Sample records for elements rb sr

  1. Measurement of trace elements in tree rings using the PIXE method

    NASA Astrophysics Data System (ADS)

    Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji

    1998-03-01

    Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.

  2. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (<3.85 Ga) [4]. The high-Al basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  3. Spatial and temporal variations of Rb/Sr ratios of the bulk surface sediments in Lake Qinghai

    PubMed Central

    2010-01-01

    The Rb/Sr ratios of lake sediments have been suggested as indicators of weathering intensity by increasing work. However, the geochemistry of Rb/Sr ratios of lake sediments is variable between different lakes. In this study, we investigated the spatial and temporal patterns of Rb/Sr ratios, as well as those of other major elements in surface sediments of Lake Qinghai. We find that the spatial pattern of Rb/Sr ratios of the bulk sediments correlates well with that of the mass accumulation rate, and those of the terrigenous fractions, e.g., SiO2, Ti, and Fe. The temporal variations of Rb/Sr ratios also synchronize with those of SiO2, Ti, and Fe of each individual core. These suggest that Rb/Sr ratios of the surface sediments are closely related to terrigenous input from the catchment. Two out of eight cores show similar trends between Rb/Sr ratios and precipitation indices on decadal scales; however, the other cores do not show such relationship. The result of this study suggests that physical weathering and chemical weathering in Lake Qinghai catchment have opposite influence on Rb/Sr ratios of the bulk sediments, and they compete in dominating the Rb/Sr ratios of lake sediments on different spatial and temporal scales. Therefore, it is necessary to study the geochemistry of Rb/Sr ratio of lake sediments (especially that on short term timescales) particularly before it is used as an indicator of weathering intensity of the catchment. PMID:20615264

  4. Rb, Sr, Nd, and Sm concentrations in quartz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossman, G.R.; Weis, D.; Wasserburg, G.J.

    1987-09-01

    The concentrations of Rb, Sr, Nd and Sm in quartz crystals from Crystal Peak, Colorado; Steward Mine, California; Tomas Gonzaga, Minas Gerais, Brazil; and Coleman Mines, Arkansas, were determined by isotope dilution mass spectrometry. Concentrations ranged from: 1.17 to 177 ppb Rb; 3.26 to 1027 ppm Sr; 0.0159 to 0.48 ppm Sm; 0.127 to 2.81 ppb Nd. In the Brazilian crystal, concentrations of these elements were correlated with the amount of fluid inclusion water measured visually by turbidity and quantitatively with infrared adsorption spectroscopy. The highest Rb content was found for a crystal free of visible inclusions, indicating that smallmore » amounts of Rb can also occur in quartz itself. Rb and Sr contents are much lower in synthetic quartz grown commercially from the Arkansas quartz.« less

  5. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  6. The timing of alkali metasomatism in paleosols

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Holland, H. D.

    1991-01-01

    We have measured the concentrations of rubidium and strontium and 87Sr/86Sr values of whole-rock samples from three paleosols of different ages. The oldest of the three weathering horizons, the 2,760 Ma Mt. Roe #1 paleosol in the Fortescue Group of Western Australia, experienced addition of Rb, and probably Sr, at 2,168 +/- 10 Ma. The intermediate paleosol, developed on the Hekpoort Basalt in South Africa, is estimated to have formed at 2,200 Ma, and yields a Rb-Sr isochron age of 1,925 +/- 32 Ma. The youngest of the three paleosols, developed on the Ongeluk basalt in Griqualand West, South Africa ca. 1,900 Ma, yielded a Rb-Sr age of 1,257 +/- 11 Ma. The Rb-Sr systematics of all three paleosols were reset during post-weathering metasomatism related to local or regional thermal disturbances. The Rb-Sr systematics of the paleosols were not subsequently disturbed. The near-complete removal of the alkali and alkaline earth elements from these paleosols during weathering made them particularly susceptible to resetting of their Rb-Sr systematics. Paleosols of this type are therefore sensitive indicators of the timing of thermal disturbances.

  7. Characterizing the Effect of Shock on Isotopic Ages. 2; Mg-Suite Troctolite Major Elements

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer; Cohen, Barbara

    2009-01-01

    Two troctolites from the lunar magnesium suite (Mg-suite), 76335 and 76535, have Sm-147-ND-143 and Rb-87- Sr-87 ages that do not indicate the same age for their respective sample. In the case of 76335, the Sm-147-ND-143 age is 4278 +/- 60 Ma, but the Rb-87-Sr-87 data does not reveal an isochron]. For 76535, the Sm-147-ND-143 age is significantly younger (4260 +/- 60 Ma) than the Rb-87- Sr-87 age (4570 +/- 70 Ma, Lambda = 1.402x10(exp -11)). This study was designed to discover why the Sm-147-ND-143 and Rb-87-Sr-87 ages did not match for each individual sample.

  8. Potential of Sr isotopic analysis in ceramic provenance studies: Characterisation of Chinese stonewares

    NASA Astrophysics Data System (ADS)

    Li, Bao-Ping; Zhao, Jian-Xin; Greig, Alan; Collerson, Kenneth D.; Zhuo, Zhen-Xi; Feng, Yue-Xin

    2005-11-01

    We compare the trace element and Sr isotopic compositions of stoneware bodies made in Yaozhou and Jizhou to characterise these Chinese archaeological ceramics and examine the potential of Sr isotopes in provenance studies. Element concentrations determined by ICP-MS achieve distinct characterisation for Jizhou samples due to their restricted variation, yet had limited success with Yaozhou wares because of their large variability. In contrast, 87Sr/86Sr ratios in Yaozhou samples have a very small variation and are all significantly lower than those of Jizhou samples, which show a large variation and cannot be well characterised with Sr isotopes. Geochemical interpretation reveals that 87Sr/86Sr ratios will have greater potential to characterise ceramics made of low Rb/Sr materials such as kaolin clay, yet will show larger variations in ceramics made of high Rb/Sr materials such as porcelain stone.

  9. The Apollo 17 'melt sheet' - Chemistry, age and Rb/Sr systematics

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Schuhmann, P. J.; Lum, R. K. L.; Lindstrom, M. M.; Lindstrom, D. J.

    1977-01-01

    Major, minor, and trace-element compositions, age data, and Rb/Sr systematics of Apollo 17 boulders have been compiled, and additional analyses performed on a norite breccia clast (77215) included in the Apollo 17, Station 7 boulder. The Apollo 17 boulders are found to be identical or nearly so in major, minor, and trace-element composition, suggesting that they all originated as an impact melt analogous to melt sheets found in larger terrestrial craters. The matrix dates (Ar-40/Ar-39) and Rb/Sr systematics available suggest that this impact melt formed by a single impact about 4 billion years ago. This impact excavated, shocked, brecciated, and melted norites, norite cumulates, and possibly anorthositic gabbros and dunites about 4.4 billion years old. The impact was likely a major one, possibly the Serenitatis basin-forming event.

  10. Chronology and petrogenesis of a 1.8 g lunar granitic clast:14321,1062

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.; Wooden, J. L.

    1985-01-01

    Geochronological, isotopic, and trace element data for a pristine granite clast from Apollo 14 breccia 14321 obtained using Rb-Sr, Sm-Nd, and (Ar-39)-(Ar-40) methods are presented. Trace element data for a possibly related evolved rock, the quartz-monodiorite clast from breccia 15404 are also presented, and the relationship between these two rock types is discussed. The concordancy of the Rb-Sr and Sm-Nd internal isochron ages and especially the Rb-Sr model age strongly suggest that the granite clast formed 4.1 AE ago. It probably crystallized slowly in the crust and was later excavated and brecciated about 3.88 AE ago, as indicated by the Ar-Ar age. A two-stage model involving crystal fractionation followed by silicate liquid immiscibility is proposed for the lunar granite genesis.

  11. Minor and potentially toxic trace elements in milk and blood serum of dairy donkeys.

    PubMed

    Fantuz, F; Ferraro, S; Todini, L; Piloni, R; Mariani, P; Malissiova, E; Salimei, E

    2015-08-01

    The aim of this trial was to study the concentration of Ti, V, As, Rb, Sr, Mo, Cd, Cs, and Pb in donkey milk and blood serum. One hundred twelve individual milk and blood serum samples were collected from 16 lactating donkeys (Martina-Franca-derived population; 6 to 12 yr old; 3 to 7 parities; average live weight 205.4kg; 32 to 58 d after foaling at the beginning of the trial) during a 3-mo-long experiment. The samples were analyzed for the aforementioned elements by inductively coupled plasma-mass spectrometry. Feedstuff and drinking water were also analyzed for the investigated elements. Data were processed by ANOVA for repeated measures. Average milk concentrations (±SD) of Ti, Rb, Sr, Mo, Cs, and Pb were 77.3 (±7.7), 339.1 (±82.1), 881.7 (±270.4), 4.5 (±1.6), 0.49 (±0.09), and 3.2 (±2.7) μg/L, respectively. More than 80% of samples were below the limit of detection for V, As, and Cd in milk and for Cd, and Pb in blood serum. The lower bound calculated for milk V, As, and Cd was 0.03μg/L for the 3 elements, the upper bound was calculated at 0.23, 0.10, and 0.31μg/L and the maximum value was observed at 0.54, 0.15, and 0.51μg/L, respectively. The average milk concentrations of Ti, Rb, Sr, Mo, and Cs were 600, 458, 346, 16, and 294%, respectively, than those of blood serum. Yet, Cs concentrations were in the same order of magnitude in milk and serum. Moderate to strong positive and significant correlation coefficients were observed between milk and blood serum concentrations for Ti, Rb, Sr, and Cs. The effect of the stage of lactation was significant for all the investigated elements in milk and blood serum, but most of the elements showed only small changes or inconsistent trends, and only the concentrations of Rb and Sr showed decreasing trends both in milk and blood serum. The relationship between milk and blood serum element concentrations indicates that the mammary gland plays a role in determining the milk concentrations of Mo, Ti, Rb, Sr, Mo, and Cs. In the current experimental conditions, in agreement with the low levels in drinking water and feedstuff, donkey milk concentration of potentially toxic elements was very low and did not raise health concerns for human consumption. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Origin discrimination of defatted pork via trace elements profiling, stable isotope ratios analysis, and multivariate statistical techniques.

    PubMed

    Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su

    2018-09-01

    This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Studies on uptake and retention of trace elements by medicinal plants in the environs of Hassan of South India

    NASA Astrophysics Data System (ADS)

    Jagadeesha, B. G.; Narayana, Y.; Sudarshan, M.; Banerjee, Shamayita

    2018-03-01

    The transfer factors of trace elements from soil to medicinal plants were determined in the region of Hassan district of south India. The trace element concentration was determined using the Energy Dispersive X-ray Fluorescence (ED-XRF) spectrometer. The transfer factors were found in the order Rb > Sr > Ca > K > Zn > Cu > Mn. The transfer factors were found to be high, for most of the plants. The concentration of Rb and Sr was found to be high in medicinal plants, which can be attributed to the mineralogy of the region and plant morphology.

  14. The peculiar geochemical signatures of São Miguel (Azores) lavas: Metasomatised or recycled mantle sources?

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Stracke, Andreas; Haase, Karsten M.

    2007-07-01

    The island of São Miguel, Azores consists of four large volcanic systems that exhibit a large systematic intra-island Sr-Nd-Pb-Hf isotope and trace element variability. The westernmost Sete Cidades volcano has moderately enriched Sr-Nd-Pb-Hf isotope ratios. In contrast, lavas from the easternmost Nordeste volcano have unusually high Sr and Pb and low Nd and Hf isotope ratios suggesting a long-term evolution with high Rb/Sr, U/Pb, Th/Pb, Th/U and low Sm/Nd and Lu/Hf parent-daughter ratios. They have trace element concentrations similar to those of the HIMU islands, with the exception of notably higher alkali element (Cs, Rb, K, Ba) and Th concentrations. The time-integrated parent-daughter element evolution of both the Sete Cidades and Nordeste source matches the incompatibility sequence commonly observed during mantle melting and consequently suggests that the mantle source enrichment is caused by a basaltic melt, either as a metasomatic agent or as recycled oceanic crust. Our calculations show that a metasomatic model involving a small degree basaltic melt is able to explain the isotopic enrichment but, invariably, produces far too enriched trace element signatures. We therefore favour a simple recycling model. The trace element and isotopic signatures of the Sete Cidades lavas are consistent with the presence of ancient recycled oceanic crust that has experienced some Pb loss during sub-arc alteration. The coherent correlation of the parent-daughter ratios (e.g. Rb/Sr, Th/U, U/Pb) and incompatible element ratios (e.g. Nb/Zr, Ba/Rb, La/Nb) with the isotope ratios in lavas from the entire island suggest that the Sete Cidades and Nordeste source share a similar genetic origin. The more enriched trace element and isotopic variations of Nordeste can be reproduced by recycled oceanic crust in the Nordeste source that contains small amounts of evolved lavas (˜ 1-2%), possibly from a subducted seamount. The rare occurrence of enriched source signatures comparable to Nordeste may be taken as circumstantial evidence that stirring processes in the Earth's mantle are not able to homogenise material within the size of seamounts over timescales of mantle recycling.

  15. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    NASA Technical Reports Server (NTRS)

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.

    2012-01-01

    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  16. Rb-Sr systematics and REE abundances in Shalka and several other diogenites

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Yabuki, S.; Kagi, H.; Masuda, A.

    1994-07-01

    The diogenites have been regarded as igneous products in the early solar system and they have been considered to have genetically close relationship with eucrites. Depsite their simple mineralogical compositions and narrow range for major-element compositions, diogenites have been known to show wide Rare Earth Elements (REE) variations in absolute concentration and in mutual abundance ratios. Furthermore, some diogenites have peculiar Rb-Sr isotope systematics (ages younger than 4.5 b.y.). The Shalka meteorite belongs to the diogenites, and a unique REE abundance pattern has been reported. We performed Rb-Sr isotopic analyses and measured REE abundances in the Shalka diogenite with several other diogenites to discuss their genesis. Roughly speaking, REE patterns in diogenites are characterized by the negative Eu anomaly and the depletion of light REE. For Shalka, some heterogeneity in REE abundance patterns have been observed. While one sample chip shows the REE pattern with a large negative Eu anomaly and depleted light REE, particularly characterized by the concave curvature for the La-Nd span, other samples show the pattern nearly flat or the pattern enriched in light REE. These variations could not be explained easily by the simple mixing process of LREE-depleted components and LREE-enriched melt, but they imply some metamorphism process. The Rb-Sr isotopic data for Shalka are shown with the data for other several diogenites. These observations indicate that Shalka would undergo a significant extent of metamorphism followed by redistribution of REE and the disturbance of the Rb-Sr systematics. We are going to do further studies on Shalka to discuss the metamorphic process and compare it with other diogenites.

  17. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    USGS Publications Warehouse

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra-crustal contamination. ?? 1988.

  18. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, Richard W.; Peterman, Zell E.; ,

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.

  19. [Distribution of rubidium, cesium, beryllium, strontium, and barium in blood and urine in general Chinese population].

    PubMed

    Ding, Chunguang; Pan, Yajuan; Zhang, Aihua; Zhu, Chun; Liu, Deye; Xu, Guang; Zheng, Yuxin; Yan, Huifang

    2015-12-01

    To investigate the distribution of rubidium (Rb), cesium (Cs), beryllium (Be), strontium (Sr), and barium (Ba) in blood and urine in general Chinese population. A total of 18 120 subjects aged 6~60 years were enrolled from 24 regions in 8 provinces in Eastern, Central, and Western China from 2009 to 2010 based on the method of cluster random sampling. Questionnaire survey was conducted to collect the data on living environment and health status. Blood and urine samples were collected from these subjects, and the levels of Rb, Cs, Be, Sr, and Ba in these samples were determined by inductively coupled plasma mass spectrometry. The distribution of these elements in blood and urine in male or female subjects living in different regions was analyzed statistically. In the general Chinese population, the concentration of Be in the whole blood was below the detection limit (0.06 μg/L); the geometric mean (GM) of Ba in the whole blood was below the detection limit (0.45 μg/L), with the 95th percentile (P95)of 1.37 μg/L; the GMs (95% CI)of Rb, Cs, and Sr in the whole blood were 2 374(2 357~2 392) μg/L, 2.01 (1.98~2.05) μg/L, and 23.5 (23.3~23.7) μg/L, respectively; in males and females, the GMs (95%CI)of blood Rb, Cs, and Sr were 2 506 (2 478~2 533) μg/L and 2 248 (2 227~2 270) μg/L, 1.88 (1.83~1.94) μg/L and 2.16 (2.11~2.20) μg/L, and 23.4 (23.1~23.7) μg/L and 23.6 (23.3~23.9) μg/L, respectively(P<0.01, P>0.05, and P>0.05). In the general Chinese population, the GM of urine Be was below the detection limit (0.06 μg/L), while the GMs (95%CI)of urine Rb, Cs, Sr, and Ba were 854 (836~873) μg/L, 3.65 (3.56~3.74) μg/L, 39.5 (38.4~40.6) μg/L, and 1.10 (1.07~1.12) μg/L, respectively; in males and females, the GMs (95%CI)of urine Rb, Cs, Sr, and Ba were 876 (849~904) μg/L and 832 (807~858) μg/L, 3.83 (3.70~3.96) μg/L and 3.47 (3.35~3.60) μg/L, 42.5 (40.9~44.2) μg/L and 36.6 (35.1~38.0) μg/L, and 1.15 (1.12~1.19) μg/L and 1.04 (1.01~1.07) μg/L, respectively (all P< 0.01). Correlation analyses showed that there were weak correlations between blood Rb and urine Rb (r=0.197)and between blood Sr and urine Sr (r=0.180), but a good correlation between blood Cs and urine Cs (r=0.487). The levels of Rb, Cs, Be, Sr, and Ba in the general Chinese population are similar to those reported in other countries, and there is a significant difference in the concentration of each element among the populations living in different regions, as well as significant differences in blood Rb, urine Rb, urine Cs, urine Sr, and urine Ba between males and females.

  20. Fine resolution chronology based on initial Sr-87/Sr-86

    NASA Technical Reports Server (NTRS)

    Stewart, B. W.; Papanastassiou, D. A.; Capo, R. C.; Wasserburg, G. J.

    1993-01-01

    It has been recognized that small variations in initial Sr-87/Sr-86 (Sr(sub I)), can provide a fine scale relative chronology for the chemical fractionation of materials with low Rb/Sr from parent reservoirs with high Rb/Sr. Similarly, Sr(sub I), as determined for low Rb/Sr phases in meteorites, may permit a fine resolution chronology of the recrystallization or metamorphism of planetary materials. For the establishment of a primitive Sr-87/Sr-86 chronology, it is important to search for samples with extremely low Rb/Sr for which the measured Sr-87/Sr-86 is below BABI, in which case the primitive nature of the Sr can be directly established. Using the measured Rb/Sr to calculate an initial Sr-87/Sr-86 can introduce substantial uncertainty if the Rb-Sr are disturbed. We report Sr-87/Sr-86 in plagioclase from silicate pebbles from the Vaca Muerta mesosiderite on which we have reported Sm-147-Nd-143 and Ne-142 correlations. For the purpose of cross-calibration with our previous work we have performed extensive new measurements on Angra dos Reis and on anorthite from Moore County, which have very low Rb/Sr and primitive Sr-87/Sr-86.

  1. Some methodical peculiarities of analysis of small-mass samples by SRXFA

    NASA Astrophysics Data System (ADS)

    Kudryashova, A. F.; Tarasov, L. S.; Ulyanov, A. A.; Baryshev, V. B.

    1989-10-01

    The stability of work of the element analysis station on the storage rings VEPP-3 and VEPP-4 in INP (Novosibirsk, USSR) was demonstrated on the example of three sets of rare element analyses carried out by SRXFA in May 1985, January and May-June 1988. These data show that there are some systematic deviations in the results of measurements of Zr and La contents. SRXFA and INAA data have been compared for the latter element. A false linear correlation on the Rb-Sr plot in one set of analyses has been attributed to an overlapping artificial Sr peak on a Rb peak. The authors proposed sequences of registration of spectra and computer treatment for samples and standards. Such sequences result in better final concentration data.

  2. Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity's ChemCam: early results for Gale crater from Bradbury Landing Site to Rocknest

    USGS Publications Warehouse

    Ollila, Ann M.; Newsom, Horton E.; Clark, Benton; Wiens, Roger C.; Cousin, Agnes; Blank, Jen G.; Mangold, Nicolas; Sautter, Violaine; Maurice, Sylvestre; Clegg, Samuel M.; Gasnault, Olivier; Forni, Olivier; Tokar, Robert; Lewin, Eric; Dyar, M. Darby; Lasue, Jeremie; Anderson, Ryan; McLennan, Scott M.; Bridges, John; Vaniman, Dave; Lanza, Nina; Fabre, Cecile; Melikechi, Noureddine; Perett, Glynis M.; Campbell, John L.; King, Penelope L.; Barraclough, Bruce; Delapp, Dorothea; Johnstone, Stephen; Meslin, Pierre-Yves; Rosen-Gooding, Anya; Williams, Josh

    2014-01-01

    The ChemCam instrument package on the Mars rover, Curiosity, provides new capabilities to probe the abundances of certain trace elements in the rocks and soils on Mars using the laser-induced breakdown spectroscopy technique. We focus on detecting and quantifying Li, Ba, Rb, and Sr in targets analyzed during the first 100 sols, from Bradbury Landing Site to Rocknest. Univariate peak area models and multivariate partial least squares models are presented. Li, detected for the first time directly on Mars, is generally low (100 ppm and >1000 ppm, respectively. These analysis locations tend to have high Si and alkali abundances, consistent with a feldspar composition. Together, these trace element observations provide possible evidence of magma differentiation and aqueous alteration.

  3. Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs.

    PubMed

    Agusa, Tetsuro; Matsumoto, Taro; Ikemoto, Tokutaka; Anan, Yasumi; Kubota, Reiji; Yasunaga, Genta; Kunito, Takashi; Tanabe, Shinsuke; Ogi, Haruo; Shibata, Yasuyuki

    2005-09-01

    Body distribution and maternal transfer of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) to eggs were examined in black-tailed gulls (Larus crassirostris), which were culled in Rishiri Island, Hokkaido Prefecture, Japan. Manganese, Cu, Rb, Mo, and Cd showed the highest levels in liver and kidney, Ag, Sb, and Hg in feather, and V, Sr, and Pb in bone. Maternal transfer rates of trace elements ranged from 0.8% (Cd) to as much as 65% (Tl) of maternal body burden. Large amounts of Sr, Ba, and Tl were transferred to the eggs, though maternal transfer rates of V, Cd, Hg, and Pb were substantially low. It also was observed that Rb, Sr, Cd, Cs, and Ba hardly were excreted into feathers. Concentrations of Co in liver, Ba in liver and kidney, and Mo in liver increased significantly with age, whereas Se in bone and kidney, Hg in kidney, and Cr in feather decreased with age in the known-aged black-tailed gulls (2-20 years old). It also was suggested that feathers might be useful to estimate contamination status of trace elements in birds, especially for Hg on a population basis, although the utility is limited on an individual basis for the black-tailed gulls. To our knowledge, this is the first report on the maternal transfer rate of multielements and also on the usefulness of feathers to estimate contamination status of Hg in birds on a population basis.

  4. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    NASA Astrophysics Data System (ADS)

    Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R. C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; Ollila, A.; Rapin, W.; Maurice, S.; Nachon, M.; Le Deit, L.; Lanza, N.; Clegg, S.

    2017-03-01

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. These observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.

  5. Micaschist and Impure Marble - two Examples for Lithology Related Constraints to Rb-Sr Microsampling Analysis

    NASA Astrophysics Data System (ADS)

    Wegmann, M. I.; Hammerschmidt, K.

    2003-12-01

    Retrograde overprinted calcite-bearing micaschists and mica-containing marbles from the northern part of the Cycladic blueschist belt on South-Evia, Greece, have been investigated to understand the interplay between bulk rock chemistry, mineral assemblage and resetting of the Rb-Sr isotope system during deformation. White mica represents two optical distinguishable microstructures, isoclinal folds (S1) and axial plain cleavage (S2) induced by flattening and elongation episode of isothermal exhumation. The varying Si content of phengites is not related to microstructures. Due to microstructural complexity and grain size variation the application of Rb-Sr microsampling method was expected effective investigation of Rb and Sr rich mineral phases to elucidate constraints for geochronological and isotope geochemical imprint in microstructures. Drilling out calcite, albite and mica samples with weights down to 200æg each out of 30æm thick sections realized textural controlled separation. Calculated Rb-Sr mica ages show lithology-related scattering but totally not microstructural induced variation. Particulary, S1 and S2 phengites in micaschist yield similar age values around 31 Ma. In contrast, impure marble mica within similar S1 and S2 have Rb-Sr mica ages widely scattering between 34 and 50 Ma. Therefore, structural elements formed by these phengites are not distinguishable in terms of geochronolgy. Explaining the scatter of age values, principally, two possibilities were taken into account, (i) the fluid flux neccessary to homogenize Sr isotope composition in mica and calcite (albite) might have been less effective in impure marble than in micaschist due to the generation of CO2. In constrast to this possibility, calcite 87Sr/86Sr in both specimen are quite homogeneous at least on cm-scale, e.g. values of 0.712125 ñ 66 (2s) for impure marble and of 0.721419 ñ 42 for micaschist were meassured. Albite 87Sr/86Sr corroborate Sr homogenisation on scale this study was focussed on. So far, (ii) we would assume calculated age values date moments of growth of single mica crystals. However, the image of microstructure by crystals may be realized by new growth, recrystallization or just reorientation, e.g. by passive rotation of pre-existing grains. To interpret the mineral age values, it must be scrutinized, which process is responsible for current mineral position in the structure. Additionally, duration of (prograde) exumation induced contineous deformation and the contribution of fluid influx can be prospected by further investigation of south-Evian blueschist facies units on other mineral phases by Rb-Sr microsampling technique.

  6. The fate of moderately volatile elements during planetary formation in the inner Solar System

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.

    2017-12-01

    Moderately volatile element abundances are variable among inner Solar System bodies, with differing degrees of depletion compared to chondrites. These variations are a consequence of the processes of planetary formation. The conditions and the specific mechanisms of planetary accretion and differentiation can be investigated by analyzing the stable isotope compositions of terrestrial and extraterrestrial samples. The moderately volatile lithophile elements are particularly useful to distinguish between the effects of accretion and those of core formation. Recent work has shown isotope variations in inner Solar System bodies for the moderately volatile elements Zn and K. The purely lithophile nature of Rb (in contrast to Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to further study moderately volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. Terrestrial rocks define a narrow range in Rb isotope composition, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). Larger Rb isotope variations are observed in extraterrestrial materials. Carbonaceous chondrites display a trend toward lighter Rb isotope composition coupled with decreasing Rb/Sr, opposite to the effect expected if their volatile element variations were caused by evaporative loss of Rb. This relationship indicates that the volatile element abundance variations in carbonaceous chondrites are not due to evaporation or condensation, but rather are due to the mixing of chemically and isotopically distinct primordial reservoirs. In contrast, there is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. Significant heavy isotope enrichments (up to several per mil for 87Rb/85Rb) are found for volatile-depleted planetesimals, including eucrites. In addition, lunar rocks also display heavy Rb isotope enrichments compared to the BSE. The most likely cause of these variations is Rb isotope fractionation due to evaporation during accretion.

  7. Luna 16 - Some Li, K, Rb, Sr, Ba, rare-earth, Zr, and Hf concentrations.

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Schnetzler, C. C.; Schuhmann, S.; Thomas , H. H.; Bottino, M. L.

    1972-01-01

    Concentrations of Li, K, Rb, Sr, Na, rare-earths, Zr and Hf have been determined for some Luna 16 core materials by mass-spectrometric isotope-dilution. Two regolith fines samples from different depths in the core, and four rock-chips, including both igneous rocks and breccias, have similar trace-element concentrations. The Luna 16 materials have general lunar trace-element characteristics but differ from other returned lunar samples in a manner that suggests the presence of excess feldspar. Unless the Luna 16 igneous rocks are fused soils, they appear to represent either partial plagioclase cumulates or the least differentiated igneous material yet returned from the moon. The similarity in trace-element concentrations of the igneous rocks and the fines would then suggest largely local derivation of the Luna 16 regolith.

  8. New high performing scintillators: RbSr2Br5:Eu and RbSr2I5:Eu

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Johnson, J.; Koschan, M.; Lukosi, E.; Melcher, C. L.

    2017-11-01

    We report the crystal growth and scintillation properties of two new ternary metal halide scintillators, RbSr2Br5 and RbSr2I5, activated with divalent europium. Transparent 7 mm diameter single crystals with 2.5% Eu2+ were grown in evacuated quartz ampoules via the Bridgman technique. RbSr2Br5 and RbSr2I5 have monoclinic crystal structures with densities of 4.18 g/cm3 and 4.55 g/cm3 respectively. These materials are hygroscopic and have some intrinsic radioactivity due to the presence of 87Rb. Luminescence properties typical of the 5d-4f radiative transition in Eu2+ were observed. The X-ray excited emissions consisted of singular peaks centered at 429 nm for RbSr2Br5:Eu 2.5% and 445 nm for RbSr2I4:Eu 2.5%. RbSr2Br5:Eu 2.5% had a light yield of 64,700 photons/MeV, with an energy resolution of 4.0%, and RbSr2I5:Eu 2.5% had a light yield of 90,400 ph/MeV with an energy resolution of 3.0% at 662 keV. Both crystals have an excellent proportional response over a wide range of gamma-ray energies.

  9. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

  10. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less

  11. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    DOE PAGES

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes; ...

    2017-03-20

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less

  12. K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias

    NASA Technical Reports Server (NTRS)

    Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2013-01-01

    Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.

  13. Composition of island arcs and continental growth.

    NASA Technical Reports Server (NTRS)

    Jakes, P.; White, A. J. R.

    1971-01-01

    Island arc volcanism has contributed and is still contributing to continental growth, but the composition of island arcs differs from that of the upper continental crust in its lower abundance of Si, K, Rb, Ba, Sr and light rare earth elements. In their advanced stage of evolution, island arcs contain more than 80% of tholeiitic and 15% of ?island arc' calc-alkaline rocks with varied SiO2 contents. The larger proportion of tholeiitic rocks is in the lower crustal levels. The high stratigraphical levels of the island arcs are composed of tholeiitic plus calc-alkaline and/or high potash (shoshonitic) associations with higher abundances of K, Rb, Sr, and Ba. Stratification of the island arc crust is accentuated by another type of calc-alkaline volcanism (Andean type) originating at a late stage of arc evolution, probably by partial melting at the base of the crust. This causes enrichment of the upper crust in K, Rb, Ba and REE and accounts for upper crustal abundances of these elements as well as of SiO2.

  14. Rb-Sr And Sm-Nd Ages, and Petrogenesis of Depleted Shergottite Northwest Africa 5990

    NASA Technical Reports Server (NTRS)

    Shih, C. Y.; Nyquist, L. E.; Reese, Y.; Irving, A. J.

    2011-01-01

    Northwest Africa (NWA) 5990 is a very fresh Martian meteorite recently found on Hamada du Draa, Morocco and was classified as an olivine-bearing diabasic igneous rock related to depleted shergottites [1]. The study of [1] also showed that NWA 5990 resembles QUE 94201 in chemical, textural and isotopic aspects, except QUE 94201 contains no olivine. The depleted shergottites are characterized by REE patterns that are highly depleted in LREE, older Sm-Nd ages of 327-575 Ma and highly LREE-depleted sources with Nd= +35+48 [2-7]. Age-dating these samples by Sm-Nd and Rb-Sr methods is very challenging because they have been strongly shocked and contain very low abundances of light rare earth elements (Sm and Nd), Rb and Sr. In addition, terrestrial contaminants which are commonly present in desert meteorites will compromise the equilibrium of isotopic systems. Since NWA 5990 is a very fresh meteorite, it probably has not been subject to significant desert weathering and thus is a good sample for isotopic studies. In this report, we present Rb-Sr and Sm-Nd isotopic results for NWA 5990, discuss the correlation of the determined ages with those of other depleted shergottites, especially QUE 94201, and discuss the petrogenesis of depleted shergottites.

  15. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values, whereas high Pb* and 87Sr/86Sr eclogites have mantle-like δ26Mg values, suggesting that the two fluid components have diverse influences on the Mg isotopic systematics of these eclogites. The LILE-rich fluid component, possibly derived from mica-group minerals, contains a considerable amount of isotopically heavy Mg that has shifted the δ26Mg of the eclogites towards higher values. By contrast, the 87Sr/86Sr- and Pb-rich fluid component, most likely released from epidote-group minerals in metasediments, has little Mg so as not to modify the Mg isotopic composition of the eclogites. In addition, the influence of talc-derived fluid might be evident in a very few eclogites that have low Rb/Sr and Ba/Pb but slightly heavier Mg isotopic compositions. These findings represent an important step toward a broad understanding of the Mg isotope geochemistry in subduction zones, and contributing to understanding why island arc basalts have averagely heavier Mg isotopic compositions than the normal mantle.

  16. Trace element geochemistry of Archean volcanic rocks

    NASA Technical Reports Server (NTRS)

    Jahn, B.-M.; Shih, C.-Y.; Murthy, V. R.

    1974-01-01

    The K, Rb, Sr, Ba and rare-earth-element contents of some Archean volcanic rocks from the Vermilion greenstone belt, northeast Minnesota, were determined by the isotopic dilution method. The characteristics of trace element abundances, supported by the field occurrences and major element chemistry, suggest that these volcanic rocks were formed in an ancient island arc system.

