Sample records for elements predict caveolin-1

  1. Mapping of oxidative stress response elements of the caveolin-1 promoter.

    PubMed

    Bartholomew, Janine N; Galbiati, Ferruccio

    2010-01-01

    According to the "free radical theory" of aging, normal aging occurs as the result of tissue damages inflicted by reactive oxygen species (ROS). ROS are known to induce cellular senescence, and senescent cells are believed to contribute to organismal aging. The molecular mechanisms that mediate the cellular response to oxidants remain to be fully identified. We have shown that oxidative stress induces cellular senescence through activation of the caveolin-1 promoter and upregulation of caveolin-1 protein expression. Here, we describe how reactive oxygen species activate the caveolin-1 promoter and how the signaling may be assayed. These approaches provide insight into the functional role of caveolin-1 and potentially allow the identification of novel ROS-regulated genes that are part of the signaling machinery regulating cellular senescence/aging.

  2. Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women.

    PubMed

    Yeong, Joe; Thike, Aye Aye; Ikeda, Murasaki; Lim, Jeffrey Chun Tatt; Lee, Bernett; Nakamura, Seigo; Iqbal, Jabed; Tan, Puay Hoon

    2018-02-01

    Triple-negative breast cancers (TNBCs) are defined by their lack of oestrogen receptor, progesterone receptor and epidermal growth factor receptor 2. Although heterogeneous, the majority are aggressive and treatment options are limited. Caveolin acts as tumour suppressor or promoter depending on the cancer type. In this study, we aimed to determine if the expression levels of the candidate biomarker caveolin-1 on stromal or tumour cells were associated with clinicopathological parameters and disease outcomes in TNBCs from an ethnically diverse cohort of Asian women. Tumour specimens from 699 women with TNBC were subjected to immunohistochemical analysis of the frequency and intensity of caveolin-1 expression in tumour and stromal cells. A subset of 141 tumour samples also underwent Nanostring measurement of CAV1 mRNA. Results were correlated with clinicopathological parameters and disease outcomes. Expression of caveolin-1 in stromal cells was observed in 14.4% of TNBC cases. TNBCs of the basal-like phenotype (85% of samples) were significantly more likely to exhibit stromal cell caveolin-1 expression (p=0.028), as were those with a trabecular growth pattern (p=0.007). Lack of stromal caveolin-1 expression in both TNBCs and those with the basal-like phenotype was significantly associated with worse overall survival (p=0.009 and p=0.026, respectively): accordingly, increasing mRNA levels of CAV1 in TNBC samples predicted better overall survival. Caveolin-1 expression on TNBC tumour cells was not associated with clinical outcome. Stromal, but not tumoural, caveolin-1 expression is significantly associated with survival in Asian women with TNBC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade.

    PubMed

    Park, David S; Lee, Hyangkyu; Frank, Philippe G; Razani, Babak; Nguyen, Andrew V; Parlow, Albert F; Russell, Robert G; Hulit, James; Pestell, Richard G; Lisanti, Michael P

    2002-10-01

    It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.

  4. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    PubMed

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics. © 2015 Wiley Periodicals, Inc.

  5. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; van den Heuvel, Fiona A J; Woudenberg-Vrenken, Titia E; Buist-Homan, Manon; Geuken, Mariska; Hoekstra, Mark; Deelman, Leo E; Enrich, Carlos; Henning, Rob H; Moshage, Han; Faber, Klaas Nico

    2010-05-01

    Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.

  6. CAVEOLIN-1 REGULATES HIV-1 TAT-INDUCED ALTERATIONS OF TIGHT JUNCTION PROTEIN EXPRESSION VIA MODULATION OF THE RAS SIGNALING

    PubMed Central

    Zhong, Yu; Smart, Eric J.; Weksler, Babette; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) is the critical structure for preventing HIV trafficking into the brain. Specific HIV proteins, such as Tat protein, can contribute to the dysfunction of tight junctions at the BBB and HIV entry into the brain. Tat is released by HIV-1 infected cells and can interact with a variety of cell surface receptors activating several signal transduction pathways, including those localized in caveolae. The present study focused on the mechanisms of Tat-induced caveolae-associated Ras signaling at the level of the BBB. Treatment with Tat activated the Ras pathway in human brain microvascular endothelial cells (HBMEC). However, caveolin-1 silencing markedly attenuated these effects. Because the integrity of the brain endothelium is regulated by intercellular tight junctions, these structural elements of the BBB were also evaluated in the present study. Exposure to Tat diminished the expression of several tight junction proteins, namely, occludin, zonula occludens (ZO)-1, and ZO-2 in the caveolar fraction of HBMEC. These effects were effectively protected by pharmacological inhibition of the Ras signaling and by silencing of caveolin-1. The present data indicate the importance of caveolae-associated signaling in the disruption of tight junctions upon Tat exposure. They also demonstrate that caveolin-1 may constitute an early and critical modulator that controls signaling pathways leading to the disruption of tight junction proteins. Thus, caveolin-1 may provide an effective target to protect against Tat-induced HBMEC dysfunction and the disruption of the BBB in HIV-1-infected patients. PMID:18667611

  7. [Cloning and characterization of Caveolin-1 gene in pigeon, Columba livia domestica].

    PubMed

    Zhang, Ying; Yu, Jian-Feng; Yang, Li; Wang, Xing-Guo; Gu, Zhi-Liang

    2010-10-01

    Caveolins, a class of principal proteins forming the structure of caveolae in plasmalemma, were encoded by caveolins gene family. Caveolin-1 gene is a member of caveolins gene family. In the present study, a full-length of 2605 bp caveolin-1 cDNA sequence in Columba livia domestica, which included a 537 bp complete ORF encoding a 178 amino acids long putative peptide, were obtained by using RT-PCR and RACE technique. The Columba livia domestica caveolin-1 CDS shared 80.1% - 93.4% homology with Bos taurus, Canis lupus familiaris, Gallus gallus and Rattus norvegicus. Meanwhile, the putative amino acid sequence of Columba livia domestica caveolin-1 shared 85.4% - 97.2% homology with the above species. The semi-quantity RT-PCR revealed that Caveolin-1 expressions were detectable in all the Columba livia domestica tissues and the expressional level of caveolin-1 gene was high in adipose, medium in various muscles, low in liver. These results demonstrated that Caveolin-1 gene was potentially involved in some metabolic pathways in adipose and muscle.

  8. Ezetimibe suppresses cholesterol accumulation in lipid-loaded vascular smooth muscle cells in vitro via MAPK signaling

    PubMed Central

    Qin, Li; Yang, Yun-bo; Yang, Yi-xin; Zhu, Neng; Gong, Yong-zhen; Zhang, Cai-ping; Li, Shun-xiang; Liao, Duan-fang

    2014-01-01

    Aim: To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro. Methods: VSMCs of SD rats were cultured in the presence of Chol:MβCD (10 μg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence. Results: Treatment with Chol:MβCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MβCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 μmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 μmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did. Conclusion: Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway. PMID:25087996

  9. Prognostic significance of epithelial/stromal caveolin-1 expression in prostatic hyperplasia, high grade prostatic intraepithelial hyperplasia and prostatic carcinoma and its correlation with microvessel density.

    PubMed

    Mohammed, Dareen A; Helal, Duaa S

    2017-03-01

    Caveolin-1 may play a role in cancer development and progression. The aim was to record the expression and localization of caveolin-1 in benign prostatic hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN) and prostatic carcinoma (PCa). Microvessel density was evaluated with CD34 immunostain. Correlations with known prognostic factors of PCa were recorded. Immunohistochemical expression of caveolin-1 and the MVD was evaluated in 65 cases; BPH (25), HGPIN (20) and PCa (20). Stromal caveolin-1expression was significantly higher in BPH than HGPIN and PCca. There was significant inverse relation between stromal caveolin-1 expression and extension to lymph node and seminal vesicle in carcinoma cases. Epithelial caveolin-1 was significantly higher in carcinomas than in BPH and HGPIN. Epithelial expression in carcinoma was significantly associated with preoperative PSA, Gleason score and lymph node extension. MVD was significantly higher in PCa than in BPH and HGPIN. There were significant relations between MVD and preoperative PSA, Gleason score, lymph node and seminal vesicle extension. Stromal caveolin-1 was associated with low MVD while epithelial caveolin-1 with high MVD. Caveolin-1 plays an important role in prostatic carcinogenesis and metastasis. Stromal expression of caveolin-1 in PCa is lowered in relation to BPH and HGPIN. In PCa; stromal caveolin-1 was associated with good prognostic parameters. Epithelial caveolin-1 is significantly increased in PCa than BPH and HGPIN. It is associated with clinically aggressive disease. Caveolin-1 may play a role in angiogenesis. Copyright © 2017 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  10. Caveolin-1 Regulates Leukocyte Behaviour in Fibrotic Lung Disease

    PubMed Central

    Tourkina, Elena; Richard, Mathieu; Oates, James; Hofbauer, Ann; Bonner, Michael; Gööz, Pal; Visconti, Richard; Zhang, Jing; Znoyko, Sergei; Hatfield, Corey M.; Silver, Richard M.; Hoffman, Stanley

    2010-01-01

    Objectives Reduced caveolin-1 levels in scleroderma lung fibroblasts and the lungs of bleomycin-treated mice promote collagen overexpression and lung fibrosis. We now evaluate whether caveolin-1 is deficient in leucocytes from bleomycin-treated mice and scleroderma patients and examine the consequences of this deficiency and its reversal. Methods Mice or cells received the caveolin-1 scaffolding domain (CSD) peptide to reverse the pathological effects of reduced caveolin-1 expression. In bleomycin-treated mice, we examined caveolin-1 levels in leucocytes and the effect of CSD peptide on leucocyte accumulation in lung tissue. To validate our results in human disease and identify caveolin-1-regulated molecular mechanisms, we isolated monocytes and neutrophils from scleroderma patients and control subjects and evaluated caveolin-1, ERK, JNK, p38, CXCR4, and MMP-9 expression/activation. We also studied these parameters in monocytes treated with cytokines or CSD peptide. Results Leucocyte caveolin-1 is important in lung fibrosis. In bleomycin-treated mice, caveolin-1 expression is diminished in monocytes and CSD peptide inhibits leucocyte recruitment into the lungs. These observations are relevant to human disease. Scleroderma monocytes and neutrophils contain less caveolin-1 and more activated ERK, JNK, and p38 than their normal counterparts. CSD peptide treatment reverses ERK, JNK, and p38 hyperactivation. Scleroderma monocytes also overexpress CXCR4 and MMP-9. The overexpression of CXCR4 and MMP-9 is inhibited by the CSD peptide. Cytokine treatment of normal monocytes causes adoption of the scleroderma phenotype: low caveolin-1, high CXCR4 and MMP-9, and signaling molecule hyperactivation. Conclusions Caveolin-1 downregulation in leucocytes contributes to fibrotic lung disease, highlighting caveolin-1 as a promising therapeutic target in scleroderma. PMID:20410070

  11. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    PubMed Central

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  12. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells.

    PubMed

    Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas

    2004-09-24

    Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  13. Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible

    NASA Technical Reports Server (NTRS)

    Parat, M. O.; Fox, P. L.

    2001-01-01

    Caveolin-1 is a palmitoylated protein involved in assembly of signaling molecules in plasma membrane subdomains termed caveolae and in intracellular cholesterol transport. Three cysteine residues in the C terminus of caveolin-1 are subject to palmitoylation, which is not necessary for caveolar targeting of caveolin-1. Protein palmitoylation is a post-translational and reversible modification that may be regulated and that in turn may regulate conformation, membrane association, protein-protein interactions, and intracellular localization of the target protein. We have undertaken a detailed analysis of [(3)H]palmitate incorporation into caveolin-1 in aortic endothelial cells. The linkage of palmitate to caveolin-1 was hydroxylamine-sensitive and thus presumably a thioester bond. However, contrary to expectations, palmitate incorporation was blocked completely by the protein synthesis inhibitors cycloheximide and puromycin. In parallel experiments to show specificity, palmitoylation of aortic endothelial cell-specific nitric-oxide synthase was unaffected by these reagents. Inhibitors of protein trafficking, brefeldin A and monensin, blocked caveolin-1 palmitoylation, indicating that the modification was not cotranslational but rather required caveolin-1 transport from the endoplasmic reticulum and Golgi to the plasma membrane. In addition, immunophilin chaperones that form complexes with caveolin-1, i.e. FK506-binding protein 52, cyclophilin A, and cyclophilin 40, were not necessary for caveolin-1 palmitoylation because agents that bind immunophilins did not inhibit palmitoylation. Pulse-chase experiments showed that caveolin-1 palmitoylation is essentially irreversible because the release of [(3)H]palmitate was not significant even after 24 h. These results show that [(3)H]palmitate incorporation is limited to newly synthesized caveolin-1, not because incorporation only occurs during synthesis but because the continuous presence of palmitate on caveolin-1 prevents subsequent repalmitoylation.

  14. Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease.

    PubMed

    Tourkina, Elena; Richard, Mathieu; Oates, James; Hofbauer, Ann; Bonner, Michael; Gööz, Pal; Visconti, Richard; Zhang, Jing; Znoyko, Sergei; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2010-06-01

    Reduced caveolin-1 levels in lung fibroblasts from patients with scleroderma and the lungs of bleomycin-treated mice promote collagen overexpression and lung fibrosis. This study was undertaken to determine whether caveolin-1 is deficient in leucocytes from bleomycin-treated mice and patients with scleroderma and to examine the consequences of this deficiency and its reversal. Mice or cells received the caveolin-1 scaffolding domain (CSD) peptide to reverse the pathological effects of reduced caveolin-1 expression. In bleomycin-treated mice, the levels of caveolin-1 in leucocytes and the effect of CSD peptide on leucocyte accumulation in lung tissue were examined. To validate the results in human disease and to identify caveolin-1-regulated molecular mechanisms, monocytes and neutrophils were isolated from patients with scleroderma and control subjects and caveolin-1, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, CXC chemokine receptor 4 (CXCR4) and matrix metalloproteinase 9 (MMP-9) expression/activation were evaluated. These parameters were also studied in monocytes treated with cytokines or CSD peptide. Leucocyte caveolin-1 is important in lung fibrosis. In bleomycin-treated mice, caveolin-1 expression was diminished in monocytes and CSD peptide inhibited leucocyte recruitment into the lungs. These observations are relevant to human disease. Monocytes and neutrophils from patients with scleroderma contained less caveolin-1 and more activated ERK, JNK and p38 than those from control subjects. Treatment with CSD peptide reversed ERK, JNK and p38 hyperactivation. Scleroderma monocytes also overexpressed CXCR4 and MMP-9, which was inhibited by the CSD peptide. Cytokine treatment of normal monocytes caused adoption of the scleroderma phenotype (low caveolin-1, high CXCR4 and MMP-9 and signalling molecule hyperactivation). Caveolin-1 downregulation in leucocytes contributes to fibrotic lung disease, highlighting caveolin-1 as a promising therapeutic target in scleroderma.

  15. Impairment of Fas-ligand-caveolin-1 interaction inhibits Fas-ligand translocation to rafts and Fas-ligand-induced cell death.

    PubMed

    Glukhova, Xenia A; Trizna, Julia A; Proussakova, Olga V; Gogvadze, Vladimir; Beletsky, Igor P

    2018-01-22

    Fas-ligand/CD178 belongs to the TNF family proteins and can induce apoptosis through death receptor Fas/CD95. The important requirement for Fas-ligand-dependent cell death induction is its localization to rafts, cholesterol- and sphingolipid-enriched micro-domains of membrane, involved in regulation of different signaling complexes. Here, we demonstrate that Fas-ligand physically associates with caveolin-1, the main protein component of rafts. Experiments with cells overexpressing Fas-ligand revealed a FasL N-terminal pre-prolin-rich region, which is essential for the association with caveolin-1. We found that the N-terminal domain of Fas-ligand bears two caveolin-binding sites. The first caveolin-binding site binds the N-terminal domain of caveolin-1, whereas the second one appears to interact with the C-terminal domain of caveolin-1. The deletion of both caveolin-binding sites in Fas-ligand impairs its distribution between cellular membranes, and attenuates a Fas-ligand-induced cytotoxicity. These results demonstrate that the interaction of Fas-ligand and caveolin-1 represents a molecular basis for Fas-ligand translocation to rafts, and the subsequent induction of Fas-ligand-dependent cell death. A possibility of a similar association between other TNF family members and caveolin-1 is discussed.

  16. Localization of caveolin-1 and c-src in mature and differentiating photoreceptors: raft proteins co-distribute with rhodopsin during development

    PubMed Central

    Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Magyar, Attila; Szél, Ágoston; Kiss, Anna L.

    2014-01-01

    Numerous biochemical and morphological studies have provided insight into the distribution pattern of caveolin-1 and the presence of membrane rafts in the vertebrate retina. To date however, studies have not addressed the localization profile of raft specific proteins during development. Therefore the purpose of our studies was to follow the localization pattern of caveolin-1, phosphocaveolin-1 and c-src in the developing retina and compare it to that observed in adults. Specific antibodies were used to visualize the distribution of caveolin-1, c-src, a kinase phosphorylating caveolin-1, and phospho-caveolin-1. The labeling pattern of this scaffolded complex was compared to those of rhodopsin and rhodopsin kinase. Samples were analyzed at various time points during postnatal development and compared to adult retinas. The immunocytochemical studies were complemented with immunoblots and immunoprecipitation studies. In the mature retina caveolin-1 and c-src localized mainly to the cell body and IS of photoreceptors, with only very weakly labeled OS. In contrast, phospho-caveolin-1 was only detectable in the OS of photoreceptors. During development we followed the expression and distribution profile of these proteins in a temporal sequence with special attention to the period when OS formation is most robust. Double labeling immunocytochemistry and immunoprecipitation showed rhodopsin to colocalize and co-immunoprecipitate with caveolin-1 and c-src. Individual punctate structures between the outer limiting membrane and the outer plexiform layer were seen at P10 to be labeled by both rhodopsin and caveolin-1 as well as by rhodopsin and c-src, respectively. These studies suggest that membrane raft specific proteins are co-distributed during development, thereby pointing to a role for such complexes in OS formation. In addition, the presence of small punctate structures containing caveolin-1, c-src and rhodopsin raise the possibility that these proteins may transport together to OS during development and that caveolin-1 exists predominantly in a phosphorylated form in the OS. PMID:21938483

  17. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.

    PubMed

    Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen

    2016-06-01

    Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues.

  18. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  19. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F

    1998-04-01

    Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

  20. Angiogenic effects of apigenin on endothelial cells after hypoxia-reoxygenation via the caveolin-1 pathway

    PubMed Central

    Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang

    2017-01-01

    In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway. PMID:29039442

  1. Angiotensin II induces nephrin dephosphorylation and podocyte injury: Role of caveolin-1

    PubMed Central

    Ren, Zhilong; Liang, Wei; Chen, Cheng; Yang, Hongxia; Singhal, Pravin C.; Ding, Guohua

    2011-01-01

    Nephrin, an important structural and signal molecule of podocyte slit-diaphragm (SD), has been suggested to contribute to the angiotensin II (Ang II)-induced podocyte injury. Caveolin-1 has been demonstrated to play a crucial role in signaling transduction. In the present study, we evaluated the role of caveolin-1 in Ang II-induced nephrin phosphorylation in podocytes. Wistar rats-receiving either Ang II (400 ng/kg/min) or normal saline (via subcutaneous osmotic mini-pumps, control) were administered either vehicle or telmisartan (3 mg/kg/min) for 14 or 28 days. Blood pressure, 24-hour urinary albumin and serum biochemical profile were measured at the end of the experimental period. Renal histomorphology was evaluated through light and electron microscopy. In vitro, cultured murine podocytes were exposed to Ang II (10−6 M) pretreated with or without losartan (10−5 M) for variable time periods. Nephrin and caveolin-1 expression and their phosphorylation were analyzed by Western-blotting and immunofluorescence. Caveolar membrane fractions were isolated by sucrose density gradient centrifugation, and then the distribution and interactions between Ang II type 1 receptor (AT1), nephrin, C-terminal Src kinase (Csk) and caveolin-1 were evaluated using Western-blotting and co-immunoprecipitation. Podocyte apoptosis was evaluated by cell nucleus staining with Hoechst-33342. Ang II-receiving rats displayed diminished phosphorylation of nephrin but enhanced glomerular/podocyte injury and proteinuria when compared to control rats. Under control conditions, podocyte displayed expression of caveolin-1 in abundance but only a low level of phospho moiety. Nonetheless, Ang II stimulated caveolin-1 phosphorylation without any change in total protein expression. Nephrin and caveolin-1 were co-localized in caveolae fractions. AT1 receptors and Csk were moved to caveolae fractions and had an interaction with caveolin-1 after the stimulation with Ang II. Transfection of caveolin-1 plasmid (pEGFPC3-cav-1) significantly increased Ang II-induced nephrin dephosphorylation and podocyte apoptosis. Furthermore, knockdown of caveolin-1 expression (using siRNA) inhibited nephrin dephosphorylation and prevented Ang II-induced podocyte apoptosis. These findings indicate that Ang II induces nephrin dephosphorylation and podocyte injury through a caveolin-1-dependent mechanism. PMID:21982880

  2. Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1

    PubMed Central

    Hill, Michelle M.; Daud, Noor Huda; Aung, Cho Sanda; Loo, Dorothy; Martin, Sally; Murphy, Samantha; Black, Debra M.; Barry, Rachael; Simpson, Fiona; Liu, Libin; Pilch, Paul F.; Hancock, John F.; Parat, Marie-Odile; Parton, Robert G.

    2012-01-01

    Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration. PMID:22912783

  3. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel activity. Since caveolin expression is regulated by cellular free cholesterol and plasma levels of low-density lipoprotein (LDL), this interaction may have implications in both the physiological and pathophysiological control of vascular function. PMID:20624795

  4. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase.

    PubMed

    Tomasi, Vittorio

    2010-12-16

    It has been reported that cellular prion protein (PrPc) co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI) anchor (secPrP) and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s) of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11) expressing caveolin-1 at high levels. We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.

  5. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    NASA Technical Reports Server (NTRS)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  6. Angiogenic effects of apigenin on endothelial cells after hypoxia-reoxygenation via the caveolin-1 pathway.

    PubMed

    Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang

    2017-12-01

    In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway.

  7. Caveolin-1 siRNA increases the pulmonary microvascular and alveolar epithelial permeability in rats.

    PubMed

    Gao, Chengjin; Li, Rongrong; Huan, Jingning; Li, Wei

    2011-01-01

    Increased pulmonary microvascular and epithelial permeability are important contributors to pulmonary edema in acute lung injury. In this study, we used small interfering RNA (siRNA) to knock down caveolin-1 expression in rat lungs and to confirm the important role of caveolin-1 in regulating pulmonary edema. After pulmonary injection of siRNA against caveolin-1 messenger RNA incorporated in liposomes with three concentrations of 0.4, 0.8, and 1.2 mg/kg, the gene silencing rate and the effects of caveolin-1 siRNA on aquaporin (AQP)-1, AQP-5, and epithelial sodium channel (ENaC) were detected. For pulmonary permeability analysis, Evans blue fluorimetry, ratios of albumin concentrations between blood and bronchoalveolar lavage, and wet/dry weight ratios were measured. The impacts of caveolin-1 suppression on interendothelial junctions were evaluated by the performance of electron microscopy and the analysis of vascular endothelial (VE)-cadherin Western blot. Alveolar wall thickness analysis and chest fluoroscopy were performed to determine the pulmonary edema degree. After 72 hours of injection, the gene silencing rate of caveolin-1 siRNA is about 87%. AQP-1, AQP-5, ENaC-α, ENaC-β, ENaC-γ, and VE-cadherin protein levels were decreased by 63%, 66%, 80%, 90%, 89%, and 50%, respectively. Caveolin-1 siRNA also resulted in increasing microvascular and epithelial permeability and pulmonary edema. These data suggest that caveolin-1 plays an important part in regulating the pulmonary permeability by modifying AQP-1, AQP-5, ENaC, and VE-cadherin.

  8. CAVEOLINS AND LUNG FUNCTION

    PubMed Central

    Maniatis, Nikolaos A.; Chernaya, Olga; Shinin, Vasily; Minshall, Richard D.

    2012-01-01

    The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases. PMID:22411320

  9. Caveolin-1 expression in odontogenic cysts and ameloblastomas.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Pardis, Soheil; Asadzadeh, Maryam; Andisheh-Tadbir, Azadeh; Dehghani-Nazhvani, Ali

    2014-01-01

    The aim of this study is to evaluate the caveolin-1 expression in a group of odontogenic cysts and tumors. In this cross-sectional study, the expression of caveolin-1 was evaluated immunohistochemically in 75 samples including 18 cases of dentigerous cyst, 18 odontogenic keratocysts, 3 orthokeratinized odontogenic cysts, 2 calcifying odontogenic cysts and 34 ameloblastomas (solid and unicystic). Positive immunohistochemical reaction was found in 100% of odontogenic cysts and this was significantly more than both unicystic (65%) and solid (55%) ameloblastomas. The present study showed the expression of caveolin-1 in all odontogenic cysts and more than ameloblastomas. The results suggested that absence of caveolin-1 might enhance aggressiveness of odontogenic lesions and could be a useful marker for distinguishing ameloblastomas from other odontogenic lesions.

  10. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in Inflammation and Beyond

    PubMed Central

    de Almeida, Cecília Jacques Gonçalves

    2017-01-01

    Caveolins, encoded by the CAV gene family, are the main protein components of caveolae. In most tissues, caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are co-expressed, and Cav-2 targeting to caveolae depends on the formation of heterooligomers with Cav-1. Notwithstanding, Cav-2 has unpredictable activities, opposing Cav-1 in the regulation of some cellular processes. While the major roles of Cav-1 as a modulator of cell signaling in inflammatory processes and in immune responses have been extensively discussed elsewhere, the aim of this review is to focus on data revealing the distinct activity of Cav-1 and Cav-2, which suggest that these proteins act antagonistically to fine-tune a variety of cellular processes relevant to inflammation. PMID:29250058

  11. Solubilization of a membrane protein by combinatorial supercharging.

    PubMed

    Hajduczki, Agnes; Majumdar, Sudipta; Fricke, Marie; Brown, Isola A M; Weiss, Gregory A

    2011-04-15

    Hydrophobic and aggregation-prone, membrane proteins often prove too insoluble for conventional in vitro biochemical studies. To engineer soluble variants of human caveolin-1, a phage-displayed library of caveolin variants targeted the hydrophobic intramembrane domain with substitutions to charged residues. Anti-selections for insolubility removed hydrophobic variants, and positive selections for binding to the known caveolin ligand HIV gp41 isolated functional, folded variants. Assays with several caveolin binding partners demonstrated the successful folding and functionality by a solubilized, full-length caveolin variant selected from the library. This caveolin variant allowed assay of the direct interaction between caveolin and cavin. Clustered along one face of a putative helix, the solubilizing mutations suggest a structural model for the intramembrane domain of caveolin. The approach provides a potentially general method for solubilization and engineering of membrane-associated proteins by phage display.

  12. Expression of caveolin-1 in the early phase of beta-TCP implanted in dog mandible.

    PubMed

    Chou, Cherng-Tzeh; Bhawal, Ujjal K; Watanabe, Nobuyuki; Kuboyama, Noboru; Chang, Wei-Jen; Lee, Sheng-Yang; Abiko, Yoshimitsu

    2013-07-01

    Caveolin is an essential and signature protein of caveolae. Caveolin-1 participates in signal transduction processes by acting as a scaffolding protein that concentrates, organizes and functional regulates signalling molecules within caveolar membranes. Beta-tricalcium phosphate (β-TCP) has been widely used for scaffold in tissue engineering due to its high biodegradability, osteoconductivity, easy manipulation, and lack of histotoxicity. To better understand the role of caveolin-1 in bone homeostasis and response to β-TCP scaffold, β-TCP was implanted into the dog mandible defects in beagle dogs, and gene expression profiles were examined focused on the molecular components involved in caveolin-1 regulation. Here we showed the quantitative imageology analysis characterized using in vivo micro-computed tomography (CT) images at 4 and 7 days after β-TCP implanted in dog mandibles. The bone reformation by using the β-TCP scaffolds began within 4 days of surgery, and was healing well at 7 days after surgery. Higher mRNA level of caveolin-1 was observed in β-TCP-implanted Beagle dog mandibles compared with controls at day 4 and day 7 post-surgery. The enhancement of caveolin-1 by β-TCP was further confirmed by immunohistochemistry and immunofluorescence analysis. We further revealed increased Smad7 and Phospho Stat3 expression in β-TCP-implanted specimens. Taken together, these results suggest that the enhancement of caveolin-1 play an important role in accelerating bone formation by β-TCP. Copyright © 2013 Wiley Periodicals, Inc.

  13. Differential regulation of muscarinic M2 and M3 receptor signaling in gastrointestinal smooth muscle by caveolin-1.

    PubMed

    Bhattacharya, Sayak; Mahavadi, Sunila; Al-Shboul, Othman; Rajagopal, Senthilkumar; Grider, John R; Murthy, Karnam S

    2013-08-01

    Caveolae act as scaffolding proteins for several G protein-coupled receptor signaling molecules to regulate their activity. Caveolin-1, the predominant isoform in smooth muscle, drives the formation of caveolae. The precise role of caveolin-1 and caveolae as scaffolds for G protein-coupled receptor signaling and contraction in gastrointestinal muscle is unclear. Thus the aim of this study was to examine the role of caveolin-1 in the regulation of Gq- and Gi-coupled receptor signaling. RT-PCR, Western blot, and radioligand-binding studies demonstrated the selective expression of M2 and M3 receptors in gastric smooth muscle cells. Carbachol (CCh) stimulated phosphatidylinositol (PI) hydrolysis, Rho kinase and zipper-interacting protein (ZIP) kinase activity, induced myosin phosphatase 1 (MYPT1) phosphorylation (at Thr(696)) and 20-kDa myosin light chain (MLC20) phosphorylation (at Ser(19)) and muscle contraction, and inhibited cAMP formation. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activity, phosphorylation of MYPT1 and MLC20, and muscle contraction in response to CCh were attenuated by methyl β-cyclodextrin (MβCD) or caveolin-1 small interfering RNA (siRNA). Similar inhibition of PI hydrolysis, Rho kinase, and ZIP kinase activity and muscle contraction in response to CCh and gastric emptying in vivo was obtained in caveolin-1-knockout mice compared with wild-type mice. Agonist-induced internalization of M2, but not M3, receptors was blocked by MβCD or caveolin-1 siRNA. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activities in response to other Gq-coupled receptor agonists such as histamine and substance P was also attenuated by MβCD or caveolin-1 siRNA. Taken together, these results suggest that caveolin-1 facilitates signaling by Gq-coupled receptors and contributes to enhanced smooth muscle function.

  14. Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells

    PubMed Central

    Liu, Jie; Weaver, John; Jin, Xinchun; Zhang, Yuan; Xu, Ji; Liu, Ke J.; Li, Weiping; Liu, Wenlan

    2017-01-01

    Using in vitro oxygen-glucose deprivation (OGD) model, we have previously demonstrated that 2-h OGD induces rapid, caveolin-1-mediated dissociation of claudin-5 from the cellular cytoskeletal framework and quick endothelial barrier disruption. In this study, we further investigated the fate of translocated claudin-5 and the mechanisms by which OGD promotes caveolin-1 translocation. Exposure of bEND3 cells to 4-h OGD, but not 2-h OGD plus 2-h reoxygenation, resulted in claudin-5 degradation. Inhibition of autophagy or the fusion of autophagosome with lysosome, but not proteasome, blocked OGD-induced claudin-5 degradation. Moreover, knockdown of caveolin-1 with siRNA blocked OGD-induced claudin-5 degradation. Western blot analysis showed a transient colocalization of caveolin-1, claudin-5, and LC3B in autolysosome or lipid raft fractions at 2-h OGD. Of note, inhibiting autophagosome and lysosome fusion sustained the colocalization of caveolin-1, claudin-5, and LC3B throughout the 4-h OGD exposure. EPR spin trapping showed increased nitric oxide (NO) generation in 2-h OGD-treated cells, and inhibiting NO with its scavenger C-PTIO or inducible nitric oxide synthase (iNOS) inhibitor 1400W prevented OGD-induced caveolin-1 translocation and claudin-5 degradation. Taken together, our data provide a novel mechanism underlying endothelial barrier disruption under prolonged ischemic conditions, in which NO promotes caveolin-1-mediated delivery of claudin-5 to the autophagosome for autophagy-lysosome-dependent degradation. PMID:26515186

  15. Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells.

    PubMed

    Liu, Jie; Weaver, John; Jin, Xinchun; Zhang, Yuan; Xu, Ji; Liu, Ke J; Li, Weiping; Liu, Wenlan

    2016-11-01

    Using in vitro oxygen-glucose deprivation (OGD) model, we have previously demonstrated that 2-h OGD induces rapid, caveolin-1-mediated dissociation of claudin-5 from the cellular cytoskeletal framework and quick endothelial barrier disruption. In this study, we further investigated the fate of translocated claudin-5 and the mechanisms by which OGD promotes caveolin-1 translocation. Exposure of bEND3 cells to 4-h OGD, but not 2-h OGD plus 2-h reoxygenation, resulted in claudin-5 degradation. Inhibition of autophagy or the fusion of autophagosome with lysosome, but not proteasome, blocked OGD-induced claudin-5 degradation. Moreover, knockdown of caveolin-1 with siRNA blocked OGD-induced claudin-5 degradation. Western blot analysis showed a transient colocalization of caveolin-1, claudin-5, and LC3B in autolysosome or lipid raft fractions at 2-h OGD. Of note, inhibiting autophagosome and lysosome fusion sustained the colocalization of caveolin-1, claudin-5, and LC3B throughout the 4-h OGD exposure. EPR spin trapping showed increased nitric oxide (NO) generation in 2-h OGD-treated cells, and inhibiting NO with its scavenger C-PTIO or inducible nitric oxide synthase (iNOS) inhibitor 1400W prevented OGD-induced caveolin-1 translocation and claudin-5 degradation. Taken together, our data provide a novel mechanism underlying endothelial barrier disruption under prolonged ischemic conditions, in which NO promotes caveolin-1-mediated delivery of claudin-5 to the autophagosome for autophagy-lysosome-dependent degradation.

  16. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  17. Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation.

    PubMed

    Chidlow, John H; Sessa, William C

    2010-05-01

    Caveolae are specialized lipid rafts that form flask-shaped invaginations of the plasma membrane. They are involved in cell signalling and transport and have been shown critically regulate vascular reactivity and blood pressure. The organization and functions of caveolae are mediated by coat proteins (caveolins) and support or adapter proteins (cavins). The caveolins, caveolin-1, -2, and -3, form the structural backbone of caveolae. These proteins are also highly integrated into caveolae function and have their own activity independent of caveolae. The cavins, cavins 1-4, are involved in regulation of caveolae and modulate the function of caveolins by promoting the membrane remodelling and trafficking of caveolin-derived structures. The relationships between these different proteins are complex and intersect with many aspects of cell function. Caveolae have also been implicated in chronic inflammatory conditions and other pathologies including atherosclerosis, inflammatory bowel disease, muscular dystrophy, and generalized dyslipidaemia. The pathogenic role of the caveolins is an emerging area, however, the roles of cavins in disease is just beginning to be explored. This review will examine the relationship between caveolins and cavins and explore the role of caveolae in inflammatory signalling mechanisms.

  18. A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance

    PubMed Central

    Pol, Albert; Luetterforst, Robert; Lindsay, Margaret; Heino, Sanna; Ikonen, Elina; Parton, Robert G.

    2001-01-01

    Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3DGV, specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1–3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cavDGV to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts. PMID:11238460

  19. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  20. Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid BodiesV⃞

    PubMed Central

    Pol, Albert; Martin, Sally; Fernández, Manuel A.; Ingelmo-Torres, Mercedes; Ferguson, Charles; Enrich, Carlos; Parton, Robert G.

    2005-01-01

    Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels. PMID:15689493

  1. Caveolin-1 deficiency may predispose African Americans to systemic sclerosis-related interstitial lung disease.

    PubMed

    Reese, Charles; Perry, Beth; Heywood, Jonathan; Bonner, Michael; Visconti, Richard P; Lee, Rebecca; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena

    2014-07-01

    Interstitial lung disease (ILD) is the leading cause of death in patients with systemic sclerosis (SSc; scleroderma). Although SSc-related ILD is more common and severe in African Americans than in Caucasians, little is known about factors underlying this significant health disparity. The aim of this study was to examine the role that low expression of caveolin-1 might play in susceptibility to ILD among African Americans. Assays of monocyte migration toward stromal cell-derived factor 1 (SDF-1) were performed using monocytes from Caucasian and African American healthy donors and patients with SSc. For fibrocyte differentiation studies, total peripheral blood mononuclear cells were incubated on fibronectin-coated plates. Protein expression was evaluated by immunohistochemistry and Western blotting. Monocytes from healthy African American donors and those from patients with SSc had low caveolin-1 levels, enhanced migration toward the CXCR4 ligand SDF-1, and enhanced differentiation to fibrocytes. Enhanced migration and differentiation of monocytes from African Americans and patients with SSc appeared to be attributable to the lack of caveolin-1, because restoring caveolin-1 function using a caveolin-1 scaffolding domain peptide inhibited these processes. Although they differed from monocytes from Caucasians, monocytes from both African Americans and patients with SSc were not identical, because SSc monocytes showed major increases from baseline in ERK, JNK, p38, and Smad2/3 activation, while monocytes from African Americans showed only limited ERK activation and no activation of JNK, p38, or Smad2/3. In contrast, SDF-1 exposure caused no additional ERK activation in SSc monocytes but did cause significant additional activation in monocytes from African Americans. African Americans may be predisposed to SSc-related ILD due to low baseline caveolin-1 levels in their monocytes, potentially affecting signaling, migration, and fibrocyte differentiation. The monocytes of African Americans may lack caveolin-1 due to high levels of transforming growth factor β in their blood. Copyright © 2014 by the American College of Rheumatology.

  2. Caveolin-1 Deficiency May Predispose African Americans to Systemic Sclerosis–Related Interstitial Lung Disease

    PubMed Central

    Reese, Charles; Perry, Beth; Heywood, Jonathan; Bonner, Michael; Visconti, Richard P.; Lee, Rebecca; Hatfield, Corey M.; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena

    2014-01-01

    Objective Interstitial lung disease (ILD) is the leading cause of death in patients with systemic sclerosis (SSc; scleroderma). Although SSc-related ILD is more common and severe in African Americans than in Caucasians, little is known about factors underlying this significant health disparity. The aim of this study was to examine the role that low expression of caveolin-1 might play in susceptibility to ILD among African Americans. Methods Assays of monocyte migration toward stromal cell–derived factor 1 (SDF-1) were performed using monocytes from Caucasian and African American healthy donors and patients with SSc. For fibrocyte differentiation studies, total peripheral blood mono-nuclear cells were incubated on fibronectin-coated plates. Protein expression was evaluated by immuno-histochemistry and Western blotting. Results Monocytes from healthy African American donors and those from patients with SSc had low caveolin-1 levels, enhanced migration toward the CXCR4 ligand SDF-1, and enhanced differentiation to fibrocytes. Enhanced migration and differentiation of monocytes from African Americans and patients with SSc appeared to be attributable to the lack of caveolin-1, because restoring caveolin-1 function using a caveolin-1 scaffolding domain peptide inhibited these processes. Although they differed from monocytes from Caucasians, monocytes from both African Americans and patients with SSc were not identical, because SSc monocytes showed major increases from baseline in ERK, JNK, p38, and Smad2/3 activation, while monocytes from African Americans showed only limited ERK activation and no activation of JNK, p38, or Smad2/3. In contrast, SDF-1 exposure caused no additional ERK activation in SSc monocytes but did cause significant additional activation in monocytes from African Americans. Conclusion African Americans may be predisposed to SSc-related ILD due to low baseline caveolin-1 levels in their monocytes, potentially affecting signaling, migration, and fibrocyte differentiation. The monocytes of African Americans may lack caveolin-1 due to high levels of transforming growth factor β in their blood. PMID:24578173

  3. Caveolin-1–mediated Suppression of Cyclooxygenase-2 via a β-catenin-Tcf/Lef–dependent Transcriptional Mechanism Reduced Prostaglandin E2 Production and Survivin Expression

    PubMed Central

    Rodriguez, Diego A.; Tapia, Julio C.; Fernandez, Jaime G.; Torres, Vicente A.; Muñoz, Nicolas; Galleguillos, Daniela; Leyton, Lisette

    2009-01-01

    Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E2 (PGE2) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and β-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE2 and cell proliferation. Moreover, COX-2 overexpression or PGE2 supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE2 to the medium prevented effects attributed to caveolin-1–mediated inhibition of β-catenin-Tcf/Lef–dependent transcription. Finally, PGE2 reduced the coimmunoprecipitation of caveolin-1 with β-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE2-induced signaling events linked to β-catenin/Tcf/Lef–dependent transcription of tumor survival genes including cox-2 itself and survivin. PMID:19244345

  4. Oligomerization of Clostridium perfringens Epsilon Toxin Is Dependent upon Caveolins 1 and 2

    PubMed Central

    Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.

    2012-01-01

    Evidence from multiple studies suggests that Clostridium perfringens ε-toxin is a pore-forming toxin, assembling into oligomeric complexes in the plasma membrane of sensitive cells. In a previous study, we used gene-trap mutagenesis to identify mammalian factors contributing to toxin activity, including caveolin-2 (CAV2). In this study, we demonstrate the importance of caveolin-2 and its interaction partner, caveolin-1 (CAV1), in ε-toxin-induced cytotoxicity. Using CAV2-specific shRNA in a toxin-sensitive human kidney cell line, ACHN, we confirmed that cells deficient in CAV2 exhibit increased resistance to ε-toxin. Similarly, using CAV1-specific shRNA, we demonstrate that cells deficient in CAV1 also exhibit increased resistance to the toxin. Immunoprecipitation of CAV1 and CAV2 from ε-toxin-treated ACHN cells demonstrated interaction of both CAV1 and -2 with the toxin. Furthermore, blue-native PAGE indicated that the toxin and caveolins were components of a 670 kDa protein complex. Although ε-toxin binding was only slightly perturbed in caveolin-deficient cells, oligomerization of the toxin was dramatically reduced in both CAV1- and CAV2-deficient cells. These results indicate that CAV1 and -2 potentiate ε-toxin induced cytotoxicity by promoting toxin oligomerization – an event which is requisite for pore formation and, by extension, cell death. PMID:23056496

  5. Oligomerization of Clostridium perfringens epsilon toxin is dependent upon caveolins 1 and 2.

    PubMed

    Fennessey, Christine M; Sheng, Jinsong; Rubin, Donald H; McClain, Mark S

    2012-01-01

    Evidence from multiple studies suggests that Clostridium perfringens ε-toxin is a pore-forming toxin, assembling into oligomeric complexes in the plasma membrane of sensitive cells. In a previous study, we used gene-trap mutagenesis to identify mammalian factors contributing to toxin activity, including caveolin-2 (CAV2). In this study, we demonstrate the importance of caveolin-2 and its interaction partner, caveolin-1 (CAV1), in ε-toxin-induced cytotoxicity. Using CAV2-specific shRNA in a toxin-sensitive human kidney cell line, ACHN, we confirmed that cells deficient in CAV2 exhibit increased resistance to ε-toxin. Similarly, using CAV1-specific shRNA, we demonstrate that cells deficient in CAV1 also exhibit increased resistance to the toxin. Immunoprecipitation of CAV1 and CAV2 from ε-toxin-treated ACHN cells demonstrated interaction of both CAV1 and -2 with the toxin. Furthermore, blue-native PAGE indicated that the toxin and caveolins were components of a 670 kDa protein complex. Although ε-toxin binding was only slightly perturbed in caveolin-deficient cells, oligomerization of the toxin was dramatically reduced in both CAV1- and CAV2-deficient cells. These results indicate that CAV1 and -2 potentiate ε-toxin induced cytotoxicity by promoting toxin oligomerization - an event which is requisite for pore formation and, by extension, cell death.

  6. Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles.

    PubMed

    Zhang, Zhen; Xiong, Xiaoqin; Wan, Jiangling; Xiao, Ling; Gan, Lu; Feng, Youmei; Xu, Huibi; Yang, Xiangliang

    2012-10-01

    Besides as an inert carrier for hydrophobic anticancer agents, polymeric micelles composed of di-block copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-b-PLA) function as biological response modifiers including reversal of multidrug resistance in cancer. However, the uptake mechanisms and the subsequent intracellular trafficking remain to be elucidated. In this paper, we found that the uptake of PEG-b-PLA polymeric micelles incorporating nile red (M-NR) was significantly inhibited by both dynamin inhibitor dynasore and dynamin-2 dominant negative mutant (dynamin-2 K44A). Exogenously expressed caveolin-1 colocalized with M-NR and upregulated M-NR internalization in HepG2 cells expressing low level of endogenous caveolin-1, while caveolin-1 dominant negative mutant (caveolin-1 Y14F) significantly downregulated M-NR internalization in C6 cells expressing high level of endogenous caveolin-1. Exogenously expressed clathrin light chain A (clathrin LCa) did not mainly colocalize with the internalized M-NR and had no effect on M-NR uptake. These results suggested that dynamin- and caveolin-dependent but clathrin-independent endocytosis was involved in M-NR cellular uptake. We further found that M-NR colocalized with lysosome and microtubulin after internalization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Cholesterol removal from adult skeletal muscle impairs excitation–contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins

    PubMed Central

    Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia

    2015-01-01

    Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646

  8. Cell-free formation and interactome analysis of caveolae.

    PubMed

    Jung, WooRam; Sierecki, Emma; Bastiani, Michele; O'Carroll, Ailis; Alexandrov, Kirill; Rae, James; Johnston, Wayne; Hunter, Dominic J B; Ferguson, Charles; Gambin, Yann; Ariotti, Nicholas; Parton, Robert G

    2018-06-04

    Caveolae have been linked to the regulation of signaling pathways in eukaryotic cells through direct interactions with caveolins. Here, we describe a cell-free system based on Leishmania tarentolae ( Lt ) extracts for the biogenesis of caveolae and show its use for single-molecule interaction studies. Insertion of expressed caveolin-1 (CAV1) into Lt membranes was analogous to that of caveolin in native membranes. Electron tomography showed that caveolins generate domains of precise size and curvature. Cell-free caveolae were used in quantitative assays to test the interaction of membrane-inserted caveolin with signaling proteins and to determine the stoichiometry of interactions. Binding of membrane-inserted CAV1 to several proposed binding partners, including endothelial nitric-oxide synthase, was negligible, but a small number of proteins, including TRAF2, interacted with CAV1 in a phosphorylation-(CAV1 Y14 )-stimulated manner. In cells subjected to oxidative stress, phosphorylated CAV1 recruited TRAF2 to the early endosome forming a novel signaling platform. These findings lead to a novel model for cellular stress signaling by CAV1. © 2018 Jung et al.

  9. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells.

    PubMed

    Hinrichs, John W J; Klappe, Karin; Hummel, Ina; Kok, Jan W

    2004-02-13

    In this study we show that P-glycoprotein in multidrug-resistant 2780AD human ovarian carcinoma cells and multidrug resistance-associated protein 1 in multidrug-resistant HT29col human colon carcinoma cells are predominantly located in Lubrol-based detergent-insoluble glycosphingolipid-enriched membrane domains. This localization is independent of caveolae, since 2780AD cells do not express caveolin-1. Although HT29col cells do express caveolin-1, the ATP-binding cassette transporter and caveolin-1 were dissociated on the basis of differential solubility in Triton X-100 and absence of microscopical colocalization. While both the multidrug resistance-associated protein 1 and caveolin-1 are located in Lubrol-based membrane domains, they occupy different regions of these domains.

  10. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Boyd, Nolan L.; Park, Heonyong; Yi, Hong; Boo, Yong Chool; Sorescu, George P.; Sykes, Michelle; Jo, Hanjoong

    2003-01-01

    Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.

  11. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability.

    PubMed

    Huang, Yu; He, Qing

    2017-06-01

    The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static pressures stimulate ox-LDL-induced cholesterol accumulation in cultured VSMCs through decreasing caveolin-1 expression via inducing the maturation and nuclear translocation of SREBP-1.« less

  13. Electroacupuncture Exerts Neuroprotection through Caveolin-1 Mediated Molecular Pathway in Intracerebral Hemorrhage of Rats.

    PubMed

    Li, Hui-Qin; Li, Yan; Chen, Zi-Xian; Zhang, Xiao-Guang; Zheng, Xia-Wei; Yang, Wen-Ting; Chen, Shuang; Zheng, Guo-Qing

    2016-01-01

    Spontaneous intracerebral hemorrhage (ICH) is one of the most devastating types of stroke. Here, we aim to demonstrate that electroacupuncture on Baihui (GV20) exerts neuroprotection for acute ICH possibly via the caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway. The model of ICH was established by using collagenase VII. Rats were randomly divided into three groups: Sham-operation group, Sham electroacupuncture group, and electroacupuncture group. Each group was further divided into 4 subgroups according to the time points of 6 h, 1 d, 3 d, and 7 d after ICH. The methods were used including examination of neurological deficit scores according to Longa's scale, measurement of blood-brain barrier permeability through Evans Blue content, in situ immunofluorescent detection of caveolin-1 in brains, western blot analysis of caveolin-1 in brains, and in situ zymography for measuring matrix metalloproteinase-2/9 activity in brains. Compared with Sham electroacupuncture group, electroacupuncture group has resulted in a significant improvement in neurological deficit scores and in a reduction in Evans Blue content, expression of caveolin-1, and activity of matrix metalloproteinase-2/9 at 6 h, 1 d, 3 d, and 7 d after ICH ( P < 0.05). In conclusion, the present results suggested that electroacupuncture on GV20 can improve neurological deficit scores and reduce blood-brain barrier permeability after ICH, and the mechanism possibly targets caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway.

  14. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum.

    PubMed

    Le, Phuong U; Guay, Ginette; Altschuler, Yoram; Nabi, Ivan R

    2002-02-01

    Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl-beta-cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl-beta-cyclodextrin-sensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras- and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl-beta-cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-R-mediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolae-mediated endocytosis of AMF-R to the endoplasmic reticulum.

  15. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide.

    PubMed

    Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2011-07-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.

  16. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide

    PubMed Central

    2011-01-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors. PMID:21722364

  17. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction.

    PubMed

    Hatanaka, Kazuaki; Ito, Kenta; Shindo, Tomohiko; Kagaya, Yuta; Ogata, Tsuyoshi; Eguchi, Kumiko; Kurosawa, Ryo; Shimokawa, Hiroaki

    2016-09-01

    We have previously demonstrated that low-energy extracorporeal cardiac shock wave (SW) therapy improves myocardial ischemia through enhanced myocardial angiogenesis in a porcine model of chronic myocardial ischemia and in patients with refractory angina pectoris. However, the detailed molecular mechanisms for the SW-induced angiogenesis remain unclear. In this study, we thus examined the effects of SW irradiation on intracellular signaling pathways in vitro. Cultured human umbilical vein endothelial cells (HUVECs) were treated with 800 shots of low-energy SW (1 Hz at an energy level of 0.03 mJ/mm(2)). The SW therapy significantly upregulated mRNA expression and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The SW therapy also enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) and Akt. Furthermore, the SW therapy enhanced phosphorylation of caveolin-1 and the expression of HUTS-4 that represents β1-integrin activity. These results suggest that caveolin-1 and β1-integrin are involved in the SW-induced activation of angiogenic signaling pathways. To further examine the signaling pathways involved in the SW-induced angiogenesis, HUVECs were transfected with siRNA of either β1-integrin or caveolin-1. Knockdown of either caveolin-1 or β1-integrin suppressed the SW-induced phosphorylation of Erk1/2 and Akt and upregulation of VEGF and eNOS. Knockdown of either caveolin-1 or β1-integrin also suppressed SW-induced enhancement of HUVEC migration in scratch assay. These results suggest that activation of mechanosensors on cell membranes, such as caveolin-1 and β1-integrin, and subsequent phosphorylation of Erk and Akt may play pivotal roles in the SW-induced angiogenesis. Copyright © 2016 the American Physiological Society.

  18. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing.

    PubMed

    Lin, Hsi-Hui; Lin, Hsiu-Kuan; Lin, I-Hsuan; Chiou, Yu-Wei; Chen, Horn-Wei; Liu, Ching-Yi; Harn, Hans I-Chen; Chiu, Wen-Tai; Wang, Yang-Kao; Shen, Meng-Ru; Tang, Ming-Jer

    2015-08-28

    The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.

  19. Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells.

    PubMed

    Yokomori, Hiroaki; Oda, Masaya; Yoshimura, Kazunori; Nagai, Toshihiro; Ogi, Mariko; Nomura, Masahiko; Ishii, Hiromasa

    2003-12-01

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and vascular permeability. Hepatic sinusoidal endothelial cells (SECs) possess sieve-like pores that form an anastomosing labyrinth structure by the deeply invaginated plasma membrane. Caveolin is the principal structural protein in caveolae. In this study, we examined the role of VEGF on the fenestration and permeability of SECs and the relation with caveolin-1. SECs isolated from rat livers by collagenase infusion method were cultured for 24 h with (10 or 100 ng/ml) or without VEGF. The cells were then examined by transmission and scanning electron microscopy (EM). The expression of caveolin was investigated by confocal immunofluorescence, immunogold EM, and Western blot. Endocytosis and intracellular traffic was studied using horseradish peroxidase (HRP) reaction as a marker of fluid phase transport in SECs. Both transmission and scanning EM showed an increased number of sinusoidal endothelial fenestrae (SEF) in SECs cultured with VEGF. By confocal immunofluorescence, SECs cultured with VEGF displayed prominent caveolin-l-positive aggregates in the cytoplasm, especially surrounding the nucleus region. Immunogold EM depicted increased caveolin-1 reactivity on vesicles and vacuoles of VEGF-treated SECs compared with VEGF-nontreated cells. However, there was no change in the level of caveolin-1 protein expression on Western blot. After HRP injection, an increase of electron-dense tracer filled the SEF in cells treated with VEGF. Our results suggested that VEGF induced fenestration in SECs, accompanied by an increased number of caveolae-like vesicles. Increased caveolin-1 might be associated with vesicle formation but not with fenestration. Increased fenestration may augment hepatic sinusoidal permeability and transendothelial transport.

