sodium (Na) and chloride (Cl) are crucial in maintaining the normal distribution of water, osmotic pressure and electrical neutrality in the body. Trace element such as copper (Cu) plays a part in many oxidation-reduction reactions and metalloenzymes. The majority of selenium (Se) exists as selenoproteins which are cofactors in the glutathione peroxidase activity that protects the body against free radicals. Phosphorus (P) is required for strong bones and teeth. It is also indispensable for growth, maintenance and repair of tissues and cells. The key comparison CCQM-K139: elements in human serum was coordinated by the Health Sciences Authority, Singapore. This comparison aimed to enable participating National Metrology Institutes (NMIs) and Designated Institutes (DIs) to demonstrate their competence in the determination of elements (electrolytes and essential elements) in human serum. The five measurands (Na, Cl, Cu, Se and P) selected for this comparison were not covered in the last two comparisons in the clinical area (CCQM-K14 and CCQM-K107) and offered different analytical challenges. Their concentration levels were within the normal biological range. They were also within the range of existing calibration and measurement capability (CMC) claims in the International Bureau of Weights and Measures' Key Comparison Database (BIPM KCDB). Ten institutes participated in the comparison for Na, eight for Cl, eleven for Cu, six for Se and eight for P. For the analysis of Na, Cu, Se and P, most of the participating institutes employed microwave-assisted digestion and acid digestion (with or without heating) sample dissolution. For the analysis of Cl, in addition to the microwave-assisted digestion and acid digestion, a wider variety of techniques were employed. These included matrix separation, alkaline extraction and coulometric titration. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were the two most commonly used instrumental techniques. Other techniques used included ion chromatography (IC), flame atomic absorption spectrometry (FAAS), titration and micro-coulometry. The medians were used as the estimators of Key Comparison Reference Values (KCRVs) for all measurands. The KCRVs (+/- standard uncertainty) for Na, Cl, Cu, Se and P (in mg/kg) were 3346 (+/- 14), 3871 (+/- 22), 1.151 (+/- 0.007), 0.1292 (+/- 0.0007) and 125.70 (+/- 0.35), respectively. The k-factor of 2 was used for the estimation of the expanded uncertainties of the KCRVs. The degree of equivalence and its associated uncertainty were calculated for each submitted result. For the five measurands, most participating institutes were able to demonstrate their capabilities in the determination of elements in human serum. CMC claims based on elements covered in this study may include other elements with similar core competencies, such as zinc (Zn), potassium (K), magnesium (Mg), calcium (Ca) and iron (Fe), in a wide range of biological materials. The measurands should be at similar concentration range and analysed using the same measurement technique(s) applied in this key comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Macrominerals and Trace Element Requirements for Beef Cattle.

    PubMed

    Costa e Silva, Luiz Fernando; Valadares Filho, Sebastião de Campos; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals.

  8. Macrominerals and Trace Element Requirements for Beef Cattle

    PubMed Central

    Costa e Silva, Luiz Fernando; de Campos Valadares Filho, Sebastião; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals. PMID:26657049

  9. Dynamics of multiple elements in fast decomposing vegetable residues.

    PubMed

    Cao, Chun; Liu, Si-Qi; Ma, Zhen-Bang; Lin, Yun; Su, Qiong; Chen, Huan; Wang, Jun-Jian

    2018-03-01

    Litter decomposition regulates the cycling of nutrients and toxicants but is poorly studied in farmlands. To understand the unavoidable in-situ decomposition process, we quantified the dynamics of C, H, N, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, and Zn during a 180-d decomposition study in leafy lettuce (Lactuca sativa var. longifoliaf) and rape (Brassica chinensis) residues in a wastewater-irrigated farmland in northwestern China. Different from most studied natural ecosystems, the managed vegetable farmland had a much faster litter decomposition rate (half-life of 18-60d), and interestingly, faster decomposition of roots relative to leaves for both the vegetables. Faster root decomposition can be explained by the initial biochemical composition (more O-alkyl C and less alkyl and aromatic C) but not the C/N stoichiometry. Multi-element dynamics varied greatly, with C, H, N, K, and Na being highly released (remaining proportion<20%), Ca, Cd, Cr, Mg, Ni, and Zn released, and As, Cu, Fe, Hg, Mn, and Pb possibly accumulated. Although vegetable residues serve as temporary sinks of some metal(loid)s, their fast decomposition, particularly for the O-alkyl-C-rich leafy-lettuce roots, suggest that toxic metal(loid)s can be released from residues, which therefore become secondary pollution sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dairy cheese consumption ameliorates single-meal sodium-induced cutaneous microvascular dysfunction by reducing ascorbate-sensitive oxidants in healthy older adults

    PubMed Central

    Stanhewicz, Anna E.; Alba, Billie K.; Kenney, W. Larry; Alexander, Lacy M.

    2018-01-01

    Chronic dairy intake is associated with improved cardiovascular outcomes while high dietary-sodium impairs endothelial function through increased oxidative stress and reduced nitric oxide (NO) bioavailability. The purpose of this study was to compare the effect of acute cheese consumption with consumption of sodium from non-dairy sources on microvascular function. We hypothesized that dairy-cheese ingestion would augment NO-dependent vasodilation compared to sodium from non-dairy sources. On 5 separate visits, 14 healthy subjects (61±2yrs, 8M/6F) consumed either 85g dairy cheese (560mg Na), 85g soy cheese (560mg Na), 65g pretzels (560mg Na), 170g dairy cheese (1120mg Na), or 130g pretzels (1120mg Na). Two intradermal microdialysis fibers were inserted in the ventral forearm for delivery of lactated Ringer’s or 10mM ascorbate (antioxidant) during local skin heating (~50 min). Red cell flux was measured continuously by laser-Doppler flowmetry (LDF) and cutaneous vascular conductance (CVC=LDF/MAP) was normalized as %CVCmax (28mM sodium nitroprusside). Following a plateau in CVC, 15mM NG-nitro-L-arginine methyl ester was perfused to quantify NO-dependent vasodilation (~45 min). NO-dependent vasodilation was greater following dairy (560mg Na 57±3%) (1120mg Na 55±5%) compared to soy (560mg Na 42±3%; p=0.002) or pretzel (560mg Na 43±4%; p=0.004) (1120mg Na 46±3%; p=0.04). Ascorbate augmented NO-dependent vasodilation following soy (control: 42±3 vs. ascorbate: 54±3%; p=0.01) or pretzel (560mg Na; control: 43±4 vs. ascorbate: 56±3%; p=0.006) (1120mg Na; control: 46±5 vs. ascorbate: 56±3%; p=0.02), but not dairy. Sodium ingestion in dairy was associated with greater NO-dependent vasodilation compared to non-dairy sodium, a difference that was ameliorated with ascorbate perfusion. Dairy nutrients may protect against sodium-induced reductions in NO-dependent dilation through ascorbate-sensitive mechanisms. PMID:27363679

  11. The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples.

    PubMed

    Niedzielski, P; Kozak, L; Wachelka, M; Jakubowski, K; Wybieralska, J

    2015-01-01

    The article presents the optimisation, validation and application of the microwave induced plasma optical emission spectrometry (MIP-OES) dedicated for a routine determination of Ag, Al, B, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl, Zn, in the geological samples. The three procedures of sample preparation has been proposed: sample digestion with the use of hydrofluoric acid for determination of total concentration of elements, extraction by aqua regia for determination of the quasi-total element concentration and extraction by hydrochloric acid solution to determine contents of the elements in acid leachable fraction. The detection limits were on the level 0.001-0.121 mg L(-1) (from 0.010-0.10 to 1.2-12 mg kg(-1) depend on the samples preparation procedure); the precision: 0.20-1.37%; accuracy 85-115% (for recovery for certified standards materials analysis and parallel analysis by independent analytical techniques: X-ray fluorescence (XRF) and flame absorption spectrometry (FAAS)). The conformity of the results obtained by MIP-OES analytical procedures with the results obtained by XRF and FAAS analysis allows to propose the procedures for studies of elemental composition of the fraction of the geological samples. Additionally, the MIP-OES technique is much less expensive than ICP techniques and much less time-consuming than AAS techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dietary Supplements and Military Divers: A Synopsis for Undersea Medical Officers

    DTIC Science & Technology

    2004-01-01

    High Fructose Corn Syrup Na: 55 mg K: 55 mg Niacinamide, Calcium Pantothenate... Fructose Na: 120 mg K: 20 mg None Hydrade 55 10 High Fructose Corn Syrup Na: 91 mg K: 77 mg Vitamin C, Glycerol, Metabolol Endurance 133 16 Maltodextrin...sports bars are exceptional for maintaining performance standards over a longer time period. Powerade 72 19 High Fructose , Corn Syrup ,

  13. Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy

    PubMed Central

    2018-01-01

    Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p < 0.05). The magnesium (Mg) level changes were not significant among the groups. A significant positive correlation was found between the results of LIBS and SEM/EDS analyses (r = 0.84, p < 0.001). Conclusions Treatment with NaOCl for 1 hour altered the mineral content of dentin, while EDTA application for 2 minutes had no effect on the elemental composition. The LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841

  14. Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana

    NASA Astrophysics Data System (ADS)

    Schrauder, Marcus; Koeberl, Christian; Navon, Oded

    1996-12-01

    Fibrous diamonds from Botswana contain abundant micro-inclusions, which represent syngenetic mantle fluids under high pressure. The major element composition of the fluids within individual diamonds was found to be uniform, but a significant compositional variation exists between different diamond specimens. The composition of the fluids varies between a carbonatitic and a hydrous endmember. To constrain the composition of fluids in the mantle, the trace element contents of thirteen micro-inclusion-bearing fibrous diamonds from Botswana was studied using neutron activation analysis. The concentrations of incompatible elements (including K, Na, Br, Rb, Sr, Zr, Cs, Ba, Hf, Ta, Th, U, and the LREEs) in the fluids are higher than those of mantle-derived rocks and melt inclusions. The compatible elements (e.g., Cr, Co, Ni) have abundances that are similar to those of the primitive mantle. The concentrations of most trace elements decrease by a factor of two from the carbonate-rich fluids to the hydrous fluids. Several models may explain the observed elemental variations. Minerals in equilibrium with the fluid were most likely enriched in incompatible elements, which does not agree with derivation of the fluids by partial melting of common peridotites or eclogites. Fractional crystallization of a kimberlite-like magma at depth may yield carbonatitic fluids with low mg numbers (atomic ratio [Mg/(Mg+Fe)]) and high trace element contents. Fractionation of carbonates and additional phases (e.g., rutile, apatite, zircon) may, in general, explain the concentrations of incompatible elements in the fluids, which preferably partition into these phases. Alternatively, mixing of fluids with compositions similar to those of the two endmembers may explain the observed variation of the elemental contents. The fluids in fibrous diamonds might have equilibrated with mineral inclusions in eclogitic diamonds, while peridotitic diamonds do not show evidence of interaction with these fluids. The chemical composition of the fluids in fibrous diamonds indicates that, at p, T conditions that are characteristic for diamond formation, carbonatitic and hydrous fluids are efficient carriers of incompatible elements.

  15. Ionization of elements in medium power capacitively coupled argon plasma torch with single and double ring electrodes.

    PubMed

    Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu

    2012-06-01

    A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.

  16. The Easternmost Southwest Indian Ridge: A Laboratory to Study MORB and Oceanic Gabbro Petrogenesis in a Very Low Melt Supply Context

    NASA Astrophysics Data System (ADS)

    Paquet, M.; Cannat, M.; Hamelin, C.; Brunelli, D.

    2014-12-01

    Our study area is located at the ultra-slow Southwest Indian Ridge, east of the Melville Fracture Zone, between 61 and 67°E. The melt distribution in this area is very heterogeneous, with corridors of ultramafic seafloor where plate separation is accommodated by large offset normal faults [Sauter, Cannat et al., 2013]. These ultramafic corridors also expose rare gabbros and basalts. We use the major and trace elements composition of these magmatic rocks to document the petrogenesis of MORB in this exceptionnally low melt supply portion of the MOR system. Basalts from the easternmost SWIR represent a global MORB end-member for major element compositions [Meyzen et al., 2003], with higher Na2O and Al2O3 wt%, and lower CaO and FeO wt% at a given MgO. Within this group, basalts from the ultramafic corridors have particularly high Na2O, low CaO and FeO wt%. Best fitting calculated liquid lines of descent are obtained for crystallization pressures of ~8 kbar. Gabbroic rocks recovered in the ultramafic corridors include gabbros, oxide-gabbros and variably impregnated peridotites. This presentation focuses on these impregnated samples, where cpx have high Mg#, yet are in equilibrium with the nearby basalts in terms of their trace element compositions. Plagioclase An contents vary over a broad range, and there is evidence for opx resorption. These characteristics result from melt-mantle interactions in the axial lithosphere, which may explain several peculiar major element characteristics of the basalts. Similar interactions probably occur beneath ridges at intermediate to slow and ultraslow spreading rates. We propose that they are particularly significant in our study area due to its exceptionnally low integrated melt-rock ratio.

  17. Elemental composition of game meat from Austria.

    PubMed

    Ertl, Kathrin; Kitzer, Roland; Goessler, Walter

    2016-06-01

    Concentrations of 26 elements (B, Na, Mg, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Ba, Hg, Pb, U) in wild game meat from Austria were analysed using an inductively coupled plasma mass spectrometer. All investigated animals were culled during the hunting season 2012/2013, including 10 chamois (Rupicapra rupicapra), 9 hare (Lepus europaeus), 10 pheasant (Phasianus colchicus), 10 red deer (Cervus elaphus), 12 roe deer (Capreolus capreolus) and 10 wild boar (Sus scrofa). In 19 out of 61 meat samples lead concentrations were higher than 0.1 mg/kg, the maximum limit in meat as set by the European Commission (Regulation EC No 1881/2006), which is most likely caused by ammunition residues. Especially, pellet shot animals and chamois show a high risk for lead contamination. Despite ammunition residues all investigated muscle samples show no further health risk with respect to metal contamination.

  18. Trace metal assay of U(3)O(8) powder by electrothermal AAS.

    PubMed

    Page, A G; Godbole, S V; Kulkarni, M J; Porwal, N K; Shelar, S S; Joshi, B D

    1983-10-01

    Methods have been developed for the direct determination of Ag, Ca, K., Li, Mg, Na, Pb, Sn and Zn in U(3)O(8) powder samples by electrothermal AAS. Nanogram and lower amounts of these elements have been determined with a relative standard deviation of 6-16% in mg amounts of sample (either alone or mixed with an equal weight of graphite). The results for NBL reference samples were in reasonable agreement with the certified values. X-Ray diffraction studies on the residues left from the graphite mixtures after the atomization cycle, confirmed the formation of uranium carbide (UC(2)).

  19. Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys

    PubMed Central

    Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  20. Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.

    PubMed

    Abdessameud, S; Mezbahul-Islam, M; Medraj, M

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.

  1. Extraction of Mg(OH)2 from Mg silicate minerals with NaOH assisted with H2O: implications for CO2 capture from exhaust flue gas.

    PubMed

    Madeddu, Silvia; Priestnall, Michael; Godoy, Erik; Kumar, R Vasant; Raymahasay, Sugat; Evans, Michael; Wang, Ruofan; Manenye, Seabelo; Kinoshita, Hajime

    2015-01-01

    The utilisation of Mg(OH)2 to capture exhaust CO2 has been hindered by the limited availability of brucite, the Mg(OH)2 mineral in natural deposits. Our previous study demonstrated that Mg(OH)2 can be obtained from dunite, an ultramafic rock composed of Mg silicate minerals, in highly concentrated NaOH aqueous systems. However, the large quantity of NaOH consumed was considered an obstacle for the implementation of the technology. In the present study, Mg(OH)2 was extracted from dunite reacted in solid systems with NaOH assisted with H2O. The consumption of NaOH was reduced by 97% with respect to the NaOH aqueous systems, maintaining a comparable yield of Mg(OH)2 extraction, i.e. 64.8-66%. The capture of CO2 from a CO2-N2 gas mixture was tested at ambient conditions using a Mg(OH)2 aqueous slurry. Mg(OH)2 almost fully dissolved and reacted with dissolved CO2 by forming Mg(HCO3)2 which remained in equilibrium storing the CO2 in the aqueous solution. The CO2 balance of the process was assessed from the emissions derived from the power consumption for NaOH production and Mg(OH)2 extraction together with the CO2 captured by Mg(OH)2 derived from dunite. The process resulted as carbon neutral when dunite is reacted at 250 °C for durations of 1 and 3 hours and CO2 is captured as Mg(HCO3)2.

  2. Determination of essential and toxic elements in Cordyceps kyushuensis Kawam by inductively coupled plasma mass spectrometry.

    PubMed

    Zhang, Guoying; Zhao, Yanxin; Liu, Fengjun; Ling, Jianya; Lin, Jianqiang; Zhang, Changkai

    2013-01-01

    In this study, a total of 20 elements (essential, non-essential and toxic): lithium (Li), sodium (Na), potassium (K), gallium (Ga), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), vanadium (V), chromium (Cr), nickel (Ni), cobalt (Co), molybdenum (Mo), selenium (Se), barium (Ba), tin (Sn), arsenic (As), lead (Pb) cadmium (Cd) and mercury (Hg) in natural and cultured Cordyceps kyushuensis have been determined by means of inductively coupled plasma mass spectrometry (ICP-MS). Cultured stroma, natural stroma and natural worm were digested by microwave-assisted method before analysis. The proposed ICP-MS method was validated by analyzing a certified reference material (CRM) GBW10015 (spinach). The results of one-way analysis of variance (ANOVA) revealed that the element concentrations in the three kinds of samples were significantly different (p<0.05). Except for Mg, Zn, Cu, the values of other elemental contents were the highest in the stroma of natural C. kyushuensis. In comparison with the worm, the concentrations of determined elements in wild stroma were higher. The remarkable difference of elemental contents between cultured and natural stroma may be caused by distinct growing environment. This finding highlighted the usefulness of ICP-MS elemental analysis and enhanced the value of C. kyushuensis as a candidate for nourishing food based on its composition. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Gamma-ray Transition Matrix Elements in ^21Na: First TIGRESS Radioactive Beam Experiment

    NASA Astrophysics Data System (ADS)

    Hackman, Greg

    2007-04-01

    Modern shell model calculations should be expected to reliably reproduce the properties of the deformed five-particle nucleus ^21Na. However the lowest-lying B(E2) value deduced from lifetime and mixing ratio measurements disagrees with models by an unacceptably large factor of two. To measure the B(E2) values directly, a beam of ^21Na at 1.7 MeV/u from the TRIUMF ISAC facility was directed upon a 0.5 mg/cm^2 ^natTi target. Gamma-ray yield in coincidence with inelastically scattered heavy ions was measured with two TIGRESS high energy- and position-resolution germanium detector units and the BAMBINO highly segmented silicon detector system. The result resolves the discrepancy between the shell model and prior measurements. This represents the first radioactive in-beam experiment with TIGRESS.

  4. The average chemical composition of the lunar surface

    NASA Technical Reports Server (NTRS)

    Turkevich, A. L.

    1973-01-01

    The available analytical data from twelve locations on the moon are used to estimate the average amounts of the principal chemical elements (O, Na, Mg, Al, Si, Ca, Ti, and Fe) in the mare, the terra, and the average lunar surface regolith. These chemical elements comprise about 99% of the atoms on the lunar surface. The relatively small variability in the amounts of these elements at different mare (or terra) sites, and the evidence from the orbital measurements of Apollo 15 and 16, suggest that the lunar surface is much more homogeneous than the surface of the earth. The average chemical composition of the lunar surface may now be known as well as, if not better than, that of the solid part of the earth's surface.

  5. A New Method for Estimation of Emissions and Sources of Measurements Error in the Silicon Refining Process

    NASA Astrophysics Data System (ADS)

    Næss, Mari k.; Kero, Ida; Tranell, Gabriella

    2013-08-01

    In the production of metallurgical grade silicon (MG-Si), fugitive emissions are a serious concern due to the health risks associated with the fumes formed in different parts of the production. The fumes are also a potential environmental hazard. Yet, the chemical composition of the fumes from most process steps in the silicon plant, such as oxidative refining ladle, remains unknown. This in turn constitutes a problem with respect to the correct assessment of the environmental impact and working conditions. A comprehensive industrial measurement campaign was performed at the Elkem Salten MG-Si production plant in Norway. Samples of the ingoing and outgoing mass flows were analyzed by high-resolution inductively coupled plasma mass spectrometry, with respect to 62 elements. In every step of the sampling and sample treatment processes, possible sources of error have been identified and quantified, including process variation, mass measurement accuracy, and contamination risk. Total measurement errors for all elements in all phases are established. The method is applied to estimate the order of magnitude of the elemental emissions via the fumes from the tapping and refining processes, with respect to production mass and year. The elements with higher concentrations in the fume than slag and refined silicon include Ag, Bi, Cd, Cu, In, K, Mg, Na, Pb, Rb, Se, Sn, Tl, and Zn: all being present in the ppm range. This work constitutes new and vital information to enable the correct assessment of the environmental impact and working conditions at an MG-Si plant.

  6. Laser-induced chemiluminescence of NaMg

    NASA Astrophysics Data System (ADS)

    Benard, D. J.; Michels, H. H.

    1982-03-01

    An unstructured continuum emission around 670 nm was observed when Mg was added to an optically pumped heat pipe containing Na and K vapor, in good agreement with ab initio calculations of the NaMg potential energy curves. The corresponding excitation spectrum showed that the incident radiation was observed by NaK molecules (X → C transitions).

  7. Single-particle investigation of summertime and wintertime Antarctic sea spray aerosols using low-Z particle EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques

    NASA Astrophysics Data System (ADS)

    Eom, Hyo-Jin; Gupta, Dhrubajyoti; Cho, Hye-Rin; Hwang, Hee Jin; Do Hur, Soon; Gim, Yeontae; Ro, Chul-Un

    2016-11-01

    Two aerosol samples collected at King Sejong Korean scientific research station, Antarctica, on 9 December 2011 in the austral summer (sample S1) and 23 July 2012 in the austral winter (sample S2), when the oceanic chlorophyll a levels on the collection days of the samples were quite different, by ˜ 19 times (2.46 vs. 0.13 µg L-1, respectively), were investigated on a single-particle basis using quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, Raman microspectrometry (RMS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) imaging techniques to obtain their characteristics based on the elemental chemical compositions, molecular species, and mixing state. X-ray analysis showed that the supermicron summertime and wintertime Antarctic aerosol samples have different elemental chemical compositions, even though all the individual particles analyzed were sea spray aerosols (SSAs); i.e., the contents of C, O, Ca, S, and Si were more elevated, whereas Cl was more depleted, for sample S1 than for sample S2. Based on qualitative analysis of the chemical species present in individual SSAs by the combined application of RMS and ATR-FTIR imaging, different organic species were observed in samples S1 and S2; i.e., Mg hydrate salts of alanine were predominant in samples S1 and S2, whereas Mg salts of fatty acids internally mixed with Mg hydrate salts of alanine were significant in sample S2. Although CaSO4 was observed significantly in both samples S1 and S2, other inorganic species, such as Na2SO4, NaNO3, Mg(NO3)2, SiO2, and CH3SO3Mg, were observed more significantly in sample S1, suggesting that those compounds may be related to the higher phytoplankton activity in summer.

  8. Differences in the sodium content of bread products in the USA and UK: implications for policy.

    PubMed

    Coyne, Kasey J; Baldridge, Abigail S; Huffman, Mark D; Jenner, Katharine; Xavier, Dagan; Dunford, Elizabeth K

    2018-02-01

    Americans consume Na in excess of daily recommendations. Most dietary Na comes from packaged foods, and bread is a major contributor. In the UK, national Na reduction strategies contributed to lower Na levels in packaged foods and lower population Na intake. Similar initiatives are emerging in the USA and require surveillance to assess effectiveness. We aimed to examine Na levels in bread products in the USA and compare levels with similar UK products. Na data for bread products were obtained from the US Label Insight Open Data Initiative (n 4466) and the FoodSwitch UK database (n 1651). Mean, median and range of Na content, and proportion of products meeting Na targets established by the National Salt Reduction Initiative (NSRI) and the UK Department of Health (DH) were calculated overall, by bread type and by country. Mean (sd) Na content in bread was 455 (170) mg/100 g in the USA and 406 (179) mg/100 g in the UK. In both countries, savoury bread had the highest mean Na (USA=584 mg/100 g, UK=543 mg/100 g) and fruit bread the lowest mean Na (USA=345 mg/100 g, UK=277 mg/100 g). Na content of US bread products was 12 % higher than in the UK, with 21 % of US bread products and 31 % of UK bread products meeting the NSRI and DH targets, respectively. US bread products have, on average, 12 % more Na than similar products in the UK. Variation in Na content within product categories, and between countries, suggests the feasibility of manufacturing products with lower Na to lower dietary Na intake.

  9. Geology and geochemistry of endoroique basin case of Baghdad chott southern of Algeria

    NASA Astrophysics Data System (ADS)

    Lamini, Abdellah; Hacini, Messaoud

    2018-05-01

    Chott Baghdad is an inland saline lake of the type Na-(Mg)-CI-(SO4). It is situated in septontrional Algerian sahara basin (northern of Africa).these small depression is fall dawn about 31m below sea level. One of characteristic of this zone is dry climate in summer when temperature reach 45°C and decrease in winter 5 °C. Chott Baghdad irrigate with surface water zone, continental saharan aquifer and precipitated water. Evaporative lakes without river outlets are common and their chemical composition has been reported to exhibit a wide diversity (Hardie and Eugster, 1970; Eugster and Hardie, 1978). Geologics and gitologic characteristics of deposed evaporates in Baghdad basin, small closed lagon take place with brines rich in ions SO42 - , Ca2+, Na+, Cl- and under the effect of evaporation generate the rock salt and gypsum precipitation. The objective of this study is to simulate evolution the geochemical cycle inside of chott Baghdad, in addition try to interpreter behavior of major element which constructs this small depression. The most important thing is to calculate saturated index of evaporated mineral and compare it with DRX result. To reach this study, monthly brine samples were collected from January to December. Different analytic methods were used: physico-chemical analytic (PH, temperature and conductivity). In addition, spectrophotometer and titration, phlameemissions were done to calculate major element concentration. From this study, we can conclude that major element behavior (Na+, Cl-, SO42 - , Mg+, K+, HCO3-, and Ca2+) is as follow: Chlore and sodium was decreasing at end of geochemical cycle. In addition, Bicarbonate, potassium and magnesium have characteristic evolution, where they increase at the beginning of geochemical cycle till summer then decrease steadily at the end of cycle. Where us, Calcium is quit steady during one year cycle.

  10. Characteristics of Honey from Serpentine Area in the Eastern Rhodopes Mt., Bulgaria.

    PubMed

    Atanassova, Juliana; Pavlova, Dolja; Lazarova, Maria; Yurukova, Lilyana

    2016-09-01

    Honey samples collected during 2007-2010 from serpentine and non-serpentine localities in the Eastern Rhodopes Mt. (Bulgaria) were characterized on the basis of their pollen content by qualitative melissopalynological analysis and physicochemical composition. Water content, pH, electrical conductivity, macroelements-K, Ca, Mg, P, and microelements-As, Cd, Co, Cr, Cu, Fe, Mn, Na, Ni, Pb, and Zn were determined after the Harmonised Methods of the International Honey Commission and ICP-AES method. The results from serpentine honey samples were compared with data from bee pollen collected from the same serpentine area. Different elements have different concentrations in honey from the same botanical type even collected from the same geographical region, same locality, and same beehive but in different vegetation season. The elements Mg, Mn, Ni, and P contribute mostly for separation of the serpentine honey samples based on measured elemental concentrations and performed principal component analysis. The element concentrations were higher in bee pollen and above the permissible limits for the toxic metals Cd and Pb. No specific indicator plant species was found for identification of the geographical origin of serpentine honey in relation to the forage of bees.

  11. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  12. [Study on the determination of 14 inorganic elements in coffee by inductively coupled plasma mass spectrometry].

    PubMed

    Nie, Xi-Du; Fu, Liang

    2013-07-01

    Samples of coffee were digested by microwave digestion, and inorganic elements amounts of Na, Mg, P, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Mo and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The results showed that the relative standard deviation (RSD) was less than 3.84% for all the elements, and the recovery was found to be 92.00% -106.52% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of coffee, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements of coffee.

  13. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.

    PubMed

    Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2016-11-01

    In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15)

    NASA Astrophysics Data System (ADS)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp

    2015-09-01

    Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill under Ar atmosphere, and Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15) samples were prepared. Diborane (B2H6) and hydrogen release characteristics of the Zn(BH4)2 and Zn(BH4)2+xMgH2 samples were studied. The samples synthesized by milling ZnCl2 and NaBH4 contained Zn(BH4)2 and NaCl, together with small amounts of ZnCl2 and NaBH4. We designated these samples as Zn(BH4)2(+NaCl). The weight loss up to 400 °C of the Zn(BH4)2(+NaCl) sample synthesized by milling 4 h was 11.2 wt%. FT-IR analysis showed that Zn(BH4)2 was formed in the Zn(BH4)2(+NaCl) samples. MgH2 was also milled in a planetary ball mill, and mixed with the Zn(BH4)2(+NaCl) synthesized by milling for 4 h in a mortar and pestle. The weight loss up to 400 °C of Zn(BH4)2(+NaCl)+MgH2 was 8.2 wt%, corresponding to the weight % of diborane and hydrogen released from the Zn(BH4)2(+NaCl)+MgH2 sample, with respect to the sample weight. DTA results of Zn(BH4)2(+NaCl)+xMgH2 showed that the decomposition peak of Zn(BH4)2 was at about 61 °C, and that of MgH2 was at about 370-389 °C.

  15. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  16. Mechanisms for monovalent cation-dependent depletion of intracellular Mg2+:Na(+)-independent Mg2+ pathways in guinea-pig smooth muscle.

    PubMed

    Nakayama, Shinsuke; Nomura, Hideki; Smith, Lorraine M; Clark, Joseph F; Uetani, Tadayuki; Matsubara, Tatsuaki

    2003-09-15

    It has been suggested that magnesium deficiency is correlated with many diseases. 31P NMR experiments were carried out in order to investigate the effects of Na+ substitution on Mg2+ depletion in smooth muscle under divalent cation-free conditions. In the taenia of guinea-pig caeci, the intracellular free Mg2+ concentration ([Mg2+]i) was estimated from the chemical shifts of (1) the beta-ATP peak alone and (2) beta- and gamma-ATP peaks. Both estimations indicated that [Mg2+]i decreased only very slowly in Mg(2+)-free, Ca(2+)-free solutions in which Na+ was substituted with large cations such as NMDG (N-methyl-D-glucamine) and choline. Furthermore, the measurements of tension development supported the suggestion of preservation of intracellular Mg2+ with NMDG substitution. Substituting extracellular Na+ with the small cation, Li+, also shifted the beta-ATP peak towards a lower frequency, but the frequency shift was significantly less than that seen upon Na+ substitution with K+. The estimated [Mg2+]i depletion was, however, comparable with that seen after Na+ substitution with K+ using the titration curves of metal-free and Mg(2+)-bound ATP obtained in Li(+)-based model solutions. It was concluded that Mg2+ rapidly decreases only when small cations were the major electrolyte of the extracellular medium. Na+ substitutions with NMDG, choline or Li+ had little effect on intracellular ATP concentration after 100 min treatment.

  17. High waterborne Mg does not attenuate the toxic effects of Fe, Mn, and Ba on Na+ regulation of Amazonian armored catfish tamoatá (Hoplosternum litoralle).

    PubMed

    Duarte, Rafael M; Benaduce, Ana Paula; Garcia, Luciano; Gomes, Levy C; Gomes, Adriana Chippari; Val, Adalberto L; Baldisserotto, Bernardo

    2018-04-24

    Formation water (FoW) is a by-product from oil and gas production and usually has high concentrations of soluble salts and metals. Calcium (Ca) and magnesium (Mg) have been shown to reduce the toxicity of metals to aquatic animals, and previous study showed that high waterborne Ca exerts mild effect against disturbances on Na + regulation in Amazonian armored catfish tamoatá (Hoplosternum littorale) acutely exposed to high Fe, Mn, and Ba levels. Here, we hypothesized that high Mg levels might also reduce the toxic effects of these metals on Na + regulation of tamoatá. The exposure to 5% FoW promoted an increase in Na + uptake and a rapid accumulation of Na + in all tissues analyzed (kidney

  18. Diagenetic changes in the elemental composition of unrecrystallized mollusk shells

    USGS Publications Warehouse

    Ragland, P.C.; Pilkey, O.H.; Blackwelder, B. W.

    1979-01-01

    The Mg, Sr, Mn, Fe, Na and K contents were determined for 230 apparently unrecrystallized mollusk shells (gastropods and bivalves) ranging in age from late Cretaceous to Holocene. Consistent differences between the Holocene and fossil shells with respect to concentrations of all these elements are attributed to postburial diagenetic changes. Fossil-Holocene shell comparisons are made on the intergeneric level, a more severe test of compositional differences than was previous work involved with few species. The observed differences re-emphasize the need for extreme caution in the use of the many geochemical tools which assume that no compositional changes have taken place prior to recrystallization of calcareous materials. ?? 1979.

  19. Abundance ratios in dwarf elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.

    2018-04-01

    We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 < Mr < -16.0. We analyse their absorption line-strength indices by means of index-index diagrams and scaling relations and use the stellar population models to interpret them. We present ages, metallicities, and abundance ratios obtained from these dEs within an aperture size of Re/8. We calculate [Na/Fe] from NaD, [Ca/Fe] from Ca4227, and [Mg/Fe] from Mgb. We find that [Na/Fe] is underabundant with respect to solar, whereas [Mg/Fe] is around solar. This is exactly opposite to what is found for giant ellipticals, but follows the trend with metallicity found previously for the Fornax dwarf NGC 1396. We discuss possible formation scenarios that can result in such elemental abundance patterns, and we speculate that dEs have disc-like star formation history (SFH) favouring them to originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

  20. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Compositional limits and analogs of monoclinic triple-chain silicates

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.; Gilleaudeau, Geoffrey J.; Kawa, Cynthia; Dibiase, Jaclyn M.; Fokin, Maria

    2012-08-01

    Growing recognition of triple-chain silicates in nature has prompted experimental research into the conditions under which they can form and the extent of solid solution that is feasible for some key chemical substitutions. Experiments were done primarily in the range of 0.1-0.5 GPa and 200-850 °C for durations of 18-1,034 h. A wide range of bulk compositions were explored in this study that can be classified broadly into two groups: those that are Na free and involve various possible chemical substitutions into jimthompsonite (Mg10Si12O32(OH)4), and those that are Na bearing and involve chemical substitutions into the ideal end-member Na4Mg8Si12O32(OH)4. Numerous attempts to synthesize jimthompsonite or clinojimthompsonite were unsuccessful despite the type of starting material used (reagent oxides, magnesite + SiO2, talc + enstatite, or anthophyllite). Similarly, the chemical substitutions of F- for OH-, Mn2+, Ca2+, or Fe2+ for Mg2+, and 2Li+ for Mg2+ and a vacancy were unsuccessful at nucleating triple-chain silicates. Conversely, nearly pure yields of monoclinic triple-chain silicate could be made at temperatures of 440-630 °C and 0.2 GPa from the composition Na4Mg8Si12O32(OH)4, as found in previous studies, though its composition is most likely depleted in Na as evidenced by electron microprobe and FTIR analysis. Pure yields of triple-chain silicate were also obtained for the F-analog composition Na4Mg8Si12O32F4 at 550-750 °C and 0.2-0.5 GPa if a flux consisting of Na-halide salt and water in a 2:1 ratio by weight was used. In addition, limited chemical substitution could be documented for the substitutions of 2 Na+ for Na+ + H+ and of Mg2+ + vacancy for 2Na+. For the former, the Na content appears to be limited to 2.5 cations giving the ideal composition of Na2.5Mg8Si12O30.5(OH)5.5, while for the latter substitution the Na content may go as low as 1.1 cations giving the composition Na1.1Mg9.4Si12O31.9(OH)4.1 based on a fixed number of Si cations. Further investigation involving Mg for Na cation exchange may provide a pathway for the synthesis of Na-free clinojimthompsonite. Fairly extensive solid solution was also observed for triple-chain silicates made along the compositional join Na4Mg8Si12O32(OH)4-Ca2Mg8Si12O32(OH)4 where the limit of Ca substitution at 450 °C and 0.2 GPa corresponds to Na0.7Ca1.8Mg7.8Si12O31.9(OH)4.1 (with the OH content adjusted to achieve charge balance). Aside from the Na content, this composition is similar to that observed as wide-chain lamellae in host actinolite. The relative ease with which Na-rich triple chains can be made experimentally suggests that these phases might exist in nature; this study provides additional insights into the range of compositions and formation conditions at which they might occur.

  2. Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (southwestern Mediterranean).

    PubMed

    Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi

    2016-03-01

    Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.

  3. Occurrence of high-Al N-MORB along the Easternmost Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Meyzen, C. M.; Humler, E.; Ludden, J. N.

    2017-12-01

    One of the deepest and slowest part of the mid-ocean-ridge system lies within the easternmost part of the Southwest Indian Ridge between 61°E and 69° E. In this region, a distinctive sea-floor terrain characterized by high-relief segments separated by long, deep tectonized sections shows a predominance of tectonic over magmatic extensional processes, suggesting an unstable and weak, but locally focalized magma supply. Other features of this section include the absence of long-lived transforms, thick lithosphere, high upper mantle seismic wave velocities and thin oceanic crust (4-5 km). When compared to other ridge segments, most MORB erupted along this section distinguish themselves by their higher Na2O, Sr and Al2O3 compositions, very low CaO/Al2O3 ratios relative to TiO2 and depleted heavy rare-earth element (REE) distributions. Another peculiar feature is their subparallel LREE enriched patterns. The high-Al-MgO magma type erupted periodically around the ridge system is also found in this region at 61.93°E. These lavas are characterized by high Al2O3 (> 17 wt. %), MgO (> 8.8 wt. %) and FeO contents, low SiO2 (< 49 wt. %) and Na2O and very low TiO2 (< 1 wt. %), and a LREE depleted pattern compared to the main population. At slightly lower MgO, sporadically, two other dredges located at 63.36-63.66°E share some of these distinct compositional characteristics. As a whole, these lavas are the most depleted in highly incompatible elements, but are also characterized by an offset toward lower MREE/HREE ratios relative to the main population. These peculiar basalts are not parental to the more common lower MgO compositions and cannot be related to them by fractional crystallization alone. Instead, their major element features, and the occasional presence of positive Eu and Sr anomalies might indicate assimilation of plagioclase cumulates, while their offset in MREE/HREE might require a multistage melting evolution with an earlier event in the garnet stability field.