  17. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun

    2016-03-01

    Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.

  18. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I . Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution

    USGS Publications Warehouse

    Bau, Michael; Alexander, Brian; Chesley, John T.; Dulski, Peter; Brantley, Susan L.

    2004-01-01

    To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater chemistry, even in relatively simple aquifers, may be complicated by solute contributions from “exotic” accessory minerals such as glauconite. To detect such peculiarities, groundwater studies should combine the study of elemental concentration and isotopic composition of several solutes that show different geochemical behavior.

  19. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site

    USGS Publications Warehouse

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O'Neil, J.R.; Smit, J.

    1983-01-01

    Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low 87Sr/86Sr and high 143Nd/144Nd ratios. The ??18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor. ?? 1983.

  20. Fluid/rock Interaction History of a Faulted Rhyolite-Granite Contact Determined by Sr- Pb-Isotopes, Th/U-Disequilibria and Elemental Distributions (Eastern Rhine Graben Shoulder, SW-Germany)

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Mangini, A.; Kober, B.; Schleicher, A.; Warr, L. N.

    2003-04-01

    Major and trace element analyses allow to obtain information concerning the chemical changes induced by alteration. Differences are partly petrographic because the profile crosses the granite-rhyolite contact, but they are also due to different alteration levels induced by fluid circulation along the fault system which has drained the alteration processes. The granite-rhyolite contact constitutes the primary structure. Only the most incompatible elements (Si, Al, Zr, Hf) retain their original signatures and reflect a mixing between typical granite and rhyolite lithologies across the altered zones (cataclasite). The more mobile elements show a different composition within the altered zones (cataclasite) notably a high leaching of cations. The geochemical tracers also suggest at least one strong hydrothermal event with reducing conditions in the altered zones. The isotopic analyses delivered qualitative and temporal information. The use of several isotopic systems, Rb/Sr-, U/Pb-isotopes and Th/U disequilibria, reveals a complex history of polyphase fluid/rock interaction following the Permian volcanic extrusion, showing notable disturbances during the late Jurassic hydrothermal activities, the Tertiary rifting of the Rhine Graben and more recent Quaternary alteration. The granite zone of the sampling profile has underwent an event which set up a new Rb-Sr isotopic composition and reset the Rb/Sr system which originatly corresponded to the Carboniferous intrusion ages. The Rb-Sr data of the granite samples produce a whole rock isochron of 152 ± 5,7 Ma (2σ error) in good agreement with the well-known late Jurassic hydrothermal event (135--160 Ma). The rocks evolution lines for Pb support a Tertiary hydrothermal event (54 Ma ± 16; 1σ error), potentially connected with the development of the Rhine Graben. The profile samples have undergone uranium and thorium redistribution processes which have occurred within the last ˜10^6 years. The samples of the altered zones record a more complex history of uranium exchange with the aqueous phase. This uranium exchange is proportional to the porosity. The best approximation is reached for an exchange coefficient (λ_E) for uranium ranging from 2,5 E-06 [a-1] in the middle of the altered zones to 2,5 E-05 [a-1] on the sides of the altered zones.

  1. A Rb-Sr and Sm-Nd Isotope Geochronology and Trace Element Study of Lunar Meteorite LaPaz Icefield 02205

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. D.; Norman, M. D.

    2007-01-01

    Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1 to 2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991+/-14 Ma, with an initial Sr-87/Sr-88 at the time of crystallization of 0.699836+/-0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992+/-85 (initial Epsilon Nd-143 = +2.9+/-0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated Sm-147/Nd-144 source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.

  2. Behaviour of elements in soils developed from nephelinites at Mount Etinde (Cameroon): Impact of hydrothermal versus weathering processes

    NASA Astrophysics Data System (ADS)

    Etame, J.; Gerard, M.; Bilong, P.; Suh, C. E.

    2009-05-01

    The progressive weathering of 0.65 Ma nephelinites from Mount Etinde (South Western Cameroon) in a humid tropical setting has resulted in the formation of a 150 cm thick weathering crust. The soil profiles consist of three horizons: Ah/Bw/C. A major differentiation of the chemical and mineralogical parameters is related to the complexity of the saprolites, some of which were hydrothermally altered. Bulk geochemical and microgeochemical analyses were performed on selected minerals from the different horizons of two reference profiles, of which one (E 4) was developed from unaltered nephelinite (nephelinite U) while the other (BO 1) formed from hydrothermally altered nephelinite (nephelinite H). The results show that the primary minerals (clinopyroxene, nepheline, leucite, haüyne, titanomagnetite, perovskite, apatite and sphene) experienced differential weathering rates with primary minerals rich in rare earth elements (titanomagnetite, perovskite, apatite and sphene) surviving in the saprolite and the Bw horizons. The weathering of the primary minerals is reflected in the leaching of alkaline and alkaline-earth elements, except for Ba and Rb in the hydrothermalised nephelinite soil. The order of mobility is influenced by hydrothermal processes: Na > K > Rb > Ca > Cs > Sr in nephelinite U soil , Na > K > Sr > Ca > Mg in nephelinite H soil; Rb/Sr and Sr/Mg can be used as indicators of the kinetic of the weathering on nephelinite U and on nephelinite H. Barium enrichment is related to variable concentrations in the nephelinites, to the formation of crandallites and the leaching of surface horizons. The content of metallic elements is higher in nephelinite H soil than in the nephelinite U soil. Results show that hydrothermal alteration leads to an enrichment of light (La, Ce, Nd) and intermediate (Sm, Eu, Dy) rare earth elements. The enrichment in Cr and Pb in the surface horizons is discussed in relation to organic matter activity, the dissolution of magnetites, and the impact of hydrothermal processes as well as atmospheric pollution in the case of lead.

  3. Effects of fertilization, crop year, variety, and provenance factors on mineral concentrations in onions.

    PubMed

    Ariyama, Kaoru; Nishida, Tadashi; Noda, Tomoaki; Kadokura, Masashi; Yasui, Akemi

    2006-05-03

    Mineral concentrations of onions (Allium cepa L.) grown under various conditions, including factors (fertilization, crop year, variety, and provenance), were investigated to clarify how much each factor contributes to the variation of their concentrations. This was because the mineral concentrations might be affected by various factors. The ultimate goal of this study was to develop a technique to determine the geographic origins of onions by mineral composition. Samples were onions grown under various conditions at 52 fields in 18 farms in Hokkaido, Japan. Twenty-six elements (Li, Na, Mg, Al, P, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Mo, Cd, Cs, Ba, La, Ce, Nd, Gd, W, and Tl) in these samples were determined by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Fertilization conditions and crop years of onions caused variations of P, Ni, Cu, Rb, Sr, Mo, Cs, and Tl concentrations in onions; different onion varieties also showed variations in numerous element concentrations. However, the variations of mineral compositions of onions by these factors were smaller than the differences between production places with a few exceptions. Furthermore, Na, Rb, and Cs in group IA of the periodic table, Ca, Sr, and Ba in group IIA, and Zn and Cd in group IIB showed similar concentration patterns by group; this result demonstrated that elements in the same periodic groups behaved similarly in terms of their absorption in onions.

  4. Trace element and strontium isotope characteristics of volcanic rocks from Isla Tortuga: a young seamount in the Gulf of California

    USGS Publications Warehouse

    Batiza, Rodey; Futa, K.; Hedge, C.E.

    1979-01-01

    Isla Tortuga is a small isolated central volcano which is located near an actively spreading trough in the Gulf of California. The basalt lavas from Tortuga which have the highest Mg/Fe and Ni contents have trace element abundances and ratios and 87Sr/86Sr which are similar to those of mid-ocean ridge tholeiite. The major element, rare earth element and Sr abundances of fractionated tholeiite (low Mg/Fe) and tholeiitic andesite of Tortuga are consistent with an origin by closed-system fractional crystallization. This hypothesis is not supported by K, Na, Rb and Ba abundances in the lavas nor by their variable 87Sr/86Sr (0.7024-0.7035). It is proposed that the apparent decoupling of light rare earth elements, other incompatible trace elements and 87Sr/86Sr is due to contamination of some Tortuga magmas while they are fractionated in a high-level crustal magma chamber. The mantle source of least-contaminated, high Mg/Fe basalt lavas of Tortuga is similar, although not identical to the source of normal mid-ocean ridge tholeiite; significant differences exist. The reasons for these differences are not yet known. ?? 1979.

  5. High-Silica Hadean Crust

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Bell, E. A.; Stephan, T.; Trappitsch, R.; Keller, C. B.; Pardo, O. S.; Davis, A. M.; Harrison, M.; Pellin, M. J.

    2017-12-01

    Understanding Hadean (>4 Ga) Earth requires knowledge of its crust. The composition of the crust and volatiles migrating through it directly influence the makeup of the atmosphere, the composition of seawater, and nutrient availability. Despite its importance, there is little known and less agreed upon regarding the nature of the Hadean crust. For example, compilations of whole-rock elemental abundances suggest to some a dominantly mafic crust, while the geochemistry and inclusions in Hadean zircons suggest the existence of felsic crust and possibly even life. We address this question by analyzing the 87Sr/86Sr ratio of apatite inclusions in Archean zircons from Nuvvuagittuq, Canada, using the Chicago Instrument for Laser Ionization (CHILI). Our results show that the protolith of the Nuvvuagittuq zircons had formed a reservoir with a high (>1) Rb/Sr ratio by 4.4 Ga. The Rb/Sr ratio of this reservoir is too high to be explained by only a mafic crust or a terrestrial "KREEP" layer. Indeed, high Rb/Sr ratios only occur in high SiO2 rocks, and our data suggests that the 4.4 Ga Nuvvuagittuq source was felsic rather than mafic. Specifically, our results suggest that the 4.4 Ga Nuvvuagittuq protolith was of rhyolitic compositions. This finding implies that the early crust had a broad range of igneous rocks, extending from mafic to highly silicic compositions.

  6. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  7. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.M.

    Major element and trace element compositions of whole rocks, mineral compositions, and Rb-Sr isotopic compositions of enclave and host granitoid pairs from the Early Cretaceous, calc-alkaline Turtle pluton of southeastern California suggest that the local environmental profoundly affects some enclave types. In the Turtle pluton, where the source of fine-grained, mafic enclaves can be deduced to be magmatic by the presence of partially disaggregated basaltic dikes, mineral chemistry suggests partial or complete local equilibrium among mineral species in the enclave and its host granitoid. Because of local Rb-Sr isotopic equilibration between fine-grained enclaves and host granitoid, one cannot use Srmore » isotopes to distinguish an enclave source independent of its host rocks from an enclave source related to the enclosing pluton. However, preliminary Nd isotopic data suggest an independent, mantle source for enclaves.« less

  8. Unreported Emission Lines of Rb, Ce, La, Sr, Y, Zr, Pb and Se Detected Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.

    2017-01-01

    Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.

  9. Mid-Miocene two-mica granites in the Malashan gneiss dome, south Tibet: Geochemical characteristics and formation mechanism

    NASA Astrophysics Data System (ADS)

    Gao, L.; Zeng, L.

    2011-12-01

    Knowledge of the timing of formation and geochemical nature of the Cenozoic granites along the High Himalaya as well as the Tethyan Himalaya is essential to test or formulate models that link high-grade metamorphism, crustal anatexis, and tectonic transition during the evolution of the Himalayan orogen. The Malashan gneiss dome, one of the prominent domes within the Tethyan Himalaya, consists of pelitic schists, calc-silicate metamorphic rocks, and at least two generations of granites. Two mica granites(TMG) occur as large plutons in Cuobu and Malashan, whereas a small leucogranite pluton occurs at the western side of the Paiku Lake. Two-mica granites from the Cuobu and the Malashan share similar characteristics in mineral composition, major and trace element geochemistry and isotope(Sr and Nd) compositions. New LA-ICP-MS zircon U/Pb analyses yielded that the Cuobu and the Malashan TMG formed at 17.6±0.1 Ma and 16.9±0.1 Ma, respectively. Both suits of granites are characterized by:(1)high SiO2(>71.3wt%), Al2O3(>14.8wt%), and relatively high CaO(>1.5wt%); (2)high A/CNK(>1.0) and K/Na ratios; (3)relatively high Sr(>146ppm), low Rb(<228ppm) and Rb/Sr ratios(<1.3); (4) enriched in LREE, depleted in HREE, as well as no or weakly negative Eu anomalies(Eu*=0.7~0.9); (5) as compared to leucogranites of similar ages in other Northern Himalayan Gneiss Domes, lower initial 87Sr/86Sr ratios (0.7390~0.7484) and similarly unradiogenic Nd isotope compositions (ɛNd(t)=-13.7~-14.4). Correlations between Ba and Rb/Sr ratios and between Rb/Sr and initial 87Sr/86Sr ratios imply that these two-mica granites were derived from muscovite H2O-fluxed melting of metasedimentary rocks at T=700-780oC. Such a reaction could be represented by 9Muscovite + 15Plagioclase + 7Quartz + xH2O = 31Melt, in which enhances the involvement of plagioclase, but suppresses the biotite due to relatively low temperature and the presence of water. This reaction not only produces granitic melts with low Rb/Sr ratios, relatively high CaO and weak to no Eu anomalies, but also leads to lower initial 87Sr/86Sr ratios than their potential source rocks.

  10. .sup.82 Sr-.sup.82 Rb Radioisotope generator

    DOEpatents

    Grant, Patrick M.; Erdal, Bruce R.; O'Brien, Harold A.

    1976-01-01

    An improved .sup.82 Sr-.sup.82 Rb radioisotope generator system, based upon the complexing ion exchange resin Chelex-100, has been developed. Columns of this material can be easily and rapidly milked, and the Rb-Sr separation factor for a fresh generator was found to be > 10.sup.7. Approximately 80 percent of the .sup.82 Rb present was delivered in a 15-ml volume of aqueous 0.2 M NH.sub.4 Cl solution. After more than 6 liters of eluant had been put through the generator, the Rb-Sr separation factor was still observed to be > 10.sup.5, and no unusual strontium breakthrough behavior was seen in the system over nearly three .sup.82 Sr half lives.

  11. The isotopic and chemical evolution of Mount St. Helens

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.

    1983-01-01

    Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.

  12. Pre-bombardment crystallization ages of basaltic clasts from Antarctic howardites EET87503 and EET87513

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.

    1994-01-01

    Igneous clasts of basaltic eucrites are found in both howardites and polymict eucrites. We have studied the Rb-Sr and Sm-Nd isotopic systematics of a number of such clasts, of metamorphic grades 1-6, using the classification of Takeda and Graham. Here, we report Rb-Sr, (147)Sm-(143)Nd, and (145)Sm-(142)Nd studies of clast, 53 from Antarctic howardite EET87503. Although there is no evidence of disturbance of trace element systematics by Antarctic weathering, the Rb-Sr and conventional Sm-Nd isotopic systematics are severely disturbed, which we ascribe to thermal metamorphism. The Ar-Ar age spectrum shows ages ranging from approximately 3.85-3.55 Ga in an unusual 'down stairstep'. The (146)Sm-(142)Nd systematics, however, show the presence of live (146)Sm(t(sub 1/2) = 103 Ma), with (146)Sm/(144)Sm = 0.0061 +/- 0.0007 at the time of crystallization. This result is very similar to that previously obtained for basaltic clast, 18 from howardite EET87513 (paired with EET87503), which has concordant Rb-Sr and Sm-Nd ages of approximately 4.5 Ga. Thus, the two clasts are nearly the same age, and we conclude further than the EET87503,53 clast crystallized within 33 +/- 19 Ma of the LEW86010 angrite by comparing initial (146)Sm/(144)Sm to that of the angrite. We suggest that disturbances in the isotopic systematics of EET87503,53 are consanguineous with pyroxene homogenization.

  13. Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences.

    PubMed

    Pin, Christian; Gannoun, Abdelmouhcine

    2017-02-21

    A fast and efficient sample preparation method in view of isotope ratio measurements is described, allowing the separation of 11 elements involved, either as "parent" or as "daughter" isotopes, in six radiogenic isotope systems used as chronometers and tracers in earth, planetary, and environmental sciences. The protocol is based on small extraction chromatographic columns, used either alone or in tandem, through which a single nitric acid solution is passed, without any intervening evaporation step. The columns use commercially available extraction resins (Sr resin, TRU resin, Ln resin, RE resin, and again Ln resin for isolating Sr and Pb, LREE then La-Ce-Nd-Sm, Lu(Yb), and Hf, Th, and U, respectively) along with an additional, in-house prepared resin for separating Rb. A simplified scheme is proposed for samples requiring the separation of Sr, Pb, Nd, and Hf only. Adverse effects of troublesome major elements (Fe 3+ , Ti) are circumvented by masking with ascorbic acid and hydrofluoric acid, respectively. Typical recoveries in the 85-95% range are achieved, with procedural blanks of 10-100 pg, negligible with regard to the amounts of analytes processed. The fractions separated are suitable for high precision isotope ratio measurements by TIMS or MC-ICP-MS, as demonstrated by the repeat analyses of several international reference materials of basaltic composition for 87 Sr/ 86 Sr, 208,207,206 Pb/ 204 Pb, 143 Nd/ 144 Nd, 176 Hf/ 177 Hf, and 230 Th/ 232 Th. Concentration data could be obtained by spiking and equilibrating the sample with appropriate isotopic tracers before the onset of the separation process and, finally, measuring the isotope ratios modified by the isotope dilution process.

  14. Large-ion lithophile elements delivered by saline fluids to the sub-arc mantle

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuhiko; Mibe, Kenji; Bureau, Hélène; Reguer, Solenn; Mocuta, Cristian; Kubsky, Stefan; Thiaudière, Dominique; Ono, Shigeaki; Kogiso, Tetsu

    2014-12-01

    Geochemical signatures of arc basalts can be explained by addition of aqueous fluids, melts, and/or supercritical fluids from the subducting slab to the sub-arc mantle. Partitioning of large-ion lithophile elements between aqueous fluids and melts is crucial as these two liquid phases are present in the sub-arc pressure-temperature conditions. Using a micro-focused synchrotron X-ray beam, in situ X-ray fluorescence (XRF) spectra were obtained from aqueous fluids and haplogranite or jadeite melts at 0.3 to 1.3 GPa and 730°C to 830°C under varied concentrations of (Na, K)Cl (0 to 25 wt.%). Partition coefficients between the aqueous fluids and melts were calculated for Pb, Rb, and Sr ([InlineEquation not available: see fulltext.]). There was a positive correlation between [InlineEquation not available: see fulltext.] values and pressure, as well as [InlineEquation not available: see fulltext.] values and salinity. As compared to the saline fluids with 25 wt.% (Na, K)Cl, the Cl-free aqueous fluids can only dissolve one tenth (Pb, Rb) to one fifth (Sr) of the amount of large-ion lithophile elements when they coexist with the melts. In the systems with 13 to 25 wt.% (Na, K)Cl, [InlineEquation not available: see fulltext.] values were greater than unity, which is indicative of the capacity of such highly saline fluids to effectively transfer Pb and Rb. Enrichment of large-ion lithophile elements such as Pb and Rb in arc basalts relative to mid-oceanic ridge basalts (MORB) has been attributed to mantle source fertilization by aqueous fluids from dehydrating oceanic plates. Such aqueous fluids are likely to contain Cl, although the amount remains to be quantified.

  15. Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil

    USGS Publications Warehouse

    Kalkreuth, W.; Holz, M.; Kern, M.; Machado, G.; Mexias, A.; Silva, M.B.; Willett, J.; Finkelman, R.; Burger, H.

    2006-01-01

    Hierarchical cluster analysis identified three groups of major minerals and seven groups of trace elements based on similarity levels. On a regional scale, the coalfields can be separated by the differences in rank (Candiota and Leão-Butiá versus Santa Terezinha) and by applying discriminant analysis based on 4 trace elements (Li, As, Sr, Sb). Highest Rb and Sr values occur at Candiota and are linked to syngenetic volcanism of the area, whereas high Y and Sr values at Santa Terezinha can be related to the frequent diabase intrusions in that area.

  16. The alteration of interelemental ratios in myocardium under the congenital heart disease (SRXRF)

    NASA Astrophysics Data System (ADS)

    Trunova, V. A.; Zvereva, V. V.; Okuneva, G. N.; Levicheva, E. N.

    2007-05-01

    It is the myocardium that bears the basic functional loading during heart working, including muscle contractility and enzyme activity. The elemental concentrations in myocardium tissue of heart were determined by SRXRF technique. Our investigation is systematical: the elemental content in each compartment (left and right ventricles, left and right auricles) of hearts of healthy and diseased children (congenital heart diseases, transposition of main vessels (TMV)) was analyzed. The elemental distribution in myocardium of four heart chambers of human fetuses was also analyzed. Following elements were determined: S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr. It was revealed that the elemental concentrations in myocardium of both ventricles are almost constant in heart of fetuses and healthy children. The transition from pre-natal study (fetus) to post-natal study is accompanied by the redistribution of chemical elements in myocardium. The higher concentrations of S, Fe, Ca, Sr and Cu in myocardium of children are observed, the content of K, Br, Rb and especially Se is lower than in heart of fetuses. The elemental distribution in myocardium of children TMV is considerably different in comparison with the healthy children: the higher levels of Cu are observed. The content of Se is lower.

  17. Rare earth abundances and Rb-Sr systematics of basalts, gabbro, anorthosite and minor granitic rocks from the Indian Ocean Ridge System, Western Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Futa, K.; Engel, C.G.; Fisher, R.L.

    1979-01-01

    Basalts dredged from the Mid-Indian Ocean Ridge System have rare earth, Rb, and Sr concentrations like those from other mid-ocean ridges, but have slightly higher Sr87/Sr86 ratios. Underlying gabbroic complexes are similar to the basalts in Sr87/Sr86, but are poorer K, Rb, and in rare earths. The chemical and isotopic data, as well as the geologic relations suggest a cumulate origin for the bulk of the gabbroic complexes. ?? 1979 Springer-Verlag.

  18. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  19. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  20. Neodymium and strontium isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Stille, Peter; Rais, Naoual; Piqué, Alain; Clauer, Norbert

    1994-03-01

    The behaviour of the Rb-Sr and Sm-Nd isotopic systems with increasing degree of Hercynian metamorphic overprint was studied along a transect in Cambrian shales of northwestern Morocco. Clay fractions of < 0.2 to 2-6 μm size from five samples were investigated, representing a range from nonmetamorphic to epizonal metamorphic conditions. The samples were washed in cold l N HC1 prior to digestion to separate soluble/exchangeable Rb, Sr, Sm, and Nd from amounts of these elements fixed in the crystallographic sites of the minerals and to analyze both components separately. The results reveal that the Rb-Sr isotopic system is dominated by Sr hosted by clay mineral phases (both detrital and authigenic illite and chlorite) and carbonate-hosted soluble Sr. Isotopic homogenization of Sr occurred during Hercynian metamorphism, yielding ages between 309 and 349 Ma. The Sm-Nd isotopic system, on the other hand, is dominated by cogenetic apatite and Fe oxide/ hydroxide, both having high contents of leachable REEs. The leachates yield a Sm-Nd isochron age of 523 ± 72 Ma, indicating diagenetic equilibrium between apatite and Fe-oxide/hydroxide. Fine-grained clay fractions of < 0.2 μm size plot onto this reference line, suggesting isotopic equilibrium with the leachates. Size fractions > 0.2 μm show inheritance of a detrital Nd component. The study demonstrates that the diagenesis of the investigated argillaceous sediments can be dated by the Sm-Nd chronometer in authigenic cement phases. The isotopic system of these minerals (apatite, Fe hydroxide/oxide) was homogenized during authigenic mineral growth in a sediment that was flushed by diagenetic fluids and had abundant primary or secondary interconnected pore space. The Hercynian metamorphic overprint caused partial isotopic rehomogenization of the adsorbed and clay-hosted portion of the Sr as well as of the carbonate-hosted Sr. The Sm-Nd system in the cement phases survived this metamorphism. This results in decoupling of the two isotopic systems and allows the dating of diagenesis on the one hand (Sm-Nd) and metamorphism on the other hand (Rb-Sr).

  1. Trace and Ultra-trace Elements in the Deepest Part of the Vostok Ice Core, Antarctica: Geochemical Characterization of the Sub-glacial Lake Environment

    NASA Astrophysics Data System (ADS)

    Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.

    2016-12-01

    We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.

  2. The effect of secondary apatite on the initial 87Sr/86Sr ratio determination in granitic rocks: a case study of the Tadamigawa pluton, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Wakasugi, Y.; Ichino, K.; Tanioka, Y.; Wakaki, S.; Tsuboi, M.; Ishikawa, T.

    2017-12-01

    Apatite is a major accessory mineral in igneous rocks. Because Rb contents in apatite are very low, 87Sr/86Sr ratios of magmatic apatite are useful to estimate the initial 87Sr/86Sr ratio (SrI) of igneous rocks. Secondary post-magmatic event such as hydrothermal alteration may also crystallize secondary apatite, which may inhibit the estimation of SrI of igneous rocks. In this study, we examine the effects of secondary apatite on the initial 87Sr/86Sr ratio determination of granitic rocks by using acid leaching technique. Leached apatite samples were first separated from the whole rock powder as a heavy mineral fraction by heavy liquid technique, and the heavy mineral fraction was then leached by 3 M HNO3. The isotopic ratios of Sr and the concentrations of Rb and Sr were analyzed by TIMS and ICP-MS at Kochi Core Center, respectively. The Tadamigawa Older-stage granites, which locate in the Taishaku Mountains at the northeastern part of Japan, intrude into the Ashio Jurassic complex, and the ages of these rocks are late Cretaceous to Paleogene. The U-Pb ages of zircon and the K-Ar ages of biotite for these rocks are c. 100 Ma [1, 2]. Rb-Sr whole-rock isochron age of the pluton is 96.5 ± 1.3 Ma (SrI = 0.70534 ± 0.00003) and it is concordant with other radiometric ages. Rb-Sr mineral isochron ages range from 84.4 to 97.3 Ma and these ages are relatively younger than the Rb-Sr whole-rock isochron age. The difference among radiometric ages may reflect the difference of the closure temperature in each isotopic system. The Tadamigawa Older-stage granites have SrI for Rb-Sr mineral isochron range from 0.7053 to 0.7061 and are very similar to that (0.70534) for Rb-Sr whole-rock isochron. These may suggest that the Tadamigawa Older-stage granites are generated from same parental magma. However, 87Sr/86Sr ratios of the leached apatite samples were 0.70544-0.70856 and are relatively higher than SrI obtained from the Rb-Sr mineral isochrons (0.7053-0.7061). This result suggests that leached apatite samples contain not only magmatic apatite but also secondary apatite. A careful apatite separation is needed to obtain the magmatic initial 87Sr/86Sr ratios by the isotopic analyses of apatite. [1] Tanioka et al. (2014) Japan. Mag. Mineral. Petrol. Sci. 43, 215-227. [2] Wakasugi et al. (2014) 121st Ann. Meet. Geo. Soc. Japan, Abstr., 57.

  3. NWA 7034 Martian Breccia: Disturbed Rb-Sr Systematics, Preliminary Is Approximately 4.4 Ga Sm-Nd Age

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Peng, Zhan Xiong; Agee, C

    2013-01-01

    Agee et al. [1] reported a Rb-Sr age of 2.089 [plus or minus] 0.081 Ga for the unique Martian meteoritic breccia NWA 7034 making it the oldest Martian basalt, dating to the early Am-azonian epoch [2] of Martian geologic history. We have attempt-ed to confirm this exciting result. Our new Rb-Sr analyses show the Rb-Sr isotopic system to be disturbed, but preliminary Sm-Nd data suggest an even older age of approximately 4.4 Ga for at least some brec-cia components.

  4. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  5. Interaction of overlayers of Al and Rb with single-crystalline surfaces of Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Wells, B. O.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1990-03-01

    Photoemission results from Al and Rb interfaces with single crystals of Bi2Sr2CaCu2O8 high-temperature superconductors are reported. The Al and Rb adsorbates are found to react quite differently with the Bi2Sr2CaCu2O8 substrate. While adatoms of Rb significantly affect only the Bi and O atoms in the top atomic layer, the Al adsorbate profoundly disrupts the bonding character of the whole Bi2Sr2CaCu2O8 material. For Al, the Bi and Cu states are strongly reduced, and the Sr and O states show evidence of oxidized components. In addition, Al causes a strong out-diffusion of oxygen from the bulk. The differences in the reactivity of Al and Rb are discussed in terms of the different mobility of the two atoms.

  6. U-Th-Pb and Rb-Sr systematics of Apollo 17 boulder 7 from the North Massif of the Taurus-Littrow valley

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.; Unruh, D. M.

    1974-01-01

    Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using U-Th-Pb and Rb-Sr systematics. A Rb-Sr internal isochron age of 3.89 plus or minus 0.08 b.y. with an initial Sr-87/Sr-86 of 0.69926 plus or minus 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a U-Pb internal isochron of 3.8 plus or minus 0.2 b.y. and an initial Pb-206/Pb-207 of 0.69. These internal isochron ages are interpreted as reflecting metamorphic events, probably related to impacts, which reset Rb-Sr and U-Pb mineral systems of older rocks.

  7. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    USGS Publications Warehouse

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  8. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    PubMed

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  9. SR-XFA of uranium-containing materials. A case of Bazhenov formation rocks exploration

    NASA Astrophysics Data System (ADS)

    Phedorin, M. A.; Bobrov, V. A.; Tchebykin, Ye. P.; Melgunov, M. S.

    2000-06-01

    When an X-ray fluorescent analysis (XFA) is carried out, errors are possible because fluorescent K-lines of "light" elements and L-lines of some "dark" elements can overlap in energy domain. With certain contents of these elements and insufficient resolution of the spectrometer, this leads to considerable errors of determination. An example is the overlapping of a large number of uranium (U) L-lines and Rb, Nb, Mo K-lines. In this paper a procedure is suggested to correct such overlapping. It was tested on uranium-containing rock samples. These samples represent the oil-producing Bazhenov rock formation, which is characterized by organic matter accumulated in abundance and accompanied by "organophile" elements, including U. The procedure is based on scanning the energy of initial exciting X-radiation. This may be regarded advisable only in the XFA versions that use synchrotron radiation — SR-XFA. As a result of this investigation, geochemical characteristics of the Bazhenov formation rocks are demonstrated and the efficiency of energy scanning procedure in determining both Rb, Nb, Mo and U contents is revealed (using comparison with other methods). The energy scanning procedure also works in the presence of L-lines of some other dark elements (Pb, Th, etc.) in the energy domain of K-lines of As-Mo.

  10. X-ray microprobe synchroton radiation X-ray fluorescence application on human teeth of renal insufficiency patients

    NASA Astrophysics Data System (ADS)

    Marques, A. F.; Marques, J. P.; Casaca, C.; Carvalho, M. L.

    2004-10-01

    This work reports on the measurements of elemental profiles in teeth collected from patients with renal insufficiency. Elemental concentrations of Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Rb Sr and Pb in different parts of teeth from patients with renal insufficiency are discussed and correlated with the corresponding values for healthy citizens. Both situations, patients with and without dialysis treatment were studied. The purpose of this work is to point out the influence of renal insufficiency together with long dialysis treatment, on teeth elemental content. An X-ray fluorescence set-up with microprobe capabilities, installed at the LURE synchrotron (France) was used for elemental determination. The resolution of the synchrotron microprobe was 100 μm and the energy of the incident photons was 19 keV. Teeth of citizens with renal insufficiency and those submitted since several years to dialysis treatment show a similar concentration with teeth of healthy subjects in what concerns the elemental distribution for Mn, Fe, Cu, Zn and Sr. However, higher levels of Pb were found in pulp region of diseased citizens when compared to values of healthy people. Very low concentrations of Ti, Co, Ni, Se, Br and Rb were found in all the analysed teeth. No difference was found in patients with and without dialysis treatment.

  11. Sr isotopic composition of Afar volcanics and its implication for mantle evolution

    NASA Astrophysics Data System (ADS)

    Barberi, F.; Civetta, L.; Varet, J.

    1980-10-01

    Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.

  12. Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China.

    PubMed

    Falandysz, Jerzy; Chudzińska, Maria; Barałkiewicz, Danuta; Drewnowska, Małgorzata; Hanć, Anetta

    2017-04-01

    Data on multi-trace element composition and content relationships have been obtained for Cantharellus cibarius, C. tubaeformis, and C. minor mushrooms from Poland and China by inductive coupled plasma-dynamic reaction cell-mass spectroscopy. There is no previous data published on As, Li, V, Tl, and U in chanterelles from Poland and on Ba, Co, Cr, Ni, Rb, and Sr in chanterelles from China. The results implied a role of the soil background geochemistry at the collection site with the occurrence of Ag, As, Ba, Cr, Cs, Li, Mn, Pb, Rb, Sr, U, and V in the fruiting bodies. Both geogenic Cd and anthropogenic Cd can contribute in load of this element in chanterelles from the Świetokrzyskie Mts. region in Poland, while geogenic source can be highly dominant in the background areas of Yunnan. An essentiality of Cu and Zn and effort by mushroom to maintain their physiological regulation could be reflected by data for Cantharellus mushrooms from both regions of the world, but its geogenic source (and possibly anthropogenic) can matter also in the region of the Świetokrzyskie Mountains in Poland. The elements Co, Ni, and Tl were at the same order of magnitude in contents in C. cibarius in Poland and Yunnan, China. C. tubaeformis differed from C. cibarius by a lower content of correlated Co, Ni, and Zn. Soil which is polymetallic and highly weathered in Yunnan can be suggested as a natural geogenic source of greater concentrations of As, Ba, Cr, Li, Pb, Sr, U, and V in the chanterelles there while lower of Mn and Rb, when related to chanterelles in Poland. A difference in Cs content between the sites can be attributed as an effect of the 137 Cs release from the Chernobyl accident, in which Poland was much more affected than Yunnan, where deposition was negligible.