  20. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes

    PubMed Central

    Lee, Rebecca; Reese, Charles; Carmen-Lopez, Gustavo; Perry, Beth; Bonner, Michael; Zemskova, Marina; Wilson, Carole L.; Helke, Kristi L.; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena

    2017-01-01

    Monocytes from systemic sclerosis (SSc, scleroderma) patients and healthy African Americans (AA) are deficient in the regulatory protein caveolin-1 leading to enhanced migration toward chemokines and fibrogenic differentiation. While dermal fibrosis is the hallmark of SSc, loss of subcutaneous adipose tissue is a lesser-known feature. To better understand the etiology of SSc and the predisposition of AA to SSc, we studied the adipogenic potential of SSc and healthy AA monocytes. The ability of SSc and healthy AA monocytes to differentiate into adipocyte-like cells (ALC) is inhibited compared to healthy Caucasian (C) monocytes. We validated that monocyte-derived ALCs are distinct from macrophages by flow cytometry and immunocytochemistry. Like their enhanced fibrogenic differentiation, their inhibited adipogenic differentiation is reversed by the caveolin-1 scaffolding domain peptide (CSD, a surrogate for caveolin-1). The altered differentiation of SSc and healthy AA monocytes is additionally regulated by peroxisome proliferator-activated receptor γ (PPARγ) which is also present at reduced levels in these cells. In vivo studies further support the importance of caveolin-1 and PPARγ in fibrogenesis and adipogenesis. In SSc patients, healthy AA, and mice treated systemically with bleomycin, adipocytes lose caveolin-1 and PPARγ and the subcutaneous adipose layer is diminished. CSD treatment of these mice leads to a reappearance of the caveolin-1+/PPARγ+/FABP4+ subcutaneous adipose layer. Moreover, many of these adipocytes are CD45+, suggesting they are monocyte derived. Tracing experiments with injected EGFP+ monocytes confirm that monocytes contribute to the repair of the adipose layer when it is damaged by bleomycin treatment. Our observations strongly suggest that caveolin-1 and PPARγ work together to maintain a balance between the fibrogenic and adipogenic differentiation of monocytes, that this balance is altered in SSc and in healthy AA, and that monocytes make a major contribution to the repair of the adipose layer. PMID:28420992

  1. Caveolin 3-mediated integrin β1 signaling is required for the proliferation of folliculostellate cells in rat anterior pituitary gland under the influence of extracellular matrix.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Ilmiawati, Cimi; Kikuchi, Motoshi; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi

    2011-07-01

    Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes. In this study, we investigated matricrine signaling in FS cells and observed that the proliferation of FS cells is mediated by integrin β1, which is involved in various signaling pathways for cell migration and proliferation in response to ECM. Then, we analyzed downstream events of the integrin β1 signaling pathway in the proliferation of FS cells and identified caveolin 3 as a potential candidate molecule. Caveolin 3 is a membrane protein that binds cholesterol and a number of signaling molecules that interact with integrin β1. Using specific small interfering RNA of caveolin 3, the proliferation of FS cells was inhibited. Furthermore, caveolin 3 drove activation of the mitogen-activated protein kinase (MAPK) signaling cascades, which resulted in upregulation of cyclin D1 in FS cells. These findings suggest that matricrine signaling in the proliferation of FS cells was transduced by a caveolin 3-mediated integrin β1 signaling pathway and subsequent activation of the MAPK pathway. © 2011 Society for Endocrinology

  2. Changes in membrane cholesterol affect caveolin-1 localization and ICC-pacing in mouse jejunum.

    PubMed

    Daniel, E E; Bodie, Gregory; Mannarino, Marco; Boddy, Geoffrey; Cho, Woo-Jung

    2004-07-01

    Pacing of mouse is dependent on the spontaneous activity of interstitial cells of Cajal in the myenteric plexus (ICC-MP). These ICC, as well as intestinal smooth muscle, contain small membrane invaginations called caveolae. Caveolae are signaling centers formed by insertions of caveolin proteins in the inner aspect of the plasma membrane. Caveolins bind signaling proteins and thereby negatively modulate their signaling. We disrupted caveolae by treating intestinal segments with methyl beta-clodextrin (CD) to remove cholesterol or with water-soluble cholesterol (WSC) to load cholesterol. Both of these treatments reduced pacing frequencies, and these effects were reversed by the other agent. These treatments also inhibited paced contractions, but complete reversal was not observed. To evaluate the specificity of the effects of CD and WSC, additional studies were made of their effects on responses to carbamoyl choline and to stimulation of cholinergic nerves. Neither of these treatments affected these sets of responses compared with their respective time controls. Immunochemical and ultrastructural studies showed that caveolin 1 was present in smooth muscle membranes and ICC-MP. CD depleted both caveolin 1 and caveolae, whereas WSC increased the amount of caveolin 1 immunoreactivity and altered its distribution but failed to increase the number of caveolae. The effects of each agent were reversed in major part by the other. We conclude that signaling through caveolae may play a role in pacing by ICC but does not affect responses to acetylcholine from nerves or when added exogenously.

  3. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation

    PubMed Central

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    SUMMARY Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3−/−) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3−/− mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3−/− and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3−/− and mdx mutants have cardiac defects. In cav-3−/− mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3−/− mutants. In double mutant (mdxcav-3+/−) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3+/−), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted entirely from the lower limbs and severely attenuated elsewhere; these data suggest a compensatory rather than a contributory role for the elevated caveolin-3 levels that are found in mdx embryos. These data establish a key role for dystrophin in early muscle formation and demonstrate that caveolin-3 and dystrophin are essential for correct fibre-type specification and emergent stem cell function. These data plug a significant gap in the natural history of muscular dystrophy and will be invaluable in establishing an earlier diagnosis for DMD/LGMD and in designing earlier treatment protocols, leading to better clinical outcome for these patients. PMID:19535499

  4. Curcumin Decreases Hyperphosphorylation of Tau by Down-Regulating Caveolin-1/GSK-3β in N2a/APP695swe Cells and APP/PS1 Double Transgenic Alzheimer's Disease Mice.

    PubMed

    Sun, Jieyun; Zhang, Xiong; Wang, Chen; Teng, Zhipeng; Li, Yu

    2017-01-01

    Caveolin-1, the marker protein of membranal caveolae, is not only involved in cholesterol regulation, but also participates in the cleavage of amyloid [Formula: see text]-protein precursor (APP) and the generation of [Formula: see text]-amyloid peptide. It has been reported to be tightly related with Tau. In our previous studies, curcumin has been confirmed to play a neuroprotective role in Alzheimer's disease (AD), but its effects on Caveolin-1, Tau and their correlation, and the mechanism is still unknown. As such, in the present study, N2a/WT cells, N2a/APP695swe cell and six-month-old APP/PS1 double transgenic mice were enrolled. After curcumin treatment, the expression of Caveolin-1, Tau and their relationship was detected, and the potential mechanisms were explored. The results showed that in the N2a/APP695swe cells, curcumin not only decreased the number of caveolae, but also made their membrane to be thinner; and curcumin could decreased the expression of phosphorylated Tau (P-Tau(ser404)/Tau) and Caveolin-1 ([Formula: see text]), but the expression of phosphorylated GSK-3[Formula: see text] (P-GSK-3[Formula: see text]/GSK-3[Formula: see text] was increased ([Formula: see text]). In APP/PS1 transgenic mice, the same results were observed. Taken together, our data suggest that curcumin may play an important role in AD via reducing Caveolin-1, inactivating GSK-3[Formula: see text] and inhibiting the abnormal excessive phosphorylation of Tau, which will provide a new theory for AD treatment with curcumin.

  5. Molecular Characterization of Caveolin-induced Membrane Curvature*

    PubMed Central

    Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M.; Walser, Piers; Collins, Brett M.; Parton, Robert G.

    2015-01-01

    The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. PMID:26304117

  6. Molecular Characterization of Caveolin-induced Membrane Curvature.

    PubMed

    Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M; Walser, Piers; Collins, Brett M; Parton, Robert G

    2015-10-09

    The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. [Losartan regulates oxidative stress via caveolin-1 and NOX4 in mice with ventilator- induced lung injury].

    PubMed

    Ling, Xuguang; Lou, Anni; Li, Yang; Yang, Renqiang; Ning, Zuowei; Li, Xu

    2015-12-01

    To investigate the effect of losartan in regulating oxidative stress and the underlying mechanism in mice with ventilator-induced lung injury. Thirty-six male C57 mice were randomly divided into control group, losartan treatment group, mechanical ventilation model group, and ventilation plus losartan treatment group. After the corresponding treatments, the lung injuries in each group were examined and the expressions of caveolin-1 and NOX4 in the lung tissues were detected. The mean Smith score of lung injury was significantly higher in mechanical ventilation model group (3.3) than in the control group (0.4), and losartan treatment group (0.3); the mean score was significantly lowered in ventilation plus losartan treatment group (2.3) compared with that in the model group (P<0.05). The expressions of caveolin-1 and NOX4 were significantly higher in the model group than in the control and losartan treatment groups (P<0.05) but was obviously lowered after losartan treatment (P<0.05). Co-expression of caveolin-1 and NOX4 in the lungs was observed in the model group, and was significantly decreased after losartan treatment. Losartan can alleviate ventilator-induced lung injury in mice and inhibit the expression of caveolin-1 and NOX4 and their interaction in the lungs.

  8. Caveolae, caveolin-1 and cavin-1: Emerging roles in pulmonary hypertension.

    PubMed

    Chettimada, Sukrutha; Yang, Jincheng; Moon, Hyung-Geun; Jin, Yang

    2015-07-28

    Caveolae are flask-shaped invaginations of cell membrane that play a significant structural and functional role. Caveolae harbor a variety of signaling molecules and serve to receive, concentrate and transmit extracellular signals across the membrane. Caveolins are the main structural proteins residing in the caveolae. Caveolins and another category of newly identified caveolae regulatory proteins, named cavins, are not only responsible for caveolae formation, but also interact with signaling complexes in the caveolae and regulate transmission of signals across the membrane. In the lung, two of the three caveolin isoforms, i.e ., cav-1 and -2, are expressed ubiquitously. Cavin protein family is composed of four proteins, named cavin-1 (or PTRF for polymerase Ⅰ and transcript release factor), cavin-2 (or SDPR for serum deprivation protein response), cavin-3 (or SRBC for sdr-related gene product that binds to-c-kinase) and cavin-4 (or MURC for muscle restricted coiled-coiled protein or cavin-4). All the caveolin and cavin proteins are essential regulators for caveolae dynamics. Recently, emerging evidence suggest that caveolae and its associated proteins play crucial roles in development and progression of pulmonary hypertension. The focus of this review is to outline and discuss the contrast in alteration of cav-1 (cav-1),-2 and cavin-1 (PTRF) expression and downstream signaling mechanisms between human and experimental models of pulmonary hypertension.

  9. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients.

    PubMed

    Logozzi, Mariantonia; De Milito, Angelo; Lugini, Luana; Borghi, Martina; Calabrò, Luana; Spada, Massimo; Perdicchio, Maurizio; Marino, Maria Lucia; Federici, Cristina; Iessi, Elisabetta; Brambilla, Daria; Venturi, Giulietta; Lozupone, Francesco; Santinami, Mario; Huber, Veronica; Maio, Michele; Rivoltini, Licia; Fais, Stefano

    2009-01-01

    Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504+/-315) or caveolin-1 (619+/-310) were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.

  10. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. © 2015 International Society for Neurochemistry.

  11. Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro.

    PubMed

    Sun, Chunhui; Wang, Nan; Huang, Jie; Xin, Jie; Peng, Fen; Ren, Yinshi; Zhang, Shangli; Miao, Junying

    2009-10-01

    Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long-term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and levels of integrin beta4, caveolin-1 and ROS with BMSC senescence. The activity of PC-PLC and levels of integrin beta4, caveolin-1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC-PLC activity with D609 significantly decreased the number of senescence-associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin beta4, caveolin-1 and ROS. The data suggest that PC-PLC is involved in senescence of BMSCs, and its function is associated with integrin beta4, caveolin-1 and ROS. (c) 2009 Wiley-Liss, Inc.

  12. Caveolin Transfection Results in Caveolae Formation but Not Apical Sorting of Glycosylphosphatidylinositol (GPI)-anchored Proteins in Epithelial Cells

    PubMed Central

    Lipardi, Concetta; Mora, Rosalia; Colomer, Veronica; Paladino, Simona; Nitsch, Lucio; Rodriguez-Boulan, Enrique; Zurzolo, Chiara

    1998-01-01

    Most epithelial cells sort glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface. The “raft” hypothesis, based on data mainly obtained in the prototype cell line MDCK, postulates that apical sorting depends on the incorporation of apical proteins into cholesterol/glycosphingolipid (GSL) rafts, rich in the cholesterol binding protein caveolin/VIP21, in the Golgi apparatus. Fischer rat thyroid (FRT) cells constitute an ideal model to test this hypothesis, since they missort both endogenous and transfected GPI- anchored proteins to the basolateral plasma membrane and fail to incorporate them into cholesterol/glycosphingolipid clusters. Because FRT cells lack caveolin, a major component of the caveolar coat that has been proposed to have a role in apical sorting of GPI- anchored proteins (Zurzolo, C., W. Van't Hoff, G. van Meer, and E. Rodriguez-Boulan. 1994. EMBO [Eur. Mol. Biol. Organ.] J. 13:42–53.), we carried out experiments to determine whether the lack of caveolin accounted for the sorting/clustering defect of GPI- anchored proteins. We report here that FRT cells lack morphological caveolae, but, upon stable transfection of the caveolin1 gene (cav1), form typical flask-shaped caveolae. However, cav1 expression did not redistribute GPI-anchored proteins to the apical surface, nor promote their inclusion into cholesterol/GSL rafts. Our results demonstrate that the absence of caveolin1 and morphologically identifiable caveolae cannot explain the inability of FRT cells to sort GPI-anchored proteins to the apical domain. Thus, FRT cells may lack additional factors required for apical sorting or for the clustering with GSLs of GPI-anchored proteins, or express factors that inhibit these events. Alternatively, cav1 and caveolae may not be directly involved in these processes. PMID:9456321

  13. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts.

    PubMed

    Ring, Axel; Le Lay, Soazig; Pohl, Juergen; Verkade, Paul; Stremmel, Wolfgang

    2006-04-01

    Several lines of evidence suggest that lipid rafts are involved in cellular fatty acid uptake and influence fatty acid translocase (FAT/CD36) function. However, it remains unknown whether caveolae, a specialized raft type, are required for this mechanism. Here, we show that wild-type (WT) mouse embryonic fibroblasts (MEFs) and caveolin-1 knockout (KO) MEFs, which are devoid of caveolae, have comparable overall expression of FAT/CD36 protein but altered subcellular FAT/CD36 localization and function. In WT MEFs, FAT/CD36 was isolated with both lipid raft enriched detergent-resistant membranes (DRMs) and detergent-soluble membranes (DSMs), whereas in cav-1 KO cells it was exclusively associated with DSMs. Subcellular fractionation demonstrated that FAT/CD36 in WT MEFs was localized intracellularly and at the plasma membrane level while in cav-1 KO MEFs it was absent from the plasma membrane. This mistargeting of FAT/CD36 in cav-1 KO cells resulted in reduced fatty acid uptake compared to WT controls. Adenoviral expression of caveolin-1 in KO MEFs induced caveolae formation, redirection of FAT/CD36 to the plasma membrane and rescue of fatty acid uptake. In conclusion, our data provide evidence that caveolin-1 is necessary to target FAT/CD36 to the plasma membrane. Caveolin-1 may influence fatty acid uptake by regulating surface availability of FAT/CD36.

  14. Links between CD147 function, glycosylation, and caveolin-1.

    PubMed

    Tang, Wei; Chang, Sharon B; Hemler, Martin E

    2004-09-01

    Cell surface CD147 shows remarkable variations in size (31-65 kDa) because of heterogeneous N-glycosylation, with the most highly glycosylated forms functioning to induce matrix metalloproteinase (MMP) production. Here we show that all three CD147 N-glycosylation sites make similar contributions to both high and low glycoforms (HG- and LG-CD147). l-Phytohemagglutinin lectin binding and swainsonine inhibition experiments indicated that HG-CD147 contains N-acetylglucosaminyltransferase V-catalyzed, beta1,6-branched, polylactosamine-type sugars, which account for its excess size. Therefore, CD147, which is itself elevated on invasive tumor cells, may make a major contribution to the abundance of beta1,6-branched polylactosamine sugars that appear on invasive tumor cells. It was shown previously that caveolin-1 associates with CD147, thus inhibiting CD147 self-aggregation and MMP induction; now we show that caveolin-1 associates with LG-CD147 and restricts the biosynthetic conversion of LG-CD147 to HG-CD147. In addition, HG-CD147 (but not LG-CD147) was preferentially captured as a multimer after treatment of cells with a homobifunctional cross-linking agent and was exclusively recognized by monoclonal antibody AAA6, a reagent that selectively recognizes self-associated CD147 and inhibits CD147-mediated MMP induction. In conclusion, we have 1) determined the biochemical basis for the unusual size variation in CD147, 2) established that CD147 is a major carrier of beta1,6-branched polylactosamine sugars on tumor cells, and 3) determined that caveolin-1 can inhibit the conversion of LG-CD147 to HG-CD147. Because it is HG-CD147 that self-aggregates and stimulates MMP induction, we now have a mechanism to explain how caveolin-1 inhibits these processes. These results help explain the previously established tumor suppressor functions of caveolin-1.

  15. Structure-based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling Through Caveolin-Protein Interactions?

    PubMed Central

    Collins, Brett M.; Davis, Melissa J.; Hancock, John F.; Parton, Robert G.

    2012-01-01

    Summary Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: In the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched amongst caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed. PMID:22814599

  16. Regulation of raft-dependent endocytosis

    PubMed Central

    Lajoie, P; Nabi, IR

    2007-01-01

    Abstract Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveo-lae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-rich lipid rafts and that are enriched for caveolin-1. While sharing common mechanisms, like cholesterol sensitivity, raft endocytic routes show differential regulation by various cellular components including caveolin-1, dynamin-2 and regulators of the actin cytoskeleton. Dynamin-dependent raft pathways, mediated by caveolae and morphologically equivalent non-caveolin vesicular intermediates, are referred to as caveolae/raft-dependent endocytosis. In contrast, dynamin-independent raft pathways are mediated by non-caveolar intermediates. Raft-dependent endocytosis is regulated by tyrosine kinase inhibitors and, through the regulation of the internalization of various ligands, receptors and effectors, is also a determinant of cellular signaling. In this review, we characterize and discuss the regulation of raft-dependent endocytic pathways and the role of key regulators such as caveolin-1. PMID:17760830

  17. Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis

    PubMed Central

    Chaudhary, Natasha; Gomez, Guillermo A.; Howes, Mark T.; Lo, Harriet P.; McMahon, Kerrie-Ann; Rae, James A.; Schieber, Nicole L.; Hill, Michelle M.; Gaus, Katharina; Yap, Alpha S.; Parton, Robert G.

    2014-01-01

    Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin. PMID:24714042

  18. T1alpha/podoplanin shows raft-associated distribution in mouse lung alveolar epithelial E10 cells.

    PubMed

    Barth, Kathrin; Bläsche, Robert; Kasper, Michael

    2010-01-01

    T1alpha/(podoplanin) is abundantly expressed in the alveolar epithelial type I cells (ATI) of rodent and human lungs. Caveolin-1 is a classical primary structural protein of plasmalemal invaginations, so-called caveolae, which represent specialized lipid rafts, and which are particularly abundant in ATI cells. The biological functions of T1alpha in the alveolar epithelium are unknown. Here we report on the characteristics of raft domains in the microplicae/microvillar protrusions of ATI cells, which contain T1alpha. Detergent resistant membranes (DRMs) from cell lysates of the mouse epithelial ATI-like cell line E10 were prepared using different detergents followed by flotation in a sucrose gradient and tested by Western and dot blots with raft markers (caveolin-1, GM1) and nonraft markers (transferrin receptor, PDI and beta-Cop). Immunocytochemistry was employed for the localization of T1alpha in E10 cells and in situ in rat lungs. Our biochemical results showed that the solubility or insolubility of T1alpha and caveolin-1 differs in Triton X-100 and Lubrol WX, two distinct non-ionic detergents. Caveolin-1 was unsoluble in both detergents, whereas T1alpha was Triton X-100 soluble but Lubrol WX insoluble. Immunofluorescence double stainings revealed that both proteins were colocalized with GM1, while caveolin-1 and T1alpha were not colocalized in the plasma membrane. Cholesterol depletion modified the segregation of T1alpha in Lubrol WX DRMs. Cellular processes in ultrathin sections of cultured mouse E10 cells were immunogold positive. Immunoelectron microscopy (postembedding) of rat lung tissue revealed the preferential localization of T1alpha on apical microvillar protrusions of ATI cells. We conclude that T1alpha and caveolin-1 are located in distinct plasma membrane microdomains, which differ in their protein-lipid interactions. The raft-associated distribution of T1alpha may have an impact on a specific, not yet clarified function of this protein in the alveolar epithelium. 2010 S. Karger AG, Basel

  19. Myocardin Family Members Drive Formation of Caveolae

    PubMed Central

    Krawczyk, Katarzyna K.; Yao Mattisson, Ingrid; Ekman, Mari; Oskolkov, Nikolay; Grantinge, Rebecka; Kotowska, Dorota; Olde, Björn; Hansson, Ola; Albinsson, Sebastian; Miano, Joseph M.; Rippe, Catarina; Swärd, Karl

    2015-01-01

    Caveolae are membrane organelles that play roles in glucose and lipid metabolism and in vascular function. Formation of caveolae requires caveolins and cavins. The make-up of caveolae and their density is considered to reflect cell-specific transcriptional control mechanisms for caveolins and cavins, but knowledge regarding regulation of caveolae genes is incomplete. Myocardin (MYOCD) and its relative MRTF-A (MKL1) are transcriptional coactivators that control genes which promote smooth muscle differentiation. MRTF-A communicates changes in actin polymerization to nuclear gene transcription. Here we tested if myocardin family proteins control biogenesis of caveolae via activation of caveolin and cavin transcription. Using human coronary artery smooth muscle cells we found that jasplakinolide and latrunculin B (LatB), substances that promote and inhibit actin polymerization, increased and decreased protein levels of caveolins and cavins, respectively. The effect of LatB was associated with reduced mRNA levels for these genes and this was replicated by the MRTF inhibitor CCG-1423 which was non-additive with LatB. Overexpression of myocardin and MRTF-A caused 5-10-fold induction of caveolins whereas cavin-1 and cavin-2 were induced 2-3-fold. PACSIN2 also increased, establishing positive regulation of caveolae genes from three families. Full regulation of CAV1 was retained in its proximal promoter. Knock down of the serum response factor (SRF), which mediates many of the effects of myocardin, decreased cavin-1 but increased caveolin-1 and -2 mRNAs. Viral transduction of myocardin increased the density of caveolae 5-fold in vitro. A decrease of CAV1 was observed concomitant with a decrease of the smooth muscle marker calponin in aortic aneurysms from mice (C57Bl/6) infused with angiotensin II. Human expression data disclosed correlations of MYOCD with CAV1 in a majority of human tissues and in the heart, correlation with MKL2 (MRTF-B) was observed. The myocardin family of transcriptional coactivators therefore drives formation of caveolae and this effect is largely independent of SRF. PMID:26244347

  20. Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity.

    PubMed

    Meshulam, Tova; Breen, Michael R; Liu, Libin; Parton, Robert G; Pilch, Paul F

    2011-08-01

    Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains.

  1. Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity

    PubMed Central

    Meshulam, Tova; Breen, Michael R.; Liu, Libin; Parton, Robert G.; Pilch, Paul F.

    2011-01-01

    Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains. PMID:21652731

  2. High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

    PubMed Central

    Logozzi, Mariantonia; De Milito, Angelo; Lugini, Luana; Borghi, Martina; Calabrò, Luana; Spada, Massimo; Perdicchio, Maurizio; Marino, Maria Lucia; Federici, Cristina; Iessi, Elisabetta; Brambilla, Daria; Venturi, Giulietta; Lozupone, Francesco; Santinami, Mario; Huber, Veronica; Maio, Michele; Rivoltini, Licia; Fais, Stefano

    2009-01-01

    Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients. PMID:19381331

  3. Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation.

    PubMed

    Hill, Warren G; Almasri, Eyad; Ruiz, W Giovanni; Apodaca, Gerard; Zeidel, Mark L

    2005-07-01

    Caveolae are invaginated membrane structures with high levels of cholesterol, sphingomyelin, and caveolin protein that are predicted to exist as liquid-ordered domains with low water permeability. We isolated a caveolae-enriched membrane fraction without detergents from rat lung and characterized its permeability properties to nonelectrolytes and protons. Membrane permeability to water was 2.85 +/- 0.41 x 10(-3) cm/s, a value 5-10 times higher than expected based on comparisons with other cholesterol and sphingolipid-enriched membranes. Permeabilities to urea, ammonia, and protons were measured and found to be moderately high for urea and ammonia at 8.85 +/- 2.40 x 10(-7)and 6.84 +/- 1.03 x 10(-2) respectively and high for protons at 8.84 +/- 3.06 x 10(-2) cm/s. To examine whether caveolin or other integral membrane proteins were responsible for high permeabilities, liposomes designed to mimic the lipids of the inner and outer leaflets of the caveolar membrane were made. Osmotic water permeability to both liposome compositions were determined and a combined inner/outer leaflet water permeability was calculated and found to be close to that of native caveolae at 1.58 +/- 1.1 x 10(-3) cm/s. In caveolae, activation energy for water flux was high (19.4 kcal/mol) and water permeability was not inhibited by HgCl2; however, aquaporin 1 was detectable by immunoblotting. Immunostaining of rat lung with AQP1 and caveolin antisera revealed very low levels of colocalization. We conclude that aquaporin water channels do not contribute significantly to the observed water flux and that caveolae have relatively high water and solute permeabilities due to the high degree of unsaturation in their fatty acyl chains.

  4. A comparison of caveolae and caveolin-1 to folate receptor α in retina and retinal pigment epithelium

    PubMed Central

    Bridges, Christy C.; El-Sherbeny, Amira; Roon, Penny; Ola, M. Shamsul; Kekuda, Ramesh; Ganapathy, Vadivel; Cameron, Richard S.; Cameron, Patricia L.

    2015-01-01

    Summary Caveolae are flask-shaped membrane invaginations present in most mammalian cells. They are distinguished by the presence of a striated coat composed of the protein, caveolin. Caveolae have been implicated in numerous cellular processes, including potocytosis in which caveolae are hypothesized to co-localize with folate receptor α and participate in folate uptake. Our laboratory has recently localized folate receptor α to the basolateral surface of the retinal pigment epithelium (RPE). It is present also in many other cells of the retina. In the present study, we asked whether caveolae were present in the RPE, and if so, whether their pattern of distribution was similar to folate receptor α. We also examined the distribution pattern of caveolin-1, which can be a marker of caveolae. Extensive electron microscopical analysis revealed caveolae associated with endothelial cells. However, none were detected in intact or cultured RPE. Laser scanning confocal microscopical analysis of intact RPE localized caveolin-1 to the apical and basal surfaces, a distribution unlike folate receptor α. Western analysis confirmed the presence of caveolin-1 in cultured RPE cells and laser scanning confocal microscopy localized the protein to the basal plasma membrane of the RPE, a distribution like that of folate receptor α. This distribution was confirmed by electron microscopic immunolocalization. The lack of caveolae in the RPE suggests that these structures may not be essential for folate internalization in the RPE. PMID:11508338

  5. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation.

    PubMed

    Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A

    2005-01-01

    The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.

  6. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    PubMed

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  7. Caveolin-1 knockout mice exhibit impaired induction of mGluR-dependent long-term depression at CA3-CA1 synapses.

    PubMed

    Takayasu, Yukihiro; Takeuchi, Koichi; Kumari, Ranju; Bennett, Michael V L; Zukin, R Suzanne; Francesconi, Anna

    2010-12-14

    Group I metabotropic glutamate receptors (mGluR1/5) are important to synaptic circuitry formation during development and to forms of activity-dependent synaptic plasticity. Dysregulation of mGluR1/5 signaling is implicated in some disorders of neurodevelopment, including fragile X syndrome, the most common inherited form of intellectual disabilities and leading cause of autism. Site(s) in the intracellular loops of mGluR1/5 directly bind caveolin-1, an adaptor protein that associates with membrane rafts. Caveolin-1 is the main coat component of caveolae and organizes macromolecular signaling complexes with effector proteins and membrane receptors. We report that long-term depression (LTD) elicited by a single application of the group I mGluR selective agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) was markedly attenuated at Schaffer collateral-CA1 synapses of mice lacking caveolin-1 (Cav1(-/-)), as assessed by field recording. In contrast, multiple applications of DHPG produced LTD comparable to that in WT mice. Passive membrane properties, basal glutamatergic transmission and NMDA receptor (NMDAR)-dependent LTD were unaltered. The remaining LTD was reduced by anisomycin, an inhibitor of protein synthesis, by U0126, an inhibitor of MEK1/2 kinases, and by rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), suggesting mediation by the same mechanisms as in WT. mGluR1/5-dependent activation (phosphorylation) of MEK and extracellular signal-regulated kinase (ERK1/2) was altered in Cav1(-/-) mice; basal phosphorylation was increased, but a single application of DHPG had no further effect, and after DHPG, phosphorylation was similar in WT and Cav1(-/-) mice. Taken together, our findings suggest that caveolin-1 is required for normal coupling of mGluR1/5 to downstream signaling cascades and induction of mGluR-LTD.

  8. Caveolins: targeting pro-survival signaling in the heart and brain

    PubMed Central

    Stary, Creed M.; Tsutsumi, Yasuo M.; Patel, Piyush M.; Head, Brian P.; Patel, Hemal H.; Roth, David M.

    2012-01-01

    The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies. PMID:23060817

  9. Bile Acids Down-Regulate Caveolin-1 in Esophageal Epithelial Cells through Sterol Responsive Element-Binding Protein

    PubMed Central

    Prade, Elke; Tobiasch, Moritz; Hitkova, Ivana; Schäffer, Isabell; Lian, Fan; Xing, Xiangbin; Tänzer, Marc; Rauser, Sandra; Walch, Axel; Feith, Marcus; Post, Stefan; Röcken, Christoph; Schmid, Roland M.; Ebert, Matthias P.A.

    2012-01-01

    Bile acids are synthesized from cholesterol and are major risk factors for Barrett adenocarcinoma (BAC) of the esophagus. Caveolin-1 (Cav1), a scaffold protein of membrane caveolae, is transcriptionally regulated by cholesterol via sterol-responsive element-binding protein-1 (SREBP1). Cav1 protects squamous epithelia by controlling cell growth and stabilizing cell junctions and matrix adhesion. Cav1 is frequently down-regulated in human cancers; however, the molecular mechanisms that lead to this event are unknown. We show that the basal layer of the nonneoplastic human esophageal squamous epithelium expressed Cav1 mainly at intercellular junctions. In contrast, Cav1 was lost in 95% of tissue specimens from BAC patients (n = 100). A strong cytoplasmic expression of Cav1 correlated with poor survival in a small subgroup (n = 5) of BAC patients, and stable expression of an oncogenic Cav1 variant (Cav1-P132L) in the human BAC cell line OE19 promoted proliferation. Cav1 was also detectable in immortalized human squamous epithelial, Barrett esophagus (CPC), and squamous cell carcinoma cells (OE21), but was low in BAC cell lines (OE19, OE33). Mechanistically, bile acids down-regulated Cav1 expression by inhibition of the proteolytic cleavage of 125-kDa pre-SREBP1 from the endoplasmic reticulum/Golgi apparatus and nuclear translocation of active 68-kDa SREBP1. This block in SREBP1's posttranslational processing impaired transcriptional activation of SREBP1 response elements in the proximal human Cav1 promoter. Cav1 was also down-regulated in esophagi from C57BL/6 mice on a diet enriched with 1% (wt/wt) chenodeoxycholic acid. Mice deficient for Cav1 or the nuclear bile acid receptor farnesoid X receptor showed hyperplasia and hyperkeratosis of the basal cell layer of esophageal epithelia, respectively. These data indicate that bile acid-mediated down-regulation of Cav1 marks early changes in the squamous epithelium, which may contribute to onset of Barrett esophagus metaplasia and progression to BAC. PMID:22474125

  10. Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes

    PubMed Central

    Liebl, David; Difato, Francesco; Horníková, Lenka; Mannová, Petra; Štokrová, Jitka; Forstová, Jitka

    2006-01-01

    Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments. PMID:16611921

  11. Crosstalk between Caveolin-1/Extracellular Signal-regulated Kinase (ERK) and β-Catenin Survival Pathways in Osteocyte Mechanotransduction*

    PubMed Central

    Gortazar, Arancha R.; Martin-Millan, Marta; Bravo, Beatriz; Plotkin, Lilian I.; Bellido, Teresita

    2013-01-01

    Osteocyte viability is a critical determinant of bone strength and is promoted by both mechanical stimulation and activation of the Wnt signaling pathway. Earlier studies demonstrated that both stimuli promote survival of osteocytes by activating the ERKs. Here, we show that there is interaction between the caveolin-1/ERK and Wnt/β-catenin signaling pathways in the transduction of mechanical cues into osteocyte survival. Thus, ERK nuclear translocation and anti-apoptosis induced by mechanical stimulation are abolished by the Wnt antagonist Dkk1 and the β-catenin degradation stimulator Axin2. Conversely, GSK3β phosphorylation and β-catenin accumulation induced by mechanical stimulation are abolished by either pharmacologic inhibition of ERKs or silencing caveolin-1. In contrast, the canonical Wnt signaling inhibitor dominant-negative T cell factor does not alter ERK nuclear translocation or survival induced by mechanical stimulation. These findings demonstrate that β-catenin accumulation is an essential component of the mechanotransduction machinery in osteocytes, albeit β-catenin/T cell factor-mediated transcription is not required. The simultaneous requirement of β-catenin for ERK activation and of ERK activation for β-catenin accumulation suggests a bidirectional crosstalk between the caveolin-1/ERK and Wnt/β-catenin pathways in mechanotransduction leading to osteocyte survival. PMID:23362257

  12. Caveolin and Proteasome in Tocotrienol Mediated Myocardial Protection

    PubMed Central

    Das, Manika; Das, Samarjit; Wang, Ping; Powell, Saul R.; Das, Dipak K.

    2008-01-01

    The effect of different isomers of tocotrienol was tested on myocardial ischemia reperfusion injury. Although all of the tocotrienol isomers offered some degree of cardioprotection, gamma-tocotrienol was the most protective as evident from the result of myocardial apoptosis. To study the mechanism of tocotrienol mediated cardioprotection, we examined the interaction and/or translocation of different signaling components to caveolins and activity of proteasome. The results suggest that differential interaction of MAP kinases with caveolin 1/3 in conjuncture with proteasome stabilization play a unique role in tocotrienol mediated cardioprotection possibly by altering the availability of pro-survival and anti-survival proteins. PMID:18769056

  13. Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect

    PubMed Central

    Agarwal, Shailesh R.; Harvey, Robert D.; Porter, Karen E.; Calaghan, Sarah

    2014-01-01

    The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (‘pleiotropic effects’). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae. PMID:25211146

  14. Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis

    PubMed Central

    Lee, Rebecca; Perry, Beth; Heywood, Jonathan; Reese, Charles; Bonner, Michael; Hatfield, Corey M.; Silver, Richard M.; Visconti, Richard P.; Hoffman, Stanley; Tourkina, Elena

    2014-01-01

    In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p < 0.001). Concomitantly, the subcutaneous fat layer becomes >80% thinner. This effect is also blocked by CSD (p < 0.001). Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue. PMID:24966836

  15. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe. © 2016 John Wiley & Sons Australia, Ltd.

  16. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petriello, Michael C.; University of Kentucky Superfund Research Center, Lexington, KY 40536; Han, Sung Gu

    2014-06-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehiclemore » and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1 −/− mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1 −/− endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1 −/− endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. - Highlights: • Reduction of caveolin-1 protein protects against polychlorinated biphenyl toxicity. • Decreasing caveolin-1 levels increases the Nrf2 antioxidant response. • Reducing caveolin-1 levels decreases expression of Nrf2 inhibitory proteins. • Caveolin-1/Nrf2 cross-talk is evident in mouse, human, and porcine endothelial cells.« less

  17. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice.

    PubMed

    Lam, Tze Yan; Seto, Sai Wang; Lau, Yee Man; Au, Lai Shan; Kwan, Yiu Wa; Ngai, Sai Ming; Tsui, Kwong Wing

    2006-09-28

    In this study, we compared the endothelium-dependent and -independent relaxation of the isolated thoracic aorta of control (+db/+m) and diabetic (+db/+db) (C57BL/KsJ) mice. The gene expression (mRNA and protein) level of the muscarinic M(3) receptors, endothelial nitric oxide synthase (eNOS) and caveolin-1 of the aorta was also evaluated. Acetylcholine caused a concentration-dependent, N(G)-nitro-L-arginine methyl-ester (20 microM)-sensitive relaxation, with approximately 100% relaxation at 10 microM, in +db/+m mice. In +db/+db mice, the acetylcholine-induced relaxation was significantly smaller (maximum relaxation: approximately 80%). The sodium nitroprusside-mediated relaxation was slightly diminished in +db/+db mice, compared to +db/+m mice. However, there was no significant difference in the isoprenaline- and cromakalim-induced relaxation observed in both species. The mRNA and protein expression levels of caveolin-1 were significantly higher in the aorta of +db/+db mice. In contrast, there was no difference in the mRNA and protein expression levels of eNOS and muscarinic M(3) receptors between these mice. Our results demonstrate that the impairment of the acetylcholine-induced, endothelium-dependent aortic relaxation observed in +db/+db mice was probably associated with an enhanced expression of caveolin-1 mRNA and protein.

  18. Involvement of Caveolin in Low K+-induced Endocytic Degradation of Cell-surface Human Ether-a-go-go-related Gene (hERG) Channels*

    PubMed Central

    Massaeli, Hamid; Sun, Tao; Li, Xian; Shallow, Heidi; Wu, Jimmy; Xu, Jianmin; Li, Wentao; Hanson, Christian; Guo, Jun; Zhang, Shetuan

    2010-01-01

    Reduction in the rapidly activating delayed rectifier K+ channel current (IKr) due to either mutations in the human ether-a-go-go-related gene (hERG) or drug block causes inherited or drug-induced long QT syndrome. A reduction in extracellular K+ concentration ([K+]o) exacerbates long QT syndrome. Recently, we demonstrated that lowering [K+]o promotes degradation of IKr in rabbit ventricular myocytes and of the hERG channel stably expressed in HEK 293 cells. In this study, we investigated the degradation pathways of hERG channels under low K+ conditions. We demonstrate that under low K+ conditions, mature hERG channels and caveolin-1 (Cav1) displayed a parallel time-dependent reduction. Mature hERG channels coprecipitated with Cav1 in co-immunoprecipitation analysis, and internalized hERG channels colocalized with Cav1 in immunocytochemistry analysis. Overexpression of Cav1 accelerated internalization of mature hERG channels in 0 mm K+o, whereas knockdown of Cav1 impeded this process. In addition, knockdown of dynamin 2 using siRNA transfection significantly impeded hERG internalization and degradation under low K+o conditions. In cultured neonatal rat ventricular myocytes, knockdown of caveolin-3 significantly impeded low K+o-induced reduction of IKr. Our data indicate that a caveolin-dependent endocytic route is involved in low K+o-induced degradation of mature hERG channels. PMID:20605793

  19. Mitochondria-localized caveolin in adaptation to cellular stress and injury

    PubMed Central

    Fridolfsson, Heidi N.; Kawaraguchi, Yoshitaka; Ali, Sameh S.; Panneerselvam, Mathivadhani; Niesman, Ingrid R.; Finley, J. Cameron; Kellerhals, Sarah E.; Migita, Michael Y.; Okada, Hideshi; Moreno, Ana L.; Jennings, Michelle; Kidd, Michael W.; Bonds, Jacqueline A.; Balijepalli, Ravi C.; Ross, Robert S.; Patel, Piyush M.; Miyanohara, Atsushi; Chen, Qun; Lesnefsky, Edward J.; Head, Brian P.; Roth, David M.; Insel, Paul A.; Patel, Hemal H.

    2012-01-01

    We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae-mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav-3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress-induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav-3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin-knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav-2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria-caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.—Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., Kellerhals, S. E., Migita, M. Y., Okada, H., Moreno, A. L., Jennings, M., Kidd, M. W., Bonds, J. A., Balijepalli, R. C., Ross, R. S., Patel, P. M., Miyanohara, A., Chen, Q., Lesnefsky, E. J., Head, B. P., Roth, D. M., Insel, P. A., Patel, H. H. Mitochondria-localized caveolin in adaptation to cellular stress and injury. PMID:22859372

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jae-Sung; Choo, Hyo-Jung; Cho, Bong-Rae

    Lipid rafts are plasma membrane platforms mediating signal transduction pathways for cellular proliferation, differentiation and apoptosis. Here, we show that membrane fluidity was increased in HeLa cells following treatment with ginsenoside Rh2 (Rh2), as determined by cell staining with carboxy-laurdan (C-laurdan), a two-photon dye designed for measuring membrane hydrophobicity. In the presence of Rh2, caveolin-1 appeared in non-raft fractions after sucrose gradient ultracentrifugation. In addition, caveolin-1 and GM1, lipid raft landmarkers, were internalized within cells after exposure to Rh2, indicating that Rh2 might disrupt lipid rafts. Since cholesterol overloading, which fortifies lipid rafts, prevented an increase in Rh2-induced membrane fluidity,more » caveolin-1 internalization and apoptosis, lipid rafts appear to be essential for Rh2-induced apoptosis. Moreover, Rh2-induced Fas oligomerization was abolished following cholesterol overloading, and Rh2-induced apoptosis was inhibited following treatment with siRNA for Fas. This result suggests that Rh2 is a novel lipid raft disruptor leading to Fas oligomerization and apoptosis.« less

  1. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro.

    PubMed Central

    Monier, S; Parton, R G; Vogel, F; Behlke, J; Henske, A; Kurzchalia, T V

    1995-01-01

    VIP21-caveolin is a membrane protein, proposed to be a component of the striated coat covering the cytoplasmic surface of caveolae. To investigate the biochemical composition of the caveolar coat, we used our previous observation that VIP21-caveolin is present in large complexes and insoluble in the detergents CHAPS or Triton X-114. The mild treatment of these insoluble structures with sodium dodecyl sulfate leads to the detection of high molecular mass complexes of approximately 200, 400, and 600 kDa. The 400-kDa complex purified to homogeneity from dog lung is shown to consist exclusive of the two isoforms of VIP21-caveolin. Pulse-chase experiments indicate that the oligomers form early after the protein is synthesized in the endoplasmic reticulum (ER). VIP21-caveolin does indeed insert into the ER membrane through the classical translocation machinery. Its hydrophobic domain adopts an unusual loop configuration exposing the N- and C-flanking regions to the cytoplasm. Similar high molecular mass complexes can be produced from the in vitro-synthesized VIP21-caveolin. The complex formation occurs only if VIP21-caveolin isoforms are properly inserted into the membrane; formation is cytosol-dependent and does not involve a vesicle fusion step. We propose that high molecular mass oligomers of VIP21-caveolin represent the basic units forming the caveolar coat. They are formed in the ER and later, between the ER and the plasma membrane, these oligomers could associate into larger detergent-insoluble structures. Images PMID:7579702

  2. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle.

    PubMed

    Lo, Harriet P; Nixon, Susan J; Hall, Thomas E; Cowling, Belinda S; Ferguson, Charles; Morgan, Garry P; Schieber, Nicole L; Fernandez-Rojo, Manuel A; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F; Parton, Robert G

    2015-08-31

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1(-/-) muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin-cavin system. © 2015 Lo et al.

  3. Post-translational regulation of endothelial nitric oxide synthase (eNOS) by estrogens in the rat vagina.

    PubMed

    Musicki, Biljana; Liu, Tongyun; Strong, Travis D; Lagoda, Gwen A; Bivalacqua, Trinity J; Burnett, Arthur L

    2010-05-01

    Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17beta (15 microg). Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement in the distal or proximal vagina. These results define novel estrogen signaling mechanisms in the vagina which involve eNOS phosphorylation and eNOS-caveolin-1 interaction.

  4. Post-translational Regulation of Endothelial Nitric Oxide Synthase (eNOS) by Estrogens in the Rat Vagina

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Strong, Travis D.; Lagoda, Gwen A.; Bivalacqua, Trinity J.; Burnett, Arthur L.

    2010-01-01

    Introduction Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. Aims Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. Methods We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17β (15 μg). Main Outcome Measures Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. Results We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement in the distal or proximal vagina. Conclusions These results define novel estrogen signaling mechanisms in the vagina which involve eNOS phosphorylation and eNOS-caveolin-1 interaction. PMID:20233295

  5. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins thatmore » bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.« less

  6. Revisiting caveolin trafficking: the end of the caveosome

    PubMed Central

    Howes, Mark T.

    2010-01-01

    In this issue, a study by Hayer et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003086) provides insights into the trafficking of caveolins, the major membrane proteins of caveolae. As well as providing evidence for ubiquitin-mediated endosomal sorting and degradation of caveolin in multivesicular bodies (MVBs), the new findings question the existence of a unique organelle proposed nine years ago, the caveosome. PMID:21041440

  7. Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs

    PubMed Central

    Stoeber, Miriam; Schellenberger, Pascale; Siebert, C. Alistair; Leyrat, Cedric; Helenius, Ari

    2016-01-01

    Caveolae are invaginated plasma membrane domains involved in mechanosensing, signaling, endocytosis, and membrane homeostasis. Oligomers of membrane-embedded caveolins and peripherally attached cavins form the caveolar coat whose structure has remained elusive. Here, purified Cavin1 60S complexes were analyzed structurally in solution and after liposome reconstitution by electron cryotomography. Cavin1 adopted a flexible, net-like protein mesh able to form polyhedral lattices on phosphatidylserine-containing vesicles. Mutating the two coiled-coil domains in Cavin1 revealed that they mediate distinct assembly steps during 60S complex formation. The organization of the cavin coat corresponded to a polyhedral nano-net held together by coiled-coil segments. Positive residues around the C-terminal coiled-coil domain were required for membrane binding. Purified caveolin 8S oligomers assumed disc-shaped arrangements of sizes that are consistent with the discs occupying the faces in the caveolar polyhedra. Polygonal caveolar membrane profiles were revealed in tomograms of native caveolae inside cells. We propose a model with a regular dodecahedron as structural basis for the caveolae architecture. PMID:27834731

  8. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes

    PubMed Central

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M.; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR. PMID:27649573

  9. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    PubMed

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  10. Compartmentalization of endocannabinoids into lipid rafts in a microglial cell line devoid of caveorrlin-1

    PubMed Central

    Rimmerman, Neta; Bradshaw, Heather B; Kozela, Ewa; Levy, Rivka; Juknat, Ana; Vogel, Zvi

    2012-01-01

    BACKGROUND AND PURPOSE N-acyl ethanolamines (NAEs) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids and along with related lipids are synthesized on demand from membrane phospholipids. Here, we have studied the compartmentalization of NAEs and 2-AG into lipid raft fractions isolated from the caveolin-1-lacking microglial cell line BV-2, following vehicle or cannabidiol (CBD) treatment. Results were compared with those from the caveolin-1-positive F-11 cell line. EXPERIMENTAL APPROACH BV-2 cells were incubated with CBD or vehicle. Cells were fractionated using a detergent-free continuous OptiPrep density gradient. Lipids in fractions were quantified using HPLC/MS/MS. Proteins were measured using Western blot. KEY RESULTS BV-2 cells were devoid of caveolin-1. Lipid rafts were isolated from BV-2 cells as confirmed by co-localization with flotillin-1 and sphingomyelin. Small amounts of cannabinoid CB1 receptors were found in lipid raft fractions. After incubation with CBD, levels and distribution in lipid rafts of 2-AG, N-arachidonoyl ethanolamine (AEA), and N-oleoyl ethanolamine (OEA) were not changed. Conversely, the levels of the saturated N-stearoyl ethanolamine (SEA) and N-palmitoyl ethanolamine (PEA) were elevated in lipid raft fractions. In whole cells with growth medium, CBD treatment increased AEA and OEA time-dependently, while levels of 2-AG, PEA and SEA did not change. CONCLUSIONS AND IMPLICATIONS Whereas levels of 2-AG were not affected by CBD treatment, the distribution and levels of NAEs showed significant changes. Among the NAEs, the degree of acyl chain saturation predicted the compartmentalization after CBD treatment suggesting a shift in cell signalling activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21449981

  11. Quantitative self-assembly prediction yields targeted nanomedicines

    NASA Astrophysics Data System (ADS)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  12. Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly(lactic acid)-Poly(ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells.

    PubMed

    Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A

    2018-03-01

    We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hypothyroidism: age-related influence on cardiovascular nitric oxide system in rats.

    PubMed

    Sarati, Lorena I; Martinez, Carla R; Artés, Nicolás; Arreche, Noelia; López-Costa, Juan J; Balaszczuk, Ana M; Fellet, Andrea L

    2012-09-01

    This study investigates whether changes in nitric oxide (NO) production participate in the cardiovascular manifestations of hypothyroidism and whether these changes are age-related. Sprague-Dawley rats aged 2 and 18 months old were treated with 0.02% methimazole (wt/vol) during 28 days. Left ventricular function was evaluated by echocardiography. Measurements of arterial blood pressure, heart rate, nitric oxide synthase (NOS) activity and NOS/caveolin-1 and -3 protein levels were performed. Hypothyroidism enhanced the age-related changes in heart function. Hypothyroid state decreased atrial NOS activity in both young and adult rats, associated with a reduction in protein levels of the three NOS isoforms in young animals and increased caveolin (cav) 1 expression in adult rats. Ventricle and aorta NOS activity increased in young and adult hypothyroid animals. In ventricle, changes in NOS activity were accompanied by an increase in inducible NOS isoform in young rats and by an increase in caveolins expression in adult rats. Greater aorta NOS activity level in young and in adult Hypo rats would derive from the inducible and the endothelial NOS isoform, respectively. Thyroid hormones would be one of the factors involved in the modulation of cardiovascular NO production and caveolin-1 and -3 tissue-specific abundance, regardless of age. Hypothyroidism appears to contribute in a differential way to aging-induced changes in the myocardium and aorta tissues. Low thyroid hormones levels would enhance the aging effect on the heart. Age-related changes in NO production participate in the cardiovascular manifestations of hypothyroidism. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Expression of caveolin in trabecular meshwork cells and its possible implication in pathogenesis of primary open angle glaucoma

    PubMed Central

    Surgucheva, Irina

    2011-01-01

    Purpose Primary open-angle glaucoma (POAG), which is the most common form of glaucoma, has been associated with a heterogeneous genetic component. A genome-wide association study has identified a common sequence variant at 7q31 (rs4236601 [A]) near the caveolin genes in patients with POAG. Caveolins are a family of integral membrane proteins which participate in many cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, cell adhesion and migration. The goal of this study was to investigate the expression and regulation of caveolin 1 (CAV-1) and caveolin 2 (CAV-2) in normal and glaucoma trabecular meshwork (TM) cells. Methods CAV-1 and CAV-2 protein expression was quantified by immunoblot analysis using lysates isolated from primary and immortalized TM cells or TM tissue dissected from normal and POAG eyes. The localization of caveolins in TM cells was assessed by immunofluorescent microscopy. CAV-1 and CAV-2 protein expression was also investigated in TM cells at various time points after subjecting the cells to known glaucomatous insults like dexamethasone (DEX) and tumor growth factor beta2 (TGF-β2) treatment. Phosphorylation of CAV-1 at tyrosine 14 in normal and glaucoma TM cell lines was evaluated using a specific monoclonal antibody (Ab). The 5′ upstream region of the CAV-1 gene was amplified and the sequence variant rs4236601 (A/G polymorphic site) and several putative transcription factor-binding sites were modified by in vitro mutagenesis. The effect of nucleotide sequence modifications in the CAV-1 upstream region on gene expression was assayed in a luciferase-based system in TM and non-TM cells. Results CAV-1 and CAV-2 are expressed in TM cells, with localization to the cytoplasm and perinuclear region. DEX increased CAV-1 expression in immortalized glaucoma TM cells by 2.8±0.1 (n=3) fold at 24 h and 2.5±0.1 (n=3) fold at 48 h, compared to 1.3±0.06 (n=3) fold at 24 and 48 h in immortalized normal TM cells. Phosphorylation of CAV-1 at Tyr14 was reduced by 3.2±0.15 (n=3) fold in glaucomatous TM cells when compared to normal TM cells. In POAG and normal TM tissue, CAV-1 expression was found to be uniform. CAV-2, on the other hand, was variable in independent normal and glaucoma TM tissue. Substitution of a G for an A at base pair −2,388 upstream of the start codon of CAV-1, corresponding to the minor allele rs4236601 [A], increased transcriptional activity in TM and non-TM cells when compared to the native sequence. Deletion analysis of putative transcription factor binding sites in the CAV-1 promoter region caused cell-specific effects on gene expression. Conclusions CAV-1 and CAV-2 are expressed in normal and glaucoma tissue and TM cell lines. Phosphorylation of Tyr14 in CAV-1 and transcriptional regulation of CAV-1 expression may have a role in glaucomatous alterations in TM cells. PMID:22128235

  15. Neutrophil Membrane Cholesterol Content is a Key Factor in Cystic Fibrosis Lung Disease.

    PubMed

    White, Michelle M; Geraghty, Patrick; Hayes, Elaine; Cox, Stephen; Leitch, William; Alfawaz, Bader; Lavelle, Gillian M; McElvaney, Oliver J; Flannery, Ryan; Keenan, Joanne; Meleady, Paula; Henry, Michael; Clynes, Martin; Gunaratnam, Cedric; McElvaney, Noel G; Reeves, Emer P

    2017-09-01

    Identification of mechanisms promoting neutrophil trafficking to the lungs of patients with cystic fibrosis (CF) is a challenge for next generation therapeutics. Cholesterol, a structural component of neutrophil plasma membranes influences cell adhesion, a key step in transmigration. The effect of chronic inflammation on neutrophil membrane cholesterol content in patients with CF (PWCF) remains unclear. To address this we examined neutrophils of PWCF to evaluate the cause and consequence of altered membrane cholesterol and identified the effects of lung transplantation and ion channel potentiator therapy on the cellular mechanisms responsible for perturbed membrane cholesterol and increased cell adhesion. PWCF homozygous for the ΔF508 mutation or heterozygous for the G551D mutation were recruited (n=48). Membrane protein expression was investigated by mass spectrometry. The effect of lung transplantation or ivacaftor therapy was assessed by ELISAs, and calcium fluorometric and μ-calpain assays. Membranes of CF neutrophils contain less cholesterol, yet increased integrin CD11b expression, and respond to inflammatory induced endoplasmic reticulum (ER) stress by activating μ-calpain. In vivo and in vitro, increased μ-calpain activity resulted in proteolysis of the membrane cholesterol trafficking protein caveolin-1. The critical role of caveolin-1 for adequate membrane cholesterol content was confirmed in caveolin-1 knock-out mice. Lung transplant therapy or treatment of PWCF with ivacaftor, reduced levels of circulating inflammatory mediators and actuated increased caveolin-1 and membrane cholesterol, with concurrent normalized neutrophil adhesion. Results demonstrate an auxiliary benefit of lung transplant and potentiator therapy, evident by a reduction in circulating inflammation and controlled neutrophil adhesion. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase

    PubMed Central

    Piegeler, T.; Schläpfer, M.; Dull, R. O.; Schwartz, D. E.; Borgeat, A.; Minshall, R. D.; Beck-Schimmer, B.