  4. Fractional Yields Inferred from Halo and Thick Disk Stars

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance distribution fits to the data, as well as its counterpart inferred in the opposite limit of instantaneous mixing in the presence of chemical evolution, while the latter is preferred for HA subsample.

  5. Evaluation of status of calcium, magnesium, potassium, and sodium levels in biological samples in children of different age groups with normal vision and night blindness.

    PubMed

    Afridi, Hassan Imran; Kazi, Tasneem Gul; Kazi, Naveed; Kandhro, Ghulam Abbas; Baig, Jameel Ahmed; Shah, Abdul Qadir; Khan, Sumaira; Kolachi, Nida Fatima; Wadhwa, Sham Kumar; Shah, Faheem

    2011-01-01

    The most common cause of blindness in developing countries is vitamin A deficiency. The World Health Organization (WHO) estimates 13.8 million children have some degree of visual loss related to vitamin A deficiency. The causes of night blindness in children are multifactorial and particular consideration has been given to childhood nutritional deficiency, which is the most common problem found in underdeveloped countries. Such deficiency can result in physiological and pathological processes that in turn influence biological sample composition. Vitamin and mineral deficiency prevents more than two billion people from achieving their full intellectual and physical potential. This study was designed to compare the levels of magnesium (Mg), calcium (Ca), potassium (K), and sodium (Na) in scalp hair, serum, blood, and urine of night blindness children in two age groups, (1-5) and (6-10) years, of both genders comparing them to sex- and age-matched controls. A microwave assisted wet acid digestion procedure was developed as a sample pretreatment for the determination of Mg, Ca, K, and Na in biological samples of children with night blindness. The proposed method was validated by using conventional wet digestion and certified reference samples of hair, serum, blood, and urine. The digests of all biological samples were analysed for Mg, Ca, K, and Na by flame atomic absorption spectrometry (FAAS) using an air/acetylene flame. The results indicated significantly lower levels of Mg, Ca, and K in the biological samples (blood, serum, and scalp hair) of male and female children with night blindness and higher values of Na compared with control subjects of both genders. These data present guidance to clinicians and other professionals investigating deficiency of essential mineral elements in biological samples (scalp hair, serum, and blood) of children with night blindness.

  6. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status.

    PubMed

    Pii, Youry; Cesco, Stefano; Mimmo, Tanja

    2015-09-01

    The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Behaviour of elements in soils developed from nephelinites at Mount Etinde (Cameroon): Impact of hydrothermal versus weathering processes

    NASA Astrophysics Data System (ADS)

    Etame, J.; Gerard, M.; Bilong, P.; Suh, C. E.

    2009-05-01

    The progressive weathering of 0.65 Ma nephelinites from Mount Etinde (South Western Cameroon) in a humid tropical setting has resulted in the formation of a 150 cm thick weathering crust. The soil profiles consist of three horizons: Ah/Bw/C. A major differentiation of the chemical and mineralogical parameters is related to the complexity of the saprolites, some of which were hydrothermally altered. Bulk geochemical and microgeochemical analyses were performed on selected minerals from the different horizons of two reference profiles, of which one (E 4) was developed from unaltered nephelinite (nephelinite U) while the other (BO 1) formed from hydrothermally altered nephelinite (nephelinite H). The results show that the primary minerals (clinopyroxene, nepheline, leucite, haüyne, titanomagnetite, perovskite, apatite and sphene) experienced differential weathering rates with primary minerals rich in rare earth elements (titanomagnetite, perovskite, apatite and sphene) surviving in the saprolite and the Bw horizons. The weathering of the primary minerals is reflected in the leaching of alkaline and alkaline-earth elements, except for Ba and Rb in the hydrothermalised nephelinite soil. The order of mobility is influenced by hydrothermal processes: Na > K > Rb > Ca > Cs > Sr in nephelinite U soil , Na > K > Sr > Ca > Mg in nephelinite H soil; Rb/Sr and Sr/Mg can be used as indicators of the kinetic of the weathering on nephelinite U and on nephelinite H. Barium enrichment is related to variable concentrations in the nephelinites, to the formation of crandallites and the leaching of surface horizons. The content of metallic elements is higher in nephelinite H soil than in the nephelinite U soil. Results show that hydrothermal alteration leads to an enrichment of light (La, Ce, Nd) and intermediate (Sm, Eu, Dy) rare earth elements. The enrichment in Cr and Pb in the surface horizons is discussed in relation to organic matter activity, the dissolution of magnetites, and the impact of hydrothermal processes as well as atmospheric pollution in the case of lead.

  8. Probabilisitc Geobiological Classification Using Elemental Abundance Distributions and Lossless Image Compression in Recent and Modern Organisms

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, Michael C.; Hoover, Richard B.

    2005-01-01

    Last year we presented techniques for the detection of fossils during robotic missions to Mars using both structural and chemical signatures[Storrie-Lombardi and Hoover, 2004]. Analyses included lossless compression of photographic images to estimate the relative complexity of a putative fossil compared to the rock matrix [Corsetti and Storrie-Lombardi, 2003] and elemental abundance distributions to provide mineralogical classification of the rock matrix [Storrie-Lombardi and Fisk, 2004]. We presented a classification strategy employing two exploratory classification algorithms (Principal Component Analysis and Hierarchical Cluster Analysis) and non-linear stochastic neural network to produce a Bayesian estimate of classification accuracy. We now present an extension of our previous experiments exploring putative fossil forms morphologically resembling cyanobacteria discovered in the Orgueil meteorite. Elemental abundances (C6, N7, O8, Na11, Mg12, Ai13, Si14, P15, S16, Cl17, K19, Ca20, Fe26) obtained for both extant cyanobacteria and fossil trilobites produce signatures readily distinguishing them from meteorite targets. When compared to elemental abundance signatures for extant cyanobacteria Orgueil structures exhibit decreased abundances for C6, N7, Na11, All3, P15, Cl17, K19, Ca20 and increases in Mg12, S16, Fe26. Diatoms and silicified portions of cyanobacterial sheaths exhibiting high levels of silicon and correspondingly low levels of carbon cluster more closely with terrestrial fossils than with extant cyanobacteria. Compression indices verify that variations in random and redundant textural patterns between perceived forms and the background matrix contribute significantly to morphological visual identification. The results provide a quantitative probabilistic methodology for discriminating putatitive fossils from the surrounding rock matrix and &om extant organisms using both structural and chemical information. The techniques described appear applicable to the geobiological analysis of meteoritic samples or in situ exploration of the Mars regolith. Keywords: cyanobacteria, microfossils, Mars, elemental abundances, complexity analysis, multifactor analysis, principal component analysis, hierarchical cluster analysis, artificial neural networks, paleo-biosignatures

  9. Trace element reference intervals in the blood of healthy green sea turtles to evaluate exposure of coastal populations.

    PubMed

    Villa, C A; Flint, M; Bell, I; Hof, C; Limpus, C J; Gaus, C

    2017-01-01

    Exposure to essential and non-essential elements may be elevated for green sea turtles (Chelonia mydas) that forage close to shore. Biomonitoring of trace elements in turtle blood can identify temporal trends over repeated sampling events, but any interpretation of potential health risks due to an elevated exposure first requires a comparison against a baseline. This study aims to use clinical reference interval (RI) methods to produce exposure baseline limits for essential and non-essential elements (Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, and Pb) using blood from healthy subadult turtles foraging in a remote and offshore part of the Great Barrier Reef. Subsequent blood biomonitoring of three additional coastal populations, which forage in areas dominated by agricultural, urban and military activities, showed clear habitat-specific differences in blood metal profiles relative to the those observed in the offshore population. Coastal turtles were most often found to have elevated concentrations of Co, Mo, Mn, Mg, Na, As, Sb, and Pb relative to the corresponding RIs. In particular, blood from turtles from the agricultural site had Co concentrations ranging from 160 to 840 μg/L (4-25 times above RI), which are within the order expected to elicit acute effects in many vertebrates. Additional clinical blood biochemistry and haematology results indicate signs of a systemic disease and the prevalence of an active inflammatory response in a high proportion (44%) of turtles from the agricultural site. Elevated Co, Sb, and Mn in the blood of these turtles significantly correlated with elevated markers of acute inflammation (total white cell counts) and liver dysfunction (alkaline phosphatase and total bilirubin). The results of this study support the notion that elevated trace element exposures may be adversely affecting the health of nearshore green sea turtles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Melt-Inclusion Study of Trace-Metal Behavior During Degassing of Basaltic Magma at Miyake-Jima Volcano (Izu-Bonin Arc, Japan)

    NASA Astrophysics Data System (ADS)

    de Hoog, C.; Hattori, K. H.

    2003-12-01

    Following its eruptions in the summer of 2000, Miyake-jima volcano discharged on average 40 kton SO2/day for over a year, the highest SO2 flux in the world at the time. We used juvenile pyroclastic fragments of the June 27 (submarine) and August 18 (subaerial near the summit) eruptions to study trace-element behavior during degassing. The fragments are medium-K calc-alkaline basalts (51-53 wt% SiO2, 4% MgO, 9-11% CaO, 2.1-2.7% Na2O) with high concentrations of chalcophile elements, most notably Cu. Sulfides have not been observed in these samples. Melt inclusions (5-300 μ m) are common in plagioclase phenocrysts and consist of brown glass with occasionally vapor bubbles. They show little compositional variation (52 wt% SiO2, 5.1% MgO, 9.5% CaO, 2.3% Na2O) and no significant differences between subaerial and submarine samples. Sulfur concentrations in melt inclusions are high, ˜900 ppm, compared to those in groundmass glass, ˜70 ppm, indicating significant sulfur loss after the entrapment of melt inclusions. However, no decrease is observed for the concentrations of any trace elements, not even the chalcophile or volatile elements (such as Cu, Zn, As, Sb, and Pb), except Bi. We conclude that large-scale open-system degassing at Miyake-jima did not mobilize trace elements in significant amounts. Comparable K/Cl ratios of melt inclusions and groundmass glass imply that little or no chlorine was lost from the magma, in accordance with its high solubility in mafic melts at low pressures. High-T fumarole studies and thermodynamic modeling indicate that many metals are transported as volatile chloride-complexes, which may explain the limited mobility of trace metals reported here. Our findings indicate that, at magmatic temperatures, sulfur only plays a limited role in the transport of metals across the melt-vapor interface.

  11. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    PubMed

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of Mg incorporation on solution-processed kesterite solar cells

    NASA Astrophysics Data System (ADS)

    Caballero, Raquel; Haass, Stefan G.; Andres, Christian; Arques, Laia; Oliva, Florian; Izquierdo-Roca, Victor; Romanyuk, Yaroslav E.

    2018-01-01

    The introduction of the alkaline-earth element Mg into Cu2ZnSn(S,Se)4 (CTZSSe) is explored in view of potential photovoltaic applications. Cu2Zn1-xMgxSn(S,Se)4 absorber layers with variable Mg content x=0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with x = 0.55…1 the phase separation into Cu2SnSe3, MgSe2, MgSe and SnSe2 occurs in agreement with literature predictions. A lower Mg content of x=0.04 results in the kesterite phase as confirmed by XRD and Raman spectroscopy. A photoluminescence maximum is red-shifted by 0.02 eV as compared to the band-gap and a carrier concentration NCV of 1 x 1016 cm-3 is measured for a Mg-containing kesterite solar cell device. Raman spectroscopy indicates that structural defects can be reduced in Mg-containing absorbers as compared to the Mg-free reference samples, however the best device efficiency of 7.2% for a Mg-containing cell measured in this study is lower than those frequently reported for the conventional Na doping.

  13. Effects of various iron fortificants on sensory acceptability and shelf-life stability of instant noodles.

    PubMed

    Kongkachuichai, Ratchanee; Kounhawej, Arunwadee; Chavasit, Visith; Charoensiri, Rin

    2007-06-01

    Iron-deficiency anemia is the most common nutritional problem in Thailand and many developing countries. One of the most sustainable and cost-effective strategies for combating iron deficiency is fortification of staple foods with iron. In this study, the feasibility of fortifying instant noodles with different forms of iron fortificants (ferrous sulfate [FS], ferric sodium ethylenediaminetetraacetic acid [NaFeEDTA], and encapsulated H-reduced elemental iron [EEI] was evaluated, and the fortified noodles were compared with unfortified noodles for changes in physical, chemical, and sensory qualities. Wheat flour used to make instant noodles was fortified to produce a concentration of 5 mg of iron per 50-g serving of instant noodles (one-third of the Thai recommended dietary intake). Analytical data showed that the iron contents were close to 5 mg per serving of noodles fortified with FS, NaFeEDTA, or EEI (5.27 +/- 0.10, 4.27 +/- 0.07, and 5.26 +/- 0.47 mg, respectively). The color quality (measured by L*, lightness, and b* yellowness) of the raw dough sheet and of uncooked and cooked instant noodles fortified with FS was lower than that of the unfortified, but color quality was not changed by the addition of NaFeEDTA. The overall sensory acceptability scores of unfortified and fortified noodles were about 6 ("like slightly"). No metallic odor was observed. During 3 months of storage at room temperature, the iron fortificants did not affect the peroxide level, color, or sensory qualities of the product. Iron fortification of wheat flour used to make instant noodles is feasible. NaFeEDTA is the preferred fortificant because of its nonsignificant effect on the color and sensory quality of the products.

  14. The use of olive tree (Olea europaea L.) leaves as a bioindicator for environmental pollution in the Province of Aydın, Turkey.

    PubMed

    Turan, Dilek; Kocahakimoglu, Cemre; Kavcar, Pınar; Gaygısız, Handan; Atatanir, Levent; Turgut, Cafer; Sofuoglu, Sait C

    2011-03-01

    In this study, olive tree leaves, collected from 50 sampling sites throughout the Province of Aydın, Turkey, were used to estimate level of pollution by measuring Al, As, B, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn concentrations and calculating pollution factor (PF) values. After sample preparation, collected leaves were microwave digested, and extracts were analyzed by an inductively coupled plasma-mass spectrometer. The maximum PF values were ≥10 for a number of elements ranging from 11-13 (Al, As, Cr, Fe, Mn, Ni) to >100 for Cu, Li, and Na. Urban-rural and roadside-nonroadside concentration comparisons showed that some of the elements (As, Cu, and Pb) were at significantly higher levels on urban and/or roadside sampling sites. Correlations and factor analysis showed that there may be common sources for some elements, which included several soil types and anthropogenic activities. Based on the results of the statistical source apportionment, possible sources were narrowed down with help of the constructed elemental concentration maps. In conclusion, utilization of olive tree leaves for biomonitoring and assessment of environmental pollution was shown to be possible in the Mediterranean region where they are indigenous and cultivated.

  15. Distribution of chemical elements in attic dust as reflection of their geogenic and anthropogenic sources in the vicinity of the copper mine and flotation plant.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Sajn, Robert; Bačeva, Katerina

    2011-08-01

    The main aim of this article was to assess the atmospheric pollution with heavy metals due to copper mining Bučim near Radoviš, the Republic of Macedonia. The open pit and mine waste and flotation tailings are continually exposed to open air, which leads to winds carrying the fine particles into the atmosphere. Samples of attic dust were examined as historical archives of mine emissions, with the aim of elucidating the pathways of pollution. Dust was collected from the attics of 29 houses, built between 1920 and 1970. Nineteen elements (Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Li, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were analyzed by atomic emission spectrometry with inductively coupled plasma. The obtained values of the investigated elements in attic dust samples were statistically processed using nonparametric and parametric analysis. Factor analysis revealed three factors governing the source of individual chemical elements. Two of them grouping Ca, Li, Mg, Mn, and Sr (Factor 1) and Co, Cr, and Ni (Factor 2) can be characterized as geogenic. The third factor grouping As, Cu, and Pb is anthropogenic and mirrors dust fallout from mining operation and from flotation tailings. Maps of areal deposition were prepared for this group of elements, from which correlation of these anthropogenic born elements was confirmed.

  16. Mercury's Magma Ocean

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Parmentier, E. M.; Wang, S.

    2016-12-01

    The crystallization of Mercury's magma ocean (MMO) would follow a significantly different path than the terrestrial or lunar magma ocean. Evidence from the MESSENGER mission [1] indicates that Mercury's interior has an oxygen fugacity (fO2) orders of magnitude lower any other terrestrial planet (3-8 log units below the iron-wustite buffer = IW-3 to IW-8; [2]). At these conditions, silicate melts and minerals have negligible Fe contents. All Fe is present in sulfides or metal. Thus, the build up of Fe in the last dregs of the lunar magma ocean, that is so important to its evolution, would not happen in the MMO. There would be no overturn or plagioclase flotation crust. Sulfur solubility in silicate melts increases dramatically at low fO2, from 1 wt% at IW-3 to 8wt% at IW-8 [3]. Thus it is possible, perhaps probable, that km-thick layers of sulfide formed during MMO crystallization. Some of the sulfides (e.g. CaS) have high partition coefficients for trace elements and so could control the spatial distribution of radioactive heat producing elements such as U, Th and K. This in turn would have first order effects on the thermal and chemical evolution of the planet. The distribution of the sulfide layers depend upon the density of the sulfides that form in the MMO. At such low fO2, S forms compounds with a range of elements not typical for other planets: Ca, Mg, Na, K. The densities of these sulfides vary widely, with Mg and Ca-rich sulfides being more dense than estimated MMO densities, and Na and K-rich sulfides being less dense than the MMO. Thus sulfide sinking and floating may produce substantial chemical layering on Mercury, potentially including an Mg-Ca rich deep layer and a Na-K rich shallow layer or possibly floatation crust. The total amount of S in the MMO depends on the fO2 and the bulk S content of Mercury, both of which are poorly constrained. In the most extreme case, if the MMO had an fO2of IW-8 and was sulfide saturated from the start, a total equivalent layer of sulfide up to 50 km could form (Figure 1). [1] Nittler et al (2011) Science 333: 847-1850., [2] Zolotov et al (2013), JGR 118: 138-146. [3] Berthet et al (2009) GCA 73: 6402-6420.

  17. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  18. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1997-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemicalsymbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on the ratio Si:Al except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and overhydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba, chabazite-Ca, -Na, -K, clinoptilolite-K, -Na, -Ca, dachiardite-Ca, -Na, erionite-Na, erionite-Na, -K, -Ca, faujasite-Na, -Ca, -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, levyne-Ca, -Na, paulingite-K, -Ca, phillipsite-Na, -Ca, -K, and stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, dvetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

  19. Bioavailability of potentially toxic elements in soil-grapevine (leaf, skin, pulp and seed) system and environmental and health risk assessment.

    PubMed

    Milićević, Tijana; Urošević, Mira Aničić; Relić, Dubravka; Vuković, Gordana; Škrivanj, Sandra; Popović, Aleksandar

    2018-06-01

    Monitoring of potentially toxic elements in agricultural soil represents the first measure of caution regarding food safety, while research into element bioavailability should be a step forward in understanding the element transportation chain. This study was conducted in the grapevine growing area ("Oplenac Wine Route") for investigating element bioavailability in the soil-grapevine system accompanied by an assessment of the ecological implications and human health risk. Single extraction procedures (CH 3 COOH, Na 2 EDTA, CaCl 2 , NH 4 NO 3 and deionised H 2 O) and digestion were performed to estimate the bioavailability of 22 elements (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Sr, V and Zn) from the topsoil (0-30 cm) and subsoil (30-60 cm) to the grapevine parts (leaf, skin, pulp and seed) and wine. The extractants were effective comparing to the pseudo-total concentrations in following order Na 2 EDTA ˃ CH 3 COOH ˃ NH 4 NO 3  ˃ CaCl 2 , H 2 O 2 h and 16 h. The most suitable extractants for assessing the bioavailability of the elements from the soil to the grapevine parts were CaCl 2 , NH 4 NO 3 and Na 2 EDTA, but deionised H 2 O could be suitable, as well. The results showed that Ba was the most bioavailable element in the soil-grapevine system. Contamination factor implied a moderate contamination (1 < CF < 3) of the soil. The concentrations of Cr, Ni and Cd in the soil were above the maximum allowed concentrations. According to the biological accumulation coefficient (BAC), the grape seeds and grapevine leaves mostly accumulated Cu and Zn from the soil, respectively. Based on ratio factor (RF > 1), the influence of atmospheric deposition on the aerial grapevine parts (leaves and grape skin) was observed. Nevertheless, low adverse health risk effects (HI < 1 and R ≤ 1 × 10 -6 ) were estimated for farmers and grape and wine consumers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A dietary strategy for the management of artemether-lumefantrine-induced cardiovascular and renal toxicity.

    PubMed

    Asiedu-Gyekye, Isaac Julius; Seidu, Mahmood Abdulai; N'guessan, Banga Benoit; Frimpong-Manso, Samuel; Sarkodie, Joseph Edusei; Adjei, Samuel; Kutu, Schevadnazy; Osei-Little, Joseph; Nyarko, Alexander Kwadwo; Debrah, Philip

    2016-09-06

    Unsweetened natural cocoa has antimalarial properties. Unsweetened natural cocoa powder (UNCP), obtained as a result of the removal of cocoa butter from a cocoa bean protects against malaria episodes. Cocoa powder, which is prepared after removal of the cocoa butter, contains about 1.9 % theobromine and 0.21 % caffeine. Concomitant consumption of cocoa and artemether/lumefantrine (A/L) is a common practice in Ghana, West Africa. This study seeks to determine the elemental composition of UNCP and its protective effect on the heart and kidney against (A/L) administration. Energy dispersive x-ray fluorescence spectroscopy was used to detect the quality and quantity of the elemental composition in UNCP. Thereafter, 30 nonmalarious male guinea pigs were divided into five groups of six animals each. One group was administered with 75 mg/kg body weight A/L only and another group distilled water (control group). The rest received 300 mg/kg, 900 mg/kg and 1500 mg/kg body weight UNCP for 14 days orally and A/L for the last 3 days (ie day 11 to day 14). Biochemical and histopathological examinations were carried out after euthanisation of the animals. A total of thirty-eight (38) micro and macro elements were detected with the ED-XRF. Macro elements like sodium (Na), magnesium (Mg), aluminium (Al), phosphorus (P), chlorine (Cl), potassium (K), calcium (Ca), manganese (Mn) and iron (Fe) and micro elements like chromium (Cr), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were identified and evaluated. Biochemical analysis revealed increases in HDL levels (p>0.05) while there were decreases in LDL levels (p>0.05), creatine kinase and AST levels (P<0.05) in animals that received UNCP compared to A/L only administered group. Urea levels reduced significantly by 53 % (p<0.05) in group that received 1500 mg/kg UNCP. Histopathological examinations of the heart and kidney buttressed the protective effects of cocoa administration. The percentage of recommended daily allowance of UNCP for chromium is 3750 % for men and 5250 % for women while % RDA for copper corresponds to 103.6 % in both sexes. UNCP proved to possess cardioprotective and renoprotective potential during artemether-lumefantrine administration.

  1. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    PubMed

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Spectrum syntheses of high-resolution integrated light spectra of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Shetrone, Matthew; Venn, Kim; McWilliam, Andrew; Dotter, Aaron

    2013-09-01

    Spectrum syntheses for three elements (Mg, Na and Eu) in high-resolution integrated light spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006 and M15 are presented, along with calibration syntheses of the solar and Arcturus spectra. Iron abundances in the target clusters are also derived from integrated light equivalent width analyses. Line profiles in the spectra of these five globular clusters are well fitted after careful consideration of the atomic and molecular spectral features, providing levels of precision that are better than equivalent width analyses of the same integrated light spectra, and that are comparable to the precision in individual stellar analyses. The integrated light abundances from the 5528 and 5711 Å Mg I lines, the 6154 and 6160 Å Na I lines, and the 6645 Å Eu II line fall within the observed ranges from individual stars; however, these integrated light abundances do not always agree with the average literature abundances. Tests with the second parameter clusters M3, M13 and NGC 7006 show that assuming an incorrect horizontal branch morphology is likely to have only a small ( ≲ 0.06 dex) effect on these Mg, Na and Eu abundances. These tests therefore show that integrated light spectrum syntheses can be applied to unresolved globular clusters over a wide range of metallicities and horizontal branch morphologies. Such high precision in integrated light spectrum syntheses is valuable for interpreting the chemical abundances of globular cluster systems around other galaxies.

  3. CO2-induced changes in mineral stoichiometry of wheat grains

    NASA Astrophysics Data System (ADS)

    Broberg, Malin; Pleijel, Håkan; Högy, Petra

    2016-04-01

    A comprehensive review of experiments with elevated CO2 (eCO2) presenting data on grain mineral concentration in wheat grain was made. Data were collected both from FACE (Free-Air CO2 Enrichment) and OTC (Open-Top Chamber) experiments. Analysis was made i) by deriving response functions for the relative effect on yield and mineral concentration in relation to CO2 concentration, ii) meta-analysis to test the magnitude and significance of observed effects and iii) comparison of the CO2 effect on the accumulation of different minerals in relation to accumulation of biomass and accumulation of N. Data were obtained for the following minerals: N, Zn, Mn, K, Ca, Mg, P, Fe, S, Cr, Cu, Cd and Na. In addition, data for starch, the dominating carbohydrate of wheat grain, were extracted. The responses ranged from near zero effects to strong negative effects of eCO2 on mineral concentration. The order of effect size was the following (from largest to smallest effect) for the different elements: Fe, Ca, S, Zn, Cd, N, Mg, Mn, P, Cu, Cr, K and Na. Particularly strong negative impacts of eCO2 were found in the essential mineral elements Fe, S, Ca, Zn and Mg. Especially Fe, Zn and Mg are nutrients for which deficiency in humans is a problem in todaýs world. The rather large differences in response of different elements indicated that the CO2-induced responses cannot be explained by a simple growth dilution model. Rather, uptake and transport mechanisms may have to be considered in greater detail, as well as the link of different elements with the uptake of nitrogen, the quantitatively dominating mineral nutrient, to explain the observed pattern. No effect of eCO2 on starch concentration could be demonstrated. This substantiates the rejection of a simple dilution model, since one would expect starch concentrations to be elevated in order to explain reduced mineral concentrations by carbohydrate dilution. The concentrations of toxic Cd was negatively affected, in principle a positive environmental effect and possibly as a result of reduced transpiration under eCO2, since uptake and transport of Cd is known to be related to transpiration. For elements with substantial data the response in OTC and FACE exposure systems could be compared and no large differences were observed. Our study shows that eCO2 has a significant effect on the mineral composition of wheat grain. This has strong implications for human nutrition in a world of rising CO2 concentrations. An altered chemical composition of biomass under eCO2 is also of great importance for the biogeochemical cycling of elements in general.

  4. Effect of royal jelly on serum trace elements in rats undergoing head and neck irradiation.

    PubMed

    Cihan, Yasemin Benderli; Cihan, Celaleddin; Mutlu, Hasan; Unal, Dilek

    2013-01-01

    This study aims to investigate the effects of radiation on serum trace elements and the changes in these elements as induced by royal jelly in rats undergoing head and neck irradiation. Thirty-two Sprague-Dawley male rats at the age of eight weeks with a mean weight of 275±35 g were included in the study. Subjects were divided into four groups with eight rats in each group: group 1: controls (C), group 2: radiation-only (RT), group 3: radiation plus royal jelly 50 mg/kg (RT+RJ50) and group 4: royal jelly 50 mg/kg-only (RJ50). Radiotherapy was applied to the head and neck area by single fraction at a dose of 22 Gy. The royal jelly was given once daily for seven days. The subjects were sacrificed on the seventh day of the study. Trace elements in blood samples were measured using ICP/MS method. When the trace element levels among the groups were compared using ANOVA test, a statistically significant difference was found in Al, As, Ca, Cd, Cr, K, Mg, Pb, Se, and Sn levels (p<0.05). No significant difference was found in the levels of Ag, Ba, Co, Cs, Cu, Fe, Ga, Hg, Mn, Na, Ni, Rb, Sr, Ti, U, V, and Zn (p>0.05). It was observed that oxidative stress was reduced in the radiation plus royal jelly group, compared to the radiation-only group. Our study results suggest that head and neck irradiation increases oxidative stress, leading to some changes in the trace element levels, while royal jelly exhibits a protective effect against the oxidative stress induced by radiation.

  5. A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites

    NASA Astrophysics Data System (ADS)

    Legrain, Fleur; Manzhos, Sergei

    2017-01-01

    Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).

  6. A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites.

    PubMed

    Legrain, Fleur; Manzhos, Sergei

    2017-01-21

    Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).

  7. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  8. Geological and hydrogeochemical explorations for geothermal resources in eastern Sabalan, NW Iran.

    NASA Astrophysics Data System (ADS)

    Masoumi, Roohangiz

    2017-04-01

    Geological considerations in the east of Sabalan volcano indicate that the calc-alkaline volcanic-sedimentary units constitute the great volume of the geothermal reservoir in the study district. The rocks suffered argillic alteration acted as cap rocks for this reservoir. In some localities in the study district siliceous (chalcedony and opal) sinters were developed around the orifice of the hot springs. The geothermal fluids in the study district, in terms of physico-chemical parameters, have characteristics which differ from other geothermal fields around the Mount Sabalan particularly in the southern and northwestern districts. These differences are: (a) the measured pH values of the geothermal fluids range from approximately 4.5 to 8.8 signifying a variation from acidity to alkalinity; (b) the measured TDS values of these waters, in comparison with the average TDS values for most types of geothermal systems, are low and the minimum values were recorded in the Viladara area; (c) estimation of concentration values of anions and cations in the selected spring water samples indicate that they have chiefly chloride and bicarbonate anions however, samples from the Sardabeh area contain relatively high sulfate (SO42-) content. The concentration values of rare elements in these waters are noticeable. Selenium has the highest concentration value (170 mg/l) among the rare elements. The maximum concentration values of boron and arsenic were measured to be 7 mg/l and 10 mg/l, respectively. The rest of rare elements have relatively low concentration values in the studied samples. The calculation of solute-based geothermometry was done on the basis of Na-Li, Na-K, Na-K, Ca, and silica for the water samples. The results of all these procedures for estimation of temperature of the geothermal reservoir in the east of Mount Sabalan were relatively very close to one another. Nevertheless, the temperatures determined by the Na-Li and Na-K geothermometric methods are 225°C and 239°C, respectively while by Na-K-Ca and silica methods are 181°C and 136°C, respectively for the geothermal reservoir. Consideration of hydrogen and oxygen stable isotopes (δ18O and δD) of the geothermal fluids in the east of Mount Sabalan revealed that their δD and δ18O values vary from -63.37‰ to -80.19‰ and from -9.96‰ to -13.4‰, respectively. The bivariate plot of δ18O versus δD shows that the data points mainly lie between lines GMWL and NMWL indicating that the great portion of these waters have meteoric origin and the role of magmatic waters is almost negligible. Consideration of unstable isotope of 3H delineated that the average 3H content of these waters is 5.1 TU. Illustration of diagrams of tritium-δ18O and tritium-Cl- showed that most of these waters are categorized as "sub-modern" waters and in respect of depth having shallow circulation. Key words: Sabalan volcano, geology, hydrogeochemistry, stable isotopes, NW Iran.

  9. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    USGS Publications Warehouse

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  10. Study of groundwater arsenic pollution in Lanyang Plain using multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    chan, S.

    2013-12-01

    The study area, Lanyang Plain in the eastern Taiwan, has highly developed agriculture and aquaculture, which consume over 70% of the water supplies. Groundwater is frequently considered as an alternative water source. However, the serious arsenic pollution of groundwater in Lanyan Plain should be well studied to ensure the safety of groundwater usage. In this study, 39 groundwater samples were collected. The results of hydrochemistry demonstrate two major trends in Piper diagram. The major trend with most of groundwater samples is determined with water type between Ca+Mg-HCO3 and Na+K-HCO3. This can be explained with cation exchange reaction. The minor trend is obviously corresponding to seawater intrusion, which has water type of Na+K-Cl, because the localities of these samples are all in the coastal area. The multivariate statistical analysis on hydrochemical data was conducted for further exploration on the mechanism of arsenic contamination. Two major factors can be extracted with factor analysis. The major factor includes Ca, Mg and Sr while the minor factor includes Na, K and As. This reconfirms that cation exchange reaction mainly control the groundwater hydrochemistry in the study area. It is worth to note that arsenic is positively related to Na and K. The result of cluster analysis shows that groundwater samples with high arsenic concentration can be grouped into that with high Na, K and HCO3. This supports that cation exchange would enhance the release of arsenic and exclude the effect of seawater intrusion. In other words, the water-rock reaction time is key to obtain higher arsenic content. In general, the major source of arsenic in sediments include exchangeable, reducible and oxidizable phases, which are adsorbed ions, Fe-Mn oxides and organic matters/pyrite, respectively. However, the results of factor analysis do not show apparent correlation between arsenic and Fe/Mn. This may exclude Fe-Mn oxides as a major source of arsenic. The other sources will be evaluated by more trace elements, such as rare earth elements.

  11. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 4·7H 2O, but oversaturation with respect to β-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of β-Ni(OH) 2. The μ-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge μ-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that μ-XRF and μ-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, β-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in performance assessments for radioactive waste repositories.

  12. [Physico-chemical characteristics of ambient particles settling upon leaf surface of six conifers in Beijing].

    PubMed

    Wang, Lei; Hasi, Eerdun; Liu, Lian-You; Gao, Shang-Yu

    2007-03-01

    The study on the density of ambient particles settling upon the leaf surface of six conifers in Beijing, the micro-configurations of the leaf surface, and the mineral and element compositions of the particles showed that at the same sites and for the same tree species, the density of the particles settling upon leaf surface increased with increasing ambient pollution, but for various tree species, it differed significantly, with the sequence of Sabina chinensis and Platycladus orientalis > Cedrus deodara and Pinus bungeana > P. tabulaeformis and Picea koraiensis. Due to the effects of road dust, low height leaf had a larger density of particles. The density of the particles was smaller in summer than in winter because of the rainfall and new leaf growth. The larger the roughness of leaf surface, the larger density of the particles was. In the particles, the overall content of SiO2, CaCO3, CaMg(CO3,), NaCl, 2CaSO4 . H2O, CaSO4 . 2H2O and Fe2O3 was about 10%-30%, and the main minerals were montmorillonite, illite, kaolinite and feldspar. The total content of 21 test elements in the particles reached 16%-37%, among which, Ca, Al, Fe, Mg, K, Na and S occupied 97% or more, while the others were very few and less affected by sampling sites and tree species.

  13. Composition and source apportionment of dust fall around a natural lake.

    PubMed

    Latif, Mohd Talib; Ngah, Sofia Aida; Dominick, Doreena; Razak, Intan Suraya; Guo, Xinxin; Srithawirat, Thunwadee; Mushrifah, Idris

    2015-07-01

    The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%). Copyright © 2015. Published by Elsevier B.V.

  14. Energy dispersive X-ray analyses of organelles of NaCI-treated maize root cells

    NASA Astrophysics Data System (ADS)

    Stelzer, Ralf

    1984-04-01

    NaCl sensitive plants of Zea mays cv. ADOUR were grown in nutrient solutions with or without NaCl. Frozen, hydrated root-tip tissues were investigated by means of an ETEC scanning electron microscope fitted with a KEVEX energy dispersive X-ray analyser. Morphological details of the gently etched but non-coated surface of the cross fractured specimen were easy to identify and to analyse using an electron beam with a low intensity at 10 kV. X-ray data obtained from cell compartments and organelles as nuclei, nucleoli and mitochondria within individual cells establish typical X-ray spectra. Comparisons of these spectra support the hypothesis that Na + ions are predominantly localized in vacuoles and also to a lesser extent in the cytoplasm, e.g. in small vesicles, but not in other cell organelles. Furthermore the analysed cell compartments show differences in the distribution of Mg, P, S, Cl, K and Ca effected by the addition of NaCl to the growth medium. The X-ray data are discussed in relation to the physiological meaning of a NaCl induced redistribution of elements within individual maize root cells.

  15. Trace element distribution in mineral separates of the Allende inclusions and their genetic implications

    NASA Technical Reports Server (NTRS)

    Nagasawa, H.; Blanchard, D. P.; Jacobs, J. W.; Brannon, J. C.; Philpotts, J. A.; Onuma, N.

    1977-01-01

    Concentrations of the rare earth elements (REE), Sc, Co, Fe, Zn, Ir, Na, and Cr were determined for mineral separates of the coarseand fine-grained types (group I and II) of the Allende inclusions. These data in combination with other data suggest that the minerals in the coarse-grained inclusions (group I) crystallized in a closed system with respect to refractory elements although a totally molten stage is precluded. The data also indicate that fine-grained (group II) inclusions were formed by condensation from a super-cooled nebular gas; REE-rich clinopyroxene and spinel were formed earlier than REE-poor sodalite and nepheline. In addition, pre-existing Mg isotope anomalies in the coarse-grained inclusions must have been erased during the heating stage.