  13. The Northeast Kingdom batholith, Vermont: magmatic evolution and geochemical constraints on the origin of Acadian granitic rocks

    USGS Publications Warehouse

    Ayuso, R.A.; Arth, Joseph G.

    1992-01-01

    Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80-164), Th/Ta (<9), Rb/Cs (7-40), K/Cs (0.1-0.5), Ce/Pb (0.5-4), high values of Rb/Sr (1-18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals. ?? 1992 Springer-Verlag.

  14. An extremely low U Pb source in the Moon: UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic systematics and age of lunar meteorite Asuka 881757

    USGS Publications Warehouse

    Misawa, K.; Tatsumoto, M.; Dalrymple, G.B.; Yanai, K.

    1993-01-01

    We have undertaken UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic studies on Asuka 881757, a coarse-grained basaltic lunar meteorite whose chemical composition is close to low-Ti and very low-Ti (VLT) mare basalts. The PbPb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ?? 28 Ma, which is similar to the U-Pb (3850 ?? 150 Ma) and Th-Pb (3820 ?? 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ?? 57 Ma and an initial 143Nd 144Nd value of 0.50797 ?? 10. The Rb-Sr data yield an internal isochron age of 3840 ?? 32 Ma (??(87Rb) = 1.42 ?? 10-11 yr-1) and a low initial 87Sr 86Sr ratio of 0.69910 ?? 2. The 40Ar 39Ar age spectra for a glass fragment and a maskelynitized plagioclase are relatively flat and give a weighted mean plateau age of 3798 ?? 12 Ma. We interpret these ages to indicate that the basalt crystallized from a melt 3.87 Ga ago (the Sm-Nd age) and an impact event disturbed the Rb-Sr system and completely reset the K-Ar system at 3.80 Ga. The slightly higher Pb-Pb age compared to the Sm-Nd age could be due to the secondary Pb (from terrestrial and/or lunar surface Pb contamination) that remained in the residues after acid leaching. Alternatively, the following interpretation is also possible; the meteorite crystallized at 3.94 Ga (the Pb-Pb age) and the Sm-Nd, Rb-Sr, and K-Ar systems were disturbed by an impact event at 3.80 Ga. The crystallization age obtained here is older than those reported for low-Ti basalts (3.2-3.5 Ga) and for VLT basalts (3.4 Ga), but similar to ages of some mare basalts, indicating that the basalt may have formed from a magma related to a basin-forming event (Imbrium?). The age span for VLT basalts from different sampling sites suggest that they were erupted over a wide area during an interval of at least ~500 million years. The impact event that thermally reset the K-Ar system of Asuka 881757 must have been post-Imbrium (perhaps Orientale) in age. The lead isotopic composition of Asuka 881757 is nonradiogenic compared with typical Apollo mare basalts and the estimated 238U 204Pb (??) value for the basalt source is 10 ?? 3. This source-?? value is the lowest so far measured for lunar rocks. A large positive ??{lunate}Nd value (7.4 ?? 0.5) and the time averaged 147Sm 144Nd ratio for the basalt source are similar to those for some Apollo 12, 15, and 17 basalts, suggesting a LREE-depleted mantle, which is consistent with the global magma ocean hypothesis. The U-Th-Pb, Sm-Nd, and Rb-Sr data on Asuka 881757 suggest that the basalt was derived from a low U Pb, low Rb Sr, and high Sm Nd source region, mainly composed of olivine and orthopyroxene with minor amounts of plagioclase (or clinopyroxene) and with sulfides enriched in volatile chalcophile elements. The basalt source may be deep in origin and different in chemistry from those previously estimated from studies of Apollo and Luna mare basalts, indicating heterogeneous sources for mare basalts. ?? 1993.

  15. A preliminary bioavailable strontium isotope soil map of Europe.

    NASA Astrophysics Data System (ADS)

    Hoogewerff, Jurian; Reimann, Clemens; Ueckermann, Henriette; Frei, Robert; Frei, Karin; van Aswegen, Thalita; Stirling, Claudine; Reid, Malcolm; Clayton, Aaron; Gemas Project Team

    2017-04-01

    The GEMAS project collected samples from grazing land (n=2118, 0-20cm depth) and agricultural soil (n=2211, 0-10cm depth) at a scale of 1 site/2500km2 in most of Europe1. Elemental analysis using different extractions (Aqua Regia and MMI), whole soil XRF data and Q-ICPMS lead isotope data have been published1. Here we report high-precision 87Sr/86Sr results for the first 1000+ samples. To best represent Sr in plants and animals an ammonium nitrate soil extraction was chosen2. Samples were measured in three laboratories and shared QC samples demonstrated the robustness of the complete extraction and measurement protocol. Observed 87Sr/86Sr values range from 0.7038 to 0.7597 with the majority of samples centring about the median of 0.7092. Spatial interpolation of the data shows some major trends over Europe with high 87Sr/86Sr in known old intrusive terrains in Scandinavia, Iberia and the Alps. To improve the spatial resolution we investigated relations between measured 87Sr/86Sr values and other parameters for which higher spatial density (interpolated) data exists in geological and lithological databases like IGME50003 and GLiM4. For each sampling site matching geological age data and lithology were obtained by overlaying sampling locations on the IGME5000 and GLiM maps and extracting age and lithology information. All statistical and geospatial manipulations were performed using the R statistical package. Overall the 87Sr/86Sr values show a moderate correlation (Pearson R=0.54) with age but demonstrate varying homogeneity in different lithological units. Within the GEMAS dataset the strontium isotope ratios correlate most strongly with the lead isotope results,206Pb/208Pb (R=0.56) indicating a combined age and "crustalinity" effect. Whole soil Rb (XRF) is slightly higher correlated (R=0.26) with 87Sr/86Sr than extracted Rb (AR) at R=0.12 indicating some influence of the long term Rb signal in the soil parent material. Sodium is the highest correlated whole soil (XRF) element (R=0.33), which initially might hint at the influence of seaspray as it is often hypothesized that seaspray is a major source of 87Sr/86Sr variation in coastal regions. To test this hypothesis the distances to the coast in the major north-westerly wind direction in Europe and the shortest distance to any coast were calculated. Neither distance measure provided any significant correlation with 87Sr/86Sr values, indicating that the cause of the Na-Sr correlation is not likely to be seaspray, which would agree with poor correlation with presumably mobile Na in the Aqua Regia extracts. In concordance with observations of other authors5 modeling accuracy is improved by creating separate models for contrasting lithologies; igneous, marine limestones and other types. Igneous parent material provided the most convincing model using parameters like age, Rb/Sr ratio and 206Pb/208Pb. Attempts to model 87Sr/86Sr of soil on marine limestones with the LOWESS version 36 87Sr/86Sr vs. age curve were not convincing although some pattern similarity could be observed. Uranium and sodium content combined with pH are reasonable predictors of 87Sr/86Sr in soils on marine limestone parent material. The 87Sr/86Sr dataset with coordinates and models will be available from the main author after publication later in 2017. Reimann, C., et al., (2014). Geologisches Jahrbuch (Reihe B 102), Schweizerbarth, Hannover. Voerkelius S. et al., (2010). Food Chemistry. 118 (4), pp. 933-940. Asch, K., (2003). Geologisches Jahrbuch, SA 3, Schweizerbarth. Hannover. Hartmann, J., and N. Moosdorf (2012), Geochem. Geophys. Geosyst., 13, Q12004. Bataille, C. P. and G. J. Bowen. 2012. Chemical Geology 304-305:39- 52. J. M. McArthur, et al., Journal of Geology, 2001, volume 109, p. 155-170

  16. Evidence for a late thermal event of unequilibrated enstatite chondrites: a Rb-Sr study of Qingzhen and Yamato 6901 (EH3) and Khairpur (EL6)

    USGS Publications Warehouse

    Torigoye, N.; Shima, M.

    1993-01-01

    The Rb-Sr whole rock and internal systematics of two EH3 chondrites, Qingzhen and Yamato 6901, and of one EL6 chondrite, Khairpur, were determined. The internal Rb-Sr systematics of the EH3 chondrites are highly disturbed. Fractions corresponding to sulfide phases show excess 87Sr, while other fractions corresponding to silicate phases produce a linear trend on a Rb-Sr evolution diagram. If these linear relations are interpreted as isochrons, the ages of the silicate phases are 2.12?? 0.23 Ga and 2.05 ??0.33 Ga with the initial Sr isotopic ratios of 0.7112 ?? 0.0018 and 0.7089 ?? 0.0032, for Qingzhen and Yamato 6901, respectively. The Rb-Sr results are interpeted as indicative of a late thermal event about 2Ga ago on the parent bodies of these EH3 chondrites. These ages agree well with previously published K-Ar ages. An older isochron age of 4.481 ?? 0.036 Ga with a low initial Sr isotopic ratio of 0.69866 ?? 0.00038 was obtained for the data from silicate fractions of Khairpur, indicating early petrological equilibrium on the parent body of EL6 chondrites. -from Authors

  17. A Rubidium-Strontium study of the Twilight Gneiss, West Needle Mountains, Colorado

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.; Hildreth, R.A.

    1969-01-01

    The Precambrian trondhjemitic Twilight Gneiss (Twilight Granite of Cross and Howe, 1905b) of the West Needle Mountains, southwestern Colorado, and its interlayered amphibolite and metarhyodacite yield a Rb-Sr isochron of 1,805??35 m.y. A low initial Sr87/Sr86 ratio of 0.7015 implies that metamorphism of these rocks to amphibolite facies took place soon after their emplacement. The mild metamorphism of Uncompahgran age, prior to 1,460 m.y. ago, and Laramide volcanism did not affect the Rb-Sr system in the Twilight. Rb contents of 26.5 to 108 ppm, Sr contents of 114 to 251 ppm, and K2O percentages of 1.23 to 3.64 in the Twilight Gneiss, in conjunction with high K/Rb ratios and the low initial ratio of Sr87/Sr86, lend support to geologic data that suggest the Twilight originated as volcanic or hypabyssal igneous rocks in a basaltic volcanic pile. ?? 1969 Springer-Verlag.

  18. Resetting of RbSr ages of volcanic rocks by low-grade burial metamorphism

    USGS Publications Warehouse

    Asmeroma, Y.; Damon, P.; Shafiqullah, M.; Dickinson, W.R.; Zartman, R.E.

    1991-01-01

    We report a nine-point RbSr whole-rock isochron age of 70??3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ?? 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO2 content as low as 57 wt.%, are susceptible to complete resetting. The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism. ?? 1991.

  19. Geochronology and petrogenesis of Apollo 14 very high potassium mare basalts

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.

    1986-01-01

    Rb-Sr, K-Ar, and Sm-Nd isotopic studies were undertaken for two Apollo 14 very high potassium (VHK) highly radiogenic mare basaltic clasts from breccias 14305 and 14168. Rb-Sr data indicate ages of 3.83 + or - 0.08 b.y., and 3.82 + or - 0.12 b.y. for samples 14305 and 14168 respectively, for lambda(Rb-87) = 0.0 139/b.y. Their corresponding initial Sr-87/Sr-86 ratios are nearly identical, as well as their Ar-39 to Ar-40 age spectra, and it is proposed that they were derived from the same flow. The Sm-Nd isotopic data of whole rock and mineral separates for the two VHK basalts define an internal isochrone age of 3.94 + or - 0.16 b.y. for lambda (Sm-147) = 0.00654/b.y. and an initial Nd-143/Nd-144 of 0.50673 + or - 21. The similarity in isotopic ages suggests that VHK basalts crystallized from a melt about 3.85 b.y. ago. VHK basalts show very large Rb/Sr fractionation but no significant Sm/Nd fractionation at the time of crystallization. The source material had a Rb/Sr ratio similar to those of Apollo 14 high-Al mare basalts and a nearly chrondritic Sm/Nd ratio. Basalt/granite interaction was found to be responsible for the extreme enrichments of Rb/Sr and K/La during the formation of VHK basalts. It is concluded that K, Rb-rich components of granitic wall rocks in the highland crust were selectively introduced into ascending hot high-Al mare basaltic magma upon contact.

  20. Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, western Labrador: Structural, compositional and thermal controls

    NASA Astrophysics Data System (ADS)

    Yang, Panseok; Rivers, Toby

    2000-04-01

    Coexisting biotite and muscovite in ten metapelitic and quartzofeldspathic rocks from western Labrador have been analyzed by electron microprobe for major and minor elements and by a laser ablation microprobe coupled to ICP-MS (LAM-ICP-MS) for selected trace elements - Li, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf and Ta. The samples have experienced a single prograde Grenvillian metamorphism ranging from 490 to 680°C and from 7 to 12 kbar. The trace element compositions of coexisting micas in the metamorphic rocks are used to assess the effects of crystal structure, major element composition and temperature on the partitioning of each element between biotite and muscovite. Overall, trace element distributions are systematic across the range of metamorphic grade and bulk composition, suggesting that chemical equilibrium was approached. Most distribution coefficients (biotite/muscovite) show good agreement with published data. However, distribution coefficients for Co and Sr are significantly different from previous determinations, probably because of contamination associated with older data obtained by bulk analysis techniques. The sequence of distribution coefficients is governed mainly by the ionic radii and charges of substituting cations compared to the optimum ionic radius of each crystallographic site in the micas. In particular, distribution coefficients exhibit the sequence Cr 3+ (0.615 Å) > V 3+ (0.64 Å) > Sc 3+ (0.745 Å) in VI-sites, and Ba 2+ (1.61 Å) > Sr 2+ (1.44 Å) and Cs + (1.88 Å) > K + (1.64 Å) > Rb + (1.72 Å) > Na + (1.39 Å) in XII-sites. The distributions of Li, Sc, Sr and Ba appear to be thermally sensitive but are also controlled by major element compositions of micas. V and Zr partitioning is dependent on T and may be used to cross-check thermometry calculations where the latter suffer from retrograde re-equilibration and/or high concentrations of Fe 3+. The ranges and dependence of distribution coefficients on major element compositions provide important constraints on the values that can be used in geochemical modeling.

  1. Strontium isotope measurement of basaltic glasses by laser ablation multiple collector inductively coupled plasma mass spectrometry based on a linear relationship between analytical bias and Rb/Sr ratios.

    PubMed

    Zhang, Le; Ren, Zhong-Yuan; Wu, Ya-Dong; Li, Nan

    2018-01-30

    In situ strontium (Sr) isotope analysis of geological samples by laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) provides useful information about magma mixing, crustal contamination and crystal residence time. Without chemical separation, during Sr isotope analysis with laser ablation, many kinds of interference ions (such as Rb + and Kr + ) are on the Sr isotope spectrum. Most previous in situ Sr isotope studies only focused on Sr-enriched minerals (e.g. plagioclase, calcite). Here we established a simple method for in situ Sr isotope analysis of basaltic glass with Rb/Sr ratio less than 0.14 by LA-MC-ICP-MS. Seven Faraday cups, on a Neptune Plus MC-ICP-MS instrument, were used to receive the signals on m/z 82, 83, 84, 85, 86, 87 and 88 simultaneously for the Sr isotope analysis of basaltic glass. The isobaric interference of 87 Rb was corrected by the peak stripping method. The instrumental mass fractionation of 87 Sr/ 86 Sr was corrected to 86 Sr/ 88 Sr = 0.1194 with an exponential law. Finally, the residual analytical biases of 87 Sr/ 86 Sr were corrected with a relationship between the deviation of 87 Sr/ 86 Sr from the reference values and the measured 87 Rb/ 86 Sr. The validity of the protocol present here was demonstrated by measuring the Sr isotopes of four basaltic glasses, a plagioclase crystal and a piece of modern coral. The measured 87 Sr/ 86 Sr ratios of all these samples agree within 100 ppm with the reference values. In addition, the Sr isotopes of olivine-hosted melt inclusions from the Emeishan large igneous province (LIP) were measured to show the application of our method to real geological samples. A simple but accurate approach for in situ Sr isotope measurement by LA-MC-ICP-MS has been established, which should greatly facilitate the wider application of in situ Sr isotope geochemistry, especially to volcanic rock studies. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Energy dispersive X-ray fluorescence (EDXRF) equipment calibration for multielement analysis of soil and rock samples

    NASA Astrophysics Data System (ADS)

    de Moraes, Alex Silva; Tech, Lohane; Melquíades, Fábio Luiz; Bastos, Rodrigo Oliveira

    2014-11-01

    Considering the importance to understand the behavior of the elements on different natural and/or anthropic processes, this study had as objective to verify the accuracy of a multielement analysis method for rocks characterization by using soil standards as calibration reference. An EDXRF equipment was used. The analyses were made on samples doped with known concentration of Mn, Zn, Rb, Sr and Zr, for the obtainment of the calibration curves, and on a certified rock sample to check the accuracy of the analytical curves. Then, a set of rock samples from Rio Bonito, located in Figueira city, Paraná State, Brazil, were analyzed. The concentration values obtained, in ppm, for Mn, Rb, Sr and Zr varied, respectively, from 175 to 1084, 7.4 to 268, 28 to 2247 and 15 to 761.

  3. The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1978-01-01

    The Ancient Gneiss Complex (AGC) of Swaziland, an Archean gray gneiss complex, lies southeast and south of the Barberton greenstone belt and includes the most structurally complex and highly metamorphosed portions of the eastern Kaapvaal craton. The AGC is not precisely dated but apparently is older than 3.4 Ga. The AGC consists of three major units: (a) a bimodal suite of closely interlayered siliceous, low-K gneisses and metabasalt; (b) homogeneous tonalite gneiss; and (c) interlayered siliceous microcline gneiss, metabasalt, and minor metasedimentary rocks - termed the metamorphite suite. A geologically younger gabbro-diorite-tonalite-trondhjemite suite, the Granodiorite Suite, is spatially associated with the AGC and intrusive into it. The bimodal suite consists largely of two types of low-K siliceous gneiss: one has SiO2 14%, low Rb/Sr ratios, and depleted heavy rare earth elements (REE's); the other has SiO2 > 75%, Al2O3 < 13%, high Rb/Sr ratios, and relatively abundant REE's except for negative Eu anomalies. The interlayered metabasalt ranges from komatiitic to tholeiitic compositions. Lenses of quartz monzonitic gneiss of K2O/Na2O close to 1 form a minor part of the bimodal suite. Tonalitic to trondhjemitic migmatite locally is abundant and has major-element abundances similar to those of non-migmatitic varieties. The siliceous gneisses of the metamorphic suite show low Al2O, K2O/Na2O ratios of about 1, high Rb/Sr ratios, moderate REE abundances and negative Eu anomalies. K/Rb ratios of siliceous gneisses of the bimodal suite are very low (???130); of the tonalitic gneiss, low (???225); of the siliceous gneiss of the metamorphite suite, moderate (???300); and of the Granodiorite Suite, high (???400). Rocks of the AGC differ geochemically in several ways from the siliceous volcanic and hypabyssal rocks of the Upper Onverwacht Group and from the diapirs of tonalite and trondhjemite that intrude the Swaziland Group. ?? 1978.

  4. VARIATIONS IN ISOTOPIC ABUNDANCES OF STRONTIUM, CALCIUM, AND ARGON AND RELATED TOPICS. Eleventh Annual Progress Report for 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-12-01

    Separate abstracts were prepared for twenty-eight of the thirty-three papers. The other papers deal with whole-rock Rb- Sr ages of Ontario norite and micropegmatite and the Southern Rhodesia Great Dyke, Sr isotopes in vein type mineral deposits, whole-rock Rb-- Sr studies of volcanics, and accuracy in Sr / sup 87//Sr/sup 86/ measurements. (D.C.W.)

  5. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America

    USGS Publications Warehouse

    Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.

    1990-01-01

    The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc to back-arc volcanism in southern South America. The "cratonic" basalts do not contain the slab-derived components that impart the higher Ba/La, Ba/Nb, La/Nb, Cs/Rb, 87Sr/86Sr at a given 143Nd/144Nd, 207Pb/204Pb at a given 208Pb/204Pb, and ??18O to Andean orogenic arc basalts. Instead, these basalts are formed by relatively low degrees of partial melting of heterogeneous lower continental lithosphere and/or asthenosphere, probably due to thermal and mechanical pertubation of the mantle in response to subduction of oceanic lithosphere below the western margin of the continent. The "transitional" basalts do contain components added to their source region by either (1) active input of slab-derived components in amounts smaller than the contribution to the mantle below the arc and/or with lower Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios than below the arc due to progressive downdip dehydration of the subducted slab; or (2) subarc source region contamination processes which affected the mantle source of the "transitional" basalts earlier in the Cenozoic. ?? 1990 Springer-Verlag.

  6. Obsidian provenance determination by using the beam stability controlled BSC-XRF and the PIXE-alpha portable spectrometers of the LANDIS laboratory of the LNS-INFN and IBAM-CNR in Catania (Italy)

    NASA Astrophysics Data System (ADS)

    Pappalardo, L.; Bracchitta, D.; Palio, O.; Pappalardo, G.; Rizzo, F.

    2012-04-01

    About 1300 obsidian artefacts coming from various archaeological sites of Sicily were analyzed by using the BSC-XRF (Beam Stability Controlled - X-ray Fluorescence) and PIXE-alpha (Particle Induced X-ray Emission, using low energy alpha particles) portable spectrometers developed at the Landis laboratory at the LNS-INF and IBAM-CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of the Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on Rb, Sr, Y, Zr, Nb trace element concentrations where deduced through the use of a method that makes use of a multi parameter linear regression, previously The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In the present work the two instrumental devices are presented. The data are from: Milena (Cl), Ustica (Pa), Rocchicella (Ct), Poggio dell'Acquila (Ct), San Marco (Ct), Villaggio del Petraro* (Sr) and Licodia Eubea* (Ct). Results on compositional data for trace elements and major elements allowed to identify Lipari and Pantelleria islands as the only two sources of the analysed samples. Analyses carried out on vitreous artefact found in Rocchicella, showed for the first time that the Palagonite was used as row material. *Preliminary data. Topic of conference: Application of XRS in archaeometry Kind of presentation: oral

  7. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial

    NASA Astrophysics Data System (ADS)

    Jin, Zhangdong; An, Zhisheng; Yu, Jimin; Li, Fuchun; Zhang, Fei

    2015-08-01

    Geochemistry of basin sediments from semi-arid regions is valuable to understand past hydroclimatic changes. Here, we investigate the links of sedimentary geochemistry (Rb, Sr, Ca/Zr, TOC, and %CaCO3), carbonate mineralogy and ostracod shell δ18O of Lake Qinghai, a basin proximal to major dust production centers at mid-latitudes of the Northern Hemisphere, to changes in depositional conditions and hydroclimate during the past 32 ka. Surface lacustrine sediments are characterized by low-Rb, high-Sr, low-Rb/Sr, high-%CaCO3 and high-Ca/Zr values, in contrast to the chemical compositions of eolian loess (high-Rb, low-Sr, high-Rb/Sr, low-%CaCO3, and low-Ca/Zr). A direct comparison of soluble Ca and Sr in two short cores with instrumental water discharge data suggests that lacustrine precipitates in Lake Qinghai are dominated by authigenic aragonite formed under Ca2+-limited water conditions, and that the accumulation rate of aragonite dominantly depends on solute fluxes into the lake during the rainy seasons (late May to September). Our high-resolution down-core records show that sediments during the last glacial (∼32-19.8 ka) had high-Rb, low-Sr, low-%CaCO3, and low-Ca/Zr, indicating eolian dust (loess) accumulation in a desiccated basin under dry glacial conditions, further supported by grain size and pollen results. This type of sedimentation was maintained during the last deglacial (∼19.8-11.5 ka), but interrupted by episodic lacustrine precipitates with high-Sr, high-%CaCO3, high-Ca/Zr, and low-Rb. At ∼11.5 ka, sedimentary Rb/Sr, Ca/Zr, %CaCO3 and TOC show dramatic and permanent changes, implying an abrupt shift in the atmospheric circulation at the onset of the Holocene in the Lake Qinghai region. Lacustrine precipitates have persisted throughout the Holocene with a maximum during the early to mid-Holocene (∼10.5-8.0 ka). Since ∼8.0 ka, the gradual and significant decreases in aragonite and Sr accumulations in tandem with increasing dust deposit and more positive ostracod δ18O may be linked to a weakening of Asian summer monsoons during the mid-to-late Holocene. Overall, our records appear to show a high sensitivity of sediment development and geochemistry in Lake Qinghai to the regional hydroclimate changes since the last glacial.

  8. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.

    1983-01-01

    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  9. Rb‐Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon

    PubMed Central

    Levine, Jonathan; Whitaker, Tom J.

    2015-01-01

    Rationale We report new 87Rb‐87Sr isochron data for the Duluth Gabbro, obtained with a laser ablation resonance ionization mass spectrometer that is a prototype spaceflight instrument. The gabbro has a Rb abundance and a range of Rb/Sr ratios that are similar to those of KREEP‐rich basalts found on the nearside of the Moon. Dating of previously un‐sampled young lunar basalts, which generally have a KREEP‐rich composition, is critical for understanding the bombardment history of the Moon since 3.5 Ga, which in turn informs the chronology of the solar system. Measurements of lunar analogs like the Duluth Gabbro are a proof of concept for in situ dating of rocks on the Moon to constrain lunar history. Methods Using the laser ablation resonance ionization mass spectrometer we ablated hundreds of locations on a sample, and at each one measured the relative abundances of the isotopes of Rb and Sr. A delay between the resonant photoionization processes separates the elements in time, eliminating the potential interference between 87Rb and 87Sr. This enables the determination of 87Rb‐87Sr isochron ages without sophisticated sample preparation that would be impractical in a spaceflight context. Results We successfully dated the Duluth Gabbro to 800 ± 300 Ma using traditional isochron methods like those used in our earlier analysis of the Martian meteorite Zagami. However, we were able to improve this to 1100 ± 200 Ma, an accuracy of <1σ, using a novel normalization approach. Both these results agree with the age determined by Faure et al. in 1969, but our novel normalization improves our precision. Conclusions Demonstrating that this technique can be used for measurements at this level of difficulty makes ~32% of the lunar nearside amenable to in situ dating, which can complement or supplement a sample return program. Given these results and the scientific value of dating young lunar basalts, we have recently proposed a spaceflight mission called the Moon Age and Regolith Explorer (MARE). © 2015 The Authors and Southwest Research Institute. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26212160

  10. Inorganic profile of some Brazilian medicinal plants obtained from ethanolic extract and ''in natura'' samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.O.M.; de Sousa, P.T.; Salvador, V.L.R.

    The Anadenathera macrocarpa, Schinus molle, Hymenaea courbaril, Cariniana legalis, Solidago microglossa and Stryphnodendron barbatiman, were collected ''in natura'' samples (leaves, flowers, barks and seeds) from different commercial suppliers. The pharmaco-active compounds in ethanolic extracts had been made by the Mato Grosso Federal University (UFMT). The energy-dispersive x-ray fluorescence (ED-XRF) spectrometry was used for the elemental analysis in different parts of the plants and respective ethanolic extracts. The Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, P, Rb, S, Sr and Zn concentrations were determined by the fundamental parameters method. Some specimens showed a similar inorganic profile for ''in natura''more » and ethanolic extract samples and some ones showed a distinct inorganic profile. For example, the Anadenathera macrocarpa showed a similar concentration in Mg, P, Cu, Zn and Rb elements in ''in natura'' and ethanolic extract samples; however very different concentration in Na, S, Cl, K , Ca, Mn, Fe and Sr was observed in distinctive samples. The Solidago microglossa showed the K, Ca, Cl, S, Mg, P and Fe elements as major constituents in both samples, suggesting that the extraction process did not affect in a considerable way the ''in natura'' inorganic composition. The elemental composition of the different parts of the plants (leaves, flowers, barks and seeds) has been also determined. For example, the Schinus molle specimen showed P, K, Cl and Ca elements as major constituents in the seeds, Mg, K and Sr in the barks and Mg, S, Cl and Mn in the leaves, demonstrating a differentiated elementary distribution. These inorganic profiles will contribute to evaluate the quality control of the Brazilian herbaceous trade and also will assist to identify which parts of the medicinal plants has greater therapeutic effect.« less

  11. Mineralogical and geochemical characterization of weathering profiles developed on mylonites in the Fodjomekwet-Fotouni section of the Cameroon Shear Zone (CSZ), West Cameroon

    NASA Astrophysics Data System (ADS)

    Tematio, P.; Tchaptchet, W. T.; Nguetnkam, J. P.; Mbog, M. B.; Yongue Fouateu, R.

    2017-07-01

    The mineralogical and geochemical investigation of mylonitic weathering profiles in Fodjomekwet-Fotouni was done to better trace the occurrence of minerals and chemical elements in this area. Four representative soil profiles were identified in two geomorphological units (upland and lowland) differentiating three weathering products (organo-mineral, mineral and weathered materials). Weathering of these mylonites led to some minerals association such as vermiculite, kaolinite, goethite, smectite, halloysite, phlogopite and gibbsite. The minerals in a decreasing order of abundance are: quartz (24.2%-54.8%); kaolinite (8.4%-36.0%); phlogopite (5.5%-21.9%); goethite (7.8%-16.1%); vermiculite (6.7%-15.7%); smectite (10.2%-11.9%); gibbsite (9.0%-11.8%) and halloysite (5.6%-11.5%) respectively. Patterns of chemical elements allow highlighting three behaviors (enriched elements, depleted elements and elements with complex behavior), depending on the landscape position of the profiles. In the upland weathering products, K, Cr and REEs are enriched; Ca, Mg, Na, Mn, Rb, S and Sr are depleted while Si, Al, Fe, Ti, Ba, Co, Cu, Ga, Mo, Nb, Ni, Pb, Sc, V, Y, Zn and Zr portray a complex behavior. Contrarily, the lowland weathering profiles enriched elements are Fe, Ti, Co, Cr, Cu, V, Zr, Pr, Sm, Tb, Dy, Er and Yb; while depleted elements are Ca, Mg, K, Na, Mn, Ba, Ga, S, Sr, Y, Zn, La, Ce and Nd; and Si, Al, Mo, Nb, Ni, Pb, Rb, Sc evidenced complex behaviors. In all the studied weathering products, the REEs fractionation was also noticeable with a landscape-position dependency, showing light REEs (LREEs) enrichment in the upland areas and heavy REEs (HREEs) in lowland areas. SiO2, Al2O3 and Fe2O3 are positively correlated with most of the traces and REEs (Co, Cu, Nb, Ni, Mo, Pb, Sc, V, Zn, Zr, La, Ce, Sm, Tb, Dy, Er, Yb), pointing to the fact that they may be incorporated into newly formed clay minerals and oxides. Ba, Cr, Ga, Rb, S, Sr, Y, Pr and Nd behave like alkalis and alkaline earths, and are thus highly mobile during weathering.

  12. The impact of (n, γ) reaction rate uncertainties of unstable isotopes near N = 50 on the i-process nucleosynthesis in He-shell flash white dwarfs

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel; Perdikakis, Georgios; Herwig, Falk; Schatz, Hendrik; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Nikas, Stylianos; Spyrou, Artemis

    2018-05-01

    The first-peak s-process elements Rb, Sr, Y and Zr in the post-AGB star Sakurai's object (V4334 Sagittarii) have been proposed to be the result of i-process nucleosynthesis in a post-AGB very-late thermal pulse event. We estimate the nuclear physics uncertainties in the i-process model predictions to determine whether the remaining discrepancies with observations are significant and point to potential issues with the underlying astrophysical model. We find that the dominant source in the nuclear physics uncertainties are predictions of neutron capture rates on unstable neutron rich nuclei, which can have uncertainties of more than a factor 20 in the band of the i-process. We use a Monte Carlo variation of 52 neutron capture rates and a 1D multi-zone post-processing model for the i-process in Sakurai's object to determine the cumulative effect of these uncertainties on the final elemental abundance predictions. We find that the nuclear physics uncertainties are large and comparable to observational errors. Within these uncertainties the model predictions are consistent with observations. A correlation analysis of the results of our MC simulations reveals that the strongest impact on the predicted abundances of Rb, Sr, Y and Zr is made by the uncertainties in the (n, γ) reaction rates of 85Br, 86Br, 87Kr, 88Kr, 89Kr, 89Rb, 89Sr, and 92Sr. This conclusion is supported by a series of multi-zone simulations in which we increased and decreased to their maximum and minimum limits one or two reaction rates per run. We also show that simple and fast one-zone simulations should not be used instead of more realistic multi-zone stellar simulations for nuclear sensitivity and uncertainty studies of convective–reactive processes. Our findings apply more generally to any i-process site with similar neutron exposure, such as rapidly accreting white dwarfs with near-solar metallicities.

  13. Temporal geochemical evolution of Kilauea Volcano: Comparison of Hilina and Puna Basalt

    NASA Astrophysics Data System (ADS)

    Chen, C.-Y.; Frey, F. A.; Rhodes, J. M.; Eastern, R. M.