    2015-01-01

    Background Matrix-metalloproteinases (MMP) and cancer cell invasion are crucial for solid tumour metastasis. Important signalling events triggered by inflammatory cytokines, such as tumour necrosis factor α (TNFα), include Src-kinase-dependent activation of Akt and focal adhesion kinase (FAK) and phosphorylation of caveolin-1. Based on previous studies where we demonstrated amide-type local anaesthetics block TNFα-induced Src activation in malignant cells, we hypothesized that local anaesthetics might also inhibit the activation and/or phosphorylation of Akt, FAK and caveolin-1, thus attenuating MMP release and invasion of malignant cells. Methods NCI-H838 lung adenocarcinoma cells were incubated with ropivacaine or lidocaine (1 nM-100 µM) in absence/presence of TNFα (20 ng ml−1) for 20 min or 4 h, respectively. Activation/phosphorylation of Akt, FAK and caveolin-1 were evaluated by Western blot, and MMP-9 secretion was determined by enzyme-linked immunosorbent assay. Tumour cell migration (electrical wound-healing assay) and invasion were also assessed. Results Ropivacaine (1 nM–100 μM) and lidocaine (1–100 µM) significantly reduced TNFα-induced activation/phosphorylation of Akt, FAK and caveolin-1 in NCI-H838 cells. MMP-9 secretion triggered by TNFα was significantly attenuated by both lidocaine and ropivacaine (half-maximal inhibitory concentration [IC50]=3.29×10−6 M for lidocaine; IC50=1.52×10−10 M for ropivacaine). The TNFα-induced increase in invasion was completely blocked by both lidocaine (10 µM) and ropivacaine (1 µM). Conclusions At clinically relevant concentrations both ropivacaine and lidocaine blocked tumour cell invasion and MMP-9 secretion by attenuating Src-dependent inflammatory signalling events. Although determined entirely in vitro, these findings provide significant insight into the potential mechanism by which local anaesthetics might diminish metastasis. PMID:26475807

  17. Caveolins and caveolae in ocular physiology and pathophysiology.

    PubMed

    Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H

    2017-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Caveolins and caveolae in ocular physiology and pathophysiology

    PubMed Central

    Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.

    2016-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379

  19. The calcium channel blocker amlodipine promotes the unclamping of eNOS from caveolin in endothelial cells.

    PubMed

    Batova, Suzan; DeWever, Julie; Godfraind, Théophile; Balligand, Jean-Luc; Dessy, Chantal; Feron, Olivier

    2006-08-01

    Amlodipine is a calcium channel blocker (CCB) known to stimulate nitric oxide production from endothelial cells. Whether this ancillary property can be related to the capacity of amlodipine to concentrate and alter the structure of cholesterol-containing membrane bilayers is a matter of investigation. Here, we reasoned that since the endothelial nitric oxide synthase is, in part, expressed in cholesterol-rich plasmalemmal microdomains (e.g., caveolae and rafts), amlodipine could interfere with this specific locale of the enzyme and thereby modulate NO production in endothelial cells. Using a method combining lubrol-based extraction and subcellular fractionation on sucrose gradient, we found that amlodipine, but not verapamil or nifedipine, induced the segregation of endothelial NO synthase (eNOS) from caveolin-enriched low-density membranes (8+/-2% vs. 42+/-3% in untreated condition; P<0.01). We then performed co-immunoprecipitation experiments and found that amlodipine dose-dependently disrupted the caveolin/eNOS interaction contrary to other calcium channel blockers, and potentiated the stimulation of NO production by agonists such as bradykinin and vascular endothelial growth factor (VEGF) (+138+/-28% and +183+/-27% over values obtained with the agonist alone, respectively; P<0.01). Interestingly, we also documented that the dissociation of the caveolin/eNOS heterocomplex induced by amlodipine was not mediated by the traditional calcium-dependent calmodulin binding to eNOS and that recombinant caveolin expression could compete with the stimulatory effects of amlodipine on eNOS activity. Finally, we showed that the amlodipine-triggered, caveolin-dependent mechanism of eNOS activation was independent of other pleiotropic effects of the CCB such as superoxide anion scavenging and angiotensin-converting enzyme (ACE) inhibition. This study unravels the modulatory effects of amlodipine on caveolar integrity and the capacity of caveolin to maintain eNOS in its vicinity in the absence of any detectable changes in intracellular calcium levels. The resulting increase in caveolin-free eNOS potentiates the NO production in response to agonists including VEGF and bradykinin. More generally, this work opens new avenues of treatment for drugs able to structurally alter signaling pathways concentrated in caveolae.

  20. Accumulation of Polychlorinated Biphenyls in Adipocytes: Selective Targeting to Lipid Droplets and Role of Caveolin-1

    PubMed Central

    Bourez, Sophie; Le Lay, Soazig; Van den Daelen, Carine; Louis, Caroline; Larondelle, Yvan; Thomé, Jean-Pierre; Schneider, Yves-Jacques; Dugail, Isabelle; Debier, Cathy

    2012-01-01

    Background Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that preferentially accumulate in lipid-rich tissues of contaminated organisms. Although the adipose tissue constitutes a major intern reservoir of PCBs and recent epidemiological studies associate PCBs to the development of obesity and its related disorders, little is known about the mechanisms involved in their uptake by the adipose tissue and their intracellular localization in fat cells. Methodology/Principal Findings We have examined the intracellular distribution of PCBs in mouse cultured adipocytes and tested the potential involvement of caveolin-1, an abundant adipocyte membrane protein, in the uptake of these compounds by fat cells. We show that 2,4,4′-trichlorobiphenyl (PCB-28), 2,3′,4,4′,5-pentachlorobiphenyl (PCB-118) and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153) congeners rapidly and extensively accumulate in 3T3-L1 or mouse embryonic fibroblast (MEF) derived cultured adipocytes. The dynamics of accumulation differed between the 3 congeners tested. By subcellular fractionation of primary adipocytes, we demonstrate that these pollutants were almost exclusively recovered within the lipid droplet fraction and practically not associated to cell membranes. The absence of caveolin-1 expression in primary adipocytes from cav-1 deficient mice did not modify lipid droplet selective targeting of PCBs. In cav-1 KO MEF differentiated adipocytes, PCB accumulation was decreased, which correlated with reduced cell triglyceride content. Conversely, adenoviral mediated cav-1 overexpressing in 3T3-L1 cells, which had no impact on total cell lipid content, did not change PCB accumulation. Conclusion/Significance Our data indicate that caveolin-1 per se is not required for selective PCB accumulation, but rather point out a primary dependence on adipocyte triglyceride content. If the crucial role of lipid droplets in energy homeostasis is considered, the almost exclusive accumulation of PCBs in these organelles warrants future attention as the impairment of their function could be linked to the worldwide obesity epidemic. PMID:22363745

  1. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.

    PubMed

    Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A

    1995-04-01

    1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the heterogeneous distribution of membrane proteins in T-tubules is also presented.

  2. Differential regulation of cell functions by CSD peptide subdomains

    PubMed Central

    2013-01-01

    Background In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Methods Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Results Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Conclusions Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types. PMID:24011378

  3. Differential regulation of cell functions by CSD peptide subdomains.

    PubMed

    Reese, Charles; Dyer, Shanice; Perry, Beth; Bonner, Michael; Oates, James; Hofbauer, Ann; Sessa, William; Bernatchez, Pascal; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena

    2013-09-08

    In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82-101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types.

  4. Quantum dots-based immunofluorescent imaging of stromal fibroblasts Caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer.

    PubMed

    He, Yuyu; Zhao, Xianda; Gao, Jun; Fan, Lifang; Yang, Guifang; Cho, William Chi-Shing; Chen, Honglei

    2012-10-24

    Caveolin-1 (Cav-1) expression deficiency and autophagy in tumor stromal fibroblasts (hereafter fibroblasts) are involved in tumor proliferation and progression, particularly in breast and prostate cancer. The aim of this study was to detect the expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC) and to analyze their clinical significances. Furthermore, because Epstein-Barr virus (EBV)-associated GC (EBVaGC) is a unique subtype of GC; we compared the differential expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots (QDs)-based immunofluorescence histochemistry was used to examine the expression of fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double immunofluorescence labeling was performed to detect the coexpression of Cav-1 and LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic Cav-1 level was an independent prognosticator (p = 0.029) that predicted poorer survival of GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032) and was positively associated with Cav-1 expression (r = 0.432, p < 0.001). EBV infection did not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel predictor of poor GC prognosis.

  5. Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts

    PubMed Central

    Jeong, Kyuho; Kwon, Hayeong; Min, Chanhee

    2009-01-01

    We investigated the effect of phenylephrine (PE)- and isoproterenol (ISO)-induced cardiac hypertrophy on subcellular localization and expression of caveolin-3 and STAT3 in H9c2 cardiomyoblast cells. Caveolin-3 localization to plasma membrane was attenuated and localization of caveolin-3 to caveolae in the plasma membrane was 24.3% reduced by the catecholamine-induced hypertrophy. STAT3 and phospho-STAT3 were up-regulated but verapamil and cyclosporin A synergistically decreased the STAT3 and phospho-STAT3 levels in PE- and ISO-induced hypertrophic cells. Both expression and activation of STAT3 were increased in the nucleus by the hypertrophy. Immunofluorescence analysis revealed that the catecholamine-induced hypertrophy promoted nuclear localization of pY705-STAT3. Of interest, phosphorylation of pS727-STAT3 in mitochondria was significantly reduced by catecholamine-induced hypertrophy. In addition, mitochondrial complexes II and III were greatly down-regulated in the hypertrophic cells. Our data suggest that the alterations in nuclear and mitochondrial activation of STAT3 and caveolae localization of caveolin-3 are related to the development of the catecholamine-induced cardiac hypertrophy. PMID:19299911

  6. Combined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics.

    PubMed

    Maria, Zahra; Yin, Wei; Rubenstein, David Alan

    2014-07-01

    Diabetes mellitus is a major risk factor in the development of cardiovascular diseases (CVDs). The presence of advanced glycation end-products (AGEs) promotes CVDs by upregulating endothelial cell (EC) inflammatory and thrombotic responses, in a similar manner as disturbed shear stress. However, the combined effect of disturbed shear stress and AGEs on EC function has yet to be determined. Our goal was to evaluate these effects on EC responses. ECs were incubated with AGEs for 5 days. ECs were then subjected to physiological or pathological shear stress. Cell metabolic activity, surface expression of intercellular adhesion molecule-1, thrombomodulin, connexin-43 and caveolin-1, and cytoskeleton organization were quantified. The results show that irreversibly glycated albumin and pathological shear stress increased EC metabolic activity, and upregulated and downregulated the EC surface expression of intercellular adhesion molecule-1 and thrombomodulin, respectively. Expression of connexin-43, caveolin-1 and cytoskeletal organization was independent of shear stress; however, the presence of irreversibly glycated AGEs markedly increased connexin-43, and decreased caveolin-1 expression and actin cytoskeletal connectivity. Our data suggest that irreversibly glycated albumin and disturbed shear stress could promote CVD pathogenesis by enhancing EC inflammatory and thrombotic responses, and through the deterioration of the cytoskeletal organization.

  7. Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria

    PubMed Central

    Sun, Junhui; Nguyen, Tiffany; Aponte, Angel M.; Menazza, Sara; Kohr, Mark J.; Roth, David M.; Patel, Hemal H.; Murphy, Elizabeth; Steenbergen, Charles

    2015-01-01

    Nitric oxide (NO) and protein S-nitrosylation (SNO) have been shown to play important roles in ischaemic preconditioning (IPC)-induced acute cardioprotection. The majority of proteins that show increased SNO following IPC are localized to the mitochondria, and our recent studies suggest that caveolae transduce acute NO/SNO cardioprotective signalling in IPC hearts. Due to the close association between subsarcolemmal mitochondria (SSM) and the sarcolemma/caveolae, we tested the hypothesis that SSM, rather than the interfibrillar mitochondria (IFM), are major targets for NO/SNO signalling derived from caveolae-associated eNOS. Following either control perfusion or IPC, SSM and IFM were isolated from Langendorff perfused mouse hearts, and SNO was analysed using a modified biotin switch method with fluorescent maleimide fluors. In perfusion control hearts, the SNO content was higher in SSM compared with IFM (1.33 ± 0.19, ratio of SNO content Perf-SSM vs. Perf-IFM), and following IPC SNO content significantly increased preferentially in SSM, but not in IFM (1.72 ± 0.17 and 1.07 ± 0.04, ratio of SNO content IPC-SSM vs. Perf-IFM, and IPC-IFM vs. Perf-IFM, respectively). Consistent with these findings, eNOS, caveolin-3, and connexin-43 were detected in SSM, but not in IFM, and IPC resulted in a further significant increase in eNOS/caveolin-3 levels in SSM. Interestingly, we did not observe an IPC-induced increase in SNO or eNOS/caveolin-3 in SSM isolated from caveolin-3−/− mouse hearts, which could not be protected with IPC. In conclusion, these results suggest that SSM may be the preferential target of sarcolemmal signalling-derived post-translational protein modification (caveolae-derived eNOS/NO/SNO), thus providing an important role in IPC-induced cardioprotection. PMID:25694588

  8. The Role of Caveolin 1 in HIV Infection and Pathogenesis.

    PubMed

    Mergia, Ayalew

    2017-05-26

    Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.

  9. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Sprenger, Richard R; Speijer, Dave; Back, Jaap Willem; De Koster, Chris G; Pannekoek, Hans; Horrevoets, Anton J G

    2004-01-01

    The human endothelial cell plasma membrane harbors two subdomains of similar lipid composition, caveolae and rafts, both crucially involved in various essential cellular processes like transcytosis, signal transduction and cholesterol homeostasis. Caveolin-enriched membranes, isolated by either cationic silica or buoyant density methods, were explored by comparing large series of two-dimensional (2-D) maps and subsequent identification of over 100 protein spots by matrix-assisted laser desorption/ionization (MALDI) peptide mass fingerprinting. Improved representation and identification of membrane proteins and valuable information on various post-translational modifications was achieved by the presented optimized procedures for solubilization, destaining and database searching/computing. Whereas the cationic silica purification yielded predominantly known endoplasmic reticulum residents, the cold-detergent method yielded a large number of known caveolae residents, including caveolin-1. Thus, a large part of this subproteome was established, including known (trans-)membrane, signal transduction and glycosyl phosphatidylinositol (GPI)-anchored proteins. Several predicted proteins from the human genome were isolated for the first time from biological samples, including SGRP58, SLP-2, C8ORF2, and XRP-2. These findings and various optimized procedures can serve as a reference to study the differential composition of endothelial cell caveolae and rafts, known to be involved in pathologies like cancer and cardiovascular disease.

  10. Recruitment of α7 nicotinic acetylcholine receptor to caveolin-1-enriched lipid rafts is required for nicotine-enhanced Escherichia coli K1 entry into brain endothelial cells.

    PubMed

    Chi, Feng; Wang, Lin; Zheng, Xueye; Jong, Ambrose; Huang, Sheng-He

    2011-08-01

    We investigate how the α7 nicotinic acetylcholine receptor (α7 nAChR), an essential regulator of inflammation, contributes to the α7 agonist nicotine-enhanced Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMECs) through lipid rafts/caveolae-mediated signaling. α7 nAChR-mediated signaling and bacterial invasion were defined by lipid raft fractionation, immunofluorescence microscopy and siRNA knockdown. Nicotine-enhanced bacterial invasion was dose-dependently inhibited by two raft-disrupting agents, nystatin and filipin. Significant accumulation of the lipid raft marker GM3 was observed in HBMEC induced by E. coli K1 and nicotine. The recruitment of α7 nAChR and related signaling molecules, including vimentin, and Erk1/2, to caveolin-1 enriched lipid rafts was increased upon treatment with E44 or E44 plus nicotine. Erk1/2 activation (phosphorylation), which is required for α7 nAChR-mediated signaling and E44 invasion, was associated with lipid rafts and nicotine-enhanced bacterial infection. Furthermore, E44 invasion, E44/nicotine-induced activation of Erk1/2 and clustering of α7 nAChR and caveolin-1 was specifically blocked by both siRNAs. α7 nAChR-mediated signaling through lipid rafts/caveolae is required for nicotine-enhanced E. coli K1 invasion of HBMEC.

  11. Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase.

    PubMed

    Piegeler, T; Schläpfer, M; Dull, R O; Schwartz, D E; Borgeat, A; Minshall, R D; Beck-Schimmer, B

    2015-11-01

    Matrix-metalloproteinases (MMP) and cancer cell invasion are crucial for solid tumour metastasis. Important signalling events triggered by inflammatory cytokines, such as tumour necrosis factor α (TNFα), include Src-kinase-dependent activation of Akt and focal adhesion kinase (FAK) and phosphorylation of caveolin-1. Based on previous studies where we demonstrated amide-type local anaesthetics block TNFα-induced Src activation in malignant cells, we hypothesized that local anaesthetics might also inhibit the activation and/or phosphorylation of Akt, FAK and caveolin-1, thus attenuating MMP release and invasion of malignant cells. NCI-H838 lung adenocarcinoma cells were incubated with ropivacaine or lidocaine (1 nM-100 µM) in absence/presence of TNFα (20 ng ml(-1)) for 20 min or 4 h, respectively. Activation/phosphorylation of Akt, FAK and caveolin-1 were evaluated by Western blot, and MMP-9 secretion was determined by enzyme-linked immunosorbent assay. Tumour cell migration (electrical wound-healing assay) and invasion were also assessed. Ropivacaine (1 nM-100 μM) and lidocaine (1-100 µM) significantly reduced TNFα-induced activation/phosphorylation of Akt, FAK and caveolin-1 in NCI-H838 cells. MMP-9 secretion triggered by TNFα was significantly attenuated by both lidocaine and ropivacaine (half-maximal inhibitory concentration [IC50]=3.29×10(-6) M for lidocaine; IC50=1.52×10(-10) M for ropivacaine). The TNFα-induced increase in invasion was completely blocked by both lidocaine (10 µM) and ropivacaine (1 µM). At clinically relevant concentrations both ropivacaine and lidocaine blocked tumour cell invasion and MMP-9 secretion by attenuating Src-dependent inflammatory signalling events. Although determined entirely in vitro, these findings provide significant insight into the potential mechanism by which local anaesthetics might diminish metastasis. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Deregulation of E-cadherin, β-catenin, APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes.

    PubMed

    Kobayashi, Priscila E; Fonseca-Alves, Carlos E; Rivera-Calderón, Luis G; Carvalho, Márcio; Kuasne, Hellen; Rogatto, Silvia R; Laufer-Amorim, Renée

    2018-06-01

    Prostate cancer is a heterogeneous disease with high levels of clinical and gene heterogeneity, consequently offering several targets for therapy. Dogs with naturally occurring prostate cancer are useful models for molecular investigations and studying new treatment efficacy. Three genes and proteins associated with the WNT pathway (β-catenin, APC and E-cadherin) and Caveolin-1 (CAV-1) were evaluated in canine pre-neoplastic proliferative inflammatory atrophy (PIA), prostate cancer and metastatic disease. The APC gene methylation status was also investigated. As in human prostate cancer, cytoplasmic and nuclear β-catenin, which are fundamental for activating the canonical WNT pathway, were found in canine prostate cancer and metastasis. Membranous E-cadherin was also lost in these lesions, allowing cellular migration to the stroma and nuclear localization of β-catenin. In contrast to human prostate tumours, no APC downregulation or hypermethylation was found in canine prostate cancer. The CAV-1 gene and protein overexpression were found in canine prostate cancer, and as in humans, the highest levels were found in Gleason scores ≥8. In conclusion, as with human prostate cancer, β-catenin and E-cadherin in the WNT pathway, as well as Caveolin-1, are molecular drivers in canine prostate cancer. These findings provide additional evidence that dogs are useful models for studying new therapeutic targets in prostate cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Caveolae and caveolin-1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells

    PubMed Central

    Sun, Shao-wei; Zu, Xu-yu; Tuo, Qin-hui; Chen, Lin-xi; Lei, Xiao-yong; Li, Kai; Tang, Chao-ke; Liao, Duan-fang

    2010-01-01

    Aim: To explore the mechanisms involved in ox-LDL transcytosis across endothelial cells and the role of caveolae in this process. Methods: An in vitro model was established to investigate the passage of oxidized low density lipoprotein (ox-LDL) through a tight monolayer of human umbilical vein endothelial cells (HUVEC) cultured on a collagen-coated filter. Passage of DiI-labeled ox-LDL through the monolayer was measured using a fluorescence spectrophotometer. The uptake and efflux of ox-LDL by HUVEC were determined using fluorescence microscopy and HPLC. Results: Caveolae inhibitors – carrageenan (250 μg/mL), filipin (5 μg/mL), and nocodazole (33 μmol/L)–decreased the transport of ox-LDL across the monolayer by 48.9%, 72.4%, and 79.8% as compared to the control group. In addition, they effectively decreased ox-LDL uptake and inhibited the efflux of ox-LDL. Caveolin-1 and LOX-1 were up-regulated by ox-LDL in a time-dependent manner and decreased gradually after depletion of ox-LDL (P<0.05). After treatment HUVEC with ox-LDL and silencing caveolin-1, NF-κB translocation to the nucleus was blocked and LOX-1 expression decreased (P<0.05). Conclusion: Caveolae can be a carrier for ox-LDL and may be involved in the uptake and transcytosis of ox-LDL by HUVEC. PMID:20835266

  14. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments.

  15. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qing-Mei, E-mail: 34713316@qq.com; Jiang, Ping, E-mail: jiangping@163.com; Yang, Min, E-mail: YangMin@163.com

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferationmore » and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation of caveolin-1. • RXM inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. • Our findings expand our knowledge of the role of RXM in airway remodelling.« less

  16. Caveolin-1 scaffolding domain peptides enhance anti-inflammatory effect of heme oxygenase-1 through interrupting its interact with caveolin-1.

    PubMed

    Weng, Ping; Zhang, Xiao-Tong; Sheng, Qiong; Tian, Wen-Fang; Chen, Jun-Liang; Yuan, Jia-Jia; Zhang, Ji-Ru; Pang, Qing-Feng

    2017-06-20

    Caveolin-1(Cav-1) scaffolding domain (CSD) peptides compete with the plasma membrane Cav-1, inhibit the interaction of the proteins and Cav-1, and re-store the functions of Cav-1 binding proteins. Heme oxygenase-1 (HO-1) binds to Cav-1 and its enzymatic activity was inhibited. In this study, we investigated the effect of CSD peptides on interaction between HO-1 and Cav-1, and on the HO-1 activity in vitro and in vivo. Our data showed that CSD peptides decreased the compartmentalization of HO-1 and Cav-1, and increased the HO-1 activity both in LPS-treated alveolar macrophages and in mice. Meanwhile, CSD peptides obviously ameliorated the pathology changes in mice and lowered the following injury indexes: the wet/dry ratio of lung tissues, total cell numbers in bronchoalveolar lavage fluid and lactate dehydrogenase activity in the serum. Mechanistically, it was firstly found that CSD peptides promoted alveolar macrophages polarization to M2 phenotype and inhibited the IκB degeneration. Furthermore, CSD peptides down-regulated the expression of IL-1β, IL-6, TNF-α, MCP-1, and iNOS in alveolar macrophages and in lung tissue. However, the protective role of CSD peptides on LPS-induced acute lung injury in mice could be abolished by zinc protoporphyrin IX (ZnPP, a HO-1 activity inhibitor). In summary, CSD peptides have beneficial anti-inflammatory effects by restoring the HO-1 activity suppressed by Cav-1 on plasma membrane.

  17. Proteomic characterization of paired non-malignant and malignant African-American prostate epithelial cell lines distinguishes them by structural proteins.

    PubMed

    Myers, Jennifer S; Vallega, Karin A; White, Jason; Yu, Kaixian; Yates, Clayton C; Sang, Qing-Xiang Amy

    2017-07-11

    While many factors may contribute to the higher prostate cancer incidence and mortality experienced by African-American men compared to their counterparts, the contribution of tumor biology is underexplored due to inadequate availability of African-American patient-derived cell lines and specimens. Here, we characterize the proteomes of non-malignant RC-77 N/E and malignant RC-77 T/E prostate epithelial cell lines previously established from prostate specimens from the same African-American patient with early stage primary prostate cancer. In this comparative proteomic analysis of RC-77 N/E and RC-77 T/E cells, differentially expressed proteins were identified and analyzed for overrepresentation of PANTHER protein classes, Gene Ontology annotations, and pathways. The enrichment of gene sets and pathway significance were assessed using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, respectively. The gene and protein expression data of age- and stage-matched prostate cancer specimens from The Cancer Genome Atlas were analyzed. Structural and cytoskeletal proteins were differentially expressed and statistically overrepresented between RC-77 N/E and RC-77 T/E cells. Beta-catenin, alpha-actinin-1, and filamin-A were upregulated in the tumorigenic RC-77 T/E cells, while integrin beta-1, integrin alpha-6, caveolin-1, laminin subunit gamma-2, and CD44 antigen were downregulated. The increased protein level of beta-catenin and the reduction of caveolin-1 protein level in the tumorigenic RC-77 T/E cells mirrored the upregulation of beta-catenin mRNA and downregulation of caveolin-1 mRNA in African-American prostate cancer specimens compared to non-malignant controls. After subtracting race-specific non-malignant RNA expression, beta-catenin and caveolin-1 mRNA expression levels were higher in African-American prostate cancer specimens than in Caucasian-American specimens. The "ECM-Receptor Interaction" and "Cell Adhesion Molecules", and the "Tight Junction" and "Adherens Junction" pathways contained proteins are associated with RC-77 N/E and RC-77 T/E cells, respectively. Our results suggest RC-77 T/E and RC-77 N/E cell lines can be distinguished by differentially expressed structural and cytoskeletal proteins, which appeared in several pathways across multiple analyses. Our results indicate that the expression of beta-catenin and caveolin-1 may be prostate cancer- and race-specific. Although the RC-77 cell model may not be representative of all African-American prostate cancer due to tumor heterogeneity, it is a unique resource for studying prostate cancer initiation and progression.

  18. Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria.

    PubMed

    Sun, Junhui; Nguyen, Tiffany; Aponte, Angel M; Menazza, Sara; Kohr, Mark J; Roth, David M; Patel, Hemal H; Murphy, Elizabeth; Steenbergen, Charles

    2015-05-01

    Nitric oxide (NO) and protein S-nitrosylation (SNO) have been shown to play important roles in ischaemic preconditioning (IPC)-induced acute cardioprotection. The majority of proteins that show increased SNO following IPC are localized to the mitochondria, and our recent studies suggest that caveolae transduce acute NO/SNO cardioprotective signalling in IPC hearts. Due to the close association between subsarcolemmal mitochondria (SSM) and the sarcolemma/caveolae, we tested the hypothesis that SSM, rather than the interfibrillar mitochondria (IFM), are major targets for NO/SNO signalling derived from caveolae-associated eNOS. Following either control perfusion or IPC, SSM and IFM were isolated from Langendorff perfused mouse hearts, and SNO was analysed using a modified biotin switch method with fluorescent maleimide fluors. In perfusion control hearts, the SNO content was higher in SSM compared with IFM (1.33 ± 0.19, ratio of SNO content Perf-SSM vs. Perf-IFM), and following IPC SNO content significantly increased preferentially in SSM, but not in IFM (1.72 ± 0.17 and 1.07 ± 0.04, ratio of SNO content IPC-SSM vs. Perf-IFM, and IPC-IFM vs. Perf-IFM, respectively). Consistent with these findings, eNOS, caveolin-3, and connexin-43 were detected in SSM, but not in IFM, and IPC resulted in a further significant increase in eNOS/caveolin-3 levels in SSM. Interestingly, we did not observe an IPC-induced increase in SNO or eNOS/caveolin-3 in SSM isolated from caveolin-3(-/-) mouse hearts, which could not be protected with IPC. In conclusion, these results suggest that SSM may be the preferential target of sarcolemmal signalling-derived post-translational protein modification (caveolae-derived eNOS/NO/SNO), thus providing an important role in IPC-induced cardioprotection. Published by Oxford University Press on behalf of the European Society of Cardiology 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery.

    PubMed

    Chen, Han-Sen; Chen, Xi; Li, Wen-Ting; Shen, Jian-Gang

    2018-05-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO - ), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.

  20. Signaling epicenters: The role of caveolae and caveolins in volatile anesthetic induced cardiac protection

    PubMed Central

    Horikawa, Yousuke T.; Tsutsumi, Yasuo M.; Patel, Hemal H.; Roth, David M.

    2014-01-01

    Caveolae are flask-like invaginations of the cell surface that have been identified as signaling epicenters. Within these microdomains, caveolins are structural proteins of caveolae, which are able to interact with numerous signaling molecules affecting temporal and spatial dimensions required in cardiac protection. This complex moiety is essential to the mechanisms involved in volatile anesthetics. In this review, we will outline a general overview of caveolae and caveolins and their role in protective signaling, with a focus on the effects of volatile anesthetics. These recent developments have allowed us to better understand the mechanistic effect of volatile anesthetics and their potential in cardiac protection. PMID:24502576

  1. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions

    PubMed Central

    Riwaldt, Stefan; Bauer, Johann; Pietsch, Jessica; Braun, Markus; Segerer, Jürgen; Schwarzwälder, Achim; Corydon, Thomas J.; Infanger, Manfred; Grimm, Daniela

    2015-01-01

    We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: “NanoRacks-CellBox-Thyroid Cancer”. The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell–cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids. PMID:26633361

  2. Lipid rafts sense and direct electric field-induced migration

    PubMed Central

    Lin, Bo-jian; Tsao, Shun-hao; Chen, Alex; Hu, Shu-Kai; Chao, Ling

    2017-01-01

    Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction. PMID:28739955

  3. Lipid rafts sense and direct electric field-induced migration.

    PubMed

    Lin, Bo-Jian; Tsao, Shun-Hao; Chen, Alex; Hu, Shu-Kai; Chao, Ling; Chao, Pen-Hsiu Grace

    2017-08-08

    Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.

  4. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Expression and activity of Rac1 is negatively affected in the dehydroepiandrosterone induced polycystic ovary of mouse

    PubMed Central

    2014-01-01

    Background Polycystic ovarian syndrome (PCOS) is characterized by the presence of multiple follicular cysts, giving rise to infertility due to anovulation. This syndrome affects about 10% of women, worldwide. The exact molecular mechanism leading to PCOS remains obscure. RhoGTPase has been associated with oogenesis, but its role in PCOS remains unexplored. Therefore, we attempted to elucidate the Vav-Rac1 signaling in PCOS mice model. Methods We generated a PCOS mice model by injecting dehydroepiandrosterone (DHEA) for a period of 20 days. The expression levels of Rac1, pRac1, Vav, pVav and Caveolin1 were analyzed by employing immuno-blotting and densitometry. The association between Vav and Rac1 proteins were studied by immuno-precipitation. Furthermore, we analyzed the activity of Rac1 and levels of inhibin B and 17β-estradiol in ovary using biochemical assays. Results The presence of multiple follicular cysts in ovary were confirmed by histology. The activity of Rac1 (GTP bound state) was significantly reduced in the PCOS ovary. Similarly, the expression levels of Rac1 and its phosphorylated form (pRac1) were decreased in PCOS in comparison to the sham ovary. The expression level and activity (phosphorylated form) of guanine nucleotide exchanger of Rac1, Vav, was moderately down-regulated. We observed comparatively increased expressions of Caveolin1, 17β-estradiol, and inhibin B in the polycystic ovary. Conclusion We conclude that hyperandrogenization (PCOS) by DHEA diminishes ovarian Rac1 and Vav expression and activity along with an increase in expression of Caveolin1. This is accompanied by an increase in the intra-ovarian level of '17 β-estradiol and inhibin B. PMID:24628852

  6. Unveiling TRPV1 Spatio-Temporal Organization in Live Cell Membranes

    PubMed Central

    Storti, Barbara; Di Rienzo, Carmine; Cardarelli, Francesco; Bizzarri, Ranieri; Beltram, Fabio

    2015-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective cation channel that integrates several stimuli into nociception and neurogenic inflammation. Here we investigated the subtle TRPV1 interplay with candidate membrane partners in live cells by a combination of spatio-temporal fluctuation techniques and fluorescence resonance energy transfer (FRET) imaging. We show that TRPV1 is split into three populations with fairly different molecular properties: one binding to caveolin-1 and confined into caveolar structures, one actively guided by microtubules through selective binding, and one which diffuses freely and is not directly implicated in regulating receptor functionality. The emergence of caveolin-1 as a new interactor of TRPV1 evokes caveolar endocytosis as the main desensitization pathway of TRPV1 receptor, while microtubule binding agrees with previous data suggesting the receptor stabilization in functional form by these cytoskeletal components. Our results shed light on the hitherto unknown relationships between spatial organization and TRPV1 function in live-cell membranes. PMID:25764349

  7. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    PubMed

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  8. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    PubMed

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  9. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery

    PubMed Central

    Chen, Han-sen; Chen, Xi; Li, Wen-ting; Shen, Jian-gang

    2018-01-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment. PMID:29595191

  10. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    PubMed Central

    Toni, Mattia; Spisni, Enzo; Griffoni, Cristiana; Santi, Spartaco; Riccio, Massimo; Lenaz, Patrizia; Tomasi, Vittorio

    2006-01-01

    It has been reported that cellular prion protein (PrPc) is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1) participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST)-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11), by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2) was triggered, suggesting that following translocations from rafts to caveolae or caveolaelike domains PrPc could interact with Cav-1 and induce signal transduction events. PMID:17489019

  11. Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae

    PubMed Central

    2013-01-01

    Caveolae are 25–100 nm flask-like membrane structures enriched in cholesterol and glycosphingolipids. Researchers have proposed that Campylobacter jejuni require caveolae for cell invasion based on the finding that treatment of cells with the cholesterol-depleting compounds filipin III or methyl-β-cyclodextrin (MβCD) block bacterial internalization in a dose-dependent manner. The purpose of this study was to determine the role of caveolae and caveolin-1, a principal component of caveolae, in C. jejuni internalization. Consistent with previous work, we found that the treatment of HeLa cells with MβCD inhibited C. jejuni internalization. However, we also found that the treatment of HeLa cells with caveolin-1 siRNA, which resulted in greater than a 90% knockdown in caveolin-1 protein levels, had no effect on C. jejuni internalization. Based on this observation we performed a series of experiments that demonstrate that MβCD acts broadly, disrupting host cell lipid rafts and C. jejuni-induced cell signaling. More specifically, we found that MβCD inhibits the cellular events necessary for C. jejuni internalization, including membrane ruffling and Rac1 GTPase activation. We also demonstrate that MβCD disrupted the association of the β1 integrin and EGF receptor, which are required for the maximal invasion of epithelial cells. In agreement with these findings, C. jejuni were able to invade human Caco-2 cells, which are devoid of caveolae, at a level equal to that of HeLa cells. Taken together, the results of our study demonstrate that C. jejuni internalization occurs in a caveolae-independent manner. PMID:24364863

  12. Endothelium-dependent Hyperpolarization-mediated Vasodilatation Compensates Nitric Oxide-mediated Endothelial Dysfunction during Ischemia in Diabetes-induced Canine Coronary Collateral Microcirculation in Vivo.

    PubMed

    Yada, Toyotaka; Shimokawa, Hiroaki; Tachibana, Hiroyuki

    2018-04-17

    It has been previously demonstrated that endothelial caveolin-1 plays crucial roles to produce an endothelium-derived hyperpolarizing factor in mouse mesenteric arteries. We examined whether this mechanism is involved in the endothelium-derived hyperpolarizing-mediated responses to compensate reduced NO-mediated responses in diabetes mellitus during coronary occlusion in dogs in vivo. Canine subepicardial collateral coronary small arteries (≥100 μm) and arterioles (<100 μm) were observed by an intravital microscope. Experiments were performed during occlusion of the left anterior descending coronary artery (90 min) under the following conditions (n=6 each); (i) control, (ii) diabetes mellitus, and (iii) diabetes mellitus+L-NMMA+K C a channel blockade. Vascular and myocardial levels of caveolin-1, eNOS and caspase-3 were measured by ELISA. Caveolin-1 levels in the ischemic area were greater in coronary microvessels than in conduit arteries in the control group. NO-mediated coronary vasodilatations of small arteries to bradykinin did not increase in diabetes mellitus associated with decreased eNOS phosphorylation at Ser1177 compared with baseline of controls, and were restored by compensation of endothelium-derived hyperpolarizing, and were suppressed by K C a channel blockade. NO-mediated vasodilatations of small coronary arteries during coronary occlusion are impaired in diabetes mellitus and are compensated by endothelium-derived hyperpolarizing of arterioles in dogs in vivo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-01-01

    Prostaglandin E2 (PGE2) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1, PTGS2, MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE2-induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression. PMID:29599917

  14. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    PubMed

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  15. Loss of Stromal Caveolin-1 Expression: A Novel Tumor Microenvironment Biomarker That Can Predict Poor Clinical Outcomes for Pancreatic Cancer

    PubMed Central

    Shan, Tao; Lu, Hongwei; Ji, Hong; Li, Yiming; Guo, Jian; Chen, Xi; Wu, Tao

    2014-01-01

    Aims Cancer development and progression is not only associated with the tumor cell proliferation but also depends on the interaction between tumor cells and the stromal microenvironment. A new understanding of the role of the tumor microenvironment suggests that the loss of stromal caveolin-1 (Cav-1) as a key regulator may become a potential therapy target. This study aims to elucidate whether stromal Cav-1 expression in pancreatic cancer can be a strong prognosis biomarker. Methods Tissue samples from 45 pancreatic cancer patients were studied. Parenchyma and stroma were separated and purified using laser capture microdissection. Stromal Cav-1 expression was measured from pancreatic cancer, paraneoplastic, and normal tissue using immunohistochemistry. We analyzed the correlation of stromal Cav-1 expression with clinicopathologic features and prognostic indicators, such as tumor marker HER-2/neu gene. Results Specimens from six patients (13.3%) showed high levels of stromal Cav-1 staining, those from eight patients (17.8%) showed a lower, intermediate level of staining, whereas those from 31 patients (68.9%) showed an absence of staining. Cav-1 expression in cancer-associated fibroblasts was lower than that in paracancer-associated and in normal fibroblasts. Stromal Cav-1 loss was associated with TNM stage (P = 0.018), lymph node metastasis (P = 0.014), distant metastasis (P = 0.027), and HER-2/neu amplification (P = 0.007). The relationships of age, sex, histological grade, and tumor size with stromal Cav-1 expression were not significant (P>0.05). A negative correlation was found between circulating tumor cells and stromal Cav-1 expression (P<0.05). Conclusion The loss of stromal Cav-1 in pancreatic cancer was an independent prognostic indicator, thus suggesting that stromal Cav-1 may be an effective therapeutic target for patients with pancreatic cancer. PMID:24949874

  16. MURC deficiency in smooth muscle attenuates pulmonary hypertension.

    PubMed

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-08-22

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.

  17. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  18. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish

    PubMed Central

    Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.

    2016-01-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  19. β-arrestin is critical for early shear stress-induced Akt/eNOS activation in human vascular endothelial cells.

    PubMed

    Carneiro, Ana Paula; Fonseca-Alaniz, Miriam Helena; Dallan, Luís Alberto Oliveira; Miyakawa, Ayumi Aurea; Krieger, Jose Eduardo

    2017-01-29

    Recent evidence suggests that β-arrestins, which are involved in G protein-coupled receptors desensitization, may influence mechanotransduction. Here, we observed that nitric oxide (NO) production was abrogated in human saphenous vein endothelial cells (SVECs) transfected with siRNA against β-arrestin 1 and 2 subjected to shear stress (SS, 15 dynes/cm 2 , 10 min). The downregulation of β-arrestins 1/2 in SVECs cells also prevented the SS-induced rise in levels of phosphorylation of Akt and endothelial nitric oxide synthase (eNOS, Serine 1177). Interestingly, immunoprecipitation revealed that β-arrestin interacts with Akt, eNOS and caveolin-1 and these interactions are not influenced by SS. Our data indicate that β-arrestins and Akt/eNOS downstream signaling are required for early SS-induced NO production in SVECs, which is consistent with the idea that β-arrestins and caveolin-1 are part of a pre-assembled complex associated with the cellular mechanotransduction machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Annexin 2-caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport.

    PubMed

    Smart, Eric J; De Rose, Robert A; Farber, Steven A

    2004-03-09

    Modulation of cholesterol absorption in the intestine, the primary site of dietary cholesterol uptake in humans, can have profound clinical implications. We have undertaken a reverse genetic approach by disrupting putative cholesterol processing genes in zebrafish larvae by using morpholino (MO) antisense oligonucleotides. By using targeted MO injections and immunoprecipitation (IP) experiments coupled with mass spectrometry, we determined that annexin (ANX)2 complexes with caveolin (CAV)1 in the zebrafish and mouse intestine. The complex is heat stable and unaffected by SDS or reducing conditions. MO targeting of anx2b or cav1, which are both strongly expressed in the larval and adult zebrafish intestinal epithelium, prevents formation of the protein heterocomplex. Furthermore, anx2b MO injection prevents processing of a fluorescent cholesterol reporter and results in reduced sterol mass. Pharmacological treatment of mice with ezetimibe disrupts the heterocomplex in only hypercholesterolemic animals. These data suggest that ANX2 and CAV1 are components of an intestinal sterol transport complex.

  1. Association of Caveolin-1 and -2 Genetic Variants and Post-treatment Serum Caveolin-1 with Prostate Cancer Risk and Outcomes

    PubMed Central

    Langeberg, Wendy J.; Tahir, Salahaldin A.; Feng, Ziding; Kwon, Erika M.; Ostrander, Elaine A.; Thompson, Timothy C.; Stanford, Janet L.

    2010-01-01

    Background Caveolin-1 (cav-1) is overexpressed by metastatic prostate cancer (PC) cells. Pre-operative serum cav-1 levels have been shown to be a prognostic marker for PC recurrence. This study evaluated the relationship between post-treatment serum cav-1 levels and single nucleotide polymorphisms (SNPs) in the cav-1 and -2 genes with risk of PC, aggressive PC, PC recurrence or death. Methods Two case-control studies of PC among men in Washington State were combined for this analysis. Cases (n=1,458) were diagnosed in 1993–96 or 2002–05 and identified via a SEER cancer registry. Age-matched controls (n=1,351) were identified via random digit dialing. Logistic regression assessed the relationship between exposures (19 haplotype-tagging SNPs from all subjects and post-treatment serum cav-1 levels from a sample of 202 cases and 226 controls) and PC risk and aggressive PC. Cox proportional hazards regression assessed the relationship between exposures and PC recurrence and death. Results Rs9920 in cav-1 was associated with an increased relative risk of overall PC (ORCT+CC=1.37, 95%CI=1.12, 1.68) and aggressive PC (ORCT+CC=1.57, 95%CI=1.20, 2.06), but not with PC recurrence or death. High post-treatment serum cav-1 levels were not associated with PC risk, aggressive PC, or PC-specific death, but approached a significant inverse association with PC recurrence (hazard ratio=0.69, 95%CI=0.47, 1.00). Conclusions We found modest evidence for an association with a variant in the cav-1 gene and risk of overall PC and aggressive PC, which merits further study. We found no evidence that higher post-treatment serum cav-1 is associated with risk of aggressive PC or adverse PC outcomes. PMID:20209490

  2. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha.

    PubMed

    Dutot, Mélody; de la Tourrette, Violaine; Fagon, Roxane; Rat, Patrice

    2011-06-16

    Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE) cells. Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM) for 48 hours. Cellular responses were compared to normal glucose (5 mM): intracellular redox status, reactive oxygen species (ROS), mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  3. Reciprocal Activating Crosstalk between c-Met and Caveolin 1 Promotes Invasive Phenotype in Hepatocellular Carcinoma

    PubMed Central

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Çokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC. PMID:25148256

  4. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma.

    PubMed

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Cokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.

  5. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos; Yu, Jun; Suárez, Yajaira; Rahner, Christoph; Dávalos, Alberto; Lasunción, Miguel A.; Sessa, William C.

    2009-01-01

    SUMMARY The accumulation of LDL-derived cholesterol in the artery wall is the initiating event that causes atherosclerosis. However, the mechanisms that lead to the initiation of atherosclerosis are still poorly understood. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in promoting atherogenesis. Mice were generated lacking Cav-1 and apoE but expressing endothelial-specific Cav-1 in the double knockout background. Genetic ablation of Cav-1 on an apoE knockout background inhibits the progression of atherosclerosis while re-expression of Cav-1 in the endothelium promotes lesion expansion. Mechanistically, the loss of Cav-1 reduces LDL infiltration into the artery wall, promotes nitric oxide production and reduces the expression of leukocyte adhesion molecules, effects completely reversed in transgenic mice. In summary, this unique model provides physiological evidence supporting the important role of endothelial Cav-1 expression in regulating the entry of LDL into the vessel wall and the initiation of atherosclerosis. PMID:19583953

  6. Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic.

    PubMed

    Lutgens, S P M; Kisters, N; Lutgens, E; van Haaften, R I M; Evelo, C T A; de Winther, M P J; Saftig, P; Daemen, M J A P; Heeneman, S; Cleutjens, K B J M

    2006-11-01

    Recently, we showed that cathepsin K deficiency reduces atherosclerotic plaque progression, induces plaque fibrosis, but aggravates macrophage foam cell formation in the ApoE -/- mouse. To obtain more insight into the molecular mechanisms by which cathepsin K disruption evokes the observed phenotypic changes, we used microarray analysis for gene expression profiling of aortic arches of CatK -/-/ApoE -/- and ApoE -/- mice on a mouse oligo microarray. Out of 20 280 reporters, 444 were significantly differentially expressed (p-value of < 0.05, fold change of > or = 1.4 or < or = - 1.4, and intensity value of > 2.5 times background in at least one channel). Ingenuity Pathway Analysis and GenMAPP revealed upregulation of genes involved in lipid uptake, trafficking, and intracellular storage, including caveolin - 1, - 2, - 3 and CD36, and profibrotic genes involved in transforming growth factor beta (TGFbeta) signalling, including TGFbeta2, latent TGFbeta binding protein-1 (LTBP1), and secreted protein, acidic and rich in cysteine (SPARC), in CatK -/-/ApoE -/- mice. Differential gene expression was confirmed at the mRNA and protein levels. In vitro modified low density lipoprotein (LDL) uptake assays, using bone marrow derived macrophages preincubated with caveolae and scavenger receptor inhibitors, confirmed the importance of caveolins and CD36 in increasing modified LDL uptake in the absence of cathepsin K. In conclusion, we suggest that cathepsin K deficiency alters plaque phenotype not only by decreasing proteolytic activity, but also by stimulating TGFbeta signalling. Besides this profibrotic effect, cathepsin K deficiency has a lipogenic effect owing to increased lipid uptake mediated by CD36 and caveolins. Copyright 2006 Pathological Society of Great Britain and Ireland.

  7. Vitamin D Reduces Oxidative Stress-Induced Procaspase-3/ROCK1 Activation and MP Release by Placental Trophoblasts.

    PubMed

    Xu, Jie; Jia, Xiuyue; Gu, Yang; Lewis, David F; Gu, Xin; Wang, Yuping

    2017-06-01

    Increased microparticle (MP) shedding by placental trophoblasts contributes to maternal vascular inflammatory response and endothelial dysfunction in preeclampsia. Vitamin D has beneficial effects in pregnancy; however, its effect on trophoblast MP release has not been investigated. To investigate if vitamin D could protect trophoblasts from oxidative stress-induced MP release. Placental trophoblasts were isolated from uncomplicated and preeclamptic placentas. Effects of vitamin D on MP release induced by oxidative stress inducer CoCl2 were studied. Annexin V+ MPs were assessed by flow cytometry. Expression of caveolin-1, endothelial nitric oxide synthase (eNOS), procaspase-3, cleaved caspase-3, and Rho-associated coiled-coil protein kinase 1 (ROCK1) in trophoblasts and trophoblast-derived MPs were determined by Western blot. Trophoblasts from preeclamptic pregnancies released significantly more MPs than cells from uncomplicated pregnancies (P < 0.01). CoCl2-induced increase in MP release was associated with upregulation of caveolin-1 and downregulation of eNOS expression in trophoblasts (P < 0.05), which could be attenuated by 1,25(OH)2D3. Moreover, 1,25(OH)2D3 could also inhibit CoCl2-induced procaspase-3 cleavage and ROCK1 activation in trophoblasts. Consistently, CoCl2-induced upregulation of procaspase-3, cleaved caspase-3, and ROCK1 expression in trophoblast-derived MPs were also reduced in cells treated with 1,25(OH)2D3. Placental trophoblasts from preeclamptic pregnancies released more MP than cells from uncomplicated pregnancies. Oxidative stress-induced increase in MP shedding is associated with upregulation of caveolin-1 and downregulation of eNOS expression in placental trophoblasts. Inhibition of caspase-3 cleavage and ROCK1 activation, together with upregulation of eNOS expression, could be the potential cellular/molecular mechanism(s) of vitamin D protective effects on placental trophoblasts. Copyright © 2017 Endocrine Society

  8. FAT/CD36 expression alone is insufficient to enhance cellular uptake of oleate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyre, Nicholas S.; Cleland, Leslie G.; Mayrhofer, Graham

    2008-06-06

    Fatty acid translocase (FAT/CD36) is one of several proteins implicated in receptor-mediated uptake of long-chain fatty acids (LCFAs). We have tested whether levels of FAT/CD36 correlate with cellular oleic acid import, using a Tet-Off inducible transfected CHO cell line. Consistent with our previous findings, FAT/CD36 was enriched in lipid raft-derived detergent-resistant membranes (DRMs) that also contained caveolin-1, the marker protein of caveolae. Furthermore in transfected cells, plasma membrane FAT/CD36 co-localized extensively with the lipid raft-enriched ganglioside GM1, and partially with a caveolin-1-EGFP fusion protein. Nevertheless, even at high levels of expression, FAT/CD36 did not affect uptake of oleic acid. Wemore » propose that the ability of FAT/CD36 to mediate enhanced uptake of LCFAs is dependent on co-expression of other proteins or factors that are lacking in CHO cells.« less

  9. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK

    PubMed Central

    Jiang, Yida; Lin, Xianchai; Tang, Zhongshu; Lee, Chunsik; Tian, Geng; Du, Yuxiang; Yin, Xiangke; Ren, Xiangrong; Huang, Lijuan; Ye, Zhimin; Chen, Wei; Zhang, Fan; Mi, Jia; Gao, Zhiqin; Wang, Shasha; Chen, Qishan; Xing, Liying; Wang, Bin; Cao, Yihai; Sessa, William C.; Ju, Rong; Liu, Yizhi; Li, Xuri

    2017-01-01

    Ocular neovascularization is a devastating pathology of numerous ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1) plays important roles in the vascular system. However, little is known regarding its function and mechanisms in ocular neovascularization. Here, using comprehensive model systems and a cell permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a critical player in ocular neovascularization. The genetic deletion of Cav-1 exacerbated and cavtratin administration inhibited choroidal and retinal neovascularization. Importantly, combined administration of cavtratin and anti–VEGF-A inhibited neovascularization more effectively than monotherapy, suggesting the existence of other pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we found that cavtratin suppressed multiple critical components of pathological angiogenesis, including inflammation, permeability, PDGF-B and endothelial nitric oxide synthase expression (eNOS). Mechanistically, we show that cavtratin inhibits CNV and the survival and migration of microglia and macrophages via JNK. Together, our data demonstrate the unique advantages of cavtratin in antiangiogenic therapy to treat neovascular diseases. PMID:28923916

  10. Phenotypic behavior of C2C12 myoblasts upon expression of the dystrophy-related caveolin-3 P104L and TFT mutants.

    PubMed

    Fanzani, Alessandro; Stoppani, Elena; Gualandi, Laura; Giuliani, Roberta; Galbiati, Ferruccio; Rossi, Stefania; Fra, Anna; Preti, Augusto; Marchesini, Sergio

    2007-10-30

    Caveolin-3 (Cav-3) is the main scaffolding protein present in myofiber caveolae. We transfected C2C12 myoblasts with dominant negative forms of Cav-3, P104L or DeltaTFT, respectively, which cause the limb-girdle muscular dystrophy 1-C. Both these forms triggered Cav-3 loss during C2C12 cell differentiation. The P104L mutation reduced myofiber formation by impaired AKT signalling, accompanied by dramatic expression of the E3 ubiquitin ligase Atrogin. On the other hand, the DeltaTFT mutation triggered hypertrophic myotubes sustained by prolonged AKT activation, but independent of increased levels of follistatin and interleukin 4 expression. These data suggest that separated mutations within the same dystrophy-related gene may cause muscle degeneration through different mechanisms.

  11. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes.

    PubMed

    Naito, Daisuke; Ogata, Takehiro; Hamaoka, Tetsuro; Nakanishi, Naohiko; Miyagawa, Kotaro; Maruyama, Naoki; Kasahara, Takeru; Taniguchi, Takuya; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2015-12-15

    Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function. Copyright © 2015 the American Physiological Society.

  12. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealedmore » that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.« less

  13. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    PubMed Central

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2012-01-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FTTM). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100–1000 µM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. PMID:21457723

  14. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.

    PubMed

    Black, Adrienne T; Hayden, Patrick J; Casillas, Robert P; Heck, Diane E; Gerecke, Donald R; Sinko, Patrick J; Laskin, Debra L; Laskin, Jeffrey D

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    PubMed

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein populations associated with detergent-resistant membranes, and their potential interactions in cell signaling.

  16. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly

    PubMed Central

    Nguyen, Tra Huong; Leong, Daniel; Ravi, Laxmi Iyer; Tan, Boon Huan; Sandin, Sara; Sugrue, Richard J.

    2017-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is an enveloped virus that assembles into filamentous virus particles on the surface of infected cells. Morphogenesis of RSV is dependent upon cholesterol-rich (lipid raft) membrane microdomains, but the specific role of individual raft molecules in RSV assembly is not well defined. Here, we show that RSV morphogenesis occurs within caveolar membranes and that both caveolin-1 and cavin-1 (also known as PTRF), the two major structural and functional components of caveolae, are actively recruited to and incorporated into the RSV envelope. The recruitment of caveolae occurred just prior to the initiation of RSV filament assembly, and was dependent upon an intact actin network as well as a direct physical interaction between caveolin-1 and the viral G protein. Moreover, cavin-1 protein levels were significantly increased in RSV-infected cells, leading to a virus-induced change in the stoichiometry and biophysical properties of the caveolar coat complex. Our data indicate that RSV exploits caveolae for its assembly, and we propose that the incorporation of caveolae into the virus contributes to defining the biological properties of the RSV envelope. PMID:28154158

  17. Caloric restriction reduces age-related pseudocapillarization of the hepatic sinusoid

    PubMed Central

    Jamieson, Hamish A; Hilmer, Sarah N; Cogger, Victoria C; Warren, Alessandra; Cheluvappa, Rajkumar; Abernethy, Darrell R; Everitt, Arthur V; Fraser, Robin; de Cabo, Rafael; Le Couteur, David G

    2007-01-01

    Age-related changes in the hepatic sinusoid, called pseudocapillarization, may contribute to the pathogenesis of dyslipidaemia. Caloric restriction (CR) is a powerful model for the study of aging because it extends lifespan. We assessed the effects of CR on the hepatic sinusoid to determine whether pseudocapillarization is preventable and hence a target for the prevention of age-related dyslipidemia. Livers from young (6 months) and old (24 months) CR and ad libitum fed (AL) F344 rats were examined using electron microscopy and immunohistochemistry. In old age, there was increased thickness of the liver sinusoidal endothelium and reduced endothelial fenestration porosity. In old CR rats, endothelial thickness was less and fenestration porosity was greater than in old AL rats. Immunohistochemistry showed that CR prevented age-related decrease in caveolin-1 expression and increase in peri-sinusoidal collagen IV staining, but did not alter the age-related increase of von Willebrand’s factor. CR reduces age-related pseudocapillarization of the hepatic sinusoid and correlates with changes in caveolin-1 expression. PMID:17204388

  18. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.