  16. The 21 Na (p,γ) 22 Mg reaction from Ec.m. =200 to 1103 keV in novae and x-ray bursts

    NASA Astrophysics Data System (ADS)

    D'Auria, J. M.; Azuma, R. E.; Bishop, S.; Buchmann, L.; Chatterjee, M. L.; Chen, A. A.; Engel, S.; Gigliotti, D.; Greife, U.; Hunter, D.; Hussein, A.; Hutcheon, D.; Jewett, C. C.; José, J.; King, J. D.; Laird, A. M.; Lamey, M.; Lewis, R.; Liu, W.; Olin, A.; Ottewell, D.; Parker, P.; Rogers, J.; Ruiz, C.; Trinczek, M.; Wrede, C.

    2004-06-01

    The long-lived radioactive nuclide 22 Na ( t1/2 =2.6 yr) is an astronomical observable for understanding the physical processes of oxygen-neon novae. Yields of 22Na in these events are sensitive to the unknown total rate of the 21 Na (p,γ) 22 Mg reaction. Using a high intensity 21 Na beam at the TRIUMF-ISAC facility, the strengths of seven resonances in 22 Mg , of potential astrophysical importance, have been directly measured at center of mass energies from Ec.m. =200 to 1103 keV . We report the results obtained for these resonances and their respective contributions to the 21 Na (p,γ) 22 Mg rate in novae and x-ray bursts, and their impact on 22 Na production in novae.

  17. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Moncayo, S.; Trichard, F.; Busser, B.; Sabatier-Vincent, M.; Pelascini, F.; Pinel, N.; Templier, I.; Charles, J.; Sancey, L.; Motto-Ros, V.

    2017-07-01

    Chemical elements play central roles for physiological homeostasis in human cells, and their dysregulation might lead to a certain number of pathologies. Novel imaging techniques that improve the work of pathologists for tissue analysis and diagnostics are continuously sought. We report the use of Laser-Induced Breakdown Spectroscopy (LIBS) to perform multi-elemental images of human paraffin-embedded skin samples on the entire biopsy scale in a complementary and compatible way with microscope histopathological examination. A specific instrumental configuration is proposed in order to detect most of the elements of medical interest (i.e. P, Al, Mg, Na, Zn, Si, Fe, and Cu). As an example of medical application, we selected and analysed skin biopsies, including healthy skin tissue, cutaneous metastasis of melanoma, Merkel-cell carcinoma and squamous cell carcinoma. Clear distinctions in the distribution of chemical elements are observed from the different samples investigated. This study demonstrates the high complementarity of LIBS elemental imaging with conventional histopathology, opening new opportunities for any medical application involving metals.

  18. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities

    PubMed Central

    Vaculík, Marek; Konlechner, Cornelia; Langer, Ingrid; Adlassnig, Wolfram; Puschenreiter, Markus; Lux, Alexander; Hauser, Marie-Theres

    2012-01-01

    The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements. PMID:22325439

  19. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  20. Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris).

    PubMed

    Alsaeedi, Abdullah H; El-Ramady, Hassan; Alshaal, Tarek; El-Garawani, Mohamed; Elhawat, Nevien; Almohsen, Mahdi

    2017-09-01

    During the past 10 years, exploiting engineered nanoparticles in agricultural sector has been rapidly increased. Nanoparticles are used to increase the productivity of different crops particularly under biotic and abiotic stresses. This study aims to test the ability of nanosilica (NS) to ameliorate the detrimental impact of Na + with different concentrations on the seed germination and the growth of common bean seedlings. Five doses of Na + have been prepared from NaCl, i.e., 1000, 2000, 3000, 4000, and 5000 mg L -1 , and distilled water was applied as a control. Seeds and seedlings were treated with three different NS concentrations (100, 200, and 300 mg L -1 ). The results proved that Na + concentrations had detrimental effects on all measured parameters. However, treating seeds and seedlings with NS improved their growth and resulted in higher values for all measurements. For instance, the addition of 300 mg L -1 NS leads to an increase of the final germination percentage, vigor index, and germination speed for seeds irrigated with 5000 mg Na +  L -1 by 19.7, 80.7, and 22.6%, respectively. Although common bean seedlings could not grow at the highest level of Na + , fortification seedlings with NS helped them to grow well under 5000 mg L -1 of Na + . An increase of 11.1 and 23.1% has been measured for shoot and root lengths after treating seedlings with 300 mg L -1 NS under irrigation with 5000 mg Na +  L -1 solutions, and also at the same treatment, shoot and root dry masses are enhanced by 110.9 and 328.0%, respectively. These results proved the importance of using NS to relieve the detrimental effects of Na + -derived salinity. This finding could be reinforced by low Na content which was measured in plant tissues after treating seedlings with 300 mg L -1 of NS.

  1. Influence of geochemical processes on hydrochemistry and irrigation suitability of groundwater in part of semi-arid Deccan Plateau, India

    NASA Astrophysics Data System (ADS)

    Vasu, Duraisamy; Singh, Surendra Kumar; Tiwary, Pramod; Sahu, Nisha; Ray, Sanjay Kumar; Butte, Pravin; Duraisami, Veppangadu Perumal

    2017-11-01

    Major ion geochemistry was used to characterise the chemical composition of groundwater in part of semi-arid Deccan plateau region to understand the geochemical evolution and to evaluate the groundwater quality for irrigation. The study area comprises peninsular gneissic complex of Archean age, younger granites and basaltic alluvium. Forty-nine georeferenced groundwater samples were collected and analysed for major ions. The ionic sequence based on relative proportions was Na+ > Mg2+ > Ca2+ > SO4 2- > HCO3 - > Cl- > CO3 2- > BO3 3- > K+. High Na+, Mg2+ and Ca2+ were generally associated with basaltic alluvial formation, whereas pH, electrical conductivity (EC) and total dissolved salts (TDS) were found to be higher in granitic formations. High standard deviation for EC, TDS, Na+, Ca2+ and Mg2+ indicated the dispersion of ionic concentration throughout the study area. Four major hydrochemical facies identified were Na-Mg-HCO3 type; Mg-Na-HCO3 type; Na-Mg-Ca-SO4 and Mg-Na-Ca-SO4 type. The graphical plots indicated that the groundwater chemistry was influenced by rock-water interaction, silicate weathering and reverse ion exchange. Sodium-dominated waters might have impeded the hydraulic properties of soils as a result of long-term irrigation.

  2. Leaching of lava and tephra from the Oldoinyo Lengai volcano (Tanzania): Remobilization of fluorine and other potentially toxic elements into surface waters of the Gregory Rift

    NASA Astrophysics Data System (ADS)

    Bosshard-Stadlin, Sonja A.; Mattsson, Hannes B.; Stewart, Carol; Reusser, Eric

    2017-02-01

    Volcanic ash leachate studies have been conducted on various volcanoes on Earth, but few have been done on African volcanoes until now. Tephra emissions may affect the environment and the health of people living in this area, and therefore we conducted a first tephra (ash and lapilli sized) leachate study on the Oldoinyo Lengai volcano, situated in northern Tanzania. The recent explosive eruption in 2007-2008 provided us with fresh samples from the first three weeks of the eruption which were used for this study. In addition, we also used a natrocarbonatitic sample from the activity prior to the explosive eruption, as the major activity at Oldoinyo Lengai is natrocarbonatitic. To compare the leaching process affecting the natrocarbonatitic lavas and the tephras from Oldoinyo Lengai, the 2006 natrocarbonatitic lava flow was resampled 5 years after the emplacement and compared to the initial, unaltered composition. Special interest was given to the element fluorine (F), since it is potentially toxic to both humans and animals. A daily intake of fluoride (F-) in drinking water of > 1.5 mg/l can lead to dental fluorosis, and higher concentrations lead to skeletal fluorosis. For this reason, a guideline value for fluoride in drinking water was set by the WHO (2011) to 1.5 mg/l. However, surface waters and groundwaters in the Gregory Rift have elevated fluoride levels of up to 9.12 mg/l, and as a consequence, an interim guideline value for Tanzania has been set at 8 mg/l. The total concentration of fluorine in the samples from the natrocarbonatitic lava flow is high (3.2 wt%), whereas we observed a significant decrease of the fluorine concentration (between 1.7 and 0.5 wt%) in the samples collected three days and three weeks after the onset of the explosive 2007-08 eruption. However, the total amount of water-extractable fluoride is lower in the natrocarbonatitic lavas (319 mg/l) than in the nephelinitic tephra (573-895 mg/l). This is due to the solubility of the different F-bearing minerals. In the natrocarbonatites, fluorine exists predominantly in fluorite (CaF2), and in the early tephra as Na-Mg bearing salts such as neighborite (NaMgF3) and sellaite (MgF2). All these three minerals have very low solubility in water (16-130 mg/l). The later nephelinitic tephras contain surface coating of villiaumite (NaF), which is highly soluble (42,200 mg/l) in water and can thus release the fluoride more readily upon contact with water. Although there is still the need for further data and a more precise study on this topic in Tanzania, we can already draw a first conclusion that the intake of water during or directly following the deposition of the tephra is not advisable and should be avoided, whereas the release of fluoride from the lava flow has less influence on the river waters.

  3. Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is alloowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely in Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, -Na, -K; clinoptilolite-K, -Na, -Ca; dechiardite-Ca, -Na; erionite-Na, -K, -Ca,; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

  4. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.

    PubMed

    Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay

    2014-03-15

    Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values reported for the aerobic biofilm reactor. The highest nitrate removal rate coincided with maximum removal rate of NA and was 3164.7mgL(-1)h(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mineral composition of Atriplex hymenelytra growing in the northern Mojave Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Romney, E.M.; Hunter, R.B.

    1980-01-01

    Fifty samples of Atriplex hymenelytra (Torr.) S. Wats. were collected from several different locations in southern Nevada and California to test variability in mineral composition. Only Na, V, P, Ca, Mg, Mn, and Sr in the samples appeared to represent a uniform population resulting in normal curves for frequency distribution. Even so, about 40 percent of the variance for these elements was due to location. All elements differed enough with location so that no element really represented a uniform population. The coefficient of variation for most elements was over 40 percent and one was over 100 percent. The proportion ofmore » variance due to analytical variation averaged 16.2 +- 13.1 percent (standard deviation), that due to location was 43.0 +- 13.4 percent, and that due to variation of plants within location was 40.7 +- 13.0 percent.« less

  6. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    NASA Astrophysics Data System (ADS)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  7. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  8. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  9. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.

    PubMed

    Soda, S; Hasegawa, A; Kuroda, M; Hanada, A; Yamashita, M; Ike, M

    2015-01-01

    A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.

  10. Distinguishing Astragalus mongholicus and Its Planting Soil Samples from Different Regions by ICP-AES.

    PubMed

    Li, Lin; Zheng, Sihao; Yang, Qingzhen; Chen, Shilin; Huang, Linfang

    2016-04-12

    "Daodi herb" enjoys a good reputation for its quality and clinical effects. As one of the most popular daodi herbs, Astragalus membranaceus (Fisch.) Bge var. mongholicus (Bge.) Hsiao (A. membranaceus) is popularly used for its anti-oxidant, anti-inflammatory and immune-enhancing properties. In this study, we used inductively coupled plasma atomic emission spectrometry (ICP-AES) technique to investigate the inorganic elements contents in A. mongholicu and its soil samples from daodi area (Shanxi) and non-daodi areas (Inner Mongolia and Gansu). A total of 21 inorganic elements (Pb, Cd, As, Hg, Cu, P, K, Zn, Mn, Ca, Mg, Fe, Se, B, Al, Na, Cr, Ni, Ba, Ti and Sr) were simultaneously determined. Principal component analysis (PCA) was performed to differentiate A. mongholicu and soil samples from the three main producing areas. It was found that the inorganic element characteristics as well as the uptake and accumulation behavior of the three kinds of samples were significantly different. The high contents of Fe, B, Al, Na, Cr and Ni could be used as a standard in the elements fingerprint to identify daodi and non-daodi A. Mongholicus. As the main effective compounds were closely related to the pharmacodynamics activities, the inter-relationships between selected elements and components could reflect that the quality of A. Mongholicus from Shanxi were superior to others to a certain degree. This finding highlighted the usefulness of ICP-AES elemental analysis and evidenced that the inorganic element profile can be employed to evaluate the genuineness of A. mongholicus.

  11. Chemical characteristics of atmospheric fallout in the south of Xi'an during the dust episodes of 2001-2012 (NW China)

    NASA Astrophysics Data System (ADS)

    Li, Xiaoping; Feng, Linna; Huang, Chunchang; Yan, Xiangyang; Zhang, Xu

    2014-02-01

    Atmospheric fallouts (AFs) were collected in the south of Xi'an, NW China, during the dust episodes of 2001-2012. The chemical characteristics of total 68 AF samples including their chemical compositions, size distribution and magnetic susceptibility were studied. The contamination degree and the source of heavy metals in AF were also explored with enrichment factor method and multivariate statistical analysis. The results showed that the particle mass size distribution of AFs dominated by coarse particles (PM10-50) in dust days. The concentrations of 26 elements associated with AFs determined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF) in studied sites varied from 92.90 to 188.10 mg kg-1 for Cr, 31.40 and 63.00 mg kg-1 for Cu, 16.60 to 167.30 for Pb and 106.60 to 196.80 for Zn. Their average concentrations found in this study were 139.22 ± 29.41 mg kg-1, 46.93 ± 10.56 mg kg-1, 78.42 ± 46.52 mg kg-1 and 150.61 ± 32.84 mg kg-1, respectively, which exceeded their corresponding recommended background values more than two times. While, other elements, such as Br varied from 1.10 to 5.90 with 3.34 ± 1.60 mg kg-1 mean, Cs from 2.90 to 10.90 with mean of 7.23 ± 2.47 mg kg-1, Ga between 6.90 and 20.80 with 15.23 ± 3.59 mg kg-1, Rb in the range of 62.10-124.20 with the average of 80.69 ± 16.89 mg kg-1, Y from 9.90 to 35.00 with 20.43 ± 6.27 mg kg-1 average, La from 29.60 to 54.20 with mean of 37.28 ± 8.28 mg kg-1 and V with average of 81.97 ± 8.93 mg kg-1 in the 57.7-92.10 mg kg-1. Multivariate statistical analysis (principal component analysis and clustering analysis) was suggested that the principal element elements, Al, Fe, Si, K, Ca, Na, Mg, coupled with the trace elements Co, V, Ce, Mn, Ni, Ga, Y, Rb, La, Br, Cs were predominated by crustal material sources, whereas, Cr, Cu, Ba, Sr, As, Pb and Zn were highly influenced by anthropogenic activities. Simultaneously, the water-soluble ions (WS-ions) of NH4+, SO42-, SO32-, NO3-, SiO44-, HSO4- contained in APs identified by FT-IR spectroscopy were possible originated from coal combustion. The results were also confirmed and consistent with the observations of magnetic susceptibility (MS), enrichment factor (EFs) and contamination evaluation analysis. With such rates of atmospheric fallouts that contain elevated levels of toxic elements during the dust storm condition, actions should be taken to continually examine and understand of the potential impacts of AFs on surface ecosystem, water resource, and human health in the dust storm condition.

  12. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    PubMed

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heated

  13. From soil water to surface water - how the riparian zone controls element transport from a boreal forest to a stream

    NASA Astrophysics Data System (ADS)

    Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.

    2017-06-01

    Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many organophilic elements increases as a result of the higher concentrations of TOC in the riparian zone. Elements with low or modest affinity for organic matter (e.g. Na, Cl, K, Mg and Ca) occurred in similar or lower concentrations in the riparian zone. Despite the elevated concentrations of many elements in riparian soil water and groundwater, no increase in the concentrations in biota could be observed (bilberry leaves and spruce shoots).

  14. Guanidine hydrochloride-induced alkali molten globule model of horse ferrocytochrome c.

    PubMed

    Jain, Rishu; Kaur, Sandeep; Kumar, Rajesh

    2013-02-01

    This article compares structural, kinetic and thermodynamic properties of previously unknown guanidine hydrochloride (GdnHCl)-induced alkali molten globule (MG) state of horse 'ferrocytochrome c' (ferrocyt c) with the known NaCl-induced alkali-MG state of ferrocyt c. It is well known that Cl(-) arising from GdnHCl refolds and stabilizes the acid-denatured protein to MG state. We demonstrate that the GdnH(+) arising from GdnHCl (≤0.2 M) also transforms the base-denatured CO-liganded ferrocyt c (carbonmonoxycyt c) to MG state by making the electrostatic interactions to the negative charges of the protein. Structural and molecular properties extracted from the basic spectroscopic (circular dichroism (CD), fluorescence, FTIR and NMR) experiments suggest that the GdnH(+)- and Na(+)-induced MG states of base-denatured carbonmonoxycyt c are molecular compact states containing native-like secondary structures and disordered tertiary structures. Kinetic experiments involving the measurement of the CO association to the alkaline ferrocyt c in the presence of different GdnHCl and NaCl concentrations indicate that the Na(+)-induced MG state is more constrained relative to that of GdnH(+)-induced MG state. Analyses of thermal (near UV-CD) denaturation curves of the base-denatured protein in the presence of different GdnHCl and NaCl concentration also indicate that the Na(+)-induced MG state is thermally more stable than the GdnH(+)-induced MG state.

  15. A role for serotonin in the antidepressant activity of NG-Nitro-L-arginine, in the rat forced swimming test.

    PubMed

    Gigliucci, Valentina; Buckley, Kathleen Niamh; Nunan, John; O'Shea, Karen; Harkin, Andrew

    2010-02-01

    The present study determined regional serotonin (5-HT) synthesis and metabolism changes associated with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA) and the influence of 5-HT receptor blockade in the antidepressant-like actions of L-NA in the forced swimming test (FST). Regional effects of L-NA (5,10 and 20mg/kg i.p.) on tryptophan hydroxylase (TPH) activity, the rate limiting enzyme for 5-HT synthesis, were determined by measuring accumulation of the transient intermediate 5-hydoxytryptophan (5-HTP) following in vivo administration of the amino acid decarboxylase inhibitor, NSD 1015 (100mg/kg). L-NA (5-20mg/kg) dose dependently increased 5-HTP accumulation, particularly in the amygdaloid cortex, following exposure to the FST. L-NA also provoked an increase in regional brain 5-HIAA concentrations and in the 5-HIAA:5-HT metabolism ratio. Co-treatment with NSD-1015 failed to consistently modify the antidepressant-like effects of L-NA in the FST. Sub-active doses of L-NA (1mg/kg) and the 5-HT re-uptake inhibitor fluoxetine (2.5mg/kg) acted synergistically to increase swimming in the test. Co-treatment with the non-selective 5-HT receptor antagonist metergoline (1, 2 and 4mg/kg), attenuated the L-NA (20mg/kg)-induced reduction in immobility and increase in swimming behaviours. Metergoline alone however provoked an increase in immobility and reduction in swimming behaviours in the test. A similar response was obtained following co-treatment with the preferential 5-HT(2A) receptor antagonist ketanserin (5mg/kg) and the 5-HT(2C) receptor antagonist RO-430440 (5mg/kg). Co-treatment with the 5-HT(1A) receptor antagonist WAY 100635 (0.3mg/kg) or the 5-HT(1B) receptor antagonist GR 127935 (4mg/kg) failed to influence the antidepressant-like activity of L-NA. Taken together these data provide further support for a role for 5-HT in the antidepressant-like properties of NOS inhibitors. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Parthiban, G.

    2011-01-01

    Fourteen ferromanganese nodule-sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule-sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo - (307, 273), Ni - (71, 125), Mn - (64, 87), Cu - (43, 80), Co - (23, 75), Pb - (15, 24), Zn - (9, 11) and V - (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation ( r ⩾ 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.

  17. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system to the Northern Gulf of Mexico.

    PubMed

    Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M

    2018-08-01

    Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Suitability of oral administration of monosodium phosphate, disodium phosphate, and magnesium phosphate for the rapid correction of hypophosphatemia in cattle.

    PubMed

    Cohrs, Imke; Grünberg, Walter

    2018-05-01

    Hypophosphatemia is commonly associated with disease and decreased productivity in dairy cows particularly in early lactation. Oral supplementation with phosphate salts is recognized as suitable for the rapid correction of hypophosphatemia. Little information is available about the differences in efficacy between salts used for oral phosphorus supplementation. Comparison of efficacy of oral administration of NaH 2 PO 4 , Na 2 HPO 4 , and MgHPO 4 in treating hypophosphatemia in cattle. 12 healthy dairy cows in the fourth week of lactation in their second to fifth lactation. Randomized clinical study. Phosphorus deficient, hypophosphatemic cows underwent a sham treatment and were afterwards assigned to 1 of 3 treatments-NaH 2 PO 4 , Na 2 HPO 4 , or MgHPO 4 (each provided the equivalent of 60 g of phosphorus). Blood samples were obtained immediately before and repeatedly after treatment. Treatment with NaH 2 PO 4 and Na 2 HPO 4 resulted in rapid and sustained increases of plasma phosphate concentrations ([Pi]). Significant effects were apparent within 1 hour (NaH 2 PO 4 : P = .0044; Na 2 HPO 4 : P = .0077). Peak increments of plasma [Pi] of 5.33 mg/dL [5.26-5.36] and 4.30 mg/dL [3.59-4.68] (median and interquartile range) were reached after 7 and 6 hours in animals treated with NaPH 2 PO 4 and Na 2 HPO 4 , respectively, whereas treatment with MgHPO 4 led to peak increments 14 hours after treatment (3.19 mg/dL [2.11-4.04]). NaH 2 PO 4 and Na 2 HPO 4 are suitable to rapidly correct hypophosphatemia in cattle. Because of the protracted and weaker effect, MgHPO 4 cannot be recommended for this purpose. Despite important differences in solubility of NaH 2 PO 4 and Na 2 HPO 4 only small plasma [Pi] differences were observed after treatment. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. On the formation of metal cyanides and related compounds in the circumstellar envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Petrie, Simon

    1996-10-01

    Various pathways to the metal cyanides Na(CN), Mg(CN) and Al(CN) - some of which have been detected in the circumstellar envelope IRC+10216 - are critically assessed. Calculations of rate coefficients for radiative association processes of the types M^++HCN, M^++HNC and M+CN, which are supported by ab initio calculations of the relevant bond strengths, molecular geometries and vibrational frequencies, allow us to conclude that none of these previously proposed pathways to M(CN) can account for the observed abundances of T-Na(CN), MgCN and MgNC within IRC+10216. We propose that the observed sodium and magnesium cyanides are best accounted for by a mechanism involving radiative association of Na^+ and Mg^+ with cyanopolyynes such as HC_5N and HC_7N, and discuss prospects for the formation of Al(CN) by an analogous mechanism. We also estimate the abundance ratios n(NaCN):n(T-Na(CN)) and n(AlCN):n(AlNC), assuming an ion/molecule source for these species and based on calculated themochemical and spectroscopic properties for these isomers; the results suggest that virtually all Na(CN) and Al(CN) should be in the form of T-Na(CN) and linear AlNC respectively, with poor prospects for the detection of the higher energy isomers NaCN and AlCN. Larger homologues of the metal cyanides, such as MNC_2n-1 (M=Na, Mg, Al; n=1,2,3,4...), may also arise in the dissociative recombination of MNC_2n+1H^+ ions. We assess the prospects for formation of the species MgC_2 and MgCCH, and propose also that the metal amides MNH_2 (M=Na, Mg, Al) constitute another class of compound whose formation in IRC+10216 via an ion/molecule mechanism, namely the reaction of M^+ with NH_3, appears highly likely.

  20. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for themore » fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.« less

  1. A Seven-Year Major and Trace Element Study of Rain Water in the Barcés River Watershed, A Coruña, NW Spain

    NASA Astrophysics Data System (ADS)

    Delgado, Jordi; Cereijo-Arango, José Luis; Juncosa-Rivera, Ricardo

    2016-04-01

    Precipitation constitutes an important source of soluble materials to surface waters and, in areas where they are diluted precipitation (either dry or wet) it can be the most relevant solute source. Certain trace elements may have a limited natural availability in soils and rocks although they can be important with respect the operation of different biogeochemical cycles, for the computation of local/regional atmospheric pollutant loads or from the global mass budget. In the present study we report the results obtained in a long-lasting (December 2008-December 2015) monitoring survey of the chemical composition of bulk precipitation as monthly-integrated samples taken at the headwaters of the Barcés river watershed (A Coruña, Spain). This location was selected based on the necessity of quantification of the chemical composition and elemental loads associated with the different water types (stream water, ground water and precipitation) contributing to the flooding of the Meirama lake. Available data includes information on meteorological parameters (air temperature, relative humidity, atmospheric pressure, wind speed and direction, total and PAR radiation and precipitation) as well as a wide bundle of physico-chemical (pH, redox, electrical conductivity, alkalinity, Li, Na, K, Mg, Ca, Sr, Mn, Fe, NH4, Cs, Rb, Ba, Zn, Cu, Sb, Ni, Co, Cr, V, Cd, Ag, Pb, Se, Hg, Ti, Sn, U, Mo, F, Cl, Br, SO4, NO3, NO2, Al, As, PO4, SIO2, B, O2, DIC, DOC) and isotopic (18Ov-smow and 2Hv-smow) constituents. The average pH of local precipitation is 5.6 (n=65) which is consistent with the expected value for natural, unpolluted rain water. Most of the studied elements (eg. Na, Ca, K, Mg, SiO2, etc.) shows significant increases in their concentration in the dry period of the year. That points towards a more significant contribution of dry deposition in these periods compared with the wet ones. The average electrical conductivity is about 67 S/cm while the average chloride concentration 8 mg/L. Based on standard normalization procedures, the source of some major and trace precipitation elements have been identified, including sea water, soil and pollution/anthropogenic sources as well as multiyear trends. Available data has allowed also the computation of elemental loads in the studied area.

  2. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    NASA Astrophysics Data System (ADS)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  3. Report: antioxidant and nutraceutical value of wild medicinal Rubus berries.

    PubMed

    Ahmad, Mushtaq; Masood, Saima; Sultana, Shazia; Hadda, Taibi Ben; Bader, Ammar; Zafar, Muhammad

    2015-01-01

    Nutritional quality and antioxidant capacity of three edible wild berries (Rubus ellipticus Smith, Rubus niveus Thunb, Rubus ulmifolius L.) from Lesser Himalayan Range (LHR) were evaluated. Their edible portion was assayed for moisture, fats, ash, carbohydrates, proteins, fibers, essential minerals (Ca, P, Mg, K, Na, Cl, S, Mn, Zn, Fe, Cu, Se, Co, Ni) and DPPH free radical scavenging activity was applied to determine the antioxidant potential. The fruit of Rubus ulmifolius L. (blackberry) possessed the highest values of energy (403.29 Kcal), total protein (6.56g/100 g), Nitrogen (N) content (1500mg/100g), K (860.17mg/100g), Ca (620.56mg/100g), Zn (17.509mg/100g) and the strongest antioxidant activity (98.89% inhibition). While the raspberries (Rubus ellipticus Smith, Rubus niveus Thunb.) exhibited more significant contents of dietary fiber (5.90g/100g), carbohydrates (86.4 g/100 g) and Fe (4.249mg/100g). Significant variation was observed among the tested samples in all the investigated features. The combination of bio elements and active antioxidants clearly showed the applicability of these berries as a nutraceutical supplement.

  4. Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg2+ Titration Analysis for HIV-1 Ribonuclease H Domain.

    PubMed

    Karki, Ichhuk; Christen, Martin T; Spiriti, Justin; Slack, Ryan L; Oda, Masayuki; Kanaori, Kenji; Zuckerman, Daniel M; Ishima, Rieko

    2016-12-15

    This article communicates our study to elucidate the molecular determinants of weak Mg 2+ interaction with the ribonuclease H (RNH) domain of HIV-1 reverse transcriptase in solution. As the interaction is weak (a ligand-dissociation constant >1 mM), nonspecific Mg 2+ interaction with the protein or interaction of the protein with other solutes that are present in the buffer solution can confound the observed Mg 2+ -titration data. To investigate these indirect effects, we monitored changes in the chemical shifts of backbone amides of RNH by recording NMR 1 H- 15 N heteronuclear single-quantum coherence spectra upon titration of Mg 2+ into an RNH solution. We performed the titration under three different conditions: (1) in the absence of NaCl, (2) in the presence of 50 mM NaCl, and (3) at a constant 160 mM Cl - concentration. Careful analysis of these three sets of titration data, along with molecular dynamics simulation data of RNH with Na + and Cl - ions, demonstrates two characteristic phenomena distinct from the specific Mg 2+ interaction with the active site: (1) weak interaction of Mg 2+ , as a salt, with the substrate-handle region of the protein and (2) overall apparent lower Mg 2+ affinity in the absence of NaCl compared to that in the presence of 50 mM NaCl. A possible explanation may be that the titrated MgCl 2 is consumed as a salt and interacts with RNH in the absence of NaCl. In addition, our data suggest that Na + increases the kinetic rate of the specific Mg 2+ interaction at the active site of RNH. Taken together, our study provides biophysical insight into the mechanism of weak metal interaction on a protein.

  5. Seasonal variation of fractionated sea-salt particles on the Antarctic coast

    NASA Astrophysics Data System (ADS)

    Hara, K.; Osada, K.; Yabuki, M.; Yamanouchi, T.

    2012-09-01

    Aerosol sampling was conducted at Syowa Station, Antarctica (coastal station) in 2004-2006. SO42-depletion by mirabilite precipitation was identified from April through November. The fractionated sea-salt particles were distributed in ultrafine- coarse modes. Molar ratios of Mg2+/Na+ and K+/Na+ were higher than in bulk seawater ratio during winter-spring. The Mg2+/Na+ ratio in aerosols greatly exceeded the upper limit in the case only with mirabilite precipitation. The temperature dependence of Mg2+/Na+ ratio strongly suggested that higher ratios of Mg2+/Na+ and K+/Na+ were associated with sea-salt fractionation by precipitation of mirabilite at -9°C, hydrohalite at ca. -23°C and other salts such as ikaite at ca. -5°C and gypsum at ca. -22°C during winter-spring. Mg-salts with lower deliquescence relative humidity can be enriched gradually in the fractionated sea-salt particles. Results suggests that sea-salt fractionation can alter aerosol hygroscopicity and atmospheric chemistry in polar regions.

  6. Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir syntax, western China

    NASA Astrophysics Data System (ADS)

    Li, Yiman; Pang, Zhonghe; Yang, Fengtian; Yuan, Lijuan; Tang, Pinghui

    2017-11-01

    High-temperature geothermal systems in China, such as those found in Tenchong and Tibet, are common. A similar system without obvious manifestations found in the Tashkorgan basin in the western Xinjiang Autonomous Region, however, was not expected. The results from borehole measurements and predictions with geothermometers, such as quartz, Na-K and Na-K-Mg, indicate that the reservoir temperature is approximately 250-260 °C. Geothermal water is high in Total Dissolved Solids (>2.5 g/L) and SiO2 content (>273 mg/L), and the water type is Cl·SO4-Na, likely resulting from water-rock interactions in the granodiorite reservoirs. Based on isotope analysis, it appears to be recharged by local precipitation and river water. Evidence from the relationships between major ions and the Cl and molar Na/Cl ratio suggests mixing between deep geothermal water and shallow cold groundwater during the upwelling process. Mixing ratios calculated by the relationship between Cl and SiO2 show that the proportion from cold end-members are 96-99% and 40-90% for riparian zone springs and geothermal water from boreholes, respectively. Active regional tectonic and Neo-tectonic movements in the Pamir syntax as well as radioactive elements in the granodiorite reservoir of the Himalayan stage provide basis for the high heat flow background (150-350 mW/m2). NNW trending fault systems intersecting with overlying NE faults provide circulation conduits with high permeability for geothermal water.

  7. Not rare. But, endangered Elemental profiles of three corticolous lichen species on red spruce in Maine. [Usnea subfloridana; Platismatia glauca; Hypogymnia physodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, C.S.; Homola, R.H.

    1990-01-01

    Usnea subfloridana Stirton, Platismatia glauca (L.) Club. and Club., and Hypogymnia physodes (L.) Nyl. are lichen species moderately to highly sensitive to air pollutants, including acid deposition and ozone. Some researchers have attributed depauperate populations and local extinctions of these species to poor air quality. Since 1985, areas of Maine annually experienced mean summer rain and fog events of pH 4.5 or lower and ozone levels above national standards. Given this possible threat to these and other pollution sensitive species, baseline elemental analyses for Ca, K, P, Mg, Al, B, Fe, Cu, Mn, Zn, N, S, Na, and Pb weremore » performed in 1986 on coastal and inland populations on Picea rubens L. Elemental analyses were again performed on nontransplanted and transplanted lichens from the same populations in 1988. There were statistically significant differences in elemental profiles between nontransplanted 1986 and 1988 samples for all three species, such as significant decreases in Ca and Mg concentrations, and increases in Al, Cu, Fe, and Zn for U. subfloridana. Elemental concentrations between nontransplanted and transplanted material differed significantly, but no consistent pattern emerged. These results, coupled with other evidence (such as luxuriance and density ratings), suggest that both inland and coastal populations of U. subfloridana on red spruce are experiencing ecophysiological stress.« less

  8. Metal characterization of white hawthorn organs and infusions.

    PubMed

    Juranović Cindrić, Iva; Zeiner, Michaela; Konanov, Darija Mihajlov; Stingeder, Gerhard

    2015-02-18

    Hawthorn is one of the most commonly used European and North American phytopharmaceuticals. Because there is no information on metals in seeds, and only rare data for leaves and flowers, the aim of the present study was elemental analysis of the white hawthorn (Crataegus monogyna) by inductively coupled plasma emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) after digestion in a microwave-assisted system. The limits of detection are below 2 μg/g for ICP-AES and 0.5 μg/g for ICP-MS. Hawthorn leaves and flowers contain essential elements at concentrations (mean values, RSD 2-8%) in mg/g of Ca, 1-4; K, 4-5; Mg, 1-2; and Na, <0.2); and at μg/g levels of Ba, 1-10; Co, <0.16; Cr, <1.4; Cu, 0.6-7; Fe, 1-37; Li, <0.5; Mn, 1-13; Mo, <0.17; Ni, <0.6; Sr, 0.2-2; and Zn, 1-31. Toxic elements were found in low quantities: As (<0.04), Cd (0.04-0.1), and Pb (0.1-2). Up to 10% of the metals is extracted into the infusions. The analyzed plant parts and infusions contain essential elements justifying its use as a medicinal plant, whereas the low quantities of harmful elements will not pose any risk to humans when consumed.

  9. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  10. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2014-10-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  11. Electrochemical synthesis of superconductive MgB 2 from molten salts

    NASA Astrophysics Data System (ADS)

    Yoshii, Kenji; Abe, Hideki

    2003-05-01

    We have found that superconductive MgB2 can be electrochemically synthesized from molten salts. The electrolysis was performed in an Ar flow at 600 °C on fused mixtures composed of MgCl2, MgB2O4, Na2B2O4 and alkali halides such as KCl, NaCl, and LiCl. Superconductivity was observed for a wide variety of electrolytes. It was also found that the magnetic and electrical transport properties are the most improved for samples prepared from MgCl2-NaCl-KCl-MgB2O4 electrolytes.

  12. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China

    USGS Publications Warehouse

    Sun, R.; Liu, Gaisheng; Zheng, Lingyun; Chou, C.-L.

    2010-01-01

    The abundances of nine major elements and thirty-eight trace elements in 520 samples of low sulfur coals from the Zhuji Mine, Huainan Coalfield, Anhui, China, were determined. Samples were mainly collected from 10 minable coal seams of 29 boreholes during exploration. The B content in coals shows that the influence of brackish water decreased toward the top of coal seams; marine transgression and regression occurred frequently in the Lower Shihezi Formation. A wide range of elemental abundances is found. Weighted means of Na, K, Fe, P, Be, B, Co, Ni, Cr, Se, Sb, Ba, and Bi abundances in Zhuji coals are higher, and the remainder elements are either lower or equal to the average values of elements in coals of northern China. Compared to the Chinese coals, the Zhuji coals are higher in Na, K, Be, B, Cr, Co, Se, Sn, Sb, and Bi, but lower in Ti, P, Li, V and Zn. The Zhuji coals are lower only in S, P, V and Zn than average U.S. and world coals. Potassium, Mg, Ca, Mn, Sr, As, Se, Sb and light rare earth elements (LREE) had a tendency to be enriched in thicker coal seams, whereas Fe, Ti, P, V, Co, Ni, Y, Mo, Pb and heavy rare earth elements (HREE) were inclined to concentrate in thinner coal seams. The enrichment of some elements in the Shanxi or Upper Shihezi Formations is related to their depositional environments. The elements are classified into three groups based on their stratigraphic distributions from coal seams 3 to 11-2, and the characteristics of each group are discussed. Lateral distributions of selected elements are also investigated. The correlation coefficients of elemental abundances with ash content show that the elements may be classified into four groups related to modes of occurrence of these elements. ?? 2009 Elsevier B.V. All rights reserved.

  13. How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Kamenetsky, Maya B.; Weiss, Yakov; Navon, Oded; Nielsen, Troels F. D.; Mernagh, Terrence P.