    Temporal geochcmical variations in Hawaiian shield-building lavas provide important constraints on the origin and evolution of these lavas. We determined the major and trace element content, and Sr, Nd and Pb isotopic ratios of the oldest subaerially exposed lavas on Kilauea Volcano, i.e., the >25 Ka to perhaps 100 Ka, Hilina Basalt. Except for lower K2O and Rb abundances in Hilina lavas, the compositions of these prehistoric lavas overlap with historical Kilauea lavas. Although the studied Hilina lavas are not highly altered, the lower abundances of K2O and Rb may reflect post-eruptive alteration. Compared with historical Kilauea lavas, Hilina lavas have a similar range in Sr and Nd isotopic ratios, but they range to more radiogenic Pb isotopic ratios. The mantle source of Kilauea lavas is heterogeneous in isotopic ratios and perhaps in abundance ratios of some incompatible elements, but there is no evidence for systematic long-term geochemical variations in the source of Kilauea lavas. None of the prehistoric Kilauea lavas have isotopic characteristics similar to those of subaerial Mauna Loa lavas. Apparently, the sources and ascent paths of lavas forming the adjacent Kilauea and Mauna Loa shields have largely remained distinct during subaerial growth of the Kilauea shield. Compared to lavas from other Hawaiian shields, Kilauea lavas range to relatively high 206Pb/204Pb and low 87Sr/86Sr. These isotopic ratios are correlated with trace element abundance ratios that involve Nb, e.g., Zr/Nb; some Hilina lavas define the upper range in 206Pb/204Pb (˜18.82), and they have low Zr/Nb (˜8). This "Kilauea component" which has isotopic characteristics similar to the FOZO component (e.g., Hauri et al., 1994a] is an intrinsic part of the Hawaiian plume.

  14. Magma genesis in the lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Hawkesworth, C. J.; Powell, M.

    1980-12-01

    143Nd/ 144Nd, 87Sr/ 86Sr and REE results are reported on volcanic rocks from the islands of Dominica and St. Kitts in the Lesser Antilles. Particular attention is given to the lavas and xenoliths of the Foundland (basalt-andesite) and the Plat Pays (andesite-dacite) volcanic centres on Dominica. Combined major and trace element [ 2] and isotope results suggest that the bulk of the andesites and dacites on Dominica, and by analogy in the rest of the arc, are produced by fractional crystallisation of basaltic magma. The differences in the erupted products of the two volcanoes do not appear to be related to any significant differences in the source rocks of the magmas. Along the arc 87Sr/ 86Sr ratios range from 0.7037 on St. Kitts, to 0.7041-0.7047 on Dominica, and 0.7039-0.7058 on Grenada [ 5], and these are accompanied by a parallel increase in K, Sr, Ba and the light REE's. Moreover, compared with LIL-element-enriched and -depleted rocks from MOR and intraplate environments, the basic rocks from the Lesser Antilles are preferentially enriched in alkaline elements (K, Ba, Rb, Sr) relative to less mobile elements such as the rare earths. 143Nd/ 144Nd varies from 0.51308 on St. Kitts, to 0.51286 on Dominica, and 0.51264-0.51308 on Grenada [ 5], and all these samples have relatively high 87Sr/ 86Sr ratios compared with the main trend of Nd and Sr isotopes for most mantle-derived volcanic rocks. Alkaline elements and 87Sr appear to have been introduced from the subducted ocean crust, but the results on other, less mobile elements are more ambiguous — island arc tholeiites (as on St. Kitts) do not appear to contain significant amounts of REE's, Zr, Y, etc., from the subducted oceanic crust, but such a contribution may be present in more LIL-element-enriched calc-alkaline rock types.

  15. Provenance of KREEP and the exotic component - Elemental and isotopic studies of grain size fractions in lunar soils

    NASA Technical Reports Server (NTRS)

    Evensen, N. M.; Murthy, V. R.; Coscio, M. R., Jr.

    1974-01-01

    Sieve fraction analyses of lunar soils reveal the presence of a fine-grained exotic component enriched in K, Rb, Sr, Ba, and in radiogenic Sr in all soils. The probable source of this exotic component is the areas of high-surficial radioactivity observed by orbital gamma ray spectrometry, such as those at Fra Mauro and Archimedes. If the exotic component is fine-grained KREEP, the origin and distribution of KREEP fragments in the soils are identified. It is suggested that the exotic component represents trace element enriched material located at some depth in the Imbrium area which was surficially deposited during Imbrium excavation.

  16. Determining pre-eruptive compositions of late Paleozoic magma from kaolinized volcanic ashes: Analysis of glass inclusions in quartz microphenocrysts from tonsteins

    NASA Astrophysics Data System (ADS)

    Webster, James D.; Congdon, Roger D.; Lyons, Paul C.

    1995-02-01

    Glass inclusions in quartz microphenocrysts were analyzed for major and minor elements by electron microprobe and H, Li, Be, B, Rb, Sr, Y, Nb, Mo, Sn, Cs, Ce, Th, and U by ion microprobe. The phenocrysts and inclusions occur as fresh relicts in about eleven strongly kaolinized, air-fall volcanic ash units (tonsteins) that outcrop in five states located in the central Appalachian basin; the ashes were erupted during the Pennsylvanian. Even though the whole-rock tonstein samples are extremely altered, the glass trapped in quartz microphenocrysts preserves pre-eruptive melt compositions, and, consequently, the inclusions are useful for determining compositions of source magmas and identifying geochemical trends indicative of magmatic evolution. Interpretation of inclusion compositions indicates the strongly altered tonsteins were derived from potassium-enriched, metaluminous to mildly peraluminous magma(s). The tonsteins can be divided into two groups on the basis of trapped melt compositions: older tonsteins that have inclusions with high Sr and normative quartz contents and comparatively low concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be) and younger tonsteins whose inclusions contain low Sr and normative quartz and high concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be). In general, as concentrations of Sr decreased, the magmatic abundances of Rb, Y, Cs, Nb, U, Th, Cl, and F (±Be) increased. The associated magma or magmas were highly evolved, volatile enriched, and contained Rb, Nb, and Y abundances characteristic of continental within-plate granites; compositions ranged from high-silica rhyolite to topaz rhyolite. Pre-eruptive volatile abundances in the source magma(s) were generally high but also highly variable. Chlorine contents of melt(s) ranged from 0.02-0.23 wt%, and F ranged from 0.01-0.7 wt%. Concentrations of H 2O in melt(s) ranged from 1.6-6.5 wt%. The high pre-eruptive H 2O contents are consistent with large eruptive volumes indicating the precursor rhyolites, which weathered to tonsteins, were a result of plinian eruptions. Even though pre-eruptive water concentrations exhibit no recognizable trends with any elements studied, magmatic evolution appears to have been a strong function of F and H 2O in melt(s); the thermal stabilities of quartz and feldspar were controlled by F and H 2O activities at pressures of approximately 0.5-1 kbar.

  17. K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.

    2011-01-01

    K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.

  18. Measurement of strontium isotope ratio in nitric acid extract of peanut testa by ICP-Q-MS after removal of Rb by extraction with pure water.

    PubMed

    Zhu, Yanbei; Hioki, Akiharu; Chiba, Koichi

    2014-02-01

    The difference in the distributions of Sr and Rb in peanut seeds was utilized to develop a precise method for Sr isotope ratio measurement by inductively coupled plasma quadruple mass spectrometry (ICP-Q-MS). The testa instead of the whole peanut seed was selected as the sample because apparent enrichment of Sr in comparison to Rb was found in the testa. Furthermore, Rb in the testa was removed by pure water extraction with the aid of sonication to remove the isobaric interference in Sr isotope ratio measurement. The testa taken from one peanut seed was treated as one sample for the analysis. After optimization of the operating conditions, pure water (10 mL for each sample) extraction in 30 min with sonication was able to remove over 95% of Rb in the testa, while after the Rb removal Sr could be completely extracted using 10 mL of 0.3 mol L(-1) HNO3 for each sample. The integration time in ICP-Q-MS measurement was optimized to achieve a lower measurement uncertainty in a shorter time; the results showed that 1s was required and enough for the precise measurement of Sr isotope ratios giving a relative standard uncertainty (n=10) of ca. 0.1%. The present method was applied to peanut seeds grown in Japan, China, USA, India, and South Africa. © 2013 Published by Elsevier B.V.

  19. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia: Insights into the Paleo-Asian Ocean subduction-related melt/fluid-peridotite interaction

    NASA Astrophysics Data System (ADS)

    Zou, Dongya; Liu, Yongsheng; Hu, Zhaochu; Gao, Shan; Zong, Keqing; Xu, Rong; Deng, Lixu; He, Detao; Gao, Changgui

    2014-09-01

    The in situ major, trace-element and Sr-isotopic compositions of the peridotite and pyroxenite xenoliths from the Hexigten region in the Xing-Meng orogenic belt (XMOB) were examined to evaluate the influences and contributions of the Paleo-Asian Oceanic slab subduction on the lithospheric mantle transformation. Pyroxenes in the Type 1 pyroxenite exhibit low and variable Mg# (67-85) and relatively high 87Sr/86Sr ratios (0.7036-0.7053), indicating that they were formed by assimilation and fractional crystallization processes during a basaltic underplating event. The peridotite and Type 2 pyroxenite xenoliths sampled the lithospheric mantle and recorded subduction-related metasomatism. The mineral chemistries of the Type 1 peridotite suggest that the lithospheric mantle beneath this area suffered 1-15% melt extraction. Clinopyroxene (Cpx) in some Type 1 peridotites are characterized by high (La/Yb)N coupled with marked depletions in high field strength elements (HFSE) (Nb, Ta, Zr, Hf and Ti) and negative correlations between the low Ti/Eu (Nb/La) and 87Sr/86Sr ratios (0.7037-0.7055), suggesting metasomatism by subduction-related CO2-rich fluids. Olivine (Ol) and orthopyroxene (Opx) in the Type 2 peridotite are characterized by a relatively low Mg# but high Ni contents. In addition to the normal incompatible element-depleted Opx, Opx with enrichments in Rb, Ba, Th, U, Nb, Ta and LREE were observed, as well. The Mg# of incompatible element-depleted Opx exhibits weak zonations (i.e., decreasing from the cores to the rims). Cpx and Opx of the Type 2 pyroxenite exhibit similarly high Mg# and Ni contents. Rb, Ba, Th, U, Nb, Ta and LREE contents and 87Sr/86Sr ratios of the Cpx increase from the cores to the rims. Moreover, Opx in the Type 2 peridotite and Cpx in the Type 2 pyroxenite exhibit increased Nb/Ta ratios and Ni contents relative to those in the Type 1 peridotites. These observations collectively suggest a rutile-bearing eclogite-derived silicic melt-peridotite reaction as the origin for the Type 2 peridotite and pyroxenite. Considering the geological setting, it is suggested that the melt/fluid-peridotite interactions were caused by the Paleo-Asian Ocean subduction, which could have contributed significantly to the transformation of the lithospheric mantle beneath the northern margin of the NCC, as well.

  20. Evidence of three-body correlation functions in Rb+ and Sr2+ acetonitrile solutions

    NASA Astrophysics Data System (ADS)

    D'Angelo, P.; Pavel, N. V.

    1999-09-01

    The local structure of Sr2+ and Rb+ ions in acetonitrile has been investigated by x-ray absorption spectroscopy (XAS) and molecular dynamics simulations. The extended x-ray absorption fine structure above the Sr and Rb K edges has been interpreted in the framework of multiple scattering (MS) formalism and, for the first time, clear evidence of MS contributions has been found in noncomplexing ion solutions. Molecular dynamics has been used to generate the partial pair and triangular distribution functions from which model χ(k) signals have been constructed. The Sr2+ and Rb+ acetonitrile pair distribution functions show very sharp and well-defined first peaks indicating the presence of a well organized first solvation shell. Most of the linear acetonitrile molecules have been found to be distributed like hedgehog spines around the Sr2+ and Rb+ ions. The presence of three-body correlations has been singled out by the existence of well-defined peaks in the triangular configurations. Excellent agreement has been found between the theoretical and experimental data enforcing the reliability of the interatomic potentials used in the simulations. These results demonstrate the ability of the XAS technique in probing the higher-order correlation functions in solution.

  1. Partial melting under conditions of filter pressing: field and geochemical evidence from the migmatites of NE Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, T.J.; Bauer, R.L.; Nabelek, P.I.

    1985-01-01

    Amphibolite-grade Archean migmatites in the southern Vermilion Granitic Complex with well-defined paleosome-melanosome and melanosome-leucosome boundaries and with exceptionally wide melanosomes (on the order of centimeters) were studied to elucidate granite-forming processes during high-grade metamorphism. Metagreywacke paleosomes containing 50% plag, 28% qtz, 20% biot and minor hbld, and apat, have (Ce/Yb)/sub N/ = 13.5 to 21 with 650-960 ppm Ba, 42-110 ppm Rb, and 982-1159 ppm Sr. Melanosomes containing 45% plag, 35% biot, 20% hbld and minor qtz and apat, have (Ce/Yb)/sub N/ = 6.8 to 9.3 and have 950-1750 ppm Ba, 41-194 ppm Rb, and 1020-1926 ppm Sr. Leucosomes containingmore » 82% plag, 13% qtz, 5% biot and minor hbld and apat, have overall depleted REE patterns with positive Eu anomalies and 460-750 ppm Ba, 41-43 ppm Rb, and 1876-2106 ppm Sr, suggesting cumulate plagioclase. Mass balance calculations preclude formation of the melanosome from mixing the paleosomes and leucosomes. However, major and trace element modeling suggest that the leucosome formed by in situ partial melting followed by fractional crystallization and filter pressing which resulted in the removal of the residual liquid. Model REE patterns for the melt drive off by this process are REE enriched with a negative Eu anomaly. Such patterns which have been found in some low Sr granites are difficult to produce by simple belting models. Partial melting under conditions of tectonic stress may thus provide an explanation for such granites.« less

  2. A novel procedure for Rubidium separation and its isotope measurements on geological samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.

    2017-12-01

    A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of < ± 0.03‰ (2SE), and the external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.

  3. Constraining the 40K decay constant with 87Rb-87Sr - 40K-40Ca chronometer intercomparison

    NASA Astrophysics Data System (ADS)

    Naumenko-Dèzes, Maria O.; Nägler, Thomas F.; Mezger, Klaus; Villa, Igor M.

    2018-01-01

    A literature survey reveals that the K-Ar chronometer gives ages that are ca. 1% younger than U-Pb ages. This offset is generally attributed to an inaccurate 40K decay constant. Three geological samples selected from a shortlist of eight with known U-Pb ages were investigated using detailed petrological methods and subsequently the Rb-Sr and K-Ca chronometers in order (a) to evaluate if they meet the requirement of a geological history reflecting a ;point-like; event (i.e. isochronous formation and subsequent ideal closure of chronometers) and (b) to narrow down the systematic uncertainty on the 40K decay constant by investigating the metrologically traceable K-Ca decay branch. Lepidolite of the Rubikon pegmatite, Namibia, was dated with Rb-Sr at 504.7 ± 4.2 Ma and the phlogopite and apatite from the Phalaborwa carbonatite complex, South Africa, yielded a Rb-Sr age of 2058.9 ± 5.2 Ma. Both Rb-Sr ages agree with published U-Pb ages. The Rb-Sr age of the late Archean Siilinjärvi carbonatite, Finland, records a later regional metamorphic event at 1869 ± 10 Ma. Only the samples from the Phalaborwa complex represent a ;point-like; magmatic event and meet all the criteria to make them suitable for the 40K decay constant intercalibration. The Phalaborwa K-Ca isochron has a slope of 1.878 ± 0.012. Forcing the K-Ca isochron to coincide with the U-Pb and Rb-Sr ages gives one equation with two unknowns. Assuming that the branching ratio of the K-Ca branch, BCa, lies in the interval (k = 2) of all published references, 0.8925 < BCa < 0.8963, then the most reliable uncertainty interval (k = 2) for the total 40K decay constant, λtot, is calculated as 5.484 × 10-10 a-1 < λtot < 5.498 × 10-10 a-1. This confirms that the currently used IUGS recommendation is inaccurate.

  4. Veined pyroxenite xenoliths in Ugandan kamafugites: mantle or magma? Using in situ techniques for 87Sr/86Sr-isotopes and trace elements as tools

    NASA Astrophysics Data System (ADS)

    Link, Klemens; Tommasini, Simone; Braschi, Eleonora; Conticelli, Sandro; Barifaijo, Erasmus; Tiberindwa, John V.; Foley, Stephen F.

    2010-05-01

    The genesis of pyroxenite nodules in Ugandan kamafugites and their possible genetic relationships is a matter of debate. In earlier studies the pyroxenites were considered either as xenoliths from pervasively metasomatized peridotite mantle (Lloyd, 1981) or as distinct paragenesises occurring as veins within the peridotitic mantle (Harte et al., 1993). In both cases the xenoliths would represent mantle material that was at least partly involved as source material for the kamafugite melts. A third alternative could be that they represent cumulates of the lavas. In any case, the nodules provide important information for understanding the generation of ultrapotassic lavas and for characterizing the rift-related lithosphere mantle as part of the initial continental rift process. Originally the ultrapotassic kamafugites were considered to be single stage partial melts of pervasively metasomatized mantle but new geochemical studies indicate a multistage development (Rosenthal et al., 2009). Nd, Hf and Os isotopes point to mixing between components derived from metasomatically influenced peridotite and mica-pyroxenite. In-situ investigation of the Sr-isotope and trace element compositions of individual minerals in a number of xenoliths allows us to constrain their genesis and relation to the host lavas. The nodules appear to originate by near-liquidus crystallization of melts derived from enriched peridotite within the cratonic lithosphere mantle. They later partially remelted to form one source of the potassium-rich kamafugites. Sr-isotopes from different domains within single mineral grains in the nodules and host lavas are used to trace the nodules' role as a potential source to lavas, and trace element measurements are used to support the conclusions. Rb/Sr- measurements from the biotites to constrain the time between nodule crystallization and eruption of the Quaternary lavas to about 3.3 Ma. This also suggests a significant increase of the geothermal gradient beneath the preceding rift within that time. Structures on microscopic scale indicate at least two different generations of mineral growth clearly related to multiphase magmatic events forming the nodules. Rare composite samples allow a correlation between the older and younger parageneses, demonstrating reaction between the older matrix pyroxenite and the younger, high-Ti melt. The relatively low (~0,13wt%) Cr2O3-contents together with the high LREE concentrations measured in the oldest observed clinopyroxenes (La~12,4 x PRIMA with La/Lu~21) as well as the lack of any other characteristic mineral relicts argue against a pervasively overprinted peridotite mantle. Comparable 87Sr/86Sr- values close to bulk earth values as well as similar 143Nd/144Nd- ratios in the nodules (0,512480-0,5122573) and the lavas (average: 0,512551) support a genetic link between the kamafugites and the nodules as suggested by experiments (Lloyd et al. 1985). Low radiogenic 87Sr/86Sr ratios in Rb-free clinopyroxene and perovskite (0,704459-0,704487) constrain initial values for the source whereas slightly more radiogenic values from cogenetic Rb-bearing biotites (0,704754- 0,704762) are the result of radioactive decay after mineral growth. The majority of the kamafugite 87Sr/86Sr values lie between the two end-members (0,704624- 0,704717). Additionally considering microscale structures showing melting processes we conclude that the nodules represent one source and that the intermediate 87Sr/86Sr values of the lavas reflect the melting of differing proportions of biotite and clinopyroxene in the source region.

  5. Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics.

    PubMed

    Taylor, Vivien F; Longerich, Henry P; Greenough, John D

    2003-02-12

    Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.

  6. Sm-Nd and Rb-Sr Ages for Northwest Africa 2977, A Young Lunar Gabbro from the PKT

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.; Irving, A. J.

    2009-01-01

    Northwest Africa (NWA) 2977 is an olivine gabbro cumulate equivalent to one of the lithologies in lunar mare breccia NWA 773 [1,2,3]. The Ar-39-Ar-40 age is 2.77+/-0.04 Ga based on the last approx.57% of the gas release [4], similar to results for NWA 773 [5]. A Sm-Nd age (T) of 2.865+/-0.031 Ga and Epsilon(sub Nd) = -7.84+/-0.22 for the NWA 773 gabbro reported by [6] has been revised to T = 2.993+/-=0.032 Ga, Epsilon(sub Nd) -4.5+/-0.3 [7]. Sm-147-Nd-143 isochron for NWA 2977: Whole rock, pyroxene, olivine, plagioclase, whole rock leachate (approx.phosphate) and the combined leachates from the mineral separates yield a well defined Sm-Nd isochron for an age T = 3.10+/-0.05 Ga and Epsilon(sub Nd-CHUR) = -3.74+/-0.26 [8], or Epsilon(sub Nd-HEDR) = -4.61+/-0.26 [9]. Rb-87-Sr-87 isochron: NWA 2977 contains only a modest amount of Rb and/or Sr contamination. The Sr-isotopic composition of the contaminant closely resembles that of seawater. The whole rock residue after leaching combined with leach residues for plagioclase and pyroxene define an isochron age of 3.29+/-0.11 Ga for initial Sr-87/Sr-86 = 0.70287+/-18. The olivine residue, with lower Sr abundance of approx 1.5 ppm, is only slightly displaced from the isochron. The relatively small uncertainties of the Rb-Sr isochron parameters and near-concordancy with the Sm-Nd age indicate that both the Rb-Sr and the Sm-Nd ages are reliable.

  7. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.

    PubMed

    Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z

    2000-12-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  8. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions

    PubMed Central

    Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua

    2018-01-01

    The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the paleogeographic pattern that the north was higher (in elevation) than the south. PMID:29373592

  9. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions.

    PubMed

    Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua

    2018-01-01

    The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the paleogeographic pattern that the north was higher (in elevation) than the south.

  10. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  11. Concentrations of trace elements in marine fish and its risk assessment in Malaysia.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke

    2005-01-01

    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.

  12. Internal Rb-Sr Age and Initial Sr-87/Sr-86 of a Silicate Inclusion from the Campo Del Cielo Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Nyquist, L.; Wiesmann, H.; Shih, C.; Schwandt, C.; Takeda, H.

    2003-01-01

    The largest group of iron meteorites, IAB, is distinguished by the presence of diverse silicate inclusions. In principle, Rb-Sr and Sm-Nd radiometric dating of these silicate inclusions by internal isochron techniques can determine both the times of melting and parent/daughter ratios in the precursor materials via initial Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The Sr-87/Sr-86 and Nd-143/Nd-144 ratios could distinguish chondritic precursors from already differentiated silicates. We reported Rb-Sr and Sm-Nd internal ischron ages of 4.52+/-0.03 Ga and 4.50+/-0.04 Ga, respectively, for plagioclase-diopside-rich material in the Caddo County IAB iron meteorite. These results are essentially identical to literature values of its Ar-Ar age of 4.520+/-0.005 Ga and its Sm-Nd age of 4.53+/-0.02 Ga. The purpose of this study is to evaluate the formation and evolution of silicate inclusions in IAB iron meteorites by determination of their initial Sr-87/Sr-86 ratios combined with higher-resolution chronology and mineralogical and geochemical studies.

  13. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.« less

  14. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

  15. Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data

    USGS Publications Warehouse

    Frey, M.; Hunziker, J.C.; O'Neil, J.R.; Schwander, H.W.

    1976-01-01

    Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1-3.2) and 2 M or 3 T phengite (Si=3.3-3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ?? C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) 'Isotopic reversals' in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite 'Permian temperatures' implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant. The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite 'stewed in its own juices'. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures. ?? 1976 Springer-Verlag.

  16. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The Ediacaran granites are coeval with profuse granite magmatism attributed to continental arc magmatism in northern Ribeira and Araçuaí belts. However, their evolved compositions with low mg# and dominantly peraluminous character are unlike those of magmatic arc granites, and they are more likely products of post-collisional magmatism or correspond to an inner belt of crust-derived granites.

  17. Archaean lode gold deposits: the solute source problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrich, R.

    1985-01-01

    On a regional scale lode gold deposits typically occur throughout the entire spectrum of greenstone belt stratigraphy. In the Abitibi Belt lode deposits are sited at the base of the volcanic cycle (Noranda), at the boundary of two volcanic cycles (Timmins) and in the stratigraphically highest groups at Kirkland Lake and Bousquet. The gold deposits are preferentially disposed along major structures apparently demarking rift zones, where extension was accommodated by listric normal faults that subsequently acted as thrusts during compression. These major structures were also sites of emplacement of trondhjemite magmas, lamprophyres and potassic basalts. From previous work Abitibi Beltmore » volcanism spans 2725 to 2703 Ma, batholith emplacement 2675 to 2685 Ma (U-Pb on zircons), and the terminal Matachewan dyke swarm which transects all major structures is 2690 +/- 93 Ma. The lode deposits have age corrected /sup 87/Sr//sup 86/Sr initials of 0.7015 to 0.7025, as well as more radiogenic Pb and higher ..mu.. relative to contemporaneous mantle Sr and Pb isotope ratios. Tourmaline, scheelite, piemontite and apatites separated from 14 deposits all possess /sup 87/Sr//sup 86/Sr 0.7015 to 0.7025. These more radiogenic values contra-indicate a direct mantle source for Sr and Pb, but rather indicate that all mineralizing fluids carry contributions from a felsic crustal source having a significant production of Rb, U and Th radiogenic daughter nuclides as well as from komatiites and tholeiites. Gold, along with an array of lithophile elements including K, Rb, Pb, Li, Sr and CO/sub 2/ were distilled from this mixed source.« less

  18. Reaction of Rb and oxygen overlayers with single-crystalline Bi2Sr2CaCu2O8+δ superconductors

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-02-01

    Single crystals of Bi2Sr2CaCu2O8+δ superconductors, in situ cleaved and modified by Rb and oxygen overlayers, have been studied using ultraviolet and x-ray photoemission spectroscopy. The core-level results show that Rb strongly reacts with the Bi and O states, while the Cu and Sr states are left unchanged. This observation strongly indicates that the Bi-O plane forms the surface layer. Subsequent exposure to oxygen results in new oxygen states at the surface as monitored by the O 1s core-level data. For both Rb and oxygen overlayers the valence-band spectra are severely altered. In particular, new valence-band states, presumably of oxygen character, are formed.

  19. New igneous zircon Pb/Pb and metamorphic Rb/Sr ages in the Yaounde Group (Cameroon, Central Africa): implications for the Central African fold belt evolution close to the Congo Craton

    NASA Astrophysics Data System (ADS)

    Owona, Sébastien; Tichomirowa, Marion; Ratschbacher, Lothar; Ondoa, Joseph Mvondo; Youmen, Dieudonné; Pfänder, Jörg; Tchoua, Félix M.; Affaton, Pascal; Ekodeck, Georges Emmanuel

    2012-10-01

    Three meta-igneous bodies from the Yaounde Group have been analyzed for their petrography, geochemistry, and 207Pb/206Pb zircon ages. According to their geochemical patterns, they represent meta-diorites. The meta-plutonites yielded identical zircon ages with a mean of 624 ± 2 Ma interpreted as their intrusion age. This age is in agreement with previously published zircon ages of meta-diorites from the Yaounde Group. The meta-diorites derived mainly from crustal rocks with minor contribution from mantle material. The 87Rb/86Sr isochron ages of one meta-diorite sample and three meta-sedimentary host rocks are significantly younger than the obtained intrusion age. Therefore, they are not related to igneous processes. 87Rb/86Sr isochron ages differ from sample to sample (599 ± 3, 572 ± 4, 554 ± 5, 540 ± 5 Ma) yielding the oldest Neoproterozoic age (~600 Ma) for a paragneiss sample at a more northern location. The youngest Rb/Sr isochron age (~540 Ma) was obtained for a mica schist sample at a more southern location closer to the border of the Congo Craton. The 87Rb/86Sr whole rock-biotite ages are interpreted as cooling ages related to transpressional processes during exhumation. Therefore, several discrete metamorphic events related to the exhumation of the Yaounde Group were dated. It could be shown by Rb/Sr dating for the first time that these late tectonic processes occurred earlier at more distant northern locations of the Yaounde Group and lasted at least until early Cambrian (~540 Ma) more closely to the border of the Congo Craton.

  20. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  1. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.

    2012-03-01

    Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.

  2. Determination of (87)Sr/(86)Sr and δ(88/86)Sr ratios in plant materials using MC-ICP-MS.

    PubMed

    Liu, Hou-Chun; Chung, Chuan-Hsiung; You, Chen-Feng; Chiang, Yi-Hsuan

    2016-01-01

    A protocol for highly accurate and precise determination of Sr isotope ratios in plant materials, (87)Sr/(86)Sr and δ (88/86)Sr, by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is presented in this study. An Eichrom Sr resin was used for matrix separation and an improved Zr empirical external normalization coupled with standard-sample bracketing method (Zr EEN-SSB) was applied to mass bias correction during Sr isotope MC-ICP-MS measurements. Potential influences of matrix elements, and polyatomic and isobaric interferences on the Sr isotopic determination were further evaluated using NIST SRM 987 Sr isotopic standard spiked with various amount of Ca, Mg, and Rb contents. Concentrations of Ca and Mg lower than 30 ng g(-1) or Rb < 2 ng g(-1) in 150 ng g(-1) Sr analyte were estimated to have only a minor effect on Sr isotope ratios determination. On the other hand, intensity differences between sample and standards (IntSample/IntStandards) represented a large δ (88/86)Sr deviation of <0.9 or >1.3, reflecting the significance of intensity bias attributed to different mass bias behavior. An apple leaf material, NIST SRM 1515, was adopted as the plant material for overall evaluation of sample digestion, matrix separation, and potential spectral interferences on the measurements of Sr isotope ratios. Our results suggest that the partially remaining organic compounds in the incomplete digestion would have a significant bias on the extraction chromatography procedure, resulting in sizable uncertainty in δ (88/86)Sr ratios. Thus, complete digestion of the organic-enriched materials is of great importance for efficiency assurance in matrix separation. Extraction chromatography works well for the total digested samples, where Ca, Mg, and Rb were efficiently removed. The obtained average (87)Sr/(86)Sr and δ (88/86)Sr values for the NIST SRM 1515 apple leaves are 0.71398 ± 0.00004 and 0.23 ± 0.03‰ (2SD, n = 10), respectively.

  3. Stability of the 1144 phase in iron pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, B. Q.; Nguyen, Manh Cuong; Wang, C. Z.

    A series of iron arsenides (e.g., CaRbFe 4As 4, SrCsFe 4As 4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. Here in this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe 4As 4, EuRbFe 4As 4, EuCsFe 4As 4,more » CaCsFe 4P 4, SrCsFe 4P 4, BaCsFe 4P 4, InCaFe 4As 4, InSrFe 4As 4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba 0.5Cs 0.5Fe 2As 2, Ba 0.5 Rb 0.5Fe 2As 2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.« less

  4. Stability of the 1144 phase in iron pnictides

    DOE PAGES

    Song, B. Q.; Nguyen, Manh Cuong; Wang, C. Z.; ...

    2018-03-14

    A series of iron arsenides (e.g., CaRbFe 4As 4, SrCsFe 4As 4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. Here in this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe 4As 4, EuRbFe 4As 4, EuCsFe 4As 4,more » CaCsFe 4P 4, SrCsFe 4P 4, BaCsFe 4P 4, InCaFe 4As 4, InSrFe 4As 4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba 0.5Cs 0.5Fe 2As 2, Ba 0.5 Rb 0.5Fe 2As 2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.« less

  5. Stability of the 1144 phase in iron pnictides

    NASA Astrophysics Data System (ADS)

    Song, B. Q.; Nguyen, Manh Cuong; Wang, C. Z.; Ho, K. M.

    2018-03-01

    A series of iron arsenides (e.g., CaRbFe4As4 , SrCsFe4As4 ) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4 , EuRbFe4As4 , EuCsFe4As4 , CaCsFe4P4 , SrCsFe4P4 , BaCsFe4P4 , InCaFe4As4 , InSrFe4As4 , etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2 , Ba0.5Rb0.5Fe2As2 ) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δ a and Δ c , giving a bird's-eye view of stability of various 1144 compounds.

  6. Constraints on the Composition and Evolution of the Lunar Crust from Meteorite NWA 3163

    NASA Technical Reports Server (NTRS)

    McLeod, C. L.; Brandon, A. D.; Fernandes, V. A.; Peslier, A. H.; Lapen, T. J.; Irving, A. J.

    2013-01-01

    The lunar meteorite NWA 3163 (paired with NWA 4881, 4483) is a ferroan, feldspathic granulitic breccia characterized by pigeonite, augite, olivine, maskelynite and accessory Tichromite, ilmenite and troilite. Bulk rock geochemical signatures indicate the lack of a KREEP- derived component (Eu/Eu* = 3.47), consistent with previously studied lunar granulites and anorthosites. Bulk rock chondrite-normalized signatures are however distinct from the anorthosites and granulites sampled by Apollo missions and are relatively REE-depleted. In-situ analyses of maskelynite reveal little variation in anorthite content (average An% is 96.9 +/- 1.6, 2 sigma). Olivine is relatively ferroan and exhibits very little variation in forsterite content with mean Fo% of 57.7 +/- 2.0 (2 sigma). The majority of pyroxene is low-Ca pigeonite (En57Fs33Wo10). Augite (En46Fs21Wo33) is less common, comprising approximately 10% of analyzed pyroxene. Two pyroxene thermometry on co-existing orthopyroxene and augite yield an equilibrium temperature of 1070C which is in reasonable agreement with temperatures of 1096C estimated from pigeonite compositions. Rb-Sr isotopic systematics of separated fractions yield an average measured Sr-87/Sr-87 of 0.699282+/-0.000007 (2 sigma). Sr model ages are calculated using a modern day Sr-87/Sr-86 Basaltic Achondrite Best Initial (BABI) value of 0.70475, from an initial BABI value Sr-87/Sr-86 of 0.69891 and a corresponding Rb-87/Sr-97 of 0.08716. The Sr model Thermomechanical analysis (TMA) age, which represents the time of separation of a melt from a source reservoir having chondritic evolution, is 4.56+/-0.1 Ga. A Sr model T(sub RD) age, which is a Rb depletion age and assumes no contribution from Rb in the sample in the calculation, yields 4.34+/-0.1 Ga (i.e. a minimum age). The Ar-Ar dating of paired meteorite NWA 4881 reveals an age of c. 2 Ga, likely representing the last thermal event this meteorite experienced. An older Ar-40/Ar-39 age of c. 3.5 Ga may record the thermal event which produced the granulitic texture. Additional chronological constraints will be provided by Sm-Nd systematics. Ferroan Anorthosites like NWA 3163 have been interpreted to represent direct lunar magma ocean (LMO) crystallization products. If this is the case, trace element concentrations in NWA 3163 primary mineral phases should be in equilibrium with residual LMO liquids present during crystallization of those phases. Results from petrogenetic modeling suggest that the NWA 3163 protolith did not form from crystallization of an initially LREE depleted LMO but rather require an initially chondritic LMO with early garnet crystallization. Furthermore, a two-stage crystallization model where plagioclase crystalized prior to pyroxene (93% vs. 99.5% of LMO crystallization) is implied.