    PubMed

    Bastiani, Michele; Liu, Libin; Hill, Michelle M; Jedrychowski, Mark P; Nixon, Susan J; Lo, Harriet P; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R; Gygi, Steven P; Vinten, Jorgen; Walser, Piers J; North, Kathryn N; Hancock, John F; Pilch, Paul F; Parton, Robert G

    2009-06-29

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.

  19. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  20. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Whitaker-Menezes, Diana; Daumer, Kristin M; Milliman, Janet N; Chiavarina, Barbara; Migneco, Gemma; Witkiewicz, Agnieszka K; Martinez-Cantarin, Maria P; Flomenberg, Neal; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2010-06-15

    Loss of stromal caveolin 1 (Cav-1) is a novel biomarker for cancer-associated fibroblasts that predicts poor clinical outcome in breast cancer and DCIS patients. We hypothesized that epithelial cancer cells may have the ability to drive Cav-1 downregulation in adjacent normal fibroblasts, thereby promoting the cancer associated fibroblast phenotype. To test this hypothesis directly, here we developed a novel co-culture model employing (i) human breast cancer cells (MCF7), and (ii) immortalized fibroblasts (hTERT-BJ1), which are grown under defined experimental conditions. Importantly, we show that co-culture of immortalized human fibroblasts with MCF7 breast cancer cells leads to Cav-1 downregulation in fibroblasts. These results were also validated using primary cultures of normal human mammary fibroblasts co-cultured with MCF7 cells. In this system, we show that Cav-1 downregulation is mediated by autophagic/lysosomal degradation, as pre-treatment with lysosome-specific inhibitors rescues Cav-1 expression. Functionally, we demonstrate that fibroblasts co-cultured with MCF7 breast cancer cells acquire a cancer associated fibroblast phenotype, characterized by Cav-1 downregulation, increased expression of myofibroblast markers and extracellular matrix proteins, and constitutive activation of TGFβ/Smad2 signaling. siRNA-mediated Cav-1 downregulation mimics several key changes that occur in co-cultured fibroblasts, clearly indicating that a loss of Cav-1 is a critical initiating factor, driving stromal fibroblast activation during tumorigenesis. As such, this co-culture system can now be used as an experimental model for generating "synthetic" cancer associated fibroblasts (CAFs). More specifically, these "synthetic" CAFs could be used for drug screening to identify novel therapeutics that selectively target the Cav-1-negative tumor micro-environment. Our findings also suggest that chloroquine, or other autophagy/lysosome inhibitors, may be useful as anti-cancer agents, to therapeutically restore the expression of stromal Cav-1 in cancer associated fibroblasts. We discuss this possibility, in light of the launch of a new clinical trial that uses chloroquine to treat DCIS patients: PINC (Preventing Invasive Breast Neoplasia with Cholorquine) [See http://clinicaltrials.gov/show/NCT01023477].

  1. N-terminal tyrosine phosphorylation of caveolin-2 negates anti-proliferative effect of transforming growth factor beta in endothelial cells

    PubMed Central

    Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz

    2012-01-01

    Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829

  2. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress.

    PubMed

    Kassan, M; Vikram, A; Kim, Y R; Li, Q; Kassan, A; Patel, H H; Kumar, S; Gabani, M; Liu, J; Jacobs, J S; Irani, K

    2017-02-09

    Sirtuin1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including endothelial function. Caveolin1 (Cav1) is also an important determinant of endothelial function. We asked if Sirt1 governs endothelial Cav1 and endothelial function by regulating miR-204 expression and endoplasmic reticulum (ER) stress. Knockdown of Sirt1 in endothelial cells, and in vivo deletion of endothelial Sirt1, induced endothelial ER stress and miR-204 expression, reduced Cav1, and impaired endothelium-dependent vasorelaxation. All of these effects were reversed by a miR-204 inhibitor (miR-204 I) or with overexpression of Cav1. A miR-204 mimic (miR-204 M) decreased Cav1 in endothelial cells. In addition, high-fat diet (HFD) feeding induced vascular miR-204 and reduced endothelial Cav1. MiR-204-I protected against HFD-induced downregulation of endothelial Cav1. Moreover, pharmacologic induction of ER stress with tunicamycin downregulated endothelial Cav1 and impaired endothelium-dependent vasorelaxation that was rescued by overexpressing Cav1. In conclusion, Sirt1 preserves Cav1-dependent endothelial function by mitigating miR-204-mediated vascular ER stress.

  3. Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer Cells1

    PubMed Central

    Goh, Meidee; Chen, Feng; Paulsen, Michelle T; Yeager, Ann M; Dyer, Erica S; Ljungman, Mats

    2001-01-01

    Abstract Phenylbutyrate (PB) is a histone deacetylase inhibitor that has been shown to induce differentiation and apoptosis in various cancer cell lines. Although these effects are most likely due to modulation of gene expression, the specific genes and gene products responsible for the effects of PB are not well characterized. In this study, we used cDNA expression arrays and Western blot to assess the effect that PB has on the expression of various cancer and apoptosis-regulatory gene products. We show that PB attenuates the expression of the apoptosis antagonist Bcl-XL, the double-strand break repair protein DNA-dependent protein kinase, the prostate progression marker caveolin -1, and the pro-angiogenic vascular endothelial growth factor. Furthermore, PB was found to act in synergy with ionizing radiation to induce apoptosis in prostate cancer cells. Taken together, our results point to the possibility that PB may be an effective anti-prostate cancer agent when used in combination with radiation or chemotherapy and for the inhibition of cancer progression. PMID:11571633

  4. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line

    PubMed Central

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P.; Parton, Robert G.; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS. PMID:26086601

  5. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    PubMed

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P; Parton, Robert G; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  6. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.

    PubMed

    Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros

    2016-08-01

    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    PubMed

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  8. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels

    PubMed Central

    Yu, Jun; Bergaya, Sonia; Murata, Takahisa; Alp, Ilkay F.; Bauer, Michael P.; Lin, Michelle I.; Drab, Marek; Kurzchalia, Teymuras V.; Stan, Radu V.; Sessa, William C.

    2006-01-01

    Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels. PMID:16670769

  9. Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion

    PubMed Central

    Zhou, Minglong; Widmer, R. Jay; Xie, Wei; Jimmy Widmer, A.; Miller, Matthew W.; Schroeder, Friedhelm; Parker, Janet L.

    2010-01-01

    Exercise training enhances agonist-mediated relaxation in both control and collateral-dependent coronary arteries of hearts subjected to chronic occlusion, an enhancement that is mediated in part by nitric oxide. The purpose of the present study was to elucidate exercise training-induced adaptations in specific cellular mechanisms involved in the regulation of endothelial nitric oxide synthase (eNOS) in coronary arteries of ischemic hearts. Ameroid constrictors were surgically placed around the proximal left circumflex coronary artery (LCX) of adult female Yucatan miniature swine. Eight weeks postoperatively, animals were randomized into sedentary (pen-confined) or exercise training (treadmill run; 5 days/wk; 14 wk) protocols. Coronary artery segments (∼1.0 mm luminal diameter) were isolated from collateral-dependent (LCX) and control (nonoccluded left anterior descending) arteries 22 wk after ameroid placement. Endothelial cells were enzymatically dissociated, and intracellular Ca2+ responses (fura 2) to bradykinin stimulation were studied. Immunofluorescence and laser scanning confocal microscopy were used to quantify endothelial cell eNOS and caveolin-1 cellular distribution under basal and bradykinin-stimulated conditions. Immunoblot analysis was used to determine eNOS, phosphorylated (p)-eNOS, protein kinase B (Akt), pAkt, and caveolin-1 protein levels. Bradykinin-stimulated nitrite plus nitrate (NOx; nitric oxide metabolites) levels were assessed via HPLC. Exercise training resulted in significantly enhanced bradykinin-mediated increases in endothelial Ca2+ levels, NOx levels, and the distribution of eNOS-to-caveolin-1 ratio at the plasma membrane in endothelial cells of control and collateral-dependent arteries. Exercise training also significantly increased total eNOS and phosphorylated levels of eNOS (pSer1179) in collateral-dependent arteries. Total eNOS protein levels were also significantly increased in collateral-dependent arteries of sedentary animals. These data provide new insights into exercise training-induced adaptations in cellular mechanisms of nitric oxide regulation in collateral-dependent coronary arteries of chronically occluded hearts that contribute to enhanced nitric oxide production. PMID:20363881

  10. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells

    PubMed Central

    Felley-Bosco, Emanuela; Bender, Florent C.; Courjault-Gautier, Françoise; Bron, Claude; Quest, Andrew F. G.

    2000-01-01

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway. PMID:11114180

  11. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation

    PubMed Central

    Tillu, Vikas A.; Kovtun, Oleksiy; McMahon, Kerrie-Ann; Collins, Brett M.; Parton, Robert G.

    2015-01-01

    Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae. PMID:26269585

  12. Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis.

    PubMed

    Kuo, Andrew; Lee, Monica Y; Yang, Kui; Gross, Richard W; Sessa, William C

    2018-01-19

    Lipid droplets (LD) are dynamic organelles involved in intracellular lipid metabolism in almost all eukaryotic cells, and LD-associated proteins tightly regulate their dynamics. One LD coat protein is caveolin-1 (Cav-1), an essential component for caveola assembly in highly differentiated cells, including adipocytes, smooth muscle cells, and endothelial cells (EC). However, the role of Cav-1 in LD dynamics is unclear. Here we report that EC lacking Cav-1 exhibit impaired LD formation. The decreased LD formation is due to enhanced lipolysis and not caused by reduced triglyceride synthesis or fatty acid uptake. Mechanistically, the absence of Cav-1 increased cAMP/PKA signaling in EC, as indicated by elevated phosphorylation of hormone-sensitive lipase and increased lipolysis. Unexpectedly, we also observed enhanced autocrine production of prostaglandin I 2 (PGI 2 , also called prostacyclin) in Cav-1 KO EC, and this PGI 2 increase appeared to stimulate cAMP/PKA pathways, contributing to the enhanced lipolysis in Cav-1 KO cells. Our results reveal an unanticipated role of Cav-1 in regulating lipolysis in non-adipose tissue, indicating that Cav-1 is required for LD metabolism in EC and that it regulates cAMP-dependent lipolysis in part via the autocrine production of PGI 2 .

  13. Redistribution of caveolae during mitosis

    PubMed Central

    Boucrot, Emmanuel; Howes, Mark T.; Kirchhausen, Tomas; Parton, Robert G.

    2011-01-01

    Caveolae form a specialized platform within the plasma membrane that is crucial for an array of important biological functions, ranging from signaling to endocytosis. Using total internal reflection fluorescence (TIRF) and 3D fast spinning-disk confocal imaging to follow caveola dynamics for extended periods, and electron microscopy to obtain high resolution snapshots, we found that the vast majority of caveolae are dynamic with lifetimes ranging from a few seconds to several minutes. Use of these methods revealed a change in the dynamics and localization of caveolae during mitosis. During interphase, the equilibrium between the arrival and departure of caveolae from the cell surface maintains the steady-state distribution of caveolin-1 (Cav1) at the plasma membrane. During mitosis, increased dynamics coupled to an imbalance between the arrival and departure of caveolae from the cell surface induces a redistribution of Cav1 from the plasma membrane to intracellular compartments. These changes are reversed during cytokinesis. The observed redistribution of Cav1 was reproduced by treatment of interphase cells with nocodazole, suggesting that microtubule rearrangements during mitosis can mediate caveolin relocalization. This study provides new insights into the dynamics of caveolae and highlights precise regulation of caveola budding and recycling during mitosis. PMID:21625007

  14. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner

    PubMed Central

    Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin

    2012-01-01

    It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771

  15. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes

    PubMed Central

    Bastiani, Michele; Liu, Libin; Hill, Michelle M.; Jedrychowski, Mark P.; Nixon, Susan J.; Lo, Harriet P.; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R.; Gygi, Steven P.; Vinten, Jorgen; Walser, Piers J.; North, Kathryn N.; Hancock, John F.; Pilch, Paul F.

    2009-01-01

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer–based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein. PMID:19546242

  16. Caveolin-1-mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype.

    PubMed

    Portugal, Camila C; Socodato, Renato; Canedo, Teresa; Silva, Cátia M; Martins, Tânia; Coreixas, Vivian S M; Loiola, Erick C; Gess, Burkhard; Röhr, Dominik; Santiago, Ana R; Young, Peter; Minshall, Richard D; Paes-de-Carvalho, Roberto; Ambrósio, António F; Relvas, João B

    2017-03-28

    Vitamin C is essential for the development and function of the central nervous system (CNS). The plasma membrane sodium-vitamin C cotransporter 2 (SVCT2) is the primary mediator of vitamin C uptake in neurons. SVCT2 specifically transports ascorbate, the reduced form of vitamin C, which acts as a reducing agent. We demonstrated that ascorbate uptake through SVCT2 was critical for the homeostasis of microglia, the resident myeloid cells of the CNS that are essential for proper functioning of the nervous tissue. We found that depletion of SVCT2 from the plasma membrane triggered a proinflammatory phenotype in microglia and resulted in microglia activation. Src-mediated phosphorylation of caveolin-1 on Tyr 14 in microglia induced the internalization of SVCT2. Ascorbate treatment, SVCT2 overexpression, or blocking SVCT2 internalization prevented the activation of microglia. Overall, our work demonstrates the importance of the ascorbate transport system for microglial homeostasis and hints that dysregulation of ascorbate transport might play a role in neurological disorders. Copyright © 2017, American Association for the Advancement of Science.

  17. Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus.

    PubMed

    Zhang, Fuxian; Guo, Hong; Zhang, Jie; Chen, Qingxiu; Fang, Qin

    2018-01-01

    Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered the most pathogenic aquareovirus. However, its productive viral entry pathways remain largely unclear. Using a combination of quantum dot (QD)-based live-virus tracking and biochemical assays, we found that extraction of cellular membrane cholesterol with methyl-β-cyclodextrin (MβCD) and nystatin strongly inhibited the internalization of GCRVs, and supplementation with cholesterol restored viral infection. In addition, the entry of the virus was restrained by genistein, an inhibitor known to block caveolar endocytosis. Subsequent real-time tracking experiments revealed that the QD-labeled GCRV particles were colocalized with caveolin-1, and transfection of cells with dominant-negative mutant (caveolin-1 Y14F) significantly reduced GCRV infection. In contrast, no effects on virus infection were detected when the clathrin-mediated endocytosis or the macropinocytosis inhibitors were used. Our results collectively suggest that aquareoviruses can use caveolae/raft-mediated endocytosis as the primary entry pathway to initiate productive infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Csk regulates angiotensin II-induced podocyte apoptosis.

    PubMed

    Zhang, Lu; Ren, Zhilong; Yang, Qian; Ding, Guohua

    2016-07-01

    Increasing data have shown that angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. The mechanism underlying Ang II-induced podocyte apoptosis has not been established. C-terminal Src kinase (Csk) is a cytoplasmic kinase that interacts with scaffolding proteins involved in cell growth, adhesion, and polarization, and the role of Csk in regulating cellular apoptosis has gradually attracted attention. This study evaluates the role of Csk in Ang II-induced podocyte apoptosis. In vivo, Wistar rats were randomly subjected to a normal saline or Ang II infusion. In vitro, we exposed differentiated mouse podocytes to Ang II. Ang II increased Csk expression and induced podocyte apoptosis, stimulated Csk translocation and binding to Caveolin-1, and stimulated decreased Fyn pY416, increased Fyn pY529, and nephrin dephosphorylation. Csk knockdown prevented Ang II-induced podocyte apoptosis, reduced Fyn kinase inactivation, and increased the interaction between nephrin and the activated form of Fyn, accompanied by a reduced interaction between Csk and Caveolin-1. These findings indicate that Ang II induces podocyte injury via a Csk-dependent pathway.

  19. Molecular Markers for Breast Cancer: Prediction on Tumor Behavior

    PubMed Central

    Banin Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Watanabe, Maria Angelica Ehara

    2014-01-01

    Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide. The development of breast cancer involves a progression through intermediate stages until the invasive carcinoma and finally into metastatic disease. Given the variability in clinical progression, the identification of markers that could predict the tumor behavior is particularly important in breast cancer. The determination of tumor markers is a useful tool for clinical management in cancer patients, assisting in diagnostic, staging, evaluation of therapeutic response, detection of recurrence and metastasis, and development of new treatment modalities. In this context, this review aims to discuss the main tumor markers in breast carcinogenesis. The most well-established breast molecular markers with prognostic and/or therapeutic value like hormone receptors, HER-2 oncogene, Ki-67, and p53 proteins, and the genes for hereditary breast cancer will be presented. Furthermore, this review shows the new molecular targets in breast cancer: CXCR4, caveolin, miRNA, and FOXP3, as promising candidates for future development of effective and targeted therapies, also with lower toxicity. PMID:24591761

  20. Nitric Oxide Regulates Lung Carcinoma Cell Anoikis through Inhibition of Ubiquitin-Proteasomal Degradation of Caveolin-1*

    PubMed Central

    Chanvorachote, Pithi; Nimmannit, Ubonthip; Lu, Yongju; Talbott, Siera; Jiang, Bing-Hua; Rojanasakul, Yon

    2009-01-01

    Anoikis, a detachment-induced apoptosis, is a principal mechanism of inhibition of tumor cell metastasis. Tumor cells can acquire anoikis resistance which is frequently observed in metastatic lung cancer. This phenomenon becomes an important obstacle of efficient cancer therapy. Recently, signaling mediators such as caveolin-1 (Cav-1) and nitric oxide (NO) have garnered attention in metastasis research; however, their role and the underlying mechanisms of metastasis regulation are largely unknown. Using human lung carcinoma H460 cells, we show that NO impairs the apoptotic function of the cells after detachment. The NO donors sodium nitroprusside and diethylenetriamine NONOate inhibit detachment-induced apoptosis, whereas the NO inhibitors aminoguanidine and 2-(4-carboxyphenyl) tetramethylimidazoline-1-oxyl-3-oxide promote this effect. Resistance to anoikis in H460 cells is mediated by Cav-1, which is significantly down-regulated after cell detachment through a non-transcriptional mechanism involving ubiquitin-proteasomal degradation. NO inhibits this down-regulation by interfering with Cav-1 ubiquitination through a process that involves protein S-nitrosylation, which prevents its proteasomal degradation and induction of anoikis by cell detachment. These findings indicate a novel pathway for NO regulation of Cav-1, which could be a key mechanism of anoikis resistance in tumor cells. PMID:19706615

  1. Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1.

    PubMed

    Chanvorachote, Pithi; Nimmannit, Ubonthip; Lu, Yongju; Talbott, Siera; Jiang, Bing-Hua; Rojanasakul, Yon

    2009-10-09

    Anoikis, a detachment-induced apoptosis, is a principal mechanism of inhibition of tumor cell metastasis. Tumor cells can acquire anoikis resistance which is frequently observed in metastatic lung cancer. This phenomenon becomes an important obstacle of efficient cancer therapy. Recently, signaling mediators such as caveolin-1 (Cav-1) and nitric oxide (NO) have garnered attention in metastasis research; however, their role and the underlying mechanisms of metastasis regulation are largely unknown. Using human lung carcinoma H460 cells, we show that NO impairs the apoptotic function of the cells after detachment. The NO donors sodium nitroprusside and diethylenetriamine NONOate inhibit detachment-induced apoptosis, whereas the NO inhibitors aminoguanidine and 2-(4-carboxyphenyl) tetramethylimidazoline-1-oxyl-3-oxide promote this effect. Resistance to anoikis in H460 cells is mediated by Cav-1, which is significantly down-regulated after cell detachment through a non-transcriptional mechanism involving ubiquitin-proteasomal degradation. NO inhibits this down-regulation by interfering with Cav-1 ubiquitination through a process that involves protein S-nitrosylation, which prevents its proteasomal degradation and induction of anoikis by cell detachment. These findings indicate a novel pathway for NO regulation of Cav-1, which could be a key mechanism of anoikis resistance in tumor cells.

  2. Role of Caveolin-1 in Prostate Cancer Angiogenesis

    DTIC Science & Technology

    2008-12-01

    CSD deleted rcav-1 protein (Δrcav- 1), treated EC and prostate cancer cells with different concentrations of FITC- Δrcav-1 over 1-6 h, and examined the...Months 7-24) 4. Biological function end points. (Months 25-36) We are currently investigating different siRNA transfection protocols to find...activities through auto regulatory, Akt-mediated maintanence of mRNA stabilities of cancer promoting growth factors. In preparation 6. Tahir SA

  3. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  4. Posttranslational inactivation of endothelial nitric oxide synthase in the transgenic sickle cell mouse penis

    PubMed Central

    Musicki, Biljana; Champion, Hunter C.; Hsu, Lewis L.; Bivalacqua, Trinity J.; Burnett, Arthur L.

    2017-01-01

    INTRODUCTION Sickle cell disease (SCD)-associated priapism is characterized by endothelial nitric oxide synthase (eNOS) dysfunction in the penis. However, the mechanism of decreased eNOS function/activation in the penis in association with SCD is not known. AIMS Our hypothesis in the present study was that eNOS is functionally inactivated in the SCD penis in association with impairments in eNOS posttranslational phosphorylation and the enzyme’s interactions with its regulatory proteins. METHODS Sickle cell transgenic (sickle) mice were used as an animal model of SCD. Wild type (WT) mice served as controls. Penes were excised at baseline for molecular studies. eNOS phosphorylation on Ser-1177 (positive regulatory site) and Thr-495 (negative regulatory site), total eNOS, and phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177) expressions, and eNOS interactions with heat shock protein 90 (HSP90) and caveolin-1 were measured by Western blot. Constitutive NOS catalytic activity was measured by conversion of L-[14C]arginine-to-L-[14C]citrulline in the presence of calcium. MAIN OUTCOME MEASURES Molecular mechanisms of eNOS dysfunction in the sickle mouse penis. RESULTS eNOS phosphorylated on Ser-1177, an active portion of eNOS, was decreased in the sickle mouse penis compared to WT penis. eNOS interaction with its positive protein regulator HSP90, but not with its negative protein regulator caveolin-1, and phosphorylated AKT expression, as well as constitutive NOS activity, were also decreased in the sickle mouse penis compared to WT penis. eNOS phosphorylated on Thr-495, total eNOS, HSP90, and caveolin-1 protein expressions in the penis were not affected by SCD. CONCLUSION These findings provide a molecular basis for chronically reduced eNOS function in the penis by SCD, which involves decreased eNOS phosphorylation on Ser-1177 and decreased eNOS-HSP90 interaction. PMID:21143412

  5. Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis

    PubMed Central

    Williams, Terence M.; Sotgia, Federica; Lee, Hyangkyu; Hassan, Ghada; Di Vizio, Dolores; Bonuccelli, Gloria; Capozza, Franco; Mercier, Isabelle; Rui, Hallgeir; Pestell, Richard G.; Lisanti, Michael P.

    2006-01-01

    Here, we investigate the role of caveolin-1 (Cav-1) in breast cancer onset and progression, with a focus on epithelial-stromal interactions, ie, the tumor microenvironment. Cav-1 is highly expressed in adipocytes and is abundant in mammary fat pads (stroma), but it remains unknown whether loss of Cav-1 within mammary stromal cells affects the differentiated state of mammary epithelia via paracrine signaling. To address this issue, we characterized the development of the mammary ductal system in Cav-1−/− mice and performed a series of mammary transplant studies, using both wild-type and Cav-1−/− mammary fat pads. Cav-1−/− mammary epithelia were hyperproliferative in vivo, with dramatic increases in terminal end bud area and mammary ductal thickness as well as increases in bromodeoxyuridine incorporation, extracellular signal-regulated kinase-1/2 hyperactivation, and up-regulation of STAT5a and cyclin D1. Consistent with these findings, loss of Cav-1 dramatically exacerbated mammary lobulo-alveolar hyperplasia in cyclin D1 Tg mice, whereas overexpression of Cav-1 caused reversion of this phenotype. Most importantly, Cav-1−/− mammary stromal cells (fat pads) promoted the growth of both normal mammary ductal epithelia and mammary tumor cells. Thus, Cav-1 expression in both epithelial and stromal cells provides a protective effect against mammary hyperplasia as well as mammary tumorigenesis. PMID:17071600

  6. Glycolipid-anchored proteins in neuroblastoma cells form detergent- resistant complexes without caveolin

    PubMed Central

    1995-01-01

    It has been known for a number of years that glycosyl- phosphatidylinositol (GPI)-anchored proteins, in contrast to many transmembrane proteins, are insoluble at 4 degrees C in nonionic detergents such as Triton X-100. Recently, it has been proposed that this behavior reflects the incorporation of GPI-linked proteins into large aggregates that are rich in sphingolipids and cholesterol, as well as in cytoplasmic signaling molecules such as heterotrimeric G proteins and src-family tyrosine kinases. It has been suggested that these lipid-protein complexes are derived from caveolae, non-clathrin- coated invaginations of the plasmalemma that are abundant in endothelial cells, smooth muscle, and lung. Caveolin, a proposed coat protein of caveolae, has been hypothesized to be essential for formation of the complexes. To further investigate the relationship between the detergent-resistant complexes and caveolae, we have characterized the behavior of GPI-anchored proteins in lysates of N2a neuroblastoma cells, which lack morphologically identifiable caveolae, and which do not express caveolin (Shyng, S.-L., J. E. Heuser, and D. A. Harris. 1994. J. Cell Biol. 125:1239-1250). We report here that the complexes prepared from N2a cells display the large size and low buoyant density characteristic of complexes isolated from sources that are rich in caveolae, and contain the same major constituents, including multiple GPI-anchored proteins, alpha and beta subunits of heterotrimeric G proteins, and the tyrosine kinases fyn and yes. Our results argue strongly that detergent-resistant complexes are not equivalent to caveolae in all cell types, and that in neuronal cells caveolin is not essential for the integrity of these complexes. PMID:7537273

  7. Molecular Determinants of the Cellular Entry of Asymmetric Peptide Dendrimers and Role of Caveolae.

    PubMed

    Rewatkar, Prarthana V; Parekh, Harendra S; Parat, Marie-Odile

    2016-01-01

    Caveolae are flask-shaped plasma membrane subdomains abundant in most cell types that participate in endocytosis. Caveola formation and functions require membrane proteins of the caveolin family, and cytoplasmic proteins of the cavin family. Cationic peptide dendrimers are non-vesicular chemical carriers that can transport pharmacological agents or genetic material across the plasma membrane. We prepared a panel of cationic dendrimers and investigated whether they require caveolae to enter into cells. Cell-based studies were performed using wild type or caveola-deficient i.e. caveolin-1 or PTRF gene-disrupted cells. There was a statistically significant difference in entry of cationic dendrimers between wild type and caveola-deficient cells. We further unveiled differences between dendrimers with varying charge density and head groups. Our results show, using a molecular approach, that (i) expression of caveola-forming proteins promotes cellular entry of cationic dendrimers and (ii) dendrimer structure can be modified to promote endocytosis in caveola-forming cells.

  8. Molecular Determinants of the Cellular Entry of Asymmetric Peptide Dendrimers and Role of Caveolae

    PubMed Central

    Rewatkar, Prarthana V.; Parekh, Harendra S.; Parat, Marie-Odile

    2016-01-01

    Caveolae are flask-shaped plasma membrane subdomains abundant in most cell types that participate in endocytosis. Caveola formation and functions require membrane proteins of the caveolin family, and cytoplasmic proteins of the cavin family. Cationic peptide dendrimers are non-vesicular chemical carriers that can transport pharmacological agents or genetic material across the plasma membrane. We prepared a panel of cationic dendrimers and investigated whether they require caveolae to enter into cells. Cell-based studies were performed using wild type or caveola-deficient i.e. caveolin-1 or PTRF gene-disrupted cells. There was a statistically significant difference in entry of cationic dendrimers between wild type and caveola-deficient cells. We further unveiled differences between dendrimers with varying charge density and head groups. Our results show, using a molecular approach, that (i) expression of caveola-forming proteins promotes cellular entry of cationic dendrimers and (ii) dendrimer structure can be modified to promote endocytosis in caveola-forming cells. PMID:26788849

  9. Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae

    PubMed Central

    Sinha, Bidisha; Köster, Darius; Ruez, Richard; Gonnord, Pauline; Bastiani, Michele; Abankwa, Daniel; Stan, Radu. V.; Butler-Browne, Gillian; Vedie, Benoit; Johannes, Ludger; Morone, Nobuhiro; Parton, Robert G.; Raposo, Graça; Sens, Pierre; Lamaze, Christophe; Nassoy, Pierre

    2011-01-01

    SUMMARY The precise role of caveolae, the characteristic plasma membrane invaginations present in many cells, still remains debated. The high density of caveolae in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by cell osmotic swelling or by uniaxial stretching results in the immediate disappearance of caveolae, which is associated with a reduced caveolin/Cavin1 interaction, and an increase of free caveolins at the plasma membrane. Tether pulling force measurements in live cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin and ATP-independent cell response which buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that allows cells to quickly accommodate sudden and acute mechanical stresses. PMID:21295700

  10. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    PubMed

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  11. Caveolin-1 Deficiency Leads to Increased Susceptibility to Cell Death and Fibrosis in White Adipose Tissue: Characterization of a Lipodystrophic Model

    PubMed Central

    Stanley, Amanda C.; Bastiani, Michele; Okano, Satomi; Nixon, Susan J.; Thomas, Gethin; Stow, Jennifer L.; Parton, Robert G.

    2012-01-01

    Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1−/− mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1−/− adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1+/+ mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1−/− mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress. PMID:23049990

  12. Amaranthus caudatus extract inhibits the invasion of E. coli into uroepithelial cells.

    PubMed

    Mohanty, Soumitra; Zambrana, Silvia; Dieulouard, Soizic; Kamolvit, Witchuda; Nilsén, Vera; Gonzales, Eduardo; Östenson, Claes-Göran; Brauner, Annelie

    2018-06-28

    Amaranthus caudatus is traditionally used to treat infections. Based on its traditional usage, we investigated the effect of A. caudatus on the bladder epithelial cells in the protection of E. coli infection. The direct antimicrobial effects of A. caudatus on uropathogenic bacteria were investigated using minimum inhibitory concentration (MIC) assay. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli strain #12 were used to investigate the effect of A. caudatus. Bacterial adhesion and invasion into bladder cells treated with A. caudatus was analyzed. Expression of uroplakin-1a (UPK1A), β1 integrin (ITGB1), caveolin-1 (CAV1) and the antimicrobial peptides human β defensin-2 (DEFB4A) and LL-37 (CAMP) was evaluated using RT-PCR. No direct antibacterial effect on E. coli or any of the tested uropathogenic strains was observed by A. caudatus. However, we demonstrated reduced mRNA expression of uroplakin-1a and caveolin-1, but not β1 integrin after treatment of uroepithelial cells, mirrored by the decreased adhesion and invasion of E. coli. A. caudatus treatment did not induce increased gene expression of the antimicrobial peptides, LL-37 and human β-defensin-2. Our results showed that A. caudatus has a protective role on bladder epithelial cells against uropathogenic E. coli infection by decreasing the bacterial adhesion and invasion, thereby preventing infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.

    PubMed

    Baker, Natasha; Sohn, Jihee; Tuan, Rocky S

    2015-12-01

    Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. LY294002 and Akt siRNA inhibited MSC osteogenesis. Methyl-β-cyclodextrin, which disrupts all membrane rafts, inhibited osteogenesis. Conversely, Cav-1 siRNA and cholesterol oxidase, which displaces Cav-1 from caveolae, enhanced Akt signaling induced by osteogenic supplements. In control cells, phosphorylated Akt began to accumulate in caveolae after 10 days of osteogenic differentiation. PI3K/Akt signaling is a key pathway required for human MSC osteogenesis, and it is likely that localization of active Akt in non-caveolar and caveolar membrane rafts positively and negatively contributes to osteogenesis, respectively.

  14. Caveolin-1 and glucose transporter 4 involved in the regulation of glucose-deprivation stress in PC12 cells.

    PubMed

    Zhang, Qi-Qi; Huang, Liang; Han, Chao; Guan, Xin; Wang, Ya-Jun; Liu, Jing; Wan, Jing-Hua; Zou, Wei

    2015-08-25

    Recent evidence suggests that caveolin-1 (Cav-1), the major protein constituent of caveolae, plays a prominent role in neuronal nutritional availability with cellular fate regulation besides in several cellular processes such as cholesterol homeostasis, regulation of signal transduction, integrin signaling and cell growth. Here, we aimed to investigate the function of Cav-1 and glucose transporter 4 (GLUT4) upon glucose deprivation (GD) in PC12 cells. The results demonstrated firstly that both Cav-1 and GLUT4 were up-regulated by glucose withdrawal in PC12 cells by using Western blot and laser confocal technology. Also, we found that the cell death rate, mitochondrial membrane potential (MMP) and intracellular free Ca(2+) concentration ([Ca(2+)]i) were also respectively changed followed the GD stress tested by CCK8 and flow cytometry. After knocking down of Cav-1 in the cells by siRNA, the level of [Ca(2+)]i was increased, and MMP was reduced further in GD-treated PC12 cells. Knockdown of Cav-1 or methylated-β-Cyclodextrin (M-β-CD) treatment inhibited the expression of GLUT4 protein upon GD. Additionally, we found that GLUT4 could translocate from cytoplasm to cell membrane upon GD. These findings might suggest a neuroprotective role for Cav-1, through coordination of GLUT4 in GD.

  15. Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway.

    PubMed

    Tang, Wenqing; Feng, Xuemei; Zhang, Si; Ren, Zhenggang; Liu, Yinkun; Yang, Biwei; lv, Bei; Cai, Yu; Xia, Jinglin; Ge, Ningling

    2015-01-01

    Anoikis resistance is a prerequisite for hepatocellular carcinoma (HCC) metastasis. The role of Caveolin-1 (CAV1) in anoikis resistance of HCC remains unclear. The oncogenic effect of CAV1 on anchor-independent growth and anoikis resistance was investigated by overexpression and knockdown of CAV1 in hepatoma cells. IGF-1 pathway and its downstream signals were detected by immunoblot analysis. Caveolae invagination and IGF-1R internalization was studied by electron microscopy and (125)I-IGF1 internalization assay, respectively. The role of IGF-1R and tyrosine-14 residue (Y-14) of CAV1 was explored by deletion experiment and mutation experiment, respectively. The correlation of CAV1 and IGF-1R was further examined by immunochemical analysis in 120 HCC specimens. CAV1 could promote anchor-independent growth and anoikis resistance in hepatoma cells. CAV1-overexpression increased the expression of IGF-1R and subsequently activated PI3K/Akt and RAF/MEK/ERK pathway, while CAV1 knockdown showed the opposite effect. The mechanism study revealed that CAV1 facilitated caveolae invagination and (125)I-IGF1 internalization. IGF-1R deletion or Y-14 mutation reversed CAV1 mediated anchor-independent growth and anoikis resistance. In addition, CAV1 expression was positively related to IGF-1R expression in human HCC tissues. CAV1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway, providing a potential therapeutic target for HCC metastasis. © 2015 S. Karger AG, Basel.

  16. Albumin nanocapsules containing fenretinide: pre-clinical evaluation of cytotoxic activity in experimental models of human non-small cell lung cancer.

    PubMed

    Pignatta, Sara; Orienti, Isabella; Falconi, Mirella; Teti, Gabriella; Arienti, Chiara; Medri, Laura; Zanoni, Michele; Carloni, Silvia; Zoli, Wainer; Amadori, Dino; Tesei, Anna

    2015-02-01

    The present study deals with the preparation of albumin nanocapsules containing fenretinide and their evaluation in experimental models of human non-small cell lung cancer. These nanocapsules showed enhanced antitumor activity with respect to free fenretinide due to the solubilization effect of albumin on the hydrophobic drug, known to improve bioavailability. The high expression of caveolin-1 on the A549 cell surface further enhanced the antitumor activity of the nanoencapsulated fenretinide. Caveolin-1 favored albumin uptake and improved the efficacy of the fenretinide-loaded albumin nanocapsules, especially in 3-D cultures where the densely packed 3-D structures impaired drug diffusibility and severely reduced the activity of the free drug. The efficacy of the fenretinide albumin nanocapsules was further confirmed in tumor xenograft models of A549 by the significant delay in tumor progression observed with respect to control after intravenous administration of the novel formulation. This study describes the preparation of fenretinide containing albumin nanocapsules and their evaluation in experimental models of non-small cell lung cancer, showing enhanced antitumor activity compared to free fenretinide. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Tissue damage negatively regulates LPS-induced macrophage necroptosis.

    PubMed

    Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J

    2016-09-01

    Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules.

  18. Tissue damage negatively regulates LPS-induced macrophage necroptosis

    PubMed Central

    Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J

    2016-01-01

    Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules. PMID:26943325

  19. Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma

    PubMed Central

    Zhang, H; Su, L; Müller, S; Tighiouart, M; Xu, Z; Zhang, X; Shin, H J C; Hunt, J; Sun, S-Y; Shin, D M; Chen, Z(G)

    2008-01-01

    Caveolin-1 (Cav-1) plays an important role in modulating cellular signalling, but its role in metastasis is not well defined. A significant reduction in Cav-1 levels was detected in lymph node metastases as compared with primary tumour of head and neck squamous cell carcinoma (HNSCC) specimens (P<0.0001), confirming the downregulation of Cav-1 observed in a highly metastatic M4 cell lines derived from our orthotopic xenograft model. To investigate the function of Cav-1 in metastasis of HNSCC, we compared stable clones of M4 cells carrying human cav-1 cDNA (CavS) with cells expressing an empty vector (EV) in vitro and in the orthotopic xenograft model. Overexpression of Cav-1 suppressed growth of the CavS tumours compared with the EV tumours. The incidence of lung metastases was significantly lower in animals carrying CavS tumours than those with EV tumours (P=0.03). In vitro, CavS cells displayed reduced cell growth, invasion, and increased anoikis compared with EV cells. In CavS cells, Cav-1 formed complex with integrin β1 and Src. Further application of integrin β1 neutralising antibody or Src inhibitor PP2 to EV cells illustrated similar phenotypes as CavS cells, suggesting that Cav-1 may play an inhibitory role in tumorigenesis and lung metastasis through regulating integrin β1- and Src-mediated cell–cell and cell–matrix interactions. PMID:19002186

  20. A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice

    PubMed Central

    Bernatchez, Pascal; Sharma, Arpeeta; Bauer, Philip M.; Marin, Ethan; Sessa, William C.

    2011-01-01

    Aberrant regulation of eNOS and associated NO release are directly linked with various vascular diseases. Caveolin-1 (Cav-1), the main coat protein of caveolae, is highly expressed in endothelial cells. Its scaffolding domain serves as an endogenous negative regulator of eNOS function. Structure-function analysis of Cav-1 has shown that phenylalanine 92 (F92) is critical for the inhibitory actions of Cav-1 toward eNOS. Herein, we show that F92A–Cav-1 and a mutant cell–permeable scaffolding domain peptide called Cavnoxin can increase basal NO release in eNOS-expressing cells. Cavnoxin reduced vascular tone ex vivo and lowered blood pressure in normal mice. In contrast, similar experiments performed with eNOS- or Cav-1–deficient mice showed that the vasodilatory effect of Cavnoxin is abolished in the absence of these gene products, which indicates a high level of eNOS/Cav-1 specificity. Mechanistically, biochemical assays indicated that noninhibitory F92A–Cav-1 and Cavnoxin specifically disrupted the inhibitory actions of endogenous Cav-1 toward eNOS and thereby enhanced basal NO release. Collectively, these data raise the possibility of studying the inhibitory influence of Cav-1 on eNOS without interfering with the other actions of endogenous Cav-1. They also suggest a therapeutic application for regulating the eNOS/Cav-1 interaction in diseases characterized by decreased NO release. PMID:21804187

  1. Does the Loss of Stromal Caveolin-1 Remodel the Tumor Microenvironment by Activating Src-Mediated PEAK1 and PI3K Pathways

    DTIC Science & Technology

    2016-09-01

    Inhibition of MAP kinase pathway prevents plasma protrusions Next we used a selective inhibitor of MAP kinases , PD98059, to address whether we can...from human patients harbor AKT1 and that AKT1 kinase activity is sustained in these particles, nominating them as active signaling platforms...with the extracellular matrix (ECM) and extracellular molecules (2). Though many classic extracellular signaling molecules (e.g., hormones, peptide

  2. Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells

    PubMed Central

    Azizi, Paymon M.; Zyla, Roman E.; Guan, Sha; Wang, Changsen; Liu, Jun; Bolz, Steffen-Sebastian; Heit, Bryan; Klip, Amira; Lee, Warren L.

    2015-01-01

    Transport of insulin across the microvasculature is necessary to reach its target organs (e.g., adipose and muscle tissues) and is rate limiting in insulin action. Morphological evidence suggests that insulin enters endothelial cells of the microvasculature, and studies with large vessel–derived endothelial cells show insulin uptake; however, little is known about the actual transcytosis of insulin and how this occurs in the relevant microvascular endothelial cells. We report an approach to study insulin transcytosis across individual, primary human adipose microvascular endothelial cells (HAMECs), involving insulin uptake followed by vesicle-mediated exocytosis visualized by total internal reflection fluorescence microscopy. In this setting, fluorophore-conjugated insulin exocytosis depended on its initial binding and uptake, which was saturable and much greater than in muscle cells. Unlike its degradation within muscle cells, insulin was stable within HAMECs and escaped lysosomal colocalization. Insulin transcytosis required dynamin but was unaffected by caveolin-1 knockdown or cholesterol depletion. Instead, insulin transcytosis was significantly inhibited by the clathrin-mediated endocytosis inhibitor Pitstop 2 or siRNA-mediated clathrin depletion. Accordingly, insulin internalized for 1 min in HAMECs colocalized with clathrin far more than with caveolin-1. This study constitutes the first evidence of vesicle-mediated insulin transcytosis and highlights that its initial uptake is clathrin dependent and caveolae independent. PMID:25540431

  3. Modulation of Ca2+ Activity in Cardiomyocytes through Caveolae-Gαq Interactions

    PubMed Central

    Guo, Yuanjian; Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have a complex Ca2+ behavior and changes in this behavior may underlie certain disease states. Intracellular Ca2+ activity can be regulated by the phospholipase Cβ–Gαq pathway localized on the plasma membrane. The plasma membranes of cardiomycoytes are rich in caveolae domains organized by caveolin proteins. Caveolae may indirectly affect cell signals by entrapping and localizing specific proteins. Recently, we found that caveolin may specifically interact with activated Gαq, which could affect Ca2+ signals. Here, using fluorescence imaging and correlation techniques we show that Gαq-Gβγ subunits localize to caveolae in adult ventricular canine cardiomyoctyes. Carbachol stimulation releases Gβγ subunits from caveolae with a concurrent stabilization of activated Gαq by caveolin-3 (Cav3). These cells show oscillating Ca2+ waves that are not seen in neonatal cells that do not contain Cav3. Microinjection of a peptide that disrupts Cav3-Gαq association, but not a control peptide, extinguishes the waves. Furthermore, these waves are unchanged with rynaodine treatment, but not seen with treatment of a phospholipase C inhibitor, implying that Cav3-Gαq is responsible for this Ca2+ activity. Taken together, these studies show that caveolae play a direct and active role in regulating basal Ca2+ activity in cardiomyocytes. PMID:21463572

  4. Compositional changes in lipid microdomains of air-blood barrier plasma membranes in pulmonary interstitial edema.

    PubMed

    Palestini, Paola; Calvi, Chiara; Conforti, Elena; Daffara, Rossella; Botto, Laura; Miserocchi, Giuseppe

    2003-10-01

    We evaluated in anesthetized rabbits the compositional changes of plasmalemmal lipid microdomains from lung tissue samples after inducing pulmonary interstitial edema (0.5 ml/kg for 3 h, leading to approximately 5% increase in extravascular water). Lipid microdomains (lipid rafts and caveolae) were present in the detergent-resistant fraction (DRF) obtained after discontinuous sucrose density gradient. DRF was enriched in caveolin-1, flotillin, aquaporin-1, GM1, cholesterol, sphingomyelin, and phosphatidylserine, and their contents significantly increased in interstitial edema. The higher DRF content in caveolin, flotillin, and aquaporin-1 and of the ganglioside GM1 suggests an increase both in caveolar domains and in lipid rafts, respectively. Compositional changes could be ascribed to endothelial and epithelial cells that provide most of plasma membrane surface area in the air-blood barrier. Alterations in lipid components in the plasma membrane may reflect rearrangement of floating lipid platforms within the membrane and/or lipid translocation from intracellular stores. Lipid traffic could be stimulated by the marked increase in hydraulic interstitial pressure after initial water accumulation, from approximately -10 to 5 cmH2O, due to the low compliance of the pulmonary tissue, in particular in the basement membranes and in the interfibrillar substance. Compositional changes in lipid microdomains represent a sign of cellular activation and suggest the potential role of mechanotransduction in response to developing interstitial edema.

  5. Factor X/Xa elicits protective signaling responses in endothelial cells directly via PAR-2 and indirectly via endothelial protein C receptor-dependent recruitment of PAR-1.

    PubMed

    Bae, Jong-Sup; Yang, Likui; Rezaie, Alireza R

    2010-11-05

    We recently demonstrated that the Gla domain-dependent interaction of protein C with endothelial protein C receptor (EPCR) leads to dissociation of the receptor from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway. Thus, the activation of PAR-1 by either thrombin or PAR-1 agonist peptide elicited a barrier-protective response if endothelial cells were preincubated with protein C. In this study, we examined whether other vitamin K-dependent coagulation protease zymogens can modulate PAR-dependent signaling responses in endothelial cells. We discovered that the activation of both PAR-1 and PAR-2 in endothelial cells pretreated with factor FX (FX)-S195A, but not other procoagulant protease zymogens, also results in initiation of protective intracellular responses. Interestingly, similar to protein C, FX interaction with endothelial cells leads to dissociation of EPCR from caveolin-1 and recruitment of PAR-1 to a protective pathway. Further studies revealed that, FX activated by factor VIIa on tissue factor bearing endothelial cells also initiates protective signaling responses through the activation of PAR-2 independent of EPCR mobilization. All results could be recapitulated by the receptor agonist peptides to both PAR-1 and PAR-2. These results suggest that a cross-talk between EPCR and an unknown FX/FXa receptor, which does not require interaction with the Gla domain of FX, recruits PAR-1 to protective signaling pathways in endothelial cells.

  6. Caveolin-1 expression in oral lichen planus, dysplastic lesions and squamous cell carcinoma.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Aslani, Ehsan

    2017-07-01

    Caveolin-1(Cav-1), the main part of caveolae structure, is supposed to play a role in pathogenesis of many human tumors. Since oral lichen planus (OLP) is considered as a potential premalignant disease, this study evaluated Cav-1 expression in OLP in comparison with benign hyperkeratosis, dysplastic epithelium and oral squamous cell carcinoma (OSCC), to investigate its possible role in pathogenesis and malignant transformation of OLP. In this cross-sectional retrospective study, immunohistochemical expression of Cav-1 in the epithelial component and stroma was evaluated in 81 samples, including 12 cases of hyperkeratosis, 24 OLP, 22 epithelial dysplasia, and 23 OSCC samples. Correlations between Cav-1 expression and clinicopathological variables were evaluated statistically. Positive Cav-1 staining was found in 58% of OLP, 91% of hyperkeratosis, 100% of epithelial dysplasia, and 95% of OSCC samples. OSCC showed the highest Cav-1 expression and OLP had the lowest (P=0.001). The intensity of staining was significantly increased in stepwise manner from OLP to OSCC (P=0.001). Expression of Cav-1 was related to the grade of samples in OSCC and dysplastic samples (P=0.04). Based on the findings, it was concluded that Cav-1 may play a role in the pathogenesis of OLP and carcinogenesis of SCC, but its role in malignant transformation of OLP is not confirmed. Further studies are needed to evaluate its potential therapeutic function in OLP and SCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation.

    PubMed

    Choi, Kang-Ho; Kim, Hyung-Seok; Park, Man-Seok; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun

    2016-10-18

    Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects.

  8. Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production

    PubMed Central

    Yu, Zheng; Beer, Christiane; Koester, Mario; Wirth, Manfred

    2006-01-01

    Background Retroviral Gag determines virus assembly at the plasma membrane and the formation of virus-like particles in intracellular multivesicular bodies. Thereby, retroviruses exploit by interaction with cellular partners the cellular machineries for vesicular transport in various ways. Results The retroviral Gag precursor protein drives assembly of murine leukaemia viruses (MLV) at the plasma membrane (PM) and the formation of virus like particles in multivesicular bodies (MVBs). In our study we show that caveolin-1 (Cav-1), a multifunctional membrane-associated protein, co-localizes with Gag in a punctate pattern at the PM of infected NIH 3T3 cells. We provide evidence that Cav-1 interacts with the matrix protein (MA) of the Gag precursor. This interaction is mediated by a Cav-1 binding domain (CBD) within the N-terminus of MA. Interestingly, the CBD motif identified within MA is highly conserved among most other γ-retroviruses. Furthermore, Cav-1 is incorporated into MLV released from NIH 3T3 cells. Overexpression of a GFP fusion protein containing the putative CBD of the retroviral MA resulted in a considerable decrease in production of infectious retrovirus. Moreover, expression of a dominant-negative Cav-1 mutant affected retroviral titres significantly. Conclusion This study demonstrates that Cav-1 interacts with MLV Gag, co-localizes with Gag at the PM and affects the production of infectious virus. The results strongly suggest a role for Cav-1 in the process of virus assembly. PMID:16956408

  9. Role of Caveolin-1 in Prostate Cancer Angiogenesis

    DTIC Science & Technology

    2009-12-01

    REPORT DATE: December 2009 TYPE OF REPORT : FINAL PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick...views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army...position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public

  10. Filipin-dependent Inhibition of Cholera Toxin: Evidence for Toxin Internalization and Activation through Caveolae-like Domains

    PubMed Central

    Orlandi, Palmer A.; Fishman, Peter H.

    1998-01-01

    The mechanism by which cholera toxin (CT) is internalized from the plasma membrane before its intracellular reduction and subsequent activation of adenylyl cyclase is not well understood. Ganglioside GM1, the receptor for CT, is predominantly clustered in detergent-insoluble glycolipid rafts and in caveolae, noncoated, cholesterol-rich invaginations on the plasma membrane. In this study, we used filipin, a sterol-binding agent that disrupts caveolae and caveolae-like structures, to explore their role in the internalization and activation of CT in CaCo-2 human intestinal epithelial cells. When toxin internalization was quantified, only 33% of surface-bound toxin was internalized by filipin-treated cells within 1 h compared with 79% in untreated cells. However, CT activation as determined by its reduction to form the A1 peptide and CT activity as measured by cyclic AMP accumulation were inhibited in filipin-treated cells. Another sterol-binding agent, 2-hydroxy-β-cyclodextrin, gave comparable results. The cationic amphiphilic drug chlorpromazine, an inhibitor of clathrin-dependent, receptor-mediated endocytosis, however, affected neither CT internalization, activation, nor activity in contrast to its inhibitory effects on diphtheria toxin cytotoxicity. As filipin did not inhibit the latter, the two drugs appeared to distinguish between caveolae- and coated pit–mediated processes. In addition to its effects in CaCo-2 cells that express low levels of caveolin, filipin also inhibited CT activity in human epidermoid carcinoma A431 and Jurkat T lymphoma cells that are, respectively, rich in or lack caveolin. Thus, filipin inhibition correlated more closely with alterations in the biochemical characteristics of CT-bound membranes due to the interactions of filipin with cholesterol rather than with the expressed levels of caveolin and caveolar structure. Our results indicated that the internalization and activation of CT was dependent on and mediated through cholesterol- and glycolipid-rich microdomains at the plasma membrane rather than through a specific morphological structure and that these glycolipid microdomains have the necessary components required to mediate endocytosis. PMID:9585410

  11. Pro-metastatic NEDD9 regulates individual cell migration via caveolin-1-dependent trafficking of integrins

    PubMed Central

    Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.

    2014-01-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010

  12. Caveolin 3-dependent loss of t-tubular ICa during hypertrophy and heart failure in mice.

    PubMed

    Bryant, Simon M; Kong, Cherrie H T; Watson, Judy J; Gadeberg, Hanne C; James, Andrew F; Cannell, Mark B; Orchard, Clive H

    2018-05-01

    What is the central question of this study? Heart failure is associated with redistribution of L-type Ca 2+ current (I Ca ) away from the t-tubule membrane to the surface membrane of cardiac ventricular myocytes. However, the underlying mechanism and its dependence on severity of pathology (hypertrophy versus failure) are unclear. What is the main finding and its importance? Increasing severity of response to transverse aortic constriction, from hypertrophy to failure, was accompanied by graded loss of t-tubular I Ca and loss of regulation of I Ca by caveolin 3. Thus, the pathological loss of t-tubular I Ca , which contributes to impaired excitation-contraction coupling and thereby cardiac function in vivo, appears to be attributable to loss of caveolin 3-dependent stimulation of t-tubular I Ca . Previous work has shown redistribution of L-type Ca 2+ current (I Ca ) from the t-tubules to the surface membrane of rat ventricular myocytes after myocardial infarction. However, whether this occurs in all species and in response to other insults, the relationship of this redistribution to the severity of the pathology, and the underlying mechanism, are unknown. We have therefore investigated the response of mouse hearts and myocytes to pressure overload induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or equivalent sham operation 8 weeks before use. I Ca and Ca 2+ transients were measured in isolated myocytes, and expression of caveolin 3 (Cav3), junctophilin 2 (Jph2) and bridging integrator 1 (Bin1) was determined. C3SD peptide was used to disrupt Cav3 binding to its protein partners. Some animals showed cardiac hypertrophy in response to TAC with little evidence of heart failure, whereas others showed greater hypertrophy and pulmonary congestion. These graded changes were accompanied by graded cellular hypertrophy, t-tubule disruption, decreased expression of Jph2 and Cav3, and decreased t-tubular I Ca density, with no change at the cell surface, and graded impairment of Ca 2+ release at t-tubules. C3SD decreased I Ca density in control but not in TAC myocytes. These data suggest that the graded changes in cardiac function and size that occur in response to TAC are paralleled by graded changes in cell structure and function, which will contribute to the impaired function observed in vivo. They also suggest that loss of t-tubular I Ca is attributable to loss of Cav3-dependent stimulation of I Ca . © 2018 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  13. PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling.