    2009-11-01

    The origin of alkali carbonates and chlorides in the groundmass of unaltered Udachnaya-East kimberlites in Siberia is still controversial. Contrary to existing dogma that the Udachnaya-East kimberlite was either contaminated by the crustal sediments or platform brines, magmatic origin of the groundmass assemblage has been proposed on the basis of melt immiscibility textures, melt inclusion studies, and strontium and neon isotope compositions. We further tested the idea of alkali- and chlorine enrichment of the kimberlite parental melt by studying olivine-hosted melt inclusions and secondary serpentine in kimberlites from the Slave Craton, Canada (Gahcho Kué, Jericho, Aaron and Leslie pipes) and southern West Greenland (Majuagaa dyke). Host olivine phenocrysts closely resemble groundmass olivine from the Udachnaya-East kimberlite in morphology, compositions (high-Fo, low-Ca), complex zoning with cores of varying shapes and compositions and rims of constant Fo. Melt inclusions in olivine consist of several translucent and opaque daughter phases and vapour bubble(s). The daughter crystals studied in unexposed inclusions by laser Raman spectroscopy and in carefully exposed inclusions by WDS-EDS are represented by Na-K chlorides, calcite, dolomite, magnesite, Ca-Na, Ca-Na-K and Ca-Mg-Ba carbonates, bradleyite Na 3 Mg(CO 3)(PO 4), K-bearing nahpoite Na 2(HPO 4), apatite, phlogopite and tetraferriphlogopite, unidentified sulphates, Fe sulphides, djerfisherite, pyrochlore (Na,Ca) 2Nb 2O 6(OH,F), monticellite, Cr-spinel and Fe-Ti oxides. High abundances of Na, K (e.g., (Na + K)/Ca = 0.15-0.85) and incompatible trace elements in the melt inclusions are confirmed by LA-ICPMS analysis of individual inclusions. Heating experiments show that melting of daughter minerals starts and completes at low temperatures (~ 100 °C and 600 °C, respectively), further reinforcing the similarity with the Udachnaya-East kimberlite. Serpentine minerals replacing olivine in some of the studied kimberlites demonstrate elevated abundances of chlorine (up to 3-4 wt.%), especially in the early generation. Despite heterogeneous distribution of chlorine such abundances are significantly higher than in the serpentine in abyssal and ophiolitic peridotites (< 0.5 wt.%). The groundmass of most kimberlites, including those studied here and altered kimberlites from the Udachnaya pipe, contain no alkali carbonates and chlorides and have low Na 2O (< 0.2 wt.%). We believe that alteration disturbs original melt compositions, with the alkaline elements and chlorine being mostly affected. However, the compositions of melt inclusions and serpentine are indicative of the chemical signature of a parental kimberlite melt. It appears that enrichment in alkalies and chlorine, as seen in unaltered Udachnaya-East kimberlites, is shared by other kimberlites, and thus can be assigned to deep mantle origin.

  14. Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrdlicka, Ales; Prokes, Lubomir; Stankova, Alice

    2010-05-01

    The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532 nm flattop laser beam source is presented. The device was tested at a 6 m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements within an approximatelymore » 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large (350 mm) collecting mirror is capable of semiquantitative analysis at the level of units of mg kg{sup -1}.« less

  15. Sodium: some effects on bluegreen algal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, A.K.; Wetzel, R.G.

    The growth of heterocystous bluegreen algae in various concentrations of sodium was examined in axenic culture as well as in situ studies. Anabaena cylindrica Lemm, with no Na/sup +/ added, suffered from decreased rates of acetylene reduction, /sup 14/C assimilation, excretion of organic C as well as lower concentrations of chlorophyll a and particulate organic C compared to cultures supplied with 5, 10, and 50 mg Na/sup +/ . l/sup -1/. Sodium deficient algae released extracellularly a higher percentage of previously fixed C as organic C. No differences in any parameter measured were demonstrable among cultures grown with 5, 10,more » and 50 mg Na/sup +/ . l/sup -1/. High nitrate concentrations (20 mg NO/sub 3/- . /sup -1/) resulted in decreased rates of acetylene reduction and heterocyst numbers in Na sufficient and Na deficient cultures; however, decreased cellular Na content at high NO/sub 3/- levels occurred only in N deficient cultures. Higher percentages of excreted organic C occurred with increasing NO/sub 3/- concentrations in Na deficient cultures. Sodium enrichment of natural bluegreen populations with the addition of 50, 100, and 200 mg Na/sup +/ . l/sup -1/ elicited neither a stimulatory nor an inhibitory response in photosynthetic C fixation. In contrast, the addition of small amounts of Na/sup +/ (5 mg . l/sup -1/) resulted in increased C fixation. However, since the Na concentration of the lake water, at ca. 5 mg Na/sup +/ . l/sup -1/, was sufficient for growth of the bluegreens present, sodium is not assumed to be limiting under most natural conditions. No increase in in situ acetylene reduction rates occurred with additions of sodium.« less

  16. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase diagram. The isotherms are flat (i.e. no skewness) when the regular solution parameters are zero. When the regular solution parameters are non-zero, the isotherms are skewed. A regular solution model is not adequate to accurately model the molten salt systems used in recycling like NaCl-KCl-LiF and NaCl-KCl-NaF.

  17. Major and minor oxide and trace element determination in silicate rocks by direct current plasma optical emission echelle spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankston, D.C.; Humphris, S.E.; Thompson, G.

    1979-07-01

    A technique for the determination of major concentrations of SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, MgO, CaO, Na/sub 2/O, and K/sub 2/O, minor levels of TiO/sub 2/, P/sub 2/O/sub 5/, and MnO, and trace concentrations of Ba, Cr, Cu, Ni, Sr, V, and Zn, in semi-microsamples 200 mg) of powdered whole rock, is described. Chemically diverse standard reference rocks are used both for calibration and assessment of accuracy. A lithium metaborate fusion melt of each standard or sample is dissolved in dilute HNO/sub 3/ containing Cs/sup +/ at a level of 0.2% (w/v). The resulting solution is usedmore » to perform all analyses except those for Na/sub 2/O and K/sub 2/O, which are determined in a portion of the original sample solution wherein the Cs/sup +/ concentration has been raised to 0.32% (w/v). Analyses of both portions of each sample solution are performed using an optical emission spectrometer/spectrograph equipped with an echelle monochromator and a dc argon plasma excitation source. Trace element detection limits ranged from 2 ppM for Cu to 15 ppM for Zn. A study of precision based on replicate determinations in three splits of the proposed USGS reference basalt BHVO-1 yielded the following results: (1) For analyses of the major and minor oxide constituents, values of the percent relative standard deviation (RSD) ranged from 1 for CaO, to 21 for P/sub 2/O/sub 5/. 2) For trace element determinations, values of the RSD ranged from 2 for Cu, to 19 for Zn. 2 figures, 11 tables.« less

  18. Spatial-temporal dynamics of chemical composition of surface snow in East Antarctica along the Progress station-Vostok station transect

    NASA Astrophysics Data System (ADS)

    Khodzher, T. V.; Golobokova, L. P.; Osipov, E. Yu.; Shibaev, Yu. A.; Lipenkov, V. Ya.; Osipova, O. P.; Petit, J. R.

    2014-05-01

    In January of 2008, during the 53rd Russian Antarctic Expedition, surface snow samples were taken from 13 shallow (0.7 to 1.5 m depth) snow pits along the first tractor traverse from Progress to Vostok stations, East Antarctica. Sub-surface snow/firn layers are dated from 2.1 to 18 yr. The total length of the coast to inland traverse is more than 1280 km. Here we analysed spatial variability of concentrations of sulphate ions and elements and their fluxes in the snow deposited within the 2006-2008 time interval. Anions were analysed by high-performance liquid chromatography (HPLC), and the determination of selected metals, including Na, K, Mg, Ca and Al, was carried out by mass spectroscopy with atomization by induced coupled plasma (ICP-MS). Surface snow concentration records were examined for trends versus distance inland, elevation, accumulation rate and slope gradient. Na shows a significant positive correlation with accumulation rate, which decreases as distance from the sea and altitude increase. K, Ca and Mg concentrations do not show any significant relationship either with distance inland or with elevation. Maximal concentrations of these elements with a prominent Al peak are revealed in the middle part of the traverse (500-600 km from the coast). Analysis of element correlations and atmospheric circulation patterns allow us to suggest their terrestrial origin (e.g. aluminosilicates carried as a continental dust) from the Antarctic nunatak areas. Sulphate concentrations show no significant relationship with distance inland, elevation, slope gradient and accumulation rate. Non-sea salt secondary sulphate is the most important contribution to the total sulphate budget along the traverse. Sulphate of volcanic origin attributed to the Pinatubo eruption (1991) was revealed in the snow pit at 1276 km (depth 120-130 cm).

  19. Abundance patterns of evolved stars with Hipparcos parallaxes and ages based on the APOGEE data base

    NASA Astrophysics Data System (ADS)

    Jia, Y. P.; Chen, Y. Q.; Zhao, G.; Bari, M. A.; Zhao, J. K.; Tan, K. F.

    2018-01-01

    We investigate the abundance patterns for four groups of stars at evolutionary phases from sub-giant to red clump (RC) and trace the chemical evolution of the disc by taking 21 individual elemental abundances from APOGEE and ages from evolutionary models with the aid of Hipparcos distances. We find that the abundances of six elements (Si, S, K, Ca, Mn and Ni) are similar from the sub-giant phase to the RC phase. In particular, we find that a group of stars with low [C/N] ratios, mainly from the second sequence of RC stars, show that there is a difference in the transfer efficiency of the C-N-O cycle between the main and the secondary RC sequences. We also compare the abundance patterns of C-N, Mg-Al and Na-O with giant stars in globular clusters from APOGEE and find that field stars follow similar patterns as M107, a metal-rich globular cluster with [M/H] ∼- 1.0, which shows that the self-enrichment mechanism represented by strong C-N, Mg-Al and Na-O anti-correlations may not be important as the metallicity reaches [M/H] > -1.0 dex. Based on the abundances of above-mentioned six elements and [Fe/H], we investigate age versus abundance relations and find some old super-metal-rich stars in our sample. Their properties of old age and being rich in metal are evidence for stellar migration. The age versus metallicity relations in low-[α/M] bins show unexpectedly positive slopes. We propose that the fresh metal-poor gas infalling on to the Galactic disc may be the precursor for this unexpected finding.

  20. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.

    PubMed

    Stavila, Vitalie; Bhakta, Raghunandan K; Alam, Todd M; Majzoub, Eric H; Allendorf, Mark D

    2012-11-27

    We demonstrate that NaAlH(4) confined within the nanopores of a titanium-functionalized metal-organic framework (MOF) template MOF-74(Mg) can reversibly store hydrogen with minimal loss of capacity. Hydride-infiltrated samples were synthesized by melt infiltration, achieving loadings up to 21 wt %. MOF-74(Mg) possesses one-dimensional, 12 Å channels lined with Mg atoms having open coordination sites, which can serve as sites for Ti catalyst stabilization. MOF-74(Mg) is stable under repeated hydrogen desorption and hydride regeneration cycles, allowing it to serve as a "nanoreactor". Confining NaAlH(4) within these pores alters the decomposition pathway by eliminating the stable intermediate Na(3)AlH(6) phase observed during bulk decomposition and proceeding directly to NaH, Al, and H(2), in agreement with theory. The onset of hydrogen desorption for both Ti-doped and undoped nano-NaAlH(4)@MOF-74(Mg) is ∼50 °C, nearly 100 °C lower than bulk NaAlH(4). However, the presence of titanium is not necessary for this increase in desorption kinetics but enables rehydriding to be almost fully reversible. Isothermal kinetic studies indicate that the activation energy for H(2) desorption is reduced from 79.5 kJ mol(-1) in bulk Ti-doped NaAlH(4) to 57.4 kJ mol(-1) for nanoconfined NaAlH(4). The structural properties of nano-NaAlH(4)@MOF-74(Mg) were probed using (23)Na and (27)Al solid-state MAS NMR, which indicates that the hydride is not decomposed during infiltration and that Al is present as tetrahedral AlH(4)(-) anions prior to desorption and as Al metal after desorption. Because of the highly ordered MOF structure and monodisperse pore dimensions, our results allow key template features to be identified to ensure reversible, low-temperature hydrogen storage.

  1. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals.

    PubMed

    Lund Rasmussen, Kaare; Skytte, Lilian; D'imporzano, Paolo; Orla Thomsen, Per; Søvsø, Morten; Lier Boldsen, Jesper

    2017-01-01

    The differences in trace element concentrations among 19 different bone elements procured from 10 archaeologically derived human skeletons have been investigated. The 10 individuals are dated archaeologically and some by radiocarbon dating to the medieval and post-medieval period, an interval from ca. AD 1150 to ca. AD 1810. This study is relevant for two reasons. First, most archaeometric studies analyze only one bone sample from each individual; so to what degree are the bones in the human body equal in trace element chemistry? Second, differences in turnover time of the bone elements makes the cortical tissues record the trace element concentrations in equilibrium with the blood stream over a longer time earlier in life than the trabecular. Therefore, any differences in trace element concentrations between the bone elements can yield what can be termed a chemical life history of the individual, revealing changes in diet, provenance, or medication throughout life. Thorough decontamination and strict exclusion of non-viable data has secured a dataset of high quality. The measurements were carried out using Inductively Coupled Plasma Mass Spectrometry (for Fe, Mn, Al, Ca, Mg, Na, Ba, Sr, Zn, Pb and As) and Cold Vapor Atomic Absorption Spectroscopy (for Hg) on ca. 20 mg samples. Twelve major and trace elements have been measured on 19 bone elements from 10 different individuals interred at five cemeteries widely distributed in medieval and renaissance Denmark. The ranges of the concentrations of elements were: Na (2240-5660 µg g -1 ), Mg (440-2490 µg g -1 ), Al (9-2030 µg g -1 ), Ca (22-36 wt. %), Mn (5-11450 µg g -1 ), Fe (32-41850 µg g -1 ), Zn (69-2610 µg g -1 ), As (0.4-120 µg g -1 ), Sr (101-815 µg g -1 ), Ba (8-880 µg g -1 ), Hg (7-78730 ng g -1 ), and Pb (0.8-426 µg g -1 ). It is found that excess As is mainly of diagenetic origin. The results support that Ba and Sr concentrations are effective provenance or dietary indicators. Migrating behavior or changes in diet have been observed in four individuals; non-migratory or non-changing diet in six out of the 10 individuals studied. From the two most mobile (most changing diet) individuals in the study, it is deduced that the fastest turnover is seen in the trabecular tissues of the long bones and the hands and the feet, and that these bone elements have higher turnover rates than centrally placed trabecular bone tissue, such as from the ilium or the spine. Comparing Sr and published bone turnover times, it is concluded that the differences seen in Sr concentrations are not caused by diagenesis, but by changes of diet or provenance. Finally, it is concluded that there can be two viable interpretations of the Pb concentrations, which can either be seen as an indicator for social class or a temporal development of increased Pb exposure over the centuries. © 2016 Wiley Periodicals, Inc.

  2. A Ta-rich low-P peraluminous granite: the Rechla cupola (Hoggar, Algeria) and associated pegmatites, the result of extreme fractionation of a A2-type magma.

    NASA Astrophysics Data System (ADS)

    Kesraoui, M.; Marignac, C.; Hamis, A.; Cuney, M.

    2012-04-01

    In the c. 525 Ma RMG province of the Laouni terrane of the Pan-African Tuareg Shield (Hoggar), the small N20°E elliptic Rechla cupola (200x100 m) is particularized by a rim of Qtz-Kfs-Znw pegmatite. It is a medium-grained Na-Li-F granite, with quartz, albite (An01), rare microcline, topaz, Mn-lepidolite (≤ 8% MnO) and Hf-zircon, and: 71.4 % SiO2, 0.93% FeO+MgO+MnO (Mg # 0.19, Mg/Mg+Fe+Mn 0.09), 9.22% Na2O+K2O (Na # 0.7), Al-Na-K-2Ca from 55 to 85, and low P2O5 (0.05%) and ∑ REE (23 ppm) contents, with a pronounced tetrad effect and <0 Eu anomaly in the REE pattern. Such a composition is typical of a low-P peraluminous RMG deriving from highly potassic calcalkaline suites (A2 type) (Linnen & Cuney 2005), enriched in F (1.6%), Li (1,600 ppm), Zn (300 ppm), Be (7 ppm), Sn (740 ppm), W (40 ppm) and specially Ta (165 ppm, Ta/Nb between 2.4 and 2.6), the latter as columbo-tantalite and Mn-wodginite (Ta # 0.8). The pegmatite rim comprises, towards the intrusion (i) thick Kfs lenses (palissadic crystals ≥ 50 cm), (ii) a laminated quartz-zinnwaldite-(beryl) sequence , and (iii) a discontinuous band of fine-grained granite, with quartz, albite, topaz, Mn-lepidolite and beryl, equally fractionated: 69.4% SiO2, 0.85% FeO+MgO+MnO (Mg# 0.06, Mg/Mg+Fe+Mn 0.02), Al-Na-K-2Ca = 32, F 0.4%, Li 610 ppm, Ta 240 ppm (Ta/Nb = 2.4), Be 500 ppm. The laminated sequence overprints the Kfs lenses. It comprises thick (≤ 20 m) quartz lenses cross-cut by 10 cm-sized alternating bands of euhedral quartz and Mn-zinnwaldite (≤ 6.5% MnO). REE-patterns of the Mn-Znw display a clear inverse tetrad effect, symmetrical of the granite pattern. At the boundary with the fine-grained internal band, euhedral quartz crystals are projecting toward the inner wall. The Rechla body and its surrounding pegmatites are intrusive into a porphyritic biotite-granite representative of the evolved magmas of the A2-type Taourirt suite (Azzouni-Sekkal & Boissonnas 1993), with a classical "seagull" pattern and a pronounced <0 Eu anomaly. Geochemical modelling shows that the main Rechla magma is likely the fractionated product of this already differentiated magma, mainly involving quartz and Kfs. The pegmatite rim is interpreted as the result of the sequential crystallization of a Rechla-type melt, with late individualisation of a Fe-rich magmatic-hydrothermal phase responsible for the quartz-zinnwaldite assemblage, leaving a strongly Be-enriched residual liquid (the fine-grained granite). As demonstrated by the Rechla occurrence, Ta concentration at levels similar to those in Beauvoir-type high-P peraluminous granites may be reached in the low-P low-Ta A2 suites, provided that extreme fractionation processes are established. Azzouni-Sekkal, A., Boissonnas, J. (1993). Une province magmatique de transition du calco-alcalin à l'alcalin : les granitoïdes pan-africains à structure annulaire de la chaîne pharusienne du Hoggar (Algérie). Bulletin Société Géologique France 164, 597-608. Linnen, R.L., Cuney, M. (2005). Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: RL Linnen, IM Samson (eds), Rare-element geochemistry and mineral deposits, Geological Association of Canada (GAC) Short Course Notes 17, pp. 45-67.

  3. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis

    PubMed Central

    2009-01-01

    Background Hydrogen sulfide (H2S), a gaseous mediator plays an important role in a wide range of physiological and pathological processes. H2S has been extensively studied for its various roles in cardiovascular and neurological disorders. However, the role of H2S in inflammation is still controversial. The current study was aimed to investigate the therapeutic potential of sodium hydrosulfide (NaHS), an H2S donor in in vivo model of acute pancreatitis in mice. Methods Acute pancreatitis was induced in mice by hourly caerulein injections (50 μg/kg) for 10 hours. Mice were treated with different dosages of NaHS (5 mg/kg, 10 mg/kg or 15 mg/kg) or with vehicle, distilled water (DW). NaHS or DW was administered 1 h before induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and were processed to measure the plasma amylase, myeloperoxidase (MPO) activities in pancreas and lung and chemokines and adhesion molecules in pancreas and lung. Results It was revealed that significant reduction of inflammation, both in pancreas and lung was associated with NaHS 10 mg/kg. Further the anti-inflammatory effects of NaHS 10 mg/kg were associated with reduction of pancreatic and pulmonary inflammatory chemokines and adhesion molecules. NaHS 5 mg/kg did not cause significant improvement on inflammation in pancreas and associated lung injury and NaHS 15 mg/kg did not further enhance the beneficial effects seen with NaHS 10 mg/kg. Conclusion In conclusion, these data provide evidence for anti-inflammatory effects of H2S based on its dosage used. PMID:20040116

  4. Effect of Magnesium Incorporation on Solution-Processed Kesterite Solar Cells.

    PubMed

    Caballero, Raquel; Haass, Stefan G; Andres, Christian; Arques, Laia; Oliva, Florian; Izquierdo-Roca, Victor; Romanyuk, Yaroslav E

    2018-01-01

    The introduction of the alkaline-earth element Magnesium (Mg) into Cu 2 ZnSn(S,Se) 4 (CTZSSe) is explored in view of potential photovoltaic applications. Cu 2 Zn 1-x Mg x Sn(S,Se) 4 absorber layers with variable Mg content x = 0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with x = 0.55…1 the phase separation into Cu 2 SnSe 3 , MgSe 2 , MgSe and SnSe 2 occurs in agreement with literature predictions. A lower Mg content of x = 0.04 results in the kesterite phase as confirmed by XRD and Raman spectroscopy. A photoluminescence maximum is red-shifted by 0.02 eV as compared to the band-gap and a carrier concentration N CV of 1 × 10 16 cm -3 is measured for a Mg-containing kesterite solar cell device. Raman spectroscopy indicates that structural defects can be reduced in Mg-containing absorbers as compared to the Mg-free reference samples, however the best device efficiency of 7.2% for a Mg-containing cell measured in this study is lower than those frequently reported for the conventional Na doping.

  5. The tissue residues of sodium dehydroacetate used as feed preservative in swine.

    PubMed

    Liu, Hao; Han, Lingling; Xie, Jiayu; Wu, Yingchao; Xie, Yang; Zhang, Yumei

    2018-01-01

    Sodium dehydroacetate (Na-DHA) is a food and feed additive with antimicrobial effects. There is little information on Na-DHA residue levels in foods derived from animals. In this study, Na-DHA residue levels in swine tissues were determined by HLPC, and the pharmacokinetics of Na-DHA in tissues were determined. The Na-DHA residue levels in swine tissues were <1.2 mg kg -1 at different withdrawal time after thirty-two Duroc × Landrace × Yorkshire pigs were administered 200 mg Na-DHA kg -1 through the feed for 30 days. In decreasing order of Na-DHA residue levels, the tissues were kidney > liver > muscle > fat. The pharmacokinetics of Na-DHA followed a binomial regression model, and the half-time of Na-DHA in swine tissues was 9.07 days for kidney, 7.19 days for liver, 6.66 days for muscle, and 5.39 days for fat tissue. The accuracy of the HPLC method for Na-DHA determination ranged from 80.18% to 91.33% recovery, with coefficients of variation <6.4%, limit of detection of 0.08 mg kg -1 , and limit of quantification of 0.2 mg kg -1 . Na-DHA included at 200 mg kg -1 in a swine diet is a safe feed additive based on residue elimination and ADI values reported. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Total elemental composition of soils contaminated with wastewater irrigation by combining IBA techniques

    NASA Astrophysics Data System (ADS)

    Huerta, L.; Contreras-Valadez, R.; Palacios-Mayorga, S.; Miranda, J.; Calva-Vasquez, G.

    2002-04-01

    The purpose of this work was to obtain the total elemental composition of agricultural soils irrigated with well water and wastewater. The studied area is located in the Valle del Mezquital in Hidalgo State, Mexico. The studied soils were collected, every two months during one year. Particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were applied for elemental analysis. PIXE analyses gave elemental contents of major and trace elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, and Pb). Total concentrations of Na, Mg, C, N and O were obtained by RBS and NRA. PIXE analyses were carried out with 2 MeV proton beams, RBS with 2 MeV helium ions, while NRA was applied with a 1.2 MeV deuterium beam. Results indicated that heavy metal total concentrations exceed the critical soil total concentrations according to environmental regulations.

  7. Mass distribution and elemental analysis of the resultant atmospheric aerosol particles generated in controlled biomass burning processes

    NASA Astrophysics Data System (ADS)

    Ordou, N.; Agranovski, I. E.

    2017-12-01

    Air contamination resulting from bushfires is becoming increasingly important research question, as such disasters frequently occur in many countries. The objectives of this project were focused on physical and chemical characterisations of particulate emission resulting from burning of common representatives of Australian vegetation under controlled laboratory conditions. It was found that leaves are burned mostly with flaming phase and producing black smoke resulting in larger particles compared to white smoke in case of branches and grass, dominated by smouldering phase, producing finer particles. Following elemental analysis determined nine main elements in three different size fractions of particulate matter for each category of burning material, ranging from 14.1 μm to particle sizes below 2.54 μm. Potassium was found to be one of the main biomass markers, and sulphur was the ubiquitous element among the smoke particles followed by less prevalent trace elements like Na, Al, Mg, Zn, Si, Ca, and Fe.

  8. The Content of Structural and Trace Elements in the Knee Joint Tissues.

    PubMed

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-11-23

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.

  9. The Content of Structural and Trace Elements in the Knee Joint Tissues

    PubMed Central

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-01-01

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead. PMID:29168758

  10. Bromide supplementation exacerbated the renal dysfunction, injury and fibrosis in a mouse model of Alport syndrome.

    PubMed

    Yokota, Tsubasa; Omachi, Kohei; Suico, Mary Ann; Kojima, Haruka; Kamura, Misato; Teramoto, Keisuke; Kaseda, Shota; Kuwazuru, Jun; Shuto, Tsuyoshi; Kai, Hirofumi

    2017-01-01

    A seminal study recently demonstrated that bromide (Br-) has a critical function in the assembly of type IV collagen in basement membrane (BM), and suggested that Br- supplementation has therapeutic potential for BM diseases. Because salts of bromide (KBr and NaBr) have been used as antiepileptic drugs for several decades, repositioning of Br- for BM diseases is probable. However, the effects of Br- on glomerular basement membrane (GBM) disease such as Alport syndrome (AS) and its impact on the kidney are still unknown. In this study, we administered daily for 16 weeks 75 mg/kg or 250 mg/kg (within clinical dosage) NaBr or NaCl (control) via drinking water to 6-week-old AS mice (mouse model of X-linked AS). Treatment with 75 mg/kg NaBr had no effect on AS progression. Surprisingly, compared with 250 mg/kg NaCl, 250 mg/kg NaBr exacerbated the progressive proteinuria and increased the serum creatinine and blood urea nitrogen in AS mice. Histological analysis revealed that glomerular injury, renal inflammation and fibrosis were exacerbated in mice treated with 250 mg/kg NaBr compared with NaCl. The expressions of renal injury markers (Lcn2, Lysozyme), matrix metalloproteinase (Mmp-12), pro-inflammatory cytokines (Il-6, Il-8, Tnf-α, Il-1β) and pro-fibrotic genes (Tgf-β, Col1a1, α-Sma) were also exacerbated by 250 mg/kg NaBr treatment. Notably, the exacerbating effects of Br- were not observed in wild-type mice. These findings suggest that Br- supplementation needs to be carefully evaluated for real positive health benefits and for the absence of adverse side effects especially in GBM diseases such as AS.

  11. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    DOEpatents

    Lin, Manhua; Pillai, Krishnan S.

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05

  12. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  13. Mg2+ ion effect on conformational equilibrium of poly A . 2 poly U and poly A poly U in aqueous solutions.

    PubMed

    Sorokin, Victor A; Valeev, Vladimir A; Gladchenko, Galina O; Degtiar, Marina V; Karachevtsev, Victor A; Blagoi, Yuri P

    2003-01-15

    Differential UV spectroscopy and thermal denaturation were used to study the Mg(2+) ion effect on the conformational equilibrium in poly A.2 poly U (A2U) and poly A . poly U (AU) solutions at low (0.01 M Na(+)) and high (0.1 M Na(+)) ionic strengths. Four complete phase diagrams were obtained for Mg(2+)-polynucleotide complexes in ranges of temperatures 20-96 degrees C and concentrations (10(-5)-10(-2)) M Mg(2+). Three of them have a 'critical' point at which the type of the conformational transition changes. The value of the 'critical' concentration ([Mg(t)(2+)](cr)=(4.5+/-1.0) x 10(-5) M) is nearly independent of the initial conformation of polynucleotides (AU, A2U) and of Na(+) contents in the solution. Such a value is observed for Ni(2+) ions too. The phase diagram of the (A2U+Mg(2+)) complex with 0.01 M Na(+) has no 'critical' point: temperatures of (3-->2) and (2-->1) transitions increase in the whole Mg(2+) range. In (AU+Mg(2+)) phase diagram at 0.01 M Na(+) the temperature interval in which triple helices are formed and destroyed is several times larger than at 0.1 M Na(+). Using the ligand theory, a qualitative thermodynamic analysis of the phase diagrams was performed.

  14. Na(7)Mg(13)Nd(PO(4))(12).

    PubMed

    Jerbi, Hasna; Hidouri, Mourad; Mongi, Ben Amara

    2012-06-01

    Investigations of the quasi-ternary system Na(3)PO(4)-Mg(3)(PO(4))(2)-NdPO(4) allowed us to obtain the new phosphate hepta-sodium trideca-magnesium neodymium dodeca-kis-phosphate, Na(7)Mg(13)Nd(PO(4))(12), by applying a flux method. The crystal structure is isotypic with that of the previously reported Na(7)Mg(13)Ln(PO(4))(12) (Ln = Eu, La) compounds. It consists of a complex three-dimensional framework built up from an NdO(8) polyhedron (m symmetry), an MO(6) octa-hedron statistically occupied by M = Mg and Na, and eight MgO(x) (x = 5, 6) polyhedra (four with site symmetry m), linked either directely by sharing corners, edges and faces, or by one of the eight unique PO(4) tetra-hedra through common corners. Two of the PO(4) tetra-hedra are statisticaly disordered over a mirror plane. The whole structure can be described as resutling from an assembly of two types of structural units, viz [Mg(4)MP(4)O(22)](∞) (2) layers extending parallel to (100) and stacked along [100], and [Mg(4)NdP(4)O(36)](∞) (1) undulating chains running along the [010] direction. The six different Na(+) cations (five with site symmetry m and one with 0.5 occupancy) are situated in six distinct cavities delimited by the framework. The structure was refined from data of a racemic twin.

  15. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    NASA Astrophysics Data System (ADS)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  16. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    PubMed

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  17. Vertical nutrient and trace element migration in cambisoils after application of residues from anaerobic digestion of pig manure

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Unterfrauner, Hans

    2013-04-01

    Cambisols sampled in alpine pastures were packed into soil columns in order to monitor downward migration of nutrient and trace elements, applied within the residue from anaerobic digestion of a pig manure. 2 rain events per week were simulated. The manure added substantial amounts of K, ammonium, Na, Ca, P, S, Cl, B, Zn and Cu to the soil, whereas Mg, Mn, Ni, Cr, Pb, Cd and V were at the same level. In the eluates, total elemental composition as well as nitrate and ammonium were monitored. Addition of soluble Fe (at 1000 mg/l as FeCl3) decreased the release of soluble sulphate, but had no significant effect on the release of Fe and P. During subsequent rain events, exchangeable K remained enriched in the topsoil, wheras total sulfur moved to deeper layers. After 8 weeks, the columns were dismantled and analyzed for quasi-total and mobile fractions. Both in topsoils and subsoils, manure addition finally increased soil pH in case of low P soils, but decreased soil pH in case of high pH soils. Effects of manure applications on groundwater formation processes will be discussed.

  18. Essential and toxic metals in tea (Camellia sinensis) imported and produced in Ethiopia.

    PubMed

    Ashenef, Ayenew

    2014-01-01

    Sixteen samples of packed tea leaves (Camellia sinensis) were purchased from supermarkets in Addis Ababa, Ethiopia for metal analysis. Elements were measured by FAAS and graphite furnace atomic absorption spectrometer (GFAAS) employing external calibration curves. The levels in mg/kg dried weight basis varied from Cu: 4.7-12.9; Cd: 0.02-2.83; Pb: <0.01-2.29; Zn: 8.6-198.3; Mn: 81.7-962.2; Al: 3376.4-10,369.3; K: 7667.7-10,775; Li: 0.2-0.62; Ba: 9.4-1407.1; Mg: 1145.6-1834.1; Fe: 286.4-880.9; Ca: 1414.2-2646.0; Na: 147.1-557.7. Levels of exposure to the investigated metals by drinking tea were checked with the recommended daily allowance (RDA) of the WHO/FAO. Considering the average daily consumption rate of tea alone, the possible daily intakes of Al, Ba and Mn surpass the amenability to the side effects associated with these elements like Alzheimer's disease, kidney damage and Parkinson's disease, respectively, for which drinking tea should cause awareness. The other investigated elements are in the acceptable range.

  19. Microbiological, physicochemical, and heavy metals assessment of groundwater quality in the Triffa plain (eastern Morocco)

    NASA Astrophysics Data System (ADS)

    Yahya, Hameed Saleh Ali; Jilali, Abdelhakim; Mostareh, Mohammed Mohammed Mohammed; Chafik, Zouheir; Chafi, Abdelhafid

    2017-12-01

    The focus of this study is the physicochemical and bacteriological characteristics of groundwater in the Triffa plain, Morocco. In total, 34 groundwater samples were analyzed for major elements (Tp, pH, EC, K+, Na+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, NO2 -, NH4 +, H2PO4 -, CO3, and HCO3 -) and trace metal (Al, Cd, Cu, Fe, and Zn) content. The results show that the pH values range between 6.7 and 8.9, electrical conductivity ranges between 740 and 7340 µS/cm, and nitrate content ranges between 1.7 and 212 mg/l. Hydrochemical facies represented using a Piper diagram indicate an Na-K-Cl type water. All the trace metal concentrations are within the admissible standard range except for Cd. The bacteriological analysis showed that the majority of groundwater samples are contaminated. Generally, the content of total coliforms, fecal coliforms, and fecal streptococci ranged from 0 to 140, 0 to 125, and 0 to 108 CFU/100 ml, respectively. The samples are grouped according to three factors. Factor 1 shows strong positive loadings of EC, Mg, Cl, Na and K with 51.91% of total variance (TV); factor 2 shows strong negative loadings of NO3, SO4 and Ca with 17.98% of TV; and factor 3 shows strong negative loading of HCO3 with 15.56 of TV. We conclude that the quality of this groundwater is suitable for irrigation and domestic use (cleaning house, ect).

  20. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount of Cu and Mo mineralization having addition of Si and K with removal of Fe, Mg, Ca, and Na. Keywords: Mass balance calculation; Tepeoba porphyry Cu-Mo-Au deposits; Balikesir; Turkey

  1. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    PubMed

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  2. Factors influencing temporal changes in chemical composition of biogenic deposits in the middle Tążyna River Valley (Kuyavian Lakeland, central Poland)

    NASA Astrophysics Data System (ADS)

    Okupny, Daniel; Rzepecki, Seweryn; Borówka, Ryszard Krzysztof; Forysiak, Jacek; Twardy, Juliusz; Fortuniak, Anna; Tomkowiak, Julita

    2016-06-01

    The present paper discusses the influence of geochemical properties on biogenic deposits in the Wilkostowo mire near Toruń, central Poland. The analysed core has allowed the documentation of environmental changes between the older part of the Atlantic Period and the present day (probably interrupted at the turn of the Meso- and Neoholocene). In order to reconstruct the main stages in the sedimentation of biogenic deposits, we have used stratigraphic variability of selected litho-geochemical elements (organic matter, calcium carbonate, biogenic and terrigenous silica, macro- and micro-elements: Na, K, Mg, Ca, Fe, Mn, Cu, Zn, Pb, Cr and Ni). The main litho-geochemical component is CaCO3; its content ranges from 4.1 per cent to 92 per cent. The variability of CaCO3 content reflects mainly changes in hydrological and geomorphological conditions within the catchment area. The effects of prehistoric anthropogenic activities in the catchment of the River Tążyna, e.g., the use of saline water for economic purposes, are recorded in a change from calcareous gyttja into detritus-calcareous gyttja sedimentation and an increased content of lithophilous elements (Na, K, Mg and Ni) in the sediments. Principal component analysis (PCA) has enabled the distinction the most important factors that affected the chemical composition of sediments at the Wilkostowo site, i.e., mechanical and chemical denudation processes in the catchment, changes in redox conditions, bioaccumulation of selected elements and human activity. Sediments of the Wilkostowo mire are located in the direct vicinity of an archaeological site, where traces of intensive settlement dating back to the Neolithic have been documented. The settlement phase is recorded both in lithology and geochemical properties of biogenic deposits which fill the reservoir formed at the bottom of the Parchania Canal Valley.

  3. Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment.

    PubMed

    Su, Jiuyan; Zhang, Ji; Li, Jieqing; Li, Tao; Liu, Honggao; Wang, Yuanzhong

    2018-04-06

    This study aimed to determine the contents of main mineral elements of wild Boletus edulis and to assess its edible safety, which may provide scientific evidence for the utilization of this species. Fourteen mineral contents (Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Sr, V and Zn) in the caps and stipes of B. edulis as well as the corresponding surface soils collected from nine different geographic regions in Yunnan Province, southwest China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrometer (ICP-AES) after microwave digestion. Measurement data were analyzed using variance and Pearson correlation analysis. Edible safety was evaluated according to the provisionally tolerable weekly intake (PTWI) of heavy metals recommended by United Nations Food and Agriculture Organization and World Health Organization (FAO/WHO). Mineral contents were significantly different with the variance of collection areas. B. edulis showed relative abundant contents of Ca, Fe, Mg and Na, followed by Ba, Cr, Cu, Mn and Zn, and the elements with the lower content less were Cd, Co, Ni, Sr and V. The elements accumulation differed significantly in caps and stipes. Among them, Cd and Zn were bioconcentrated (BCF > 1) while others were bioexcluded (BCF < 1). The mineral contents in B. edulis and its surface soil were positively related, indicating that the elements accumulation level was related to soil background. In addition, from the perspective of food safety, if an adult (60 kg) eats 300 g fresh B. edulis per week, the intake of Cd in most of tested mushrooms were lower than PTWI value whereas the Cd intakes in some other samples were higher than this standard. The results indicated that the main mineral contents in B. edulis were significantly different with respect to geographical distribution, and the Cd intake in a few of regions was higher than the acceptable intakes with a potential risk.