  7. Isotopic and Chemical Evidence for Primitive Aqueous Alteration in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Sakuma, Keisuke; Hidaka, Hiroshi; Yoneda, Shigekazu

    2018-01-01

    Aqueous alteration is one of the primitive activities that occurred on meteorite parent bodies in the early solar system. The Tagish Lake meteorite is known to show an intense parent body aqueous alteration signature. In this study, quantitative analyses of the alkaline elements and isotopic analyses of Sr and Ba from acid leachates of TL (C2-ungrouped) were performed to investigate effects of aqueous alteration. The main purpose of this study is to search for isotopic evidence of extinct 135Cs from the Ba isotopic analyses in the chemical separates from the Tagish Lake meteorite. Barium isotopic data from the leachates show variable 135Ba isotopic anomalies (ε = ‑2.6 ∼ +3.6) which correlatewith 137Ba and 138Ba suggesting a heterogeneous distribution of s- and r-rich nucleosynthetic components in the early solar system. The 87Rb–87Sr and 135Cs–135Ba decay systems on TL in this study do not provide any chronological information. The disturbance of the TL chronometers is likely a reflection of the selective dissolution of Cs and Rb given the relatively higher mobility of Cs and Rb compared to Ba and Sr, respectively, during fluid mineral interactions.

  8. The evolution of a calc-alkaline basic to silicic magma system: Geochemical and Rb-Sr, Sm-Nd, and 18O /16O isotopic evidence from the Late Hercynian Atesina-Cima d'Asta volcano-plutonic complex, northern Italy

    NASA Astrophysics Data System (ADS)

    Barth, Susanne; Oberli, Felix; Meier, Martin; Blattner, Peter; Bargossi, Giuseppe M.; Di Battistini, Gianfranco

    1993-09-01

    Geochemical and Sr-Nd-O isotopic data presented for basaltic andesitic to rhyolitic and for quartz noritic to monzogranitic rock suites from the Late Hercynian calc-alkaline Atesina volcanic complex (AVC) and the Cima d'Asta pluton (CAP), Southern Alps (northern Italy), provide information on both the primary magmatic processes and the effects of (mainly Triassic) hydrothermal overprint. Fluid infiltration led to mobilization of major and trace elements (K 2O, Na 2O, CaO, Rb, Sr, and Ba), opensystem behavior in total-rock Rb-Sr, and shift in δ18O to elevated values (total rock up to 16.6%. and volcanic matrix up to 17.8%.). Oxygen isotopic disequilibrium between quartz-feldspar pairs suggests water-rock interaction at medium/low temperatures. The δ18O values of quartz, the REE characterized by regular LREE enrichment/HREE depletion, and the Sm-Nd isotopic signatures, however, remained virtually unaffected by secondary processes. The initial ɛNd values (at 270 Ma) of the AVC and CAP magmatites are restricted to overlapping ranges of -3.6 to -6.5 and of -2.7 to -6.5, respectively, indicating significant crustal contribution; these values and associated T DM model ages of 1.1-1.6 Ga agree well with those of typical South Alpine lower crustal magmatites. The AVC and CAP rocks do not follow the "normal" trend of increasingly crustal Nd isotopic signatures with progressive degree of magma evolution expected for a single-stage AFC-type process, but instead display an inversion of this relationship. Geochemical and isotopic constraints favor a model of a large-scale MASH-type melting and mixing zone at or near the base of the continental crust. Distinct elemental enrichment/depletion and REE crossover patterns displayed by high-silica as compared to less silicic AVC rhyolites suggest subsequent magma evolution within a shallow-level compositionally zoned chamber.

  9. Textural and Rb-Sr isotopic evidence for late Paleozoic mylonitization within the Honey Hill fault zone southeastern Connecticut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, K.D.; Gromet, L.P.

    A petrographic and Rb-Sr isotopic study of rocks within and near the Honey Hill fault zone places important constraints on its history of movement. Rb-Sr apparent ages for micas and plagioclase from these rocks have been reset and range from Permian to Triassic, considerably younger than the minimum stratigraphic age (Ordovician) of the rocks studied or of Acadian (Devonian) regional metamorphism. Permian Rb-Sr ages of dynamically recrystallized muscovite date the development of mylonite fabric. An older age is precluded by the excellent preservation of unrecovered quartz, which indicates that these rocks did not experience temperatures high enough to anneal quartzmore » or thermally reset Rb-Sr isotopic systems in muscovite since the time of mylonitization. Metamorphic mineral assemblages and mineral apparent ages in rocks north of the fault zone indicate recrystallization under similar upper greenschist-lower amphibolite grade conditions during Permian to Triassic time. Collectively these results indicate that the Honey Hill fault zone was active during the Late Paleozoic and that ductile deformation and metamorphism associated with the Alleghanian orogeny extend well into southern Connecticut. An Alleghanian age for mylonitization within the Honey Hill fault zone suggests it should be considered as a possible site for the major Late Paleozoic strike-slip displacements inferred from paleomagnetic studies for parts of coastal New England and maritime Canada.« less

  10. Rb-Sr and Sm-Nd Isotopic Studies of Martian Depleted Shergottes SaU 094/005

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2007-01-01

    Sayh al Uhaymir (SaU) 094 and SaU 005 are olivine-phyric shergottites from the Oman desert and are considered as pairs. [e.g., 1]. They are very similar to the Libyan desert shergottite Dar al Gani (DaG) 476 in petrology, chemistry and ejection age [2-6]. This group of shergottites, also recognized as depleted shergottites [e.g. 7] has been strongly shocked and contains very low abundances of light rare earth elements (REE). In addition, terrestrial contaminants are commonly present in meteorites found in desert environments. Age-dating these samples is very challenging, but lower calcite contents in the SaU meteorites suggest that they have been subjected to less severe desert weathering than their DaG counterparts [3-4]. In this report, we present Rb-Sr and Sm-Nd isotopic results for SaU 094 and SaU 005, discuss the correlation of their ages with those of other similar shergottites, and discuss their petrogenesis.

  11. PIXE analysis of ancient Chinese Changsha porcelain

    NASA Astrophysics Data System (ADS)

    Lin, E. K.; Yu, Y. C.; Wang, C. W.; Liu, T. Y.; Wu, C. M.; Chen, K. M.; Lin, S. S.

    1999-04-01

    In this work, proton induced X-ray emission (PIXE) method was applied for the analysis of ancient Chinese Changsha porcelain produced in the Tang dynasty (AD 618-907). A collection of glazed potsherds was obtained in the complex of the famous kiln site at Tongguan, Changsha city, Hunan province. Studies of elemental composition were carried out on ten selected Changsha potsherds. Minor and trace elements such as Ti, Mn, Fe, Co, Cu, Rb, Sr, and Zr in the material of the porcelain glaze were determined. Variation of these elements from sample to sample was investigated. Details of results are presented and discussed.

  12. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2016-10-01

    Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.

  13. Age and character of basaltic rocks of the Yucca Mountain region, southern Nevada

    USGS Publications Warehouse

    Fleck, R.J.; Turrin, B.D.; Sawyer, D.A.; Warren, R.G.; Champion, D.E.; Hudson, M.R.; Minor, S.A.

    1996-01-01

    Volcanism in the Yucca Mountain region of southern Nevada in the last 5 m.y. is restricted to moderate-to-small volumes of subalkaline basaltic magmas, produced during at least 6 intervals, and spanning an age range from 4.6 Ma to about 125 ka. Where paleomagnetic evidence is available, the period of volcanism at individual eruptive centers apparently was geologically short-lived, even where multiple eruptions involved different magma types. K-Ar studies are consistent with most other geochronologic information, such as the minimum ages of exposure-dating techniques, and show no evidence of renewed volcanism after a significant quiescence at any of the centers in the Yucca Mountain region. A volcanic recurrence interval of 860 ?? 350 kyr is computed from a large K-Ar data set and an evaluation of their uncertainties. Monte Carlo error propagations demonstrate the validity of uncertainties obtained for weighted-mean ages when modified using the goodness of fit parameter, MSWD. Elevated 87Sr/86Sr initial ratios (Sri) in the basalts, nearly constant at 0.707, combined with low SiO2 and Rb/Sr ratios indicate a subcontinental, lithospheric mantle source, previously enriched in radiogenic Sr and depleted in Rb. Beginning with eruptions of the most voluminous eruptive center, the newly dated Pliocene Thirsty Mountain volcano, basaltic magmas have decreased in eruptive volume, plagioclase-phenocryst content, various trace element ratios, and TiO2, while increasing in light rare earth elements, U, Th, P2O5, and light REE/heavy REE ratios. These time-correlated changes are consistent with either increasing depths of melting or a decreasing thermal gradient in the Yucca Mountain region during the last 5 m.y.

  14. Monitoring of trace element atmospheric deposition using dry and wet moss bags: accumulation capacity versus exposure time.

    PubMed

    Anicić, M; Tomasević, M; Tasić, M; Rajsić, S; Popović, A; Frontasyeva, M V; Lierhagen, S; Steinnes, E

    2009-11-15

    To clarify the peculiarities of trace element accumulation in moss bags technique (active biomonitoring), samples of the moss Sphagnum girgensohnii Rusow were exposed in bags with and without irrigation for 15 days up to 5 months consequently in the semi-urban area of Belgrade (Serbia) starting from July 2007. The accumulation capacity for 49 elements determined by ICP-MS in wet and dry moss bags was compared. The concentration of some elements, i.e. Al, V, Cr, Fe, Zn, As, Se, Sr, Pb, and Sm increased continuously with exposure time in both dry and wet moss bags, whereas concentration of Na, Cl, K, Mn, Rb, Cs, and Ta decreased. Irrigation of moss resulted in a higher accumulation capacity for most of the elements, especially for Cr, Zn, As, Se, Br, and Sr. Principal component analysis was performed on the datasets of element concentrations in wet and dry moss bags for source identification. Results of the factor analysis were similar but not identical in the two cases due to possible differences in element accumulation mechanisms.

  15. Ar-Ar and Rb-Sr Ages of the Tissint Olivine-phyric Martian Shergottite

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Nyquist, L. E.; Shih, C.-Y.; Turin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Agee, C.

    2013-01-01

    The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (approximately 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 plus or minus 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 plus or minus 86 Ma and 616 plus or minus 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 plus or minus 0.15 Ma based on 10Be [4], and 1.0-1.1 Ma, based on 3He, 21Ne, and 38Ar [5,6].We report Ar-Ar ages and Rb-Sr data.

  16. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions.

    PubMed

    Falandysz, J; Kunito, T; Kubota, R; Bielawski, L; Frankowska, A; Falandysz, Justyna J; Tanabe, S

    2008-12-01

    Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.

  17. Trace Elements in Water, Sediments and the Elongate Tigerfish Hydrocynus forskahlii (Cuvier 1819) from Lake Turkana, Kenya Including a Comprehensive Health Risk Analysis.

    PubMed

    Otachi, Elick O; Plessl, Christof; Körner, Wilfried; Avenant-Oldewage, Annemariè; Jirsa, Franz

    2015-09-01

    This study presents the distribution of 17 major and trace elements in surface water, sediments and fish tissues from Lake Turkana, Kenya. Eight sediment and ten water samples from the west bank of the lake, as well as 34 specimens of the elongate tigerfish Hydrocynus forskahlii caught in that region were examined. It is the first report for Li, Rb, Sr, Mo from the lake and the first report on most of the trace elements for this fish species. The concentrations of elements in the water and sediments showed no sign of pollution. In fish muscle, Li, Zn and Cd showed relatively high abundances, with mean concentrations of 206, 427 and 0.56 mg/kg dw, respectively. The calculated target hazard quotient values for Li, Zn, Sr and Cd were 138.7, 1.9, 4.1 and 0.76, respectively; therefore the consumption of these fish poses a health risk to humans in the area.

  18. Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Leitão, R. G.; Palumbo, A.; Souza, P. A. V. R.; Pereira, G. R.; Canellas, C. G. L.; Anjos, M. J.; Nasciutti, L. E.; Lopes, R. T.

    2014-02-01

    Prostate cancer (PCa) currently represents the second most prevalent malignant neoplasia in men, representing 21% of all cancer cases. Benign Prostate Hyperplasia (BPH) is an illness prevailing in men above the age of 50, close to 90% after the age of 80. The prostate presents a high zinc concentration, about 10-fold higher than any other body tissue. In this work, samples of human prostate tissues with cancer, BPH and normal tissue were analyzed utilizing total reflection X-ray fluorescence spectroscopy using synchrotron radiation technique (SR-TXRF) to investigate the differences in the elemental concentrations in these tissues. SR-TXRF analyses were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo. It was possible to determine the concentrations of the following elements: P, S, K, Ca, Fe, Cu, Zn and Rb. By using Mann-Whitney U test it was observed that almost all elements presented concentrations with significant differences (α=0.05) between the groups studied.

  19. Development of the chromatographic partitioning of cesium and strontium utilizing two macroporous silica-based calix[4]arene-crown and amide impregnated polymeric composites: PREC partitioning process.

    PubMed

    Zhang, Anyun; Kuraoka, Etsushu; Kumagai, Mikio

    2007-07-20

    To partition effectively Cs(I) and Sr(II), two harmful heat emitting nuclides, from a highly active liquid waste by extraction chromatography, two kinds of macroporous silica-based polymeric materials, Calix[4]arene-R14/SiO(2)-P and TODGA/SiO(2)-P, were synthesized. Two chelating agents, 1,3-[(2,4-diethyl-heptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14), an excellent supramolecular compound having molecular recognition ability for Cs(I), and N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) were impregnated and immobilized into the pores of SiO(2)-P particles support by a vacuum sucking technique. The loading and elution of 11 typical simulated fission and non-fission products from 4.0M or 2.0M HNO(3) were performed at 298K. It was found that in the first column packed with the Calix[4]arene-R14/SiO(2)-P, all of the simulated elements were separated effectively into two groups: (1) Na(I), K(I), Sr(II), Fe(III), Ba(II), Ru(III), Pd(II), Zr(IV), and Mo(VI) (noted as Sr-group); (2) Cs(I)-Rb(I) (Cs-group) by eluting with 4.0M HNO(3) and distilled water, respectively. The harmful element Cs(I) flowed into the second group along with Rb(I) because of their close sorption and elution properties towards Calix[4]arene-R14/SiO(2)-P, while Sr(II) showed no sorption and flowed into Sr-containing group. In the second column packed with TODGA/SiO(2)-P, the Sr-group was separated into (1) Ba(II), Ru(III), Na(I), K(I), Fe(III), and Mo(VI) (non-sorption group); (2) Sr(II); (3) Pd(II); and (4) Zr(IV) by eluting with 2.0M HNO(3), 0.01M HNO(3), 0.05M DTPA-pH 2.5, and 0.5M H(2)C(2)O(4), respectively. Sr(II) adsorbed towards TODGA/SiO(2)-P flowed into the second group and showed the excellent separation efficiency from others. Based on the elution behavior of the tested elements, an advanced PREC (Partitioning and Recovery of two heat generators from an acidic HLW (high activity liquid waste) by Extraction Chromatography) process was proposed.

  20. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    USGS Publications Warehouse

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W.W.; Miller, T.P.

    1989-01-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16–37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121–0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15–25), moderate δ18O (+8.3 to +8.6), high SIR (0.708–0.712), and moderate NIR (0.5121–0.5122). These rocks may be the product of interaction of magma derived from old continental mantle and magma derived from old continental crust. Plutons between eastern and western extremes show completely gradational variations in the concentration of K and Rb and in the isotopic compositions of Sr, Nd, and O. These plutons probably originated either by melting in a mixed source composed of a Paleozoic or older continental section (mantle + crust) overlain by Mesozoic mafic arc rocks, or by mixing of ultrapotassic to potassic magmas from continental sources (mantle + crust), and tonalitic magmas from arc sources. We infer from these results that the northwest portion of Yukon-Koyukuk basin is underlain by a substantial continental basement of Paleozoic or greater age. This basement probably thins out to the east. There is no geochemical evidence for continental basement east of about longitude 157°, or along a belt of at least 50 km width flanking Ruby Geanticline as far to the southwest as about longitude 161°. These areas are probably underlain by oceanic and Mesozoic arc rocks.

  1. Geochemical and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent Geochemical Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)

    NASA Astrophysics Data System (ADS)

    Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.

    2012-12-01

    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.

  2. Rb-Sr age of the Shergotty achondrite and implications for metamorphic resetting of isochron ages

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Bogard, D. D.; Wooden, J.; Bansal, B.; Wiesmann, H.; Mckay, G.

    1979-01-01

    The age of the Shergotty achondrite is determined by Rb-Sr isotope analysis and the metamorphic resetting of isochron ages, which is presumed to have occurred during a shock event in the history of the meteorite, is discussed. The isochron best fitting the Rb-Sr evolution diagram is found to correspond to an age of 165 million years, with an initial Sr-87/Sr-86 value of 0.72260. Different apparent ages obtained by the K-Ar and Sm-Nd methods are interpreted in terms of a model which quantifies the degree of resetting of internal isochron ages by low temperature solid state diffusion. On the basis of these considerations, it is concluded that Shergotty crystallized from a melt 650 million years ago, was shock heated to 300 to 400 C after its parent body was involved in a collision 165 million years ago, and was first exposed to cosmic rays two million years ago.

  3. Geochemical aspects of some Japanese lavas.

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Martin, W.; Schnetzler, C. C.

    1971-01-01

    K, Rb, Sr, Ba and rare-earth concentrations in some Japanese lavas have been determined by mass-spectrometric stable-isotope dilution. The samples fall into three rare-earth groups corresponding to tholeiitic, high alumina and alkali basalts. Japanese tholeiites have trace element characteristics similar to those of oceanic ridge tholeiites except for distinctly higher relative concentrations of Ba. Japanese lavas may result from various degrees of partial fusion of amphibole eclogite.

  4. Dating the Martian meteorite Zagami by the ⁸⁷Rb-⁸⁷Sr isochron method with a prototype in situ resonance ionization mass spectrometer.

    PubMed

    Anderson, F Scott; Levine, Jonathan; Whitaker, Tom J

    2015-01-30

    The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ~270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ~1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. We demonstrate the first use of laser ablation resonance ionization mass spectrometry for (87)Rb-(87)Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. To test whether we could meaningfully date planetary materials, we have analyzed a piece of the Martian meteorite Zagami. In each of four separate measurements we obtained (87)Rb-(87)Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an (87)Rb-(87)Sr age for this specimen of 360 ±90 Ma. Our analyses of the Zagami meteorite represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd.

  5. Dating the Martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer

    PubMed Central

    Scott Anderson, F; Levine, Jonathan; Whitaker, Tom J

    2015-01-01

    RATIONALE The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ∼270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ∼1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. METHODS We demonstrate the first use of laser ablation resonance ionization mass spectrometry for 87Rb-87Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. RESULTS To test whether we could meaningfully date planetary materials, we have analyzed a piece of the Martian meteorite Zagami. In each of four separate measurements we obtained 87Rb-87Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an 87Rb-87Sr age for this specimen of 360 ±90 Ma. CONCLUSIONS Our analyses of the Zagami meteorite represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:25641494

  6. Total reflection X-ray fluorescence spectrometric determination of elements in water hyacinth from the Lerma River

    NASA Astrophysics Data System (ADS)

    Tejeda, S.; Zarazúa, G.; Ávila-Pérez, P.; Carapia-Morales, L.; Martínez, T.

    2010-06-01

    The Lerma River is one of the most polluted body water in Mexico. For this reason, only the highly resistant organisms such as water hyacinth are able to reproduce in this river. The aim of this work was to evaluate the concentration of K, S, Fe, Ca, Mn, Ti, Zn, Sr, Rb, Cu, Cr, Ni, Pb and Br in roots of water hyacinth ( Eichhornia crassipes) from the Lerma River. The samples were collected from five sites in the river and analyzed in triplicate using a TXRF Spectrometer 'TX-2000 Ital Structures' with a Si(Li) detector and a resolution of 140 eV (FWHM) at Mn Kα. A Mo tube (40 kV, 30 mA) with 17.4 KeV excitation energy was used for a counting time of 500 s. Results show that the average metal concentration in the water hyacinth roots decrease in the following order: K (9698.2 µg/g) > S (7593.3 µg/g) > Fe (4406.6 µg/g) > Ca (2601.8 µg/g) > Mn (604.2 µg/g) > Ti (230.7 µg/g) > Zn (51.65 µg/g) > Sr (43.55 µg/g) > Rb (18.61 µg/g) > Cu (12.78 µg/g) > Cr (6.45 µg/g) > Ni (4.68 µg/g) > Pb (4.32 µg/g) > Br (4.31 µg/g) and the bioconcentration factors in the water hyacinth decrease in the sequence: Ti > Fe > Mn > Cu > Ni > Zn > S > Pb > Rb > K > Cr > Sr > Br > Ca. The concentrations in roots of water hyacinth reflect the high pollution level of the river.

  7. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation

    PubMed Central

    Carlson, Richard W.; Borg, Lars E.; Gaffney, Amy M.; Boyet, Maud

    2014-01-01

    New Rb-Sr, 146,147Sm-142,143Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, 147Sm-143Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial 146Sm/144Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for 146Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd—142Nd/144Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. PMID:25114305

  8. (86)Y production via (86)Sr(p,n) for PET imaging at a cyclotron.

    PubMed

    Sadeghi, M; Aboudzadeh, M; Zali, A; Zeinali, B

    2009-01-01

    Excitation functions of (86)Y production via (86)Sr(p,xn), (86)Sr(d,xn), (85)Rb(alpha,xn), (85)Rb((3)He,xn), and (nat)Zr(d,alphaxn) reactions were studied by means of ALICE-ASH code and the results were compared with ALICE-91 code and experimental data. The greatest nuclear reaction of cyclotron (86)Y production was found out as (86)Sr(p,n)(86)Y process. (86)Y production yield was calculated too. A SrCO(3) thick film was deposited on a copper substrate by sedimentation method. The deposited (nat)SrCO(3) was irradiated with 15MeV proton at 30microA current beam. The separation of Y from Cu and Sr was carried out by means of dual ion exchange chromatography.

  9. Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy)

    USGS Publications Warehouse

    Somma, R.; Ayuso, R.A.; de Vivo, B.; Rolandi, G.

    2001-01-01

    Major, trace element and isotopic (Sr, Nd, Pb) data are reported for representative samples of interplinian (Protohistoric, Ancient Historic and Medieval Formations) activity of Mt. Somma-Vesuvius volcano during the last 3500 years. Tephra and lavas exhibit significant major, trace element and isotopic variations. Integration of these data with those obtained by previous studies on the older Somma suites and on the latest activity, allows to better trace a complete petrological and geochemical evolution of the Mt. Somma-Vesuvius magmatism. Three main groups of rocks are recognized. A first group is older than 12.000 yrs, and includes effusive-explosive activity of Mt. Somma. The second group (8000-2700 yrs B.P.) includes the products emitted by the Ottaviano (8000 yrs. B.P.) and Avellino (3550 yrs B.P.) plinian eruptions and the interplinian activity associated with the Protohistoric Formation. Ancient Historic Formation (79-472 A.D.), Medieval Formation (472-1139 A.D.) and Recent interplinian activity (1631-1944 A.D.) belong to the third group of activity (79-1944 A.D.). The three groups of rocks display distinct positive trends of alkalis vs. silica, which become increasingly steeper with age. In the first group there is an increase in silica and alkalis with time, whereas an opposite tendency is observed in the two younger groups. Systematic variations are also evident among the incompatible (Pb, Zr, Hf, Ta, Th, U, Nb, Rb, Cs, Ba) and compatible elements (Sr, Co, Cr). REE document variable degrees of fractionation, with recent activity displaying higher La/Yb ratios than Medieval and Ancient Historic products with the same degree of evolution. N-MORB normalized multi-element diagrams for interplinian rocks show enrichment in Rb, Th, Nb, Zr and Sm (> *10 N-MORB). Sr isotope ratios are variable, with Protohistoric rocks displaying 87Sr/86Sr= 0.70711-0.70810, Ancient Historic 87Sr/86Sr=0.70665-0.70729, and Medieval 87Sr/86Sr=0.70685-0.70803. Neodymium isotopic compositions in the interplinian rocks show a tendency to become slightly more radiogenic with age, from the Protohistoric (143Nd/144Nd=0.51240-0.51247) to Ancient Historic (143Nd/144Nd=0.51245-0.51251). Medieval interplinian activity (143Nd/144Nd: 0.51250-0.51241) lacks meaningful internal trends. All the interplinian rocks have virtually homogeneous compositions of 207Pb/204Pb and 208Pb/204Pb in acid-leached residues (207Pb/204Pb ???15.633 to 15.687, 208Pb/204Pb ???38.947 to 39.181). Values of 206Pb/204Pb are very distinctive, however, and discriminate among the three interplinian cycles of activity (Protohistoric: 18.929-18.971, Ancient Historic: 19.018-19.088, Medieval: 18.964-19.053). Compositional trends of major, trace element and isotopic compositions clearly demonstrate strong temporal variations of the magma types feeding the Somma-Vesuvius activity. These different trends are unlikely to be related only to low pressure evolutionary processes, and reveal variations of parental melt composition. Geochemical data suggest a three component mixing scheme for the interplinian activity. These involve HIMU-type and DMM-type mantle and Calabrian-type lower crust. Interaction between these components has taken place in the source; however, additional quantitative constraints must be acquired in order to better discriminate between magma characteristics inherited from the sources and those acquired during shallow level evolution.

  10. Sm-Nd and Rb-Sr Ages for MIL 05035: Implications for Surface and Mantle Sources

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.

    2007-01-01

    The Sm-Nd and Rb-Sr ages and also the initial Nd and Sr isotopic compositions of MIL 05035 are the same as those of A-881757. Comparing the radiometric ages of these meteorites to lunar surface ages as modeled from crater size-frequency distributions as well as the TiO2 abundances and initial Sr-isotopic compositions of other basalts places their likely place of origin as within the Australe or Humboldtianum basins. If so, a fundamental west-east lunar asymmetry in compositional and isotopic parameters that likely is due to the PKT is implied.

  11. Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio.

    PubMed

    Kaya, Ayse D; Bruno de Sousa, Raúl; Curvelo-Garcia, António S; Ricardo-da-Silva, Jorge M; Catarino, Sofia

    2017-06-14

    The evolution of mineral composition and wine strontium isotopic ratio 87 Sr/ 86 Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87 Sr/ 86 Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87 Sr/ 86 Sr, not precluding the use of this parameter for wine traceability purposes.

  12. The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis.

    PubMed

    Zaichick, Sofia; Zaichick, Vladimir

    2010-01-01

    To understand the role of major, minor, and trace elements in the etiology of bone diseases including osteoporosis, it is necessary to determine the normal levels and age-related changes of bone chemical elements. The effect of age and gender on 38 chemical element contents in intact iliac crest of 84 apparently healthy 15-55 years old women (n=38) and men (n=46) was investigated by neutron activation analysis. Mean values (M+/-SEM) for mass fraction (on dry weight basis) of Ca, Cl, Co, Fe, K, Mg, Mn, Na, P, Rb, Sr, and Zn for both female and male taken together were Ca - 169+/-3g/kg, Cl - 1490+/-43 mg/kg, Co - 0.0073+/-0.0024 mg/kg, Fe - 177+/-24 mg/kg, K - 1820+/-79 mg/kg, Mg - 1840+/-48 mg/kg, Mn - 0.316+/-0.013 mg/kg, Na - 4970+/-87 mg/kg, P - 79.7+/-1.5 g/kg, Rb - 1.89+/-0.22 mg/kg, Sr - 312+/-15 mg/kg, and Zn - 65.9+/-3.4 mg/kg, respectively. The upper limit of mean contents of Cs, Eu, Hg, Sb, Sc, and Se were Cs < or = 0.09 mg/kg, Eu < or = 0.005 mg/kg, Hg < or = 0.005 mg/kg, Sb < or = 0.004 mg/kg, Sc < or = 0.001 mg/kg, and Se < or = 0.1mg/kg, respectively. In all bone samples the contents of Ag, As, Au, Ba, Br, Cd, Ce, Cr, Gd, Hf, La, Lu, Nd, Sm, Ta, Tb, Th, U, Yb, and Zr were under detection limits. The Ca, Mg, and P contents decrease with age, regardless of gender. Higher Ca, Mg, P, and Sr mass fractions as well as lower Fe content are typical of female iliac crest as compared to those in male bone. Copyright 2009 Elsevier GmbH. All rights reserved.

  13. Ultra-Sensitive Elemental Analysis Using Plasmas 7.Application to Criminal Investigation

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro

    This paper describes the application of trace elemental analysis using ICP-AES and ICP-MS to criminal investigation. The comparison of trace elements, such as Rb, Sr, Zr, and so on, is effective for the forensic discrimination of glass fragments, which can be important physical evidence for connecting a suspect to a crime scene or to a victim. This procedure can be applied also to lead shotgun pellets by the removal of matrix lead as the sulfate precipitate after the dissolution of a pellet sample. The determination of a toxic element in bio-logical samples is required to prove that a victim ingested this element. Arsenous acids produced in Japan, China, Germany and Switzerland show characteristic patterns of trace elements characteristic to each country.

  14. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  15. Geochemical evolution of Kohala Volcano, Hawaii

    USGS Publications Warehouse

    Lanphere, M.A.; Frey, F.A.

    1987-01-01

    Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source. ?? 1987 Springer-Verlag.

  16. Neodymium, strontium and chromium isotopic studies of the LEW86010 and Angra dos Reis meteorites and the chronology of the angrite parent body

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Bansal, B.; Wiesmann, H.; Shih, C.-Y.

    1994-01-01

    Neodymium, stontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain approximately 8% of its Sm and Nd inventory. A conventional Sm-147-Nd-143 isochron yielded an age of 4.53 +/- 0.04 Ga (2 sigma and Epsilon(sub Nd sup 143)) = 0.45 +/- 1.1. An Sm-146-Nd-142 isochron gives initial Sm-146/Sm-144 = 0.0076 +/- 0.0009 and Epsilon (sub Nd sup 142) = -2.5 +/- 0.4. The Rb-Sr analyses give initial Sr-87/Sr-86 Iota(sub Sr sup 87) = 0.698972 +/- 8 and 0.698970 +/- 18 for LEW and ADOR, respectively, relative to Sr-87/Sr-86 = 0.71025 for NBS987. The difference, Delta Iota(sub Sr Sup 87), between Iota (sub sr sup 87) for the angrites and literature values for Allende CAIs, corresponds to approximately Ma of growth in a solar nebula with a CI chondrite value of Rb-87/Sr-86 = 0.91, or approximately 5 Ma in a nebula with solar photospheric Rb-87/Sr-86 = 1.51. Excess Cr-53 from extinct Mn-53(t(sub 1/2) = 3.7 Ma)in LEW86010 corresponds to initial Mn-53/Mn-55 = 4.4 +/- 1.0 x 10(exp -5) for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The Sm-146/Sm-144 value found for LEW86010 corresponds to solar system initial (Sm-146/Sm-144) = 0.0080 +/- 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 +/- 0.0009 for crystallation 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated 'chondritic' parent body formed from the solar nebula approximately Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, approximately 2.6 Ma after the CAIs, to satisfy the Sr and CR isotopic systematics.

  17. New Rb-Sr mineral ages temporally link plume events with accretion at the margin of Gondwana

    USGS Publications Warehouse

    Flowerdew, M.J.; Daly, J.S.; Riley, T.R.

    2007-01-01

    Five of six Rb-Sr muscovite mineral isochron ages from the Scotia Metamorphic Complex of the South Orkney Islands, West Antarctica, average 190 ± 4 Ma. The muscovite ages are interpreted to date foliation-formation and thus also accretion and subduction at the Gondwana margin. Coincident picrite and ferropicrite magmatism, indicative of melts from deep-seated depleted mantle, permits a causative link between accretion and the arrival of the Karoo – Ferrar – Chon Aike mantle plume in the Early Jurassic. Three biotite Rb-Sr mineral isochron ages are consistently younger and average 176 ± 5 Ma. The biotite ages may record post-metamorphic cooling or more likely retrogressive metamorphic effects during uplift.