    PubMed

    Hernández-Reséndiz, Sauri; Zazueta, Cecilia

    2014-07-11

    The molecular mechanism(s) by which extracellular signal-regulated kinase 1/2 (ERK1/2) and other kinases communicate with downstream targets have not been fully determined. Multiprotein signaling complexes undergoing spatiotemporal redistribution may enhance their interaction with effector proteins promoting cardioprotective response. Particularly, it has been proposed that some active kinases in association with caveolae may converge into mitochondria. Therefore, in this study we investigate if PHO-ERK1/2 interaction with mitochondria may provide a mechanistic link in the regulation of these organelles in cardioprotective signaling. Using a model of dilated cardiomyopathy followed by ischemia-reperfusion injury, we determined ERK1/2 signaling at the level of mitochondria and evaluated its effect on the permeability transition pore. The most important finding of the present study is that, under cardioprotective conditions, a subpopulation of activated ERK1/2 was directed to the mitochondrial membranes through vesicular trafficking, concurring with increased phosphorylation of mitochondrial proteins and inhibition of the mitochondrial permeability transition pore opening. In addition, our results suggest that vesicles enriched with caveolin-3 could form structures that may drive ERK1/2, GSK3β and Akt to mitochondria. Signaling complexes including PHO-ERK, PHO-Akt, PHO-eNOS and caveolin-3 contribute to cardioprotection by directly targeting the mitochondrial proteome and regulating the opening of the permeability transition pore in this model. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae

    PubMed Central

    Zimnicka, Adriana M.; Husain, Yawer S.; Shajahan, Ayesha N.; Sverdlov, Maria; Chaga, Oleg; Chen, Zhenlong; Toth, Peter T.; Klomp, Jennifer; Karginov, Andrei V.; Tiruppathi, Chinnaswamy; Malik, Asrar B.; Minshall, Richard D.

    2016-01-01

    Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or “spreading” of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane. PMID:27170175

  15. Does the Loss of Stromal Caveolin-1 Remodel the Tumor Microenvironment by Activating Src-Mediated PEAK1 and PI3K Pathways

    DTIC Science & Technology

    2017-11-01

    and PI3K Pathways? PRINCIPAL INVESTIGATOR: MARIANA REIS SOBREIRO PhD CONTRACTING ORGANIZATION: Cedars-Sinai Medical Center Los Angeles, CA 90048...BEVERLY BLVD LOS ANGELES CA 90048-1804 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical...oncosomes ( LO ). LO internalization induces reprogramming of human normal prostate fibroblasts, as reflected by high levels of α-SMA, IL6, and MMP9. In

  16. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients

    DTIC Science & Technology

    2005-05-01

    3.2042 3164754 GAB1 GRB2-associated binding protein 1 Hs.80720 3.2026 3.58551 CAV2 Caveolin 2 Hs.212332 3.2012 2.83580 FLJ20481 Hypothetical protein...Development of in situ hybridization probes. - Testing antibodies by immunohistochemistry. REPORTABLE OUTCOMES: So far we have been in data acquisition...collaborator Dr. Torsten Nielsen at the University of British Columbia has been successful in finding an antibody against all forms of TLE (based on our gene

  17. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    PubMed

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  18. Caveolae as plasma membrane sensors, protectors and organizers.

    PubMed

    Parton, Robert G; del Pozo, Miguel A

    2013-02-01

    Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.

  19. Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma

    PubMed Central

    Martins, Diana; Beça, Francisco F; Sousa, Bárbara; Baltazar, Fátima; Paredes, Joana; Schmitt, Fernando

    2013-01-01

    The progression from in situ to invasive breast carcinoma is still an event poorly understood. However, it has been suggested that interactions between the neoplastic cells and the tumor microenvironment may play an important role in this process. Thus, the determination of differential tumor-stromal metabolic interactions could be an important step in invasiveness. The expression of stromal Caveolin-1 (Cav-1) has already been implicated in the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Additionally, stromal Cav-1 expression has been associated with the expression of stromal monocarboxylate transporter 4 (MCT4) in invasive breast cancer. However, the role of stromal MCT4 in invasiveness has never been explored, neither the association between Cav-1 and MCT4 in the transition from breast DCIS to IDC. Therefore, our aim was to investigate in a series of breast cancer samples including matched in situ and invasive components, if there was a relationship between stromal Cav-1 and MCT4 in the progression from in situ to invasive carcinoma. We found loss of stromal Cav-1 in the progression to IDC in 75% of the cases. In contrast, MCT4 stromal expression was acquired in 87% of the IDCs. Interestingly, a concomitant loss of Cav-1 and gain of MCT4 was observed in the stroma of 75% of the cases, when matched in situ and invasive carcinomas were compared. These results suggest that alterations in Cav-1 and MCT4 may thus mark a critical point in the progression from in situ to invasive breast cancer. PMID:23907124

  20. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    PubMed Central

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  1. Extracellular matrix-specific Caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis

    PubMed Central

    Ortiz, Rina; Díaz, Jorge; Díaz, Natalia; Lobos-Gonzalez, Lorena; Cárdenas, Areli; Contreras, Pamela; Díaz, María Inés; Otte, Ellen; Cooper-White, Justin; Torres, Vicente; Leyton, Lisette; Quest, Andrew F.G.

    2016-01-01

    Caveolin-1 (CAV1) is a scaffolding protein that plays a dual role in cancer. In advanced stages of this disease, CAV1 expression in tumor cells is associated with enhanced metastatic potential, while, at earlier stages, CAV1 functions as a tumor suppressor. We recently implicated CAV1 phosphorylation on tyrosine 14 (Y14) in CAV1-enhanced cell migration. However, the contribution of this modification to the dual role of CAV1 in cancer remained unexplored. Here, we used in vitro [2D and transendothelial cell migration (TEM), invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question in B16F10 murine melanoma cells. CAV1 promoted directional migration on fibronectin or laminin, two abundant lung extracellular matrix (ECM) components, which correlated with enhanced Y14 phosphorylation during spreading. Moreover, CAV1-driven migration, invasion, TEM and metastasis were ablated by expression of the phosphorylation null CAV1(Y14F), but not the phosphorylation mimicking CAV1(Y14E) mutation. Finally, CAV1-enhanced focal adhesion dynamics and surface expression of beta1 integrin were required for CAV1-driven TEM. Importantly, CAV1 function as a tumor suppressor in tumor formation assays was not altered by the Y14F mutation. In conclusion, our results provide critical insight to the mechanisms of CAV1 action during cancer development. Specific ECM-integrin interactions and Y14 phosphorylation are required for CAV1-enhanced melanoma cell migration, invasion and metastasis to the lung. Because Y14F mutation diminishes metastasis without inhibiting the tumor suppressor function of CAV1, Y14 phosphorylation emerges as an attractive therapeutic target to prevent metastasis without altering beneficial traits of CAV1. PMID:27259249

  2. Reduced caveolin-1 promotes hyper-inflammation due to abnormal heme oxygenase-1 localizationin LPS challenged macrophages with dysfunctional CFTR

    PubMed Central

    Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.

    2013-01-01

    We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537

  3. Effects and underlying mechanisms of curcumin on the proliferation of vascular smooth muscle cells induced by Chol:M{beta}CD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Li; Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001; Yang Yunbo

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:M{beta}CD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:M{beta}CD treatment. Moreover, curcumin abrogatedmore » the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:M{beta}CD, which led to a suppression of AP-1 promoter activity stimulated by Chol:M{beta}CD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:M{beta}CD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:M{beta}CD. Taking together, our data suggest curcumin inhibits Chol:M{beta}CD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.« less

  4. Caveolin1 Identifies a Specific Subpopulation of Cerebral Cortex Callosal Projection Neurons (CPN) Including Dual Projecting Cortical Callosal/Frontal Projection Neurons (CPN/FPN)

    PubMed Central

    2018-01-01

    Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878

  5. Sex-Dependent Expression of Caveolin 1 in Response to Sex Steroid Hormones Is Closely Associated with Development of Obesity in Rats

    PubMed Central

    Mukherjee, Rajib; Kim, Sang Woo; Choi, Myung Sook; Yun, Jong Won

    2014-01-01

    Caveolin-1 (CAV1) is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD) and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2) and androgen (dihydrotestosterone, DHT) had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL) and uncoupling protein 1 (UCP1) in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1. PMID:24608114

  6. Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer.

    PubMed

    Liang, Ya-Nan; Liu, Yu; Wang, Letian; Yao, Guodong; Li, Xiaobo; Meng, Xiangning; Wang, Fan; Li, Ming; Tong, Dandan; Geng, Jingshu

    2018-06-01

    Previous studies have indicated that caveolin-1 (Cav-1) is able to bind the signal transduction factor epidermal growth factor receptor (EGFR) to regulate its tyrosine kinase activity. The aim of the present study was to evaluate the clinical significance of Cav-1 gene expression in association with the expression of EGFR in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Cav-1 and EGFR expression using immunohistochemistry, and clinical significance was assessed using multivariate Cox regression analysis, Kaplan-Meier estimator curves and the log-rank test. Stromal Cav-1 was downregulated in 38.56% (118/306) of tumor tissues, whereas cytoplasmic EGFR and Cav-1 were overexpressed in 53.92% (165/306) and 44.12% (135/306) of breast cancer tissues, respectively. EGFR expression was positively associated with cytoplasmic Cav-1 and not associated with stromal Cav-1 expression in breast cancer samples; however, low expression of stromal Cav-1 was negatively associated with cytoplasmic Cav-1 expression in total tumor tissues, and analogous results were identified in the chemotherapy group. Multivariate Cox's proportional hazards model analysis revealed that, for patients in the estrogen receptor (ER)(+) group, the expression of stromal Cav-1 alone was a significant prognostic marker of breast cancer. However, in the chemotherapy, human epidermal growth factor receptor 2 (HER-2)(-), HER-2(+) and ER(-) groups, the use of combined markers was more effective prognostic marker. Stromal Cav-1 has a tumor suppressor function, and the combined marker stromal Cav-1/EGFR expression was identified as an improved prognostic marker in the diagnosis of breast cancer. Parenchymal expression of Cav-1 is able to promote EGFR signaling in breast cancer, potentially being required for EGFR-mediated initiation of mitosis.

  7. Down-regulation of Wt1 activates Wnt/β-catenin signaling through modulating endocytic route of LRP6 in podocyte dysfunction in vitro.

    PubMed

    Jing, Zhou; Wei-jie, Yuan; Yi-Feng, Zhu-ge

    2015-09-01

    Podocyte dysfunction plays important roles in the pathogenesis of chronic kidney disease, and Wt1 has long been considered to be a marker of podocyte, whereas its roles and mechanisms in podocyte injury are still unclear though Wt1 mutations are reported to be involved in the development of glomerular disease in human and mice. Here we show that down-regulation of Wt1 could induce podocyte dysfunction and apoptosis through activating Wnt/β-catenin signaling. Podocytes treated with adriamycin demonstrated decreased expression of Wt1, coupled with activated Wnt/β-catenin signaling in vitro. Reduced expression of Wt1 in podocytes transfected with Wt1 siRNA is correlated with activated Wnt/β-catenin signaling, increased podocyte apoptosis, as well as suppressed expression of nephrin. Blockade of Wnt/β-catenin signaling with Dickkopf-1 ameliorated podocyte injury and apoptosis induced by Wt1 siRNA. We also found that membrane LRP6 was increased dramatically in podocytes transfected with Wt1 siRNA compared with control siRNA, while no significant change was found in total LRP6. Caveolin- and clathrin-dependent endocytosis were both involved in the regulation of β-catenin signaling. And we found that down-regulation of Wt1 in podocytes mediates activation of Wnt/β-catenin signaling by recruiting LRP6 to the caveolin-mediated endocytosis route, thereby sequestering it from clathrin-dependent endocytosis. As a result, we concluded that Wt1 expression levels in podocytes regulate Wnt/β-catenin signaling through modulating the endocytic fate of LRP6, and this indicates a potential target for the therapy of CKD. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Caveolin 1-related autophagy initiated by aldosterone-induced oxidation promotes liver sinusoidal endothelial cells defenestration.

    PubMed

    Luo, Xiaoying; Dan Wang; Luo, Xuan; Zhu, Xintao; Wang, Guozhen; Ning, Zuowei; Li, Yang; Ma, Xiaoxin; Yang, Renqiang; Jin, Siyi; Huang, Yun; Meng, Ying; Li, Xu

    2017-10-01

    Aldosterone, with pro-oxidation and pro-autophagy capabilities, plays a key role in liver fibrosis. However, the mechanisms underlying aldosterone-promoted liver sinusoidal endothelial cells (LSECs) defenestration remain unknown. Caveolin 1 (Cav1) displays close links with autophagy and fenestration. Hence, we aim to investigate the role of Cav1-related autophagy in LSECs defenestration. We found the increase of aldosterone/MR (mineralocorticoid receptor) level, oxidation, autophagy, and defenestration in LSECs in the human fibrotic liver, BDL or hyperaldosteronism models; while antagonizing aldosterone or inhibiting autophagy relieved LSECs defenestration in BDL-induced fibrosis or hyperaldosteronism models. In vitro, fenestrae of primary LSECs gradually shrank, along with the down-regulation of the NO-dependent pathway and the augment of the AMPK-dependent autophagy; these effects were aggravated by rapamycin (an autophagy activator) or aldosterone treatment. Additionally, aldosterone increased oxidation mediated by Cav1, reduced ATP generation, and subsequently induced the AMPK-dependent autophagy, leading to the down-regulation of the NO-dependent pathway and LSECs defenestration. These effects were reversed by MR antagonist spironolactone, antioxidants or autophagy inhibitors. Besides, aldosterone enhanced the co-immunoprecipitation of Cav1 with p62 and ubiquitin, and induced Cav1 co-immunofluorescence staining with LC3, ubiquitin, and F-actin in the perinuclear area of LSECs. Furthermore, aldosterone treatment increased the membrane protein level of Cav1, whereas decrease the cytoplasmic protein level of Cav1, indicating that aldosterone induced Cav1-related selective autophagy and F-actin remodeling to promote defenestration. Consequently, Cav1-related selective autophagy initiated by aldosterone-induced oxidation promotes LSECs defenestration via activating the AMPK-ULK1 pathway and inhibiting the NO-dependent pathway. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Differential expression of caveolin-1 in human myometrial and uterine leiomyoma smooth muscle.

    PubMed

    Zhou, Yu; Ren, Yuanyuan; Cui, Lihua; Li, Zongjin; Zhu, Yingjun; Lin, Wanjun; Wang, Yuebing

    2014-11-01

    Uterine leiomyomas, the most common neoplasms of the female genital tract, are benign tumors of the uterus arising from the smooth muscle cells (SMCs) of the myometrium with an involvement of estrogen. Caveolin-1 (Cav-1), a major protein component in caveolae membrane lipid rafts, is down-regulated in several estrogen-related cancer cells, and overexpression of Cav-1 inhibits proliferation of cancer cells and vascular SMCs as well. Therefore, we hypothesize that Cav-1 is down-regulated in human uterine leiomyoma. Western blot using tissues from clinical patients showed that Cav-1 expression was significantly lower or undetectable in uterine leiomyoma compared with their matched myometrium (P < .001). This finding was confirmed by immunohistochemistry and confocal microscopy. The cav-1 mRNA level in uterine leiomyomas was also significantly lower as detected by reverse transcription-quantitative polymerase chain reaction analysis (P = .001). To further study the underlying mechanism, we performed primary cell culture, and found that the expression of Cav-1 remained low in cultured leiomyoma SMCs (P = .009). Serum withdrawal did not change Cav-1 expression in leiomyoma SMCs, but increased expression in myometrial SMCs (P = .006). 17-β estradiol inhibited the expression of Cav-1 protein (P = .047) and mRNA (P = .007) in leiomyoma SMCs, whereas it stimulated expression in myometrial SMCs (P = .043). 17-β estradiol, although activating the mitogen-activated protein kinase pathway in both SMCs, did not stimulate their proliferation. We conclude that human uterine leiomyomas in vitro express low levels of Cav-1, which may result from estrogen inhibition. This effect of estrogen may contribute to the pathogenesis of uterine leiomyoma. Further studies in vivo are needed to verify these results. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Long-term effects of prenatal hypoxia on endothelium-dependent relaxation responses in pulmonary arteries of adult sheep.

    PubMed

    Liu, Jie; Gao, Yuansheng; Negash, Sewite; Longo, Lawrence D; Raj, J Usha

    2009-03-01

    Chronic hypoxia during the course of pregnancy is a common insult to the fetus. However, its long-term effect on the pulmonary vasculature in adulthood has not been described. In this study, the vasorelaxation responses of conduit pulmonary arteries in adult female sheep that were chronically hypoxic as fetuses and raised postnatally at sea level were investigated. Vessel tension studies revealed that endothelium-dependent relaxation responses were attenuated in pulmonary arteries from adult sheep that experienced prenatal hypoxia. Endothelial nitric oxide synthase (eNOS) protein expression was unchanged, but eNOS activity was significantly decreased in pulmonary arteries from prenatally hypoxic sheep. Protein expression of eNOS partners, caveolin-1, calmodulin, and heat shock protein 90 (Hsp90) did not change following prenatal hypoxia. However, the association between eNOS and caveolin-1, its inhibitory binding partner, was significantly increased, whereas association between eNOS and its stimulatory partners calmodulin and Hsp90 was greatly decreased. Furthermore, phosphorylation of Ser(1177) in eNOS decreased, whereas phosphorylation of Thr(495) increased, in the prenatally hypoxic pulmonary arteries, events that are related to eNOS activity. These data demonstrate that prenatal hypoxia results in persistent abnormalities in endothelium-dependent relaxation responses of pulmonary arteries in adult sheep due to decreased eNOS activity resulting from altered posttranslational regulation.

  11. Long-term effects of prenatal hypoxia on endothelium-dependent relaxation responses in pulmonary arteries of adult sheep

    PubMed Central

    Liu, Jie; Gao, Yuansheng; Negash, Sewite; Longo, Lawrence D.; Raj, J. Usha

    2009-01-01

    Chronic hypoxia during the course of pregnancy is a common insult to the fetus. However, its long-term effect on the pulmonary vasculature in adulthood has not been described. In this study, the vasorelaxation responses of conduit pulmonary arteries in adult female sheep that were chronically hypoxic as fetuses and raised postnatally at sea level were investigated. Vessel tension studies revealed that endothelium-dependent relaxation responses were attenuated in pulmonary arteries from adult sheep that experienced prenatal hypoxia. Endothelial nitric oxide synthase (eNOS) protein expression was unchanged, but eNOS activity was significantly decreased in pulmonary arteries from prenatally hypoxic sheep. Protein expression of eNOS partners, caveolin-1, calmodulin, and heat shock protein 90 (Hsp90) did not change following prenatal hypoxia. However, the association between eNOS and caveolin-1, its inhibitory binding partner, was significantly increased, whereas association between eNOS and its stimulatory partners calmodulin and Hsp90 was greatly decreased. Furthermore, phosphorylation of Ser1177 in eNOS decreased, whereas phosphorylation of Thr495 increased, in the prenatally hypoxic pulmonary arteries, events that are related to eNOS activity. These data demonstrate that prenatal hypoxia results in persistent abnormalities in endothelium-dependent relaxation responses of pulmonary arteries in adult sheep due to decreased eNOS activity resulting from altered posttranslational regulation. PMID:19136582

  12. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    PubMed Central

    Yan, Meng; Zhang, Kaiping; Shi, Yanhui; Feng, Lifang; Lv, Lin; Li, Baoxin

    2015-01-01

    Berberine (BBR), an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG) potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293) cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652) and phenylalanine (Phe656) in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. PMID:26543354

  13. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo.

    PubMed

    Su, Le; Han, Lei; Ge, Fei; Zhang, Shang Li; Zhang, Yun; Zhao, Bao Xiang; Zhao, Jing; Miao, Jun Ying

    2012-10-15

    Manufactured nanoparticles are currently used for many fields. However, their potential toxicity provides a growing concern for human health. In our previous study, we prepared novel magnetic nanoparticles (MNPs), which could effectively remove heavy metal ions and cationic dyes from aqueous solution. To understand its biocompatibility, we investigated the effect of the nanoparticles on the function of vascular endothelial cells. The results showed that the nanoparticles were taken up by human umbilical vein endothelial cells (HUVECs) and could inhibit cell proliferation at 400 μg/ml. An increase in nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity were induced, which companied with the decrease in caveolin-1 level. The endothelium in the aortic root was damaged and the NO level in serum was elevated after treated mice with 20mg/kg nanoparticles for 3 days, but it was integrated after treated with 5mg/kg nanoparticles. Meanwhile, an increase in eNOS activity and decrease in caveolin-1 level were induced in the endothelium. The data suggested that the low concentration of nanoparticles could not affect the function and viability of VECs. The high concentration of nanoparticles could inhibit VEC proliferation through elevation of the eNOS activity and NO production and thus present toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation.

    PubMed

    Tillu, Vikas A; Kovtun, Oleksiy; McMahon, Kerrie-Ann; Collins, Brett M; Parton, Robert G

    2015-10-15

    Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae. © 2015 Tillu et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome.

    PubMed

    Siegert, Anna-Maria; Serra-Peinado, Carla; Gutiérrez-Martínez, Enric; Rodríguez-Pascual, Fernando; Fabregat, Isabel; Egea, Gustavo

    2018-02-01

    The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation. We here studied the contribution of endocytic trafficking compartmentalization to increased TGF-β signaling in vascular smooth muscle cells (VSMC) from MFS patients. We examined molecular components involved in clathrin- (SARA, SMAD2) and caveolin-1- (SMAD7, SMURF2) dependent endocytosis. Marfan VSMC showed higher recruitment of SARA and SMAD2 to membranes and their increased interaction with TGF-β receptor II, as well as higher colocalization of SARA with the early endosome marker EEA1. We assessed TGF-β internalization using a biotinylated ligand (b-TGF-β), which colocalized equally with either EEA1 or CAV-1 in VSMC from Marfan patients and controls. However, in Marfan cells, colocalization of b-TGF-β with SARA and EEA1 was increased and accompanied by decreased colocalization with CAV-1 at EEA1-positive endosomes. Moreover, Marfan VSMC showed higher transcriptional levels and membrane enrichment of RAB5. Our results indicate that increased RAB5-associated SARA localization to early endosomes facilitates its TGF-β receptor binding and phosphorylation of signaling mediator SMAD2 in Marfan VSMC. This is accompanied by a reduction of TGF-β sorting into multifunctional vesicles containing cargo from both internalization pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Direct renin inhibition modulates insulin resistance in caveolin-1-deficient mice

    PubMed Central

    Chuengsamarn, Somlak; Garza, Amanda E.; Krug, Alexander W.; Romero, Jose R.; Adler, Gail K.; Williams, Gordon H.; Pojoga, Luminita H.

    2012-01-01

    Objective To test the hypothesis that aliskiren improves the metabolic phenotype in a genetic mouse model of the metabolic syndrome (the caveolin-1 knock out (KO) mouse). Materials/Methods Eleven-week-old cav-1 KO and genetically matched wild-type (WT) mice were randomized to three treatment groups: placebo (n = 8/group), amlodipine (6 mg/kg/day, n = 18/ group), and aliskiren (50 mg/kg/day, n = 18/ group). After three weeks of treatment, all treatment groups were assessed for several measures of insulin resistance (fasting insulin and glucose, HOMA-IR, and the response to an intraperitoneal glucose tolerance test (ipGTT)) as well as for triglyceride levels and the blood pressure response to treatment. Results Treatment with aliskiren did not affect the ipGTT response but significantly lowered the HOMA-IR and insulin levels in cav-1 KO mice. However, treatment with amlodipine significantly degraded the ipGTT response, as well as the HOMA-IR and insulin levels in the cav-1 KO mice. Aliskiren also significantly lowered triglyceride levels in the cav-1 KO but not in the WT mice. Moreover, aliskiren treatment had a significantly greater effect on blood pressure readings in the cav-1 KO vs. WT mice, and marginally more effective than amlodipine. Conclusions Our results support the hypothesis that aliskiren reduces insulin resistance as indicated by improved HOMA-IR in cav-1 KO mice whereas amlodipine treatment resulted in changes consistent with increased insulin resistance. In addition, aliskiren was substantially more effective in lowering blood pressure in the cav-1 KO mouse model than in WT mice and marginally more effective than amlodipine. PMID:22954672

  18. Prometastatic NEDD9 Regulates Individual Cell Migration via Caveolin-1-Dependent Trafficking of Integrins.

    PubMed

    Kozyulina, Polina Y; Loskutov, Yuriy V; Kozyreva, Varvara K; Rajulapati, Anuradha; Ice, Ryan J; Jones, Brandon C; Pugacheva, Elena N

    2015-03-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins. ©2014 American Association for Cancer Research.

  19. Aldosterone Promotes Cardiac Endothelial Cell Proliferation In Vivo

    PubMed Central

    Gravez, Basile; Tarjus, Antoine; Pelloux, Véronique; Ouvrard‐Pascaud, Antoine; Delcayre, Claude; Samuel, Janelise; Clément, Karine; Farman, Nicolette; Jaisser, Fréderic; Messaoudi, Smail

    2015-01-01

    Background Experimentally, aldosterone in association with NaCl induces cardiac fibrosis, oxidative stress, and inflammation through mineralocorticoid receptor activation; however, the biological processes regulated by aldosterone alone in the heart remain to be identified. Methods and Results Mice were treated for 7 days with aldosterone, and then cardiac transcriptome was analyzed. Aldosterone regulated 60 transcripts (51 upregulated and 9 downregulated) in the heart (fold change ≥1.5, false discovery rate <0.01). To identify the biological processes modulated by aldosterone, a gene ontology analysis was performed. The majority of aldosterone‐regulated genes were involved in cell division. The cardiac Ki‐67 index (an index of proliferation) of aldosterone‐treated mice was higher than that of nontreated mice, confirming microarray predictions. Costaining of Ki‐67 with vinculin, CD68, α‐smooth muscle actin, CD31, or caveolin 1 revealed that the cycling cells were essentially endothelial cells. Aldosterone‐induced mineralocorticoid receptor–dependent proliferation was confirmed ex vivo in human endothelial cells. Moreover, pharmacological‐specific blockade of mineralocorticoid receptor by eplerenone inhibited endothelial cell proliferation in a preclinical model of heart failure (transverse aortic constriction). Conclusions Aldosterone modulates cardiac gene expression and induces the proliferation of cardiac endothelial cells in vivo. PMID:25564371

  20. Frequency of common polymorphisms in Caveolin 1 (CAV1 ) gene in adults with high serum triglycerides from Colombian Caribbean Coast

    PubMed Central

    Ruiz-Diaz, Maria Stephany; Gomez-Camargo, Doris Esther; Gomez-Alegria, Claudio Jaime

    2017-01-01

    Abstract Background: Caveolin 1 gene (CAV1) has been associated with insulin resistance, metabolic syndrome and hypertension in humans. Also, it has been related to high serum triglycerides in rodents, however there is little evidence of this relation in humans. Aim: To describe frequencies of common variations in CAV1 in adults with high serum triglycerides. Methods: A case-control study was carried out with adults from Colombian Caribbean Coast. A whole blood sample was employed to measure serum concentrations of triglycerides, glucose, total cholesterol and HDLc. Six common Single Nucleotide Polymorphism (SNP) in CAV1 were genotyped (rs926198, rs3779512, rs10270569, rs11773845, rs7804372 and rs1049337). Allelic and genotypic frequencies were determined by direct count and Hardy-Weinberg Equilibrium (HWE) was assessed. Case and control groups were compared with null-hypothesis tests. Results: A total of 220 cases and 220 controls were included. For rs3779512 an excess in homozygotes frequency was found within case group (40.4% (GG), 41.3% (GT) and 18.1% (TT); Fis=0.13, p=0.03). Another homozygotes excess among case group was found in rs7804372 (59.5% (TT), 32.3% (TA) and 8.2% (AA); Fis= 0.12, p= 0.04). In rs1049337, cases also showed an excess in homozygotes frequency (52.7% (CC), 35.0% (CT) and 12.3% (TT); Fis= 0.16, p= 0.01). Finally, for rs1049337 there were differences in genotype distribution between case and control groups (p <0.05). Conclusion: An increased frequency of homozygote genotypes was found in subjects with high serum triglycerides. These findings suggest that minor alleles for SNPs rs3779512, rs7804372 and rs1049337 might be associated to higher risk of hypertriglyceridemia. PMID:29662258

  1. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.

  2. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood brain barrier damage in early ischemic stroke stage

    PubMed Central

    Liu, Jie; Jin, Xinchun; Liu, Ke J.; Liu, Wenlan

    2012-01-01

    Blood brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran, and promoted the secretion of metalloproteinase-2 and 9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2-h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  3. LAMP-2 absence interferes with plasma membrane repair and decreases T. cruzi host cell invasion.

    PubMed

    Couto, Natália Fernanda; Pedersane, Dina; Rezende, Luisa; Dias, Patrícia P; Corbani, Tayanne L; Bentini, Lívia C; Oliveira, Anny C S; Kelles, Ludmila F; Castro-Gomes, Thiago; Andrade, Luciana O

    2017-06-01

    Trypanosoma cruzi enters host cells by subverting the mechanism of cell membrane repair. In this process, the parasite induces small injuries in the host cell membrane leading to calcium entry and lysosomal exocytosis, which are followed by compensatory endocytosis events that drive parasites into host cells. We have previously shown that absence of both LAMP-1 and 2, major components of lysosomal membranes, decreases invasion of T. cruzi into host cells, but the mechanism by which they interfere with parasite invasion has not been described. Here we investigated the role of these proteins in parasitophorous vacuole morphology, host cell lysosomal exocytosis, and membrane repair ability. First, we showed that cells lacking only LAMP-2 present the same invasion phenotype as LAMP1/2-/- cells, indicating that LAMP-2 is an important player during T. cruzi invasion process. Second, neither vacuole morphology nor lysosomal exocytosis was altered in LAMP-2 lacking cells (LAMP2-/- and LAMP1/2-/- cells). We then investigated the ability of LAMP-2 deficient cells to perform compensatory endocytosis upon lysosomal secretion, the mechanism by which cells repair their membrane and T. cruzi ultimately enters cells. We observed that these cells perform less endocytosis upon injury when compared to WT cells. This was a consequence of impaired cholesterol traffic in cells lacking LAMP-2 and its influence in the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair. The results presented here show the major role of LAMP-2 in caveolin traffic and membrane repair and consequently in T. cruzi invasion.

  4. LAMP-2 absence interferes with plasma membrane repair and decreases T. cruzi host cell invasion

    PubMed Central

    Rezende, Luisa; Bentini, Lívia C.; Oliveira, Anny C. S.

    2017-01-01

    Trypanosoma cruzi enters host cells by subverting the mechanism of cell membrane repair. In this process, the parasite induces small injuries in the host cell membrane leading to calcium entry and lysosomal exocytosis, which are followed by compensatory endocytosis events that drive parasites into host cells. We have previously shown that absence of both LAMP-1 and 2, major components of lysosomal membranes, decreases invasion of T. cruzi into host cells, but the mechanism by which they interfere with parasite invasion has not been described. Here we investigated the role of these proteins in parasitophorous vacuole morphology, host cell lysosomal exocytosis, and membrane repair ability. First, we showed that cells lacking only LAMP-2 present the same invasion phenotype as LAMP1/2-/- cells, indicating that LAMP-2 is an important player during T. cruzi invasion process. Second, neither vacuole morphology nor lysosomal exocytosis was altered in LAMP-2 lacking cells (LAMP2-/- and LAMP1/2-/- cells). We then investigated the ability of LAMP-2 deficient cells to perform compensatory endocytosis upon lysosomal secretion, the mechanism by which cells repair their membrane and T. cruzi ultimately enters cells. We observed that these cells perform less endocytosis upon injury when compared to WT cells. This was a consequence of impaired cholesterol traffic in cells lacking LAMP-2 and its influence in the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair. The results presented here show the major role of LAMP-2 in caveolin traffic and membrane repair and consequently in T. cruzi invasion. PMID:28586379

  5. Genetics Home Reference: isolated hyperCKemia

    MedlinePlus

    ... signaling and maintenance of the cell structure. CAV3 gene mutations result in a shortage of caveolin-3 protein ... this condition. In addition to isolated hyperCKemia , CAV3 gene mutations can cause other caveolinopathies including CAV3 -related distal ...

  6. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes.

    PubMed

    Ismair, Manfred G; Häusler, Stephanie; Stuermer, Claudia A; Guyot, Christelle; Meier, Peter J; Roth, Jürgen; Stieger, Bruno

    2009-05-01

    The canalicular plasma membrane is constantly exposed to bile acids acting as detergents. Bile acids are essential to mediate release of biliary lipids from the canalicular membrane. Membrane microdomains (previously called lipid rafts) are biochemically defined by their resistance to detergent solubilization at cold temperature. We aimed to investigate the canalicular plasma membrane for the presence of microdomains, which could protect this membrane against the detergent action of bile acids. Highly purified rat liver canalicular plasma membrane vesicles were extracted with 1% Triton X-100 or 1% Lubrol WX at 4 degrees C and subjected to flotation through sucrose step gradients. Both detergents yielded detergent-resistant membranes containing the microdomain markers alkaline phosphatase and sphingomyelin. However, cholesterol was resistant to Lubrol WX solubilization, whereas it was only marginally resistant to solubilization by Triton X-100. The microdomain marker caveolin-1 was localized to the canalicular plasma membrane domain and was resistant to Lubrol WX, but to a large extent solubilized by Triton X-100. The two additional microdomain markers, reggie-1 and reggie-2, were localized to the basolateral and canalicular plasma membrane and were partially resistant to Lubrol WX but resistant to Triton X-100. The canalicular transporters bile salt export pump, multidrug resistance protein 2, multidrug resistance-associated protein 2, and Abcg5 were largely resistant to Lubrol WX but were solubilized by Triton X-100. These results indicate the presence of two different types of microdomains in the canalicular plasma membrane: "Lubrol-microdomains" and "Triton-microdomains". "Lubrol-microdomains" contain the machinery for canalicular bile formation and may be the starting place for canalicular lipid secretion.

  7. Differential subcellular membrane recruitment of Src may specify its downstream signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah

    2008-04-15

    Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 andmore » flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ({approx} 70%) cholesterol extraction with methyl-{beta}-cyclodextrin (M{beta}CD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to M{beta}CD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.« less

  8. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function.

    PubMed

    Somkuwar, Sucharita S; Fannon, McKenzie J; Head, Brian P; Mandyam, Chitra D

    2016-07-22

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: implication for dysregulation of neuronal function

    PubMed Central

    Somkuwar, Sucharita S.; Fannon, McKenzie J.; Head, Brian P.; Mandyam, Chitra D.

    2016-01-01

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. PMID:27138644

  10. Aniridia-related keratopathy: Structural changes in naïve and transplanted corneal buttons

    PubMed Central

    Stenevi, Ulf; Pedrosa Domellöf, Fátima

    2018-01-01

    Background To study structural changes in naïve and surgically treated corneas of aniridia patients with advanced aniridia-related keratopathy (ARK). Methods and findings Two naïve corneal buttons from patients with advanced ARK submitted to penetrating keratoplasty for the first time, one corneal button from an ARK patient that had undergone a keratolimbal allograft (KLAL), two corneal buttons from ARK patients who had previously undergone centered or decentered transplantation and were now retransplanted and two adult healthy donor control corneas were processed for immunohistochemistry. Antibodies against extracellular matrix components in the stroma and in the epithelial basement membrane (collagen I and IV, collagen receptor α11 integrin and laminin α3 chain), markers of fibrosis, wound healing and vascularization (fibronectin, tenascin-C, vimentin, α-SMA and caveolin-1), cell division (Ki-67) and macrophages (CD68) were used. Naïve ARK, KLAL ARK corneas and transplanted corneal buttons presented similar histopathological changes with irregular epithelium and disruption or absence of epithelial basal membrane. There was a loss of the orderly pattern of collagen lamellae and absence of collagen I in all ARK corneas. Vascularization was revealed by the presence of caveolin-1 and collagen IV in the pannus of all ARK aniridia corneas. The changes observed in decentered and centered transplants were analogous. Conclusions Given the similar pathological features of all cases, conditions inherent to the host seem to play an important role on the pathophysiology of the ARK in the long run. PMID:29889891

  11. Aniridia-related keratopathy: Structural changes in naïve and transplanted corneal buttons.

    PubMed

    Vicente, André; Byström, Berit; Lindström, Mona; Stenevi, Ulf; Pedrosa Domellöf, Fátima

    2018-01-01

    To study structural changes in naïve and surgically treated corneas of aniridia patients with advanced aniridia-related keratopathy (ARK). Two naïve corneal buttons from patients with advanced ARK submitted to penetrating keratoplasty for the first time, one corneal button from an ARK patient that had undergone a keratolimbal allograft (KLAL), two corneal buttons from ARK patients who had previously undergone centered or decentered transplantation and were now retransplanted and two adult healthy donor control corneas were processed for immunohistochemistry. Antibodies against extracellular matrix components in the stroma and in the epithelial basement membrane (collagen I and IV, collagen receptor α11 integrin and laminin α3 chain), markers of fibrosis, wound healing and vascularization (fibronectin, tenascin-C, vimentin, α-SMA and caveolin-1), cell division (Ki-67) and macrophages (CD68) were used. Naïve ARK, KLAL ARK corneas and transplanted corneal buttons presented similar histopathological changes with irregular epithelium and disruption or absence of epithelial basal membrane. There was a loss of the orderly pattern of collagen lamellae and absence of collagen I in all ARK corneas. Vascularization was revealed by the presence of caveolin-1 and collagen IV in the pannus of all ARK aniridia corneas. The changes observed in decentered and centered transplants were analogous. Given the similar pathological features of all cases, conditions inherent to the host seem to play an important role on the pathophysiology of the ARK in the long run.

  12. Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart.

    PubMed

    Arjunan, Selvam; Reinartz, Michael; Emde, Barbara; Zanger, Klaus; Schrader, Jürgen

    2009-01-01

    The endothelial cell (EC) membrane is an important interface, which plays a crucial role in signal transduction. Our aim was to selectively purify luminal EC membrane proteins from the coronary vasculature of the isolated perfused mouse heart and analyze its composition with mass spectrometry (MS). To specifically label coronary ECs in the intact heart, the colloidal silica method was applied, which is based on the binding of positively charged colloidal silica to the surface of EC membranes. Transmission electron microscopy revealed the specific labeling of ECs of macro and microvessels. Two different methods of tissue homogenization (Teflon pestle and ultra blade) together with density centrifugation were used for membrane protein enrichment. Enrichment and purity was controlled by Western blot analysis using the EC-specific protein caveolin 1 and various intracellular marker proteins. The ultra blade method resulted in a tenfold enrichment of caveolin 1, while there was negligible contamination as judged by Western blot. However, protein yield was low and required pooling of ten hearts for MS. When enriched endothelial membrane proteins were digested with trypsin and analyzed by LC-MS, a total of 56 proteins could be identified, of which only 12 were membrane proteins. We conclude that coronary endothelial membranes can be conveniently labeled with colloidal silica. However, due to the ionic nature of interaction of colloidal silica with the EC membrane the shear rate required for cardiac homogenization resulted in a substantial loss of specificity.

  13. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines.

    PubMed

    Bennett, Nigel C; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2014-05-01

    In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein. We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown. AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity. These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown. © 2013 Wiley Periodicals, Inc.

  14. Activation of PPARβ/δ protects pancreatic β cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor.

    PubMed

    Yang, Yan; Tong, Yuzhen; Gong, Meng; Lu, Yanrong; Wang, Chengshi; Zhou, Mingliang; Yang, Qiu; Mao, Tingrui; Tong, Nanwei

    2014-02-01

    We previously showed that activated peroxisome proliferator-activated receptor (PPAR)β/δ can protect pancreatic β cells against lipotoxic apoptosis. However, the molecular mechanism remained unclear. Glucagon-like peptide-1 receptor (GLP-1R) has been reported to exhibit a protective effect against lipotoxic apoptosis in pancreatic β cells. In the present study, we aimed to investigate the underlying molecular mechanisms that PPARβ/δ activation suppressed apoptosis and improved β cell function impaired by fatty acids, focusing on contribution of GLP-1R. Isolated rat islets and rat insulin-secreting INS-1 cells were treated with the PPARβ/δ agonist GW501516 (GW) in the presence or absence of palmitate (PA) and transfected with siRNA for PPARβ/δ or treated with the PPARβ/δ antagonist GSK0660. Apoptosis was assessed by DNA fragmentation, Hoechst 33342 staining and flow cytometry. GLP-1R expression in INS-1 cells and islets was assayed by immunoblotting, quantitative PCR (qPCR) and immunofluorescence staining. SREBP-1c, Caveolin-1, Akt, Bcl-2, Bcl-xl and caspase-3 expression was measured using immunoblotting and qPCR. Our results showed that PPARβ/δ activation decreased apoptosis in β cells and robustly stimulated GLP-1R expression under lipotoxic conditions. GW enhanced glucose-stimulated insulin secretion (GSIS) impaired by PA through stimulation of GLP-1R expression in β cells. Moreover, SREBP-1c/Caveolin-1 signaling was involved in PPARβ/δ-regulated GLP-1R expression. Finally, GW exerted anti-apoptotic effects via interfering with GLP-1R-dependent Akt/Bcl-2 and Bcl-xl/caspase-3 signaling pathways. Our study suggested that the anti-apoptotic action of GW may involve its transcriptional regulation of GLP-1R, and PPARβ/δ activation may represent a new therapeutic method for protecting pancreatic β cells from lipotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An Elevation in Physical Coupling of Type 1 IP3 Receptors to TRPC3 Channels Constricts Mesenteric Arteries in Genetic Hypertension

    PubMed Central

    Adebiyi, Adebowale; Thomas-Gatewood, Candice M.; Leo, M. Dennis; Kidd, Michael W.; Neeb, Zachary P.; Jaggar, Jonathan H.

    2013-01-01

    Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP3) that activates sarcoplasmic reticulum (SR) IP3 receptors (IP3Rs). In cerebral artery myocytes, IP3Rs release SR Ca2+ and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current (ICat) activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP3Rs control vascular contractility in systemic arteries and IP3R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ~2.7- and 2-fold higher in mesenteric arteries of hypertensive spontaneously hypertensive rats (SHR) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP3R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-hypertensive SHR and WKY rats. Control, IP3- and endothelin-1 (ET-1)-induced FRET between IP3R1 and TRPC3 was higher in hypertensive SHR than WKY myocytes. IP3-induced ICat was ~3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and CIRBP-TAT, an IP3R-TRP physical coupling inhibitor, reduced IP3-induced ICat and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a SR Ca2+-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP3R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP3R1 to TRPC3 channel molecular coupling augments ET-1-induced vasoconstriction during hypertension. PMID:23045459

  16. Pioglitazone, a PPARγ Agonist, Upregulates the Expression of Caveolin-1 and Catalase, Essential for Thyroid Cell Homeostasis: A Clue to the Pathogenesis of Hashimoto's Thyroiditis.

    PubMed

    Werion, Alexis; Joris, Virginie; Hepp, Michael; Papasokrati, Lida; Marique, Lancelot; de Ville de Goyet, Christine; Van Regemorter, Victoria; Mourad, Michel; Lengelé, Benoit; Daumerie, Chantal; Marbaix, Etienne; Brichard, Sonia; Many, Marie-Christine; Craps, Julie

    2016-09-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates the expression of multiple target genes involved in several metabolic pathways as well as in inflammation. The expression and cell localization of caveolin-1 (Cav-1), thyroperoxidase (TPO), and dual oxidase (DUOX), involved in extracellular iodination, is modulated by Th1 cytokines in human normal thyroid cells and in Hashimoto's thyroiditis (HT). The objectives of this study were (i) to analyze the PPARγ protein and mRNA expression at the follicular level in HT versus controls in correlation with the one of Cav-1; (ii) to study the effects of Th1 cytokines on PPARγ and catalase expression in human thyrocyte primary cultures; and (iii) to study the effects of pioglitazone, a PPARγ agonist, on thyroxisome components (Cav-1, TPO, DUOX) and on catalase, involved in antioxidant defense. Although the global expression of PPARγ in the whole gland of patients with HT was not modified compared with controls, there was great heterogeneity among glands and among follicles within the same thyroid. Besides normal (type 1) follicles, there were around inflammatory zones, hyperactive (type 2) follicles with high PPARγ and Cav-1 expression, and inactive (type 3) follicles which were unable to form thyroxine and did not express PPARγ or Cav-1. In human thyrocytes in primary culture, Th1 cytokines decreased PPARγ and catalase expression; pioglitazone increased Cav-1, TPO, and catalase expression. PPARγ may play a central role in normal thyroid physiology by upregulating Cav-1, essential for the organization of the thyroxisome and extracellular iodination. By upregulating catalase, PPARγ may also contribute to cell homeostasis. The inhibitory effect of Th1 cytokines on PPARγ expression may be considered as a new pathogenetic mechanism for HT, and the use of PPARγ agonists could open a new therapeutic approach.

  17. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells

    PubMed Central

    Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  18. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke.

  19. Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

    PubMed

    Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung

    2016-03-01

    Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy. © 2016 American Heart Association, Inc.

  20. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS

    PubMed Central

    Sun, Li-na; Liu, Xiang-chun; Chen, Xiang-jun; Guan, Guang-ju; Liu, Gang

    2016-01-01

    Aim: Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS. PMID:26838071

  1. Tissue Factor Coagulant Activity is Regulated by the Plasma Membrane Microenvironment.

    PubMed

    Yu, Yuanjie; Böing, Anita N; Hau, Chi M; Hajji, Najat; Ruf, Wolfram; Sturk, Auguste; Nieuwland, Rienk

    2018-06-01

     Tissue factor (TF) can be present in a non-coagulant and coagulant form. Whether the coagulant activity is affected by the plasma membrane microenvironment is unexplored.  This article studies the presence and coagulant activity of human TF in plasma membrane micro-domains.  Plasma membranes were isolated from human MIA PaCa2 cells, MDA-MB-231 cells and human vascular smooth muscle cells by Percoll gradient ultracentrifugation after cell disruption. Plasma membranes were fractionated by OptiPrep gradient ultracentrifugation, and the presence of TF, flotillin, caveolin, clathrin, protein disulphide isomerase (PDI), TF pathway inhibitor (TFPI) and phosphatidylserine (PS) were determined.  Plasma membranes contain two detergent-resistant membrane (DRM) compartments differing in density and biochemical composition. High-density DRMs (DRM-H) have a density ( ρ ) of 1.15 to 1.20 g/mL and contain clathrin, whereas low-density DRMs (DRM-L) have a density between 1.09 and 1.13 g/mL and do not contain clathrin. Both DRMs contain TF, flotillin and caveolin. PDI is detectable in DRM-H, TFPI is not detectable in either DMR-H or DRM-L and PS is detectable in DRM-L. The DRM-H-associated TF (> 95% of the TF antigen) lacks detectable coagulant activity, whereas the DRM-L-associated TF triggers coagulation. This coagulant activity is inhibited by lactadherin and thus PS-dependent, but seemed insensitive to 16F16, an inhibitor of PDI.  Non-coagulant and coagulant TF are present within different types of DRMs in the plasma membrane, and the composition of these DRMs may affect the TF coagulant activity. Schattauer GmbH Stuttgart.

  2. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas.

    PubMed

    Taron, Miguel; Ichinose, Yukito; Rosell, Rafael; Mok, Tony; Massuti, Bartomeu; Zamora, Lurdes; Mate, Jose Luis; Manegold, Christian; Ono, Mayumi; Queralt, Cristina; Jahan, Thierry; Sanchez, Jose Javier; Sanchez-Ronco, Maria; Hsue, Victor; Jablons, David; Sanchez, Jose Miguel; Moran, Teresa

    2005-08-15

    Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) confer a strong sensitivity to gefitinib, a selective tyrosine kinase inhibitor of EGFR. We examined EGFR mutations at exons 18, 19, and 21 in tumor tissue from 68 gefitinib-treated, chemorefractory, advanced non-small cell lung cancer patients from the United States, Europe, and Asia and in a highly gefitinib-sensitive non-small cell lung cancer cell line and correlated their presence with response and survival. In addition, in a subgroup of 28 patients for whom the remaining tumor tissue was available, we examined the relationship among EGFR mutations, CA repeats in intron 1 of EGFR, EGFR and caveolin-1 mRNA levels, and increased EGFR gene copy numbers. Seventeen patients had EGFR mutations, all of which were in lung adenocarcinomas. Radiographic response was observed in 16 of 17 (94.1%) patients harboring EGFR mutations, in contrast with 6 of 51 (12.6%) with wild-type EGFR (P < 0.0001). Probability of response increased significantly in never smokers, patients receiving a greater number of prior chemotherapy regimens, Asians, and younger patients. Median survival was not reached for patients with EGFR mutations and was 9.9 months for those with wild-type EGFR (P = 0.001). EGFR mutations tended to be associated with increased numbers of CA repeats and increased EGFR gene copy numbers but not with EGFR and caveolin-1 mRNA overexpression (P = not significant). The presence of EGFR mutations is a major determinant of gefitinib response, and targeting EGFR should be considered in preference to chemotherapy as first-line treatment in lung adenocarcinomas that have demonstrable EGFR mutations.

  3. Imbalance of caveolin-1 and eNOS expression in the pulmonary vasculature of experimental diaphragmatic hernia.

    PubMed

    Hofmann, Alejandro; Gosemann, Jan-Hendrik; Takahashi, Toshiaki; Friedmacher, Florian; Duess, Johannes W; Puri, Prem

    2014-08-01

    Caveolin-1 (Cav-1) exerts major regulatory functions on intracellular signaling pathways originating at the plasma membrane. Cav-1 is a key regulator in adverse lung remodeling and the development of pulmonary hypertension (PH) regulating vasomotor tone through its ability to reduce nitric oxide (NO) production. This low-output endothelial NO synthase (eNOS) derived NO maintains normal pulmonary vascular homeostasis. Cav-1 deficiency leads to increased bioavailability of NO, which has been linked to increased nitrosative stress. Inhibition of eNOS reduced oxidant production and reversed PH, supporting the concept that Cav-1 regulation of eNOS activity is crucial to endothelial homeostasis in lungs. We designed this study to investigate the hypothesis that expression of Cav-1 is downregulated while eNOS expression is upregulated by the pulmonary endothelium in the nitrofen-induced congenital diaphragmatic hernia (CDH). Pregnant rats were exposed to nitrofen or vehicle on day 9.5 (D9.5). Fetuses were sacrificed on D21 and divided into nitrofen and control groups. Quantitative real-time polymerase chain reaction, Western blotting, and confocal immunofluorescence were performed to determine pulmonary gene expression levels and protein expression of Cav-1 and eNOS. Pulmonary Cav-1 gene expression levels were significantly decreased, while eNOS gene expression was significantly increased in nitrofen-induced CDH(+). Western blotting and confocal microscopy revealed decreased pulmonary Cav-1 protein expression, while eNOS protein expression was increased in CDH(+) compared to controls. The striking evidence of markedly decreased gene and protein expression of Cav-1 with concurrently increased eNOS gene and protein expression in the pulmonary vasculature suggests that activation of eNOS secondary to Cav-1 deficiency may play an important role in the pathogenesis of PH in the nitrofen-induced CDH. © 2014 Wiley Periodicals, Inc.

  4. The Roles of CD147 and/or Cyclophilin A in Kidney Diseases

    PubMed Central

    Wang, Chunting; Zhang, Jicheng; Qie, Guoqiang

    2014-01-01

    CD147 is a widely expressed integral plasma membrane glycoprotein and has been involved in a variety of physiological and pathological activities in combination with different partners, including cyclophilins, caveolin-1, monocarboxylate transporters, and integrins. Recent data demonstrate that both CyPA and CD147 significantly contribute to renal inflammation, acute kidney injury, renal fibrosis, and renal cell carcinoma. Here we review the current understanding of cyclophilin A and CD147 expression and functions in kidney diseases and potential implications for treatment of kidney diseases. PMID:25580061

  5. On the accuracy of ERS-1 orbit predictions

    NASA Technical Reports Server (NTRS)

    Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.

    1993-01-01

    Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.

  6. VEGF Receptor 2 (VEGFR2) Activation Is Essential for Osteocyte Survival Induced by Mechanotransduction.

    PubMed

    de Castro, Luis F; Maycas, Marta; Bravo, Beatriz; Esbrit, Pedro; Gortazar, Arancha

    2015-02-01

    Mechanical loading plays a key role in bone formation and maintenance. While unloading induces osteocyte apoptosis and bone loss in vivo, mechanical stimuli prevents osteocyte death through a mechanism involving β-catenin accumulation and ERK nuclear translocation. Vascular endothelial growth factor (VEGF) has a crucial role in bone formation, but its interaction with osteocytes is not completely understood. Of interest, VEGF receptor 2 (VEGFR2) has recently been shown to mediate the mechanical response of endothelial cells. The present study aimed to evaluate the putative role of the VEGF system in osteocyte mechanosensing. We show that either short (10 min) mechanical stimulus by pulsatile fluid flow (FF) (10 dyn/cm(2), 8 Hz) or exogenous VEGF165 (6 ng/ml) similarly stimulated cell viability, ERK phosphorylation, and β-catenin membrane translocation. A VEGFR2 antagonist (SU5416) or transfection with specific VEGFR2 siRNAs (siVEGFR2) decreased these events. FF for 10 min increased VEGFR2 phosphorylation at both Tyr-1059 and Tyr-1175; an effect that was mimicked by VEGF165 but was unaffected by a VEGF neutralizing antibody. Subsequently (at 6 h), this mechanical stimulus induced VEGF gene overexpression, which was prevented by siVEGFR2 transfection. Depletion of the structural protein caveolin-1 by using siRNA technology impaired FF-induced VEGFR2 phosphorylation. In conclusion, these in vitro findings point to caveolin-1-dependent VEGFR2 activation as an important mechanism whereby mechanical stimuli promote osteocyte viability. © 2014 Wiley Periodicals, Inc.

  7. Oxytocin stimulates cell proliferation in vaginal cell line Vk2E6E7.

    PubMed

    Kallak, Theodora K; Uvnäs-Moberg, Kerstin

    2017-03-01

    Objective During and after menopause, the symptoms of vaginal atrophy cause great discomfort and necessitate effective treatment options. Currently, vaginally applied oxytocin is being investigated as a treatment for the symptoms of vaginal atrophy in postmenopausal women. To clarify the mechanisms behind oxytocins effects on vaginal atrophy, the present study investigated the effects of oxytocin on cell proliferation in the cells of the Vk2E6E7 line, a non-tumour vaginal cell line. The study also compared the effects of oxytocin with those of estradiol (E2). Study design The effects of both oxytocin and E2 on the proliferation of Vk2E6E7 cells were investigated using Cell Proliferation ELISA BrdU Colorimetric Assay. The expression of both oxytocin and oxytocin receptor was studied in Vk2E6E7 cells using quantitative real-time polymerase chain reaction and immunofluorescent staining. Main outcome measures Cell proliferation and gene expression. Results Oxytocin increased cell proliferation both time dependently and dose dependently. This differed from the effect pattern observed in cells treated with E2. In addition, in oxytocin-treated cells, the oxytocin receptor was found to be co-localized with caveolin-1, indicating pro-proliferative signalling within the cell. Conclusions Oxytocin stimulates cell proliferation and the co-localization of oxytocin receptor with caveolin-1 in oxytocin-treated cells, supporting the role of oxytocin signalling in cell proliferation. In addition, these findings suggest that increased cell proliferation is one mechanism by which local vaginal oxytocin treatment increases vaginal thickness and relieves vaginal symptoms in postmenopausal women with vaginal atrophy.