  4. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain

    NASA Astrophysics Data System (ADS)

    Castillo, Sonia; de la Rosa, Jesús D.; Sánchez de la Campa, Ana M.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío

    2013-10-01

    The present study seeks to estimate the impact of industrial emissions and harbour activities on total atmospheric deposition in an Atlantic coastal area in the southwest of the Iberian Peninsula. Three large industrial estates and a busy harbour have a notable influence on air quality in the city of Huelva and the surrounding area. The study is based on a geochemical characterization of trace elements deposited (soluble and insoluble fractions) in samples collected at a rate of 15 days/sample from June 2008 to May 2011 in three sampling sites, one in the principal industrial belt, another in the city of Huelva, and the last, 56 km outside Huelva city in an area of high ecological interest. The industrial emissions emitted by the Huelva industrial belt exert a notable influence on atmospheric deposition. Major deposition fluxes were registered for Fe, Cu, V, Ni, P, Pb, As, Sn, Sb, Se and Bi, principally in the insoluble fraction, derived from industrial funnel emissions and from harbour activities. Metals such as Mn, Ni, Cu and Zn, and elements such as P also have a significant presence in the soluble fraction converting them into potentially bio-available nutrients for the living organism in the ocean. A principal component analysis certifies three common emissions sources in the area: 1) a mineral factor composed mainly of elements derived from silicate minerals mixed with certain anthropogenic species (Mg, K, Sr, Na, Al, Ba, LREE, Li, Mn, HREE, Ti, Fe, Se, V, SO-, Ni, Ca and P); 2) an industrial factor composed of the same trace elements in the three areas (Sb, Mo, Bi, As, Pb, Sn and Cd) thus confirming the impact of the emissions from the Huelva industrial belt on remote areas; and 3) a marine factor composed of Na, Cl, Mg and SO.

  5. Light, alpha, and Fe-peak element abundances in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did notmore » show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the star-to-star scatter and mean [Na/Fe] ratios appear higher in the cluster, perhaps indicating additional self-enrichment.« less

  6. Baseline element concentrations in soils and plants, Bull Island, Cape Romain National Wildlife Refuge, South Carolina, U.S.A.

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1994-01-01

    Baseline element concentrations are given for Spanish moss (Tillandsia usneoides), loblolly pine (Pinus taeda), and associated soils. Baseline and variability data for ash, Al, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Sr, Th, Ti, V, Y, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration among and within 0.5 km grid cells are given for each of the media. In general, only a few elements in Spanish moss showed statistically significant landscape patterns, whereas several elements in loblolly pine and in soils exhibited differences among sampling grids. Significant differences in the concentration of three elements in Spanish moss and eight elements (including total S) in loblolly pine were observed between two sampling dates (November and June); however, the absolute amount of these differences was small. Except for perhaps Ni and Pb concentrations in Spanish moss, element levels in all sample media exhibited ranges that indicate natural rather than anthropogenic additions of trace elements.

  7. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata)

    PubMed Central

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014–2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm-3 (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm-3 (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm-3 nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm-3, (4) I + Se + 1.0 mg SA⋅dm-3 and (5) I + Se + 10.0 mg SA⋅dm-3. The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves. PMID:27803709

  8. Impact of the Quality of Bowel Cleansing on the Efficacy of Colonic Cancer Screening: A Prospective, Randomized, Blinded Study

    PubMed Central

    2015-01-01

    Objectives Efficacy of two low volume bowel cleansing preparations, polyethylene glycol plus ascorbate (PEG+Asc) and sodium picosulfate/magnesium citrate (NaPic/MgCit), were compared for polyp and adenoma detection rate (PDR and ADR) and overall cleansing ability. Primary endpoint was PDR (the number of patients with ≥1 polypoid or flat lesion recorded by the colonoscopist). Methods Diagnostic, surveillance or screening colonoscopy patients were enrolled into this investigator-blinded, multi-center Phase IV study and randomized 1:1 to receive PEG+Asc (administered the evening before and the morning of colonoscopy, per label) or NaPic/MgCit (administered in the morning and afternoon the day before colonoscopy, per label). The blinded colonoscopist documented any lesion and assessed cleansing quality (Harefield Cleansing Scale). Results Of 394 patients who completed the study, 393 (PEG+Asc, N=200; NaPic/MgCit, N=193) had a colonoscopy. Overall PDR for PEG+Asc versus NaPic/MgCit was 51.5% versus 44.0%, p=0.139. PDR and ADR on the right side of the bowel were significantly higher with PEG+Asc versus NaPic/MgCit (PDR: 56[28.0%] versus 32[16.6%], p=0.007; ADR: 42[21.0%] versus 23[11.9%], p=0.015), as was detection of flat lesions (43[21.5%] versus 25[13.0%], p=0.025). Cleansing quality was better with PEG+Asc than NaPic/MgCit (98.5% versus 57.5% considered successful cleansing). Overall, there were 132 treatment-emergent adverse events (93 versus 39 for PEG+Asc and NaPic/MgCit, respectively). These were mainly mild abdominal symptoms, all of which were reported for higher proportions of patients in the PEG+Asc than NaPic/MgCit group. Twice as many patients in the NaPic/MgCit versus the PEG+Asc group reported tolerance of cleansing solution as ‘very good’. Conclusions Compared with NaPic/MgCit, PEG+Asc may be more efficacious for overall cleansing ability, and subsequent detection of right-sided and flat lesions. This is likely attributable to the different administration schedules of the two bowel cleansing preparations, which may positively impact the detection and prevention of colorectal cancer, thereby improving mortality rates. Trial Registration ClinicalTrials.gov NCT01689792. PMID:25950434

  9. How to Make a Beetle Out of Wood: Multi-Elemental Stoichiometry of Wood Decay, Xylophagy and Fungivory

    PubMed Central

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates. PMID:25536334

  10. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory.

    PubMed

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.

  11. Interpretation of Na-K-Mg relations in geothermal waters

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    When using a Na-K-???Mg triangular diagram as an aid in the interpretation of a geothermal water, the estimated temperature of last water-rock equilibration may change by as much as 50??C, depending on which of the many Na/K geothermometers one assumes is correct. A particular geothermometer may work well in one place and not in another because of differences in the mineralogy of the phases that are in contact with the reservoir fluid. The position of the full equilibrium line that is used for geothermometry and for assessing degrees of departure from equilibrium also changes as the assumed K/???Mg geothermometer equation changes. The degree of ambiguity can be evaluated by utilizing the results of all the recently published Na/K geothermometers on a single Na-K-???Mg triangular plot.

  12. The effect of inhaling a dry powder of sodium chloride on the airways of asthmatic subjects.

    PubMed

    Anderson, S D; Spring, J; Moore, B; Rodwell, L T; Spalding, N; Gonda, I; Chan, K; Walsh, A; Clark, A R

    1997-11-01

    Wet aerosols of 4.5% sodium chloride (NaCl) are often used to assess the bronchial responsiveness associated with asthma. We questioned whether dry NaCl could be used as an alternative. Dry powder NaCl was inhaled from capsules containing either 5, 10, 20 or 40 mg to a cumulative dose of 635 mg. The powder was delivered via an Inhalator or Halermatic. The airway sensitivity to the dry and wet NaCl was compared in 24 patients with asthma aged 19-39 yrs. All subjects responded to both preparations and the geometric mean (95% confidence intervals) for the provocative dose of NaCl causing forced expiratory volume in one second (FEV1) to fall 20% from baseline (PD[20,NaCl]) for dry NaCl was 103 mg (68-157) versus 172 mg (102-292), p<0.03 for the wet NaCl. The response to dry NaCl was reproducible and on repeat challenge the PD20 was 108 mg (75-153). The mean maximum fall in FEV1 was approximately 25% on each of the two test days. Spontaneous recovery occurred within 60 min after challenge with dry NaCl and within 5 min after bronchodilator. There were no serious side-effects requiring medical attention, however some patients coughed on inhalation of the 40 mg dose and three gagged. Arterial oxygen saturation remained within normal limits. We conclude that a suitably prepared dry powder of sodium chloride could potentially replace wet sodium chloride to assess bronchial responsiveness in patients with asthma, but further studies are required to establish the long-term stability of the dry powder preparation.

  13. Salt in the Air during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) Campaign

    NASA Astrophysics Data System (ADS)

    Pszenny, A.; Keene, W. C.; Sander, R.; Bearekman, R.; Deegan, B.; Maben, J. R.; Warrick-Wriston, C.; Young, A.

    2011-12-01

    Bulk and size-segregated aerosol samples were collected 22 m AGL at the Boulder Atmospheric Observatory (40°N, 105°W, 1563 m ASL) from 18 February to 13 March 2011. Total concentrations of Na, Mg, Al, Cl, V, Mn, Br and I in bulk samples were determined by neutron activation analysis. Ionic composition of all size-segregated and a subset of bulk samples was determined by ion chromatography of aqueous extracts. Mg, Al, V and Mn mass concentrations were highly correlated and present in ratios similar to those in Denver area surface soils. Na and Cl were less well correlated with these soil elements but, after correction for soil contributions, highly correlated with each other. Linear regression of non-soil Cl vs. non-soil Na yielded a slope of 1.69 ± 0.09 (95% C.I.; n = 173), a value between the mass ratios of sea salt (1.80) and halite (1.54). The median Na and Cl concentrations (6.8 and 6.6 nmol m-3 STP, respectively) were factors of 25 to 35 less than those typically measured in the marine boundary layer. Br and I were somewhat correlated and appeared to represent a third aerosol component. The average bulk Cl-:total Cl ratio was 0.99 ± 0.03 (n = 44) suggesting that essentially all aerosol chlorine was water-soluble. Na+ and Cl- mass distributions were bimodal with most of the masses (medians 75% and 78%, respectively, n = 45) in supermicrometer particles. Possible origins of the "salt" component will be discussed based on consideration of 5-day HYSPLIT back trajectories and other information on sampled air mass characteristics.

  14. Influence of dietary nicotinic acid supplementation on lipid metabolism and related gene expression in two distinct broiler breeds of female chickens.

    PubMed

    Jiang, R R; Zhao, G P; Zhao, J P; Chen, J L; Zheng, M Q; Liu, R R; Wen, J

    2014-10-01

    This study aimed to evaluate the influence of supplemental dietary nicotinic acid (NA) on lipid metabolism and hepatic expression of related genes in female chickens of two distinct broiler strains [Arbor Acres (AA) and Beijing-You (BJY)]. The treatments were arranged in a 2 × 4 factorial in a completely randomized design. Day-old females (n = 384) were allocated to four treatments with six cages per treatment and fed diets (basal contained approximately 25 mg NA/kg) supplemented with 0, 30, 60 and 120 mg NA/kg. A sample of 72 birds from each breed was slaughtered and sampled at their different market times (8 week for AA and 16 week for BJY). Arbor Acres broilers had thickness of subcutaneous fat plus the skin (SFS), and plasma concentration of low-density lipoprotein cholesterol (LDLC) and lower percentage of abdominal fat (PAF), plasma concentrations of TG, NEFA and adiponectin than the BJY line. The hepatic transcription of apolipoprotein A-I (ApoA-I), apolipoproteinB (ApoB), and adiponectin was significantly higher in AA broilers than in BJY broilers. In both breeds, BW, PAF, SFS, NEFA and TG were increased with increasing supplementation from 0 to 60 mg NA/kg, but then decreased slightly with 120 mg added NA/kg. With increasing supplementation, hepatic expression and plasma concentrations of adiponectin decreased from 0 to 60 mg added NA/kg and then increased with 120 mg added NA/kg. The expression of ApoA-I and ApoB mRNA showed linear response to dietary supplementation with NA. These findings indicate that: (i) supplementation of NA influenced the lipid metabolism and related gene expression; (ii) when supplemented with 120 mg NA/kg, some pharmacologic actions on lipid metabolism appeared; and (iii) changes in BW and fat deposition appeared to be associated with hepatic expression of adiponectin.

  15. Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil: Implications for the origin, evolution, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.; Silva, Paola M.; Moreno, Juan A.; Amaral, Wagner S.

    2017-07-01

    The Neoarchean Rio das Velhas and Pitangui greenstone belts are situated in the southern São Francisco Craton, Minas Gerais, Brazil. These greenstone belts were formed between ca. 2.79-2.73 Ga, and consist mostly of mafic to ultramafic volcanics and clastic sediments, with minor chemical sediments and felsic volcanics that were metamorphosed under greenschist facies. Komatiites are found only in the Rio das Velhas greenstone belt, which is composed of high-MgO volcanic rocks that have been identified as komatiites and high-Mg basalts, based on their distinctive geochemical characteristics. The Rio das Velhas komatiites are composed of tremolite + actinolite + serpentine + albite with a relict spinifex-texture. The Rio das Velhas komatiites have a high magnesium content ((MgO)adj ≥ 28 wt.%), an Al-undepleted Munro-type [(Al2O3/TiO2)adj and (CaO/Al2O3)adj] ratio ranging from 27 to 47 and 0.48 to 0.89, relatively low abundances of incompatible elements, a depletion of light rare earth elements (LREE), a pattern of non-fractionated heavy rare- earth elements (HREE), and a low (Gd/Yb)PM ratio (≤ 1.0). Negative Ce anomalies suggest that alteration occurred during greenschist facies metamorphism for the komatiites and high-Mg basalts. The low [(Gd/Yb)PM < 1.0] and [(CaO/Al2O3)adj < 0.9)], high [(Al2O3/TiO2)adj > 18] and high HREE, Y, and Zr content suggest that the Rio das Velhas komatiites were derived from the shallow upper mantle without garnet involvement in the residue. The chemical compositions [(Al2O3/TiO2)adj, (FeO)adj, (MgO)adj, (CaO/Al2O3)adj, Na, Th, Ta, Ni, Cr, Zr, Y, Hf, and REE] indicate that the formation of the komatiites, high-Mg basalts and basalts occurred at different depths and temperatures in a heterogeneous mantle. The komatiites and high-Mg basalts melted at liquidus temperatures of 1450-1550 °C. The Pitangui basalts are enriched in the highly incompatible LILE (large-ion lithophile elements) relative to the moderately incompatible HFS (high field strength) elements. The Zr/Th ratio ranging from 76 to 213 and the relationship between the Nb/Th and Th/Yb ratios indicate that there is no crustal contamination in the Pitangui greenstone basalts. New multi-dimensional discrimination diagrams and conventional normalized multi-element diagrams indicate an island arc (IA) setting for the komatiites and high-Mg basalts from the Rio das Velhas and a mid ocean-ridge (MOR) to IA setting for the basalts from the Pitangui greenstone belts.

  16. Content of selected elements in Boletus badius fruiting bodies growing in extremely polluted wastes.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Gąsecka, Monika; Sobieralski, Krzysztof; Szymańczyk, Mateusz; Goliński, Piotr

    2015-01-01

    The aim of the study was to analyse levels of 17 trace elements and 5 major minerals in 11 Boletus badius fruiting bodies able to grow in extremely polluted waste (flotation tailings) and polluted soil in southern Poland. The presented data widen the limited literature data about the abilities of wild-growing mushroom species to grow on heavily contaminated substrates. Content of elements in waste, soil and mushrooms was analysed by flame atomic absorption spectrometry (FAAS) and cold vapour atomic absorption spectrometry (CVAAS - Hg). The industrial areas differed greatly as regards the content of elements in flotation tailings and soil; therefore differences in Ag, Ba, Cd, Co, Fe, Mo, Ni, Pb, Ca, K, Mg, Na and P accumulation in mushrooms were observed. The highest contents of elements in mushrooms were observed for: As, Al, Cu and Zn (86 ± 28, 549 ± 116, 341 ± 59 and 506 ± 40 mg kg(-1) dry matter, respectively). Calculated bioconcentration factor (BCF) values were higher than 1 for Al (15.1-16.9), Fe (10.6-24.4) and Hg (10.2-16.4) only. The main value of the presented results is the fact that one of the common wild-growing mushroom species was able to grow on flotation tailings containing over 22 g kg(-1) of As and, additionally, effective accumulation of other elements was observed. In view of the high content of the majority of analysed elements in fruiting bodies, edible mushrooms from such polluted areas are nonconsumable.

  17. An Experimental Investigation of Effects of Fluxes (Na3AlF6 and K2TiF6), Element Alloys (Mg), and Composite Powders ((Al + TiC)CP and (Al + B4C)CP) on Distribution of Particles and Phases in Al-B4C and Al-TiC Composites

    NASA Astrophysics Data System (ADS)

    Mazaheri, Younes; Emadi, Rahmatollah; Meratian, Mahmood; Zarchi, Mehdi Karimi

    2017-04-01

    The wettability, incorporation, and gravity segregation of TiC and B4C particles into molten aluminum are important problems in the production of Al-TiC and Al-B4C composites by the casting techniques. In order to solve these problems, different methods consisting of adding the Na3AlF6 and K2TiF6 fluxes and Mg (as the alloying element) into the molten aluminum and injection of the (Al + TiC)CP and (Al + B4C)CP composite powders instead of B4C and TiC particles are evaluated. In this work, the conditions of sample preparation, such as particle addition temperature, stirring speed, and stirring time, are determined after many studies and tests. Microstructural characterizations of samples are investigated by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometry. The results show better distribution and incorporation of TiCp and B4Cp in aluminum matrix when the fluxes are used, as well as EDS analysis of the interface between the matrix and reinforcement-strengthened formation of the different phases such as Al4C3 in the Al-TiC composites and Al3BC, TiB2 in the Al-B4C composites.

  18. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi A.; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na+, K+, Ca2+, and Mg2+. Based on behavioral analyses, these butterflies preferred a 10-mM Na+ solution to K+, Ca2+, and Mg2+ solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na+ concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na+ solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K+, Ca2+, and/or Mg2+ were higher than that of Na+. This suggests that K+, Ca2+, and Mg2+ do not interfere with the detection of Na+ by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl2 or MgCl2. The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na+ detected by the contact chemosensilla in the proboscis, which measure its concentration.

  19. The Key to Life Nutrition Program: results from a community-based dietary sodium reduction trial

    PubMed Central

    Robare, Joseph F; Milas, N Carole; Bayles, Constance M; Williams, Kathy; Newman, Anne B; Lovalekar, Mita T; Boudreau, Robert; McTigue, Kathleen; Albert, Steven M; Kuller, Lewis H

    2016-01-01

    Objective Evaluation of a dietary Na reduction trial in a community setting. Design Community-based randomized trial. Ten-week nutrition intervention activities focused on lifestyle modification to decrease dietary Na intake, under the supervision of a registered dietitian. Twenty-four hour urine specimens were collected at baseline and follow-up visits to determine 24 h urinary Na excretion. Setting The University of Pittsburgh Center for Healthy Aging, Key to Life Nutrition Program. Subjects Hypertensive adults at least 65 years of age. Results Mean age of participants was 75 years. Twenty-four hour mean urinary Na excretion at baseline was 3174 mg/d. This reduced to 2944 mg/d (P = 0·30) and 2875 mg/d (P ≤ 0·03) at 6-and 12-month follow-ups, respectively. In a sub-sample (urine volume of ≥ 1000 ml, baseline to 12 months), mean urinary Na excretion decreased from 3220 mg/d to 2875 mg/d (P ≤ 0·02). Conclusions Significant reductions in mean 24 h urinary Na were reported, but results fell short of the recommended guidelines of 1500 mg/d for at-risk individuals. Our results reiterate the difficulty in implementing these guidelines in community-based programmes. More aggressive public health efforts, food industry support and health policy changes are needed to decrease Na levels in older adults to the recommended guidelines. PMID:19781124

  20. Mineralogical and geochemical characterization of weathering profiles developed on mylonites in the Fodjomekwet-Fotouni section of the Cameroon Shear Zone (CSZ), West Cameroon

    NASA Astrophysics Data System (ADS)

    Tematio, P.; Tchaptchet, W. T.; Nguetnkam, J. P.; Mbog, M. B.; Yongue Fouateu, R.

    2017-07-01

    The mineralogical and geochemical investigation of mylonitic weathering profiles in Fodjomekwet-Fotouni was done to better trace the occurrence of minerals and chemical elements in this area. Four representative soil profiles were identified in two geomorphological units (upland and lowland) differentiating three weathering products (organo-mineral, mineral and weathered materials). Weathering of these mylonites led to some minerals association such as vermiculite, kaolinite, goethite, smectite, halloysite, phlogopite and gibbsite. The minerals in a decreasing order of abundance are: quartz (24.2%-54.8%); kaolinite (8.4%-36.0%); phlogopite (5.5%-21.9%); goethite (7.8%-16.1%); vermiculite (6.7%-15.7%); smectite (10.2%-11.9%); gibbsite (9.0%-11.8%) and halloysite (5.6%-11.5%) respectively. Patterns of chemical elements allow highlighting three behaviors (enriched elements, depleted elements and elements with complex behavior), depending on the landscape position of the profiles. In the upland weathering products, K, Cr and REEs are enriched; Ca, Mg, Na, Mn, Rb, S and Sr are depleted while Si, Al, Fe, Ti, Ba, Co, Cu, Ga, Mo, Nb, Ni, Pb, Sc, V, Y, Zn and Zr portray a complex behavior. Contrarily, the lowland weathering profiles enriched elements are Fe, Ti, Co, Cr, Cu, V, Zr, Pr, Sm, Tb, Dy, Er and Yb; while depleted elements are Ca, Mg, K, Na, Mn, Ba, Ga, S, Sr, Y, Zn, La, Ce and Nd; and Si, Al, Mo, Nb, Ni, Pb, Rb, Sc evidenced complex behaviors. In all the studied weathering products, the REEs fractionation was also noticeable with a landscape-position dependency, showing light REEs (LREEs) enrichment in the upland areas and heavy REEs (HREEs) in lowland areas. SiO2, Al2O3 and Fe2O3 are positively correlated with most of the traces and REEs (Co, Cu, Nb, Ni, Mo, Pb, Sc, V, Zn, Zr, La, Ce, Sm, Tb, Dy, Er, Yb), pointing to the fact that they may be incorporated into newly formed clay minerals and oxides. Ba, Cr, Ga, Rb, S, Sr, Y, Pr and Nd behave like alkalis and alkaline earths, and are thus highly mobile during weathering.

  1. Foam model of planetary formation

    NASA Astrophysics Data System (ADS)

    Andreev, Y.; Potashko, O.

    The Analysis of 2637 terrestrial minerals shows presence of characteristic element and isotope structure for each ore irrespective of its site. The model of processes geo-nuclear syntheses elements is offered due to avalanche merge of nucleus which simply explains these laws. Main assumption: nucleus, atoms, connections, ores and minerals were formed in volume of the modern Earth at an early stage of its evolution from uniform proto-substance. Substantive provisions of the model: 1)The most part of nucleus of atoms of all chemical elements of the Earth's crust were formed on the mechanism of avalanche chain merge practically in one stage (in geological scales) in a course of correlated(in scales of a planet) process with allocation of a plenty of heat. 2) Atoms of chemical elements were generated during cooling a planet with preservation of a relative spatial arrangement of nucleus. 3) Chemical compounds have arisen at cooling a surface of a planet and were accompanied by reorganizations (hashing) macro- and geo-scale. 4) Mineral formations are consequence of correlated behaviour of chemical compounds on microscopic scales during phase transition from gaseous or liquid to a firm condition. 5) Synthesis of chemical elements in deep layers of the Earth occurs till now. "Foaming'' instead of "Big Bang" The physical space is continual gas-fluid environment consist of super fluid foam. The continuity, keeping and uniqueness of proto-substance are postulated. Scenario: primary singularity-> droplets(proto-galaxies) droplets(proto-stars)-> droplets(proto-planets)-> droplets(proto- satellites)-> droplets. Proto-planet substance->proton+electron as 1st generation disintegration result of primary foam. Nuclei or nucleonic crystals are the 2nd generation in result of cascade merge of protons into conglomerates. The theory has applied to the analysis of samples of native copper deposit from Rafalovka's ore deposit in Ukraine. The abundance of elements by use of the roentgen fluorescent microanalysis has been made. Changes of a parity of elements are described by nuclear synthesis reactions: 16O+47Ti, 23Na+40Ca, 24Mg+39K, 31P+32S-> 63Cu; 16O+49Ti, 23Na+42Ca, 26Mg+39K, 31P+34S-> 65Cu Dramatical change of isotope parities of 56Fe and 57Fe in the sites of space carried on 3 millimetres. The content of 57Fe is greater then 56Fe in Cu granule.

  2. Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Hu, Yun Hang

    2018-05-01

    Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g-1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g-1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.

  3. Long-term product consistency test of simulated 90-19/Nd HLW glass

    NASA Astrophysics Data System (ADS)

    Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  4. Salton Sea 1/sup 0/ x 2/sup 0/ NTMS area California and Arizona: data report (abbreviated)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffner, J.D.

    1980-09-01

    Surface sediment samples were collected at 997 sites. Ground water samples were collected at 76 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) (2) physical measurements (water temperature, well description where applicable, and scintillometer reading) and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na and V). Data from sediment sites include (1) stream watermore » chemistry measurements from sites where water was available and (2) elemental analyses (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors are given. Areal distribution maps, histograms, and cumulative frequency plots for the elements listed above; U/Th and U/Hf ratios; and scintillometer readings at sediment sample sites are included. Analyses of the sediment fraction finer than 149..mu..m show high uranium values clustered in the Eagle and Chuckwalla Mountains. High uranium values in the 420 ..mu..m to 1000 ..mu..m fraction are clustered in the McCoy Mountains. Both fractions show groups of high values in the Chocolate Mountains at the Southeastern edge of the Chocolate Mountains Aerial Gunnery Range. Aerial distribution of analytical values shows that high values of many elements in both size fractions are grouped around the Eagle Mountains and the Chuckwalla Mountains. Fe, Mn, Ti, V, Sc, Hf, and the rare earth elements, all of which typically occur in high-density minerals, have higher average (log mean) concentrations in the finer fraction than in the coarser fraction.« less

  5. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality.

    PubMed

    Filipiak, Michał; Kuszewska, Karolina; Asselman, Michel; Denisow, Bożena; Stawiarz, Ernest; Woyciechowski, Michał; Weiner, January

    2017-01-01

    The least understood aspects of the nutritional needs of bees are the elemental composition of pollen and the bees' need for a stoichiometrically balanced diet containing the required proportions of nutrients. Reduced plant diversity has been proposed as an indirect factor responsible for the pollinator crisis. We suggest stoichiometric mismatch resulting from a nutritionally unbalanced diet as a potential direct factor. The concentrations and stoichiometric ratios of C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, and Cu were studied in the bodies of honeybees of various castes and sexes and in the nectar and pollen of various plant species. A literature review of the elemental composition of pollen was performed. We identified possible co-limitations of bee growth and development resulting mainly from the scarcity of Na, S, Cu, P and K, and possibly Zn and N, in pollen. Particular castes and sexes face specific limitations. Concentrations of potentially limiting elements in pollen revealed high taxonomic diversity. High floral diversity may be necessary to maintain populations of pollen eaters. Single-species crop plantations, even if these species are rich in nectar and pollen, might limit bee growth and development, not allowing for gathering nutrients in adequate proportions. However, particular plant species may play greater roles than others in balancing honeybee diets. Therefore, we suggest specific plant species that may (1) ensure optimal growth and production of individuals by producing pollen that is exceptionally well balanced stoichiometrically (e.g., clover) or (2) prevent growth and development of honeybees by producing pollen that is extremely unbalanced for bees (e.g., sunflower). Since pollen is generally poor in Na, this element must be supplemented using "dirty water". Nectar cannot supplement the diet with limiting elements. Stoichiometric mismatch should be considered in intervention strategies aimed at improving the nutritional base for bees.

  6. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality

    PubMed Central

    Kuszewska, Karolina; Asselman, Michel; Denisow, Bożena; Stawiarz, Ernest; Woyciechowski, Michał; Weiner, January

    2017-01-01

    The least understood aspects of the nutritional needs of bees are the elemental composition of pollen and the bees’ need for a stoichiometrically balanced diet containing the required proportions of nutrients. Reduced plant diversity has been proposed as an indirect factor responsible for the pollinator crisis. We suggest stoichiometric mismatch resulting from a nutritionally unbalanced diet as a potential direct factor. The concentrations and stoichiometric ratios of C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, and Cu were studied in the bodies of honeybees of various castes and sexes and in the nectar and pollen of various plant species. A literature review of the elemental composition of pollen was performed. We identified possible co-limitations of bee growth and development resulting mainly from the scarcity of Na, S, Cu, P and K, and possibly Zn and N, in pollen. Particular castes and sexes face specific limitations. Concentrations of potentially limiting elements in pollen revealed high taxonomic diversity. High floral diversity may be necessary to maintain populations of pollen eaters. Single-species crop plantations, even if these species are rich in nectar and pollen, might limit bee growth and development, not allowing for gathering nutrients in adequate proportions. However, particular plant species may play greater roles than others in balancing honeybee diets. Therefore, we suggest specific plant species that may (1) ensure optimal growth and production of individuals by producing pollen that is exceptionally well balanced stoichiometrically (e.g., clover) or (2) prevent growth and development of honeybees by producing pollen that is extremely unbalanced for bees (e.g., sunflower). Since pollen is generally poor in Na, this element must be supplemented using “dirty water”. Nectar cannot supplement the diet with limiting elements. Stoichiometric mismatch should be considered in intervention strategies aimed at improving the nutritional base for bees. PMID:28829793

  7. Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress.

    PubMed

    Siddiqui, Manzer H; Mohammad, Firoz; Khan, M Masrooor A; Al-Whaibi, Mohamed H

    2012-01-01

    In the present study, N and S assimilation, antioxidant enzymes activity, and yield were studied in N and S-treated plants of Brassica juncea (L.) Czern. & Coss. (cvs. Chuutki and Radha) under salt stress. The treatments were given as follows: (1) NaCl(90) mM+N(0)S(0) mg kg(-1) sand (control), (2) NaCl(90) mM+N(60)S(0) mg kg(-1) sand, (3) NaCl(90) mM+N(60)S(20) mg kg(-1) sand, (4) NaCl(90) mM+N(60)S(40) mg kg(-1) sand, and (5) NaCl(90) mM+N(60)S(60) mg kg(-1) sand. The combined application of N (60 mg kg(-1) sand) and S (40 mg kg(-1) sand) proved beneficial in alleviating the adverse effect of salt stress on growth attributes (shoot length plant(-1), fresh weight plant(-1), dry weight plant(-1), and area leaf(-1)), physio-biochemical parameters (carbonic anhydrase activity, total chlorophyll, adenosine triphosphate-sulphurylase activity, leaf N, K and Na content, K/Na ratio, activity of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase, and content of glutathione and ascorbate), and yield attributes (pods plant(-1), seeds pod(-1), and seed yield plant(-1)). Therefore, it is concluded that combined application of N and S induced the physiological and biochemical mechanisms of Brassica. The stimulation of antioxidant enzymes activity and its synergy with N and S assimilation may be one of the important mechanisms that help the plants to tolerate the salinity stress and resulted in an improved yield.

  8. Study of the effect of common infusions on glass ionomers using the PIXE and RBS techniques

    NASA Astrophysics Data System (ADS)

    Verón, María Gisela; Pérez, Pablo Daniel; Suárez, Sergio Gabriel; Prado, Miguel Oscar

    2017-12-01

    The effect of four commonly consumed beverages as mineral water, coffee, tea and mate tea on the elemental composition of a commercial glass ionomer was studied using Particle Induced X-ray Emission (PIXE) and Rutherford backscattering (RBS) techniques. We found that after immersion in acidic media, some elements as Al, Si and Na are lost from the glass-ionomer whereas others heavier, as K, Ca and La, increase their concentration at the surface. Although the concentration profiles of Al and Si are different in different media, in all of them the Al:Si ratio was close to unity and remained constant for different periods of immersion in all media. The incorporation of K, Mg and Fe to the surface is found for common infusions while for mineral water the glass-ionomer mainly loses F and Na.The RBS technique showed that immersion in different media produced a modification of the density of the glass ionomer surface layer due to the increment of the concentration of heavier elements at the surface. The thickness of the modified surface layer extends up to 3 μm when the immersion time is seven days and more than 6 μm after 33 days of immersion.

  9. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases

    NASA Astrophysics Data System (ADS)

    Peng, Qiuming; Guo, Jianxin; Fu, Hui; Cai, Xuecheng; Wang, Yanan; Liu, Baozhong; Xu, Zhigang

    2014-01-01

    Long-period stacking ordered (LPSO) phases play an essential role in the development of magnesium alloys because they have a direct effect on mechanical and corrosion properties of the alloys. The LPSO structures are mostly divided to 18R and 14H. However, to date there are no consistent opinions about their degradation properties although both of them can improve mechanical properties. Herein we have successfully obtained two LPSO phases separately in the same Mg-Dy-Zn system and comparatively investigated the effect of different LPSO phases on degradation behavior in 0.9 wt.% NaCl solution. Our results demonstrate that a fine metastable 14H-LPSO phase in grain interior is more effective to improve corrosion resistance due to the presence of a homogeneous oxidation film and rapid film remediation ability. The outstanding corrosion resistant Mg-Dy-Zn based alloys with a metastable 14H-LPSO phase, coupled with low toxicity of alloying elements, are highly desirable in the design of novel Mg-based biomaterials, opening up a new avenue in the area of bio-Mg.

  10. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases

    PubMed Central

    Peng, Qiuming; Guo, Jianxin; Fu, Hui; Cai, Xuecheng; Wang, Yanan; Liu, Baozhong; Xu, Zhigang

    2014-01-01

    Long-period stacking ordered (LPSO) phases play an essential role in the development of magnesium alloys because they have a direct effect on mechanical and corrosion properties of the alloys. The LPSO structures are mostly divided to 18R and 14H. However, to date there are no consistent opinions about their degradation properties although both of them can improve mechanical properties. Herein we have successfully obtained two LPSO phases separately in the same Mg-Dy-Zn system and comparatively investigated the effect of different LPSO phases on degradation behavior in 0.9 wt.% NaCl solution. Our results demonstrate that a fine metastable 14H-LPSO phase in grain interior is more effective to improve corrosion resistance due to the presence of a homogeneous oxidation film and rapid film remediation ability. The outstanding corrosion resistant Mg-Dy-Zn based alloys with a metastable 14H-LPSO phase, coupled with low toxicity of alloying elements, are highly desirable in the design of novel Mg-based biomaterials, opening up a new avenue in the area of bio-Mg. PMID:24401851

  11. Examination of the Behavior of Bismuth in Shallow-Level Hydrothermal Ore Systems: Constraints Based on Hydrothermal Experiments at 800°C and 100 MPa

    NASA Astrophysics Data System (ADS)

    Wilmot, M. S.; Candela, P. A.; Piccoli, P. M.; Simon, A. C.; McDonough, W. F.

    2006-05-01

    The partitioning of ore metals between melt and crystals affects the concentrations of these metals in an evolving ore fluid, and therefore the efficiency of their removal from the magma by hydrothermal processes. Some porphyry-type W-Mo deposits contain recoverable amounts of Bi, whereas others contain only trace amounts. In order to determine the magmatic controls on the ratio of Bi to other commodities in these and other deposits, we examined the partitioning behavior of bismuth between melt, minerals and aqueous phases. Hydrothermal experiments were performed by using externally heated cold seal vessels and employing a double capsule technique. Experiments contained 40 mg of Bishop Tuff glass (SiO2 = 74% ) and 40 mg of either magnetite or pyrrhotite. Bi was added as elemental Bi (< 1 mg). Two different aqueous solutions were used. Initially, the added aqueous phase comprised the solutes HCl, KCl and NaCl in a molar1:1:1 ratio, with a bulk salinity of 10 wt % NaCl eq. The aqueous phase for later experiments contained only the solutes KCl and NaCl in a 1:1 molar ratio. Pre-fractured quartz was added to the experiments to trap fluid inclusions at run PTX conditions. Experiments were performed in Au or Pt capsules held inside Rene 41 cold-seal vessels at 800°C and 100 MPa for durations of up to 36 hours. Analytical data have been collected from the run product solids by using an electron probe microanalyzer (major and trace elements) and laser ablation inductively coupled plasma mass spectrometry (trace elements). Bi in Mt is found in concentrations up to 100 ppm, with higher concentrations in runs where Po decomposed to form magnetite. The Bi concentration in the glass ranges up to 100 ppm. In the Po-bearing runs, data were only collected from Po grains in the experiments containing the HCl-free aqueous solution (the Po grains in the other experiments were too small to analyze). Pyrrhotite contained 10-20 ppm Bi, whereas the glass contained 5-10 ppm. Preliminary Nernst- type partition coefficients for Bi between Mt and melt and Po and melt are approximately 5 and 2, respectively. These data reveal that Bi is only slightly compatible in Mt and Po, and that the Po/melt partition coefficient for Bi is much lower than for Cu, Ag and Au, and is comparable to Mn and Zn. Additional experiments are in progress to more compare the partitioning of Bi with that of W and Mo.

  12. The assessment of bore-hole water quality of Kakamega County, Kenya

    NASA Astrophysics Data System (ADS)

    Christine, Adika A.; Kibet, Joshua K.; Kiprop, Ambsrose K.; Were, Munyendo L.

    2018-03-01

    Numerous deleterious impacts of anthropogenic activities on water quality are typically observed in areas bursting with mineral exploitation, agricultural activities, and industrial processes. Therefore, this contribution details the water quality and water origin in selected hand-dug wells of one the most prominent mining areas in Kenya (Kakamega County). The toxicological impacts of drinking water from a mining site may include cancer and genetic aberrations largely because of the toxic effects of waterborne metals including Hg and As. Accordingly, this study focuses primarily on the investigation of heavy metals, essential elements such as Na and K. Heavy metals and essential elements were determined using spectroscopic and titrimetric techniques. The study revealed that mercury (Hg) concentration ranged between 0.00256 and 0.0611 ± 0.00005 mg/L while arsenic (As) concentration ranged from 0.0103 to 0.0119 ± 0.00005 mg/L. The concentration of potassium ranged from 2.53 to 4.08 ± 0.15 mg/L while that of sodium varied from 6.74 to 9.260 ± 0.2 mg/L. Although the concentration of cadmium was lower than that recommended by W.H.O, the concentrations of Hg, Pb, and As in Kakamega waters were higher than the internationally accepted levels. The generally high level of heavy metals in Kakamega bore-hole waters is, therefore, a public health concern that needs immediate intervention.