  18. Using of Synchrotron radiation for study of multielement composition of the small mammals diet and tissues

    NASA Astrophysics Data System (ADS)

    Bezel, V. S.; Koutzenogii, K. P.; Mukhacheva, S. V.; Chankina, O. V.; Savchenko, T. I.

    2007-05-01

    The Synchrotron radiation X-ray Fluorescence analysis (SRXRF) was used for estimation of "geochemical selection" of elements by small mammals, which belong to different trophic groups and inhabit polluted and background areas (the Middle Ural). The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Cd, Pb in the diet and into hepar of a herbivorous ( bank vole) and carnivorous ( Laxmann's shrew) small mammals were compared. Herbivores play a particular role in chemical elements translocation between trophic levels, limiting element transition to consumers of the consequent levels. Whereas, insectivores concentrate most elements in their tissues under the same conditions.

  19. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  20. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Klein, R.; Adler, A.; Beanlands, R. S.; de Kemp, R. A.

    2007-02-01

    A rubidium-82 (82Rb) elution system is described for use with positron emission tomography. Due to the short half-life of 82Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a 82Sr/82Rb generator and a bypass line to achieve a constant-activity elution of 82Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The 82Rb elution system produces accurate and reproducible constant-activity elution profiles of 82Rb activity, independent of parent 82Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using 82Rb.

  1. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; Dekemp, R A

    2007-02-07

    A rubidium-82 ((82)Rb) elution system is described for use with positron emission tomography. Due to the short half-life of (82)Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a (82)Sr/(82)Rb generator and a bypass line to achieve a constant-activity elution of (82)Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The (82)Rb elution system produces accurate and reproducible constant-activity elution profiles of (82)Rb activity, independent of parent (82)Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using (82)Rb.

  2. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    NASA Astrophysics Data System (ADS)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope compositions of the fault rock, clasts and hanging wall indicate interaction with a seawater-derived hydrothermal fluid during oceanic spreading at an ancient mid-ocean ridge. The considerable elemental mass changes in the fault rocks and surrounds compared to the primary layered gabbros suggests extensive hydrothermal fluid flow and exchange deep within the ocean crust.

  3. Effect of thermal maturation on the K-Ar, Rb-Sr and REE systematics of an organic-rich New Albany Shale as determined by hydrous pyrolysis

    USGS Publications Warehouse

    Clauer, Norbert; Chaudhuri, Sambhudas; Lewan, M.D.; Toulkeridis, T.

    2006-01-01

    Hydrous-pyrolysis experiments were conducted on an organic-rich Devonian-Mississippian shale, which was also leached by dilute HCl before and after pyrolysis, to identify and quantify the induced chemical and isotopic changes in the rock. The experiments significantly affect the organic-mineral organization, which plays an important role in natural interactions during diagenetic hydrocarbon maturation in source rocks. They produce 10.5% of volatiles and the amount of HCl leachables almost doubles from about 6% to 11%. The Rb-Sr and K-Ar data are significantly modified, but not just by removal of radiogenic 40Ar and 87Sr, as described in many studies of natural samples at similar thermal and hydrous conditions. The determining reactions relate to alteration of the organic matter marked by a significant change in the heavy REEs in the HCl leachate after pyrolysis, underlining the potential effects of acidic fluids in natural environments. Pyrolysis induces also release from organics of some Sr with a very low 87Sr/86Sr ratio, as well as part of U. Both seem to have been volatilised during the experiment, whereas other metals such as Pb, Th and part of U appear to have been transferred from soluble phases into stable (silicate?) components. Increase of the K2O and radiogenic 40Ar contents of the silicate minerals after pyrolysis is explained by removal of other elements that could only be volatilised, as the system remains strictly closed during the experiment. The observed increase in radiogenic 40Ar implies that it was not preferentially released as a volatile gas phase when escaping the altered mineral phases. It had to be re-incorporated into newly-formed soluble phases, which is opposite to the general knowledge about the behavior of Ar in supergene natural environments. Because of the strictly closed-system conditions, hydrous-pyrolysis experiments allow to better identify and even quantify the geochemical aspects of organic-inorganic interactions, such as elemental exchanges, transfers and volatilisation, in potential source-rock shales during natural diagenetic hydrocarbon maturation.

  4. Rb-Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps

    NASA Astrophysics Data System (ADS)

    de Meyer, Caroline M. C.; Baumgartner, Lukas P.; Beard, Brian L.; Johnson, Clark M.

    2014-06-01

    The Zermatt-Saas Fee Zone (ZSZ) was subducted to eclogite-facies conditions, reaching peak pressures and temperatures of 20-28 kbar and 500-630 °C. The rocks were partially overprinted under greenschist-facies conditions during exhumation. Previous Rb-Sr isochron ages obtained on matrix phengites in metasediments of the ZSZ have been interpreted to date early exhumation of the ZSZ. Here we present new Rb-Sr geochronology on phengite inclusions in garnets to date prograde growth of garnets. We show that garnet acted as a shield for the included phengites, limiting Rb and Sr isotope exchange with the bulk rock, upon complete enclosure of the mica, during garnet growth, even if peak metamorphism exceeded the Rb-Sr blocking temperature. Similarly, garnet isolated the micas from the matrix during subsequent recrystallization due to fluid infiltration or deformation during exhumation. Phengite inclusion ages for two metapelitic samples from the same locality (Triftji) are 44.86±0.49 Ma and 43.6±1.8 Ma, and are about 4 m.y. older than the corresponding matrix mica ages of 40.01±0.51 Ma and 39.5±1.1 Ma, respectively. The results confirm previous Sm-Nd and Lu-Hf geochronology on the ZSZ that indicated protracted garnet growth during prograde metamorphism, and confirm that at least parts of the ZSZ underwent peak metamorphic HP conditions less than 43 m.y. ago, followed by rapid exhumation to upper greenschist-facies conditions around 40 Ma ago.

  5. RUBIDIUM ABUNDANCES IN THE GLOBULAR CLUSTERS NGC 6752, NGC 1904, AND NGC 104 (47 Tuc)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Orazi, Valentina; Lugaro, Maria; Campbell, Simon W.

    2013-10-10

    Large star-to-star variations of the abundances of proton-capture elements, such as Na and O, in globular clusters (GCs) are interpreted as the effect of internal pollution resulting from the presence of multiple stellar populations. To better constrain this scenario, we investigate the abundance distribution of the heavy element rubidium (Rb) in NGC 6752, NGC 1904, and NGC 104 (47 Tuc). Combining the results from our sample with those in the literature, we found that Rb exhibits no star-to-star variations, regardless of cluster metallicity, with the possible intriguing, although very uncertain, exception of the metal-rich bulge cluster NGC 6388. If nomore » star-to-star variations can be confirmed for all GCs, this finding implies that the stellar source of the proton-capture element variations must not have produced significant amounts of Rb. This element is observed to be enhanced at extremely high levels in intermediate-mass asymptotic giant branch (IM-AGB) stars in the Magellanic Clouds (i.e., at a metallicity similar to 47 Tuc and NGC 6388). This fact may present a challenge to this popular candidate polluter, unless the mass range of the observed IM-AGB stars does not participate in the formation of the second-generation stars in GCs. A number of possible solutions are available to resolve this conundrum, including the fact that the Magellanic Cloud observations are very uncertain and may need to be revised. The fast rotating massive stars scenario would not face this potential problem as the slow mechanical winds of these stars during their main-sequence phase do not carry any Rb enhancements; however, these candidates face even bigger issues such as the production of Li and the close overlap with core-collapse supernova timescales. Observations of Sr, Rb, and Zr in metal-rich clusters such as NGC 6388 and NGC 6441 are sorely needed to clarify the situation.« less

  6. Rb-Sr and Sm-Nd Study of Asuka 881394: Evidence of "Late" Metamorphism

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Takeda, H.

    2011-01-01

    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 [1,2,3] and has a Pb-207/Pb-206 age of 4566.5 plus or minus 0.2 Ma [3], the oldest for an achondrite. Preliminary results showed initial Sm-146/Sm-144 = (7.4 plus or minus 1.2) x 10(exp -3), indicative of an ancient age, but Rb-87 - Sr-87 and Sm-147 - Nd-143 ages of 4370 plus or minus 60 and 4490 plus or minus 20 Ma, resp. [1], were younger than expected from the presence of short-lived nuclides. We revisit the Rb-Sr and Sm-Nd chronology of A881394 in an attempt to establish whether late metamorphism led to inconsistency in its apparent ages.

  7. Anomalous isotopic compositions of Sr, Ar and O in the Mesozoic diabase dikes of Liberia, West Africa

    NASA Astrophysics Data System (ADS)

    Mauche, Renée; Faure, Gunter; Jones, Lois M.; Hoefs, Jochen

    1989-01-01

    The Mesozoic diabase dikes of Liberia are tholeiites whose 87Sr/86Sr and 87Rb/86Sr ratios scatter widely on the Rb-Sr isochron diagram. The problem is attributed to differences in the initial 87Sr/86Sr ratios of these rocks which range from 0.70311 to 0.70792, assuming a uniform age of 186 Ma for the dikes and using λ(87Rb)=1.42 × 10-11y-1. The range of values is similar to that observed in the Mesozoic basalt flows and dikes of other Gondwana continents. New whole-rock K-Ar dates confirm previous conclusions that the diabase dikes in the Liberian and Pan-African age provinces of Liberia absorbed extraneous 40Ar after intrusion. Only the dikes in the Paynesville Sandstone have K-Ar dates that range from 117 Ma to 201 Ma and may not contain extraneous 40Ar. However, dikes from all three age provinces of Liberia have elevated initial 87Sr/86Sr ratios. These results indicate that contamination with radiogenic 87Sr occurred primarily before intrusion of the magma whereas the addition of extraneous 40Ar occurred after emplacement and reflects the age and mineral composition of the country rock. The δ 18O values of the Liberian diabase range from +5.6/% to +9.10/% and correlate positively with initial 87Sr/86Sr ratios. The data can be modeled by fractional crystallization and simultaneous assimilation of crustal rocks by the magma. However, samples containing amphibole and biotite replacing pyroxene deviate from the Sr-O isotope trajectories of the model and appear to have been depleted in 18O and enriched in 87Sr by interactions with groundwater at high temperature.

  8. Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.; Eaton, G.F.; Cleland, R.W.; Wavra, C.S.; Bond, W.D.

    2002-01-01

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield 87Sr/86Sr ratios of 0.74 to >1.60 for low Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high Rb/Sr rocks of the Belt Supergroup. Stable isotope and fluid inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary 87Sr/86Sr ratios require accumulation of radiogenic 87Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the hydrothermal veins. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed during the Cretaceous from components scavenged from rocks of the Belt Supergroup, the primary host rocks of the district. Proterozoic Pb isotope ratios observed in galena from many Coeur d'Alene veins were established when Pb separated from uranium during deposition or diagenesis of the Belt Supergroup at 1400 to 1500 Ma, possibly as disseminated syngenetic deposits. K-Ar and Rb-Sr apparent ages and ??18O values of Belt Supergroup rocks decrease from the Coeur d'Alene district toward the Idaho and Kaniksu batholiths, approximately normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 and 45 Ma, representing the only such combination of events in the Coeur d'Alene region subsequent to about 1300 Ma. The Sr and oxygen results and geologic evidence favor formation of the ore-bearing carbonate veins by fluids related to a complex metamorphic-hydrothermal system during the Cretaceous. Pb with Proterozoic isotopic compositions was probably mobilized and incorporated like other metals into the hydrothermal veins during this event. The ore-bearing veins were sheared and displaced during early Tertiary northwest-trending dextral strike-slip faulting along the Osburn fault and related structures of the Lewis and Clark line.

  9. Concentration of stable elements in food products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montford, M.A.; Shank, K.E.; Hendricks, C.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentrationmore » of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed.« less

  10. The Chronology and Petrogenesis of the Mare Basalt Clast from Lunar Meteorite Dhofar 287: Rb-Sr and Sm- Nd Isotopic Studies

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Wiesmann, H.; Nazarov, M. A.; Taylor, L. A.

    2002-01-01

    The Sm-Nd isochron for lunar mare basalt meteorite Dhofar 287A yields T = 3.46 +/- 0.03 Ga and Nd = 0.6 +/- 0.3. Its Rb-Sr isotopic system is severely altered. The basalt is unique, probably coming from an enriched mantle source. Additional information is contained in the original extended abstract.

  11. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    PubMed

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  12. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.

    PubMed

    Carlson, Richard W; Borg, Lars E; Gaffney, Amy M; Boyet, Maud

    2014-09-13

    New Rb-Sr, (146,147)Sm-(142,143)Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, (147)Sm-(143)Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial (146)Sm/(144)Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for (146)Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd-(142)Nd/(144)Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Rb-Sr geochronology of the region between the Antarctic Peninsula and the Transantarctic Mountains: Haag nunataks and Mesozoic granitoids

    NASA Astrophysics Data System (ADS)

    Millar, I. L.; Pankhurst, R. J.

    Seventy-two new Rb-Sr whole-rock analyses are reported for Haag Nunataks, Mount Woollard, the Whitmore Mountains, the Pirrit and Nash hills, and Pagano Nunatak. For Haag Nunataks, three isochrons for gneisses and later aplogranite and microgranite sheets establish the age of crustal formation as 1000-1100 Ma. No other basement rocks of this age are known from the Antarctic Peninsula or Ellsworth Land. Results from the migmatite-pegmatite complex at Mount Woollard are inconclusive but do not suggest that this represents Precambrian crystalline basement. Provisional results for the Whitmore Mountains granites are compatible with crystallization of all components within error of a 182±5 Ma isochron for fine-grained microgranite, but variation in initial 87Sr/86Sr from 0.707 for porphyritic granites to 0.722 for the microgranite rule out simple crystal fractionation models which require a common parental magma. The granites of the Ellsworth-Thiel mountains ridge are well dated as Middle Jurassic by the new data: Pirrit Hills 173±3 Ma, Nash Hills 175±8 Ma, and Pagano Nunatak 175±8 Ma. Initial 87Sr/86Sr ratios of 0.707, 0.712, and 0.716, respectively, confirm that these are intracratonic S-type granites with a large crustal component involved in magma generation. The dolerite of Lewis Nunatak is shown by its Rb, Sr, and 87Sr/86Sr composition to be a member of the Jurassic Ferrar Supergroup.

  14. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    PubMed

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These glass-ceramics allow optical properties, especially the translucency and color, to be tailored to the needs of biomaterials for dental applications. The authors conclude that it is possible to use twofold crystallization processes to develop glass-ceramic biomaterials featuring different properties, such as specific radiopacity values, CTEs, and optical characteristics.

  15. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    PubMed Central

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These glass-ceramics allow optical properties, especially the translucency and color, to be tailored to the needs of biomaterials for dental applications. The authors conclude that it is possible to use twofold crystallization processes to develop glass-ceramic biomaterials featuring different properties, such as specific radiopacity values, CTEs, and optical characteristics. PMID:26528470

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupre, B.; Rousseau, D.; Gaillardet, J.

    The Congo river Basin is the second largest drainage basin in the world, after the Amazon. The materials carried by its main rivers provide the opportunity to study the products of denudation of a large fraction of the upper continental crust of the African continent. This paper presents the chemical composition of the different phases carried in the Congo rivers and is followed by a companion paper, devoted to the modelling of major and trace elements. The Congo river between Bangui and Brazzaville as well as its main tributaries, including a few organic-rich rivers, also called Black Rivers, were sampledmore » during the 1989 high water stage. The three main phases (suspended load, dissolved load, and bedload) were analysed for twenty-five major and trace elements. Concentrations normalized to the upper continental crust show that in each river, suspended sediments and dissolved load are chemical complements for the most soluble elements (Ca, Na, Sr, K, Ba, Rb, and U). While these elements are enriched in the dissolved loads, they are considerably depleted in the corresponding suspended sediments. This is consistent with their high mobility during weathering. Another type of complementarity is observed for Zr and Hf between suspended sediments and bedload, related to the differential velocity of suspended sediments and zircons which are concentrated in bedloads. Compared to other rivers, absolute dissolved concentrations of Ca, Na, Sr, K, Ba, Rb, and U are remarkably low. Surprisingly, high dissolved concentrations are found in the Congo waters for other trace elements (e.g., REEs), especially in the Black rivers. On a world scale, these concentrations are among the highest measured in rivers and are shown to be pH dependent for a number of dissolved trace elements. The dissolved loads are systematically normalized to the suspended loads for each river, in order to remove the variations of the element abundances owing to source rock variations.« less

  17. Isotopic complexities and the age of the Delfonte volcanic rocks, eastern Mescal Range, southeastern California: Stratigraphic and tectonic implications

    USGS Publications Warehouse

    Fleck, R.J.; Mattinson, J.M.; Busby, C.J.; Carr, M.D.; Davis, G.A.; Burchfiel, B.C.

    1994-01-01

    Combined U-Pb zircon, Rb-Sr, 40Ar/39Ar laser-fusion, and conventional K-Ar geochronology establish a late Early Cretaceous age for the Delfonte volcanic rocks. U-Pb zircon analyses define a lower intercept age of 100.5 ± 2 Ma that is interpreted as the crystallization age of the Delfonte sequence. Argon studies document both xenocrystic contamination and postemplacement Ar loss. Rb-Sr results from mafic lavas at the base of the sequence demonstrate compositionally correlated variations in initial 87Sr/86Sr ratios (Sri) from 0.706 for basalts to 0.716 for andesitic compositions. This covariation indicates substantial mixing of subcontinental lithosphere with Proterozoic upper crust. Correlations between Rb/Sr and Sri may result not only in pseudoisochrons approaching the age of the crustal component, but also in reasonable but incorrect apparent ages approaching the true age.Ages obtained in this study require that at least some of the thrust faulting in the Mescal Range-Clark Mountain portion of the foreland fold-and-thrust belt occurred later than ca. 100 Ma and was broadly contemporaneous with emplacement of the Keystone thrust plate in the Spring Mountains to the northeast. Comparison of the age and Rb-Sr systematics of ash-flow tuff boulders in the synorogenic Lavinia Wash sequence near Goodsprings, Nevada, with those of the Delfonte volcanic rocks supports a Delfonte source for the boulders. The 99 Ma age of the Lavinia Wash sequence is nearly identical to the Delfonte age, requiring rapid erosion, transport, and deposition following Delfonte volcanism.

  18. Active Moss Biomonitoring of Atmospheric Trace Element Deposition in Belgrade Urban Area using ENAA and AAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anicic, M.; Tasic, M.; Tomasevic, M.

    2007-11-26

    Active biomonitoring of air quality in Belgrade, Serbia, was performed using the moss Sphagnum girgensohnii. Moss bags were exposed in parallel with and without irrigation respectively for four consecutive 3-month periods at three urban sites. Twenty-nine elements were determined in the exposed moss samples by ENAA and three (Cu, Cd, and Pb) by AAS. The relative accumulation factor (RAF) was greater than 1 for the majority of elements. Elements such as Cl, K, Rb and Cs, however, leached from the moss tissue during the exposure time. For all exposure periods, higher uptake in the irrigated moss bags was evident formore » Al, Cr, Fe, Cu, Zn, Sr, Pb, and Cd.« less

  19. A reconnaissance Rb-Sr, Sm-Nd, U-Pb, and K-Ar study of some host rocks and ore minerals in the West Shasta Cu- Zn district, California ( USA).

    USGS Publications Warehouse

    Kistler, R.W.; McKee, E.H.; Futa, K.; Peterman, Z.E.; Zartman, R.E.

    1985-01-01

    The Copley Greenstone, Balaklala Rhyolite, and Mule Mountain stock in the West Shasta Cu-Zn district, California, have Rb-Sr, Sm-Nd, U-Pb, and K-Ar systematics that indicate they are a cogenetic suite of ensimatic island-arc rocks about 400 Ma. Pervasive alteration and mineralization of these rocks, for the most part, was syngenetic and the major component of the mineralizing fluid was Devonian seawater. K-Ar ages of quarz-sericite concentrates from ore horizons and Rb-Sr systematics of a few rock and ore specimens record a later thermal and mineralizing event in the district of about 260 Ma. Contamination of some rocks with pelagic sediments is indicated by the Sm-Nd data. -Authors

  20. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOEpatents

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  1. Physico-chemistry and geochemistry of Balengou clay deposit (West Cameroon) with inference to an argillic hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Tassongwa, Bernard; Eba, François; Njoya, Dayirou; Tchakounté, Jacqueline Numbem; Jeudong, Narcisse; Nkoumbou, Charles; Njopwouo, Daniel

    2017-09-01

    Field description and sampling along two pits, granulometry, Atterberg limits, mineralogical (XRD, FTIR, DSC & TGA) and geochemical analyses of the Balengou clays help to determine their characteristics and the genesis of the deposit. The mineralogical composition is comprised of halloysite-kaolinite, quartz, montmorillonite, hematite, anatase, feldspar, zircon, chromite, and apatite. Gibbsite and illite occur at the shallow and deep depth, respectively. Dikes of sand-poor clays contain also cristobalite and tridymite. Pairs of elements Rb-Ba, Rb-Sr, Nb-Ta, Ta-Zr, TiO2-Zr display good positive correlations (R2 > 0.85). REE patterns are highly fractionated (LaN up to 3312, LaN/YbN: 19-10) and are marked by deep Ce and Eu negative anomalies. Immobile element canonical ratios indicate that the protoliths were commendite/pantelerite, rhyolite and dacite, or their plutonic equivalents. Mineralogical and geochemical features lead to the suggestion that the clays derived from an advanced argillic hydrothermal alteration.

  2. Geochemical constraints on crustal anatexis: a case study from the Pan-African Damara granitoids of Namibia

    NASA Astrophysics Data System (ADS)

    McDermott, F.; Harris, N. B. W.; Hawkesworth, C. J.

    1996-05-01

    Major and trace element models of recently published vapour-absent mica dehydration melting experiments are used to identify granitoids generated by muscovite and biotite dehydration melting, and to distinguish between plagioclase-limited and biotite-limited, biotite dehydration melting. In the case of granitoids from the Pan-African Damara mobile belt (Namibia), many of the leucogranites and Salem-type granitoids may be modelled by biotite dehydration melting. The low Rb/Sr granitoids (e.g. Donkerhuk Onanis, Salem Onanis, Donkerhuk Nomatsaus, Salem Goas) probably reflect feldspar-limited, biotite dehydration melting (a pelitic source) whereas the high Rb/Sr suites (e.g. Bloedkoppie leucogranite, Stinkbank leucogranite, Salem Swakopmund, Leucocratic Stink bank granite) reflect biotite-limited, biotite dehydration melting (a greywacke source). Alaskites from the Damara belt have major element compositions which are consistent with muscovite dehydration melting, and their positive Eu anomalies are linked to high K2O reflecting K-feldspar entrainment. Combined Zr and LREE (light rare earth element) solubility models indicate that insufficient time (probably less than 104 years) had elapsed between melt generation and melt extraction to ensure that the alaskite melts attained their equilibrium concentrations of Zr and the LREEs. In contrast, the leucogranites and Salem-type granites have attained their equilibrium inventories of these trace elements. Combined Fe2O3 and MgO contents in some samples from two granitoids (the Salem Goas and Donkerhuk Onanis intrusions) are higher than those readily attainable by biotite dehydration melting indicating either: (1) that they contain a contribution from melts generated by incipient garnet breakdown or; (2) that they contain small amounts of an entrained ferromagnesian phase.

  3. Rapid, non-destructive coral paleothermometry by synchrotron XR

    NASA Astrophysics Data System (ADS)

    Tangri, N.; Mehta, A.; Marks, R.; Dunbar, R. B.

    2016-12-01

    We present advances in the use of synchrotron x-ray fluorescence (XRF) to recover climate signals from coral exoskeleton. Corals record sea surface temperature (SST), salinity, and other environmental conditions in the density and composition of their exoskeletons; in particular, SST is reflected in both the Sr/Ca ratio and the annual density banding. Synchrotron XRF has previously been used to examine the fine-scaled variability of Sr concentrations in the exoskeleton structure, but has not yet yielded any long-term SST reconstructions. Modern XRF techniques allow the detection of sub-ppm trace element concentrations and appear ideally suited to long climate reconstructions, as they are non-destructive, high-resolution (250 um) and potentially quite rapid ( 40 years of sample in 24 hours of instrument time). The low Sr content of the coral and its low change in concentration require a high brightness synchrotron source to generate a high signal-to-background ratio. However, difficulties arise from the local heterogeneity of Sr that is unrelated to environmental conditions. These variations of biological origin in Sr concentrations often mask the smaller-amplitude, annual and interannual SST signals. The challenge is to normalize the local variability in order to extract the climate signal. Other techniques have normalized against Ca, but in XRF the Ca signal is sensitive to only the surface 50 um of material, whereas the Sr signal comes from 1mm, so the values are not comparable. Instead, we normalize against density as calculated from beam transmission. We also explore the use of Rb normalization to filter out collection artifacts. Both Sr and Rb show strong annual signals and interesting departures from the density signal. Finally, we pair the XRF results with δ18O measurements to recover a convincing record of SST variation. Although challenges remain, we believe that synchrotron XRF techniques hold considerable promise to rapidly and accurately recover climate signals from corals.

  4. Prospects for transferring 87Rb84Sr dimers to the rovibrational ground state based on calculated molecular structures

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Zhu, Shaobing; Li, Xiaolin; Qian, Jun; Wang, Yuzhu

    2014-06-01

    Using fitted model potential curves of the ground and lowest three excited states yielded by the relativistic Kramers-restricted multireference configuration interaction method with 19 electrons correlated, we theoretically investigate the rovibrational properties including the number of vibrational state and diagonally distributed Franck-Condon factors for a 87Rb84Sr molecule. Benefiting from a turning point at about v'=20 for the Franck-Condon factors between the ground state and spin-orbit 2(Ω=1/2) excited state, we choose |2(Ω=1/2),v'=21,J'=1> as the intermediate state in the three-level model to theoretically analyze the possibility of performing stimulated Raman adiabatic passage to transfer weakly bound RbSr molecules to the rovibrational ground state. With 1550 nm pump laser (2 W/cm2) and 1342 nm dump laser (10 mW/cm2) employed and appropriate settings of pulse time length (about 300 μs), we have formalistically achieved a round-trip transfer efficiency of 60%, namely 77% for one-way transfer. The results demonstrate the possibility of producing polar 87Rb84Sr molecules efficiently in a submicrokelvin regime, and further provide promising directions for future theoretical and experimental studies on alkali-alkaline(rare)-earth dimers.

  5. Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria)

    NASA Astrophysics Data System (ADS)

    Zeitlhofer, Helga; Grasemann, Bernhard; Petrakakis, Konstantin

    2016-06-01

    Dykes in the Strudengau area (SW Moldanubian Zone, Austria) can be mineralogically divided into lamprophyres (spessartites and kersantites) and felsic dykes (granite porphyries, granitic dykes and pegmatoid dykes). Geochemical analyses of 11 lamprophyres and 7 felsic dykes show evidence of fractional crystallization. The lamprophyres are characterized by metaluminous compositions, intermediate SiO2 contents and high amounts of MgO and K2O; these rocks have high Ba (800-3000 ppm) and Sr (250-1000 ppm) contents as well as an enrichment of large-ion lithophile elements over high field strength elements, typical for enriched mantle sources with variable modifications due to fractionation and crustal contamination. This geochemical signature has been reported from durbachites (biotite- and K feldspar-rich mela-syenites particularly characteristic of the Variscan orogen in Central Europe). For most major elements, calculated fractionation trends from crystallization experiments of durbachites give an excellent match with the data from the Strudengau dykes. This suggests that the lamprophyres and felsic dykes were both products of fractional crystallization and subsequent magma mixing of durbachitic and leucogranitic melts. Rb-Sr geochronological data on biotite from five undeformed kersantites and a locally deformed granite porphyry gave cooling ages of c. 334-318 Ma, indicating synchronous intrusion of the dykes with the nearby outcropping Weinsberger granite (part of the South Bohemian Batholith, c. 330-310 Ma). Oriented matrix biotite separated from the locally deformed granite porphyry gave an Rb-Sr age of c. 318 Ma, interpreted as a deformation age during extensional tectonics. We propose a large-scale extensional regime at c. 320 Ma in the Strudengau area, accompanied by plutonism of fractionated magmas of syncollisional mantle-derived sources, mixed with crustal components. This geodynamic setting is comparable to other areas in the Variscan belt documenting an orogenic wide extension by the end of the Carboniferous.

  6. A new Mantle Source Tapped During Episode 55 of the Pu'u O'o Eruption From Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Pietruszka, A. J.; Garcia, M. O.; Rhodes, J. M.

    2005-12-01

    Over 22 years of continuous geochemical monitoring of lavas from the current Pu'u O'o eruption allows us to probe the mantle and crustal processes beneath Kilauea Volcano in unparalleled detail. Episode 55 (1997-present) marks the longest and most voluminous Pu'u O'o eruptive interval. Here we present new Pb, Sr, and Nd isotopic ratios and major- and trace-element abundances for the most recent lavas (1999-2005). MgO variation diagrams show that most of the major-element variations are related to olivine fractionation. However, Pu'u O'o lavas display longer-term systematic decreases in their TiO2, K2O, P2O5 and CaO abundances (at a given MgO) due to changes in the parental magma composition. Incompatible element ratios (K2O/TiO2, Nb/Y, Nb/Zr) and MgO-normalized abundances (Sr, Rb, K) in episode 55 lavas delimit the lowest values observed during the Pu'u O'o eruption. Earlier Pu'u O'o lavas displayed a temporal decrease in highly over moderately incompatible trace-element ratios, near constant SiO2 contents, and a gradual increase in 87Sr/86Sr. However, episode 55 lavas (between days 5500-6500) record an increase in MgO-normalized SiO2 contents and even higher 87Sr/86Sr with near constant incompatible trace-element ratios. Neither a single mantle source composition nor a change in partial melting conditions can explain these observations. Based on 226Ra-230Th-238U disequilibria and partial melting modeling of trace elements, we conclude that Pu'u O'o lavas originate from at least two distinct mantle source components: (1) a recently depleted component that was subsequently remelted to explain the overall decreases of incompatible major- and trace-element ratios and abundances, and (2) a compositionally and isotopically distinct mantle component that was not previously melted within the Hawaiian plume to explain the temporal increase in 87Sr/86Sr and SiO2 abundances and the flattening trend of incompatible trace-element ratios. This second component lies within typical Pb, Sr and Nd isotopic space for Kilauea, but represents a new source composition for the Pu'u O'o eruption. These results can be explained by a recent (1999) change in the size or location of Pu'u O'o's melting region, which allowed this new source to be tapped.

  7. Geochronology of archean gneisses in the Lake Helen area, Southwestern Big Horn Mountains, Wyoming

    USGS Publications Warehouse

    Arth, Joseph G.; Barker, F.; Stern, T.W.

    1980-01-01

    The RbSr and UPb methods were used to study gneisses in the 7 1 2-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite. A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ?? 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ?? 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ?? 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source. A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ?? 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ?? 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source. ?? 1980.

  8. Rubidium-strontium whole-rock ages of Kataragama and Pottuvil charnockites and East Vijayan gneiss: Indication of a 2 Ga metamorphism in the highlands of southeast Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Maesschalck, A.A.; Oen, I.S.; Hebeda, E.H.

    1990-09-01

    Highland Group granulite-facies rocks of the Kataragama klippe in southeast Sri Lanka yield a Rb-Sr whole-rock apparent age of 1,930 {plus minus} 130 Ma, MSWD = 39, and a {sup 87}Sr/{sup 86}Sr intercept of 0.715 {plus minus} 0.005, indicating a Highlandian metamorphism about 2.0 Ga ago. A charnockitic gneiss at Komari near Pottuvil, east Sri Lanka, gives a Rb-Sr whole-rock isochron age of 820 {plus minus} 70 Ma, MSWD = 0.78, initial {sup 87}Sr/{sup 86}Sr = 0.725 {plus minus} 0.007, suggesting a metamorphic resetting at about 0.8 Ga. The Rb-Sr whole-rock data of an East Vijayan biotite-hornblende gneiss fit amore » reference isochron of 800 Ma with a {sup 87}Sr/{sup 86}Sr intercept of 0.705; the low {sup 87}Sr/{sup 86}Sr intercept may be explained by a juvenile addition to the older crust. A review of available data from various isotopic dating methods suggests that the Highland Group supracrustals were deposited 2.5-2.0 Ga ago, metamorphosed in the granulite-facies about 2.0 Ga (M1) ago, and disturbed by resetting events about 1.1 Ga (M2), 0.8 Ga (M3), and 0.55 Ga (M4) ago. The East Vijayan supracrustals were deposited 2.0-1.1 Ga ago, invaded by granites and metamorphosed in the amphibolite-facies about 1.1 Ga (M2) ago, and disturbed by resetting events about 0.8 (M3) and 0.55 Ga (M4) ago. Overthrusting of the Kataragama granulites over the East Vijayan gneisses occurred post-M3.« less

  9. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon

    NASA Astrophysics Data System (ADS)

    Thomas, J. B.; Bodnar, R. J.; Shimizu, N.; Sinha, A. K.