  8. A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women.

    PubMed

    Storniolo, C E; Casillas, R; Bulló, M; Castañer, O; Ros, E; Sáez, G T; Toledo, E; Estruch, R; Ruiz-Gutiérrez, V; Fitó, M; Martínez-González, M A; Salas-Salvadó, J; Mitjavila, M T; Moreno, J J

    2017-02-01

    Serum nitric oxide (NO) reduction and increased endothelin-1 (ET-1) play a pivotal role in endothelial dysfunction and hypertension. Considering that traditional Mediterranean diet (TMD) reduces blood pressure (BP), the aim of this study was to analyze whether TMD induced changes on endothelial physiology elements such as NO, ET-1 and ET-1 receptors which are involved in BP control. Non-smoking women with moderate hypertension were submitted for 1 year to interventions promoting adherence to the TMD, one supplemented with extra virgin olive oil (EVOO) and the other with nuts versus a control low-fat diet (30 participants/group). BP, NO, ET-1 and related gene expression as well as oxidative stress biomarkers were measured. Serum NO and systolic BP (SBP) or diastolic BP (DBP) were negatively associated at baseline, as well as between NO and ET-1. Our findings also showed a DBP reduction with both interventions. A negative correlation was observed between changes in NO metabolites concentration and SBP or DBP after the intervention with TMD + EVOO (p = 0.033 and p = 0.044, respectively). SBP reduction was related to an impairment of serum ET-1 concentrations after the intervention with TMD + nuts (p = 0.008). We also observed changes in eNOS, caveolin 2 and ET-1 receptors gene expression which are related to NO metabolites levels and BP. The changes in NO and ET-1 as well as ET-1 receptors gene expression explain, at least partially, the effect of EVOO or nuts on lowering BP among hypertensive women.

  9. Electrophysiology and metabolism of caveolin-3 overexpressing mice

    PubMed Central

    Schilling, Jan M.; Horikawa, Yousuke T.; Zemljic-Harpf, Alice E.; Vincent, Kevin P.; Tyan, Leonid; Yu, Judith K.; McCulloch, Andrew D.; Balijepalli, Ravi C.; Patel, Hemal H.; Roth, David M.

    2017-01-01

    Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: 1) ECG telemetry recordings at baseline and during pharmacological interventions, 2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and 3) baseline metabolism in Cav-3 OE and transgene negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. Expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, and heat generation, feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection. PMID:27023865

  10. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

    PubMed

    Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth; Magness, Ronald R

    2016-10-01

    Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (P<0.05) in pregnant UAECs. In pregnant UAECs, ATP increased Lucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy. © 2016 American Heart Association, Inc.

  11. Leptin promotes neointima formation and smooth muscle cell proliferation via NADPH oxidase activation and signalling in caveolin-rich microdomains.

    PubMed

    Schroeter, Marco R; Leifheit-Nestler, Maren; Hubert, Astrid; Schumann, Bettina; Glückermann, Roland; Eschholz, Norman; Krüger, Nenja; Lutz, Susanne; Hasenfuss, Gerd; Konstantinides, Stavros; Schäfer, Katrin

    2013-08-01

    Apolipoprotein E (apoE) may act as a vasculoprotective factor by promoting plasma lipid clearance and cholesterol efflux. Moreover, apoE accumulates at sites of vascular injury and modulates the effect of growth factors on smooth muscle cells (SMCs). Experimental data suggested that hypothalamic apoE expression is reduced in obesity and associated with leptin resistance. In this study, we examined the role of apoE in mediating the effects of leptin on vascular lesion formation. Leptin was administered to apoE knockout (apoE-/-) mice via osmotic pumps to increase its circulating levels. Morphometric analysis revealed that leptin did not alter neointima formation and failed to increase α-actin- or PCNA-immunopositive SMCs after vascular injury. Similar findings were obtained after analysis of atherosclerotic lesions. Comparison of apoE-/-, wild-type, or LDL receptor-/- mice and functional analyses in aortic SMCs from WT or apoE-/- mice or human arterial SMCs after treatment with small interfering (si)RNA or heparinase revealed that leptin requires the presence of apoE, expressed, secreted and bound to the cell surface, to fully activate leptin receptor signalling and to promote SMC proliferation and neointima formation. Mechanistically, leptin induced the phosphorylation and membrane translocation of caveolin (cav)-1, and apoE down-regulation or caveolae disruption inhibited the leptin-induced p47phox activation, ROS formation and SMC proliferation. Finally, leptin failed to increase neointima formation in mice lacking cav-1. Our findings suggest that apoE mediates the effects of leptin on vascular lesion formation by stabilizing cav-1-enriched cell membrane microdomains in SMCs, thus allowing NADPH oxidase assembly and ROS-mediated mitogenic signalling.

  12. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition

    PubMed Central

    Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N

    2010-01-01

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated RST value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the RST concept depends on the mass of each major element in the human body. The DXA RST values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA RST value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body 40K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the RST values. The DXA RST values were strongly associated with the RST values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted RST to systematically exceed the DXA-measured RST (mean ± SD, 1.389 ± 0.024 versus 1.341 ± 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 ± 12.0% versus 24.9 ± 11.1%, r = 0.983, P < 0.001). DXA RST evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat. PMID:20393230

  13. QRFP-43 inhibits lipolysis by preventing ligand-induced complex formation between perilipin A, caveolin-1, the catalytic subunit of protein kinase and hormone-sensitive lipase in 3T3-L1 adipocytes.

    PubMed

    Mulumba, Mukandila; Granata, Riccarda; Marleau, Sylvie; Ong, Huy

    2015-05-01

    QRFP (RFamide) peptides are neuropeptides involved in food intake and adiposity regulation in rodents. We have previously shown that QRFP-43 (43RFa) and QRFP-26 (26RFa) inhibited isoproterenol (ISO)-induced lipolysis in adipocytes. However, the antilipolytic signaling pathways activated by QRFP peptides have not been investigated. In the present study, 3T3-L1 adipocytes were used to identify the main pathways involved in QRFP-43 decreasing ISO-induced lipolysis. Our results show that QRFP-43 reduced ISO-induced phosphorylation of perilipin A (PLIN) and hormone-sensitive lipase (HSL) on Ser660 by 43 and 25%, respectively, but increased Akt phosphorylation by 44%. However, the inhibition of phosphodiesterase 3B (PDE3B), a regulator of lipolysis activated by Akt, did not reverse the antilipolytic effect of QRFP-43. PDE3B inhibition reversed the decrease of Ser660 HSL phosphorylation associated with QRFP-43 antilipolytic effect. QRFP-43 also prevented PKC activation and ISO-induced Src kinases activation leading to the inhibition of the caveolin-1 (CAV-1) translocation on lipid droplets. Indeed, QRFP-43 attenuated phorbol 12-myristate 13-acetate-induced lipolysis and ISO-induced extracellular signal-regulated and Src kinases by 28, 37 and 48%, respectively. The attenuation of ISO-induced lipolysis by QRFP-43 was associated with a decrease of phosphorylated Ser660 HSL, PKA-catalytic (PKA-c) subunit and CAV-1 translocation on lipid droplets by 37, 50 and 46%, respectively. The decrease in ISO-induced CAV-1 and PKA-c translocation was associated with a reduction of PLIN phosphorylation by 44% in QRFP-43-treated adipocytes. These results suggest that QRFP-43 attenuated ISO-induced lipolysis by preventing the formation of an active complex on lipid droplets and the activation of Src kinases and PKC. Copyright © 2015. Published by Elsevier B.V.

  14. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation.

    PubMed

    Scheller, Erica L; Khandaker, Shaima; Learman, Brian S; Cawthorn, William P; Anderson, Lindsay M; Pham, H A; Robles, Hero; Wang, Zhaohua; Li, Ziru; Parlee, Sebastian D; Simon, Becky R; Mori, Hiroyuki; Bree, Adam J; Craft, Clarissa S; MacDougald, Ormond A

    2018-01-26

    Bone marrow adipose tissue (BMAT) is preserved or increased in states of caloric restriction. Similarly, we found that BMAT in the tail vertebrae, but not the red marrow in the tibia, resists loss of neutral lipid with acute, 48-hour fasting in rats. The mechanisms underlying this phenomenon and its seemingly distinct regulation from peripheral white adipose tissue (WAT) remain unknown. To test the role of β-adrenergic stimulation, a major regulator of adipose tissue lipolysis, we examined the responses of BMAT to β-adrenergic agonists. Relative to inguinal WAT, BMAT had reduced phosphorylation of hormone sensitive lipase (HSL) after treatment with pan-β-adrenergic agonist isoproterenol. Phosphorylation of HSL in response to β3-adrenergic agonist CL316,243 was decreased by an additional ~90% (distal tibia BMAT) or could not be detected (tail vertebrae). Ex vivo, adrenergic stimulation of lipolysis in purified BMAT adipocytes was also substantially less than iWAT adipocytes and had site-specific properties. Specifically, regulated bone marrow adipocytes (rBMAs) from proximal tibia and femur underwent lipolysis in response to both CL316,243 and forskolin, while constitutive BMAs from the tail responded only to forskolin. This occurred independently of changes in gene expression of β-adrenergic receptors, which were similar between adipocytes from iWAT and BMAT, and could not be explained by defective coupling of β-adrenergic receptors to lipolytic machinery through caveolin 1. Specifically, we found that whereas caveolin 1 was necessary to mediate maximal stimulation of lipolysis in iWAT, overexpression of caveolin 1 was insufficient to rescue impaired BMAT signaling. Lastly, we tested the ability of BMAT to respond to 72-hour treatment with CL316,243 in vivo. This was sufficient to cause beiging of iWAT adipocytes and a decrease in iWAT adipocyte cell size. By contrast, adipocyte size in the tail BMAT and distal tibia remained unchanged. However, within the distal femur, we identified a subpopulation of BMAT adipocytes that underwent lipid droplet remodeling. This response was more pronounced in females than in males and resembled lipolysis-induced lipid partitioning rather than traditional beiging. In summary, BMAT has the capacity to respond to β-adrenergic stimuli, however, its responses are muted and BMAT generally resists lipid hydrolysis and remodeling relative to iWAT. This resistance is more pronounced in distal regions of the skeleton where the BMAT adipocytes are larger with little intervening hematopoiesis, suggesting that there may be a role for both cell-autonomous and microenvironmental determinants. Resistance to β-adrenergic stimuli further separates BMAT from known regulators of energy partitioning and contributes to our understanding of why BMAT is preserved in states of fasting and caloric restriction. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension.

    PubMed

    Adebiyi, Adebowale; Thomas-Gatewood, Candice M; Leo, M Dennis; Kidd, Michael W; Neeb, Zachary P; Jaggar, Jonathan H

    2012-11-01

    Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP(3)) that activates sarcoplasmic reticulum IP(3) receptors. In cerebral artery myocytes, IP(3) receptors release sarcoplasmic reticulum Ca(2+) and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP(3) receptors control vascular contractility in systemic arteries and IP(3)R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ≈2.7- and 2-fold higher in mesenteric arteries of spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP(3)R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-SHRs and WKY rats. Control, IP(3)-induced and endothelin-1 (ET-1)-induced fluorescence resonance energy transfer between IP3R1 and TRPC3 was higher in SHR than WKY myocytes. IP3-induced cation current was ≈3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and calmodulin and IP(3) receptor binding domain peptide, an IP(3)R-TRP physical coupling inhibitor, reduced IP(3)-induced cation current and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a sarcoplasmic reticulum Ca(2+)-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP(3)R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP(3)R1 to TRPC3 channel molecular coupling augments ET-1-induced vasoconstriction during hypertension.

  16. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  17. Knockdown of CAVEOLIN-1 Sensitizes Human Basal-Like Triple-Negative Breast Cancer Cells to Radiation.

    PubMed

    Zou, Man; Li, Yanhui; Xia, Shu; Chu, Qian; Xiao, Xiaoguang; Qiu, Hong; Chen, Yu; Zheng, Zu'an; Liu, Fei; Zhuang, Liang; Yu, Shiying

    2017-01-01

    Triple-negative breast cancer (TNBC) is a high-risk breast cancer phenotype without specific targeted therapy options and is significantly associated with increased local recurrence in patients treated with radiotherapy. CAVEOLIN-1 (CAV-1)-mediated epidermal growth factor receptor (EGFR) nuclear translocation following irradiation promotes DNA repair and thus induces radiation resistance. In this study, we aimed to determine whether knockdown of CAV-1 enhances the radiosensitivity of basal-like TNBC cell lines and to explore the possible mechanisms. Western blotting was used to compare protein expression in a panel of breast cancer cell lines. Nuclear accumulation of EGFR as well as DNA repair and damage at multiple time points following irradiation with or without CAV-1 siRNA pretreatment were investigated using western blotting and confocal microscopy. The radiosensitizing effect of CAV-1 siRNA was evaluated using a clonogenic assay. Flowcytometry was performed to analyse cell apoptosis and cell cycle alteration. We found that CAV-1 is over-expressed in basal-like TNBC cell lines and barely expressed in HER-2-positive cells; additionally, we observed that HER-2-positive cell lines are more sensitive to irradiation than basal-like TNBC cells. Our findings revealed that radiation-induced EGFR nuclear translocation was impaired by knockdown of CAV-1. In parallel, radiation-induced elevation of DNA repair proteins was also hampered by pretreatment with CAV-1 siRNA before irradiation. Silencing of CAV-1 also promoted DNA damage 24 h after irradiation. Colony formation assays verified that cells could be radiosensitized after knockdown of CAV-1. Furthermore, G2/M cell cycle arrest and apoptosis enhancement may also contribute to the radiosensitizing effect of CAV-1 siRNA. Our results support the hypothesis that CAV-1 knockdown by siRNA causes increased radiosensitivity in basal-like TNBC cells. The mechanisms associated with this effect are reduced DNA repair through delayed CAV-1-associated EGFR nuclear accumulation and induction of G2/M arrest and apoptosis through the combined effects of CAV-1 siRNA and radiation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. γ-Oryzanol reduces caveolin-1 and PCGEM1 expression, markers of aggressiveness in prostate cancer cell lines.

    PubMed

    Hirsch, Gabriela E; Parisi, Mariana M; Martins, Leo A M; Andrade, Claudia M B; Barbé-Tuana, Florencia M; Guma, Fátima T C R

    2015-06-01

    Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. γ-oryzanol is a component of rice bran, rich in phytosterols, known for its antioxidant, anti-carcinogenic and endocrinological effects. It is known that γ-oryzanol may affect prostate cancer cells through the down regulation of the antioxidant genes and that phytosterols have anti-proliferative and apoptotic effects. There are evidences showing that some of the components of γ-oryzanol can modulate genes involved in the development and progression of prostate cancer, as caveolin-1 (Cav-1) and prostate specific androgen-regulated gene (PCGEM1). To determine the effects of γ-oryzanol on prostate cancer cell survival we evaluated the cell viability and biomass by MTT and sulforhodamine B assays, respectively. Cell death, cell cycle and pERK1/2 activity were assessed by flow cytometry. The changes in gene expression involved in the survival and progression of prostate cancer cav-1 and PCGEM1 genes were evaluated by quantitative real time reverse transcriptase polymerase chain reaction (RT-PCR) and cav-1 protein by immunofluorescence followed by confocal microscopy analysis. We found that γ-oryzanol decreases cell viability and culture biomass by apoptosis and/or necrosis death in androgen unresponsive (PC3 and DU145) and responsive (LNCaP) cell lines, and signals through pERK1/2 in LNCaP and DU145 cells. γ-oryzanol also appears to block cell cycle progression at the G2/M in PC3 and LNCaP cells and at G0/G1 in DU145 cells. These effects were accompanied by a down regulation in the expression of the cav-1 in both androgen unresponsive cell lines and PCGEM1 gene in DU145 and LNCaP cells. In summary, we used biochemical and genetics approaches to demonstrate that γ-oryzanol show a promising adjuvant role in the treatment of prostate cancer. © 2015 Wiley Periodicals, Inc.

  19. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition.

    PubMed

    Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N

    2010-05-07

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated R(ST) value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the R(ST) concept depends on the mass of each major element in the human body. The DXA R(ST) values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA R(ST) value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body (40)K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the R(ST) values. The DXA R(ST) values were strongly associated with the R(ST) values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted R(ST) to systematically exceed the DXA-measured R(ST) (mean +/- SD, 1.389 +/- 0.024 versus 1.341 +/- 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 +/- 12.0% versus 24.9 +/- 11.1%, r = 0.983, P < 0.001). DXA R(ST) is evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat.

  20. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    PubMed

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  1. Disruption of Ankyrin B and Caveolin-1 Interaction Sites Alters Na+,K+-ATPase Membrane Diffusion.

    PubMed

    Junghans, Cornelia; Vukojević, Vladana; Tavraz, Neslihan N; Maksimov, Eugene G; Zuschratter, Werner; Schmitt, Franz-Josef; Friedrich, Thomas

    2017-11-21

    The Na + ,K + -ATPase is a plasma membrane ion transporter of high physiological importance for ion homeostasis and cellular excitability in electrically active tissues. Mutations in the genes coding for Na + ,K + -ATPase α-subunit isoforms lead to severe human pathologies including Familial Hemiplegic Migraine type 2, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia Parkinsonism, or epilepsy. Many of the reported mutations lead to change- or loss-of-function effects, whereas others do not alter the functional properties, but lead to, e.g., reduced protein stability, reduced protein expression, or defective plasma membrane targeting. Na + ,K + -ATPase frequently assembles with other membrane transporters or cellular matrix proteins in specialized plasma membrane microdomains, but the effects of these interactions on targeting or protein mobility are elusive so far. Mutation of established interaction motifs of the Na + ,K + -ATPase with ankyrin B and caveolin-1 are expected to result in changes in plasma membrane targeting, changes of the localization pattern, and of the diffusion behavior of the enzyme. We studied the consequences of mutations in these binding sites by monitoring diffusion of eGFP-labeled Na + ,K + -ATPase constructs in the plasma membrane of HEK293T cells by fluorescence correlation spectroscopy as well as fluorescence recovery after photobleaching or photoswitching, and observed significant differences compared to the wild-type enzyme, with synergistic effects for combinations of interaction site mutations. These measurements expand the possibilities to study the consequences of Na + ,K + -ATPase mutations and provide information about the interaction of Na + ,K + -ATPase α-isoforms with cellular matrix proteins, the cytoskeleton, or other membrane protein complexes. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Oncogenes induce the cancer-associated fibroblast phenotype

    PubMed Central

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica

    2013-01-01

    Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers. PMID:23860382

  3. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  4. Stress concentration investigations using NASTRAN

    NASA Technical Reports Server (NTRS)

    Gillcrist, M. C.; Parnell, L. A.

    1986-01-01

    Parametic investigations are performed using several two dimensional finite element formulations to determine their suitability for use in predicting extremum stresses in marine propellers. Comparisons are made of two NASTRAN elements (CTRIM6 and CTRAIA2) wherein elasticity properties have been modified to yield plane strain results. The accuracy of the elements is investigated by comparing finite element stress predictions with experimentally determined stresses in two classical cases: (1) tension in a flat plate with a circular hole; and (2) a filleted flat bar subjected to in-plane bending. The CTRIA2 element is found to provide good results. The displacement field from a three dimensional finite element model of a representative marine propeller is used as the boundary condition for the two dimensional plane strain investigations of stresses in the propeller blade and fillet. Stress predictions from the three dimensional analysis are compared with those from the two dimensional models. The validity of the plane strain modifications to the NASTRAN element is checked by comparing the modified CTRIA2 element stress predictions with those of the ABAQUS plane strain element, CPE4.

  5. 1,1-Bis(3'-indolyl)-1-(p-biphenyl)methane inhibits basal-like breast cancer growth in athymic nude mice

    PubMed Central

    Su, Yunpeng; Vanderlaag, Kathryn; Ireland, Courtney; Ortiz, Janelle; Grage, Henry; Safe, Stephen; Frankel, Arthur E

    2007-01-01

    Introduction 1,1-Bis (3'-indolyl)-1-(p-biphenyl) methane (CDIM9) has been identified as a new peroxisome proliferator-activated receptor (PPAR)-γ agonist that exhibits both receptor dependent and independent antitumor activities. CDIM9 has not previously been studied with respect to its effects against basal-like breast cancer. Our goal in the present study was to investigate the anti-basal-like breast tumor activity of CDIM9 in vitro and in vivo. Methods The effects of CDIM9 on cell protein and DNA syntheses were determined in basal-like breast cancer MDA-MB231 and BT549 cells in vitro. Maximum tolerated dose and dose-limited toxicity were determined in BalB/c mice, and antitumor growth activities were assessed in MDA-MB231 basal-like breast tumor xenografts in athymic nude mice. Results CDIM9 exhibited selective cell cytotoxicity and anti-proliferation effects on basal-like breast cancer lines. In MDA-MB231 cell, CDIM9 induced caveolin-1 and p27 expression, which was significantly downregulated by co-treatment with the PPAR-γ antagonist GW9662. Nonsteroidal anti-inflammatory drug-activated gene-1 and activating transcription factor-3 were upregulated by CDIM9 through a PPAR-γ independent pathway. CDIM9 (40 mg/kg daily, intraperitoneally, for 35 days) inhibited the growth of subcutaneous MDA-MB231 tumor xenografts by 87%, and produced a corresponding decrease in proliferation index. Nearly half of the treated mice (46%) had complete durable remissions, confirmed by histology. The growth of an established tumor was inhibited by CDIM9 treatment (64 mg/kg daily, intraperitoneally, for 10 days), with a mean tumor growth inhibition of 67% as compared with controls. CDIM9 induced increases in tumor caveolin-1 and p27 in vivo, which may contribute to its antitumor activity in basal-like breast cancer. Conclusion CDIM9 showed potent antiproliferative effects on basal-like breast cancer cell in tissue culture and dramatic growth inhibition in animal models at safe doses. These findings justify further development of this drug for treatment of basal-like breast cancer. PMID:17764562

  6. Age-Related Modulations of AQP4 and Caveolin-1 in the Hippocampus Predispose the Toxic Effect of Phoneutria nigriventer Spider Venom.

    PubMed

    Soares, Edilene S; Stávale, Leila M; Mendonça, Monique C P; Coope, Andressa; Cruz-Höfling, Maria Alice da

    2016-11-23

    We have previously demonstrated that Phoneutria nigriventer venom (PNV) causes blood-brain barrier (BBB) breakdown, swelling of astrocytes end-feet and fluid permeation into brain interstitium in rats. Caveolae and water channels respond to BBB alterations by co-participation in shear stress response and edema formation/resolution. Herein, we showed post-natal developmental-related changes of two BBB-associated transporter proteins: the endothelial caveolin-1 (Cav-1), the major scaffolding protein from caveolae frame, and the astroglial aquaporin-4 (AQP4), the main water channel protein expressed in astrocytic peri-vascular end-feet processes, in the hippocampus of rats intraperitoneally-administered PNV. Western blotting protein levels; immunohistochemistry (IHC) protein distribution in CA1, CA2, and CA3 subfields; and gene expression by Real Time-Polymerase Chain Reaction (qPCR) were assessed in post-natal Day 14 (P14) and 8-10-week-old rats over critical periods of envenomation. The intensity and duration of the toxic manifestations indicate P14 neonate rats more vulnerable to PNV than adults. Histologically, the capillaries of P14 and 8-10-week-old rats treated with PNV showed perivascular edema, while controls did not. The intensity of the toxic manifestations in P14 decreases temporally (2 > 5 > 24 h), while inversely the expression of AQP4 and Cav-1 peaked at 24 h when clinically PNV-treated animals do not differ from saline controls. IHC of AQP4 revealed that hippocampal CA1 showed the least expression at 2 h when toxic manifestation was maximal. Subfield IHC quantification revealed that in P14 rats Cav-1 peaked at 24 h when toxic manifestations were absent, whereas in 8-10-week-old rats Cav-1 peaked at 2 h when toxic signs were highest, and progressively attenuated such increases until 24 h, remaining though significantly above baseline. Considering astrocyte-endothelial physical and functional interactions, we hypothesize that age-related modulations of AQP4 and Cav-1 might be linked both to changes in functional properties of astrocytes during post-natal development and in the BBB breakdown induced by the venom of P. nigriventer .

  7. Endothelial Barrier Protection by Local Anesthetics: Ropivacaine and Lidocaine Block Tumor Necrosis Factor-α–induced Endothelial Cell Src Activation

    PubMed Central

    Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.

    2014-01-01

    Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory “side-effect” of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease. PMID:24525631

  8. Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation.

    PubMed

    Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D

    2014-06-01

    Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.

  9. Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study.

    PubMed

    Mufson, Elliott J; He, Bin; Ginsberg, Stephen D; Carper, Benjamin A; Bieler, Gayle S; Crawford, Fiona; Alvarez, Victor E; Huber, Bertrand R; Stein, Thor D; McKee, Ann C; Perez, Sylvia E

    2018-06-01

    Military personnel and athletes exposed to traumatic brain injury may develop chronic traumatic encephalopathy (CTE). Brain pathology in CTE includes intracellular accumulation of abnormally phosphorylated tau proteins (p-tau), the main constituent of neurofibrillary tangles (NFTs). Recently, we found that cholinergic basal forebrain (CBF) neurons within the nucleus basalis of Meynert (nbM), which provide the major cholinergic innervation to the cortex, display an increased number of NFTs across the pathological stages of CTE. However, molecular mechanisms underlying nbM neurodegeneration in the context of CTE pathology remain unknown. Here, we assessed the genetic signature of nbM neurons containing the p-tau pretangle maker pS422 from CTE subjects who came to autopsy and received a neuropathological CTE staging assessment (Stages II, III, and IV) using laser capture microdissection and custom-designed microarray analysis. Quantitative analysis revealed dysregulation of key genes in several gene ontology groups between CTE stages. Specifically, downregulation of the nicotinic cholinergic receptor subunit β-2 gene (CHRNB2), monoaminergic enzymes catechol-O-methyltransferase (COMT) and dopa decarboxylase (DDC), chloride channels CLCN4 and CLCN5, scaffolding protein caveolin 1 (CAV1), cortical development/cytoskeleton element lissencephaly 1 (LIS1), and intracellular signaling cascade member adenylate cyclase 3 (ADCY3) was observed in pS422-immunreactive nbM neurons in CTE patients. By contrast, upregulation of calpain 2 (CAPN2) and microtubule-associated protein 2 (MAP2) transcript levels was found in Stage IV CTE patients. These single-population data in vulnerable neurons indicate alterations in gene expression associated with neurotransmission, signal transduction, the cytoskeleton, cell survival/death signaling, and microtubule dynamics, suggesting novel molecular pathways to target for drug discovery in CTE.

  10. Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    PubMed Central

    2011-01-01

    Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG) that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses. PMID:21349196

  11. The minute virus of mice exploits different endocytic pathways for cellular uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy andmore » flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.« less

  12. Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1

    PubMed Central

    Yang, Su-Jung; Chen, Chen-Yu; Chang, Geen-Dong; Wen, Hui-Chin; Chen, Ching-Yu; Chang, Shi-Chuan; Liao, Jyh-Fei; Chang, Chung-Ho

    2013-01-01

    Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3-Kinase and Akt are involved in the facilitation of adipogenesis by AGEs. PMID:23472139

  13. Validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, X. F.; Oswald, Fred B.

    1992-01-01

    Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.

  14. Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence.

    PubMed

    Jäger, Marianne; Hubert, Astrid; Gogiraju, Rajinikanth; Bochenek, Magdalena L; Münzel, Thomas; Schäfer, Katrin

    2018-02-01

    Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of receptor tyrosine kinase signaling. In this study, we determined the importance of PTP1B expressed in endothelial cells for the vascular response to arterial injury in obesity. Morphometric analysis of vascular lesions generated by 10% ferric chloride (FeCl 3 ) revealed that tamoxifen-inducible endothelial PTP1B deletion (Tie2.ER T2 -Cre × PTP1B fl/fl ; End.PTP1B knockout, KO) significantly increased neointima formation, and reduced numbers of (endothelial lectin-positive) luminal cells in End.PTP1B-KO mice suggested impaired lesion re-endothelialization. Significantly higher numbers of proliferating cell nuclear antigen (PCNA)-positive proliferating cells as well as smooth muscle actin (SMA)-positive or vascular cell adhesion molecule-1 (VCAM1)-positive activated smooth muscle cells or vimentin-positive myofibroblasts were detected in neointimal lesions of End.PTP1B-KO mice, whereas F4/80-positive macrophage numbers did not differ. Activated receptor tyrosine kinase and transforming growth factor-beta (TGFβ) signaling and oxidative stress markers were also significantly more abundant in End.PTP1B-KO mouse lesions. Genetic knockdown or pharmacological inhibition of PTP1B in endothelial cells resulted in increased expression of caveolin-1 and oxidative stress, and distinct morphological changes, elevated numbers of senescence-associated β-galactosidase-positive cells, and increased expression of tumor suppressor protein 53 (p53) or the cell cycle inhibitor cyclin-dependent kinase inhibitor-2A (p16INK4A) suggested senescence, all of which could be attenuated by small interfering RNA (siRNA)-mediated downregulation of caveolin-1. In vitro, senescence could be prevented and impaired re-endothelialization restored by preincubation with the antioxidant Trolox. Our results reveal a previously unknown role of PTP1B in endothelial cells and provide mechanistic insights how PTP1B deletion or inhibition may promote endothelial senescence. Absence of PTP1B in endothelial cells impairs re-endothelialization, and the failure to induce smooth muscle cell quiescence or to protect from circulating growth factors may result in neointimal hyperplasia. Antioxid. Redox Signal. 00, 000-000.

  15. Prediction of Composite Laminate Strength Properties Using a Refined Zigzag Plate Element

    NASA Technical Reports Server (NTRS)

    Barut, Atila; Madenci, Erdogan; Tessler, Alexander

    2013-01-01

    This study presents an approach that uses the refined zigzag element, RZE(exp2,2) in conjunction with progressive failure criteria to predict the ultimate strength of composite laminates based on only ply-level strength properties. The methodology involves four major steps: (1) Determination of accurate stress and strain fields under complex loading conditions using RZE(exp2,2)-based finite element analysis, (2) Determination of failure locations and failure modes using the commonly accepted Hashin's failure criteria, (3) Recursive degradation of the material stiffness, and (4) Non-linear incremental finite element analysis to obtain stress redistribution until global failure. The validity of this approach is established by considering the published test data and predictions for (1) strength of laminates under various off-axis loading, (2) strength of laminates with a hole under compression, and (3) strength of laminates with a hole under tension.

  16. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-RasV12 -induced cell transformation.

    PubMed

    Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chiou, Yu-Wei; Wu, Ching-Lung; Chiu, Wen-Tai; Tang, Ming-Jer

    2018-05-01

    Caveolin-1 (Cav1) is down-regulated during MK4 (MDCK cells harbouring inducible Ha-Ras V12 gene) transformation by Ha-Ras V12 . Cav1 overexpression abrogates the Ha-Ras V12 -driven transformation of MK4 cells; however, the targeted down-regulation of Cav1 is not sufficient to mimic this transformation. Cav1-silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction-related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I-CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha-Ras V12 -inducing MK4 cells increased exosome-like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I-CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I-CM (MK4+I-EXs). Wnt5a, a downstream product of Ha-Ras V12 , was markedly secreted by MK4+I-CM and MK4+I-EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha-Ras V12 - and MK4+I-CM-induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down-regulation, either by Ha-Ras V12 or targeted shRNA, increased frizzled-2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I-EXs in MDCK cells. These data suggest that Cav1-dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha-Ras V12 -Wnt5a-Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha-Ras V12 -driven cell transformation. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Predictions of the residue cross-sections for the elements Z = 113 and Z = 114

    NASA Astrophysics Data System (ADS)

    Bouriquet, B.; Abe, Y.; Kosenko, G.

    2004-10-01

    A good reproduction of experimental excitation functions is obtained for the 1 n reactions producing the elements with Z = 108, 110, 111 and 112 by the combined usage of the two-step model for fusion and the statistical decay code KEWPIE. Furthermore, the model provides reliable predictions of productions of the elements with Z = 113 and Z = 114 which will be a useful guide for plannings of experiments.

  18. Effects and mechanisms of pirfenidone, prednisone and acetylcysteine on pulmonary fibrosis in rat idiopathic pulmonary fibrosis models.

    PubMed

    Yu, Wencheng; Guo, Fang; Song, Xiaoxia

    2017-12-01

    Previous studies have reported that caveolin-1 (Cav-1) is associated with lung fibrosis. However, the role of Cav-1 expression in pirfenidone-treated idiopathic pulmonary fibrosis (IPF) is unknown. This study investigated Cav-1 expression in pirfenidone-treated IPF, and compared the effects of pirfenidone with acetylcysteine and prednisone on IPF. Rat IPF model was established by endotracheal injection of 5 mg/kg bleomycin A5 into the specific pathogen-free Wistar male rats. Pirfenidone (P, 100 mg/kg once daily), prednisone (H, 5 mg/kg once daily) and acetylcysteine (N, 4 mg/kg 3 times per day) were used to treat the rat model by intragastric administration for 45 consecutive days, respectively. The normal rats without IPF were used as the controls. After 15, 30 and 45 days of drug treatment, lung histopathology was assessed. The expression of Cav-1 was determined using real-time quantitative PCR and Western blot; the expression of tumour necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) was determined by enzyme-linked immunosorbent assay. After 15, 30 and 45 days of drug treatment, comparison of the three drug-treated groups with the model group showed significantly lower (p < 0.05) significance of airsacculitis and fibrosis scores of lung tissues, as well as expression of TGF-β1, TNF-α and PDGF, but the expression of Cav-1 was higher (p < 0.05). Compared with the N group, the fibrosis score was significantly lower and the protein expression of Cav-1 was significantly higher in the P group (p < 0.05). Additionally, the expression of Cav-1 was negatively correlated with the airsacculitis and fibrosis scores (r = -0.506, p < 0.01; r = -0.676, p < 0.01) as well as expression of TGF-β1, TNF-α and PDGF (r = -0.590, p < 0.01; r = -0.530, p < 0.01; r = -0.553, p < 0.01). Pirfenidone, prednisone and acetylcysteine can inhibit airsacculitis and pulmonary fibrosis in rat IPF models, which may be related with enhanced caveolin-1, reduced TNF-α, TGF-β1, PDGF.

  19. TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma

    PubMed Central

    Hall, Daniel P.; Cost, Nicholas G.; Hegde, Shailaja; Kellner, Emily; Mikhaylova, Olga; Stratton, Yiwen; Ehmer, Birgit; Abplanalp, William A.; Pandey, Raghav; Biesiada, Jacek; Harteneck, Christian; Plas, David R.; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2014-01-01

    Summary Autophagy promotes tumor growth by generating nutrients from the degradation of intracellular structures. Here we establish, using shRNAs, a dominant negative mutant, and a pharmacologic inhibitor, mefenamic acid (MFA), that the Transient Receptor Potential Melastatin 3 (TRPM3) channel promotes growth of clear cell renal cell carcinoma (ccRCC) and stimulates MAP1LC3A (LC3A) and MAP1LC3B (LC3B) autophagy. Increased expression of TRPM3 in RCC leads to Ca2+ influx, activation of CAMKK2, AMPK, and ULK1, and phagophore formation. In addition, TRPM3 Ca2+ and Zn2+ fluxes inhibit miR-214 which directly targets LC3A and LC3B. The von Hippel-Lindau tumor suppressor (VHL) represses TRPM3 through miR-204 directly and indirectly through another miR-204 target, Caveolin 1 (CAV1). PMID:25517751

  20. Endothelin Induces Rapid, Dynamin-mediated Budding of Endothelial Caveolae Rich in ET-B*

    PubMed Central

    Oh, Phil; Horner, Thierry; Witkiewicz, Halina; Schnitzer, Jan E.

    2012-01-01

    Clathrin-independent trafficking pathways for internalizing G protein-coupled receptors (GPCRs) remain undefined. Clathrin-mediated endocytosis of receptors including ligand-engaged GPCRs can be very rapid and comprehensive (<10 min). Caveolae-mediated endocytosis of ligands and antibodies has been reported to be much slower in cell culture (≫10 min). Little is known about the role of physiological ligands and specific GPCRs in regulating caveolae trafficking. Here, we find that one receptor for endothelin, ET-B but not ET-A, resides on endothelial cell surfaces in both tissue and cell culture primarily concentrated within caveolae. Reconstituted cell-free budding assays show that endothelins (ETs) induce the fission of caveolae from endothelial plasma membranes purified from rat lungs. Electron microcopy of lung tissue sections and tissue subcellular fractionation both show that endothelin administered intravascularly in rats also induces a significant loss of caveolae at the luminal surface of lung vascular endothelium. Endothelial cells in culture show that ET stimulates very rapid internalization of caveolae and cargo including caveolin, caveolae-targeting antibody, and itself. The ET-B inhibitor BQ788, but not the ET-A inhibitor BQ123, blocks the ET-induced budding of caveolae. Both the pharmacological inhibitor Dynasore and the genetic dominant negative K44A mutant of dynamin prevent this induced budding and internalization of caveolae. Also shRNA lentivirus knockdown of caveolin-1 expression prevents rapid internalization of ET and ET-B. It appears that endothelin can engage ET-B already highly concentrated in caveolae of endothelial cells to induce very rapid caveolae fission and endocytosis. This transport requires active dynamin function. Caveolae trafficking may occur more rapidly than previously documented when it is stimulated by a specific ligand to signaling receptors already located in caveolae before ligand engagement. PMID:22457360

  1. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  2. Cellular entry of G3.5 poly (amido amine) dendrimers by clathrin- and dynamin-dependent endocytosis promotes tight junctional opening in intestinal epithelia.

    PubMed

    Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W

    2010-08-01

    This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.

  3. Exacerbation of pathology by oxidative stress in respiratory and locomotor muscles with Duchenne muscular dystrophy.

    PubMed

    Lawler, John M

    2011-05-01

    Duchenne muscular dystrophy (DMD) is the most devastating type of muscular dystrophy, leading to progressive weakness of respiratory (e.g. diaphragm) and locomotor muscles (e.g. gastrocnemius). DMD is caused by X-linked defects in the gene that encodes for dystrophin, a key scaffolding protein of the dystroglycan complex (DCG) within the sarcolemmal cytoskeleton. As a result of a compromised dystroglycan complex, mechanical integrity is impaired and important signalling proteins (e.g. nNOS, caveolin-3) and pathways are disrupted. Disruption of the dystroglycan complex leads to high susceptibility to injury with repeated, eccentric contractions as well as inflammation, resulting in significant damage and necrosis. Chronic damage and repair cycling leads to fibrosis and weakness. While the link between inflammation with damage and weakness in the DMD diaphragm is unresolved, elevated oxidative stress may contribute to damage, weakness and possibly fibrosis. While utilization of non-specific antioxidant interventions has yielded inconsistent results, recent data suggest that NAD(P)H oxidase could play a pivotal role in elevating oxidative stress via integrated changes in caveolin-3 and stretch-activated channels (SACs). Oxidative stress may act as an amplifier, exacerbating disruption of the dystroglycan complex, upregulation of the inflammatory transcription factor NF-B, and thus functional impairment of force-generating capacity.

  4. Data supporting attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts.

    PubMed

    Moerke, Caroline; Mueller, Petra; Nebe, Barbara

    2016-06-01

    The provided data contains the phagocytic interaction of human MG-63 osteoblasts with micro-particles 6 µm in size as well as geometric micro-pillared topography with micro-pillar sizes 5 µm of length, width, height and spacing respectively related to the research article entitled "Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts" in the Biomaterials journal. [1] Micro-particle treatment was used as positive control triggering phagocytosis by the osteoblasts. Caveolin-1 (Cav-1) as major structural component of caveolae [2] plays an important role in the phagocytic process of micro-particles and -pillars. Data related to the experiments in [1] with siRNA-mediated knockdown are presented here as well as micro-particle control experiments, tubulin analysis on the micro-pillared topography and initial cell interaction with the micro-pillars.

  5. Prediction of progressive damage and strength of plain weave composites using the finite element method

    NASA Astrophysics Data System (ADS)

    Srirengan, Kanthikannan

    The overall objective of this research was to develop the finite element code required to efficiently predict the strength of plain weave composite structures. Towards which, three-dimensional conventional progressive damage analysis was implemented to predict the strength of plain weave composites subjected to periodic boundary conditions. Also, modal technique for three-dimensional global/local stress analysis was developed to predict the failure initiation in plain weave composite structures. The progressive damage analysis was used to study the effect of quadrature order, mesh refinement and degradation models on the predicted damage and strength of plain weave composites subjected to uniaxial tension in the warp tow direction. A 1/32sp{nd} part of the representative volume element of a symmetrically stacked configuration was analyzed. The tow geometry was assumed to be sinusoidal. Graphite/Epoxy system was used. Maximum stress criteria and combined stress criteria were used to predict failure in the tows and maximum principal stress criterion was used to predict failure in the matrix. Degradation models based on logical reasoning, micromechanics idealization and experimental comparisons were used to calculate the effective material properties with of damage. Modified Newton-Raphson method was used to determine the incremental solution for each applied strain level. Using a refined mesh and the discount method based on experimental comparisons, the progressive damage and the strength of plain weave composites of waviness ratios 1/3 and 1/6 subjected to uniaxial tension in the warp direction have been characterized. Plain weave composites exhibit a brittle response in uniaxial tension. The strength decreases significantly with the increase in waviness ratio. Damage initiation and collapse were caused dominantly due to intra-tow cracking and inter-tow debonding respectively. The predicted strength of plain weave composites of racetrack geometry and waviness ratio 1/25.7 was compared with analytical predictions and experimental findings and was found to match well. To evaluate the performance of the modal technique, failure initiation in a short woven composite cantilevered plate subjected to end moment and transverse end load was predicted. The global/local predictions were found to reasonably match well with the conventional finite element predictions.

  6. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy

    PubMed Central

    Ohsawa, Yutaka; Takayama, Kentaro; Nishimatsu, Shin-ichiro; Okada, Tadashi; Fujino, Masahiro; Fukai, Yuta; Murakami, Tatsufumi; Hagiwara, Hiroki; Itoh, Fumiko; Tsuchida, Kunihiro; Hayashi, Yoshio; Sunada, Yoshihide

    2015-01-01

    Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings. PMID:26226340

  7. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy.

    PubMed

    Ohsawa, Yutaka; Takayama, Kentaro; Nishimatsu, Shin-ichiro; Okada, Tadashi; Fujino, Masahiro; Fukai, Yuta; Murakami, Tatsufumi; Hagiwara, Hiroki; Itoh, Fumiko; Tsuchida, Kunihiro; Hayashi, Yoshio; Sunada, Yoshihide

    2015-01-01

    Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.

  8. Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry.

    PubMed

    Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M; Tourkina, Elena; Visconti, Richard P; Hoffman, Stanley

    2014-01-01

    Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45(high) fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47(high)/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ.

  9. Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry

    PubMed Central

    Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M.; Tourkina, Elena; Visconti, Richard P.; Hoffman, Stanley

    2014-01-01

    Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ. PMID:24999331

  10. Compilation of mRNA Polyadenylation Signals in Arabidopsis Revealed a New Signal Element and Potential Secondary Structures1[w

    PubMed Central

    Loke, Johnny C.; Stahlberg, Eric A.; Strenski, David G.; Haas, Brian J.; Wood, Paul Chris; Li, Qingshun Quinn

    2005-01-01

    Using a novel program, SignalSleuth, and a database containing authenticated polyadenylation [poly(A)] sites, we analyzed the composition of mRNA poly(A) signals in Arabidopsis (Arabidopsis thaliana), and reevaluated previously described cis-elements within the 3′-untranslated (UTR) regions, including near upstream elements and far upstream elements. As predicted, there are absences of high-consensus signal patterns. The AAUAAA signal topped the near upstream elements patterns and was found within the predicted location to only approximately 10% of 3′-UTRs. More importantly, we identified a new set, named cleavage elements, of poly(A) signals flanking both sides of the cleavage site. These cis-elements were not previously revealed by conventional mutagenesis and are contemplated as a cluster of signals for cleavage site recognition. Moreover, a single-nucleotide profile scan on the 3′-UTR regions unveiled a distinct arrangement of alternate stretches of U and A nucleotides, which led to a prediction of the formation of secondary structures. Using an RNA secondary structure prediction program, mFold, we identified three main types of secondary structures on the sequences analyzed. Surprisingly, these observed secondary structures were all interrupted in previously constructed mutations in these regions. These results will enable us to revise the current model of plant poly(A) signals and to develop tools to predict 3′-ends for gene annotation. PMID:15965016

  11. Theoretical Predictions of Cross-Sections of the Super-Heavy Elements

    NASA Astrophysics Data System (ADS)

    Bouriquet, B.; Kosenko, G.; Abe, Y.

    The evaluation of the residue cross-sections of reactionssynthesising superheavy elements has been achieved by the combination of the two-step model for fusion and the evaporation code (KEWPIE) for survival probability. The theoretical scheme of those calculations is presented, and some encouraging results are given, together with some difficulties. With this approach, the measured excitation functions of the 1n reactions producing elements with Z=108, 110, 111 and 112 are well reproduced. Thus, the model has been used to predict the cross-sections of the reactions leading to the formation of the elements with Z=113 and Z=114.

  12. Intralipid protects the heart in late pregnancy against ischemia/reperfusion injury via Caveolin2/STAT3/GSK-3β pathway.

    PubMed

    Li, Jingyuan; Ruffenach, Gregoire; Kararigas, Georgios; Cunningham, Christine M; Motayagheni, Negar; Barakai, Neusha; Umar, Soban; Regitz-Zagrosek, Vera; Eghbali, Mansoureh

    2017-01-01

    We recently demonstrated that the heart of late pregnant (LP) rodents is more prone to ischemia/reperfusion (I/R) injury compared to non-pregnant rodents. Lipids, particularly polyunsaturated fatty acids, have received special attention in the field of cardiovascular research. Here, we explored whether Intralipid (ITLD) protects the heart against I/R injury in LP rodents and investigated the mechanisms underlying this protection. In-vivo female LP rat hearts or ex-vivo isolated Langendorff-perfused LP mouse hearts were subjected to ischemia followed by reperfusion with PBS or ITLD (one bolus of 5mg/kg of 20% in in-vivo and 1% in ex-vivo). Myocardial infarct size, mitochondrial calcium retention capacity, genome-wide expression profiling, pharmacological inhibition and co-immunoprecipitation were performed. One bolus of ITLD at reperfusion significantly reduced the in-vivo myocardial infarct size in LP rats (23.3±2% vs. 55.5±3.4% in CTRL, p<0.01). Postischemic administration of ITLD also protected the LP hearts against I/R injury ex-vivo. ITLD significantly increased the threshold for the opening of the mitochondrial permeability transition pore in response to calcium overload (nmol-calcium/mg-mitochondrial protein: 290±17 vs. 167±10 in CTRL, p<0.01) and significantly increased phosphorylation of STAT3 (1.8±0.08 vs. 1±0.16 in CTRL, p<0.05) and GSK-3β (2.63±0.55 vs. 1±0.0.34 in CTRL, p<0.05). The ITLD-induced cardioprotection was fully abolished by Stattic, a specific inhibitor of STAT3. Transcriptome analysis revealed caveolin 2 (Cav2) was significantly upregulated by ITLD in hearts of LP rats under I/R injury. Co-immunoprecipitation experiments showed that Cav2 interacts with STAT3. ITLD protects the heart in late pregnancy against I/R injury by inhibiting the mPTP opening through Cav2/STAT3/GSK-3β pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Role of p53–fibrinolytic system cross-talk in the regulation of quartz-induced lung injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandary, Yashodhar P.; Shetty, Shwetha K.; Marudamuthu, Amarnath S.

    2015-03-01

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acutemore » and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53–uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. - Highlights: • Chronic exposure to quartz dusts is a major cause of lung injury and silicosis. • The survival of patients with silicosis is bleak due to lack of effective treatments. • This study defines a new role of p53–uPA cross-talk in quartz-induced lung injury. • Targeting the p53–uPA system inhibits ATII cell/lung injury due to quartz exposure.« less

  14. Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis

    PubMed Central

    Zhang, Meng; Gao, Jiazi; Huang, Xu; Zhang, Min; Liu, Bei

    2017-01-01

    Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA. PMID:29065624

  15. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area.

    PubMed

    Swain, James H; Newman, Samuel M; Hunt, Janet R

    2003-11-01

    Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P < 0.05) with the following rank order: Carbonyl (64%; Ferronyl, U.S.) > Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.

  16. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: cadaveric validation study.

    PubMed

    Miura, Michiaki; Nakamura, Junichi; Matsuura, Yusuke; Wako, Yasushi; Suzuki, Takane; Hagiwara, Shigeo; Orita, Sumihisa; Inage, Kazuhide; Kawarai, Yuya; Sugano, Masahiko; Nawata, Kento; Ohtori, Seiji

    2017-12-16

    Finite element analysis (FEA) of the proximal femur has been previously validated with large mesh size, but these were insufficient to simulate the model with small implants in recent studies. This study aimed to validate the proximal femoral computed tomography (CT)-based specimen-specific FEA model with smaller mesh size using fresh frozen cadavers. Twenty proximal femora from 10 cadavers (mean age, 87.1 years) were examined. CT was performed on all specimens with a calibration phantom. Nonlinear FEA prediction with stance configuration was performed using Mechanical Finder (mesh,1.5 mm tetrahedral elements; shell thickness, 0.2 mm; Poisson's coefficient, 0.3), in comparison with mechanical testing. Force was applied at a fixed vertical displacement rate, and the magnitude of the applied load and displacement were continuously recorded. The fracture load and stiffness were calculated from force-displacement curve, and the correlation between mechanical testing and FEA prediction was examined. A pilot study with one femur revealed that the equations proposed by Keller for vertebra were the most reproducible for calculating Young's modulus and the yield stress of elements of the proximal femur. There was a good linear correlation between fracture loads of mechanical testing and FEA prediction (R 2 = 0.6187) and between the stiffness of mechanical testing and FEA prediction (R 2 = 0.5499). There was a good linear correlation between fracture load and stiffness (R 2 = 0.6345) in mechanical testing and an excellent correlation between these (R 2 = 0.9240) in FEA prediction. CT-based specimen-specific FEA model of the proximal femur with small element size was validated using fresh frozen cadavers. The equations proposed by Keller for vertebra were found to be the most reproducible for the proximal femur in elderly people.

  17. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  18. Inhibition of Bufo arenarum oocyte maturation induced by cholesterol depletion by methyl-beta-cyclodextrin. Role of low-density caveolae-like membranes.

    PubMed

    Buschiazzo, Jorgelina; Bonini, Ida C; Alonso, Telma S

    2008-06-01

    The invaginated structure of caveolae seems to provide an optimal environment for hormone binding leading to oocyte meiotic maturation. We conducted a quantitative analysis of lipids and proteins of detergent-free low-density membranes isolated from Bufo arenarum oocytes and we modulated cellular cholesterol to further understand how these domains perform their regulatory functions in the amphibian system. Light membranes derive from the plasma membrane as suggested by the enrichment in the activity of 5'nucleotidase. Lipid analysis by chromatography techniques revealed that this fraction is enriched in phosphatidylserine and cholesterol and that it evidences an important level of sphingomyelin. The finding of a single 21 kDa caveolin in light membranes indicates the presence of caveolae-like structures in B. arenarum oocytes. In support of this finding, c-Src is significantly associated to this fraction. Cholesterol content of oocytes treated with methyl-beta-cyclodextrin (MbetaCD) decreased when compared to control oocytes. Drug treatment inhibited meiotic maturation in a dose-dependent manner and affected the localization of caveolin and c-Src among membrane fractions. Repletion of cholesterol showed a recovery of the ability of MbetaCD-treated oocytes to mature, particularly at the 25 mM concentration in which reversibility was close to the control level. Results highlight the importance of caveolae-like microdomains for maturation signaling in Bufo oocytes.

  19. Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways

    PubMed Central

    Keshavarz, Maryam; Schwarz, Heike; Hartmann, Petra; Wiegand, Silke; Skill, Melanie; Althaus, Mike; Kummer, Wolfgang; Krasteva-Christ, Gabriela

    2017-01-01

    An increased bronchoconstrictor response is a hallmark in the progression of obstructive airway diseases. Acetylcholine and 5-hydroxytryptamine (5-HT, serotonin) are the major bronchoconstrictors. There is evidence that both cholinergic and serotonergic signaling in airway smooth muscle (ASM) involve caveolae. We hypothesized that caveolin-1 (cav-1), a structural protein of caveolae, plays an important regulatory role in ASM contraction. We analyzed airway contraction in different tracheal segments and extra- and intrapulmonary bronchi in cav-1 deficient (cav-1−/−) and wild-type mice using organ bath recordings and videomorphometry of methyl-beta-cyclodextrin (MCD) treated and non-treated precision-cut lung slices (PCLS). The presence of caveolae was investigated by electron microscopy. Receptor subtypes driving 5-HT-responses were studied by RT-PCR and videomorphometry after pharmacological inhibition with ketanserin. Cav-1 was present in tracheal epithelium and ASM. Muscarine induced a dose dependent contraction in all airway segments. A significantly higher Emax was observed in the caudal trachea. Although, caveolae abundancy was largely reduced in cav-1−/− mice, muscarine-induced airway contraction was maintained, albeit at diminished potency in the middle trachea, in the caudal trachea and in the bronchus without changes in the maximum efficacy. MCD-treatment of PLCS from cav-1−/− mice reduced cholinergic constriction by about 50%, indicating that cholesterol-rich plasma domains account for a substantial portion of the muscarine-induced bronchoconstriction. Notably, cav-1-deficiency fully abrogated 5-HT-induced contraction of extrapulmonary airways. In contrast, 5-HT-induced bronchoconstriction was fully maintained in cav-1-deficient intrapulmonary bronchi, but desensitization upon repetitive stimulation was enhanced. RT-PCR analysis revealed 5-HT1B, 5-HT2A, 5-HT6, and 5-HT7 receptors as the most prevalent subtypes in the airways. The 5-HT-induced-constriction in PCLS could be antagonized by ketanserin, a 5-HT2A receptor inhibitor. In conclusion, the role of cav-1, caveolae, and cholesterol-rich plasma domains in regulation of airway tone are highly agonist-specific and dependent on airway level. Cav-1 is indispensable for serotonergic contraction of extrapulmonary airways and modulates cholinergic constriction of the trachea and main bronchus. Thus, cav-1/caveolae shall be considered in settings such as bronchial hyperreactivity in common airway diseases and might provide an opportunity for modulation of the constrictor response. PMID:28555112

  20. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis.

    PubMed

    Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka

    2014-11-01

    Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Experimental validation of boundary element methods for noise prediction

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Oswald, Fred B.

    1992-01-01

    Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.

  2. Sex Steroids Effects on the Molting Process of the Helminth Human Parasite Trichinella spiralis

    PubMed Central

    Hernández-Bello, Romel; Ramirez-Nieto, Ricardo; Muñiz-Hernández, Saé; Nava-Castro, Karen; Pavón, Lenin; Sánchez-Acosta, Ana Gabriela; Morales-Montor, Jorge

    2011-01-01

    We evaluated the in vitro effects of estradiol, progesterone, and testosterone on the molting process, which is the initial and crucial step in the development of the muscular larvae (ML or L1) to adult worm. Testosterone had no significative effect on the molting rate of the parasite, however, progesterone decreased the molting rate about a 50% in a concentration- and time-independent pattern, while estradiol had a slight effect (10%). The gene expression of caveolin-1, a specific gene used as a marker of parasite development, showed that progesterone and estradiol downregulated its expression, while protein expression was unaffected. By using flow citometry, a possible protein that is recognized by a commercial antiprogesterone receptor antibody was detected. These findings may have strong implications in the host-parasite coevolution, in the sex-associated susceptibility to this infection and could point out to possibilities to use antihormones to inhibit parasite development. PMID:22162638

  3. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa

    2015-01-01

    The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.