  13. Development of a Certified Reference Material (NMIJ CRM 7203-a) for Elemental Analysis of Tap Water.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shin-Ichi; Kuroiwa, Takayoshi; Ariga, Tomoko; Kudo, Izumi; Koguchi, Masae; Heo, Sung Woo; Suh, Jung Ki; Lee, Kyoung-Seok; Yim, Yong-Hyeon; Lim, Youngran

    2017-01-01

    A certified reference material (CRM), NMIJ CRM 7203-a, was developed for the elemental analysis of tap water. At least two independent analytical methods were applied to characterize the certified value of each element. The elements certified in the present CRM were as follows: Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, and Zn. The certified value for each element was given as the (property value ± expanded uncertainty), with a coverage factor of 2 for the expanded uncertainty. The expanded uncertainties were estimated while considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the long-term stability, and the concentrations of the standard solutions for calibration. The concentration of Hg (0.39 μg kg -1 ) was given as the information value, since loss of Hg was observed when the sample was stored at room temperature and exposed to light. The certified values of selected elements were confirmed by a co-analysis carried out independently by the NMIJ (Japan) and the KRISS (Korea).

  14. Contents of chemical elements in stomach during prenatal development: different age-dependent dynamical changes and their significance

    PubMed Central

    Hou, Shao-Fan; Li, Hai-Rong; Wang, Li-Zhen; Li, De-Zhu; Yang, Lin-Sheng; Li, Chong-Zheng

    2003-01-01

    AIM: To observe dynamic of different chemical elements in stomach tissue during fetal development. METHODS: To determine contents of the 21 chemical elements in each stomach samples from fetus aging four to ten months. The content values were compared to those from adult tissue samples, and the values for each month group were also analyzed for dynamic changes. RESULTS: Three representations were found regarding the relationship between contents of the elements and ages of the fetus, including the positive correlative (K), reversely correlative (Na, Ca, P, Al, Cu, Zn, Fe, Mn, Cr, Sr, Li, Cd, Ba, Se) and irrelevant groups (Mg, Co, Ni, V, Pb, Ti). CONCLUSION: The chemical elements’ contents in stomach tissues were found to change dynamically with the stomach weights. The age-dependent representations for different chemical elements during the prenatal development may be of some significance for assessing development of fetal stomach and some chemical elements. The data may be helpful for the nutritional balance of fetus and mothers during prenatal development and even the perinatal stages. PMID:12717857

  15. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater

    PubMed Central

    Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane

    2012-01-01

    In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625

  16. Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea

    PubMed Central

    Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere

    2016-01-01

    This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi, Meriandra dianthera, Lepidium sativum, Brassica nigra, and Nigella sativa. These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different (P < 0.05). PMID:27795982

  17. Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea.

    PubMed

    Sium, Mussie; Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere

    This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi , Meriandra dianthera , Lepidium sativum , Brassica nigra, and Nigella sativa . These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different ( P < 0.05).

  18. Baseline study on essential and trace elements in polished rice from South Korea.

    PubMed

    Jung, Myung Chae; Yun, Seong-Taek; Lee, Jin-Soo; Lee, Jong-Un

    2005-09-01

    In 2000, 63 (polished) white rice samples were collected in eight administrative areas all over South Korea and analyzed for 16 elements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Potassium had the highest content, next to Mg, Ca, Si, Zn, Na, Al and Fe. Most of the samples contained worldwide average concentrations of essential and trace elements in rice grains reported by various researches. For inter-area differences in those elements in the rice, the statistical analysis showed no significant differences (p > 0.05) among the eight administrative areas, suggesting that inter-area differences were not substantial in most cases. Thus, the present data can be used as national background levels of elements in rice produced in South Korea. Using the published data on daily consumption of rice in South Korea, it was possible to estimate the daily intake of As, Cd, Cu, Pb and Zn via rice. The results showed that a regular consumption of rice produced in Korea plays an important role in accumulation of essential and trace elements in Korean, especially for farm-households consuming relatively large amounts of rice.

  19. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-05-01

    Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also potentially important for astrobiology because of their ability to preserve pristine cellular structures intact compared to solutions that crystallize.

  20. Mass closure and source apportionment of PM2.5 by Positive Matrix Factorization analysis in urban Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Mantas, E.; Remoundaki, E.; Halari, I.; Kassomenos, P.; Theodosi, C.; Hatzikioseyian, A.; Mihalopoulos, N.

    2014-09-01

    A systematic monitoring of PM2.5 was carried out during a period of three years (from February 2010 to April 2013) at an urban site, at the National Technical University of Athens campus. Two types of 24-h PM2.5 samples have been collected: 271 samples on PTFE and 116 samples on quartz filters. Daily PM2.5 concentrations were determined for both types of samples. Total sulfur, crustal origin elements and elements of a major crustal component (Al, Si, Fe, Ca, K, Mg, Ti) trace elements (Zn, Pb, Cu, Ni, P, V, Cr, Mn) and water soluble ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Ca2+, Mg2+) were determined on the PTFE samples. Organic carbon (OC), elemental carbon (EC) and water soluble ions were determined on the quartz samples. For the mass closure six components were considered: Secondary Inorganic Aerosol (SIA), Organic Matter (OM), Elemental Carbon (EC), Dust, Mineral anthropogenic component (MIN) and Sea Salt (SS). SIA and OM contributed in the mass of PM2.5 almost equally: 30-36% and 30% respectively. EC, SS and MIN accounted for 5, 4 and 3% respectively of the total PM2.5 mass. Dust accounted for about 3-5% in absence of dust transport event and reached a much higher percentage in case of dust transport event. These contributions justify at least 80% of the PM2.5 mass. Source apportionment analysis has been performed by Positive Matrix Factorization. The combination of the PMF results obtained by both data sets lead to the definition of six factors: 1. SO42-, NH4+, OC (industrial/regional sources, secondary aerosol) 2. EC, OC, K and trace metals (traffic and heating by biomass burning, locally emitted aerosol). 3. Ca, EC, OC and trace metals (urban-resuspended road dust reflecting exhaust emissions), 4. Secondary nitrates 5. Na, Cl (marine source) 6. Si, Al, Ti, Ca, Fe (Dust transported from Sahara). These factors reflect not only main sources contributions but also underline the key role of atmospheric dynamics and aerosol ageing processes in this Mediterranean environment.

  1. Detailed chemical abundance analysis of the thick disk star cluster Gaia 1

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Hansen, Terese T.; Kunder, Andrea

    2018-01-01

    Star clusters, particularly those objects in the disk-bulge-halo interface are as yet poorly charted, despite the fact that they carry important information about the formation and the structure of the Milky Way. Here, we present a detailed chemical abundance study of the recently discovered object Gaia 1. Photometry has previously suggested it as an intermediate-age, moderately metal-rich system, although the exact values for its age and metallicity remained ambiguous in the literature. We measured detailed chemical abundances of 14 elements in four red giant members, from high-resolution (R = 25 000) spectra that firmly establish Gaia 1 as an object associated with the thick disk. The resulting mean Fe abundance is -0.62 ± 0.03(stat.)± 0.10(sys.) dex, which is more metal-poor than indicated by previous spectroscopy from the literature, but it is fully in line with values from isochrone fitting. We find that Gaia 1 is moderately enhanced in the α-elements, which allowed us to consolidate its membership with the thick disk via chemical tagging. The cluster's Fe-peak and neutron-capture elements are similar to those found across the metal-rich disks, where the latter indicate some level of s-process activity. No significant spread in iron nor in other heavy elements was detected, whereas we find evidence of light-element variations in Na, Mg, and Al. Nonetheless, the traditional Na-O and Mg-Al (anti-)correlations, typically seen in old globular clusters, are not seen in our data. This confirms that Gaia 1 is rather a massive and luminous open cluster than a low-mass globular cluster. Finally, orbital computations of the target stars bolster our chemical findings of Gaia 1's present-day membership with the thick disk, even though it remains unclear which mechanisms put it in that place. This paper includes data gathered with the 2.5 meter du Pont Telescope located at Las Campanas Observatory, Chile.Full Table 2 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A13

  2. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  3. Tracing potential soil contamination in the historical Solvay soda ash plant area, Jaworzno, Southern Poland.

    PubMed

    Sutkowska, Katarzyna; Teper, Leslaw; Stania, Monika

    2015-11-01

    This study of soil conditions was carried out on 30 meadow soil (podzol) samples from the vicinity of the soda ash heap in Jaworzno, supplemented by analyses of 18 samples of waste deposited on the heap. In all samples, the total content of macroelements (Ca and Na) and heavy metals (Cd, Cr, Ni, Pb and Zn) as well as pH were analysed. The element concentrations were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The materials examined were neutral to ultra-alkaline. Total accumulations (mg kg(-1)) of chemical elements in the soil vary from 130.24 to 14076.67 for Ca, 41.40-926.23 for Na, 0.03-3.34 for Cd, 0.94-103.62 for Cr, 0.94-35.89 for Ni, 3.51-76.47 for Pb and 12.05-279.13 for Zn, whereas quantities of the same elements in the waste samples vary from 171705.13 to 360487.94 for Ca, 517.64-3152.82 for Na, 0.2-9.89 for Cd, 1.16-20.40 for Cr, 1.08-9.79 for Ni, 0.1-146.05 for Pb and 10.26-552.35 for Zn. The vertical distribution of the metals was determined in each soil profile. Despite enrichment of heavy metals in the uppermost horizon on the top of the heap, the results lead to the conclusion that the relation of historical production of soda ash in Jaworzno to current contamination of the local soil environment is insignificant.

  4. Log-ratio transformed major element based multidimensional classification for altered High-Mg igneous rocks

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2016-12-01

    A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.

  5. A powder neutron diffraction study of the crystal structure of the fluoroperovskite NaMgF3 (neighborite) from 300 to 3.6 K

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Alexander, Malcolm; Cranswick, Lachlan M. D.; Swainson, Ian P.

    2007-12-01

    The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic Pmifmmodeexpandafterbarelseexpandafter\\=fi{3}m structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a - a - c + . With decreasing temperature the antiphase tilt ( a -) increases from 14.24° to 15.39°, whereas the in-phase tilt ( c + ) remains effectively constant at ˜10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.

  6. Source apportionment studies on particulate matter (PM10 and PM2.5) in ambient air of urban Mangalore, India.

    PubMed

    Kalaiarasan, Gopinath; Balakrishnan, Raj Mohan; Sethunath, Neethu Anitha; Manoharan, Sivamoorthy

    2018-07-01

    Particulate matter (PM 10 and PM 2.5 ) samples were collected from six sites in urban Mangalore and the mass concentrations for PM 10 and PM 2.5 were measured using gravimetric technique. The measurements were found to exceed the national ambient air quality standards (NAAQS) limits, with the highest concentration of 231.5 μg/m 3 for PM 10 particles at Town hall and 120.3 μg/m 3 for PM 2.5 particles at KMC Attavar. The elemental analysis using inductively coupled plasma optical emission spectrophotometer (ICPOES) revealed twelve different elements (As, Ba, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Sr and Zn) for PM 10 particles and nine different elements (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn) for PM 2.5 particles. Similarly, ionic composition of these samples measured by ion chromatography (IC) divulged nine different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , K + , Mg 2+ and Ca 2+ ) for PM 10 particles and ten different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , NH 4 + , K + , Mg 2+ and Ca 2+ ) for PM 2.5 particles. The source apportionment study of PM 10 and PM 2.5 for urban Mangalore in accordance with these six sample sites using chemical mass balance model (CMBv8.2) revealed nine and twelve predominant contributors for both PM 10 and PM 2.5 , respectively. The highest contributor of PM 10 was found to be paved road dust followed by diesel and gasoline vehicle emissions. Correspondingly, PM 2.5 was found to be contributed mainly from two-wheeler vehicle emissions followed by four-wheeler and heavy vehicle emissions (diesel vehicles). The current study depicts that the PM 10 and PM 2.5 in ambient air of Mangalore region has 70% of its contribution from vehicular emissions (both exhaust and non-exhaust). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present results suggest that in addition to the commonly cited naphthenic acids, remediation of OSPW-impacted groundwater will need to address high concentrations of major ions contributing to salinization. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aqueous geochemical data from the analysis of stream-water samples collected in June and August 2008—Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Owens, Victoria; Bailey, Elizabeth; Lee, Greg

    2011-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska. Reported parameters include pH, conductivity, water temperature, major cation and anion concentrations, and trace-element concentrations. We collected the samples as part of a multiyear U.S. Geological Survey project entitled "Geologic and Mineral Deposit Data for Alaskan Economic Development." Data presented here are from samples collected in June and August 2008. Minimal interpretation accompanies this data release. This is the fourth release of aqueous geochemical data from this project; data from samples collected in 2004, 2005, and 2006 were published previously. The data in this report augment but do not duplicate or supersede the previous data releases. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample sites were selected on the basis of landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the study area is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry of these samples ranges from Ca2+-Mg2+ dominated to a mix of Ca2+-Mg2+-Na++K2+. In most cases, analysis of duplicate samples showed good agreement for the major cation and major anions with the exception of the duplicate samples at site 08TA565. At site 08TA565, Ca, Mg, Cl, and CaCO3 exceeded 25 percent and the concentrations of trace elements As, Fe and Mn also exceeded 25 percent in this duplicate pair. Chloride concentration varied by more than 25 percent in 5 of the 11 duplicated samples. Trace-element concentrations in these samples generally were at or near the detection limit for the method used and, except for Co at site 08TA565, generally good agreement was determined between duplicate samples for elements with detectable concentrations. Major-ion concentrations were below detection limits in all field blanks, and the trace-element concentrations also were generally below detection limits; however, Co, Mn, Na, Zn, Cl, and Hg were detected in one or more field blank samples.

  9. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  10. Specific ion-protein interactions dictate solubility behavior of a monoclonal antibody at low salt concentrations.

    PubMed

    Zhang, Le; Zhang, Jifeng

    2012-09-04

    The perturbation of salt ions on the solubility of a monoclonal antibody was systematically studied at various pHs in Na(2)SO(4), NaNO(3), NaCl, NaF, MgSO(4), Mg(NO(3))(2) and MgCl(2) solutions below 350 mM. At pH 7.1, close to the pI, all of the salts increased the solubility of the antibody, following the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for anions and Mg(2+) > Na(+) for cations. At pH 5.3 where the antibody had a net positive charge, the anions initially followed the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for effectiveness in reducing the solubility and then switched to increasing the solubility retaining the same order. Furthermore, the antibody was more soluble in the Mg(2+) salt solutions than in the corresponding Na(+) salt solutions with the same anion. At pH 9.0 where the antibody had a net negative charge, an initial decrease in the protein solubility was observed in the solutions of the Mg(2+) salts and NaF, but not in the rest of the Na(+) salt solutions. Then, the solubility of the antibody was increased by the anions in the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-). The above complex behavior is explained based on the ability of both cation and anion from a salt to modulate protein-protein interactions through their specific binding to the protein surface.

  11. 24Mg(p, α) 21Na reaction study for spectroscopy of 21Na

    DOE PAGES

    Cha, S. M.; Chae, K. Y.; Kim, A.; ...

    2015-11-03

    The Mg-24(p, alpha)Na-21 reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in Na-21 for the astrophysically important F-17(alpha, p)Ne-20 reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched Mg-24 solid targets were used. When recoiling He-4 particles from the Mg-24(p, alpha)Na-21 reaction we used a highly segmented silicon detector array to detect them; it measured the yields of He-4 particles over a range of angles simultaneously. A observed a new level at 6661 ± 5 keVmore » in the present work. The extracted angular distributions for the first four levels of Na-21 and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.« less

  12. Accumulation of airborne elements from vehicles in transplanted lichens in urban sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, J.; Kauppi, M.; Kauppi, A.

    1996-03-01

    The objective of the current study is to compare the short-term accumulation capacity of two epiphytic lichens characterized by a different type of thallus. The lichens Hypogynmia physodes (L.) Nyl. and Usnea hirta (L.) Weber em. Mot. were transplanted either to the vicinity of streets of low volume and slow traffic or to the vicinity of a highway in the city of Oulu, N. Finland, for a period of 45 d. Eleven elements were analyzed before and after transplantation. The two lichen species were found to possess a similar accumulating capacity for K and Mn. Hypogynmia physodes manifests a highermore » accumulating capacity than U. hirta for Na, Fe, and Cu. whereas the more sensitive lichen U. hirta exhibits a higher accumulating capacity for Mg, despite a higher primary concentration of these elements in the thallus of H. physodes. Our findings show a relative high concentration of K, Fe, Mg, Zn, Mn, Pb, and Cu in thalli of H. physodes and Mg, Zn, Pb, Cu, and Cd in U. hirta in material transplanted to streets of low volume and slow traffic, over and above the concentration found in thalli retrieved form the vicinity of the highway. This may be explained by the higher rate of abrasion of car engines running idle near traffic lights and by the lesser ventilation near the close-clustered streets of the inner city. 65 refs., 8 tabs.« less

  13. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis.

    PubMed

    Inoue, Takashi A; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na(+), K(+), Ca(2+), and Mg(2+). Based on behavioral analyses, these butterflies preferred a 10-mM Na(+) solution to K(+), Ca(2+), and Mg(2+) solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na(+) concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na(+) solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K(+), Ca(2+), and/or Mg(2+) were higher than that of Na(+). This suggests that K(+), Ca(2+), and Mg(2+) do not interfere with the detection of Na(+) by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl(2) or MgCl(2). The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na(+) detected by the contact chemosensilla in the proboscis, which measure its concentration.

  14. Geochemical patterns in soils in and around Siddipet, Medak District, Andhra Pradesh, India.

    PubMed

    Dantu, Sujatha

    2010-11-01

    This paper reports the first results of geochemical survey carried out in and around Siddipet, taking soil (topsoil 0-25 cm and subsoil 70-95 cm) as the sampling media. The data were obtained in a consistent way from 61 sites. The samples were analyzed for 29 elements (As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) by X-ray fluorescence spectrometer, and baseline levels for these elements are presented. Results reveal that the correlation between the geochemical patterns in the soils developed on different litho-variants is not straight forward, but some general trends can be observed. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace elements while anthropogenic activities have secondary influence.

  15. The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    Previously, the effect of hydrogen annealing on increasing the adhesion of Al2O3 scales had been related to the effective desulfurization that occurred during this process. The simultaneous reduction of other impurities has now been re-examined for up to 20 impurity elements in the case of five different alloys (NiCrAl, FeCrAl, PWA 1480, Rene'142, and Rene'N5). Hydrogen annealing produced measurable reductions in elemental concentration for B, C, Na, Mg, P, K, Sr, or Sn in varying degrees for at least one and up to three of these alloys. No single element was reduced by hydrogen annealing for all the alloys except sulfur. In many cases spalling occurred at low levels of these other impurities, while in other cases the scales were adherent at high levels of the impurities. No impurity besides sulfur was strongly correlated with adhesion.

  16. Major element compositional variation within and between different late Eocene microtektite strewnfields

    NASA Astrophysics Data System (ADS)

    D'Hondt, S. L.; Keller, G.; Stallard, R. F.

    1987-03-01

    The major element composition of microspherules from all three late Eocene stratigraphic layers was analyzed using an electron microprobe. The results indicate a major element compositional overlap beween individual microspherules of different microtektite layers or strewn fields. However, multivariate factor analysis shows that the microtektites of the three late Eocene layers follow recognizably different compositional trends. The microtektite population of the North American strewn field is characterized by high concentrations of SiO2, Al2O3, and TiO2; the microspherules of an older layer, the Gl. cerroazulensis Zone, are relatively enriched in FeO and MgO and impoverished in SiO2 and TiO2; while those of the oldest layer in the uppermost G. semiinvoluta Zone are relatively enriched in CaO and impoverished in Al2O3 and Na2O.

  17. Analysis of major elements in pigmented melanocytic chicken skin using laser-induced breakdown spectroscopy.

    PubMed

    Lee, Jong Jin; Moon, Youngmin; Han, Jung Hyun; Jeong, Sungho

    2017-04-01

    The concentration difference of major elements in melanocytic skin with respect to pigmentation level is analysed by laser-induced breakdown spectroscopy (LIBS) to investigate the applicability of LIBS as an in situ feedback tool for selective and complete laser removal of melanocytic skin tissue like nevus. The skin of black silkie chicken which had a characteristic darkly pigmented perifollicular skin surrounded by lightly pigmented extrafollicular skin was used as the sample. The results showed higher LIBS signal intensities of Ca 2+ and Mg 2+ but lower intensities of Na + , Cl - and K + in the perifollicular skin than in the extrafollicular skin, which demonstrated the feasibility to use LIBS as a reliable method to distinguish skin tissues with difference in pigmentation level. Plasma emission of biochemical elements generated with a laser irradiation on melanocytic skin lesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation of major and trace element distribution in the extraction-transesterification process of fatty acid methyl esters from microalgae Chlorella sp.

    PubMed

    Soares, Bruno M; Vieira, Augusto A; Lemões, Juliana S; Santos, Clarissa M M; Mesko, Márcia F; Primel, Ednei G; Montes D'Oca, Marcelo G; Duarte, Fábio A

    2012-04-01

    This work reports, for the first time, the determination of major and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sn, Sr, Ti, Tl, U, V, and Zn) in the fractions of the synthesis of fatty acid methyl esters (FAMEs). These include fresh microalgae, residual biomass, lipid fraction, crude FAMEs, insoluble fraction and purified FAMEs from microalgae Chlorella sp. A microwave-assisted digestion procedure in closed vessels was applied for sample digestion and subsequent element determination by inductively coupled plasma-based techniques. The proposed method was suitable for the multielement determination in FAMEs and its fractions obtained from microalgae. The element concentration was compared with results found in the literature and a careful discussion about the use of residual biomass for different applications was performed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.

    PubMed

    Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel

    2015-01-01

    A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis.

  20. Arginase induction by sodium phenylbutyrate in mouse tissues and human cell lines.

    PubMed

    Kern, R M; Yang, Z; Kim, P S; Grody, W W; Iyer, R K; Cederbaum, S D

    2007-01-01

    Hyperargininemia is a urea cycle disorder caused by mutations in the gene for arginase I (AI) resulting in elevated blood arginine and ammonia levels. Sodium phenylacetate and a precursor, sodium phenylbutyrate (NaPB) have been used to lower ammonia, conjugating glutamine to produce phenylacetylglutamine which is excreted in urine. The elevated arginine levels induce the second arginase (AII) in patient kidney and kidney tissue culture. It has been shown that NaPB increases expression of some target genes and we tested its effect on arginase induction. Eight 9-week old male mice fed on chow containing 7.5 g NaPB/kg rodent chow and drank water with 10 g NaPB/L, and four control mice had a normal diet. After one week all mice were sacrificed. The arginase specific activities for control and NaPB mice, respectively, were 38.2 and 59.4 U/mg in liver, 0.33 and 0.42 U/mg in kidney, and 0.29 and 1.19 U/mg in brain. Immunoprecipitation of arginase in each tissue with AI and AII antibodies showed the activity induced by NaPB is mostly AI. AII may also be induced in kidney. AI accounts for the fourfold increased activity in brain. In some cell lines, NaPB increased arginase activity up to fivefold depending on dose (1-5 mM) and exposure time (2-5 days); control and NaPB activities, respectively, are: erythroleukemia, HEL, 0.06 and 0.31 U/mg, and K562, 0.46 and 1.74 U/mg; embryonic kidney, HEK293, 1.98 and 3.58 U/mg; breast adenocarcinoma, MDA-MB-468, 1.11 and 4.06 U/mg; and prostate adenocarcinoma, PC-3, 0.55 and 3.20 U/mg. In MDA-MB-468 and HEK most, but not all, of the induced activity is AI. These studies suggest that NaPB may induce AI when used to treat urea cycle disorders. It is relatively less useful in AI deficiency, although it could have some effect in those patients with missense mutations.

  1. Geochemical evolution of groundwater in the Western Delta region of River Godavari, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, P. V.; Appa Rao, S.; Subba Rao, N.

    2017-05-01

    The present study on geochemical evolution of groundwater is taken up to assess the controlling processes of water chemistry in the Western Delta region of the River Godavari (Andhra Pradesh), which is one of the major rice-producing centers in India. The study region is underlain by coarse sand with black clay (buried channels), black silty clay of recent origin (floodplain) and gray/white fine sand of modern beach sediment of marine source (coastal zone), including brown silty clay with fine sand (paleo-beach ridges). Groundwater is mostly brackish and very hard. It is characterized by Na+ > Mg2+ > Ca2+:HCO3 - > Cl- > SO4 2- > NO3 -, Na+ > Mg2+ > Ca2+:Cl- > HCO3 - > SO4 2-, and Mg2+ > Na+ > Ca2+ > or < K+:HCO3 - > Cl- > or > SO4 2- facies. The ionic relations (Ca2+ + Mg2+:HCO3 -, Ca2+ + Mg2+:SO4 2- + HCO3 -, Na+ + K+:TC, Na+ + K+:Cl- + SO4 2-, HCO3 -:TC, HCO3 -:Ca2+ + Mg2+, Na+:Cl- and Na+:Ca2+) indicate that the rock weathering, mineral dissolution, evaporation and ion exchange are the processes to control the aquifer chemistry. Anthropogenic and marine sources are also the supplementary factors for brackish water quality. These observations are further supported by Gibbs mechanisms that control the water chemistry. Thus, the study suggests that the initial quality of groundwater of geogenic origin has been subsequently modified by the influences of anthropogenic and marine sources.

  2. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  3. Total-diet study: dietary intakes of macro elements and trace elements in Italy.

    PubMed

    Lombardi-Boccia, Ginevra; Aguzzi, Altero; Cappelloni, Marsilio; Di Lullo, Giuseppe; Lucarini, Massimo

    2003-12-01

    The present study provides the dietary intakes of macro elements (Ca, Mg, Na, K, P) and trace elements (Fe, Zn, Cu, Se) from the Italian total diet. The contribution of the most representative food groups of the total diet (cereals and cereal products, vegetables, fruit, milk and dairy products, meat and meat products, fish) to the daily intakes of these nutrients was also evaluated. The Italian total diet was formulated following the 'market-basket' approach. Cereals represented the primary sources of Cu (35 %), Fe (30 %) and Mg (27 %). About 89 % of the total daily intake of Fe was derived from plant foods. The vegetables food group was the main source of dietary K (27 %). Most of the Ca (59 %) and P (27 %) was derived from the milk-and-dairy food group. Of the dietary Zn, 41 % was provided by meat, which, together with the fish food group, was the primary source of Se (20 %). The adequacy of the Italian total diet with respect to nutritional elements was assessed by comparing the daily intakes with the average requirement values of the Italian recommended dietary allowances. The present findings indicated that the dietary patterns of the Italian total diet were generally consistent with current Italian dietary recommendations for both macro and trace elements. The major concern was for Ca, for which daily intake was 76 % of the average recommendation for the Italian population. It should not be ruled out that there could be a potential risk of inadequate Fe intake in some segments of the population.

  4. [Determination of multi-element contents in gypsum by ICP-AES].

    PubMed

    Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu

    2014-08-01

    The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.

  5. Vegetation impact on stream chemical fluxes: Mule Hole watershed (South India)

    NASA Astrophysics Data System (ADS)

    Riotte, J.; Maréchal, J. C.; Audry, S.; Kumar, C.; Bedimo Bedimo, J. P.; Ruiz, L.; Sekhar, M.; Cisel, M.; Chitra Tarak, R.; Varma, M. R. R.; Lagane, C.; Reddy, P.; Braun, J. J.

    2014-11-01

    The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed (Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ;current weathering; of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes.

  6. Quantification of elements essential for habitability: the case of the nakhlite hydrothermal brine

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Bridges, J.

    2013-12-01

    Hypervelocity impact events deposit a high amount of energy in the target - devastating to the existing environment in a few seconds, but in the long term aftermath the morphological changes and the deposited heat offer new habitable environments. If water is available in the target, impact-generated hydrothermal activity will result. To assess the habitability of this new site, information on fluid chemistry is critical, but not readily available by observing final products of rock alteration. The nakhlite Martian meteorites contain such impact-generated alteration mineral assemblages, which reveal detailed information about their formation conditions (Changela and Bridges, 2010, MAPS, 45: 1847-1865). Combining the mineralogical observations with thermochemical modeling (code: CHILLER, Mark Reed and co-workers, U Oregon) we quantify the solution concentration of a variety of elements essential for habitability: C, P, S, Na, K, Ca, Mg. For this we use our previous model (Bridges and Schwenzer, 2012, EPSL, 359-360: 117-123) at W/R of 100, T of 50 °C and 0.1 mole CO2. This leads to the formation of nontronite (77 wt%), carbonate (14 wt%), quartz (5 wt%) and kaolinite (4 wt%). Of the 0.1 mole CO2, 97% is precipitated as carbonates using cations from the 10 g of altered Lafayette in the presence of 1 kg of water, and this is equivalent to 4 g CO2 being sequestered. While the CO2 is sourced from the fluid, S and P are contained in Lafayette, leading to 27 x 10-9 g of P and 0.06 g of S available in the fluid after dissolution and precipitation of alteration minerals. Other cations important for habitability, e.g., Na, K, Ca, and Mg, are present in solution in varying amounts. 100 % of Na and K, equal to 0.004 and 0.001 moles of Na and K, respectively, from the dissolving rock stay in solution. In contrast, Fe dissolved from the host rock does not stay in solution, but is almost entirely precipitated in the nontronite and carbonate. The situation is more complex for other cations: 1.4 % of Ca (0.0003 moles), and 3.3 % of Mg (0.003 moles) are available in dissolved form. As this specific example shows, with accurate mineralogical information on the dissolving host rock and most importantly alteration minerals, it is possible to determine formation conditions of the alteration phases. With that it is then possible to quantify the sinks and mobility of key elements for habitability. This is especially interesting for near- and subsurface environments on Mars, where a multitude of processes from diagenesis to hydrothermal alteration has occurred in the past and could have provided habitable sites, if life ever existed on Mars (Cockell et al. 2012, Icarus, 217: 184-193). Further, those results are applicable to other medium- to high-temperature hydrous processes and also transferrable to other celestial bodies with (basaltic) rock-water interaction.

  7. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing.

    PubMed

    Wang, Lei; Liu, Lian-you; Gao, Shang-yu; Hasi, Eerdun; Wang, Zhi

    2006-01-01

    Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chinensis, Sophora japonica, A ilanthus altissima, Syringa oblata and Prunus persica had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicus and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM, (particulate matter less than 10 microm in aerodynamic diameter; 98.4%) and PM25 (particulate matter less than 2.5 microm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CaSO4 x H20, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4 x H20 was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.

  8. ELECTROLYTE AND MINERAL COMPOSITION OF TERM DONOR HUMAN MILK BEFORE AND AFTER PASTEURIZATION AND OF RAW MILK OF PRETERM MOTHERS.

    PubMed

    Codo, Carla Regina Bianchi; Caldas, Jamil Pedro de Siqueira; Peixoto, Rafaella Regina Alves; Sanches, Vitor Lacerda; Guiraldelo, Tamara Cristina; Cadore, Solange; Marba, Sérgio Tadeu Martins

    2018-02-22

    To determine and compare the concentrations of electrolytes and minerals in three different types of maternal milk samples: term donor milk before pasteurization, term donor milk after pasteurization and raw milk of mothers of preterm newborns at bedside. Descriptive cross-sectional study. Concentrations of calcium (Ca), phosphorous (P), magnesium (Mg), sodium (Na) and potassium (K) were measured in random samples of three human breast milk groups. Samples were analyzed using acid mineralization assisted by microwave radiation and further analysis by inductively coupled plasma optical emission spectrometry. Concentrations were expressed in mg/L, described as mean and standard deviation. The one-way ANOVA and Tukey's post-test were applied to determine the variability between the means of each group. Significance level was set at 5%. There was a significant reduction in the content of Ca (259.4±96.8 vs. 217.0±54.9; p=0.003), P (139.1±51.7 vs. 116.8±33.3; p=0.004) and K (580.8±177.1 vs. 470.9±109.4; p<0.0001) in donor maternal milk before and after pasteurization. Samples of raw milk presented higher contents of Na than the donated milk (twice). The elements P and Ca would only reach the daily intake levels recommended by the European Society of Pediatric Gastroenterology, Hepatology and Nutrition if at least 60 mL of milk could be offered every 3 hours. Mg levels were not different between the three groups. There was a significant reduction in Ca, P and K levels in samples after pasteurization. The Na value in raw milk, collected at bedside, was higher than in the samples of donor's milk before pasteurization.

  9. A High Pressure Post-Perovskite Phase Transition in NaMgF3--a MgSiO3 Analog Material

    NASA Astrophysics Data System (ADS)

    Martin, C.; Liu, H.; Crichton, W.; Parise, J. B.

    2005-12-01

    Since Murakami et al. (2004) identified a perovskite (pv, Pbnm) to post-perovskite (ppv, Cmcm) structural phase transition in MgSiO3, the transition has been reported to occur in many oxides at ultra-high pressures (>60 GPa). The layered ppv structure is rapidly shaping a better understanding of seismic anisotropy in the controversial D" region of the lower mantle. While the ppv unit cell may be derived from indexing of the powder pattern, the structure adopted at high pressure is experimentally ill-constrained due to compromised powder diffraction statistics typically obtained from small sample volumes at extreme conditions in the diamond anvil cell. NaMgF3, a structural analog material to MgSiO3 pv, exhibits a large compressibility and presents the possibility of reducing the pv-ppv transition pressure, allowing for improved powder statistics from a larger sample volume. In accordance with our previous theoretical and experimental evidence (Liu et al., 2005; Parise et al., 2004), we have observed a phase transition in NaMgF3 during two recent independent high pressure trials utilizing monochromatic x-ray diffraction and in-situ laser heating in the diamond anvil cell at pressures as low as 30 GPa. From our analysis thus far, we have found the unit cell of the high pressure phase cannot be indexed according to pv (Pbnm) or close permutations of ppv (Cmcm) unit cells predicted for NaMgF3 or unit cells observed for ppv MgSiO3 and MgGeO3. In addition, we have precluded a breakdown to high pressure phases of NaF and MgF3 as an explanation for the observed data. Upon pressure release, we observe diffraction peaks from the high pressure phase in the absence of pv NaMgF3, suggesting the high pressure structure is quenchable to ambient conditions. The results of the work in progress will be presented at the meeting.

  10. Mineral composition of organically grown tomato

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  11. Multielemental analysis in small amounts of environmental reference materials with inductively coupled plasma mass spectrometry.

    PubMed

    Dombovári, J; Becker, J S; Dietze, H J

    2000-07-01

    The lowest possible sample weight for performing multielemental trace element analysis on environmental and biological samples by ICP-MS has been investigated. The certified reference materials Bovine Liver NIST SRM 1577b, Human Hair NCS DC 73347 and Oriental Tobacco Leaves CTA-OTL-1 were applied at sample weights (1, 5, 20 and 50 mg aliquots, n = 10) which were significantly lower than those recommended with most recoveries in the range of 95-110%. Samples were digested in a mixture of nitric acid, hydrogen peroxide and hydrogen fluoride by closed-vessel microwave digestion. Multielemental analysis was performed with an optimized ICP-QMS method. Aqueous standard solutions were applied for external calibration with rhodium as the internal standard element. The detection limits varied between 0.02-0.38 microg/g for Li, Na, Cr, Mn, Ni, Cu, Zn, Sr, Cd, Ba and Pb, and up to 1.92 microg/g for Mg, Al, Ca, Fe and Ni. Digested human plasma samples were spiked with multielemental solution (0.5-10 microg/L) to test the analytical method and the recoveries were 95-105% for most analytes. Our results show that in the case of homogeneous SRMs it is possible to use them in very low amounts (1-5 mg) for method development and quality control.

  12. A two-year automated dripwater chemistry study in a remote cave in the tropical south Pacific: Using [Cl-] as a conservative tracer for seasalt contribution of major cations

    NASA Astrophysics Data System (ADS)

    Tremaine, Darrel M.; Sinclair, Daniel J.; Stoll, Heather M.; Lagerström, Maria; Carvajal, Carlos P.; Sherrell, Robert M.

    2016-07-01

    Stalagmite Mg/Ca and Sr/Ca ratios are commonly interpreted as proxies for past hydrologic conditions and are often used to supplement carbon and oxygen stable isotope records. While the processes that control these element ratios, including water-rock interaction, dripwater residence time, and upstream precipitation of calcite, are well understood in continental caves, there have been few investigations of dripwater Element/Ca (X/Ca) evolution in coastal marine caves where seasalt can have a strong influence on the incoming Mg/Ca ratio. We instrumented a marine cave on the remote South Pacific island of Niue to record daily cave microclimate, as well as weekly-integrated drip rates, dripwater oxygen and hydrogen isotopes, and dripwater chemistry over a period of twenty-two months. Using chloride as a conservative tracer for sea-spray, we calculate that seasalt input accounts for a large portion of dripwater Na, SO4, and Mg (89%, 93%, and 85% respectively) and a smaller portion of the Ca and Sr (19% and 17%). During the second year of this study a gradual decrease (by ∼18%) in dripwater chlorinity was observed, suggesting that an epikarst-hosted seasalt aerosol inventory was being diluted over time. Minor element to calcium ratios for B, K, Cl, SO4, Mg, Na, Sr, and Fe all strongly covary over the observation period, suggesting that although sea-spray plays a significant role in modulating incoming drip chemistry, prior calcite precipitation (PCP) dominates chemical evolution within the epikarst. During a prolonged drought episode, evaporative enrichments in dripwater δD and δ18O (+4‰ and 0.5‰, respectively) were observed to coincide with increased cation and anion concentrations, strong Ca removal via PCP, and increases in Sr/Ca and Mg/Ca ratios (28% and 34%, respectively), suggesting that concomitant enrichment in speleothem δ18O and X/Ca ratios may be interpreted as multi-proxy evidence for dry climate conditions. We use modern dripwater chemistry and empirical water-calcite distribution coefficients to predict a range of stalagmite X/Ca ratios. We then forward model a number of scenarios that could modulate stalagmite chemistry, including increased/decreased seasalt input and changing dripwater flow path through calcite, dolomite, and aragonite bedrock. One major implication from this study is that even if PCP and flow path lithology remain constant over time, changing seasalt input can drive stalagmite Mg/Ca and Sr/Ca ratios away from PCP-controlled covariation, and lead to strongly varying Sr/Mg ratios. Thus in order to interpret coastal cave stalagmite X/Ca records accurately, it is necessary to estimate seasalt input and analyze parent drip and bedrock chemistry to quantify the influence of each contributing process.