    2002-09-01

    Partition coefficients ( zircon/meltD M) for rare earth elements (REE) (La, Ce, Nd, Sm, Dy, Er and Yb) and other trace elements (Ba, Rb, B, Sr, Ti, Y and Nb) between zircon and melt have been calculated from secondary ion mass spectrometric (SIMS) analyses of zircon/melt inclusion pairs. The melt inclusion-mineral (MIM) technique shows that D REE increase in compatibility with increasing atomic number, similar to results of previous studies. However, D REE determined using the MIM technique are, in general, lower than previously reported values. Calculated D REE indicate that light REE with atomic numbers less than Sm are incompatible in zircon and become more incompatible with decreasing atomic number. This behavior is in contrast to most previously published results which indicate D > 1 and define a flat partitioning pattern for elements from La through Sm. The partition coefficients for the heavy REE determined using the MIM technique are lower than previously published results by factors of ≈15 to 20 but follow a similar trend. These differences are thought to reflect the effects of mineral and/or glass contaminants in samples from earlier studies which employed bulk analysis techniques. D REE determined using the MIM technique agree well with values predicted using the equations of Brice (1975), which are based on the size and elasticity of crystallographic sites. The presence of Ce 4+ in the melt results in elevated D Ce compared to neighboring REE due to the similar valence and size of Ce 4+ and Zr 4+. Predicted zircon/meltD values for Ce 4+ and Ce 3+ indicate that the Ce 4+/Ce 3+ ratios of the melt ranged from about 10 -3 to 10 -2. Partition coefficients for other trace elements determined in this study increase in compatibility in the order Ba < Rb < B < Sr < Ti < Y < Nb, with Ba, Rb, B and Sr showing incompatible behavior (D M < 1.0), and Ti, Y and Nb showing compatible behavior (D M > 1.0). The effect of partition coefficients on melt evolution during petrogenetic modeling was examined using partition coefficients determined in this study and compared to trends obtained using published partition coefficients. The lower D REE determined in this study result in smaller REE bulk distribution coefficients, for a given mineral assemblage, compared to those calculated using previously reported values. As an example, fractional crystallization of an assemblage composed of 35% hornblende, 64.5% plagioclase and 0.5% zircon produces a melt that becomes increasingly more enriched in Yb using the D Yb from this study. Using D Yb from Fujimaki (1986) results in a melt that becomes progressively depleted in Yb during crystallization.

  10. Geochemical identification of mare-type basalt groups from a lunar highland region (by INAA and SRXFA)

    NASA Astrophysics Data System (ADS)

    Tarasov, L. S.; Kudryashova, A. F.; Ulyanov, A. A.; Baryshev, V. B.; Bobrov, V. A.; Shipitsyn, Yu. G.; Vertman, E. G.; Sudyko, A. F.

    1989-10-01

    The distribution of Rb, Sr, Y, Zr and Nb in 15 fragments of lunar mare-type basalt rocks from the Apollonius highland region has been investigated by the SRXFA method. The work has been carried out on the element analysis station of the storage ring VEPP-3. Preliminary identification of lunar rock groups was based on INAA data. Investigation by SRXFA permits to distinguish VLT-LT groups of basalts by geochemical criteria.

  11. Micro-PIXE analysis of silicate reference standards

    USGS Publications Warehouse

    Czamanske, G.K.; Sisson, T.W.; Campbell, J.L.; Teesdale, W.J.

    1993-01-01

    The accuracy and precision of the University of Guelph proton microprobe have been evaluated through trace-element analysis of well-characterized silicate glasses and minerals, including BHVO-1 glass, Kakanui augite and hornblende, and ten other natural samples of volcanic glass, amphibole, pyroxene, and garnet. Using the 2.39 wt% Mo in a NIST steel as the standard, excellent precision and agreement between reported and analyzed abundances were obtained for Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, and Nb. -from Authors

  12. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r-process production of Sr, Zr, and Ba by neutron star mergers - complemented by an s-process production by spinstars - provide results that are compatible with our previous findings based on other r-process sites. We critically discuss the weak and strong points of both neutron star merging and supernova scenarios for producing Eu and eventually suggest that the best solution is probably a mixed one in which both sources produce Eu. In fact, this scenario reproduces the scatter observed in all the studied elements better. Warning, no authors found for 2015A&A...577A.131.

  13. Major and EDXRF Trace Element Chemical Analyses of Volcanic Rocks from Lassen Volcanic National Park and Vicinity, California

    USGS Publications Warehouse

    Clynne, Michael A.; Muffler, L.J.P.; Siems, D.F.; Taggart, J.E.; Bruggman, Peggy

    2008-01-01

    This open-file report presents WDXRF major-element chemical data for late Pliocene to Holocene volcanic rocks collected from Lassen Volcanic National Park and vicinity, California. Data for Rb, Sr, Ba, Y, Zr, Nb, Ni, Cr, Zn and Cu obtained by EDXRF are included for many samples. Data are presented in an EXCEL spreadsheet and are keyed to rock units as displayed on the Geologic Map of Lassen Volcanic National Park and vicinity (Clynne and Muffler, in press). Location of the samples is given in latitude and longitude in degrees and decimal minutes and in decimal degrees.

  14. Some Pb and Sr isotopic measurements on eclogites from the Roberts Victor mine, South Africa

    USGS Publications Warehouse

    Manton, W.I.; Tatsumoto, M.

    1971-01-01

    Five nodules of eclogite, one nodule of garnet peridotite and one sample of kimberlite from the Roberts Victor mine were analyzed for concentrations of U, Th, Pb, Rb and Sr and isotopic compositions of Pb and Sr. In the eclogites, U content ranges from 0.09 to 0.26 ppm, Th from 0.35 to 1.1 ppm, Pb from 0.79 to 5.5 ppm, Rb from 2.1 to 28 ppm and Sr from 133 to 346 ppm; 206Pb/204Pb ratios range from 14.8 to 18.5, 207Pb/204Pb from 14.9 to 15.7, 208Pb/204Pb from 35.2 to 38.5. The garnet peridotite contains 0.22 ppm U, 0.97 ppm Th, 1.05 ppm Pb, 6.9 ppm Rb and 108 ppm Sr and the kimberlite contains 2.5 ppm U, 30 ppm Th, 37 ppm Pb, 113 ppm Rb and 2040 ppm Sr. The lead in the eclogites has two components, a lead pyroextractable at 1100-1200?? and a non-pyroextractable residual lead. In three of the eclogites, which are to some extent altered, a proportion of the pyroextractable lead may be contaminating lead from the kimberlite, but an altered kyanite eclogite does not appear to be contaminated by this same kimberlite. The pyroextractable lead from a less altered eclogite contains a much larger proportion of 206Pb. Compositions calculated for the residual leads vary greatly. In many of the pyroextraction runs the primary eclogitic phases disappeared and the new phases plagioclase, clinopyroxene and a magnetic iron compound were formed. Why part of the lead should have been retained by these new phases is not understood. ?? 1971.

  15. U-Th-Pb and Rb-Sr systematics of Apollo 17 boulder 7 from the North Massif of the Taurus-Littrow Valley

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.; Unruh, D.M.

    1974-01-01

    Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using UThPb and RbSr systematics. A RbSr internal isochron age of 3.89 ?? 0.08 b.y. with an initial 87Sr/86Sr of 0.69926 ?? 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a UPb internal isochron of 3.8 ?? 0.2 b.y. and an initial 206Pb/207Pb of 0.69. These internal isochron age are interpreted as reflecting metamorphic events, probably related to impacts, which reset RbSr and UPb mineral systems of older rocks. Six portions of boulder 7 were analyzed for U, Th, and Pb as whole rocks. Two chemical groups appear to be defined by the U, Th, and Pb concentration data. Chemical group A is characterized by U, Th, and Pb concentrations and 238U/204Pb values which are higher than those of group B. Group A rocks have typical 232Th/238U ratios of ??? 3.85, whereas-group B rocks have unusually high Th/U values of ??? 4.1. Whole-rock UPb and PbPb ages are nearly concordant. Two events appear to be reflected in these data - one at ??? 4.4 b.y. and one at ??? 4.5 b.y. The chemical groupings show no correlation with documented ages. The old ages of ??? 4.4 b.y. and ??? 4.5 b.y. may, like the younger ??? 4.0 b.y. ages, be related to basin excavation events. ?? 1974.

  16. Paleoenvironmental signals and paleoclimatic condition of the Early Maastrichtian oil shales from Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.

    2016-04-01

    Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.

  17. Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA.

    PubMed

    Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke

    2014-08-01

    Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.; Lahaye, Y.; Brey, G. P.

    2010-03-01

    The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.

  19. A geochemical study of Nea-Kameni hyalodacites (Santorini Volcano, Aegean island arc). Inferences concerning the origin and effects of solfataras and magmatic evolution

    NASA Astrophysics Data System (ADS)

    Briqueu, Louis; Lancelot, Joël R.

    1984-03-01

    Since the Santorini Volcano (Aegean arc, eastern Mediterranean Sea) collapsed, volcanic activity has been located at the center of the flooded caldera. Over the past 800 years, five lava flows have formed one of the central islets (Nea-Kameni). Since 1951, when the last eruption occurred, a permanent fumarolic activity has remained. We present chemical analyses (major elements, trace-elements and Sr isotopic ratios) of ten samples from the five hyalodacitic lava flows, showing different stages of alteration, from a completely fresh lava up to one bearing native sulfur and other sublimates. Only the macroscopic aspect of these hyalodacites is affected by fumarolic activity. The elements that are mobile as a result of hydrothermal processes, such as the alkaline (K, Rb) or the chalcophile elements (Zn, Pb), show great homogeneity; the same can be said for the Sr isotopic compositions which range from 0.7046 to 0.7049. None of the analyzed samples has an Sr isotopic composition as high as those reported by Puchelt and Hoefs (1971) for rock samples collected in the same lava flows. If we take into account the marine surroundings of Nea-Kameni islet, these observations put severe restraints on the different hypotheses regarding the origin of the halogens (seawater or meteoric water). The contamination processes of these dacitic lavas are clearly less important than assumed by other authors according to previous Sr isotopic data. Finally, the homogeneity of the elements with low partition coefficients is sufficient to show that the magma has not undergone any perceptible evolution during the last 300 years.

  20. In-situ Rb-Sr geochronology

    NASA Astrophysics Data System (ADS)

    Anderson, F. S.; Nowicki, K.; Whitaker, T.

    This paper reports on the first rubidium-strontium (Rb-Sr) radiometric dates using a Laser Desorption Resonance Ionization Mass Spectrometry (LDRIMS) instrument capable of being miniaturized for flight to another planet. The LDRIMS instrument produces dates in under 24 hours, requires minimal sample preparation, and avoids the interference and mass resolution issues associated with other geochronology measurements. We have begun testing the bench-top prototype on the Boulder Creek Granite (BCG), from Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite; whole rock Rb-Sr TIMS measurements result in dates of 1700± 40 Ma [1]. Data reduction of the LDRIMS Rb-Sr measurements on calibrated repeat runs result in a date for the BCG of 1.727± 0.087 Ga (n=288, MSWD=1). Most geochronology applications are willing to accept an MSWD up to ~2.7; at MSWD=2, the precision improves to ± 0.062 Ga. This technology is moving from lab prototype to field deployable instrument, and provides an opportunity to directly address the science goals of Mars Sample Return (MSR) within the bounds posed by current scientific, fiscal, and political pressures on the Mars program. Additionally, LDRIMS could potentially be flown to the Moon under the Discovery or New Frontiers program. We posit that in-situ geochronology missions to Mars to triage and validate samples for Mars Sample Return (MSR) are technically feasible in the 2018-2022 time frame.

  1. The Nd-, Sr- and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: Implications for arc magma petrogenesis

    USGS Publications Warehouse

    Mukasa, S.B.; Flower, M.F.J.; Miklius, Asta

    1994-01-01

    Following the amalgamation of a collage of pre-Neogene terranes largely by strike-slip and convergence mechanisms to form the Philippine islands, volcanic chains, related to oppositely dipping subduction zones, developed along the eastern and western margins of the archipelago. There is ample field evidence that this volcanic activity, predominantly calc-alkaline in chemical character, had commenced by the Oligocene. Volcanoes resulting from subduction along the Manila-Negros trench in the west (e.g. Taal, Laguna de Bay and Arayat) form a high-angle linear array, trending away from the MORE field on Pb-isotopic covariation diagrams; have the highest Sr- and lowest Nd-isotopic compositions, of the two chains (but nevertheless plotting above bulk earth on the 87Sr/86Sr versus 143Nd/144Nd covariation diagram); and exhibit Sm/Nd and Rb/Sr values that are lower and higher, respectively, than the estimated values for bulk earth. While the Sm/Nd and Rb/Sr characteristics are common to both chains, volcanoes associated with the Philippine-East Luzon trench have Pb-isotopic compositions that fall in the Indian Ocean MORB field and that require time-integrated evolution in a high Th/U environment. They also have higher Nd- and lower Sr-isotopic ratios. The source materials of Philippine volcanoes, therefore, have undergone varied recent enrichments in LILE, as indicated by the decoupling of isotopic and elemental ratios. These enrichments, particularly for the western volcanoes, cannot be entirely due to small degrees of partial melting in the mantle wedge, considering that they were accompanied by elevations in radiogenic Pb. Elevated Pb ratios are best explained by the introduction of subducted, continentally derived sediments. The sedimentary component in the western volcanoes is probably the South China Sea sediments derived largely from Eurasia. That this component is not available in the Philippine-East Luzon trench is reflected by the fact that the eastern volcanoes have higher Nd- and lower Sr-isotopic ratios as well as less radiogenic common Pb. ?? 1994.

  2. Biomonitoring of 33 Elements in Blood and Urine Samples from Coastal Populations in Sanmen County of Zhejiang Province.

    PubMed

    Zhang, Su-jing; Luo, Ru-xin; Ma, Dong; Zhuo, Xian-yi

    2016-04-01

    To determine the normal reference values of 33 elements, Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, Li, Mg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Th, Ti, Tl, U, V, Zn and Zr, in the blood and urine samples from the general population in Sanmen County of Zhejiang province, a typical coastal area of eastern China. The 33 elements in 272 blood and 300 urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The normality test of data was conducted using SPSS 17.0 Statistics. The data was compared with other reports. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County were obtained, which of some elements were found to be similar with other reports, such as Co, Cu, Mn and Sr, while As, Cd, Hg and Pb were generally found to be higher than those previously reported. There was a wide variation between the reports from different countries in blood Ba. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County are established, and successfully applied to two poisoning cases.

  3. High-spin states in neutron-deficient nuclei near A=80

    NASA Astrophysics Data System (ADS)

    Theisen, L. V.; Tabor, S. L.; Medsker, L. R.; Neuschaefer, G.; Fry, L. H., Jr.; Clements, J. S.

    1982-03-01

    In-beam γ-ray spectroscopy with the reactions 54Fe + 28Si and 56Fe + 28Si at beam energies from 80 to 99 MeV were used to study high-spin states in neutron-deficient nuclei in the mass A~80 region. Measurements of γ-ray energies, intensities, angular distributions, excitation functions, and γ-γ coincidences were used to assign new levels in 79Rb and 80Sr. For the first time, high-spin states in 81Sr have been observed. NUCLEAR REACTIONS 56Fe(28Si,xpynγ) and 54Fe(28Si,xpynγ) Elab=80-99 MeV; measured Eγ, Iγ, γ-γ coincidences, σ(Eγ,E), and σ(Eγ,θ) 79Rb, 80Sr, and 81Sr deduced levels, Jπ. Enriched targets.

  4. Leucogranites in Lhozag, southern Tibet: Implications for the tectonic evolution of the eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Huang, Chunmei; Zhao, Zhidan; Li, Guangming; Zhu, Di-Cheng; Liu, Dong; Shi, Qingshang

    2017-12-01

    Petrogenesis of the Himalayan leucogranite is strongly influenced by conditions which are associated with the tectonic evolution of Himalayan orogen. In this article, we present petrological, geochronological and geochemical results of the Lhozag leucogranites that crop out alongside the South Tibetan Detachment System (STDS) in the east of Himalaya. Zircon U-Pb dating revealed three episodes of leucogranitic magmatism in Lhozag at 17.8 ± 0.1 Ma, 15.1 ± 0.1 Ma, and 12.0 ± 0.1 Ma, respectively. The Lhozag leucogranites show relatively low εNd(t), low zircon εHf(t) and high initial 87Sr/86Sr ratios, which are similar to the High Himalayan Crystalline Series (HHCS), indicating that they were derived from the HHCS. The characteristics of relatively high Na2O and Rb contents, high Rb/Sr ratios and low CaO, MgO, TFe2O3, TiO2, and Sr contents indicate that both the ca. 18 Ma Lhozag tourmaline leucogranites and the ca. 15 Ma Lhozag two-mica granites were derived from fluid-absent muscovite-dehydration melting of metasediments. The opposite geochemistry characteristics of the ca. 12 Ma Khula Kangri two-mica granites imply that these granites are derived from fluid-present melting of metasediments. Four Khula Kangri two-mica granite samples with relatively lower TiO2, TFe2O3, MgO, and CaO contents, higher Rb concentrations and Rb/Sr ratios could be evolved from the Khula Kangri two-mica granites with relatively lower Rb/Sr ratios. The melting behaviors of the Lhozag leucogranites varied from fluid-absent melting to fluid-present melting, implying that there were P-T-XH2O variations in the deep crust. The tectonic evolution would give rise to variation of P-T-XH2O variation, and subsequent transformation of melting behavior. Our new results display the transformation of melting behavior of the Lhozag leucogranites, which implies the tectonic evolution from earlier N-S extension to later E-W extension in the eastern Himalaya at ca. 12 Ma.

  5. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Precision control of eluted activity from a Sr/Rb generator for cardiac positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; deKemp, R A

    2004-01-01

    A rubidium-82 (/sup 82/Rb) elution system is described for use with clinical positron emission tomography. The system is self-calibrating with 1.4% repeatability, independent of generator activity and elution flow rate. Saline flow is switched between a /sup 82/Sr//sup 82/Rb generator and a bypass line to achieve a constant activity elution of /sup 82/Rb. In the present study, pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control algorithm is developed which produces a constant activity elution within the constraints of long feedback delay and short elution time. Accurate constant-activity elutions of 10-70% of the total generator activity were demonstrated using the threshold comparison control. The adaptive-corrective control of the PWM valve provided a substantial improvement in precision of the steady-state output.

  7. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma.

    PubMed

    Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie

    2015-01-01

    Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    PubMed

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  10. Experimental evidence for mobility of Zr and other trace elements in soils

    NASA Astrophysics Data System (ADS)

    Hodson, Mark E.

    2002-03-01

    A Soxhlet extraction was carried out over a period of 27 d on a column comprising 3 cm of quartz overlain by 4 cm of soil from the B horizon and then 1 cm of soil from the A horizon of a granitic podzol. Major and trace elements were leached from the column and accumulated in a reservoir at the base of the column. Total loss of elements from the soil over the course of the experiment ranged from 0.002 to 1 wt% with major elements and the light and heavy rare earth elements (REE) showing the largest percentage losses. Zirconium (0.002%) and then Al (0.008%) showed the lowest percentage loss. The light REE were leached out of the soil preferentially to the mid REE. All elements showed accumulation, by a factor of 2 to 11, in the quartz layers at the base of the column, particularly in the upper first 1 cm of the quartz. Major elements were leached from the column at a rate of 0.02 to 0.59 μmol h-1 whereas Zr, Nd, Sm, Gd, Dy, Rb, and Sr were leached at the rate of 0.5 to 30 × 10-6 μmol h-1. Concentrations of other REE in the reservoir increased over the duration of the experiment, but they were poorly correlated with time, so leaching rates were not calculated. Normalization of the major element leaching rates to take into account the constant flushing of water through the column, the average annual rainfall in the Allt a'Mharcaidh catchment in Scotland from where the soil was sampled, and the cross-sectional area of the soil in the column, together with the temperature of the soil in the column (70°C) compared with the average annual temperature of the Allt a'Mharcaidh catchment (5.7°C), gave major element release rates from the soil of 0.002 to 0.97 mEq m-2 yr-1 (depending on the choice of Ea, the dissolution activation energy), which are generally less than those measured in the field of 0.1 to 40.9 mEq m-2 yr-1. Calculations showed that despite the redistribution and loss of Zr from the column, assumptions of Zr mobility would have had a negligible effect on calculated element release rates of Na, Ca, Fe, and Mg. However, significant underestimates of the release of K (5%), Ti (57%), Al (5%), and Si (10%) as well as some trace elements (e.g., Nd, 23%; Rb, 54%; Sr, 24%) would have occurred. Concentrations of Ca and Sr leached from the column correlated well (RSQ = 0.93, p < 0.01), supporting the idea of the use of Sr release as a proxy for Ca release in weathering rate calculations. The release rates and percentage loss of REE from the soil varied between elements indicating that REE distribution patterns of rocks and soils may not be preserved in drainage waters.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheat, C.G.; Mottl, M.J.

    Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. The authors have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures remove Na, K, Li, Rb, Mg, TCO{sub 2}, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions withmore » the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58 C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes form seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. The authors use the Baby Bare spring water to estimate upper limits on the global fluxes of 14 elements at warm ridge-flank sites such as Baby Bare. Maximum calculated fluxes of Mg, Ca, sulfate, B, and K may equal or exceed 25% of the riverine flux, and such sites may represent the missing, high K/Rb sink required for the K budget.« less

  12. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island arc properties. The formation age of intermediate -acidic volcanic rock can represent the time in which the end of transgressive and the beginning of intercontinental evolution in the northeastern Tibetan Plateau.

  13. Constraints on Martian Differentiation Processes from Rb-Sr and Sm-Nd Isotopic Analyses of the Basaltic Shergottite QUE 94201

    NASA Technical Reports Server (NTRS)

    Borg, Lars E.; Nyquist, Larry E.; Taylor, Larry A.; Wiesmann, Henry; Shih, Chi-Y.

    1997-01-01

    Isotopic analyses of mineral, leachate, and whole rock fractions from the Martian shergottite meteorite QUE 94201 yield Rb-Sr and Sm-Nd crystallization ages of 327 +/- 12 and 327 +/- 19 Ma, respectively. These ages are concordant, although the isochrons are defined by different fractions within the meteorite. Comparison of isotope dilution Sm and Nd data for the various QUE 94201 fractions with in situ ion microprobe data for QUE 94201 minerals from the literature demonstrate the presence of a leachable crustal component in the meteorite. This component is likely to have been added to QUE 94201 by secondary alteration processes on Mars, and can affect the isochrons by selectively altering the isotopic systematics of the leachates and some of the mineral fractions. The absence of crustal recycling processes on Mars may preserve the geochemical evidence for early differentiation and the decoupling of the Rb-Sr and Sm-Nd isotopic systems, underscoring one of the fundamental differences between geologic processes on Mars and the Earth.

  14. Isotope geochronology of the Precambrian

    NASA Astrophysics Data System (ADS)

    Levskii, L. K.; Levchenkov, O. A.

    This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.

  15. pXRF quantitative analysis of the Otowi Member of the Bandelier Tuff: Generating large, robust data sets to decipher trace element zonation in large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Wolff, J.; Conrey, R.

    2013-12-01

    Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show similar trace element zonation. The eruption culminated in caldera collapse after transitioning from a single central vent to ring fracture vents. Ignimbrites deposited at this time have lithic breccias and chaotic geochemical profiles. The geochemical discrepancy between early and late deposits warrants detailed, high-resolution sampling and analysis in order to fully understand the dynamics behind zonation processes. Samples were collected from locations that circumvent the caldera and prepared and analyzed in the field and the laboratory with the pXRF. Approximately 2,000 pumice samples will complete this unprecedented data set, allowing detailed reconstruction of trace element zonation around all sides of the Valles Caldera. These data are then used to constrain models of magma chamber processes that produce trace element zonation and how it is preserved in the deposits after a catastrophic, caldera-forming eruption.

  16. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India.

    PubMed

    Arveti, Nagaraju; Reginald, S; Kumar, K Sunil; Harinath, V; Sreedhar, Y

    2012-04-01

    Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called "Biological Absorption Coefficient" of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.

  17. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    USGS Publications Warehouse

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. ?? 1977.

  18. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Marques, A. F.; Brito, J.

    2003-01-01

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment.

  19. Geochemistry of ocean floor serpentinites world-wide: constraints on the ultramafic input to subduction zones

    NASA Astrophysics Data System (ADS)

    Kodolányi, J.; Pettke, T.; Spandler, C.; Kamber, B.; Gméling, K.

    2009-04-01

    Serpentinite can be a major component of the upper part of the oceanic lithosphere and is a significant H2O-contributor to subduction zones (Scambelluri et al. 2004). Serpentinite dehydration releases large amounts of water through a very limited number of discontinuous reactions and it is therefore expected to have the potential of leaving a trace element chemical fingerprint in overlying rocks (Ulmer and Trommsdorff 1995; Scambelluri et al. 2004; see also Pettke et al. 2009). We present major and trace element whole rock (XRF, ICP-MS and PGAA) and in-situ mineral (EPMA and LA-ICP-MS) analyses of serpentinized peridotites sampled on DSDP/ODP drilling cruises, in order to chemically characterize the hydrated ultramafic input of subduction zones. The studied 39 samples cover all major geodynamic settings where serpentinites occur on recent ocean floors (fast and slow spreading mid-ocean ridges, passive margins and supra-subduction zones). All rock samples consist of one or two serpentine (srp) polymorphs, brucite (brc), magnetite (mag), and relic high-temperature mantle minerals: olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and spinel (spl). Serpentine + brc replace ol, forming a mesh-like network around relic crystal fragments. Magnetite usually forms strings of individual crystals along the srp mesh-network. Very rare iowaite (a H2O and Cl-bearing Fe-Mg oxy-hydroxide) remnants were found around the ol core of mesh srp and in the srp ± brc replacements after ol mesh cores. Orthopyroxene alters to bastitic pseudomorphs which consist of srp rarely accompanied by brc. Associated mag is generally absent. The degree of ol and opx alteration is variable, i.e., there are samples in which opx is completely whereas ol is only partially altered and vice versa, which suggests variable temperatures of alteration (alteration rate of opx is higher than that of ol above ca. 350 °C; Martin and Fyfe 1970). Clinopyroxene and spl appear to be weakly altered in thoroughly serpentinized samples. Where present, carbonate (cab) forms veins or fills former srp ± brc pseudomorphs after ol or opx. Major, minor and trace element chemistry of the serpentinites generally reflects that of their ultramafic precursor (Mg-rich and Si-poor rocks with low trace element contents). With respect to certain elements, however, we detect significant serpentinization-related changes. Besides their high H2O-contents (8.7-17.2 wt. %), the hydrated harzburgites and lherzolites also display high B and Cl concentrations (8-177 μg/g and 1160-5920 μg/g, respectively) relative to depleted mantle values (0.06 and 0.51 ppm, respectively; Salters and Stracke 2004). Supra-subduction zone serpentinites contain 10 to 100 times more Cs (0.04-1.2 μg/g) and Rb (0.1-7.1 μg/g) than samples from mid-ocean ridges and passive margins (Cs: below 0.07 μg/g; Rb: 0.004-1.17 μg/g). We often observe 100 to 1000-fold enrichments in U, Pb, Sr and Li relative to elements of similar compatibility in the mantle. In-situ mineral analyses suggest that B and Cl reside in serpentine minerals. Cesium and Rb whole rock and mineral chemical data correlate well, too. If carbonates are not present, the Sr budget of serpentinites is largely controlled by serpentine minerals that take up 0.36 to 21 μg/g Sr, i.e., orders of magnitude more than concentrations of precursor ol and opx. Bastites tend to have (about 1.5-4 times) higher trace-element concentrations than mesh rims, suggesting that precursor mineralogy (e.g. harzburgites vs. dunites) and alteration temperature (Martin and Fyfe 1970) can affect serpentinite chemistry. Enrichments of U, Pb and Li may have multiple origins, i.e., may be only partly related to serpentinization and low-temperature carbonate addition. Our study shows that serpentinites from representative geodynamic settings have variable, but generally depleted chemical character, inherited from precursor mantle rocks. However, notably B and Cl are enriched, but not uniformly so and independent of geodynamic setting. Supra-subduction zone serpentinites reveal additional enrichments in Cs, Rb, ±Sr, identifying an alteration fluid source that is not pure seawater. In conclusion, precursor mineralogy and magmatic history together with hydration temperature govern the trace element budget of ocean floor serpentinites, which, apart from supplying H2O to the subduction zone, may also be a significant source of B and Cl to the arc magma source and, depending on geodynamic setting, may even influence the element budget for Cs, Rb, Pb, U and .Sr. References: Martin B, Fyfe WS (1970) Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6: 185-202 Pettke T, Spandler C, Kodolányi J, Scambelluri M (2009) The chemical signatures of progressive dehydration stages in subducted serpentinites (this volume) Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5 Doi: 10.1029/2003GC000597 Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite Subduction: Implications for Fluid Processes and Trace-Element Recycling. Int Geol Rev 46: 595-613 Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268: 858-861

  20. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: An experimental study

    NASA Astrophysics Data System (ADS)

    Guo, Haihao; Audétat, Andreas

    2017-02-01

    In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in felsic natural samples may be identified by Cu, Se, Te and Cd-enrichment in magmatic sulfides, and by As, Se, Cd and Bi-enrichment in magmatic apatite.

  1. Sr - an element shows the way - Applications of Sr isotopes for provenance, tracing and migration (Invited)

    NASA Astrophysics Data System (ADS)

    Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.

    2010-12-01

    Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications presented for Sr isotope ratios simply supported by the fact that a higher statistical number of samples could be analyzed. Further supported by direct introductions systems such as laser ablation, the popularity of Sr in science has increased steadily. A number of fields of applications make nowadays use of the system so far: anthropology and archaeology as well as food science, chemical technology, forensic science, medicine or biology. The Sr isotope system will be presented along with analytical techniques applied. Selected examples making use of the natural Sr isotopic variation will be reported: Proof of provenance of food, forensic applications and migration studies on prehistoric cultures or modern biological systems. In addition, the application of enriched Sr isotope spikes will be presented. The spikes are administered in order to investigate Sr turnovers (e.g. as proxy for Ca in biomedical studies), marking tissues for tracing and migration experiments and investigating environmental processes.

  2. Forensic Discrimination of Concrete Pieces by Elemental Analysis of Acid-soluble Component with Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro

    2018-01-01

    Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.

  3. Development and evaluation of geochemical methods for the sourcing of archaeological maize

    USGS Publications Warehouse

    Benson, L.V.; Taylor, Howard E.; Peterson, K.A.; Shattuck, B.D.; Ramotnik, C.A.; Stein, J.R.

    2008-01-01

    Strontium (Sr)-isotope values on bone from deer mice pairs from 12 field sites in the Chaco Canyon area, New Mexico, were compared with isotope values of synthetic soil waters from the same fields. The data indicate that mice obtain Sr from near-surface sources and that soil samples collected at depths ranging from 25 to 95 cm contain Sr that is more accessible to the deep roots of maize; thus, synthetic soil solutions provide better data for the sourcing of archaeological maize. However, the Sr-isotope composition of mice may be more valuable in sourcing archaeological remains of animals such as rabbit, turkey, and deer. In a separate study, five Native American maize (Zea mays L. ssp. mays) accessions grown out at New Mexico State University Agricultural Science Center, Farmington, New Mexico were used to determine if soil-water metal pairs partition systematically into cobs and kernels. The sampled maize included landraces from three Native American groups (Acoma, Hopi, Zuni) that still occupy the Four Corners area. Two cobs each were picked from 10 plants of each landrace. Partitioning of the Ba/Mn, Ba/Sr, Ca/Sr, and K/Rb metal pairs from the soil water to the cob appears to behave in a systematic fashion. In addition, 51 rare earth element (REE) pairs also appear to systematically partition from the soil water into cobs; however, the ratios of the REE dissolved in the soil waters are relatively invariant; therefore, the distribution coefficients that describe the partitioning of REE from the soil water to the cob may not apply to archeological cobs grown under chemically heterogeneous conditions. Partitioning of Ba/Rb, Ba/Sr, Mg/P, and Mn/P metal pairs from the soil water to kernels also behaves in a systematic fashion. Given that modern Native American landraces were grown under optimal environmental conditions that may not have been duplicated by prehistoric Native Americans, the distribution coefficients obtained in this study should be used with caution. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Petrogenesis of Tertiary continental intra-plate lavas between Siebengebirge and Westerwald, Germany: Constraints from trace element systematics and Nd, Sr and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Schubert, S.; Jung, S.; Pfänder, J. A.; Hauff, F.; Garbe-Schönberg, D.

    2015-10-01

    New 39Ar/40Ar ages and major- and trace-element and radiogenic isotope data are presented for basanites and alkali basalts from the transition area between the Westerwald and Siebengebirge volcanic fields (Germany) that belongs to the Central European Volcanic Province (CEVP). The 39Ar/40Ar ages indicate ages of c. 24 and c. 5 Ma which are fully compatible with previous K/Ar ages indicating that the evolution of this volcanic field belongs to the Westerwald area (28-22 Ma and 5 Ma) rather than to the Siebengebirge area (26-23 Ma). Based on the occurrence of > 30 isolated volcanic plugs with a simple igneous history, this volcanic field can be viewed as a monogenetic volcanic field. Compositions of some basanites are primitive, whereas others and the alkali basalts show decreasing Cr and Ni contents and CaO/Al2O3 ratios. However, increasing TiO2, Al2O3 and incompatible elements (Sr, Zr, Y, Hf, Ta) concentrations with decreasing MgO indicating fractionation of mainly olivine with minor amounts of clinopyroxene and spinel can be noticed. Rare earth element systematics suggest that most of the alkaline rocks are generated by different degrees of melting (5%-10%) of a garnet-bearing peridotite containing some residual amphibole. Negative anomalies of Rb and K in primitive mantle-normalized diagrams and a lack of Ba/Rb fractionation suggest that amphibole was the major OH-bearing mineral phase in the mantle. The alkaline rocks have a restricted range in 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.7033 to 0.7044 and from 0.51275 to 0.51285, respectively. Lead isotope compositions (206Pb/204Pb: 19.21-19.65; 207Pb/204Pb: 15.62-15.67; 208Pb/204Pb: 39.10-39.46) of the alkaline rocks are within the range of most OIB in which the higher values approach the composition of the European Asthenospheric Reservoir (EAR). The correlation between Sr and Nd isotopes and trace element constraints (Ce/Pb; Nb/U) indicates that for some samples interaction with crustal rocks during fractionation has occurred. Miocene intraplate basaltic volcanism in the area probably occurred as a result of minor "baby plume" activity. Each volcanic plug records evidence of a specific stage of fractionation with or without assimilation; however, in summary the lavas plot on a single fractionation path. This implies that during evolution of the volcanic field initial melting took place in the asthenosphere or at the lithosphere-asthenosphere interface. The melts moved through the lithospheric mantle and stagnated at crustal levels, however the observed fractionation paths suggest that they were fed from a single reservoir. This model, which involves small-scale plume impact followed by asthenosphere-lithosphere interaction together with minor crustal contamination, should also be applicable to other intra-continental rift-related areas.