  4. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  5. Analysis of superconducting electromagnetic finite elements based on a magnetic vector potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements are extended based on a variational principle that uses the electromagnetic four potential as primary variable. The variational principle is extended to include the ability to predict a nonlinear current distribution within a conductor. The extension of this theory is first done on a normal conductor and tested on two different problems. In both problems, the geometry remains the same, but the material properties are different. The geometry is that of a 1-D infinite wire. The first problem is merely a linear control case used to validate the new theory. The second problem is made up of linear conductors with varying conductivities. Both problems perform well and predict current densities that are accurate to within a few ten thousandths of a percent of the exact values. The fourth potential is then removed, leaving only the magnetic vector potential, and the variational principle is further extended to predict magnetic potentials, magnetic fields, the number of charge carriers, and the current densities within a superconductor. The new element produces good results for the mean magnetic field, the vector potential, and the number of superconducting charge carriers despite a relatively high system condition number. The element did not perform well in predicting the current density. Numerical problems inherent to this formulation are explored and possible remedies to produce better current predicting finite elements are presented.

  6. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: Observations and predictions

    NASA Astrophysics Data System (ADS)

    Rubin, Ken

    1997-09-01

    Recently, it has been reported that the element polonium degasses from mid-ocean ridge and seamount volcanoes during eruptions. Published and new observations on other volatile metal and metalloid elements can also be interpreted as indicating significant degassing of magmatic vapors during submarine eruptions. This process potentially plays an important role in the net transfer of chemical elements from erupting volcanoes to seawater in addition to that arising from sea floor hydrothermal systems. In this paper, a framework is constructed for predicting and assessing semiquantitatively the potential magnitude and chemical fingerprints in the water column of metal and metalloid degassing using (1) predictions from a summary of element volatilities during mafic subaerial volcanism worldwide and (2) limited data from submarine volcanic effusives. The latter include analyses of polonium and trace metals in near-volcano water masses sampled following a submarine eruption at Loihi seamount, Hawaii (1000 m bsl) in 1996. The element volatility predictions and observations show good agreement, considering the limited dataset. Some of the highest volatility main group and transition element enrichments in seawater over Loihi are predicted by the degassing mass transfer model I present. When expanded to cover all submarine volcanic activity, it is predicted that exit fluxes of these elements are up to 10 2-10 3 greater by degassing than by normal MOR hydrothermalism. In contrast, MOR exit fluxes of low volatility alkali and alkaline earth elements are likely 10 2-10 6 greater from hydrothermal inputs. Degassing inputs to the ocean are probably highly episodic, occurring almost entirely during eruptions; these are times of enhanced and abnormal hydrothermalism as well. Although major hydrothermal and degassing events may not be chemically recognizable in real water masses as wholly distinct entities, it is nevertheless possible to predict to what extent each process flavors the effluents of the other. Degassing at mid-ocean ridges may explain a variety of observations previously ascribed to complexities occurring during hydrothermal venting and/or fluid ascent in the buoyant hydrothermal plumes above ridges.

  7. Plausibility and parameter sensitivity of micro-finite element-based joint load prediction at the proximal femur.

    PubMed

    Synek, Alexander; Pahr, Dieter H

    2018-06-01

    A micro-finite element-based method to estimate the bone loading history based on bone architecture was recently presented in the literature. However, a thorough investigation of the parameter sensitivity and plausibility of this method to predict joint loads is still missing. The goals of this study were (1) to analyse the parameter sensitivity of the joint load predictions at one proximal femur and (2) to assess the plausibility of the results by comparing load predictions of ten proximal femora to in vivo hip joint forces measured with instrumented prostheses (available from www.orthoload.com ). Joint loads were predicted by optimally scaling the magnitude of four unit loads (inclined [Formula: see text] to [Formula: see text] with respect to the vertical axis) applied to micro-finite element models created from high-resolution computed tomography scans ([Formula: see text]m voxel size). Parameter sensitivity analysis was performed by varying a total of nine parameters and showed that predictions of the peak load directions (range 10[Formula: see text]-[Formula: see text]) are more robust than the predicted peak load magnitudes (range 2344.8-4689.5 N). Comparing the results of all ten femora with the in vivo loading data of ten subjects showed that peak loads are plausible both in terms of the load direction (in vivo: [Formula: see text], predicted: [Formula: see text]) and magnitude (in vivo: [Formula: see text], predicted: [Formula: see text]). Overall, this study suggests that micro-finite element-based joint load predictions are both plausible and robust in terms of the predicted peak load direction, but predicted load magnitudes should be interpreted with caution.

  8. Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine Geochemically Reactive Elements in Soil

    PubMed Central

    2017-01-01

    Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700

  9. A finite element investigation of upper cervical instrumentation.

    PubMed

    Puttlitz, C M; Goel, V K; Traynelis, V C; Clark, C R

    2001-11-15

    The finite element technique was used to predict changes in biomechanics that accompany the application of a novel instrumentation system designed for use in the upper cervical spine. To determine alterations in joint loading, kinematics, and instrumentation stresses in the craniovertebral junction after application of a novel instrumentation system. Specifically, this design was used to assess the changes in these parameters brought about by two different cervical anchor types: C2 pedicle versus C2-C1 transarticular screws, and unilateral versus bilateral instrumentation. Arthrodesis procedures can be difficult to obtain in the highly mobile craniovertebral junction. Solid fusion is most likely achieved when motion is eliminated. Biomechanical studies have shown that C1-C2 transarticular screws provide good stability in craniovertebral constructs; however, implantation of these screws is accompanied by risk of vertebral artery injury. A novel instrumentation system that can be used with transarticular screws or with C2 pedicle screws has been developed. This design also allows for unilateral or bilateral implantation. However, the authors are unaware of any reports to date on the changes in joint loading or instrumentation stresses that are associated with the choice of C2 anchor or unilateral/bilateral use. A ligamentous, nonlinear, sliding contact, three-dimensional finite element model of the C0-C1-C2 complex and a novel instrumentation system was developed. Validation of the model has been previously reported. Finite element models representing combinations of cervical anchor type (C1-C2 transarticular screws vs. C2 pedicle screws) and unilateral versus bilateral instrumentation were evaluated. All models were subjected to compression with pure moments in either flexion, extension, or lateral bending. Kinematic reductions with respect to the intact (uninjured and without instrumentation) case caused by instrumentation use were reported. Changes in loading profiles through the right and left C0-C1 and C1-C2 facets, transverse ligament-dens, and dens-anterior ring of C1 articulations were calculated by the finite element model. Maximum von Mises stresses within the instrumentation were predicted for each model variant and loading scenario. Bilateral instrumentation provided greater motion reductions than the unilateral instrumentation. When used bilaterally, C2 pedicle screws approximate the kinematic reductions and instrumentation stresses (except in lateral bending) that are seen with C1-C2 transarticular screws. The finite element model predicted that the maximum stress was always in the region in which the plate transformed into the rod. To the best of the authors' knowledge, this is the first report of predicting changes in loading in the upper cervical spine caused by instrumentation. The most significant conclusion that can be drawn from the finite element model predictions is that C2 pedicle screw fixation provides the same relative stability and instrumentation stresses as C1-C2 transarticular screw use. C2 pedicle screws can be a good alternative to C2-C1 transarticular screws when bilateral instrumentation is applied.

  10. Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity.

    PubMed

    Hadj Sassi, Abdessattar; Monteil, Julien; Sauvant, Patrick; Atgié, Claude

    2012-12-01

    Caveolin-3 (cav-3), which is involved in the regulation of signal transduction and vesicular trafficking, could interact with activin receptor IIB to inhibit myostatin (MSTN) activity and may therefore play a role in muscle development and hypertrophy. MSTN is a member of the transforming growth factor-β family, identified as a negative regulator of skeletal muscle mass. The expression of MSTN is fiber-type specific and the greatest amount of MSTN is present in fiber, which is composed of myosin heavy chain (MHC) type IIb. MSTN acts through the activin receptor IIB to activate smad2/3 which leads to an increase in gene transcription involved in muscle atrophy. Muscle hypertrophy is a consequence of two mechanisms: (1) the inhibition of proteolysis such as the calcium-dependent proteolytic system calpains and calpastatin and (2) an increase in protein synthesis through the Akt/mTOR/p70s6K pathway. In order to determine which of the two processes predominates in inhibition of MSTN activity in a cav-3 context, we transfected a C2C12 cell line with plasmids containing mstn or cav-3 wild genes. The results reported in this study demonstrate that inhibition of MSTN activity by overexpression of cav-3 induces an activation of protein synthesis rather than an inhibition of proteolysis through the calcium proteolytic system. The inhibition of phosphorylation of smad-3 due to overexpression of cav-3 causes an increase in the phosphorylation of the ribosomal protein S6, promoting the synthesis of MHC type II, probably through activation of Akt/mTOR/p70s6K. These data highlight the role of protein synthesis as the predominant mechanism in muscle hypertrophy observed when the expression of MSTN is altered and confirm the value of studying the physiological role of MSTN in the growing processes of skeletal muscle.

  11. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells.

    PubMed

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.

  12. Effects of 5-Fluorouracil in Nuclear and Cellular Morphology, Proliferation, Cell Cycle, Apoptosis, Cytoskeletal and Caveolar Distribution in Primary Cultures of Smooth Muscle Cells

    PubMed Central

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer. PMID:23646193

  13. Intracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells.

    PubMed

    Contreras-Ruiz, Laura; de la Fuente, María; Párraga, Jenny E; López-García, Antonio; Fernández, Itziar; Seijo, Begoña; Sánchez, Alejandro; Calonge, Margarita; Diebold, Yolanda

    2011-01-27

    Nanoparticles are a promising alternative for ocular drug delivery, and our group has proposed that they are especially suited for ocular mucosal disorders. The goal of the present study was to determine which internalization pathway is used by cornea-derived and conjunctiva-derived cell lines to take up hyaluronic acid (HA)-chitosan oligomer (CSO)-based nanoparticles (HA-CSO NPs). We also determined if plasmids loaded onto the NPs reached the cell nucleus. HA-CSO NPs were made of fluoresceinamine labeled HA and CSO by ionotropic gelation and were conjugated with a model plasmid DNA for secreted alkaline phosphatase. Human epithelial cell lines derived from the conjunctiva and the cornea were exposed to HA-CSO NPs for 1 h and the uptake was investigated in living cells by fluorescence microscopy. The influence of temperature and metabolic inhibition, the effect of blocking hyaluronan receptors, and the inhibition of main endocytic pathways were studied by fluorometry. Additionally, the metabolic pathways implicated in the degradation of HA-CSO NPs were evaluated by lysosome identification. There was intracellular localization of plasmid-loaded HACSO NPs in both corneal and conjunctival cells. The intracellular presence of NPs diminished with time. HA-CSO NP uptake was significantly reduced by inhibition of active transport at 4 °C and by sodium azide. Uptake was also inhibited by blocking hyaluronan receptors with anti-CD44 Hermes-1 antibody, by excess HA, and by filipin, an inhibitor of caveolin-dependent endocytosis. HA-CSO NPs had no effect on cell viability. The transfection efficiency of the model plasmid was significantly higher in NP treated cells than in controls. HA-CSO NPs were internalized by two different ocular surface cell lines by an active transport mechanism. The uptake was mediated by hyaluronan receptors through a caveolin-dependent endocytic pathway, yielding remarkable transfection efficiency. Most of HA-CSO NPs were metabolized within 48 h. This uptake did not compromise cell viability. These findings further support the potential use of HA-CSO NPs to deliver genetic material to the ocular surface.

  14. Identifying PM2.5 and PM0.1 sources for epidemiological studies in California.

    PubMed

    Hu, Jianlin; Zhang, Hongliang; Chen, Shuhua; Ying, Qi; Wiedinmyer, Christine; Vandenberghe, Francois; Kleeman, Michael J

    2014-05-06

    The University of California-Davis_Primary (UCD_P) model was applied to simultaneously track ∼ 900 source contributions to primary particulate matter (PM) in California for seven continuous years (January 1st, 2000 to December 31st, 2006). Predicted source contributions to primary PM2.5 mass, PM1.8 elemental carbon (EC), PM1.8 organic carbon (OC), PM0.1 EC, and PM0.1 OC were in general agreement with the results from previous source apportionment studies using receptor-based techniques. All sources were further subjected to a constraint check based on model performance for PM trace elemental composition. A total of 151 PM2.5 sources and 71 PM0.1 sources contained PM elements that were predicted at concentrations in general agreement with measured values at nearby monitoring sites. Significant spatial heterogeneity was predicted among the 151 PM2.5 and 71 PM0.1 source concentrations, and significantly different seasonal profiles were predicted for PM2.5 and PM0.1 in central California vs southern California. Population-weighted concentrations of PM emitted from various sources calculated using the UCD_P model spatial information differed from the central monitor estimates by up to 77% for primary PM2.5 mass and 148% for PM2.5 EC because the central monitor concentration is not representative of exposure for nearby population. The results from the UCD_P model provide enhanced source apportionment information for epidemiological studies to examine the relationship between health effects and concentrations of primary PM from individual sources.

  15. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment.

    PubMed Central

    Mayor, S; Maxfield, F R

    1995-01-01

    A diverse set of cell surface eukaryotic proteins including receptors, enzymes, and adhesion molecules have a glycosylphosphoinositol-lipid (GPI) modification at the carboxy-terminal end that serves as their sole means of membrane anchoring. These GPI-anchored proteins are poorly solubilized in nonionic detergent such as Triton X-100. In addition these detergent-insoluble complexes from plasma membranes are significantly enriched in several cytoplasmic proteins including nonreceptor-type tyrosine kinases and caveolin/VIP-21, a component of the striated coat of caveolae. These observations have suggested that the detergent-insoluble complexes represent purified caveolar membrane preparations. However, we have recently shown by immunofluorescence and electron microscopy that GPI-anchored proteins are diffusely distributed at the cell surface but may be enriched in caveolae only after cross-linking. Although caveolae occupy only a small fraction of the cell surface (< 4%), almost all of the GPI-anchored protein at the cell surface becomes incorporated into detergent-insoluble low-density complexes. In this paper we show that upon detergent treatment the GPI-anchored proteins are redistributed into a significantly more clustered distribution in the remaining membranous structures. These results show that GPI-anchored proteins are intrinsically detergent-insoluble in the milieu of the plasma membrane, and their co-purification with caveolin is not reflective of their native distribution. These results also indicate that the association of caveolae, GPI-anchored proteins, and signalling proteins must be critically re-examined. Images PMID:7579703

  16. Evidence of specialized tissue in human interatrial septum: histological, immunohistochemical and ultrastructural findings.

    PubMed

    Mitrofanova, Lubov B; Gorshkov, Andrey N; Lebedev, Dmitry S; Mikhaylov, Evgeny N

    2014-01-01

    There is a paucity of information on structural organization of muscular bundles in the interatrial septum (IAS). The aim was to investigate histologic and ultrastructural organization of muscular bundles in human IAS, including fossa ovalis (FO) and flap valve. Macroscopic and light microscopy evaluations of IAS were performed from postmortem studies of 40 patients. Twenty three IAS specimens underwent serial transverse sectioning, and 17--longitudinal sectioning. The transverse sections from 10 patients were immunolabeled for HCN4, Caveolin3 and Connexin43. IAS specimens from 6 other patients underwent electron microscopy. In all IAS specimens sections the FO, its rims and the flap valve had muscle fibers consisting of working cardiac myocytes. Besides the typical cardiomyocytes there were unusual cells: tortuous and horseshoe-shaped intertangled myocytes, small and large rounded myocytes with pale cytoplasm. The cells were aggregated in a definite structure in 38 (95%) cases, which was surrounded by fibro-fatty tissue. The height of the structure on transverse sections positively correlated with age (P = 0.03) and AF history (P = 0.045). Immunohistochemistry showed positive staining of the cells for HCN4 and Caveolin3. Electron microscopy identified cells with characteristics similar to electrical conduction cells. Specialized conduction cells in human IAS have been identified, specifically in the FO and its flap valve. The cells are aggregated in a structure, which is surrounded by fibrous and fatty tissue. Further investigations are warranted to explore electrophysiological characteristics of this structure.

  17. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1

    PubMed Central

    Bai, Lin; Deng, Xiaoli; Li, Juanjuan; Wang, Miao; Li, Qian; An, Wei; A, Deli; Cong, Yu-Sheng

    2011-01-01

    Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts. Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senescence is dependent on its targeting to caveolae and its interaction with caveolin-1, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways. PMID:21445100

  18. The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle

    PubMed Central

    Lo, Harriet P.; Nixon, Susan J.; Hall, Thomas E.; Cowling, Belinda S.; Ferguson, Charles; Morgan, Garry P.; Schieber, Nicole L.; Fernandez-Rojo, Manuel A.; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F.

    2015-01-01

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system. PMID:26323694

  19. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p

  20. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  1. Proceedings of the Space Surveillance Workshop (11th) Held in Lexington, Massachusetts on 30 March-1 April 1993. Volume 1

    DTIC Science & Technology

    1993-04-01

    are so close together, there is a great deal of mistagged metric data from the SPACETRACK sensors on these objects. The resulting orbital element sets ...including an attempt to combine U.S. Space Command element sets for each Lageos-2 related object in orbit with DSN angle data to determine the actual...Predict error at next observation -Maintain track to minimize reacquistion load -Estimate orbital element sets -Update time for next observation

  2. Soluble Glucan Is Internalized and Trafficked to the Golgi Apparatus in Macrophages via a Clathrin-Mediated, Lipid Raft-Regulated Mechanism

    PubMed Central

    Goldman, Matthew P.; Kalbfleisch, John H.; Williams, David L.

    2012-01-01

    Glucans are natural product carbohydrates that stimulate immunity. Glucans are internalized by the pattern recognition receptor, Dectin-1. Glucans were thought to be trafficked to phagolysosomes, but this is unproven. We examined the internalization and trafficking of soluble glucans in macrophages. Incubation of macrophages with glucan resulted in internalization of Dectin-1 and glucan. Inhibition of clathrin blocked internalization of the Dectin-1/glucan complex. Lipid raft depletion resulted in decreased Dectin levels and glucan uptake. Once internalized, glucans colocalized with early endosomes at 0 to 15 min, with the Golgi apparatus at 15 min to 24 h, and with Dectin-1 immediately (0 h) and again later (15 min-24 h). Glucans did not colocalize with lysosomes at any time interval examined. We conclude that the internalization of Dectin-1/glucan complexes in macrophages is mediated by clathrin and negatively regulated by lipid rafts and/or caveolin-1. Upon internalization, soluble glucans are trafficked via endosomes to the Golgi apparatus, not lysosomes. PMID:22700434

  3. Current data of targeted therapies for the treatment of triple-negative advanced breast cancer: empiricism or evidence-based?

    PubMed

    Petrelli, Fausto; Cabiddu, Mary; Ghilardi, Mara; Barni, Sandro

    2009-10-01

    Approximately 10 - 15% of breast carcinomas (BCs) are known to be 'triple-negative (TN) receptor' (i.e., not expressing ER or PR and not exhibiting overexpression and/or gene amplification of HER2-neu). Triple-negative BCs comprise approximately 85% of all basal-type tumours. Classically, basal-like BCs have been characterised by low expression of ER, PR, and HER2 neu and high expression of CK5, CK14, caveolin-1, CAIX, p63, and EGFR (HER1), which reflects the mammary gland basal/myoepithelial cell component. Although there is no standard first-line chemotherapy regimen for metastatic TN BCs, anthracycline- and taxane-containing regimens are acceptable treatments. A large number of agents, including DNA-damaging agents, EGFR inhibitors, antiangiogenic agents and novel taxane formulations are currently being tested in clinical trials for first-line and pretreated patients. Limited experiences with platinum salts, poly(ADP-ribose) polymerase (PARP) inhibitors, cetuximab, bevacizumab and ixabepilone have been published in recent years and will be reported. Novel immunohistochemistry analysis for identification of basal like/TN phenotype are awaited to correctly select this population. The clinical trials investigating new agents have to be designed for a specific (and possibly large) subset of patients with BC. In the future, a gene array platform with greater sensitivity for distinguishing the various BC subtypes, as well as having the power to predict the molecular biology of the disease, will be an indispensible tool for treatment selection. Currently, treatment of TN BC is more empirical than evidence-based. The cornerstone of treatment is chemotherapy, but in the near future, novel target agents will emerge as possible partners.

  4. Comparison of univariate and multivariate models for prediction of major and minor elements from laser-induced breakdown spectra with and without masking

    NASA Astrophysics Data System (ADS)

    Dyar, M. Darby; Fassett, Caleb I.; Giguere, Stephen; Lepore, Kate; Byrne, Sarah; Boucher, Thomas; Carey, CJ; Mahadevan, Sridhar

    2016-09-01

    This study uses 1356 spectra from 452 geologically-diverse samples, the largest suite of LIBS rock spectra ever assembled, to compare the accuracy of elemental predictions in models that use only spectral regions thought to contain peaks arising from the element of interest versus those that use information in the entire spectrum. Results show that for the elements Si, Al, Ti, Fe, Mg, Ca, Na, K, Ni, Mn, Cr, Co, and Zn, univariate predictions based on single emission lines are by far the least accurate, no matter how carefully the region of channels/wavelengths is chosen and despite the prominence of the selected emission lines. An automated iterative algorithm was developed to sweep through all 5485 channels of data and select the single region that produces the optimal prediction accuracy for each element using univariate analysis. For the eight major elements, use of this technique results in a 35% improvement in prediction accuracy; for minors, the improvement is 13%. The best wavelength region choice for any given univariate analysis is likely to be an inherent property of the specific training set that cannot be generalized. In comparison, multivariate analysis using partial least-squares (PLS) almost universally outperforms univariate analysis. PLS using all the same wavelength regions from the univariate analysis produces results that improve in accuracy by 63% for major elements and 3% for minor element. This difference is likely a reflection of signal to noise ratios, which are far better for major elements than for minor elements, and likely limit their prediction accuracy by any technique. We also compare predictions using specific wavelength ranges for each element against those employing all channels. Masking out channels to focus on emission lines from a specific element that occurs decreases prediction accuracy for major elements but is useful for minor elements with low signals and proportionally much higher noise; use of PLS rather than univariate analysis is still recommended. Finally, we tested the generalizability of our results by analyzing a second data set from a different instrument. Overall prediction accuracies for the mixed data sets are higher than for either set alone for all major and minor elements except Ni, Cr, and Co, where results are roughly comparable.

  5. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes

    NASA Astrophysics Data System (ADS)

    Hara, Seth A.; Kim, Brian J.; Kuo, Jonathan T. W.; Lee, Curtis D.; Meng, Ellis; Pikov, Victor

    2016-12-01

    Objective. Acquisition of reliable and robust neural recordings with intracortical neural probes is a persistent challenge in the field of neuroprosthetics. We developed a multielectrode array technology to address chronic intracortical recording reliability and present in vivo recording results. Approach. The 2 × 2 Parylene sheath electrode array (PSEA) was microfabricated and constructed from only Parylene C and platinum. The probe includes a novel three-dimensional sheath structure, perforations, and bioactive coatings that improve tissue integration and manage immune response. Coatings were applied using a sequential dip-coating method that provided coverage over the entire probe surface and interior of the sheath structure. A sharp probe tip taper facilitated insertion with minimal trauma. Fabricated probes were subject to examination by optical and electron microscopy and electrochemical testing prior to implantation. Main results. 1 × 2 arrays were successfully fabricated on wafer and then packaged together to produce 2 × 2 arrays. Then, probes having electrode sites with adequate electrochemical properties were selected. A subset of arrays was treated with bioactive coatings to encourage neuronal growth and suppress inflammation and another subset of arrays was implanted in conjunction with a virally mediated expression of Caveolin-1. Arrays were attached to a custom-made insertion shuttle to facilitate precise insertion into the rat motor cortex. Stable electrophysiological recordings were obtained during the period of implantation up to 12 months. Immunohistochemical evaluation of cortical tissue around individual probes indicated a strong correlation between the electrophysiological performance of the probes and histologically observable proximity of neurons and dendritic sprouting. Significance. The PSEA demonstrates the scalability of sheath electrode technology and provides higher electrode count and density to access a greater volume for recording. This study provided support for the importance of creating a supportive biological environment around the probes to promote the long-term electrophysiological performance of flexible probes in the cerebral cortex. In particular, we demonstrated beneficial effects of the Matrigel coating and the long-term expression of Caveolin-1. Furthermore, we provided support to an idea of using an artificial acellular tissue compartment as a way to counteract the walling-off effect of the astrocytic scar formation around the probes as a means of establishing a more intimate and stable neural interface.

  6. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear.

    PubMed

    Thomas, Paul V; Cheng, Andrew L; Colby, Candice C; Liu, Liqian; Patel, Chintan K; Josephs, Lydia; Duncan, R Keith

    2014-05-30

    Biological membranes organize and compartmentalize cell signaling into discrete microdomains, a process that often involves stable, cholesterol-rich platforms that facilitate protein-protein interactions. Polarized cells with distinct apical and basolateral cell processes rely on such compartmentalization to maintain proper function. In the cochlea, a variety of highly polarized sensory and non-sensory cells are responsible for the early stages of sound processing in the ear, yet little is known about the mechanisms that traffic and organize signaling complexes within these cells. We sought to determine the prevalence, localization, and protein composition of cholesterol-rich lipid microdomains in the cochlea. Lipid raft components, including the scaffolding protein caveolin and the ganglioside GM1, were found in sensory, neural, and glial cells. Mass spectrometry of detergent-resistant membrane (DRM) fractions revealed over 600 putative raft proteins associated with subcellular localization, trafficking, and metabolism. Among the DRM constituents were several proteins involved in human forms of deafness including those involved in ion homeostasis, such as the potassium channel KCNQ1, the co-transporter SLC12A2, and gap junction proteins GJA1 and GJB6. The presence of caveolin in the cochlea and the abundance of proteins in cholesterol-rich DRM suggest that lipid microdomains play a significant role in cochlear physiology. Although mechanisms underlying cholesterol synthesis, homeostasis, and compartmentalization in the ear are poorly understood, there are several lines of evidence indicating that cholesterol is a key modulator of cochlear function. Depletion of cholesterol in mature sensory cells alters calcium signaling, changes excitability during development, and affects the biomechanical processes in outer hair cells that are responsible for hearing acuity. More recently, we have established that the cholesterol-modulator beta-cyclodextrin is capable of inducing significant and permanent hearing loss when delivered subcutaneously at high doses. We hypothesize that proteins involved in cochlear homeostasis and otopathology are partitioned into cholesterol-rich domains. The results of a large-scale proteomic analysis point to metabolic processes, scaffolding/trafficking, and ion homeostasis as particularly associated with cholesterol microdomains. These data offer insight into the proteins and protein families that may underlie cholesterol-mediated effects in sensory cell excitability and cyclodextrin ototoxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.

    1972-01-01

    An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.

  8. Finite element thermal analysis of multispectral coatings for the ABL

    NASA Astrophysics Data System (ADS)

    Shah, Rashmi S.; Bettis, Jerry R.; Stewart, Alan F.; Bonsall, Lynn; Copland, James; Hughes, William; Echeverry, Juan C.

    1999-04-01

    The thermal response of a coated optical surface is an important consideration in the design of any high average power system. Finite element temperature distribution were calculated for both coating witness samples and calorimetry wafers and were compared to actual measured data under tightly controlled conditions. Coatings for ABL were deposited on various substrates including fused silica, ULE, Zerodur, and silicon. The witness samples were irradiate data high power levels at 1.315micrometers to evaluate laser damage thresholds and study absorption levels. Excellent agreement was obtained between temperature predictions and measured thermal response curves. When measured absorption values were not available, the code was used to predict coating absorption based on the measured temperature rise on the back surface. Using the finite element model, the damaging temperature rise can be predicted for a coating with known absorption based on run time, flux, and substrate material.

  9. Pathogenesis and Prediction of Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0408 TITLE: Pathogenesis and Prediction of Rheumatoid Arthritis PRINCIPAL INVESTIGATOR: Kevin D. Deane, MD/PhD...NUMBER W81XWH-13-1-0408 Pathogenesis and Prediction of Rheumatoid Arthritis 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...there is a preclinical period of rheumatoid arthritis (RA) development that is characterized by abnormalities of the immune system prior to the onset of

  10. TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1976-01-01

    The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.

  11. Clues cue the smooze: rhyme, pausing, and prediction help children learn new words from storybooks

    PubMed Central

    Read, Kirsten

    2014-01-01

    Rhyme, which is ubiquitous in the language experiences of young children, may be especially facilitative to vocabulary learning because of how it can support active predictions about upcoming words. In two experiments, we tested whether rhyme, when used to help children anticipate new words would make those words easier to learn. Two- to 4-year-old children heard rhyming stanzas naming novel monsters under three conditions: A non-rhyme condition in which novel monster names appeared as unrhymed elements within a rhymed stanza, a non-predictive rhyme condition in which the novel names were the rhymed element in the first line of a stanza, and a predictive rhyme condition in which the monster name came as the rhymed element in the last line of the stanza after a description of the features that distinguished him. In tests of retention and identification children showed greatest novel name learning in the predictive rhyme condition in both between-subjects (Experiment 1) and within-subjects (Experiment 2) comparisons. Additionally, when parents acted as the storybook readers in Experiment 2, many of them distinctly paused before target words in the predictive rhyme condition and for their children a stronger predictive rhyme advantage surfaced. Thus rhyme is not only facilitative for learning, but when the novel vocabulary is specifically in a position where it is predictable from the rhymes, it is most accessible. PMID:24600431

  12. Transducer Analysis and ATILA++ Model Development

    DTIC Science & Technology

    2016-10-10

    the ATILA finite element software package. This will greatly enhance the state-of-the-art in transducer performance prediction and provide a tool...refereed publication. 15 IMPACT/APPLICATIONS This work is helping to enable the expansion of the functionality of the A TILA ++ finite element ...Sb. GRANT NUMBER N00014-13-1-0196 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Richard J. Meyer, Jr. 20675 Douglas C. Markley Se

  13. Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg.

    PubMed

    Pershina, V; Anton, J

    2013-05-07

    Fully relativistic, four-component density functional theory electronic structure calculations were performed for M(CO)6 of group-6 elements Cr, Mo, W, and element 106, Sg, with an aim to predict their adsorption behaviour in the gas-phase chromatography experiments. It was shown that seaborgium hexacarbonyl has a longer M-CO bond, smaller ionization potential, and larger polarizability than the other group-6 molecules. This is explained by the increasing relativistic expansion and destabilization of the (n - 1)d AOs with increasing Z in the group. Using results of the calculations, adsorption enthalpies of the group-6 hexacarbonyls on a quartz surface were predicted via a model of physisorption. According to the results, -ΔHads should decrease from Mo to W, while it should be almost equal--within the experimental error bars--for W and Sg. Thus, we expect that in the future gas-phase chromatography experiments it will be almost impossible--what concerns ΔHads--to distinguish between the W and Sg hexacarbonyls by their deposition on quartz.

  14. Finite element validation of stress intensity factor calculation models for thru-thickness and thumb-nail cracks in double edge notch specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beres, W.; Koul, A.K.

    1994-09-01

    Stress intensity factors for thru-thickness and thumb-nail cracks in the double edge notch specimens, containing two different notch radius (R) to specimen width (W) ratios (R/W = 1/8 and 1/16), are calculated through finite element analysis. The finite element results are compared with predictions based on existing empirical models for SIF calculations. The effects of a change in R/W ratio on SIF of thru-thickness and thumb-nail cracks are also discussed. 34 refs.

  15. Elemental classification of the tusks of dugong (Dugong dugong) by HH-XRF analysis and comparison with other species

    NASA Astrophysics Data System (ADS)

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Piboon, Promporn; Euppayo, Thippaporn; Kaewmong, Patcharaporn; Cherdsukjai, Phaothep; Kittiwatanawong, Kongkiat; Thitaram, Chatchote

    2017-04-01

    The elemental composition was investigated and applied for identifying the sex and habitat of dugongs, in addition to distinguishing dugong tusks and teeth from other animal wildlife materials such as Asian elephant (Elephas maximus) tusks and tiger (Panthera tigris tigris) canine teeth. A total of 43 dugong tusks, 60 dugong teeth, 40 dolphin teeth, 1 whale tooth, 40 Asian elephant tusks and 20 tiger canine teeth were included in the study. Elemental analyses were conducted using a handheld X-ray fluorescence analyzer (HH-XRF). There was no significant difference in the elemental composition of male and female dugong tusks, whereas the overall accuracy for identifying habitat (the Andaman Sea and the Gulf of Thailand) was high (88.1%). Dolphin teeth were able to be correctly predicted 100% of the time. Furthermore, we demonstrated a discrepancy in elemental composition among dugong tusks, Asian elephant tusks and tiger canine teeth, and provided a high correct prediction rate among these species of 98.2%. Here, we demonstrate the feasible use of HH-XRF for preliminary species classification and habitat determination prior to using more advanced techniques such as molecular biology.

  16. Quantitative prediction of the bitterness suppression of elemental diets by various flavors using a taste sensor.

    PubMed

    Miyanaga, Yohko; Inoue, Naoko; Ohnishi, Ayako; Fujisawa, Emi; Yamaguchi, Maki; Uchida, Takahiro

    2003-12-01

    The purpose of the study was to develop a method for the quantitative prediction of the bitterness suppression of elemental diets by various flavors and to predict the optimum composition of such elemental diets for oral administration using a multichannel taste sensor. We examined the effects of varying the volume of water used for dilution and of adding varying quantities of five flavors (pineapple, apple, milky coffee, powdered green tea, and banana) on the bitterness of the elemental diet, Aminoreban EN. Gustatory sensation tests with human volunteers (n = 9) and measurements using the artificial taste sensor were performed on 50 g Aminoreban EN dissolved in various volumes (140), 180, 220, 260, 300, 420, 660, 1140, and 2100 ml) of water, and on 50 g Aminoreban EN dissolved in 180 ml of water with the addition of 3-9 g of various flavors for taste masking. In gustatory sensation tests, the relationship between the logarithmic values of the volumes of water used for dilution and the bitterness intensity scores awarded by the volunteers proved to be linear. The addition of flavors also reduced the bitterness of elemental diets in gustatory sensation tests; the magnitude of this effect was, in decreasing order, apple, pineapple, milky coffee, powdered green tea, and banana. With the artificial taste sensor, large changes of membrane potential in channel 1, caused by adsorption (CPA values, corresponding to a bitter aftertaste), were observed for Aminoreban EN but not for any of the flavors. There was a good correlation between the CPA values in channel 1 and the results of the human gustatory tests, indicating that the taste sensor is capable of evaluating not only the bitterness of Aminoreban EN itself but also the bitterness-suppressing effect of the five flavors, which contained many elements such as organic acids and flavor components, and the effect of dilution (by water) on this bitterness. Using regression analysis of data derived from the taste sensor and from human gustatory data for four representative points, we were able to predict the bitterness of 50 g Aminoreban EN solutions diluted with various volumes of water (14-300 ml), with or without the addition of a selected flavor. Even though this prediction method does not offer perfect simulation of human taste sensations, the artificial taste sensor may be useful for predicting the bitterness intensity of elemental diets containing various flavors in the absence of results from full gustatory sensation tests.

  17. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE PAGES

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; ...

    2012-01-01

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  18. Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based onmore » the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  19. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  20. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    PubMed Central

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; Ehleringer, James; West, Jason; Gill, Gary; Duckworth, Douglas

    2012-01-01

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1% versus 55.9 ± 2.1% and 40.2 ± 1.8% for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model. PMID:22919270

  1. Guidelines and Parameter Selection for the Simulation of Progressive Delamination

    NASA Technical Reports Server (NTRS)

    Song, Kyongchan; Davila, Carlos G.; Rose, Cheryl A.

    2008-01-01

    Turon s methodology for determining optimal analysis parameters for the simulation of progressive delamination is reviewed. Recommended procedures for determining analysis parameters for efficient delamination growth predictions using the Abaqus/Standard cohesive element and relatively coarse meshes are provided for single and mixed-mode loading. The Abaqus cohesive element, COH3D8, and a user-defined cohesive element are used to develop finite element models of the double cantilever beam specimen, the end-notched flexure specimen, and the mixed-mode bending specimen to simulate progressive delamination growth in Mode I, Mode II, and mixed-mode fracture, respectively. The predicted responses are compared with their analytical solutions. The results show that for single-mode fracture, the predicted responses obtained with the Abaqus cohesive element correlate well with the analytical solutions. For mixed-mode fracture, it was found that the response predicted using COH3D8 elements depends on the damage evolution criterion that is used. The energy-based criterion overpredicts the peak loads and load-deflection response. The results predicted using a tabulated form of the BK criterion correlate well with the analytical solution and with the results predicted with the user-written element.

  2. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling

    PubMed Central

    Ariotti, Nicholas; Fernández-Rojo, Manuel A.; Zhou, Yong; Hill, Michelle M.; Rodkey, Travis L.; Inder, Kerry L.; Tanner, Lukas B.; Wenk, Markus R.

    2014-01-01

    The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization. PMID:24567358

  3. Detailed Abundances of Planet-hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the Atmospheres of HD 20782/81?

    NASA Astrophysics Data System (ADS)

    Mack, Claude E., III; Schuler, Simon C.; Stassun, Keivan G.; Norris, John

    2014-06-01

    Using high-resolution, high signal-to-noise echelle spectra obtained with Magellan/MIKE, we present a detailed chemical abundance analysis of both stars in the planet-hosting wide binary system HD 20782 + HD 20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters lsim0.2 AU. Here, we investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperature, T C ≈ 40-1660 K. The two stars are found to have a mean element-to-element abundance difference of 0.04 ± 0.07 dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements (T C >900 K) exhibit a positive correlation between abundance (relative to solar) and T C, with similar slopes of ≈1×10-4 dex K-1. The measured positive correlations are not perfect; both stars exhibit a scatter of ≈5×10-5 dex K-1 about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive—but imperfect—correlation between refractory elemental abundances and T C. Our measured slopes are consistent with what is predicted for the ingestion of 10-20 Earths by each star in the system. In addition, the specific element-by-element scatter might be used to distinguish between planetary accretion and Galactic chemical evolution scenarios. The data presented herein were obtained at the Las Campanas Observatory with the Magellan/MIKE spectrograph.

  4. Cell Surface Expression of Human Ether-a-go-go-related Gene (hERG) Channels Is Regulated by Caveolin-3 Protein via the Ubiquitin Ligase Nedd4-2*

    PubMed Central

    Guo, Jun; Wang, Tingzhong; Li, Xian; Shallow, Heidi; Yang, Tonghua; Li, Wentao; Xu, Jianmin; Fridman, Michael D.; Yang, Xiaolong; Zhang, Shetuan

    2012-01-01

    The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr) which plays an important role in cardiac repolarization. A reduction or increase in hERG current can cause long or short QT syndrome, respectively, leading to fatal cardiac arrhythmias. The channel density in the plasma membrane is a key determinant of the whole cell current amplitude. To gain insight into the molecular mechanisms for the regulation of hERG density at the plasma membrane, we used whole cell voltage clamp, Western blotting, and immunocytochemical methods to investigate the effects of an integral membrane protein, caveolin-3 (Cav3) on hERG expression levels. Our data demonstrate that Cav3, hERG, and ubiquitin-ligase Nedd4-2 interact with each other and form a complex. Expression of Cav3 thus enhances the hERG-Nedd4-2 interaction, leading to an increased ubiquitination and degradation of mature, plasma-membrane localized hERG channels. Disrupting Nedd4-2 interaction with hERG by mutations eliminates the effects of Cav3 on hERG channels. Knockdown of endogenous Cav3 or Nedd4-2 in cultured neonatal rat ventricular myocytes using siRNA led to an increase in native IKr. Our data demonstrate that hERG expression in the plasma membrane is regulated by Cav3 via Nedd4-2. These findings extend our understanding of the regulation of hERG channels and cardiac electrophysiology. PMID:22879586

  5. A Separate Pool of Cardiac Phospholemman That Does Not Regulate or Associate with the Sodium Pump

    PubMed Central

    Wypijewski, Krzysztof J.; Howie, Jacqueline; Reilly, Louise; Tulloch, Lindsay B.; Aughton, Karen L.; McLatchie, Linda M.; Shattock, Michael J.; Calaghan, Sarah C.; Fuller, William

    2013-01-01

    Phospholemman (PLM), the principal quantitative sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. Much like phospholamban, which regulates the related ATPase SERCA, PLM is reported to oligomerize. We investigated subpopulations of PLM in adult rat ventricular myocytes based on phosphorylation status. Co-immunoprecipitation identified two pools of PLM: one not associated with the sodium pump phosphorylated at Ser63 and one associated with the pump, both phosphorylated at Ser68 and unphosphorylated. Phosphorylation of PLM at Ser63 following activation of PKC did not abrogate association of PLM with the pump, so its failure to associate with the pump was not due to phosphorylation at this site. All pools of PLM co-localized to cell surface caveolin-enriched microdomains with sodium pump α subunits, despite the lack of caveolin-binding motif in PLM. Mass spectrometry analysis of phosphospecific immunoprecipitation reactions revealed no unique protein interactions for Ser63-phosphorylated PLM, and cross-linking reagents also failed to identify any partner proteins for this pool. In lysates from hearts of heterozygous transgenic animals expressing wild type and unphosphorylatable PLM, Ser63-phosphorylated PLM co-immunoprecipitated unphosphorylatable PLM, confirming the existence of PLM multimers. Dephosphorylation of the PLM multimer does not change sodium pump activity. Hence like phospholamban, PLM exists as a pump-inhibiting monomer and an unassociated oligomer. The distribution of different PLM phosphorylation states to different pools may be explained by their differential proximity to protein phosphatases rather than a direct effect of phosphorylation on PLM association with the pump. PMID:23532852

  6. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    PubMed

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin.

    PubMed

    Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora

    2011-01-17

    The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA-MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA-MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA-MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA-MWCNTs in a similar manner. Our results clearly show that HSA-MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

  8. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin

    PubMed Central

    Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora

    2011-01-01

    The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA–MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA–MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA–MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA–MWCNTs in a similar manner. Our results clearly show that HSA–MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. PMID:21289990

  9. Consequences of a novel caveolin-3 mutation in a large German family.

    PubMed

    Fischer, Dirk; Schroers, Anja; Blümcke, Ingmar; Urbach, Horst; Zerres, Klaus; Mortier, Wilhelm; Vorgerd, Matthias; Schröder, Rolf

    2003-02-01

    Mutations in the human caveolin-3 gene (cav-3) on chromosome 3p25 have been described in limb girdle muscular dystrophy, rippling muscle disease, hyperCKemia, and distal myopathy. Here, we describe the genetic, myopathological, and clinical findings in a large German family harboring a novel heterozygous mutation (GAC-->GAA) in codon 27 of the cav-3 gene. This missense mutation causes an amino acid change from asparagine to glutamate (Asp27Glu) in the N-terminal region of the Cav-3 protein, which leads to a drastic decrease of Cav-3 protein expression in skeletal muscle tissue. In keeping with an autosomal dominant mode of inheritance, this novel cav-3 mutation was found to cosegregate with neuromuscular involvement in the reported family. Ultrastructural analysis of Cav-3-deficient muscle showed an abnormal folding of the plasma membrane as well as multiple vesicular structures in the subsarcolemmal region. Neurological examination of all nine subjects from three generations harboring the novel cav-3 mutation showed clear evidence of rippling muscle disease. However, only two of these nine patients showed isolated signs of rippling muscle disease without muscle weakness or atrophy, whereas five had additional signs of a distal myopathy and two fulfilled the diagnostic criteria of a coexisting limb girdle muscular dystrophy. These findings indicate that mutations in the human cav-3 gene can lead to different and overlapping clinical phenotypes even within the same family. Different clinical phenotypes in caveolinopathies may be attributed to so far unidentified modifying factors/genes in the individual genetic background of affected patients.

  10. Quantification of Forecasting and Change-Point Detection Methods for Predictive Maintenance

    DTIC Science & Technology

    2015-08-19

    industries to manage the service life of equipment, and also to detect precursors to the failure of components found in nuclear power plants, wind turbines ...detection methods for predictive maintenance 5a. CONTRACT NUMBER FA2386-14-1-4096 5b. GRANT NUMBER Grant 14IOA015 AOARD-144096 5c. PROGRAM ELEMENT...sensitive to changes related to abnormality. 15. SUBJECT TERMS predictive maintenance , predictive maintenance , forecasting 16

  11. Statistical Learning of Probabilistic Nonadjacent Dependencies by Multiple-Cue Integration

    ERIC Educational Resources Information Center

    van den Bos, Esther; Christiansen, Morten H.; Misyak, Jennifer B.

    2012-01-01

    Previous studies have indicated that dependencies between nonadjacent elements can be acquired by statistical learning when each element predicts only one other element (deterministic dependencies). The present study investigates statistical learning of probabilistic nonadjacent dependencies, in which each element predicts several other elements…

  12. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    PubMed

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  13. Cholesterol depletion modulates detergent resistant fraction of human serotonin(1A) receptors.

    PubMed

    Sahu, Santosh Kumar; Saxena, Roopali; Chattopadhyay, Amitabha

    2012-11-01

    Insolubility of membrane components in non-ionic detergents such as Triton X-100 at low temperature is a widely used biochemical criterion to identify, isolate and characterize membrane domains. In this work, we monitored the detergent insolubility of the serotonin(1A) receptor in CHO cell membranes and its modulation by membrane cholesterol. The serotonin(1A) receptor is an important member of the G-protein coupled receptor family. It is implicated in the generation and modulation of various cognitive, behavioral and developmental functions and serves as a drug target. Our results show that a significant fraction (∼28%) of the serotonin(1A) receptor resides in detergent-resistant membranes (DRMs). Interestingly, the fraction of the serotonin(1A) receptor in DRMs exhibits a reduction upon membrane cholesterol depletion. In addition, we show that contents of DRM markers such as flotillin-1, caveolin-1 and GM₁ are altered in DRMs upon cholesterol depletion. These results assume significance since the function of the serotonin(1A) receptor has previously been shown to be affected by membrane lipids, specifically cholesterol. Our results are relevant in the context of membrane organization of the serotonin(1A) receptor in particular, and G-protein coupled receptors in general.

  14. An emulator for minimizing computer resources for finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, R.; Utku, S.; Islam, M.; Salama, M.

    1984-01-01

    A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).

  15. Failed rib region prediction in a human body model during crash events with precrash braking.

    PubMed

    Guleyupoglu, B; Koya, B; Barnard, R; Gayzik, F S

    2018-02-28

    The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. Kinematics between both methods were similar (peak max deviation: ΔX head = 17 mm; ΔZ head = 4 mm; ΔX thorax = 5 mm; ΔZ thorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.

  16. Interior Noise Predictions in the Preliminary Design of the Large Civil Tiltrotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Cabell, Randolph H.; Boyd, David D.

    2013-01-01

    A prediction scheme was established to compute sound pressure levels in the interior of a simplified cabin model of the second generation Large Civil Tiltrotor (LCTR2) during cruise conditions, while being excited by turbulent boundary layer flow over the fuselage, or by tiltrotor blade loading and thickness noise. Finite element models of the cabin structure, interior acoustic space, and acoustically absorbent (poro-elastic) materials in the fuselage were generated and combined into a coupled structural-acoustic model. Fluctuating power spectral densities were computed according to the Efimtsov turbulent boundary layer excitation model. Noise associated with the tiltrotor blades was predicted in the time domain as fluctuating surface pressures and converted to power spectral densities at the fuselage skin finite element nodes. A hybrid finite element (FE) approach was used to compute the low frequency acoustic cabin response over the frequency range 6-141 Hz with a 1 Hz bandwidth, and the Statistical Energy Analysis (SEA) approach was used to predict the interior noise for the 125-8000 Hz one-third octave bands.

  17. Trace element evaluation of a suite of rocks from Reunion Island, Indian Ocean

    USGS Publications Warehouse

    Zielinski, R.A.

    1975-01-01

    Reunion Island consists of an olivine-basalt shield capped by a series of flows and intrusives ranging from hawaiite through trachyte. Eleven rocks representing the total compositional sequence have been analyzed for U, Th and REE. Eight of the rocks (group 1) have positive-slope, parallel, chondrite-normalized REE fractionation patterns. Using a computer model, the major element compositions of group 1 whole rocks and observed phenocrysts were used to predict the crystallization histories of increasingly residual liquids, and allowed semi-quantitative verification of origin by fractional crystallization of the olivine-basalt parent magma. Results were combined with mineral-liquid distribution coefficient data to predict trace element abundances, and existing data on Cr, Ni, Sr and Ba were also successfully incorporated in the model. The remaining three rocks (group 2) have nonuniform positive-slope REE fractionation patterns not parallel to group 1 patterns. Rare earth fractionation in a syenite is explained by partial melting of a source rich in clinopyroxene and/or hornblende. The other two rocks of group 2 are explained as hybrids resulting from mixing of syenite and magmas of group 1. ?? 1975.

  18. ElemeNT: a computational tool for detecting core promoter elements.

    PubMed

    Sloutskin, Anna; Danino, Yehuda M; Orenstein, Yaron; Zehavi, Yonathan; Doniger, Tirza; Shamir, Ron; Juven-Gershon, Tamar

    2015-01-01

    Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.

  19. Predicting biomedical metadata in CEDAR: A study of Gene Expression Omnibus (GEO).

    PubMed

    Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier

    2017-08-01

    A crucial and limiting factor in data reuse is the lack of accurate, structured, and complete descriptions of data, known as metadata. Towards improving the quantity and quality of metadata, we propose a novel metadata prediction framework to learn associations from existing metadata that can be used to predict metadata values. We evaluate our framework in the context of experimental metadata from the Gene Expression Omnibus (GEO). We applied four rule mining algorithms to the most common structured metadata elements (sample type, molecular type, platform, label type and organism) from over 1.3million GEO records. We examined the quality of well supported rules from each algorithm and visualized the dependencies among metadata elements. Finally, we evaluated the performance of the algorithms in terms of accuracy, precision, recall, and F-measure. We found that PART is the best algorithm outperforming Apriori, Predictive Apriori, and Decision Table. All algorithms perform significantly better in predicting class values than the majority vote classifier. We found that the performance of the algorithms is related to the dimensionality of the GEO elements. The average performance of all algorithm increases due of the decreasing of dimensionality of the unique values of these elements (2697 platforms, 537 organisms, 454 labels, 9 molecules, and 5 types). Our work suggests that experimental metadata such as present in GEO can be accurately predicted using rule mining algorithms. Our work has implications for both prospective and retrospective augmentation of metadata quality, which are geared towards making data easier to find and reuse. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  1. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    PubMed

    Kaur, Simranjeet; Pociot, Flemming

    2015-07-13

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value < 10e-16), which highlights their importance in T1D. Functional annotation of T1D genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value < 10e-6). We also identified eight T1D genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.

  2. Analytical Predictions of Thermal Stress in the Stardust PICA Heatshield Under Reentry Flight Conditions

    NASA Technical Reports Server (NTRS)

    Squire, Thomas; Milos, Frank; Agrawal, Parul

    2009-01-01

    We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.

  3. Immune-mediated rippling muscle disease and myasthenia gravis.

    PubMed

    Bettini, Mariela; Gonorazky, Hernan; Chaves, Marcelo; Fulgenzi, Ernesto; Figueredo, Alejandra; Christiansen, Silvia; Cristiano, Edgardo; Bertini, Enrico S; Rugiero, Marcelo

    2016-10-15

    Cases of acquired rippling muscle disease in association with myasthenia gravis have been reported. We present three patients with iRMD (immune-mediated rippling muscle disease) and AChR-antibody positive myasthenia gravis. None of them had thymus pathology. They presented exercise-induced muscle rippling combined with generalized myasthenia gravis. One of them had muscle biopsy showing a myopathic pattern and a patchy immunostaining with caveolin antibodies. They were successfully treated steroids and azathioprine. The immune nature of this association is supported by the response to immunotherapies and the positivity of AChR-antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Predicting Rediated Noise With Power Flow Finite Element Analysis

    DTIC Science & Technology

    2007-02-01

    Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated

  5. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    PubMed

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    PubMed Central

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  7. Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization.

    PubMed

    Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De; Qin, Cheng-Feng

    2013-06-01

    cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5' cyclization sequence (5'CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5'CS, and the presence of DCS-PK facilitates the formation of 5'-3' RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.

  8. Novel cis-Acting Element within the Capsid-Coding Region Enhances Flavivirus Viral-RNA Replication by Regulating Genome Cyclization

    PubMed Central

    Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De

    2013-01-01

    cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5′ cyclization sequence (5′CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5′CS, and the presence of DCS-PK facilitates the formation of 5′-3′ RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution. PMID:23576500

  9. Thermal stability of mullite RMn₂O₅ (R  =  Bi, Y, Pr, Sm or Gd): combined density functional theory and experimental study.

    PubMed

    Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae

    2016-03-31

    Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R  =  Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA  +  U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.

  10. Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate

    NASA Astrophysics Data System (ADS)

    Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo

    2018-02-01

    To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.

  11. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1.

    PubMed

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; van Dam, Annie; Ivanova, Pavlina T; Milne, Stephen B; Myers, David S; Brown, H Alex; Permentier, Hjalmar; Kok, Jan W

    2010-09-15

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C(16) species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1.

  12. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    PubMed Central

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; vanDam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2013-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C16 species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1. PMID:20604746

  13. International Space Station Bacteria Filter Element Service Life Evaluation

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

  14. A parametric study of hard tissue injury prediction using finite elements: consideration of geometric complexity, subfailure material properties, CT-thresholding, and element characteristics.

    PubMed

    Arregui-Dalmases, Carlos; Del Pozo, Eduardo; Duprey, Sonia; Lopez-Valdes, Francisco J; Lau, Anthony; Subit, Damien; Kent, Richard

    2010-06-01

    The objectives of this study were to examine the axial response of the clavicle under quasistatic compressions replicating the body boundary conditions and to quantify the sensitivity of finite element-predicted fracture in the clavicle to several parameters. Clavicles were harvested from 14 donors (age range 14-56 years). Quasistatic axial compression tests were performed using a custom rig designed to replicate in situ boundary conditions. Prior to testing, high-resolution computed tomography (CT) scans were taken of each clavicle. From those images, finite element models were constructed. Factors varied parametrically included the density used to threshold cortical bone in the CT scans, the presence of trabecular bone, the mesh density, Young's modulus, the maximum stress, and the element type (shell vs. solid, triangular vs. quadrilateral surface elements). The experiments revealed significant variability in the peak force (2.41 +/- 0.72 kN) and displacement to peak force (4.9 +/- 1.1 mm), with age (p < .05) and with some geometrical traits of the specimens. In the finite element models, the failure force and location were moderately dependent upon the Young's modulus. The fracture force was highly sensitive to the yield stress (80-110 MPa). Neither fracture location nor force was strongly dependent on mesh density as long as the element size was less than 5 x 5 mm(2). Both the fracture location and force were strongly dependent upon the threshold density used to define the thickness of the cortical shell.