  13. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    PubMed

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  14. Chemical study of the metal-rich globular cluster NGC 5927

    NASA Astrophysics Data System (ADS)

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  15. Electrochemical performances of Al-0.5Mg-0.1Sn-0.02In alloy in different solutions for Al-air battery

    NASA Astrophysics Data System (ADS)

    Jingling, Ma; Jiuba, Wen; Hongxi, Zhu; Quanan, Li

    2015-10-01

    In this research, the corrosion behavior and the electrochemical performances of Al-0.5Mg-0.1Sn-0.02In (wt.%) alloy have been investigated in 2 M NaCl, 4 M NaOH ethanol-10% water, 4 M NaOH solutions. The results show that the optimal electrochemical properties are obtained in 4 M NaOH ethanol-water solutions, and the alloy has higher anodic utilization and lower self-corrosion rate in the solutions compared to 2 M NaCl or 4 M aqueous NaOH. SEM and EIS results of the alloy are in good agreement with corrosion characteristics. By comparison with the electrochemical performance of Zn in 4 M NaOH solutions, the feasibility of using Al-0.5Mg-0.1Sn-0.02In alloy as anode material for a high power density Al-air battery in 4 M NaOH ethanol-water solutions is demonstrated.

  16. The composition of primary carbonate melts and their evolution through wallrock reaction in the mantle

    NASA Astrophysics Data System (ADS)

    Dalton, John A.; Wood, Bernard J.

    1993-10-01

    We have experimentally determined the composition of near-soldus melts from depleted natural Iherzolite at pressures greater than 25 kbar. The melts are carbontitic with low alkali contents and Ca/(Ca + Mg) ratios of 0.72-0.74. Primary carbonate melts from fertile mantle are more sodic with Ca/(Ca + Mg + Fe + Na) of 0.52 and Na/(Na + Ca + Mg + Fe) up to 0.15. The melt compositions are similar to many natural magnesio-carbonatites, but differ substantially from the more abundant calcio-carbonatites. Experimentally we find that calcio-carbonatites are produced by wallrock reaction of primary melts with harzburgite at pressures of less than 25 kbar. At 15 kbar we have obtained a Ca/(Ca + Mg + Fe + Na) ratio of up to 0.87 and very low Na contents generated by this process. Values of Ca/(Ca + Mg + Fe + Na) up to 0.95 are possible at lower pressures. Low pressure wallrock reaction of primary carbonate melt with fertile Iherzolite produces melts richer in Na2CO3, corresponding to possible parental magmas of natrocarbonatite. Wallrock reaction at low pressures transforms the bulk peridotite composition from that of a harzburgite or Iherzolite to wehrlite. Examples of such carbonatite metasomatism are now widely documented. Our experiments show that the calcium content of olivine and the jadeite content of clinopyroxene may be used to constrain the Ca and Na contents respectively of the cabonatite melt responsible for metasomatism.

  17. Elemental Fractionation During Rapid Accretion of the Moon Triggered by a Giant Impact

    NASA Technical Reports Server (NTRS)

    Abe, Y.; Zahnle, K. J.; Hashimoto, A.

    1998-01-01

    Recently, Ida et al. made an N-body simulation of lunar accretion from a protolunar disk formed by a giant impact. One of their important conclusions is that the accretion time of the Moon is as short as one month. Such rapid accretion is a necessary consequence of the high surface density of a lunar mass disk accreting just beyond the Roche limit (about 3Re); the Safronov accretion time (a few days) is even shorter. The energy of accretion always exceeds the gravitational binding energy of newly arriving matter. Hence, without an energy sink, the accreting body is thermally unstable. For the Earth and other planets, radiation acts as the sink. However, in such a short accretion time, the Moon cannot radiate the accretional energy. Even radiating at a silicate cloudtop temperature of roughly 2000 K, it would take more than 100 yr to radiatively cool the Moon. The plausible alternative heat sinks are heat capacity, latent heat of vaporization, and thermal escape of the gas to space (i.e., hydrodynamic blowoff). The latter becomes plausible for the Moon because the scale height at 2000 K (about 300 km) is a significant fraction of the lunar radius. The early stages of lunar (or "lunatesimal") growth release relatively little energy and can occur simply by heating the material, especially if the accreting material is originally cold. However, the material is unlikely to be cold, because the disk itself is hot and cooling time is long, while the lunar accretion time iss very short. Therefore, the moon is likely to accrete condensed material just after it condenses. Accordingly, the newly accreted material will be on the verge of vaporization and will have very little heat capacity to spare. The immediate heat sink is the latent heat of vaporization. Most of the vapor will escape from the moon, because the thermal energy in the gas can be used to drive escape. However, vaporization is generally incomplete. the latent heat of vaporization exceeds the energy of accretion. Viewed globally, the accretional energy is about half the energy required to vaporize the entire Moon. Thus to first approximation, half of the Moon-forming material can be vaporized and lost during accretion. During this process, we would expect preferential loss of relatively volatile elements. Escape will retard the rate of accretion. To test these ideas, we computed detailed models of the thermal state of the Moon during accretion. We pay special attention to the structure of the silicate atmosphere and its loss rate by calculating the chemical species at equilibrium. We used the PHEQ program which includes 12 elements (H,O,C,Mg,Si,Fe,Ca, Al, Na,Ti, and N.) and 272 compounds (including ionic compounds). Because of the large heats of vaporization and ionization, the adiabatic atmosphere is nearly isothermal and massive escape is expected. The pressure of the atmosphere is determined by the balance between vaporization of a accreting material and escape. If the accretion time is one month, a 0.3 bar atmosphere is expected. Elemental fractionation depends strongly on the temperature of the accreting material. The initial temperature of the material can be estimated from the condition of gravitational instability in the protolunar disk. As shown by Ida et al, accretion starts when gravitational instability occurs when more than 99% of the material condenses. At this point, all of Ca, Al, Si, Mg, and Fe, and 95% of Na (probably K also), are in condensed phases. If the moon is formed from the accretion of such material, volatile elements such as Na, and K are retained by the moon only early in accretion. At later times, K and Na are lost and a fraction of the MG, Si and Fe is lost. However, refractory elements such as Ca and Al are retained and so achieve a mild degree (factor 2) of superabundance.

  18. Correlated Geophysical, Geochemical and Volcanological Manifestations of Plume-Ridge Interaction Along the Galápagos Spreading Center, 90.5-98° W

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Detrick, R. S.; Canales, J. P.; Ito, G.; Behn, M.; Blacic, T.; Cushman, B.; Dixon, J.

    2001-12-01

    As the Galápagos plume is approached from the west along the Galápagos Spreading Center there are systematic increases in crustal thickness, and K/Ti and H2O content of recovered lavas. These increases correlate with progressive transitions from axial deep to axial high morphology along with decreases in axial depth, residual mantle Bouguer gravity anomaly (MBA), average swell depth, average lava Mg # (atomic MgO/(MgO+FeO)), and the frequency of isolated axial seamounts. Although K/Ti, H2O and Nb/Zr (likely indicators of plume source enrichment) show step-wise increases across the 95.5° W propagating offset, trends in crustal thickness, axial bathymetry, MBA, swell depth, and seamount frequency generally show either no effect or only local perturbations to regional trends. East of ~92.7° W, sharp increases in K/Ti, Nb/Zr, H2O, and Na8 (Na2O corrected for fractionation to 8 wt % MgO) coincide with the transition to axial high morphology, a rapid shoaling of axial magma chamber (AMC) seismic reflectors, and thinning of seismic layer 2A. Maximum values in K/Ti (>0.4), Nb/Zr (>0.10), H2O (>1.0 wt %), Na8 ( ~3.2) and crustal thickness (7.9 km), and minima in axial depth (<1700 m), Mg # (<40), and Ca8/Al8 (<0.7) all occur between 91.25° W and 92° W, whereas the minimum MBA (-25 mGal) and AMC depth ( ~0.5 sec 2-way travel time) are found near 92.25° W. These general correlations can be modeled by the combined effects of changes in source composition and melt generation processes on the thickness, composition and structure of the oceanic crust. Key elements of this model include: (1) compensation of the swell is partitioned between crustal thickening (2.3 km) between 98° W and 90.5° W [Ito et al., this meeting] and thermal and compositional buoyancy of the mantle [Canales et al., this meeting]; (2) increased melt production near the hotspot is associated with lower mean extents of melting from a larger region of an increasingly hydrous, and other incompatible element-enriched mantle [Cushman et al., this meeting]; and (3) higher magma supply results in stabilization of axial magma chambers at increasingly shallow crustal depths [Blacic et al., this meeting] and the dominance of fissure-fed rather than point-source volcanism. The hotspot-related effect of increased magma supply on axial morphology, AMC depth and volcanic style along this intermediate-spreading ridge is similar to that between slow and faster spreading mid-ocean ridges.

  19. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling

    USGS Publications Warehouse

    Stewart, Heather; Noakes, David L. G.; Cogliati, Karen M.; Peterson, James T.; Iversen, Martin H.; Schreck, Carl B.

    2016-01-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg2+) and sodium (Na+) ions, cortisoland osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg2+ and Na+concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg2+ and osmolality, negatively affected cortisol, and had no effect on Na+ concentrations. The difference of temporal trends in plasma Mg2+ and Na+ suggests that Mg2+ may be more sensitive to physiological changes and responds more rapidly than Na+. When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath.

  20. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling.

    PubMed

    Stewart, Heather A; Noakes, David L G; Cogliati, Karen M; Peterson, James T; Iversen, Martin H; Schreck, Carl B

    2016-02-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg(2+)) and sodium (Na(+)) ions, cortisol and osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg(2+) and Na(+) concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg(2+) and osmolality, negatively affected cortisol, and had no effect on Na(+) concentrations. The difference of temporal trends in plasma Mg(2+) and Na(+) suggests that Mg(2+) may be more sensitive to physiological changes and responds more rapidly than Na(+). When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Synthesis, crystal structure and spectroscopy properties of Na 3AZr(PO 4) 3 ( A=Mg, Ni) and Li 2.6Na 0.4NiZr(PO 4) 3 phosphates

    NASA Astrophysics Data System (ADS)

    Chakir, M.; El Jazouli, A.; de Waal, D.

    2006-06-01

    Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates were prepared at 750 °C by coprecipitation route. Their crystal structures have been refined at room temperature from X-ray powder diffraction data using Rietveld method. Li 2.6Na 0.4NiZr(PO 4) 3 was synthesized through ion exchange from the sodium analog. These materials belong to the Nasicon-type structure. Raman spectra of Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates present broad peaks in favor of the statistical distribution in the sites around PO 4 tetrahedra. Diffuse reflectance spectra indicate the presence of octahedrally coordinated Ni 2+ ions.

  2. Evaluation of Macro- and Microelement Levels in Black Tea in View of Its Geographical Origin.

    PubMed

    Brzezicha-Cirocka, Justyna; Grembecka, Małgorzata; Ciesielski, Tomasz; Flaten, Trond Peder; Szefer, Piotr

    2017-04-01

    The aim of this study was to evaluate the elemental composition of black tea samples and their infusions in view of their geographical origin. In total, 14 elements were analyzed, 13 (Ca, K, Mg, Na, Mn, Fe, Zn, Cu, Cr, Ni, Co, Cd, and Pb) by flame atomic absorption spectrometry, and P by UV-Vis spectrometry, after mineralization of samples. It was found that K was the most abundant macroelement in the analyzed samples, whereas among microelements, the highest concentration was found for Mn. Based on the obtained data, the percentage of elements leached into the infusions as well as the daily elemental intake from tea were calculated. The daily intake from tea was compared to the recommended daily allowances (RDAs), and the highest percentages of the RDAs were found for Mn (15 %) and Co (10 %). To study the relations between elemental composition and country of origin of samples, factor analysis and cluster analysis were applied. These multivariate techniques proved to be efficient tools able to differentiate samples according to their provenance as well as plantation within the common regions.

  3. Chemical Compositions of Kinematically Selected Outer Halo Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  5. Spectral identifiers from roasting process of Arabica and Robusta green beans using Laser-Induced Breakdown Spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Wirani, Ayu Puspa; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee (Coffea spp.) is one of the most widely consumed beverages in the world. World coffee consumption is around 70% comes from Arabica, 26% from Robusta , and the rest 4% from other varieties. Coffee beverages characteristics are related to chemical compositions of its roasted beans. Usually testing of coffee quality is subjectively tasted by an experienced coffee tester. An objective quantitative technique to analyze the chemical contents of coffee beans using LIBS will be reported in this paper. Optimum experimental conditions was using of 120 mJ of laser energy and delay time 1 μs. Elements contained in coffee beans are Ca, W, Sr, Mg, Na, H, K, O, Rb, and Be. The Calcium (Ca) is the main element in the coffee beans. Roasting process will cause the emission intensity of Ca decreased by 42.45%. In addition, discriminant analysis was used to distinguish the arabica and robusta variants, either in its green and roasted coffee beans. Observed identifier elements are Ca, W, Sr, and Mg. Overall chemical composition of roasted coffee beans are affected by many factors, such as the composition of the soil, the location, the weather in the neighborhood of its plantation, and the post-harvesting process of the green coffee beans (drying, storage, fermentation, and roasting methods used).

  6. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Smith, David Burl; Zielinski, Robert A.; Taylor, Howard E.

    1982-01-01

    Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1.980,eruption of Mount St. Helens volcano, Washington, shows that Ca 2+, Na+, Mg+, SO4 2-, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F, Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may co-accumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.

  8. Sodium content of bread from bakeries and traditional markets in Maputo, Mozambique.

    PubMed

    Silva, Vânia; Padrão, Patrícia; Novela, Célia; Damasceno, Albertino; Pinho, Olívia; Moreira, Pedro; Lunet, Nuno

    2015-03-01

    The Na content of bread is one of the most common targets of initiatives to reduce Na intake worldwide. Assessing the Na content of staple foods is of major relevance in Mozambique, given the high burden of hypertension in this setting. We aimed to estimate the Na content of white bread available in different bakeries and markets in Maputo. A cross-sectional study of the Na content of white bread available for sale at twenty-five bakeries and markets in Mozambique. Flame photometry was used to quantify the Na content of the bread. The percentage of samples meeting manufacturer Na targets from South Africa and six countries from other regions, selected as benchmarks, was computed. Maputo, Mozambique. Three loaves of white bread from each selected bakery/market. The mean Na content of bread was 450.3 mg/100 g (range: 254.9-638.3 mg/100 g), with no significant differences between bakeries and traditional markets. Most samples (88 %) did not meet the regulation in South Africa (≤ 380 mg/100 g). When considering the targets from other countries (range: ≤ 360-550 mg/100 g), the prevalence of non-compliance varied between 8 % and 92 %. There were no significant differences in the price of bread with Na content below and above the targets. The content of Na in bread varies widely in Mozambique, reaching high values in a high proportion of the bakeries and markets in Maputo. Measures to regulate the Na content in bread may contribute to a reduction in Na intake and improved health at the population level.

  9. Acute toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters, to 13 aquatic species as defined in the laboratory

    USGS Publications Warehouse

    Harper, David D.; Farag, Aïda M.; Skaar, Don

    2014-01-01

    Water produced during coal bed natural gas (CBNG) extraction in the Powder River Structural Basin of Wyoming and Montana (USA) may contain concentrations of sodium bicarbonate (NaHCO3) of more than 3000 mg/L. The authors evaluated the acute toxicity of NaHCO3, also expressed as bicarbonate (HCO3−), to 13 aquatic organisms. Of the 13 species tested, 7 had a median lethal concentration (LC50) less than 2000 mg/L NaHCO3, or 1300 mg/L HCO3−. The most sensitive species were Ceriodaphnia dubia, freshwater mussels (Lampsilis siliquoidea), pallid sturgeon (Scaphirhynchus albus), and shovelnose sturgeon (Scaphirhynchus platorynchus). The respective LC50s were 989 mg/L, 1120 mg/L, 1249 mg/L, and 1430 mg/L NaHCO3, or 699 mg/L, 844 mg/L, 831 mg/L, and 1038 mg/L HCO3−. Age affected the sensitivity of fathead minnows, even within life stage. Two days posthatch, fathead minnows were more sensitive to NaHCO3 and HCO3− compared with 4-d-old fish, even though fish up to 14 d old are commonly used for toxicity evaluations. The authors recommend that ion toxicity exposures be conducted with organisms less than 24 h posthatch to ensure that experiments document the most sensitive stage of development. The results of the present study, along with historical and current research regarding the toxicity of bicarbonate, may be useful to establish regulatory standards for HCO3−.

  10. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    PubMed

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Simultaneous estimation of intracellular free Mg2+ and pH by use of a new pH-dependent dissociation constant of MgATP.

    PubMed

    Nakayama, Shinsuke; Nomura, Hideki; Smith, Lorraine M; Clark, Joseph F

    2002-06-01

    In the present technical note for 31P-NMR, we used a new pH-dependent dissociation constant of MgATP, and re-estimated changes in the intracellular free Mg2+ concentration and pH from the chemical shifts of beta- and gamma-ATP during Na+-removal in smooth muscle. We confirmed the role of Na+ - Mg2+ exchange.

  12. Thermodynamic modeling of phase relations and metasomatism in shear zones

    NASA Astrophysics Data System (ADS)

    Goncalves, P.; Oliot, E.; Marquer, D.

    2009-04-01

    Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel granodiorite (Swiss Alps). Fourteen samples have been taken along a 80 meter-wide strain gradient from the undeformed granodiorite protolith to the ultramylonitic zone. The metastable magmatic assemblage consists of oligoclase (50 vol%), quartz ( 20 vol%), K-feldspar (17 vol%), and biotite (13 %). With increasing strain, K-feldspar and oligoclase rapidly disappear to produce albite and epidote porphyroblast (up to 45 and 5 vol% respectively) with phengite in shear planes (15 vol%). In the mylonite and ultramylonite, magmatic phases have been completely recrystallized and the metamorphic albite volume decreases down to 25 vol% whereas phengite constitutes up to 30 vol% of the rock. Epidote is absent in the ultramylonite. In localized shear bands, the metamorphic assemblage consists of phengite, chlorite, biotite and quartz. Mass balance calculations show that the ultramylonite is enriched in MgO (up to 130%) while CaO and Na2O are remove (80% and 45% respectively). However, mass transfer is even stronger in the chlorite-bearing shear bands, where CaO and Na2O have been completely leached out. Chemical potential pseudosections are constructed using the bulk composition of the unaltered granodiorite, with K2O, FeO, Al2O3 and SiO2 content remaining constant. Deformation occurred under water-saturated conditions at 6 kbar and 450°C. MgO, CaO and Na2O are considered as "perfectly mobile" components and therefore their chemical potentials, which is fixed by the externally-derived fluid, control the stability of the phases. μMgO vs μCaO and μMgO vs μNa2O diagrams, show that the breakdown of a Kf-ab-ep assemblage into phengite and the subsequent crystallization of chlorite require the introduction of a fluid with a μCaO and μNa2O significantly lower than in the unaltered metamorphic assemblage (Kf-ab-ep-Kf-Bio-q). Equalizing the chemical potential gradient of CaO and Na2O, established between the fluid and the metamorphic assemblage, is achieved by the complete removal of CaO and Na2O. The most striking result is that chemical potential diagram predicts that the loss of CaO and Na2O and the crystallization of chlorite-bearing assemblage at the expense of Kf-ep-ab imply a gain of MgO to reach equilibrium: "Mg-metasomatism" is therefore controlled and induced by the metamorphic assemblage. Finally fluid-rock interactions and mass transfer result in an increase in phyllosilicates in the shear zone from 13 to 32 vol%, which should strongly enhance the strain localization process. To conclude, our approach allows to predict and to quantify the mineralogical changes induced by fluid-rock interactions in a shear zone for any bulk composition or P-T composition.

  13. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun

    2015-05-01

    NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

  14. Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for determination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Arslan, Zikri; Oymak, Tulay; White, Jeremy

    2018-05-30

    In this paper, we report an improved magnesium hydroxide, Mg(OH) 2 , coprecipitation method for the determination of 16 trace elements (Al, V, Cr, Mn, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sb, Sn and Pb) and 18 rare earth elements (REEs), including Sc, Y, U and Th in seawater and estuarine water samples. The procedure involves coprecipitation of the trace elements and REEs on Mg(OH) 2 upon addition of a small volume of triethylamine (TEA) followed by analysis of the dissolved pellet solutions by inductively coupled plasma mass spectrometry (ICP-MS). Three-step sequential coprecipitation was carried out on 10 mL aliquots of seawater to eliminate the matrix ions and to preconcentrate the analytes of interest into a 1 mL final volume. Spike recoveries varied from 85% (Th) to 105% (Y). Calcium (Ca), sodium (Na) and potassium (K) matrices were virtually eliminated from the analysis solutions. Collision reaction interface (CRI) technology utilizing H 2 and He gases was employed to determine its effectiveness in removing the spectral interferences originating from the residual Mg matrix, TEA and plasma gases. H 2 was more effective than He in reducing spectral interferences from TEA and plasma gases. Limits of detection (LODs) ranged from 0.01 ng L -1 (Ho) to 72 ng L -1  (Al). The method was validated by using certified seawater (CASS-4) and estuarine water (SLEW-3) reference materials. Precision for five (n = 5) replicate measurements were between 1.2% (Pr) and 18% (Lu). Fe, Pb, Sn, and Zn impurities in TEA were significant in comparison to the levels in CASS-4 and SLEW-3, while relatively high background signals impacted determinations of low levels of Sc and Th. The effects of these hurdles on precision and accuracy were alleviated by measuring these elements in spiked CASS-4 and SLEW-3. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Gustafsson, B.

    1998-04-01

    We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.

  16. High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte.

    PubMed

    Tian, Jing; Cao, Dunping; Zhou, Xuejun; Hu, Jiulin; Huang, Minsong; Li, Chilin

    2018-04-24

    A magnesium battery is a promising candidate for large-scale transportation and stationary energy storage due to the security, low cost, abundance, and high volumetric energy density of a Mg anode. But there are still some obstacles retarding the wide application of Mg batteries, including poor kinetics of Mg-ion transport in lattices and low theoretical capacity in inorganic frameworks. A Mg-Li dual-salt electrolyte enables kinetic activation by dominant intercalation of Li-ions instead of Mg-ions in cathode lattices without the compromise of a stable Mg anode process. Here we propose a Mg-organic battery based on a renewable rhodizonate salt ( e. g., Na 2 C 6 O 6 ) activated by a Mg-Li dual-salt electrolyte. The nanostructured organic system can achieve a high reversible capacity of 350-400 mAh/g due to the existence of high-density carbonyl groups (C═O) as redox sites. Nanocrystalline Na 2 C 6 O 6 wired by reduced graphene oxide enables a high-rate performance of 200 and 175 mAh/g at 2.5 (5 C) and 5 A/g (10 C), respectively, which also benefits from a high intrinsic diffusion coefficient (10 -12 -10 -11 cm 2 /s) and pesudocapacitance contribution (>60%) of Na 2 C 6 O 6 for Li-Mg co-intercalation. The suppressed exfoliation of C 6 O 6 layers by a firmer non-Li pinning via Na-O-C or Mg-O-C and a dendrite-resistive Mg anode lead to a long-term cycling for at least 600 cycles. Such an extraordinary capacity/rate performance endows the Mg-Na 2 C 6 O 6 system with high energy and power densities up to 525 Wh/kg and 4490 W/kg (based on active cathode material), respectively, exceeding the level of high-voltage insertion cathodes with typical inorganic structures.

  17. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    PubMed Central

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan

    2011-01-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756

  18. Development of certified reference materials for electrolytes in human serum (GBW09124-09126).

    PubMed

    Feng, Liuxing; Wang, Jun; Cui, Yanjie; Shi, Naijie; Li, Haifeng; Li, Hongmei

    2017-05-01

    Three reference materials, at relatively low, middle, and high concentrations, were developed for analysis of the mass fractions of electrolytes (K, Ca, Na, Mg, Cl, and Li) in human serum. The reference materials were prepared by adding high purity chloride salts to normal human serum. The concentration range of the three levels is within ±20% of normal human serum. It was shown that 14 units with duplicate analysis is enough to demonstrate the homogeneity of these candidate reference materials. The statistical results also showed no significant trends in both short-term stability test for 1 week at 40 °C and long-term stability test for 14 months. The certification methods of the six elements include isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), inductively coupled plasma optical emission spectroscopy (ICP-OES), atomic absorption spectroscopy (AAS), ion chromatography (IC), and ion-selective electrode (ISE). The certification methods were validated by international comparisons among a number of national metrology institutes (NMIs). The combined relative standard uncertainties of the property values were estimated by considering the uncertainties of the analytical methods, homogeneity, and stability. The range of the expanded uncertainties of all the elements is from 2.2% to 3.9%. The certified reference materials (CRMs) are primarily intended for use in the calibration and validation of procedures in clinical analysis for the determination of electrolytes in human serum or plasma. Graphical Abstract Certified reference materials for K, Ca, Mg, Na, Cl and Li in human serum (GBW09124-09126).

  19. PM2.5 pollution from household solid fuel burning practices in central India: 1. Impact on indoor air quality and associated health risks.

    PubMed

    Matawle, Jeevan Lal; Pervez, Shamsh; Shrivastava, Anjali; Tiwari, Suresh; Pant, Pallavi; Deb, Manas Kanti; Bisht, Diwan Singh; Pervez, Yasmeen F

    2017-10-01

    PM 2.5 concentrations were measured in residential indoor environment in slums of central India during 2012-2013. In addition, a suite of chemical components including metals (Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb, Mo, Se, Sb, Na, Mg, K and Hg), ions (Na + , Mg 2+ , K + , Ca 2+ , F - , Cl - , NH 4 + , NO 3 - and SO 4 2- ) and carbon (OC and EC) were analyzed for all samples. Indoor PM 2.5 concentrations were found to be several folds higher than the 24-h national ambient air quality standard (60 µg/m 3 ) for PM 2.5 in India, and the concentrations were found to vary from season to season. Mass closure was attempted for PM 2.5 data, and close to 100 % mass was accounted for by organic matter, crustal material, secondary organic and inorganic aerosols and elemental carbon. Additionally, carcinogenic and non-carcinogenic health risks associated with exposure to indoor PM 2.5 (inhalation, dermal and ingestion) were estimated and while exposures associated with dermal contact and ingestion were found to be within the acceptable limits, risk associated with inhalation exposure was found to be high for children and adults. Elements including Al, Cd, Co, Cr, Mn, Ni, As and Pb were present in high concentrations and contributed to carcinogenic and non-carcinogenic risks for residents' health. Results from this study highlight the need for efforts to reduce air pollution exposure in slum areas.

  20. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  1. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars

    NASA Astrophysics Data System (ADS)

    Clarkson, O.; Herwig, F.; Pignatari, M.

    2018-02-01

    We have investigated a highly energetic H-ingestion event during shell He burning leading to H-burning luminosities of log (LH/L⊙) ˜ 13 in a 45 M⊙ Pop III massive stellar model. In order to track the nucleosynthesis which may occur in such an event, we run a series of single-zone nucleosynthesis models for typical conditions found in the stellar evolution model. Such nucleosynthesis conditions may lead to i-process neutron densities of up to ˜1013 cm-3. The resulting simulation abundance pattern, where Mg comes from He burning and Ca from the i process, agrees with the general observed pattern of the most iron-poor star currently known, SMSS J031300.36-670839.3. However, Na is also efficiently produced in these i-process conditions, and the prediction exceeds observations by ˜2.5 dex. While this probably rules out this model for SMSS J031300.36-670839.3, the typical i-process signature of combined He burning and i process of higher than solar [Na/Mg], [Mg/Al], and low [Ca/Mg] is reproducing abundance features of the two next most iron-poor stars HE 1017-5240 and HE 1327-2326 very well. The i process does not reach Fe which would have to come from a low level of additional enrichment. i process in hyper-metal-poor or Pop III massive stars may be able to explain certain abundance patterns observed in some of the most metal-poor CEMP-no stars.

  2. Effects of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in Wistar rats.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Adebayo, Joseph O; Olatunji, Victoria A

    2012-09-01

    To investigate the effects of oral administration of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in rats. The 25 and 50 mg/(kg·d) of aqueous extracts of H. sabdariffa were respectively given to rats in the experimental groups for 28 d, and rats in the control group received an appropriate volume of distilled water as vehicle. Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in the kidney were assayed by spectrophotometric method. Administrations of 25 and 50 mg/(kg·d) of aqueous extract of H. sabdariffa significantly decreased the Ca(2+)-Mg(2+)-ATPase activity in the kidney of rats (P<0.05). However, the renal Na(+)-K(+)-ATPase activity of the experimental rats was not affected by either dose of the extract. And the plasma Na(+), K(+) and Ca(2+) levels of the experimental rats had no significant changes. Administration of either dose of the extract did not result in any significant changes in body and kidney weights, the concentrations of plasma albumin and total protein, and alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase activities. However, concentrations of creatinine and urea were significantly reduced by 50 mg/kg of the extract (P<0.05). The present study indicates that oral administration of aqueous extract of H. sabdariffa may preserve the renal function despite a decreased renal Ca(2+)-Mg(2+)-ATPase activity.

  3. Major and trace element geochemistry and background concentrations for soils in Connecticut

    USGS Publications Warehouse

    Brown, Craig; Thomas, Margaret A.

    2014-01-01

    Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The <2-millimeter fraction of each sample was analyzed for 44 elements by methods that yield the total or near-total elemental content. Sample sites were characterized by glacial setting, underlying bedrock geology, and soil type. These spatial data were used with element concentrations in the C-horizon to relate geologic factors to soil chemistry. Concentrations of elements in C-horizon soils varied with grain size in surficial glacial materials and with underlying rock types, as determined using nonparametric statistical procedures. Concentrations of most elements in C-horizon soils showed a positive correlation with silt and (or) clay content and were higher in surficial materials mapped as till, thick till, and (or) fines. Element concentrations in C-horizon soils showed significant differences among the underlying geologic provinces and were highest overlying the Grenville Belt and (or) the Grenville Shelf Sequence Provinces in western CT. These rocks consist mainly of carbonates and the relatively high element concentrations in overlying soils likely result from less influence of dilution by quartz compared to other provinces. Element concentrations in C-horizon soils in CT were compared with those in samples from other New England states overlying similar lithologic bedrock types. The upper range of As concentrations in C-horizon soils overlying the New Hampshire-Maine (NH-ME) Sequence in CT was 15 mg/kg, lower than the upper range of 24 mg/kg in C-horizon soils overlying the same sequence in ME. In CT, U concentration means were significantly higher in C-horizon soils overlying Avalonian granites, and U concentrations ranged as high as 14 mg/kg, compared to those in C-horizon soil samples collected from other New England states, which ranged as high as 6.1 mg/kg in a sample in NH overlying the NH-ME Sequence. Element concentrations in C-horizon soils in CT were compared with those in samples collected from shallower depths. Concentrations of most major elements were highest in C-horizon soil samples, including Al, Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.

  4. High resolution trace element records from the deep sea hydrocoral Stylaster venustus: Implications for stylasterids as a paleoceanographic archive

    NASA Astrophysics Data System (ADS)

    Aranha, R. S.; Layne, G. D.; Edinger, E.; Piercey, G.

    2009-12-01

    Stylasterids are one of the lesser known groups of deep sea corals, but appear to have potential to serve as viable geochemical archives for reconstructing temperature, salinity and nutrient regimes in the deep ocean. This group of hydrocorals are present in most, if not all of the world’s major oceans. Stylasterid species dominantly have aragonitic skeletons, with a small percentage of species having calcitic skeletons (1). A recent study on the biomineralization of a deep sea stylasterid (Errina dabneyi) has revealed that during the organism’s growth, a steady dissolution and reprecipitation of skeletal material occurs in the central canals of the skeleton. This skeletal modification likely alters the stable isotope and/or trace element profiles of these corals, making them potentially less reliable as geochemical archives, depending on the scale of sampling (2). Recent specimens of Stylaster venustus were collected in July, 2008 from the Olympic Coast National Marine sanctuary off the coast of Washington at depths of 200 - 350 m. We used a Cameca IMS 4f Secondary Ion Mass Spectrometer (SIMS) to perform high spatial resolution (<25 µm) spot analyses of Sr/Ca, Mg/Ca and Na/Ca in detailed traverses across the basal cross-sections from three of these specimens. We identified the remineralized material by remnant porous texture and/or a substantially different trace element composition. Spot analyses corresponding to the remineralized material were eliminated from the dataset. In all three specimens we observed a pronounced inverse correlation (r = -0.36) of Mg/Ca and Sr/Ca profiles throughout the length of the transects . A positive correlation (r =0.46) between Na/Ca and Mg/Ca profiles was also noted in two of the specimens analyzed. These correlations strongly imply that the coral skeleton is recording either cyclical or episodic variations in temperature, with possible overprinting from other environmental variation. The exact relationship between the visible banding in the skeletal cross-section and any cyclicity of trace element profiles is currently ambiguous. However, our analyses demonstrate that microanalytical techniques are a viable means of extracting trace element records from these corals. Further statistical analysis of the trace element transects, in combination with a variety of imaging analyses of the same samples, should help us elucidate what portion of the geochemical signal is temperature dependent and what magnitude of temperature change is actually being recorded. Correlating these trace element profiles with instrumental temperature records will help confirm that useful geochemical archives are preserved by stylasterid skeletons. References: (1) Cairns SD and Macintyre IG. 1992. Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria:Hydrozoa).Palaios 7: 96-107. (2) Wisshak M, López Correa M, Zibrowius H, Jakobsen J & Freiwald. (in press). Skeletal reorganisation affects geochemical signals, exemplified in the stylasterid hydrocoral Errina dabneyi (Azores Archipelago). Marine Ecology Progress Series.

  5. Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry

    DOE PAGES

    Yin, Jiefu; Takeuchi, Esther S.; Takeuchi, Kenneth J.; ...

    2016-08-12

    We demonstrated the synthesis and characterization of Mg-birnessite (Mg xMnO 2) with different crystallite sizes, prepared though low temperature precipitation and ion exchange. The influence of crystallite size on electrochemical performance of Mg-birnessite was studied for the first time, where material with smaller crystallite size was demonstrated to have enhanced capacity and rate capability in Li ion, Na ion, and Mg ion based electrolytes. Cation diffusion using GITT type testing demonstrated the ion diffusion coefficient of Mg 2+ was ~10× lower compared with Li + and Na +. This work illustrates that tuning of inorganic materials properties can lead tomore » significant enhancement of electrochemical performance in lithium, sodium as well as magnesium based batteries for materials such as Mg-birnessite and provides a deliberate approach to improve electrochemical performance.« less

  6. Comparison of the element composition in several plant species and their substrate from a 1500000-km2 area in Northern Europe.

    PubMed

    Reimann, C; Koller, F; Frengstad, B; Kashulina, G; Niskavaara, H; Englmaier, P

    2001-10-20

    Leaves of 9 different plant species (terrestrial moss represented by: Hylocomium splendens and Pleurozium schreberi; and 7 species of vascular plants: blueberry, Vaccinium myrtillus; cowberry, Vaccinium titis-idaea; crowberry, Empetrum nigrum; birch, Betula pubescens; willow, Salix spp.; pine, Pinus sylvestris and spruce, Picea abies) have been collected from up to 9 catchments (size 14-50 km2) spread over a 1500000 km2 area in Northern Europe. Soil samples were taken of the O-horizon and of the C-horizon at each plant sample site. All samples were analysed for 38 elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Th, Tl, U, V, Y, Zn and Zr) by ICP-MS, ICP-AES or CV-AAS (for Hg-analysis) techniques. The concentrations of some elements vary significantly between different plants (e.g. Cd, V, Co, Pb, Ba and Y). Other elements show surprisingly similar levels in all plants (e.g. Rb, S, Cu, K, Ca, P and Mg). Each group of plants (moss, shrubs, deciduous and conifers) shows a common behaviour for some elements. Each plant accumulates or excludes some selected elements. Compared to the C-horizon, a number of elements (S, K, B, Ca, P and Mn) are clearly enriched in plants. Elements showing very low plant/C-horizon ratios (e.g. Zr, Th, U, Y, Fe, Li and Al) can be used as an indicator of minerogenic dust. The plant/O-horizon and O-horizon/C-horizon ratios show that some elements are accumulated in the O-horizon (e.g. Pb, Bi, As, Ag, Sb). Airborne organic material attached to the leaves can thus, result in high values of these elements without any pollution source.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheat, C.G.; Mottl, M.J.

    Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. The authors have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures remove Na, K, Li, Rb, Mg, TCO{sub 2}, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions withmore » the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58 C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes form seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. The authors use the Baby Bare spring water to estimate upper limits on the global fluxes of 14 elements at warm ridge-flank sites such as Baby Bare. Maximum calculated fluxes of Mg, Ca, sulfate, B, and K may equal or exceed 25% of the riverine flux, and such sites may represent the missing, high K/Rb sink required for the K budget.« less

  8. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  9. The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts

    NASA Astrophysics Data System (ADS)

    Li, Mei; Liu, Yaochen; Han, Wei; Wang, Shanshan; Zhang, Milin; Yan, Yongde; Shi, Weiqun

    2015-04-01

    The electrochemical formation of Mg-Al-Y alloys was studied in the LiCl-NaCl-MgCl2 melts by the addition of AlF3 and YCl3 on a molybdenum electrode at 973 K (700 °C). In order to reduce the volatilization of salt solvent in the electrolysis process, the volatile loss of LiCl-NaCl-MgCl2 and LiCl-KCl-MgCl2 melts was first measured in the temperature range from 873 K to 1023 K (600 °C to 750 °C). Then, the electrochemical behaviors of Mg(II), Al(III), Y(III) ions and alloy formation processes were investigated by cyclic voltammetry, chronopotentiometry, and open circuit chronopotentiometry. The cyclic voltammograms indicate that the under-potential deposition of magnesium and yttrium on pre-deposited Al leads to formation of Mg-Al and Al-Y intermetallic compounds. The Mg-Al-Y alloys were prepared by galvanostatic electrolysis in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts and characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectrometry. Composition of the alloys was analyzed by inductively coupled plasma-atomic emission spectrometer, and current efficiency was also determined by the alloy composition.

  10. Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs).

    PubMed

    Han, Shujuan; Wang, Ying; Jing, Qun; Wu, Hongping; Pan, Shilie; Yang, Zhihua

    2015-03-28

    A series of alkali metal magnesium tungstates, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs), were synthesized from a high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Interestingly, Na4Mg(WO4)3 crystallizes in the monoclinic space group C2/c, while K4Mg(WO4)3 having an identical stoichiometry with Na4Mg(WO4)3, exhibits a different framework structure belonging to triclinic symmetry with the space group P1[combining macron]. Isostructural Rb2Mg2(WO4)3 and Cs2Mg2(WO4)3 crystallize in the space group P213 of cubic symmetry and reveal a three dimensional framework composed of isolated WO4 tetrahedra, MgO6 octahedra and RO12 (R = Rb, Cs) polyhedra. The effect of the alkali metal cation size on the framework structures of magnesium tungstate has been discussed in detail. In addition, the infrared spectra, as well as the UV-Vis-NIR diffuse reflectance spectroscopy data, are reported. The first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties.

  11. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters.

    PubMed

    Bartels, J; Hildebrand, N; Nawrocki, M; Kroll, S; Maas, M; Colombi Ciacchi, L; Rezwan, K

    2018-04-25

    Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.

  12. Experimental study of the astrophysically important Na 23 ( α , p ) Mg 26 and Na 23 ( α , n ) Al 26 reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.

    The 23Na(α,p) 26Mg and 23Na(α,n) 26Al reactions are important for our understanding of the 26Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using 4He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the 23Na(α,p) 26Mg and the 23Na(α,n) 26Al reactions are in good agreementmore » with previous experiments and with statistical-model calculations. As a result, the astrophysical reaction rate of the 23Na(α,n) 26Al reaction has been reevaluated and it was found to be larger than the recommended rate.« less

  13. Experimental study of the astrophysically important Na 23 ( α , p ) Mg 26 and Na 23 ( α , n ) Al 26 reactions

    DOE PAGES

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; ...

    2016-12-19

    The 23Na(α,p) 26Mg and 23Na(α,n) 26Al reactions are important for our understanding of the 26Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using 4He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the 23Na(α,p) 26Mg and the 23Na(α,n) 26Al reactions are in good agreementmore » with previous experiments and with statistical-model calculations. As a result, the astrophysical reaction rate of the 23Na(α,n) 26Al reaction has been reevaluated and it was found to be larger than the recommended rate.« less

  14. Antagonistic Effect of Monovalent Cations in Maintenance of Cellular Integrity of a Marine Bacterium1

    PubMed Central

    De Voe, Irving W.; Oginsky, Evelyn L.

    1969-01-01

    The susceptibility of a marine bacterium, designated isolate c-A1, to lysis in distilled water and in salt solutions has been found to be a function of Na+ concentration. Optical densities of cells pre-exposed to 0.05 m MgCl2 were maintained in 1.0 m KCl, whereas those of cells pre-exposed to 1.0 m NaCl were not maintained at any KCl concentration tested. Cells transferred from MgCl2 to low concentrations of NaCl underwent more extensive lysis than did those transferred to distilled water. The degree of disruption of cells transferred to distilled water from mixtures of 0.05 m MgCl2 and NaCl (0 to 1.0 m) was dependent on the concentration of NaCl; similar results were obtained with LiCl, but not with KCl. In electron micrographs of thin sections, c-A1 cell envelopes consisted of two double-track layers which fractured and peeled apart on lysis after pre-exposure to NaCl-MgCl2 mixtures. Envelope eruptions or “hernias” occurred only in lysed cells pre-exposed to NaCl alone. No evidence for a functional lytic enzyme was found. Comparative studies on a terrestrial pseudomonad with a multilayered envelope indicated that preexposure to NaCl did not enhance the susceptibility of this cell to lysis in distilled water. The lytic susceptibility of the marine bacterium is considered to be the consequence of competition between specific monovalent cations and Mg++ for electrostatic interactions with components of the cell envelope of this organism. Images PMID:5788707

  15. Multi-elemental analysis of Lentinula edodes mushrooms available in trade.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Rzymski, Piotr; Niedzielski, Przemysław; Gąsecka, Monika; Jasińska, Agnieszka; Budzyńska, Sylwia; Budka, Anna

    2017-03-04

    The present study investigated the content of 62 elements in the fruiting bodies of Lentinula edodes (Shiitake mushroom) cultivated commercially in Poland on various substrates from 2007-2015. The general mean content (mg kg -1 dry weight (DW)) of the studied elements ranked in the following order: K (26,335) > P (11,015) > Mg (2,284) > Ca (607) > Na (131) > Zn (112) > Fe (69) > Mn (33) > B (32) > Rb (17) > Cu (14.5) > Al (11.2) > Te (2.9) > As (1.80) > Cd (1.76) > Ag (1.73) > Nd (1.70) > Sr (1.46) > Se (1.41) > U (1.11) > Pt (0.90) > Ce (0.80) > Ba (0.61) > Co (0.59) > Tl (0.58) > Er (0.50) > Pb (0.42) > Li (0.40) > Pr (0.39) > Ir (0.37) > In (0.35) > Mo (0.31) > Cr (0.29) > Ni (0.28) > Sb (0.26) > Re (0.24) > Ti (0.19) > Bi (0.18) > Th (0.12) > La (0.10) = Pd (0.10) > Os (0.09) = Zr (0.09) > Rh (0.08) > Ho (0.07) > Ru (0.06) > Sm (0.04) = Eu (0.04) = Tm (0.04) > Gd (0.03) > Sc (0.02) = Y (0.02) > Lu (0.01) = Yb (0.01) = V (0.01). The contents of Au, Be, Dy, Ga, Ge, Hf, and Tb were below the limits of detection (0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.02 mg kg -1 respectively). The concentrations of Al, As, B, Ba, Ca, Cd, Cr, Er, Fe, In, Lu, Mn, Nd, Sr, Ti, Tm, and Zr were comparable over the period the mushrooms were cultivated. The study revealed that Lentinula edodes contained As and Cd at levels potentially adverse to human health. This highlights the need to monitor these elements in food products obtained from this mushroom species and ensure that only low levels of these elements are present in cultivation substrates.

  16. Effects of electron doping on the stability of the metal hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, M. A.; Rivas-Silva, J. F.; de la Peña-Seaman, O.; Heid, R.; Bohnen, K. P.

    2017-04-01

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  17. The application of Westcott Formalism k0 NAA method to estimate short and medium lived elements in some Ghanaian herbal medicines complemented by AAS

    NASA Astrophysics Data System (ADS)

    Ayivor, J. E.; Okine, L. K. N.; Dampare, S. B.; Nyarko, B. J. B.; Debrah, S. K.

    2012-04-01

    The epithermal neutron shape factor, α of the inner and outer irradiation sites of the Ghana Research Reactor-1 (GHARR-1) was determined obtaining results of 0.105 for the inner (Channel 1) Irradiation site and 0.020 for the outer (channel 6) irradiation site. The neutron temperatures for the inner and outer irradiation sites were 27 °C and 20 °C, respectively. The α values used in Westcott Formalism k0 INAA was applied to determine multi elements in 13 Ghanaian herbal medicines used by the Centre for Scientific Research into Plant Medicine (CSRPM) for the management of various diseases complemented by Atomic Absorption Spectrometry. They are namely Mist. Antiaris, Mist. Enterica, Mist. Morazia, Mist. Nibima, Mist. Modium, Mist. Ninger, Mist Sodenia, Mist. Tonica, Chardicca Powder, Fefe Powder, Olax Powder, Sirrapac powder and Lippia Tea. Concentrations of Al, As, Br, K, Cl, Cu, Mg, Mn, Na and V were determined by short and medium irradiations at a thermal neutron flux of 5×1011 ncm-2 s-1. Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using Atomic Absorption Spectrometry (AAS). Ba, Cu, Li and V were present at trace levels whereas Al, Cl, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. Arsenic was not detected in all samples. Standard Reference material, IAEA-V-10 Hay Powder was simultaneously analysed with samples. The precision and accuracy of the method using real samples and standard reference materials were evaluated and within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis (Q-mode and R-mode CA) and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into 2 statistically significant clusters (liquid based and powdered herbal medicines), reflecting the different chemical compositions. R-mode CA and PCA suggest common sources for Co, Mg, Fe, Ca, Cr, Ni, Sn, Li and Sb and Na, V, Cl, Mn, Al, Br and K. The PCA/FA identified 3 dominant factors as responsible for the data structure, explaining 84.5% of the total variance in the dataset.

  18. Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic.

    PubMed

    Zbikowski, Radosław; Szefer, Piotr; Latała, Adam

    2007-11-15

    The contents of Cd, Cu, Ni, Pb, Zn, Mn, K, Na, Ca and Mg were determined in the green algae Cladophora sp. from coastal and lagoonal waters of the southern Baltic. Factor analysis demonstrated spatial differences between concentration of chemical elements. The algae from the southern Baltic contained more Na and K while the anthropogenic impact of Cu, Pb and Zn was observed in the case of Cladophora sp. and Enteromorpha sp. from the Gulf of Gdansk at the vicinity of Gdynia. This area is exposed to emission of heavy metals from municipal and industrial sources with the main contribution of shipbuilding industry and seaport. The statistical evaluation of data has demonstrated that there exists a correlation between concentrations of Cu, Pb and Zn in both green algae collected at the same time and sampling sites of the Gulf of Gdansk. Our results show that in the case of absence of one species in the investigated area it is still possible to continue successfully the biomonitoring studies with its replacing by second one, i.e. Cladophora sp. by Enteromorpha sp. and vice versa; in consequence reliable results may be obtained.

  19. Albari granodiorite - a typical calcalkaline diapir of volcanic arc stage from the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Radain, Abdulaziz A.

    Granodiorite rocks of the Arabian Shield are generally considered to be collision-related granitoids. However, there are some granodiorites that were formed during the volcanic arc stage. Major and trace elements studies are carried out on Albari diapiric granodiorite to reveal its tectonic environment. This intrusive rock type is common in the Taif arc province (Mahd adh Dhahab quadrangle) of the Asir microplate near the border of the southeast dipping subduction zone that ended up with arc-arc collision (Asir-Hijaz microplates) along the now known Bir Umq suture zone. The granodiorite exhibits a calcalkaline trend on ternary AFM and K 2ONa 2OCaO diagrams. Tectonic discrimination diagrams using multicationic parameters (R1 = 4Sill(Na+K)2(Fe+Ti); R2 = 6Ca+2Mg+Al), SiO 2-trace elements (Nb, Y, Rb), and Y versus Nb and Rb versus (Y+Nb) indicate a destructive active plate margin or volcanic arc stage tectonic environment. Albari calcalkaline granodiorite might have been derived directly from partial melting of subducted oceanic crust or overlying mantle contaminated with variable amounts of intermediate (quartz diorite, diorite, tonalite, trondhjemite) early and late volcanic arc-related plutonic country rocks.

  20. Effects of Heat Treatment on the Discharge Behavior of Mg-6wt.%Al-1wt.%Sn Alloy as Anode For Magnesium-Air Batteries

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Zhu, Hualong; Luo, Jie; Yu, Kun; Shi, Chunli; Fang, Hongjie; Zhang, Yu

    2017-05-01

    Mg-6wt.%Al-1wt.%Sn alloys under different conditions are prepared. Primary magnesium-air batteries are assembled using such experimental Mg-Al-Sn alloys as anodes. The discharge behaviors of different alloys are investigated in 3.5 wt.% NaCl solution. The results show that the solution treatment can facilitate the homogeneous distribution of alloy elements and reduce the accumulation of discharge products. The magnesium-air battery based on the solution-treated Mg-Al-Sn anode presents higher operating voltage and more stable discharge process than those on the as-cast and the aged ones. Although the solution treatment cannot effectively improve the capacity density and the anodic efficiency of the experimental Mg-Al-Sn alloy, it is an effective approach to increasing the power and the energy density during discharge process. Especially at the applied current density of 30 mA cm-2 for 5 h, the solution-treated anode supplies 1.212 V average operating voltage, the anode energy density reaches 1527.2 mWhg-1, while the cast one is 1481.3 mWhg-1 and the aged one is 1478.8 mWhg-1.

  1. Statistical characterization of a large geochemical database and effect of sample size

    USGS Publications Warehouse

    Zhang, C.; Manheim, F.T.; Hinde, J.; Grossman, J.N.

    2005-01-01

    The authors investigated statistical distributions for concentrations of chemical elements from the National Geochemical Survey (NGS) database of the U.S. Geological Survey. At the time of this study, the NGS data set encompasses 48,544 stream sediment and soil samples from the conterminous United States analyzed by ICP-AES following a 4-acid near-total digestion. This report includes 27 elements: Al, Ca, Fe, K, Mg, Na, P, Ti, Ba, Ce, Co, Cr, Cu, Ga, La, Li, Mn, Nb, Nd, Ni, Pb, Sc, Sr, Th, V, Y and Zn. The goal and challenge for the statistical overview was to delineate chemical distributions in a complex, heterogeneous data set spanning a large geographic range (the conterminous United States), and many different geological provinces and rock types. After declustering to create a uniform spatial sample distribution with 16,511 samples, histograms and quantile-quantile (Q-Q) plots were employed to delineate subpopulations that have coherent chemical and mineral affinities. Probability groupings are discerned by changes in slope (kinks) on the plots. Major rock-forming elements, e.g., Al, Ca, K and Na, tend to display linear segments on normal Q-Q plots. These segments can commonly be linked to petrologic or mineralogical associations. For example, linear segments on K and Na plots reflect dilution of clay minerals by quartz sand (low in K and Na). Minor and trace element relationships are best displayed on lognormal Q-Q plots. These sensitively reflect discrete relationships in subpopulations within the wide range of the data. For example, small but distinctly log-linear subpopulations for Pb, Cu, Zn and Ag are interpreted to represent ore-grade enrichment of naturally occurring minerals such as sulfides. None of the 27 chemical elements could pass the test for either normal or lognormal distribution on the declustered data set. Part of the reasons relate to the presence of mixtures of subpopulations and outliers. Random samples of the data set with successively smaller numbers of data points showed that few elements passed standard statistical tests for normality or log-normality until sample size decreased to a few hundred data points. Large sample size enhances the power of statistical tests, and leads to rejection of most statistical hypotheses for real data sets. For large sample sizes (e.g., n > 1000), graphical methods such as histogram, stem-and-leaf, and probability plots are recommended for rough judgement of probability distribution if needed. ?? 2005 Elsevier Ltd. All rights reserved.

  2. Probing Na+ Induced Changes in the HIV-1 TAR Conformational Dynamics using NMR Residual Dipolar Couplings: New Insights into the Role of Counterions and Electrostatic Interactions in Adaptive Recognition†

    PubMed Central

    Casiano-Negroni, Anette; Sun, Xiaoyan; Al-Hashimi, Hashim M.

    2012-01-01

    Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands but the mechanism by which this occur remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+ induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirror changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 mM to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46° to 22°), inter-helical twist angle (from 66° to −18°) and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that non-specific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized based on a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions, and a globally rigid coaxial conformation which has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs. PMID:17488097

  3. Contribution of an ancient evaporitic-type reservoir to lake vostok chemistry

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Thiemens, M. H.; Savarino, J.; Petit, J. R.

    2003-04-01

    Accretion ice 1 (3538 to 3608 m) contents visible sediment inclusions likely incorporated into ice in a shallow bay upstream Vostok where glacier moves against a relief rise. Ion chromatography measurements indicate that elemental concentrations are linked to inclusions abundances. More than 80% of SO_42- is present as CaSO_4 or MgSO_4. While SO_42- concentrations and the relative proportion of CaSO_4 and MgSO_4 varies in a wide range in accreted ice, concentration profiles of Na and Cl, present as NaCl, are much more regular even along individual crystals. Question rises about the presence of such salts in lake water: The 17O anomaly of sulphate in one samples taken at 3570 m suggests that less than 10% of total sulphate comes from DMS oxidation, ruling out any significant contribution of glacer melt water. Fe concentrations are low (10 ppb) excluding sulphate production from the pyrite oxidation by biogenic in-situ activity. This conclusion is supported by the isotopic signature of 34S. Taken all together, these observations strongly suggest the contribution of an evaporitic-type basin to the lake salinity. Assuming that sediments accumulated in an isolated reservoir prior the lake formation, seismotectonic activated hydrothermal circulation may pulse NaCl rich water with sulphate salts through faults up to their vents in a shallow bay upstream Vostok, where they could be incorporated in the accreted ice and also contribute to lake salinity.

  4. The use of nicotinic acid to induce sustained low plasma nonesterified fatty acids in feed-restricted Holstein cows.

    PubMed

    Pires, J A A; Grummer, R R

    2007-08-01

    The objectives were to determine the effects of nicotinic acid (NA) on blood metabolites (experiment 1) and whether successive doses of NA could induce sustained reductions of plasma nonesterified fatty acids (NEFA; experiment 2) in feed-restricted, nonlactating Holstein cows. Experiment 1 was a single 4 x 4 Latin square with 1-wk periods. Each period consisted of 2.5 d of feed restriction to increase plasma NEFA and 4.5 d of ad libitum feeding. Treatments were abomasal administration of 0, 6, 30, or 60 mg of NA/kg of body weight (BW), given as a single bolus 48 h after initiation of feed restriction. Plasma NEFA concentration decreased from 546 microEq/L to 208 +/- 141 microEq/L at 1 h after the infusion of 6 mg of NA/kg of BW, and to less than 100 +/- 148 microEq/L at 3 h after the abomasal infusion of the 2 highest doses of NA. A rebound occurred after the initial decrease of plasma NEFA concentration. The rebound lasted up to 9 h for the 30-mg dose of NA, and up to 6 h for the 6-mg dose. Experiment 2 was a randomized complete block design with 3 treatments and 6 cows. Starting at 48 h of feed restriction, cows received 9 hourly abomasal infusions of 0, 6, or 10 mg of NA/kg of BW. Plasma NEFA concentrations decreased from 553 microEq/L +/- 24 immediately before the initiation of treatments to <100 microEq/L during hourly infusions of 6 or 10 mg of NA/kg. Data suggest that the maximal antilipolytic response was achieved with the lowest dose of NA. A rebound of NEFA started 2 to 3 h after NA infusions were terminated. In both experiments, the NEFA rebound period coincided with increases in insulin and no change or increased glucose concentrations, suggesting a state of insulin resistance induced by elevated NEFA. This model for reducing plasma NEFA concentration by abomasal infusions of NA can be used to study the metabolic ramifications of elevated vs. reduced NEFA concentrations. The data demonstrate potential benefits and pitfalls of using NA to regulate plasma NEFA and prevent lipid-related metabolic disorders.

  5. Effects of diazinon on adaptation to sea-water by the endangered Persian sturgeon, Acipenser persicus, fingerlings.

    PubMed

    Hajirezaee, Saeed; Mirvaghefi, Ali Reza; Farahmand, Hamid; Agh, Naser

    2016-11-01

    To replenish the depleting populations of sturgeon fishes especially Persian sturgeon, Acipenser persicus in the Caspian Sea, millions of Persian sturgeon fingerlings are farmed through artificial propagation and released into the Iranian river estuaries annually. Fish osmoregulation is a vital physiological process that can be affected during the release. Many Iranian river estuaries are under the influence of pesticides originating from farming activities that may affect osmoregulation. In this study, Persian sturgeon fingerlings were exposed to sublethal concentrations (0, 0.18, 0.54, 0.9mgL(-)(1)) of diazinon for 96h (short-term trial) and 12 days (long-term trial) in fresh water (FW) and then fish were exposed in brackish water (BW) for 24h. After 96h and 12 days of exposure in FW, the lower levels of plasma triidothyronine (T3), thyroxine (T4), Na(+), Cl(-), K(+), gill Na(+)/K(+)- ATPase activity and number of chloride cells were observed in exposed fish (0.54 and 0.9mgL(-)(1) diazinon) compared to control group and 0.18mgL(-)(1) diazinon treatment. Also, higher levels of plasma cortisol (except 0.18mgL(-)(1) diazinon treatment in long-term trial) were observed in diazinon exposed fish compared to control group. However, gill Na(+)/K(+)-ATPase activity and the number of chloride cells were higher in fingerlings exposed to diazinon compared than control. When fish were exposed in BW for 24h, the following changes occurred: (a) in short-term trial: increases in cortisol and Cl(-) levels (0.54mgL(-)(1) diazinon ), Na(+) (0.9mgL(-)(1) diazinon ) and gill Na(+)/K(+)-ATPase activity (0.18mgL(-)(1) diazinon ). In control group, cortisol, T4, Na(+), gill Na(+)/K(+)-ATPase activity and the number of chloride cells increased significantly. (b) In long-term trial: increases in K(+) levels in fish exposed to 0.9mgL(-)(1) diazinon, Na+ in all diazinon concentrations and decreases in chloride cells number in fish exposed to 0.18mgL(-)(1) diazinon. In control group, significant increases were observed in cortisol, T3, Na(+) and chloride cells number. Finally, gill showed many histopathological damages during exposure in FW and BW. Our results suggest that the contamination of river estuaries with diazinon may alter the osmoregulation ability of released Persian sturgeon fingerlings, which could lead to a failure in their restocking program in the Caspian Sea. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Optimization of medium components using orthogonal arrays for Linolenic acid production by Spirulina platensis

    USDA-ARS?s Scientific Manuscript database

    This work describes the medium optimization of '-Linolenic acid (GLA) production by Spirulina platensis using one-factor and orthogonal array design methods. In the one-factor experiments, NaHCO3 (9 mg L-1), NaNO3 (13.5 mg L-1) and MgSO4•7H2O (11.85 mg L-1) proved to be the best components for GLA p...

  7. Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Schott, J.; Dupré, B.

    2006-07-01

    The chemical status of ˜40 major and trace elements (TE) and organic carbon (OC) in pristine boreal rivers draining the basaltic plateau of Central Siberia (Putorana) and interstitial solutions of permafrost soils was investigated. Water samples were filtered in the field through progressively decreasing pore size (5 μm → 0.22 μm → 0.025 μm → 10 kDa → 1 kDa) using cascade frontal filtration technique. Most rivers and soil porewaters exhibit 2-5 times higher than the world average concentration of dissolved (i.e., <0.22 μm) iron (0.03-0.4 mg/L), aluminum (0.03-0.4 mg/L), OC (10-20 mg/L) and various trace elements that are usually considered as immobile in weathering processes (Ti, Zr, Ga, Y, REEs). Ultrafiltration revealed strong relationships between concentration of TE and that of colloidal Fe and Al. According to their partition during filtration and association with colloids, two groups of elements can be distinguished: (i) those weakly dependent on ultrafiltration and that are likely to be present as truly dissolved inorganic species (Li, Na, K, Si, Mn, Mo, Rb, Cs, As, Sb) or, partially (20-30%) associated with small size Fe- and Al-colloids (Ca, Mg, Sr, Ba) and to small (<1-10 kDa) organic complexes (Co, Ni, Cu, Zn), and (ii) elements strongly associated with colloidal iron and aluminum in all ultrafiltrates largely present in 1-100 kDa fraction (Ga, Y, REEs, Pb, V, Cr, Ti, Ge, Zr, Th, U). TE concentrations and partition coefficients did not show any detectable variations between different colloidal fractions for soil porewaters, suprapermafrost flow and surface streams. TE concentration measurements in river suspended particles demonstrated significant contribution (i.e., ⩾30%) of conventionally dissolved (<0.22 μm) forms for usually "immobile" elements such as divalent transition metals, Cd, Pb, V, Sn, Y, REEs, Zr, Hf, Th. The Al-normalized accumulation coefficients of TE in vegetation litter compared to basalts achieve 10-100 for B, Mn, Zn, As, Sr, Sn, Sb, and the larch litter degradation is able to provide the major contribution to the annual dissolved flux of most trace elements. It is hypothesized that the decomposition of plant litter in the topsoil horizon leads to Fe(III)-, Al-organic colloids formation and serves as an important source of elements in downward percolating fluids.

  8. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  9. A case of Alzheimer's disease in magmatic crystals

    NASA Astrophysics Data System (ADS)

    Costa Rodriguez, F.; Bouvet de Maisonneuve, C.

    2012-12-01

    The reequilibration of chemical zoning in crystals from volcanic rocks is increasingly used to determine the duration of the processes involved in their origin, residence and transport. There now exist a good number of determinations of diffusion coefficients in olivine (Fe-Mg, Mn, Ca, Ni, Cr), plagioclase (CaAl-NaSi, Mg, Sr, Ba, REE), pyroxenes (Fe-Mg, Mn, Ca, REE) and quartz (Ti), but most studies have used a single element or component in a single mineral group. Although this is a good approach, it can only access a limited range of time scales, typically the short-term memory of the crystal. In other words, for process durations that are longer than the combination of the diffusivity and diffusion distance (and for a constant boundary), the long-term memory of the crystal might have been lost. This could explain why most time determinations of magmatic processes from volcanic rocks give times of about < 100 years, and why these are shorter than the thousands of years obtained from U-Th series disequilibrium isotopes. We have done a series of numerical calculations and natural observation to determine the time windows that can be accessed with different elements and minerals, and how they may affect the time scales and interpretations of processes that the crystals might be recording. We have looked at two end-members representative of mafic and silicic magmas by changing the temperature and mineral compositions. 3 dimensional calculations of diffusion reequilibration at the center of a 1 x 0.5 x 0.5 mm crystal and using a constant boundary as first case. We find that for mafic magma and olivine, 90 % of equilibration of Fe-Mg, Mn, and Ni occurs in a few decades, but gradients in Ca and Cr persist for a few thousand years. These results can for example explain the large ranges of Ca and Cr contents at a given Fe/Mg of olivine, and why apparently contradictory times can be obtained from elements with different diffusivities in the same crystal. At the same time these findings also highlight that there is a long-term memory of the crystal that is typically not accessed by current studies. However, unraveling this memory is more complex because it seems unrealistic to assume a constant composition at the boundary for hundreds or thousands of years, and because crystals can be growing and dissolving multiple times. Additional models considering growth and a variable boundary show that a significant part of the memory is lost by multiple changes in concentration being superimposed at the crystal rim. Here we also report a case where accessing the older history of the crystals might be possible by a combination of X-Ray element maps plus multiple element zoning traverses (Fe-Mg, Ca, Mn, Ni, Al, P, Cr) in olivine from Llaima volcano (Chile). Element distributions reveal that the crystals had an early history of fast growth. The delicate structures of P zoning have been used to recognize any crystal dissolution. Cr, Fe-Mg, Ni, Mn are zoned but the times obtained from Cr are 4 x longer than those of the other elements. Our interpretation is that the Cr zoning records the older memory of the crystal since eruption but that of Fe-Mg has lost part of the memory due to multiple changes at the rim or complete homogenization of the crystal. Thus using multiple elements and minerals allow accessing the long and short term memory of the crystals and associated magma.

  10. Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces

    NASA Astrophysics Data System (ADS)

    Tournassat, Christophe; Gailhanou, Hélène; Crouzet, Catherine; Braibant, Gilles; Gautier, Anne; Lassin, Arnault; Blanc, Philippe; Gaucher, Eric C.

    2007-03-01

    Na/K, Na/Ca and Na/Mg exchange isotherms were performed on the fine fraction (<2 μm) of Imt-2 illite samples at a total normality of about 0.005 mol/L in anionic chloride medium. The derived selectivity coefficients for Na/K, Na/Ca and Na/Mg were found to vary as a function of the exchanger composition and compared well with the data collected in the literature for similar experimental conditions. Two models were built to reproduce the data: the first was a multi(2)-site model with constant Gaines and Thomas selectivity coefficients; the second was a one-site model taking into account surface species activity coefficients. The results of the models were in rather good agreement with both our data and literature data. The multi-site model proved to be efficient in predicting the exchanger composition as a function of the Na/Ca/Mg/K concentrations in solution, whereas the one-site model proved to be a better approach to derive the Na/Ca/Mg/K concentrations in solution based on the knowledge of the exchanger composition and the total normality of the solution. The interest of this approach is illustrated by the need for major cation solute concentration predictions in compacted clay for the characterization of nuclear deep disposal host rock repositories.

  11. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.

    PubMed

    Rango, Tewodros; Vengosh, Avner; Dwyer, Gary; Bianchini, Gianluca

    2013-10-01

    This study investigates the mechanisms of arsenic (As) and other naturally occurring contaminants (F(-), U, V, B, and Mo) mobilization from Quaternary sedimentary aquifers of the Main Ethiopian Rift (MER) and their enrichment in the local groundwater. The study is based on systematic measurements of major and trace elements as well as stable oxygen and hydrogen isotopes in groundwater, coupled with geochemical and mineralogical analyses of the aquifer rocks. The Rift Valley aquifer is composed of rhyolitic volcanics and Quaternary lacustrine sediments. X-ray fluorescence (XRF) results revealed that MER rhyolites (ash, tuff, pumice and ignimbrite) and sediments contain on average 72 wt. % and 65 wt. % SiO2, respectively. Petrographic studies of the rhyolites indicate predominance of volcanic glass, sanidine, pyroxene, Fe-oxides and plagioclase. The As content in the lacustrine sediments (mean = 6.6 mg/kg) was higher than that of the rhyolites (mean: 2.5 mg/kg). The lacustrine aquifers of the Ziway-Shala basin in the northern part of MER were identified as high As risk zones, where mean As concentration in groundwater was 22.4 ± 33.5 (range of 0.60-190 μg/L) and 54% of samples had As above the WHO drinking water guideline value of 10 μg/L. Field As speciation measurements showed that most of the groundwater samples contain predominantly (~80%) arsenate-As(V) over arsenite-As(III) species. The As speciation together with field data of redox potential (mean Eh = +73 ± 65 mV) and dissolved-O2 (6.6 ± 2.2 mg/L) suggest that the aquifer is predominantly oxidative. Water-rock interactions, including the dissolution of volcanic glass produces groundwater with near-neutral to alkaline pH (range 6.9-8.9), predominance of Na-HCO3 ions, and high concentration of SiO2 (mean: 85.8 ± 11.3 mg/L). The groundwater data show high positive correlation of As with Na, HCO3, U, B, V, and Mo (R(2) > 0.5; p < 0.001). Chemical modeling of the groundwater indicates that Fe-oxides and oxyhydroxides minerals were saturated in the groundwater, suggesting that the As reactivity is controlled by adsorption/desorption processes with these minerals. The data show that As and other oxyanion-forming elements such as U, B, Mo, and V had typically higher concentrations at pH > ~8, reflecting the pH-dependence of their mobilization. Based on the geochemical and stable isotope variations we have established a conceptual model for the occurrence of naturally occurring contaminants in MER groundwater: 1) regional groundwater recharge from the Highland, along the Rift margins, followed by lateral flow and water-rock interactions with the aquifer rocks resulted in a gradual increase of the salinity and naturally occurring contaminants towards the center of the valley; and (2) local δ(18)O-rich lake water recharge into adjacent shallow aquifers, followed by additional mobilization of As and other oxyanion-forming elements from the aquifer rocks. We posit that the combined physical-chemical conditions of the aquifers such as oxidizing state, Na-HCO3 composition, and pH>~8 lead to enhanced mobilization of oxyanion-forming elements from Fe-oxides and consequently contamination of local groundwater. These geochemical conditions characterize groundwater resources along the Eastern African Rift and thus constitute a potential threat to the quality of groundwater in larger areas of Eastern Africa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal

    2017-08-01

    Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust loads originate from central and west Sahara and to a lesser extent from north Sahara. Low dust loads characterize the summer with limited compositional variability relative to winter-spring months. Summer dust is generally characterized by high K/Al (L1) ratios relative to late winter and spring. It is also relatively high in anthropogenic trace elements in the L0 and L1 fractions (e.g., Zn/Al, Pb/Al, Cr/Al, Ni/Al and V/Al), whereby back trajectories indicate the source of these components is primarily from south and east Europe. The total load (ng m-3) of anthropogenic trace elements however, remains higher during winter and spring, stemming from the overall significantly higher dust loads characterizing this time window. The temporal load patterns of important micronutrients such as Fe, Cd, Zn, Cu, Ni and others in the bio-available phases (L0, L1) are not correlated with major nutrients or Chlorophyll-a sea surface concentrations, suggesting that the atmospheric dust plays a limited role in driving primary productivity in the oligotrophic surface waters of the Gulf of Aqaba. On a wider scale, the results provide unique chemical fingerprinting of Sahara-Arabian dust that can be applied to reconstruct past trends in dust loads recorded in deep-sea cores and other geological archives from this and other regions.

  13. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites.

    PubMed

    Silambarasan, Sivagnanam; Vangnai, Alisa S

    2016-01-25

    4-nitroaniline (4-NA) is one of the major priority pollutants generated from industrial productions and pesticide transformation; however very limited biodegradation details have been reported. This work is the first to report 4-NA biodegradation kinetics and toxicity reduction using a newly isolated plant-growth promoting bacterium, Acinetobacter sp. AVLB2. The 4-NA-dependent growth kinetics parameters: μmax, Ks and Ki, were determined to be 0.039 h(-1), 6.623 mg L(-1) and 25.57 mg L(-1), respectively using Haldane inhibition model, while the maximum biodegradation rate (Vmax) of 4-NA was at 0.541 mg L(-1) h(-1) and 0.551 mg L(-1) h(-1), following Michaelis-Menten and Hanes-Woolf models, respectively. Biodegradation pathway of 4-NA by Acinetobacter sp. AVLB2 was proposed, and successfully led to the reduction of 4-NA toxicity according to the following toxicity assessments: microbial toxicity using Escherichia coli DH5α, phytotoxicity with Vigna radiata and Crotalaria juncea, and cytogenotoxicity with Allium cepa root-tip cells. In addition, Acinetobacter sp. AVLB2 possess important plant-growth promoting traits, both in the presence and absence of 4-NA. This study has provided a new insight into 4-NA biodegradation ability and concurrent plant-growth promoting activities of Acinetobacter sp. AVLB2, which may indicate its potential role for rhizoremediation, while sustaining crop production even under 4-NA stressed environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  15. Analysis of dinosaur samples by nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiankang; Orlić, I.; Tang, S. M.; Wang, Yiming; Wang, Xiaohong; Zhu, Jieqing

    1997-07-01

    Several dinosaur bone and eggshell fossil samples unearthed at different sites in China were analyzed by means of nuclear microscopy. Concentrations and distributions of elements such as Na, Mg, Al, P, S, Ca, Cr, Mn, Fe, Cu, Zn, As, Br, Sr, Y, Ce, Pb and U, etc. were obtained for each sample. The results of quantitative PIXE and RBS analyses show unusually high concentrations of U and Ce in several samples obtained from a period near the K-T boundary (between Cretaceous and Tertiary periods, 65 million years ago), suggesting that some form of environmental pollution could be the cause of dinosaur extinction.

  16. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.

    1987-01-01

    Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors

  17. Quantitative simultaneous multi-element microprobe analysis using combined wavelength and energy dispersive systems

    NASA Technical Reports Server (NTRS)

    Walter, L. S.; Doan, A. S., Jr.; Wood, F. M., Jr.; Bredekamp, J. H.

    1972-01-01

    A combined WDS-EDS system obviates the severe X-ray peak overlap problems encountered with Na, Mg, Al and Si common to pure EDS systems. By application of easily measured empirical correction factors for pulse pile-up and peak overlaps which are normally observed in the analysis of silicate minerals, the accuracy of analysis is comparable with that expected for WDS electron microprobe analyses. The continuum backgrounds are subtracted for the spectra by a spline fitting technique based on integrated intensities between the peaks. The preprocessed data are then reduced to chemical analyses by existing data reduction programs.

  18. Carbon dioxide sequestration using NaHSO4 and NaOH: A dissolution and carbonation optimisation study.

    PubMed

    Sanna, Aimaro; Steel, Luc; Maroto-Valer, M Mercedes

    2017-03-15

    The use of NaHSO 4 to leach out Mg fromlizardite-rich serpentinite (in form of MgSO 4 ) and the carbonation of CO 2 (captured in form of Na 2 CO 3 using NaOH) to form MgCO 3 and Na 2 SO 4 was investigated. Unlike ammonium sulphate, sodium sulphate can be separated via precipitation during the recycling step avoiding energy intensive evaporation process required in NH 4 -based processes. To determine the effectiveness of the NaHSO 4 /NaOH process when applied to lizardite, the optimisation of the dissolution and carbonation steps were performed using a UK lizardite-rich serpentine. Temperature, solid/liquid ratio, particle size, concentration and molar ratio were evaluated. An optimal dissolution efficiency of 69.6% was achieved over 3 h at 100 °C using 1.4 M sodium bisulphate and 50 g/l serpentine with particle size 75-150 μm. An optimal carbonation efficiency of 95.4% was achieved over 30 min at 90 °C and 1:1 magnesium:sodium carbonate molar ratio using non-synthesised solution. The CO 2 sequestration capacity was 223.6 g carbon dioxide/kg serpentine (66.4% in terms of Mg bonded to hydromagnesite), which is comparable with those obtained using ammonium based processes. Therefore, lizardite-rich serpentinites represent a valuable resource for the NaHSO 4 /NaOH based pH swing mineralisation process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Distribution of major and trace elements in surface sediments of the western Gulf of Thailand: Implications to modern sedimentation

    NASA Astrophysics Data System (ADS)

    Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2016-04-01

    In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.

  20. Determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by ICP-OES

    NASA Astrophysics Data System (ADS)

    Yong, Cheng

    2018-03-01

    The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.

Top