  15. Hepatitis C Virus Induces the Localization of Lipid Rafts to Autophagosomes for Its RNA Replication

    PubMed Central

    Kim, Ja Yeon; Wang, Linya; Lee, Jiyoung

    2017-01-01

    ABSTRACT Autophagy plays important roles in maintaining cellular homeostasis. It uses double- or multiple-membrane vesicles termed autophagosomes to remove protein aggregates and damaged organelles from the cytoplasm for recycling. Hepatitis C virus (HCV) has been shown to induce autophagy to enhance its own replication. Here we describe a procedure that combines membrane flotation and affinity chromatography for the purification of autophagosomes from cells that harbor an HCV subgenomic RNA replicon. The purified autophagosomes had double- or multiple-membrane structures with a diameter ranging from 200 nm to 600 nm. The analysis of proteins associated with HCV-induced autophagosomes by proteomics led to the identification of HCV nonstructural proteins as well as proteins involved in membrane trafficking. Notably, caveolin-1, caveolin-2, and annexin A2, which are proteins associated with lipid rafts, were also identified. The association of lipid rafts with HCV-induced autophagosomes was confirmed by Western blotting, immunofluorescence microscopy, and immunoelectron microscopy. Their association with autophagosomes was also confirmed in HCV-infected cells. The association of lipid rafts with autophagosomes was specific to HCV, as it was not detected in autophagosomes induced by nutrient starvation. Further analysis indicated that the autophagosomes purified from HCV replicon cells could mediate HCV RNA replication in a lipid raft-dependent manner, as the depletion of cholesterol, a major component of lipid rafts, from autophagosomes abolished HCV RNA replication. Our studies thus demonstrated that HCV could specifically induce the association of lipid rafts with autophagosomes for its RNA replication. IMPORTANCE HCV can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma, and is one of the most important human pathogens. Infection with HCV can lead to the reorganization of membrane structures in its host cells, including the induction of autophagosomes. In this study, we developed a procedure to purify HCV-induced autophagosomes and demonstrated that HCV could induce the localization of lipid rafts to autophagosomes to mediate its RNA replication. This finding provided important information for further understanding the life cycle of HCV and its interaction with the host cells. PMID:28747506

  16. Improving the theoretical prediction for the Bs - B̅s width difference: matrix elements of next-to-leading order ΔB = 2 operators

    NASA Astrophysics Data System (ADS)

    Davies, Christine; Harrison, Judd; Lepage, G. Peter; Monahan, Christopher; Shigemitsu, Junko; Wingate, Matthew

    2018-03-01

    We present lattice QCD results for the matrix elements of R2 and other dimension-7, ΔB = 2 operators relevant for calculations of Δs, the Bs - B̅s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1 + 1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs will be substantially reduced.

  17. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing.

    PubMed

    Kou, Xiaoxing; Xu, Xingtian; Chen, Chider; Sanmillan, Maria Laura; Cai, Tao; Zhou, Yanheng; Giraudo, Claudio; Le, Anh; Shi, Songtao

    2018-03-14

    Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Local Burn-Up Effects in the NBSR Fuel Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peakingmore » relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.« less

  19. A Deep Learning Approach to LIBS Spectroscopy for Planetary Applications

    NASA Astrophysics Data System (ADS)

    Mullen, T. H.; Parente, M.; Gemp, I.; Dyar, M. D.

    2017-12-01

    The ChemCam instrument on the Curiousity rover has collected >440,000 laser-induced breakdown spectra (LIBS) from 1500 different geological targets since 2012. The team is using a pipeline of preprocessing and partial least squares techniques to predict compositions of surface materials [1]. Unfortunately, such multivariate techniques are plagued by hard-to-meet assumptions involving constant hyperparameter tuning to specific elements and the amount of training data available; if the whole distribution of data is not seen, the method will overfit to the training data and generalizability will suffer. The rover only has 10 calibration targets on-board that represent a small subset of the geochemical samples the rover is expected to investigate. Deep neural networks have been used to bypass these issues in other fields. Semi-supervised techniques allow researchers to utilized small labeled datasets and vast amounts of unlabeled data. One example is the variational autoencoder model, a semi-supervised generative model in the form of a deep neural network. The autoencoder assumes that LIBS spectra are generated from a distribution conditioned on the elemental compositions in the sample and some nuisance. The system is broken into two models: one that predicts elemental composition from the spectra and one that generates spectra from compositions that may or may not be seen in the training set. The synthesized spectra show strong agreement with geochemical conventions to express specific compositions. The predictions of composition show improved generalizability to PLS. Deep neural networks have also been used to transfer knowledge from one dataset to another to solve unlabeled data problems. Given that vast amounts of laboratry LIBS spectra have been obtained in the past few years, it is now feasible train a deep net to predict elemental composition from lab spectra. Transfer learning (manifold alignment or calibration transfer) [2] is then used to fine-tune the model from terrestrial lab data to Martian field data. Neural networks and generative models provide the flexibility need for elemental composition prediction and unseen spectra synthesis. [1] Clegg S. et al. (2016) Spectrochim. Acta B, 129, 64-85. [2] Boucher T. et al. (2017) J. Chemom., 31, e2877.

  20. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator.

    PubMed

    Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan

    2014-09-01

    This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S. (Principal Investigator); Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.

  2. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  3. Characterisation of particulate exposure during fireworks displays

    NASA Astrophysics Data System (ADS)

    Joly, Alexandre; Smargiassi, Audrey; Kosatsky, Tom; Fournier, Michel; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Mathieu, David; Servranckx, René; D'amours, Réal; Malo, Alain; Brook, Jeffrey

    2010-11-01

    Little is known about the level and content of exposure to fine particles (PM 2.5) among persons who attend fireworks displays and those who live nearby. An evaluation of the levels of PM 2.5 and their elemental content was carried out during the nine launches of the 2007 Montréal International Fireworks Competition. For each event, a prediction of the location of the firework plume was obtained from the Canadian Meteorological Centre (CMC) of the Meteorological Service of Canada. PM 2.5 was measured continuously with a photometer (Sidepak™, TSI) within the predicted plume location ("predicted sites"), and integrated samples were collected using portable personal samplers. An additional sampler was located on a nearby roof ("fixed site"). The elemental composition of the collected PM 2.5 samples from the "predicted sites" was determined using both a non-destructive energy dispersive ED-XRF method and an ICP-MS method with a near-total microwave-assisted acid digestion. The elemental composition of the "fixed site" samples was determined by the ICP-MS with the near-total digestion method. The highest PM 2.5 levels reached nearly 10 000 μg m -3, roughly 1000 times background levels. Elements such as K, Cl, Al, Mg and Ti were markedly higher in plume-exposed filters. This study shows that 1) persons in the plume and in close proximity to the launch site may be exposed to extremely high levels of PM 2.5 for the duration of the display and, 2) that the plume contains specific elements for which little is known of their acute cardio-respiratory toxicity.

  4. Exposures of dental professionals to elemental mercury and methylmercury.

    PubMed

    Goodrich, Jaclyn M; Chou, Hwai-Nan; Gruninger, Stephen E; Franzblau, Alfred; Basu, Niladri

    2016-01-01

    Mercury (Hg) exposure, a worldwide public health concern, predominantly takes two forms--methylmercury from fish consumption and elemental Hg from dental amalgam restorations. We recruited 630 dental professionals from an American Dental Association meeting to assess Hg body burden and primary sources of exposure in a dually exposed population. Participants described occupational practices and fish consumption patterns via questionnaire. Hg levels in biomarkers of elemental Hg (urine) and methylmercury (hair and blood) were measured with a Direct Mercury Analyzer-80 and were higher than the general US population. Geometric means (95% CI) were 1.28 (1.19-1.37) μg/l in urine, 0.60 (0.54-0.67) μg/g in hair and 3.67 (3.38-3.98) μg/l in blood. In multivariable linear regression, personal amalgams predicted urine Hg levels along with total years in dentistry, amalgams handled, working hours and sex. Fish consumption patterns predicted hair and blood Hg levels, which were higher among Asians compared with Caucasians. Five species contributed the majority of the estimated Hg intake from fish--swordfish, fresh tuna, white canned tuna, whitefish and king mackerel. When studying populations with occupational exposure to Hg, it is important to assess environmental exposures to both elemental Hg and methylmercury as these constitute a large proportion of total exposure.

  5. Exposures of Dental Professionals to Elemental Mercury and Methylmercury

    PubMed Central

    Goodrich, Jaclyn M.; Chou, Hwai-Nan; Gruninger, Stephen E.; Franzblau, Alfred; Basu, Niladri

    2015-01-01

    Mercury (Hg) exposure, a worldwide public health concern, predominantly takes two forms – methylmercury from fish consumption and elemental Hg from dental amalgam restorations. We recruited 630 dental professionals from an American Dental Association meeting to assess Hg body burden and primary sources of exposure in a dually-exposed population. Participants described occupational practices and fish consumption patterns via questionnaire. Mercury levels in biomarkers of elemental Hg (urine) and methylmercury (hair, blood) were measured with a Direct Mercury Analyzer-80 and were higher than the general U.S. population. Geometric means (95% CI) were 1.28 (1.19–1.37) µg/L in urine, 0.60 (0.54–0.67) µg/g in hair, and 3.67 (3.38–3.98) µg/L in blood. In multivariable linear regression, personal amalgams predicted urine Hg levels along with total years in dentistry, amalgams handled, working hours, and sex. Fish consumption patterns predicted hair and blood Hg levels which were higher among Asians compared with Caucasians. Five species contributed the majority of the estimated Hg intake from fish - swordfish, fresh tuna, white canned tuna, whitefish, and king mackerel. When studying populations with occupational exposure to Hg, it is important to assess environmental exposures to both elemental Hg and methylmercury as these constitute a large proportion of total exposure. PMID:26329138

  6. Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2001-01-01

    An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.

  7. The spatial range of contour integration deficits in schizophrenia

    PubMed Central

    Silverstein, Steven M.; Barch, Deanna M.; Carter, Cameron S.; Gold, James M.; Kovács, Ilona; MacDonald, Angus W.; Ragland, J. Daniel; Strauss, Milton E.

    2012-01-01

    Contour integration (CI) refers to the process that represents spatially separated elements as a unified edge or closed shape. Schizophrenia is a psychiatric disorder characterized by symptoms such as hallucinations, delusions, disorganized thinking, inappropriate affect, and social withdrawal. Persons with schizophrenia are impaired at CI, but the specific mechanisms underlying the deficit are still not clear. Here, we explored the hypothesis that poor patient performance owes to reduced feedback or impaired longer-range lateral connectivity within early visual cortex—functionally similar to that found in 5- to 6-year old children. This hypothesis predicts that as target element spacing increases from .7 to 1.4° of visual angle, patient impairments will become more pronounced. As a test of the prediction, 25 healthy controls and 36 clinically stable, asymptomatic persons with schizophrenia completed a CI task that involved determining whether a subset of Gabor elements formed a leftward or rightward pointing shape. Adjacent shape elements were spaced at either .7 or 1.4° of visual angle. Difficulty in each spacing condition depended on the number of noise elements present. Patients performed worse than controls overall, both groups performed worse with the larger spacing, and the magnitude of the between-group difference was not amplified at the larger spacing. These results show that CI deficits in schizophrenia cannot be explained in terms of a reduced spatial range of integration, at least not when the shape elements are spaced within 1.5°. Later-developing, low-level integrative mechanisms of lateral connectivity and feedback appear not to be differentially impaired in the illness. PMID:22710617

  8. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  9. Water analysis via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Chakraborty, Somsubhra; Duda, Bogdan; Li, Bin; Weindorf, David C.; Deb, Shovik; Brevik, Eric; Ray, D. P.

    2017-01-01

    Rapid, in-situ elemental water analysis would be an invaluable tool in studying polluted and/or salt-impacted waters. Analysis of water salinity has commonly used electrical conductance (EC); however, the identity of the elements responsible for the salinity are not revealed using EC. Several studies have established the viability of using portable X-ray fluorescence (PXRF) spectrometry for elemental data analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study used PXRF elemental data in water samples to predict water EC. A total of 256 water samples, from 10 different countries were collected and analyzed via PXRF, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and a digital salinity bridge. The PXRF detected some elements more effectively than others, but overall results indicated that PXRF can successfully predict water EC via quantifying Cl in water samples (validation R2 and RMSE of 0.77 and 0.95 log μS cm-1, respectively). The findings of this study elucidated the potential of PXRF for future analysis of pollutant and/or metal contaminated waters.

  10. The influence of precipitation kinetics on trace element partitioning between solid and liquid solutions: A coupled fluid dynamics/thermodynamics framework to predict distribution coefficients

    NASA Astrophysics Data System (ADS)

    Kavner, A.

    2017-12-01

    In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.

  11. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes.

    PubMed

    Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H

    2014-03-01

    L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver.

    PubMed

    Miszczuk, Gisel S; Barosso, Ismael R; Larocca, María Cecilia; Marrone, Julieta; Marinelli, Raúl A; Boaglio, Andrea C; Sánchez Pozzi, Enrique J; Roma, Marcelo G; Crocenzi, Fernando A

    2018-04-01

    Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 β-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis. Inhibitors of clathrin-mediated endocytosis (CME) such as monodansylcadaverine (MDC) or K + depletion, but not the caveolin-mediated endocytosis inhibitors filipin and genistein, prevented E17G-induced endocytosis of BSEP and MRP2, and the associated impairment of activity of these transporters in isolated rat hepatocyte couplets (IRHC). Immunofluorescence and confocal microscopy studies showed that, in E17G-treated IRHC, there was a significant increase in the colocalization of MRP2 with clathrin, AP2, and Rab5, three essential members of the CME machinery. Knockdown of AP2 by siRNA in sandwich-cultured rat hepatocytes completely prevented E17G-induced endocytosis of BSEP and MRP2. MDC significantly prevented this endocytosis, and the impairment of bile flow and biliary secretion of BSEP and MRP2 substrates, in isolated and perfused livers. BSEP and MRP2, which were mostly present in raft (caveolin-enriched) microdomains in control rats, were largely found in non-raft (clathrin-enriched) microdomains in livers from E17G-treated animals, from where they can be readily recruited for CME. In conclusion, our findings show that CME is the mechanism responsible for the internalization of the canalicular transporters BSEP and MRP2 in E17G-induced cholestasis. The shift of these transporters from raft to non-raft microdomains could be a prerequisite for the transporters to be endocytosed under cholestatic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Unique expression of cytoskeletal proteins in human soft palate muscles.

    PubMed

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  14. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pathogenesis and Prediction of Future Rheumatoid Arthritis

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-13-1-0408 TITLE: Pathogenesis and Prediction of Future Rheumatoid Arthritis PRINCIPAL INVESTIGATOR: Kevin D. Deane, MD/PhD...SUBTITLE 5a. CONTRACT NUMBER Pathogenesis and Prediction of Rheumatoid Arthritis 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...preclinical period of rheumatoid arthritis (RA) development that is characterized by abnormalities of the immune system prior to the onset of the

  16. Predicting Disease Progression in Scleroderma with Skin and Blood Biomarkers

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0452 TITLE: Predicting Disease Progression in Scleroderma with Skin and Blood Biomarkers PRINCIPAL INVESTIGATOR: Dr...Predicting Disease Progression in Scleroderma with Skin and Blood 5a. CONTRACT NUMBER Biomarkers 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...autoimmune disease associated with high morbidity and mortality primarily due to lung disease . There is a large variability in individual patients’ courses

  17. Analytical Prediction of Motor Component Vibrations Driven by Acoustic Combustion Instability

    DTIC Science & Technology

    1976-02-01

    27"V 1Sy 1 2 oiihedr41 Symmetry .. .. . ., . . C-28 3 SPCD Bulk Data Card Format ......... . . .. .- 29 4 CYJOIN Bulk Data Card Format...analysis, the loads, the values of enforced displacements, and the temperatures may vary from element to element. The SPCD bulk data card (Figure 3) is...Static loads for vech suhc’: -e are spcified with LOAD, ’TEMPERATURE (LOAD), or DE .-I, oiectic.-,!•. Enforced deformations may be specified on SPCD

  18. Predicting risk of trace element pollution from municipal roads using site-specific soil samples and remotely sensed data.

    PubMed

    Reeves, Mari Kathryn; Perdue, Margaret; Munk, Lee Ann; Hagedorn, Birgit

    2018-07-15

    Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of risk from field data is a critical path forward in understanding the data and applying the information to land and resource management. Thanks to recent advances in predictive modeling, open source software, and computing, the power to do this is within grasp. This article provides an example of how we predicted relative trace element pollution risk from roads across a region by combining site specific trace element data in soils with regional land cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled 36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with freely-available land cover and urban planning data to derive a predictive model of landscape scale environmental risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predictive abilities and the variables identified as important. Based on comparable predictive abilities (mean R 2 from 30 to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative levels of trace element deposition in soils-given the road surface, traffic volume, sample distance from the road, land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic trace element pollution can show land managers and transportation planners where to prioritize road renewal or maintenance by each road segment's relative environmental and human health risk. Published by Elsevier B.V.

  19. Predicting No-Shows in Radiology Using Regression Modeling of Data Available in the Electronic Medical Record.

    PubMed

    Harvey, H Benjamin; Liu, Catherine; Ai, Jing; Jaworsky, Cristina; Guerrier, Claude Emmanuel; Flores, Efren; Pianykh, Oleg

    2017-10-01

    To test whether data elements available in the electronic medical record (EMR) can be effectively leveraged to predict failure to attend a scheduled radiology examination. Using data from a large academic medical center, we identified all patients with a diagnostic imaging examination scheduled from January 1, 2016, to April 1, 2016, and determined whether the patient successfully attended the examination. Demographic, clinical, and health services utilization variables available in the EMR potentially relevant to examination attendance were recorded for each patient. We used descriptive statistics and logistic regression models to test whether these data elements could predict failure to attend a scheduled radiology examination. The predictive accuracy of the regression models were determined by calculating the area under the receiver operator curve. Among the 54,652 patient appointments with radiology examinations scheduled during the study period, 6.5% were no-shows. No-show rates were highest for the modalities of mammography and CT and lowest for PET and MRI. Logistic regression indicated that 16 of the 27 demographic, clinical, and health services utilization factors were significantly associated with failure to attend a scheduled radiology examination (P ≤ .05). Stepwise logistic regression analysis demonstrated that previous no-shows, days between scheduling and appointments, modality type, and insurance type were most strongly predictive of no-show. A model considering all 16 data elements had good ability to predict radiology no-shows (area under the receiver operator curve = 0.753). The predictive ability was similar or improved when these models were analyzed by modality. Patient and examination information readily available in the EMR can be successfully used to predict radiology no-shows. Moving forward, this information can be proactively leveraged to identify patients who might benefit from additional patient engagement through appointment reminders or other targeted interventions to avoid no-shows. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. The Prediction of Transducer Element Performance from In-Air Measurements.

    DTIC Science & Technology

    1982-01-19

    33 13. Predicted and Measured Transducer Impedance . . . 35 14. Principle of Operation of Fotonic Sensor . . . . 40 15. Experimental Set-up for...inferred from tests of the assembled element, and cannot account for assembly problems such as misalignment and improper glue joints. Thus, the...the results neither predict nor account for the element variability found in actual practice. Our purpose, then, is to derive the lumped-parameter

  1. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    USGS Publications Warehouse

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  2. Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.

  3. A predictive model to estimate the pretest probability of metastasis in patients with osteosarcoma.

    PubMed

    Wang, Sisheng; Zheng, Shaoluan; Hu, Kongzu; Sun, Heyan; Zhang, Jinling; Rong, Genxiang; Gao, Jie; Ding, Nan; Gui, Binjie

    2017-01-01

    Osteosarcomas (OSs) represent a huge challenge to improve the overall survival, especially in metastatic patients. Increasing evidence indicates that both tumor-associated elements but also on host-associated elements are under a remarkable effect on the prognosis of cancer patients, especially systemic inflammatory response. By analyzing a series prognosis of factors, including age, gender, primary tumor size, tumor location, tumor grade, and histological classification, monocyte ratio, and NLR ratio, a clinical predictive model was established by using stepwise logistic regression involved circulating leukocyte to compute the estimated probabilities of metastases for OS patients. The clinical predictive model was described by the following equations: probability of developing metastases = ex/(1 + ex), x = -2.150 +  (1.680 × monocyte ratio) + (1.533 × NLR ratio), where is the base of the natural logarithm, the assignment to each of the 2 variables is 1 if the ratio >1 (otherwise 0). The calculated AUC of the receiver-operating characteristic curve as 0.793 revealed well accuracy of this model (95% CI, 0.740-0.845). The predicted probabilities that we generated with the cross-validation procedure had a similar AUC (0.743; 95% CI, 0.684-0.803). The present model could be used to improve the outcomes of the metastases by developing a predictive model considering circulating leukocyte influence to estimate the pretest probability of developing metastases in patients with OS.

  4. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion.

    PubMed

    Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-09-01

    Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  6. Prediction of shear critical behavior of high-strength reinforced concrete columns using finite element methods

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu

    2017-11-01

    This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.

  7. The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world.

    PubMed

    Wijayawardena, Bhagya K; DeWoody, J Andrew; Minchella, Dennis J

    2015-06-01

    Transposable elements (TEs) are mobile genes with an inherent ability to move within and among genomes. Theory predicts that TEs proliferate extensively during physiological stress due to the breakdown of TE repression systems. We tested this hypothesis in Schistosoma mansoni, a widespread trematode parasite that causes the human disease schistosomiasis. According to phylogenetic analysis, S. mansoni invaded the new world during the last 500 years. We hypothesized that new world strains of S. mansoni would have more copies of TEs than old world strains due to the physiological stress associated with invasion of the new world. We quantified the copy number of six TEs (Saci-1, Saci-2 and Saci-3, Perere-1, Merlin-sm1, and SmTRC1) in the genome and the transcriptome of old world and new world strains of S. mansoni, using qPCR relative quantification. As predicted, the genomes of new world parasites contain significantly more copies of class I and class II TEs in both laboratory and field strains. However, such differences are not observed in the transcriptome suggesting that either TE silencing mechanisms have reactivated to control the expression of these elements or the presence of inactive truncated copies of TEs.

  8. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  9. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  10. Evaluation of two models for predicting elemental accumulation by arthropods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, J.R.; Crossley, D.A. Jr.

    1978-06-15

    Two different models have been proposed for predicting elemental accumulation by arthropods. Parameters of both models can be quantified from radioisotope elimination experiments. Our analysis of the 2 models shows that both predict identical elemental accumulation for a whole organism, though differing in the accumulation in body and gut. We quantified both models with experimental data from /sup 134/Cs and /sup 85/Sr elimination by crickets. Computer simulations of radioisotope accumulation were then compared with actual accumulation experiments. Neither model showed exact fit to the experimental data, though both showed the general pattern of elemental accumulation.

  11. Statistical Energy Analysis (SEA) and Energy Finite Element Analysis (EFEA) Predictions for a Floor-Equipped Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2011-01-01

    Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.

  12. MusTRD can regulate postnatal fiber-specific expression.

    PubMed

    Issa, Laura L; Palmer, Stephen J; Guven, Kim L; Santucci, Nicole; Hodgson, Vanessa R M; Popovic, Kata; Joya, Josephine E; Hardeman, Edna C

    2006-05-01

    Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.

  13. Superconductivity in Hydrides Doped with Main Group Elements Under Pressure

    NASA Astrophysics Data System (ADS)

    Shamp, Andrew; Zurek, Eva

    2017-01-01

    A priori crystal structure prediction techniques have been used to explore the phase diagrams of hydrides of main group elements under pressure. A number of novel phases with the chemical formulas MHn, n > 1 and M = Li, Na, K, Rb, Cs; MHn, n > 2 and M= Mg, Ca, Sr, Ba; HnI with n > 1 and PH, PH2, PH3 have been predicted to be stable at pressures achievable in diamond anvil cells. The hydrogenic lattices within these phases display a number of structural motifs including H2δ- , H-, H-3 , as well as one-dimensional and three-dimensional extended structures. A wide range of superconducting critical temperatures, Tcs, are predicted for these hydrides. The mechanism of metallization and the propensity for superconductivity are dependent upon the structural motifs present in these phases, and in particular on their hydrogenic sublattices. Phases that are thermodynamically unstable, but dynamically stable, are accessible experimentally. The observed trends provide insight on how to design hydrides that are superconducting at high temperatures.

  14. Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model

    DTIC Science & Technology

    2016-01-14

    distribution is unlimited. TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH A GLOBAL CLOUD RESOLVING MODEL PI: Tim Li IPRC/SOEST, University of Hawaii at...Project Final Report 3. DATES COVERED (From - To) 1 May 2012 - 30 September 2015 4. TITLE AND SUBTITLE TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH...A GLOBAL CLOUD RESOLVING MODEL 5a. CONTRACT NUMBER 5b. GRANT NUMBER N000141210450 5c. PROGRAM ELEMENT NUMBER ONR Marine Meteorology Program 6

  15. [Role of caveolin-1 in pulmonary microvascular endothelial cells injury induced by lipopolysaccharide in rat].

    PubMed

    You, Qing-hai; Zhang, Dan; Sun, Geng-yun; Yue, Yang; Xu, Xiu-juan

    2013-12-01

    To investigate the role of caveolin-1 (Cav-1) in the modulation of rat pulmonary microvascular endothelial cells (RPMVEC) injury induced by lipopolysaccharide (LPS). Cultured RPMVEC were randomly divided into time-dependent injury group induced by LPS and intervention group in which cells were pretreated by protein kinase A inhibitor (PKI). In the time-dependent injury group, monolayers of cells were constructed to determine permeability changes after 10 μg/mL LPS challenge for 0, 1, 3, 6, 12 and 24 hours with the method of Evans blue-labeled albumin flux across the monolayer (Pd). Western blotting was used to determine the Cav-1 expression after LPS stimulation and the phosphorylation-Cav-1 (p-Cav-1) expression after LPS challenge for 0, 10, 30, 60, 90, 120 minutes. In the intervention group, after pre-treatment with 10 μmol/L PKI for 30 minutes, RPMVECs were challenged with 10 μg/mL LPS, and the expression of p-Cav-1 was determined 30 minutes after LPS challenge, the permeability and the Cav-1 protein expression were assessed by Pd and Western blotting, respectively. Non-stimulation group and single PKI simulation group served as controls. Western blotting revealed that the expression of Cav-1 protein was elevated at 1 hour (2.97 ± 0.07), peaking at 3 hours (3.77 ± 0.37), then it lowered gradually, but it was still higher at 24 hours (1.45 ± 0.18) when compared with 0 hour group (1.12±0.08) with significant differences (F=178.047, P=0.000). After RPMVEC monolayers were challenged by LPS for different periods (0, 1, 3, 6, 12 and 24 hours), there were significant increases in a time-dependent manner in Cav-1 expression in the permeability as measured by Pd [(99.67 ± 4.32)%, (118.17 ± 2.32)%, (159.00 ± 2.61)%, (141.17 ± 2.64)%, (120.17 ± 2.79)% and (108.83 ± 2.04)%, F=345.869, P=0.000] which was similar to the changes in Cav-1 expression. LPS also increased Cav-1 phosphorylation in a time-dependent manner occurring at 10 minutes (2.41 ± 0.11), peaking at 30 minutes (2.83 ± 0.10), and then it decreased gradually, finally returned to basal levels (1.03±0.04) at 120 minutes (1.04 ± 0.04) after LPS treatment with significant difference (F=519.417, P=0.000). When PKI was pre-treated with RPMVEC the expression of Cav-1 was significantly increased (5.07 ± 0.22 vs. 3.81 ± 0.23, P<0.01), and p-Cav-1 (3.93 ± 0.23 vs. 2.77±0.10, P<0.01), and RPMVEC monolayers permeability was enhanced [(184.17 ± 5.49)% vs. (151.50 ± 3.08)%, P<0.01] after being challenged. Up-regulated expression of Cav-1 and phosphorylation-Cav-1 that may be modulated by protein kinase A signal pathway plays an important role in RPMVEC permeability injury as induced by LPS.

  16. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Carmosino, M. L.; Breves, E. A.; Ozanne, M. V.; Clegg, S. M.; Wiens, R. C.

    2012-04-01

    A remote laser-induced breakdown spectrometer (LIBS) designed to simulate the ChemCam instrument on the Mars Science Laboratory Rover Curiosity was used to probe 100 geologic samples at a 9-m standoff distance. ChemCam consists of an integrated remote LIBS instrument that will probe samples up to 7 m from the mast of the rover and a remote micro-imager (RMI) that will record context images. The elemental compositions of 100 igneous and highly-metamorphosed rocks are determined with LIBS using three variations of multivariate analysis, with a goal of improving the analytical accuracy. Two forms of partial least squares (PLS) regression are employed with finely-tuned parameters: PLS-1 regresses a single response variable (elemental concentration) against the observation variables (spectra, or intensity at each of 6144 spectrometer channels), while PLS-2 simultaneously regresses multiple response variables (concentrations of the ten major elements in rocks) against the observation predictor variables, taking advantage of natural correlations between elements. Those results are contrasted with those from the multivariate regression technique of the least absolute shrinkage and selection operator (lasso), which is a penalized shrunken regression method that selects the specific channels for each element that explain the most variance in the concentration of that element. To make this comparison, we use results of cross-validation and of held-out testing, and employ unscaled and uncentered spectral intensity data because all of the input variables are already in the same units. Results demonstrate that the lasso, PLS-1, and PLS-2 all yield comparable results in terms of accuracy for this dataset. However, the interpretability of these methods differs greatly in terms of fundamental understanding of LIBS emissions. PLS techniques generate principal components, linear combinations of intensities at any number of spectrometer channels, which explain as much variance in the response variables as possible while avoiding multicollinearity between principal components. When the selected number of principal components is projected back into the original feature space of the spectra, 6144 correlation coefficients are generated, a small fraction of which are mathematically significant to the regression. In contrast, the lasso models require only a small number (< 24) of non-zero correlation coefficients (β values) to determine the concentration of each of the ten major elements. Causality between the positively-correlated emission lines chosen by the lasso and the elemental concentration was examined. In general, the higher the lasso coefficient (β), the greater the likelihood that the selected line results from an emission of that element. Emission lines with negative β values should arise from elements that are anti-correlated with the element being predicted. For elements except Fe, Al, Ti, and P, the lasso-selected wavelength with the highest β value corresponds to the element being predicted, e.g. 559.8 nm for neutral Ca. However, the specific lines chosen by the lasso with positive β values are not always those from the element being predicted. Other wavelengths and the elements that most strongly correlate with them to predict concentration are obviously related to known geochemical correlations or close overlap of emission lines, while others must result from matrix effects. Use of the lasso technique thus directly informs our understanding of the underlying physical processes that give rise to LIBS emissions by determining which lines can best represent concentration, and which lines from other elements are causing matrix effects.

  17. Influence of Finite Element Size in Residual Strength Prediction of Composite Structures

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Karayev, Kazbek Z.; Nordman, Paul S.; Razi, Hamid

    2012-01-01

    The sensitivity of failure load to the element size used in a progressive failure analysis (PFA) of carbon composite center notched laminates is evaluated. The sensitivity study employs a PFA methodology previously developed by the authors consisting of Hashin-Rotem intra-laminar fiber and matrix failure criteria and a complete stress degradation scheme for damage simulation. The approach is implemented with a user defined subroutine in the ABAQUS/Explicit finite element package. The effect of element size near the notch tips on residual strength predictions was assessed for a brittle failure mode with a parametric study that included three laminates of varying material system, thickness and stacking sequence. The study resulted in the selection of an element size of 0.09 in. X 0.09 in., which was later used for predicting crack paths and failure loads in sandwich panels and monolithic laminated panels. Comparison of predicted crack paths and failure loads for these panels agreed well with experimental observations. Additionally, the element size vs. normalized failure load relationship, determined in the parametric study, was used to evaluate strength-scaling factors for three different element sizes. The failure loads predicted with all three element sizes provided converged failure loads with respect to that corresponding with the 0.09 in. X 0.09 in. element size. Though preliminary in nature, the strength-scaling concept has the potential to greatly reduce the computational time required for PFA and can enable the analysis of large scale structural components where failure is dominated by fiber failure in tension.

  18. Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide–High Angiotensin II–Induced Cardiovascular Injury

    PubMed Central

    Pojoga, Luminita H.; Yao, Tham M.; Opsasnick, Lauren A.; Siddiqui, Waleed T.; Reslan, Ossama M.; Adler, Gail K.; Williams, Gordon H.

    2015-01-01

    Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1–replete or –deficient states would alter vascular function in a mouse model of low nitric oxide (NO)–high angiotensin II (AngII)–induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1−/−) consuming a high salt diet (4% NaCl) received Nω-nitro-l-arginine methyl ester (L-NAME) (0.1–0.2 mg/ml in drinking water at days 1–11) plus AngII (0.7–2.8 mg/kg per day via an osmotic minipump at days 8–11) ± MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME + AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME+AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME+AngII treated WT mice, but not cav-1−/− mice. AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME + AngII treated WT and cav-1−/− mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME + AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1−/− mice was greater than in WT mice, not modified by L-NAME + AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1−/− versus WT mice, further increased with L-NAME + AngII, and not affected by EPL. Vascular relaxation to the NO donor sodium nitroprusside was increased with L-NAME + AngII in WT mice but not in cav-1−/− mice. Plasma aldosterone levels increased and cardiac MR expression decreased in L-NAME + AngII treated WT and cav-1−/− mice and did not change with EPL. Thus, during L-NAME + AngII induced hypertension, MR blockade increases contraction and alters vascular relaxation via NO-cGMP, and these changes are absent in cav-1 deficiency states. The data suggest a cooperative role of MR and cav-1 in regulating vascular contraction and NO-cGMP–mediated relaxation during low NO–high AngII–dependent cardiovascular injury. PMID:26183312

  19. Element-based prognostics of occupational pneumoconiosis using micro-proton-induced X-ray emission analysis.

    PubMed

    He, Xiaodong; Shen, Hao; Chen, Zidan; Rong, Caicai; Ren, Minqin; Hou, Likun; Wu, Chunyan; Mao, Ling; Lu, Quan; Su, Bo

    2017-12-01

    Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO 2 ); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain. Copyright © 2017 the American Physiological Society.

  20. Implicit Learning Abilities Predict Treatment Response in Autism Spectrum Disorders

    DTIC Science & Technology

    2015-09-01

    2 AWARD NUMBER: W81XWH-14-1-0261 TITLE: Implicit Learning Abilities Predict Treatment Response in Autism Spectrum Disorders PRINCIPAL...Treatment Response in Autism Spectrum Disorders 5b. GRANT NUMBER W81XWH-14-1-0261 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...for Autism Spectrum Disorder (ASD), but almost half of the children do not make significant gains. Implicit learning skills are integral to

  1. Prediction of High-Lift Flows using Turbulent Closure Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild

    1997-01-01

    The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.

  2. A suggested periodic table up to Z≤ 172, based on Dirac-Fock calculations on atoms and ions.

    PubMed

    Pyykkö, Pekka

    2011-01-07

    Extended Average Level (EAL) Dirac-Fock calculations on atoms and ions agree with earlier work in that a rough shell-filling order for the elements 119-172 is 8s < 5g≤ 8p(1/2) < 6f < 7d < 9s < 9p(1/2) < 8p(3/2). The present Periodic Table develops further that of Fricke, Greiner and Waber [Theor. Chim. Acta 1971, 21, 235] by formally assigning the elements 121-164 to (nlj) slots on the basis of the electron configurations of their ions. Simple estimates are made for likely maximum oxidation states, i, of these elements M in their MX(i) compounds, such as i = 6 for UF(6). Particularly high i are predicted for the 6f elements.

  3. Co-option of endocytic functions of cellular caveolae by pathogens

    PubMed Central

    Shin, J-S; Abraham, S N

    2001-01-01

    It is increasingly becoming clear that various immune cells are infected by the very pathogens that they are supposed to attack. Although many mechanisms for microbial entry exist, it appears that a common route of entry shared by certain bacteria, viruses and parasites involves cellular lipid-rich microdomains sometimes called caveolae. These cellular entities, which are characterized by their preferential accumulation of glycosylphosphatidylinositol (GPI)-anchored molecules, cholesterol and various glycolipids, and a distinct protein (caveolin), are present in many effector cells of the immune system including neutrophils, macrophages, mast cells and dendritic cells. These structures have an innate capacity to endocytoze various ligands and traffic them to different intracellular sites and sometimes, back to the extracellular cell surface. Because caveolae do not typically fuse with lysosomes, the ligands borne by caveolar vesicles are essentially intact, which is in marked contrast to ligands endocytozed via the classical endosome–lysosome pathway. A number of microbes or their exotoxins co-opt the unique features of caveolae to enter and traffic, without any apparent loss of viability and function, to different sites within immune and other host cells. In spite of their wide disparity in size and other structural attributes, we predict that a common feature among caveolae-utilizing pathogens and toxins is that their cognate receptor(s) are localized within plasmalemmal caveolae of the host cell. PMID:11168630

  4. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods.

    PubMed

    Wu, P; Zeng, Y Z; Wang, C M

    2004-03-01

    Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.

  5. Testing an integrated behavioural and biomedical model of disability in N-of-1 studies with chronic pain.

    PubMed

    Quinn, Francis; Johnston, Marie; Johnston, Derek W

    2013-01-01

    Previous research has supported an integrated biomedical and behavioural model explaining activity limitations. However, further tests of this model are required at the within-person level, because while it proposes that the constructs are related within individuals, it has primarily been tested between individuals in large group studies. We aimed to test the integrated model at the within-person level. Six correlational N-of-1 studies in participants with arthritis, chronic pain and walking limitations were carried out. Daily measures of theoretical constructs were collected using a hand-held computer (PDA), the activity was assessed by self-report and accelerometer and the data were analysed using time-series analysis. The biomedical model was not supported as pain impairment did not predict activity, so the integrated model was supported partially. Impairment predicted intention to move around, while perceived behavioural control (PBC) and intention predicted activity. PBC did not predict activity limitation in the expected direction. The integrated model of disability was partially supported within individuals, especially the behavioural elements. However, results suggest that different elements of the model may drive activity (limitations) for different individuals. The integrated model provides a useful framework for understanding disability and suggests interventions, and the utility of N-of-1 methodology for testing theory is illustrated.

  6. Bisphenol A induces proliferative effects on both breast cancer cells and vascular endothelial cells through a shared GPER-dependent pathway in hypoxia.

    PubMed

    Xu, Fangyi; Wang, Xiaoning; Wu, Nannan; He, Shuiqing; Yi, Weijie; Xiang, Siyun; Zhang, Piwei; Xie, Xiao; Ying, Chenjiang

    2017-12-01

    Based on the breast cancer cells and the vascular endothelial cells are both estrogen-sensitive, we proposed a close reciprocity existed between them in the tumor microenvironment, via shared molecular mechanism affected by environmental endocrine disruptors (EDCs). In this study, bisphenol A (BPA), via triggering G-protein estrogen receptor (GPER), stimulated cell proliferation and migration of bovine vascular endothelial cells (BVECs) and breast cancer cells (SkBr-3 and MDA-MB-231) and enhanced tumor growth in vivo. Moreover, the expression of both hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were up-regulated in a GPER-dependent manner by BPA treatment under hypoxic condition, and the activated GPER induced the HIF-1α expression by competitively binding to caveolin-1 (Cav-1) and facilitating the release of heat shock protein 90 (HSP90). These findings show that in a hypoxic microenvironment, BPA promotes HIF-1α and VEGF expressions through a shared GPER/Cav-1/HSP90 signaling cascade. Our observations provide a probable hypothesis that the effects of BPA on tumor development are copromoting relevant biological responses in both vascular endothelial and breast cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dihydroartemisinin Exerts Its Anticancer Activity through Depleting Cellular Iron via Transferrin Receptor-1

    PubMed Central

    Ba, Qian; Zhou, Naiyuan; Duan, Juan; Chen, Tao; Hao, Miao; Yang, Xinying; Li, Junyang; Yin, Jun; Chu, Ruiai; Wang, Hui

    2012-01-01

    Artemisinin and its main active metabolite dihydroartemisinin, clinically used antimalarial agents with low host toxicity, have recently shown potent anticancer activities in a variety of human cancer models. Although iron mediated oxidative damage is involved, the mechanisms underlying these activities remain unclear. In the current study, we found that dihydroartemisinin caused cellular iron depletion in time- and concentration-dependent manners. It decreased iron uptake and disturbed iron homeostasis in cancer cells, which were independent of oxidative damage. Moreover, dihydroartemisinin reduced the level of transferrin receptor-1 associated with cell membrane. The regulation of dihydroartemisinin to transferrin receptor-1 could be reversed by nystatin, a cholesterol-sequestering agent but not the inhibitor of clathrin-dependent endocytosis. Dihydroartemisinin also induced transferrin receptor-1 palmitoylation and colocalization with caveolin-1, suggesting a lipid rafts mediated internalization pathway was involved in the process. Also, nystatin reversed the influences of dihydroartemisinin on cell cycle and apoptosis related genes and the siRNA induced downregulation of transferrin receptor-1 decreased the sensitivity to dihydroartemisinin efficiently in the cells. These results indicate that dihydroartemisinin can counteract cancer through regulating cell-surface transferrin receptor-1 in a non-classical endocytic pathway, which may be a new action mechanism of DHA independently of oxidative damage. PMID:22900042

  8. Dimension-six matrix elements for meson mixing and lifetimes from sum rules

    NASA Astrophysics Data System (ADS)

    Kirk, M.; Lenz, A.; Rauh, T.

    2017-12-01

    The hadronic matrix elements of dimension-six Δ F = 0, 2 operators are crucial inputs for the theory predictions of mixing observables and lifetime ratios in the B and D system. We determine them using HQET sum rules for three-point correlators. The results of the required three-loop computation of the correlators and the one-loop computation of the QCD-HQET matching are given in analytic form. For mixing matrix elements we find very good agreement with recent lattice results and comparable theoretical uncertainties. For lifetime matrix elements we present the first ever determination in the D meson sector and the first determination of Δ B = 0 matrix elements with uncertainties under control — superseeding preliminary lattice studies stemming from 2001 and earlier. With our state-of-the-art determination of the bag parameters we predict: τ( B +)/ τ( B d 0 ) = 1.082 - 0.026 + 0.022 , τ( B s 0 )/ τ( B d 0 ) = 0.9994 ± 0.0025, τ( D +)/ τ( D 0) = 2. 7 - 0.8 + 0.7 and the mixing-observables in the B s and B d system, in good agreement with the most recent experimental averages.

  9. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report, A1 Module. Addendum 1

    NASA Technical Reports Server (NTRS)

    Ely, W.

    1996-01-01

    This addendum reports the structural margins of safety and natural frequency predictions for the design following the EOS AMSU-A1 Mechanical/Structural Subsystem Critical Design Review (CDR), based on a new and more refined finite element model.

  10. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  11. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells

    PubMed Central

    Howes, Mark T.; Kirkham, Matthew; Riches, James; Cortese, Katia; Walser, Piers J.; Simpson, Fiona; Hill, Michelle M.; Jones, Alun; Lundmark, Richard; Lindsay, Margaret R.; Hernandez-Deviez, Delia J.; Hadzic, Gordana; McCluskey, Adam; Bashir, Rumasia; Liu, Libin; Pilch, Paul; McMahon, Harvey; Robinson, Phillip J.; Hancock, John F.; Mayor, Satyajit

    2010-01-01

    Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells. PMID:20713605

  12. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  13. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung.

    PubMed

    Oh, Phil; Borgström, Per; Witkiewicz, Halina; Li, Yan; Borgström, Bengt J; Chrastina, Adrian; Iwata, Koji; Zinn, Kurt R; Baldwin, Richard; Testa, Jacqueline E; Schnitzer, Jan E

    2007-03-01

    How effectively and quickly endothelial caveolae can transcytose in vivo is unknown, yet critical for understanding their function and potential clinical utility. Here we use quantitative proteomics to identify aminopeptidase P (APP) concentrated in caveolae of lung endothelium. Electron microscopy confirms this and shows that APP antibody targets nanoparticles to caveolae. Dynamic intravital fluorescence microscopy reveals that targeted caveolae operate effectively as pumps, moving antibody within seconds from blood across endothelium into lung tissue, even against a concentration gradient. This active transcytosis requires normal caveolin-1 expression. Whole body gamma-scintigraphic imaging shows rapid, specific delivery into lung well beyond that achieved by standard vascular targeting. This caveolar trafficking in vivo may underscore a key physiological mechanism for selective transvascular exchange and may provide an enhanced delivery system for imaging agents, drugs, gene-therapy vectors and nanomedicines. 'In vivo proteomic imaging' as described here integrates organellar proteomics with multiple imaging techniques to identify an accessible target space that includes the transvascular pumping space of the caveola.

  14. Microvascular stress analysis. Part I: simulation of microvascular anastomoses using finite element analysis.

    PubMed

    Al-Sukhun, Jehad; Lindqvist, Christian; Ashammakhi, Nureddin; Penttilä, Heikki

    2007-03-01

    To develop a finite element model (FEM) to study the effect of the stress and strain, in microvascular anastomoses that result from the geometrical mismatch of anastomosed vessels. FEMs of end-to-end and end-to-side anastomoses were constructed. Simulations were made using finite element software (NISA). We investigated the angle of inset in the end-to-side anastomosis and the discrepancy in the size of the opening in the vessel between the host and recipient vessels. The FEMs were used to predict principal and shear stress and strain at the position of each node. Two types of vascular deformation were predicted during different simulations: longitudinal distortion, and rotational distortion. Stress values ranged from 151.1 to 282.4MPa for the maximum principal stress, from -122.9 to -432.2MPa for the minimum principal stress, and from 122.1 to 333.1MPa for the maximum shear stress. The highest values were recorded when there was a 50% mismatch in the diameter of the vessels at the site of the end-to-end anastomosis. The effect of the vessel's size discrepancy on the blood flow and deformation was remarkable in the end-to-end anastomosis. End-to-side anastomosis was superior to end-to-end anastomosis. FEM is a powerful tool to study vascular deformation, as it predicts deformation and biomechanical processes at sites where physical measurements are likely to remain impossible in living humans.

  15. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine.

    PubMed

    Ayturk, Ugur M; Puttlitz, Christian M

    2011-08-01

    The primary objective of this study was to generate a finite element model of the human lumbar spine (L1-L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.

  16. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  17. Rare earth element abundances in presolar SiC

    NASA Astrophysics Data System (ADS)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  18. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, David R.; Hendrickson, Bruce A.; Plimpton, Steven J.; Attaway, Stephen W.; Heinstein, Martin W.; Vaughan, Courtenay T.

    1998-01-01

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers.

  19. Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure.

    PubMed

    Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J

    2015-06-01

    Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis

    PubMed Central

    Strippoli, Raffaele; Loureiro, Jesús; Moreno, Vanessa; Benedicto, Ignacio; Pérez Lozano, María Luisa; Barreiro, Olga; Pellinen, Teijo; Minguet, Susana; Foronda, Miguel; Osteso, Maria Teresa; Calvo, Enrique; Vázquez, Jesús; López Cabrera, Manuel; del Pozo, Miguel Angel

    2015-01-01

    Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial–mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1−/− mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1−/− mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-β activity in matrices derived from Cav1−/− cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1−/− mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD. PMID:25550395

  1. Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California

    USGS Publications Warehouse

    Herrera, P.A.; Closs, L.G.; Silberman, M.L.

    1993-01-01

    Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this zone. However, irregularities in the distribution of some key elements, such as Au and Ag, relative to the predictive models suggest that a larger suite of elements be considered for exploration for ore zones within the district. ?? 1993.

  2. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2008-01-01

    Since approximately 1990 high pressure and temperature (PT) experiments on metal-silicate systems have showed that partition coefficients (D) for siderophile (iron-loving) elements are much different than those measured at low PT conditions. The high PT data have been used to argue for a magma ocean during growth of the early Earth. Initial conclusions were based on experiments and calculations for a small number of elements such as Ni and Co. However, for many elements only a limited number of experimental data were available then, and they only hinted at values of metal-silicate D's at high PT conditions. In the ensuing decades there have been hundreds of new experiments carried out and published on a wide range of siderophile elements. At the same time several different models have been advanced to explain the siderophile elements in the earth's mantle: a) intermediate depth magma ocean; 25-30 GPa, b) deep magma ocean; up to 50 GPa, and c) early reduced and later oxidized magma ocean. Some studies have drawn conclusions based on a small subset of siderophile elements, or a set of elements that provides little leverage on the big picture (like slightly siderophile elements), and no single study has attempted to quantitatively explain more than 5 elements at a time. The purpose of this abstract is to update the predictive expressions outlined by Righter et al. (1997) with new experimental data from the last decade, test the predictive ability of these expressions against independent datasets (there are more data now to do this properly), and to apply the resulting expressions to the siderophile element patterns in Earth's upper mantle. The predictive expressions have the form: lnD = alnfO2 + b/T + cP/T + d(1Xs) + e(1Xc) + SigmafiXi + g These expressions are guided by the thermodynamics of simple metal-oxide equilibria that control each element, include terms that mimic the activity coefficients of each element in the metal and silicate, and quantify the effect of variable oxygen fugacity. Preliminary results confirm that D(Ni) and D(Co) converge at pressures near 25-30 GPa and approximately 2200 K, and show that D(Pd) and D(Cu) become too low at the PT conditions of the deepest models. Furthermore, models which force fit V and Cr mantle concentrations by metal-silicate equilibrium overlook the fact that at early Earth mantle fO2, these elements will be more compatible in Mg-perovskite and (Fe,Mg)O than in metal. Thus an intermediate depth magma ocean, at 25-30 GPa, 2200 K, and at IW-2, can explain more mantle siderophile element concentrations than other models.

  3. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    PubMed

    Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus

    2016-04-01

    Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon.

    PubMed

    Filiz, Ertugrul; Ozyigit, Ibrahim Ilker; Vatansever, Recep

    2015-10-01

    GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analytical and experimental vibration studies of a 1/8-scale shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Pinson, L. D.

    1975-01-01

    Natural frequencies and mode shapes for four symmetric vibration modes and four antisymmetric modes are compared with predictions based on NASTRAN finite-element analyses. Initial predictions gave poor agreement with test data; an extensive investigation revealed that the major factors influencing agreement were out-of-plane imperfections in fuselage panels and a soft fin-fuselage connection. Computations with a more refined analysis indicated satisfactory frequency predictions for all modes studied, within 11 percent of experimental values.

  6. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions.

    PubMed

    Akrami, Mohammad; Qian, Zhihui; Zou, Zhemin; Howard, David; Nester, Chris J; Ren, Lei

    2018-04-01

    The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.

  7. A quasi two-dimensional model for sound attenuation by the sonic crystals.

    PubMed

    Gupta, A; Lim, K M; Chew, C H

    2012-10-01

    Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound propagation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on the Webster horn equation is used to obtain sound attenuation through the SC. This model is compared with two-dimensional (2D) finite element simulation and experiment. The 1D model prediction of frequency band for sound attenuation is found to be shifted by around 500 Hz with respect to the finite element simulation. The reason for this shift is due to the assumption involved in the 1D model. A quasi 2D model is developed for sound propagation through the waveguide. Sound pressure profiles from the quasi 2D model are compared with the finite element simulation and the 1D model. The result shows significant improvement over the 1D model and is in good agreement with the 2D finite element simulation. Finally, sound attenuation through the SC is computed based on the quasi 2D model and is found to be in good agreement with the finite element simulation. The quasi 2D model provides an improved method to calculate sound attenuation through the SC.

  8. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  9. Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads

    NASA Technical Reports Server (NTRS)

    Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.

    1980-01-01

    Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.

  10. Prediction of response of aircraft panels subjected to acoustic and thermal loads

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1992-01-01

    The primary effort of this research project has been focused on the development of analytical methods for the prediction of random response of structural panels subjected to combined and intense acoustic and thermal loads. The accomplishments on various acoustic fatigue research activities are described first, then followed by publications and theses. Topics covered include: transverse shear deformation; finite element models of vibrating composite laminates; large deflection vibration modeling; finite element analysis of thermal buckling; and prediction of three dimensional duct using boundary element method.

  11. A new criterion for predicting rolling-element fatigue lives of through-hardened steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Zaretsky, E. V.; Parker, R. J.

    1972-01-01

    A carbide factor was derived based upon a statistical analysis which related rolling-element fatigue life to the total number of residual carbide particles per unit area, median residual carbide size, and percent residual carbide area. An equation was experimentally determined which predicts material hardness as a function of temperature. The limiting temperatures of all of the materials studied were dependent on initial room temperature hardness and tempering temperature. An equation was derived combining the effects of material hardness, carbide factor, and bearing temperature to predict rolling-element bearing life.

  12. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, D.R.; Hendrickson, B.A.; Plimpton, S.J.; Attaway, S.W.; Heinstein, M.W.; Vaughan, C.T.

    1998-05-19

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers. 12 figs.

  13. Calculation of flight vibration levels of the AH-1G helicopter and correlation with existing flight vibration measurements

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Twomey, W. J.

    1990-01-01

    NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.

  14. Finite element method simulating temperature distribution in skin induced by 980-nm pulsed laser based on pain stimulation.

    PubMed

    Wang, Han; Dong, Xiao-Xi; Yang, Ji-Chun; Huang, He; Li, Ying-Xin; Zhang, Hai-Xia

    2017-07-01

    For predicting the temperature distribution within skin tissue in 980-nm laser-evoked potentials (LEPs) experiments, a five-layer finite element model (FEM-5) was constructed based on Pennes bio-heat conduction equation and the Lambert-Beer law. The prediction results of the FEM-5 model were verified by ex vivo pig skin and in vivo rat experiments. Thirty ex vivo pig skin samples were used to verify the temperature distribution predicted by the model. The output energy of the laser was 1.8, 3, and 4.4 J. The laser spot radius was 1 mm. The experiment time was 30 s. The laser stimulated the surface of the ex vivo pig skin beginning at 10 s and lasted for 40 ms. A thermocouple thermometer was used to measure the temperature of the surface and internal layers of the ex vivo pig skin, and the sampling frequency was set to 60 Hz. For the in vivo experiments, nine adult male Wistar rats weighing 180 ± 10 g were used to verify the prediction results of the model by tail-flick latency. The output energy of the laser was 1.4 and 2.08 J. The pulsed width was 40 ms. The laser spot radius was 1 mm. The Pearson product-moment correlation and Kruskal-Wallis test were used to analyze the correlation and the difference of data. The results of all experiments showed that the measured and predicted data had no significant difference (P > 0.05) and good correlation (r > 0.9). The safe laser output energy range (1.8-3 J) was also predicted. Using the FEM-5 model prediction, the effective pain depth could be accurately controlled, and the nociceptors could be selectively activated. The FEM-5 model can be extended to guide experimental research and clinical applications for humans.

  15. Jointness for the Rest of Us: Reforming Joint Professional Development

    DTIC Science & Technology

    2016-06-10

    October 2006), 907. 20 Foley, 1. 21 Gene A. Brewer and Sally Coleman Selden, “Why Elephants Gallop: Assessing and Predicting Organizational...22 Hal Rainey and Paula Steinbauer, “Galloping Elephants : Developing Elements of a Theory of Effective Government Organizations,” Journal of...Washington DC: Brookings Institute Press, 2009. Brewer, Gene A. and Sally Coleman Selden. “Why Elephants Gallop: Assessing and Predicting Organizational

  16. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  17. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    PubMed

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  18. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors

    PubMed Central

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K.; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-01-01

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as “caveolae.” Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR–induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy. PMID:24567387

  19. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  20. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.

    PubMed

    Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2014-07-01

    Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.

Top