  5. Trace element transport in western Siberian rivers across a permafrost gradient

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Manasypov, Rinat M.; Loiko, Sergey V.; Krickov, Ivan A.; Kopysov, Sergey G.; Kolesnichenko, Larisa G.; Vorobyev, Sergey N.; Kirpotin, Sergey N.

    2016-03-01

    Towards a better understanding of trace element (TE) transport in permafrost-affected Earth surface environments, we sampled ˜ 60 large and small rivers (< 100 to ≤ 150 000 km2 watershed area) of the Western Siberian Lowland (WSL) during spring flood and summer and winter baseflow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ˜ 40 major and TEs in the dissolved (< 0.45 µm) fraction allowed establishing main environmental factors controlling the transport of metals and TEs in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentrations was evidenced. Two groups of elements were distinguished: (1) elements that show the same trend throughout the year and (2) elements that show seasonal differences. The first group included elements decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding. The elements of the second group exhibited variable behavior in the course of the year. A northward increase during spring period was mostly pronounced for Fe, Al, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A springtime northward decrease was observed for Ni, Cu, Zr and Rb. The increase in element concentration northward was observed for Ti, Ga, Zr and Th only in winter, whereas Fe, Al, rare earth elements (REEs), Pb, Zr, and Hf increased northward in both spring and winter, which could be linked to leaching from peat and transport in the form of Fe-rich colloids. A southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). Finally, B, Li, Cr, V, Mn, Zn, Cd, and Cs did not show any distinct trend from S to N. The order of landscape component impact on TE concentration in rivers was lakes > bogs > forest. The lakes decreased export of Mn and Co in summer and Ni, Cu, and Rb in spring, presumably due to biotic processes. The lakes enriched the rivers in insoluble lithogenic elements in summer and winter, likely due to TE mobilization from unfrozen mineral sediments. The rank of environmental factors on TE concentration in western Siberian rivers was latitude (three permafrost zones) > season > watershed size. The effect of the latitude was minimal in spring for most TEs but highly visible for Sr, Mo, Sb and U. The main factors controlling the shift of river feeding from surface and subsurface flow to deep underground flow in the permafrost-bearing zone were the depth of the active (unfrozen) seasonal layer and its position in organic or mineral horizons of the soil profile. In the permafrost-free zone, the relative role of carbonate mineral-bearing base rock feeding versus bog water feeding determined the pattern of TE concentration and fluxes in rivers of various sizes as a function of season. Comparison of obtained TE fluxes in WSL rivers with those of other subarctic rivers demonstrated reasonable agreement for most TEs; the lithology of base rocks was the major factor controlling the magnitude of TE fluxes. Climate change in western Siberia and permafrost boundary migration will essentially affect the elements controlled by underground water feeding (DIC, alkaline earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids. Plant litter-originated divalent metals present as organic complexes may be retained via adsorption on mineral horizon. However, due to various counterbalanced processes controlling element source and sinks in plant-peat-mineral soil-river systems, the overall impact of the permafrost thaw on TE export from the land to the ocean may be smaller than that foreseen with merely active layer thickening and permafrost boundary shift.

  6. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy).

    PubMed

    Alaimo, M G; Dongarrà, G; La Rosa, A; Tamburo, E; Vasquez, G; Varrica, D

    2018-08-15

    The aim of this study was to determine and compare the content of 28 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, Tl, U, V and Zn) in fruiting bodies of Boletus aereus Bull. and Clitopilus prunulus P. Kumm collected from eleven unpolluted sites of Sicily (Italy) and, also to relate the abundance of chemical elements in soil with their concentration in mushrooms. Median concentrations of the most abundant elements in Boletus aereus ranged from 31,290 μg/g (K) to 107 μg/g (Zn) in caps and from 24,009 μg/g (K) to 57 μg/g (Zn) in stalks with the following abundance order: K > Na > Ca > Mg > Fe > Al > Rb > Zn. The same elements, in the whole fruiting body of Clitopilus prunulus samples, varied in the range 54,073-92 μg/g following the abundance order: K > Na > Mg > Ca > Fe > Al > Rb > Zn. Metal contents in Boletus aereus and in the whole fruiting body of Clitopilus prunulus, collected from the same sampling sites, showed statistically significant differences for most elements. In particular, Clitopilus prunulus contained around two to four times more Co, Cr, Fe, Mg, Mo, Pb, U and V than caps and stalks of Boletus aereus species which, in turn, was from two to four times more enriched in Cu, Se and Tl. Thus, the elemental content of Boletus aereus and Clitopilus prunulus appeared to be species-dependent. The distribution of chemical elements in Boletus aereus was not uniform throughout the whole fruiting body as most elements were significantly bioconcentrated in caps. Furthermore, the fruit bodies of Boletus aereus from the volcanic soil differed both in major and minor elements concentrations from those collected from sedimentary soils. Cadmium and lead concentrations were below the threshold limits for wild mushrooms proposed by EU Directives (2008 and 2015). The elemental content was not significantly influenced by soil pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Selective reflection of laser radiation from submicron layers of Rb and Cs atomic vapors: Applications in atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Klinger, E.; Sargsyan, A.; Leroy, C.; Sarkisyan, D.

    2017-10-01

    We studied selective reflection (SR) of laser radiation from a window of a nanocell with thickness L λ 1,2/2 filled with Rb and Cs atoms, where λ 1 = 780 nm and λ 2 = 852 nm are the wavelengths resonant with the D 2 laser lines for Rb and Cs, respectively. It is demonstrated that the negative derivative of the SR signal profile for L > λ/2 changes to the positive one for L < λ/2. It is shown that the real-time formation of the SR signal profile derivative (SRD) with the spectral width 30-40 MHz and located at the atomic transition is, in particular, a convenient frequency marker of D 2 transitions in Rb and Cs. The amplitudes of SRD signals are proportional to the atomic transition probabilities. A comparison with the known saturated absorption (SA) method demonstrated a number of advantages, such as the absence of cross-over resonances in the SRD spectrum, the simplicity of realization, a low required power, etc. An SRD frequency marker also operates in the presence of the Ne buffer gas at a pressure of 6 Torr, which allowed us to determine the Ne-Rb collisional broadening, whereas the SA method is already inapplicable at buffer gas pressures above 0.1 Torr. The realization simplicity makes the SRD method a convenient tool for atomic spectroscopy. Our theoretical model well describes the SRD signal.

  8. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer studies is critically discussed, where special emphasis is set on evaluating different data processing strategies on the example of enriched stable Sr isotopes.1 The analytical key parameters such as blank (Kr, Sr and Rb), variation of the natural Sr isotopic composition in the sample, mass bias, interferences (Rb) and total combined uncertainty are considered. A full metrological protocol for data processing using IPD is presented based on data gained during two transgenerational marking studies of fish, where the transfer of a Sr isotope double spike (84Sr and 86Sr) from female spawners of common carp (Cyprinus carpio L.) and brown trout (Salmo trutta f.f.)2 to the centre of the otoliths of their offspring was studied by (LA)-MC-ICP-MS. 1J. Irrgeher, A. Zitek, M. Cervicek and T. Prohaska, J. Anal. At. Spectrom., 2014, 29, 193-200. 2A. Zitek, J. Irrgeher, M. Kletzl, T. Weismann and T. Prohaska, Fish. Manage. Ecol., 2013, 20, 654-361.

  9. Essential and toxic elements in seaweeds for human consumption.

    PubMed

    Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L

    2016-01-01

    Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.

  10. Late Precambrian (740 Ma) charnockite, enderbite, and granite from Jebel Moya, Sudan: A link between the Mozambique Belt and the Arabian-Nubian Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.J.; Dawoud, A.S.

    1991-09-01

    New Rb-Sr and whole rock and U-Pb zircon data are reported for deep-seated igneous rocks from Jebel Moya in east-central Sudan. This exposure is important because it may link the high-grade metamorphic and deep-seated igneous rocks of the Mozambique Belt with the greenschist-facies and ophiolitic assemblages of the Arabian-Nubian Shield, both of Pan-African (ca. 900-550 Ma) age. The rocks of Jebel Moya consist of pink granite, green charnockite, and dark enderbite. A twelve-point Rb-Sr whole rock isochron for all three lithologies yields an age of 730 {plus minus} 31 Ma and an initial {sup 87}Sr/{sup 86}Sr of 0.7031 {plus minus}more » 1. Nearly concordant zircon ages for granite, charnockite, and enderbite are 744 {plus minus} 2,742 {plus minus} 2, and 739 {plus minus} 2 Ma, respectively. Initial {epsilon}-Nd for these rocks are indistinguishable at 3.0 {plus minus} 0.4. The data suggest that the charnockite, enderbite, and granite are all part of a deep-seated igneous complex. The initial isotopic compositions of Sr and Nd indicate that Jebel Moya melts were derived from a mantle source that experienced significantly less time-integrated depletion of LRE and LIL elements than the source of Arabian-Nubian Shield melts. The ages for Jebel Moya deep-seated igneous rocks are in accord with data from elsewhere in the Mozambique Belt indicating that peak metamorphism occurred about 700-750 Ma. The northward extension of the Mozambique Belt to the Arabian-Nubian Shield defines a single east Pan-African orogen. The principal difference between the northern and southern sectors of this orogen may be the greater degree of thickening and subsequent erosion experienced in the south during the late Precambrian, perhaps a result of continental collision between East (Australia-India) and West Gondwanaland (S. America-Africa) about 750 Ma.« less

  11. Drift pumice in the Central Indian Ocean Basin: Geochemical evidence

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Mudholkar, A. V.; Jai Sankar, S.; Ilangovan, D.

    2008-03-01

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which allow one to define two different origins linked to two separate eruptions. One group of pumice is a dacitic type characterized by high Fe, Ti, Mg, Al and Ca with comparatively low contents of Si, rare-earth elements (∑REE, 69 ppm), Rb, Sr, U, Th, Ba, V, Nb, Sc, Mo and Co, which strongly suggest an origin from the 1883 Krakatau eruption. The other group is rhyolitic and is characterized by low contents of Fe, Ti, Mg and Ca and high Si, ∑REE content (121 ppm), Rb, Sr, U, Th, Ba, V, Nb, Mo, Co, and Sc and correlates well with the composition of the Youngest Toba Tuff (YTT) eruption of ˜74 ka from Northern Sumatra and is being reported for the first time. Therefore, correlation of the pumice to the 1883 Krakatau and YTT eruptions indicates that the pumice drifted to the CIOB and eventually sank when it became waterlogged. However, physical properties such as density, specific gravity, porosity and degree of saturation required for sinking of pumice for both 1883 Krakatau and YTT are almost similar.

  12. Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Unruh, D. M.; Tatsumoto, M.; Hutchison, R.

    1982-01-01

    Analyses of whole rock and mineral separates from the Nakhla meteorite are carried out by means of Sm-Nd and U-Tn-Pb systematics and by determining their REE, Ba, Sr, Rb, and K concentrations. Results show that the Sm-Nd age of the meteorite is 1.26 + or - 0.7 b.y., while the high initial epsilon(Nd) value of +16 suggests that Nakhla was derived from a light REE-depleted, old planetary mantle source. A three-stage Sm-Nd evolution model is developed and used in combination with LIL element data and estimated partition coefficients in order to test partial melting and fractional crystallization models and to estimate LIL abundances in a possible Nakhla source. The calculations indicate that partial melting of the source followed by extensive fractional crystallization of the partial melt could account for the REE abundances in the Nakhla constituent minerals. It is concluded that the significantly younger age of Nakhla than the youngest lunar rock, the young differentiation age inferred from U-Th-Pb data, and the estimated LIL abundances suggest that this meteorite may have been derived from a relatively large, well-differentiated planetary body such as Mars.

  13. L i ( i=1,2,3) subshell X-ray production cross-sections and fluorescence yields for Ir, Pt, Pb and Bi

    NASA Astrophysics Data System (ADS)

    Singh, P.; Sharma, M.; Shahi, J. S.; Mehta, D.; Singh, N.

    2003-09-01

    The L i ( i=1,2,3) subshell X-ray production (XRP) cross-sections were measured for 77Ir, 78Pt, 82Pb and 83Bi following direct ionization in the L i ( i=1,2,3) subshells by the 59.54 keV γ-rays and the L 3 subshell by the Br/Rb/Sr/Y K X-rays. The photon sources consisting of an 241Am source in (i) the direct excitation mode and (ii) the secondary excitation mode together with the KBr/RbNO 3/SrCO 3 /Y secondary exciter and an Si(Li) detector were used. The L i ( i=1,2,3) subshell fluorescence yields ( ωi) for these elements were deduced using the measured XRP cross-sections and the L i subshell photoionization cross-sections based on the Hartree-Fock-Slater model. The measured ω1 values are found to be higher upto 50% than those based on the relativistic Dirac-Hartree-Slater (RDHS) calculations, while the ω2 and ω3 values exhibit good agreement. The predicted jump in the RDHS based ω1 values from 77Ir to 78Pt due to onset of intense L 1-L 3M 4 CK transition is not observed.

  14. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere

    USGS Publications Warehouse

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.

    1992-01-01

    The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host basalts. The EMII mantle domain may be present in the Chinese continental lithosphere just above the EMI domain of the basalt source at the lower part of the lithosphere. We argue that the ancient depleted continental lithosphere was metasomatized, imparting the EMI signature, in earlier times ( > 1000 m.y.), and U migrated upward, resulting in high Th U ratios in the lower portion of the lithosphere. Observed high Th U, Rb Sr, 87Sr 86Sr and ??208, low Sm Nd ratios, and a large negative ??Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga, support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component. We also suggest that the EMII signature may have been introduced later (less than ??? 500 Ma) by another metasomatic event during the subduction of an oceanic plate, which was partially responsible for some of the observed inter-mineral isotopic disequilibria. ?? 1992.

  15. Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses.

    PubMed

    Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco

    2013-01-01

    To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.

  16. Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site

    NASA Astrophysics Data System (ADS)

    Michard, G.; Albarède, F.; Michard, A.; Minster, J.-F.; Charlou, J.-L.; Tan, N.

    1984-03-01

    Ten samples were recovered by the submersible "Cyana" submersible from two groups of hydrothermal vents located 2600 m deep along the East Pacific Rise at 13°N. The maximum measured temperature was 317°C and minimum pH 3.8. A systematic determination of major and trace elements has been carried out and mixing lines between a high-temperature component (HTC) and seawater are observed. The water chemistry of the HTC slightly differs for several elements at the two sites. This HTC is deprived of SO 4 and Mg and is greatly enriched in most other species. Maximum concentrations are (in units per kg): Cl = 0.72mol; Br = 1.1mmol; Na = 0.55mol; K = 29mmol; Rb = 14 μmol; Ca = 52mmol; Sr = 170 μmol; Mn = 750 μmol; Fe = 1mmol; Al = 15 μmol; Si = 21mmol. For many elements, the magnitude of the anomaly relative to seawater does not compare with the results obtained from the Galapagos or East Pacific Rise 21°N. The enrichment of cations relative to seawater is likely related to the huge Cl excess through charge balance. The Br/Cl ratio is close to that for seawater. However, it is not clear whether the Cl excess is due to gas release or basalt hydration (formation of amphibole chlorite or epidote). P-T dependence of SiO 2 solubility suggests that water-rock interaction last occurred at a depth in excess of 1 km below the sea floor. A mixing line of 87Sr/ 86Sr vs. Mg/Sr demonstrates that the HTCs have a nearly identical 87Sr/ 86Sr ratio of 0.7041 for both sites. A water/rock ratio of about 5 is inferred, which differs from the 1.5 value obtained at 21°N.

  17. Spectroscopy of LiCa and RbSr Molecules on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Gunter; Ernst, Wolfgang E.

    2013-06-01

    We report on the investigation of mixed alkali metal (Ak) - alkaline earth metal (Ake) molecules on the surface of helium nanodroplets (He_{N}). These molecules have recently attracted considerable attention as candidates for the formation of ultracold molecules with a magnetic and an electronic dipole moment. In our experiments, LiCa and RbSr molecules are formed in a sequential pick-up process in their X^{2}Σ^{+} ground state and cool down rapidly to the droplet temperature of 0.38 K. Excitation spectra of LiCa and RbSr were recorded by using resonance enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy. On the helium droplet, vibronic transitions in Ak-Ake molecules are broadened and show a characteristic asymmetric peak form, which is caused by the interaction between the molecule and the superfluid He_{N} environment. For the lower electronic transitions in LiCa and RbSr progressions of vibrational bands excited from the X^{2}Σ^{+} (ν'' = 0) state are observed. The LiCa spectra can be compared to molecular beam experiments, which enables the assignment of three band systems near 15260 cm^{-1}, 19300 cm^{-1} and 22120 cm^{-1} as ^{2}Σ^{+}, ^{2}Π_{Ω} and ^{2}Π band, respectively. In the RbSr excitation spectrum we observe a vibrationally resolved band system near 14020 cm^{-1}. Upon electronic excitation, a fraction of the molecules desorb from the droplet surface and dispersed fluorescence spectra allow to study the X^{2}Σ^{+} ground state and excited states of free Ak-Ake molecules. H. Hara, Y. Takasu, Y. Yamaoka, J.M. Doyle, Y. Takahashi, Phys. Rev. Lett. 106, 205304 (2011) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) L. M. Russon, G. K. Rothschopf, M. D. Morse, A. I. Boldyrev, J. Simons, J. Chem. Phys. 109, 6655-6665 (1998)

  18. Rb-Sr-analyses of apollo 16 melt rocks and a new age estimate for the imbrium basin: lunar basin chronology and the early heavy bombardment of the moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, A.; Stoeffler, D.

    1987-07-01

    Rb-Sr-model ages on 7 impact glass-bombs and internal Rb-Sr isochrons for two crystalline impact melt rocks from the Apollo 16 collection have been determined. The post-Cayley glass-bombs with model ages between 4.75 +- 0.45 AE and 3.97 +- 0.08 AE can be classified according to their calculated single stage (/sup 87/Rb/sup 86/Sr)/sub I/-ratios: 67728, 67946, and 67627.8 point to a KREEP-free precursor terrain - the Descartes highlands; whereas 63566, 67567, 67627.10 and 67629 are derived from the more heterogeneous Cayley plains. The very feldspar-rich impact melt rock 65795, which is compositionally similar to the group of feldspathic microporphyritic melt brecciasmore » (FM-suite), yields a crystallization age of 3.81 +- 0.04 AE (2sigma; lambda/sup 87/Rb = 1.42/sup -11/ yr/sup -1/) and I/sub Sr/ of .69929 +- 3. The authors suggest that the Imbrium basin and the related Fra Mauro and Cayley formations were formed 3.77 +- 0.02 AE ago and could be even as young as 3.75 AE. As a consequence, they adopt 3.92 +- 0.03 AE, 3.87 +- 0.03 AE, and 3.84 +- 0.04 AE as ages for the Nectaris, Serenitatis, and Crisium basins, respectively, in agreement with the relative crater densities measured on the ejecta blankets of these basins. The proposed age sequence leads to an average formation interval for the observed 12-13 Nectarian basins of 7 to 14 m.y. leaving approx. 30 pre-Nectarian basins of unknown age. These facts suggest that there is no late terminal lunar cataclysm in the sense of a culmination of the lunar impact rate at approx. 3.8 AE ago. Rather, the observations are compatible with a steeply and steadily decreasing flux of impactors in the sense of an early heavy bombardment which started at the time of the moon's accretion and terminated around 3.75 AE ago.« less

  19. Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034

    NASA Astrophysics Data System (ADS)

    Nyquist, Laurence E.; Shih, Chi-Yu; McCubbin, Francis M.; Santos, Alison R.; Shearer, Charles K.; Peng, Zhan X.; Burger, Paul V.; Agee, Carl B.

    2016-03-01

    The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both 147Sm-143Nd and 146Sm-142Nd age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously ~4.44 Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35-4.45 Ga) for U-Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous-textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb-Sr system was detected, and no age significance could be gleaned from our Rb-Sr data. The disturbance to the Rb-Sr system may be due to a thermal event recorded by bulk-rock K-Ar ages of 1.56 Ga and U-Pb ages of phosphates at about 1.35-1.5 Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP-rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.

  20. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Metallic content of wines from the Canary Islands (Spain). Application of artificial neural networks to the data analysis.

    PubMed

    Frías, Sergio; Conde, José E; Rodríguez, Miguel A; Dohnal, Vlasta; Pérez-Trujillo, Juan P

    2002-10-01

    Eleven elements, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb, were determined in dry and sweet wines bearing the denominations of origin of El Hierro, La Palma and Lanzarote islands (Canary Islands, Spain). Analyses were performed by flame atomic absorption spectrophotometry, with the exceptions of Li and Rb for which flame atomic emission spectrophotometry was used. The content in copper and iron did not present risks of cases. All samples presented a copper and zinc content below the maximum amount recommended by the Office International de la Vigne et du Vin (OIV) for these elements. Significant differences in the metallic content were found among the different islands. Thus, Lanzarote presented the highest mean content in sodium and lithium and the lowest mean content in rubidium, and La Palma presented the highest mean content in strontium and rubidium. Sweet wines from La Palma, elaborated as naturally sweet with over-ripe grapes, presented mean contents significantly higher with regard to dry wines from the same island in the majority of the analysed elements. Cluster analysis and Kohonen self-organising maps showed differences in wines according to the island of origin and the ripening state of the grapes. Back-propagation artificial neural networks showed better prediction ability than stepwise linear discriminant analysis.

  2. Initial Isotopic Heterogeneities in ZAGAMI: Evidence of a Complex Magmatic History

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.

    2006-01-01

    Interpretations of Zagami s magmatic history range from complex [1,2] to relatively simple [3]. Discordant radiometric ages led to a suggestion that the ages had been reset [4]. In an attempt to identify the mechanism, Rb-Sr isochrons were individually determined for both fine-grained and coarse-grained Zagami [5]. Ages of approx.180 Ma were obtained from both lithologies, but the initial Sr-87/Sr-86 (ISr) of the fine-grained lithology was higher by 8.6+/-0.4 e-units. Recently, a much older age of approx.4 Ga has been advocated [6]. Here, we extend our earlier investigation [5]. Rb-Sr Data: In [5] we applied identical, simplified, procedures to both lithologies to test whether a grain-size dependent process such as thermally-driven subsolidus isotopic reequilibration had caused age-resetting. Minerals were separated only by density. In the present experiment, purer mineral separates were analysed with improved techniques. Combined Rb-Sr results give ages (T) = 166+/-12 Ma and 177+/-9 Ma and I(subSr) = 0.72174+/-9 and 0.72227+/-7 for the coarse-grained and fine-grained lithologies, respectively. ISr in the fine-grained sample is thus higher than in the coarse-grained sample by 7.3+/-1.6 e-units. The results for the coarse-grained lithology are in close agreement with T = 166+/-6 Ma, ISr = 0.72157+/-8 for an adjacent sample [7] and T = 178+/-4 Ma, ISr = 0.72151+/-5 [4, adjusted] for a separate sample. Thus, fine-grained Zagami appears on average to be less typical of the bulk than coarse-grained Zagami.

  3. Volatile element depletion and K-39/K-41 fractionation in lunar soils

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.; Wright, J. E.; Lee-Hu, C.-N.

    1976-01-01

    Evidence for selective loss and isotopic fractionation (in the case of K) of volatile elements during formation of agglutinates by micrometeoritic bombardment of lunar soils is presented. Concentrations and isotopic compositions of volatile elements (K, Rb, Pb) and nonvolatile elements (U, Th, Ba, Sr, rare earths) in separates taken from soils 14163, 14259, 15041, 68501, and 71500 are examined. Rayleigh fractionation calculations applied to K-39/K-41 isotopic data indicate ten-fold recycling of bulk soil, to account for observed isotopic anomalies. The lunar soil fines fraction seems to be a site of deposition for volatile or labile Pb produced during agglutination. Local fines (below 75 microns) are viewed as representative of the parent material for agglutinates formed in situ by micrometeoritic impact. Magnetic separation of agglutinates from soil 68501 revealed a bimodal population, with one class comprising welded blocky magnetic glasses.

  4. PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.

    2017-08-01

    The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.

  5. Brother is high Sr/Y two-mica granite and sister is leucogranite: twin granites in the Northern Himalayan Gneiss Domes, southern Tibet

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Gao, L.; Xie, K.

    2011-12-01

    Leucogranites in the Himalayan orogen is widely considered as the type example of crustal melts, which provides a probe to investigate the interplay among high-grade metamorphism, crustal anatexis, and tectonic transition in large-scale collisional belts. Whether the leucogranite was a daughter product from a more primitive granitic melt is an interesting question that deserves careful examination to address the above issue. We report a new suite of two-mica granite (TMG) and leucogranite (LG) in the Yardoi gneiss dome (YGD) in the easternmost of the Northern Himalayan Gneiss Domes (NHGD), south of the Yarlung-Tsangpo suture. SHRIMP and LA-ICP-MS zircon U/Pb dating show that TMG and LG formed at ~17.7 Ma to ~20.0 Ma and at ~17.1 Ma, respectively. Both suites of granite have high Na/K (>1.30) ratios. The TMGs are characterized by (1) high Sr (>450 ppm), low Rb (<95 ppm) and Y (<6 ppm), and high Sr/Y (>86) ratios; (2) no Eu anomalies; and (3) low initial 87Sr/86Sr ratios (<0.7098) and higher ɛNd (>-8.5) values. In contrast, the LGs have (1) lower Sr (<130 ppm) and higher Rb (92-130 ppm); (2) pronounced negative Eu anomalies with Eu/Eu*<0.55; and (3) relatively higher Sr (87Sr/86Sr(t) =0.7136-0.7148) and unradiogenic Nd (ɛNd(t)=-7.7~-11.1). These data demonstrate that these Mid-Miocene granites have major and trace element and radiogenic isotope compositions similar to those of >35 Ma granites, but significantly different from those granites of similar ages in the High Himalaya as well as in the NHGD. High Sr/Y and relatively unradiogenic Sr isotope compositions in the TMGs could be derived from partial melting of mafic materials formed during previous compressional thickening event which was triggered by the input of juvenile heat and material associated with the Miocene E-W extension. An AFC process (plagioclase fractional crystallization and contamination by crustal materials) could be a primary factor leading to the formation of these LGs. Concurrence of high Sr/Y granites and leucogranites in NHGD indicates that the Miocene rifting could have played an important but previously unrecognized role in producing the Himalayan leucogranite. Similarly, the ~43-44 Ma high Sr/Y two-mica granites were also accompanied by the formation of typical leucogranite. However, the Mid-Eocene suite was derived from melting of lower crustal mafic materials at overthickened crustal conditions. Concurrence of high Sr/Y granites and typical leucogranites in the NHGD demonstrates that leucogranites could be derived from more primitive granitic melts by AFC process.

  6. Ages and Nd, Sr isotopic systematics in the Sierran foothills ophiolite belt, CA: the Smartville and Feather River complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, H.F.; Niemeyer, S.

    1985-01-01

    Sm-Nd dating has shown the Kings-Kaweah ophiolite to be approx. 480 My old. Its Nd, Sr, and Pb isotopic compositions require an unusually old depleted mantle source. Samples from the Smartville and Feather River complexes have been analyzed in a search for similar highly depleted, early Paleozoic ophiolites in the northern foothills ophiolite belt. Six whole rocks from Smartville, encompassing representative lithologies, plus plagioclase and pyroxene mineral separates define a 183 +/- 22 My Sm-Nd isochron. This age, interpreted as the igneous age, is older than, but within error of, approx. 160 My U-Pb ages previously obtained from plagiogranite zirconmore » analyses. One diabase with unusually high Rb/Sr yields a depleted mantle Sr model age of 200 +/- 25 My, consistent with the Sm-ND age. These compositions are clearly oceanic in character but do not discriminate among possible tectonic settings for the formation of the Smartville complex. Sm-Nd data for flaser gabbros and related rocks from Feather River scatter about an approx. 230 My errorchron with element of/sub Nd/(T) = +6.3 to +8.7. Initial /sup 87/Sr//sup 86/Sr ranges from 0.7028 to 0.7031. These results indicate a complex history with initial isotopic heterogeneities and/or disturbances of the isotopic systems. If primary, the element of/sub Nd/ (T) values are somewhat low, suggesting a possible arc origin for these rocks. Neither the Smartville nor Feather R. complexes appear to be related to the Kings-Kaweah ophiolite which, so far, is unique among foothill ophiolites in having an early Paleozoic age and a clear MORB, as opposed to arc or marginal basin, isotopic signature.« less

  7. Salton Sea sampling program: baseline studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullis, R.E.; Carter, J.L.; Langlois, G.W.

    1981-04-13

    Baseline data are provided on three species of fish from the Salton Sea, California. The fishes considered were the orange mouth corvina (Cynoscion xanthulus), gulf croaker (Bairdiella icistius) and sargo (Anisotremus davidsonii). Morphometric and meristic data are presented as a baseline to aid in the evaluation of any physiological stress the fish may experience as a result of geothermal development. Analyses were made on muscle, liver, and bone of the fishes sampled to provide baseline data on elemental tissue burdens. The elements measured were: As, Br, Ca, Cu, Fe, Ga, K, Mn, Mi, Pb, Rb, Se, Sr, Zn, and Zr.more » These data are important if an environmentally sound progression of geothermal power production is to occur at the Salton Sea.« less

  8. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Zayane, Rachid

    2018-01-01

    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean island basalt source. Melting of the subcontinental metasomatized lithosphere is tentatively related to small-scale shallow mantle upwelling and asthenospheric uprise at the triple junction between the western High Atlas, the Middle Atlas and the eastern High Atlas domains during a period of relative tectonic quiescence.

  9. The geochemical and Sr-Nd-Pb-He isotopic characterization of the mantle source of Rungwe Volcanic Province: comparison with the Afar mantle domain

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; Hilton, D. R.; Halldorsson, S. A.; Wang, R.

    2012-12-01

    The ultimate source of heat and magmatism associated with continental rifting in the East African Rift System (EARS) is generally viewed to be the African Superplume, but there is continuing debate on the surface expression of this large anomalous feature, which originates in the lower mantle. Previous studies have demonstrated an insignificant role for crustal contamination thereby identifying a single mantle plume signature in Quaternary basalts from the Main Ethiopian Rift in the northern EARS. This is designated to be the Afar plume and is characterized by, e.g., 3He/4He >15 RA, 206Pb/204Pb = 19.5 and 87Sr/86Sr = 0.7035 [Rooney et al., J. Pet. 53, 2012]. In contrast, the signature of plume(s) in the southern EARS is less constrained. Rogers et al. [EPSL 176, 2000] proposed a plume in the sub-lithospheric Kenyan mantle with characteristically lower 43Nd/144Nd than the Afar plume whereas Furman [JAES 48, 2007] advocated a high μ [HIMU] plume based primarily on the high 206Pb/204Pb ratios of lavas in all areas within and south of the Turkana Depression: both models assume a 3He/4He lower than the Afar plume. Here we report the trace element and Sr-Nd-Pb isotopic composition of basaltic lavas from the Rungwe Volcanic Province (RVP) in the southern extreme of the Western Rift previously identified as a high 3He/4He locality (~15 RA; [Hilton et al., GRL 38, 2011]). Trace element analyses are within the previously reported range of lava compositions that include a relatively large lithospheric component. More importantly, we identify correlations among incompatible trace element and isotopic ratios (e.g., 3He/4He vs 206Pb/204Pb, Rb/Sr, Nb/Ta; 87Sr/86Sr vs 208Pb/204Pb). Our new results suggest the presence of a distinct, high 3He/4He mantle source beneath RVP that is more radiogenic (e.g., 206Pb/204Pb up to ~19.8; 87Sr/86Sr up to 0.7055) than the Afar mantle plume. There is also very little or no HIMU signature in RPV basalts based on their high Sr and low Nd isotopic ratios.

  10. Lower crustal xenoliths, Chinese Peak lava flow, central Sierra Nevada.

    USGS Publications Warehouse

    Dodge, F.C.W.; Calk, L.C.; Kistler, R.W.

    1986-01-01

    This assemblage of pyroxenite, peridotite and mafic granulite xenoliths in the toe of a 10 m.y. trachybasalt flow remnant overlying late Cretaceous granitic rocks, indicates the presence of a mafic-ultramafic complex beneath this part of central California; orthopyroxenites, websterites and clinopyroxenites are dominant. A few of the xenoliths contain ovoid opaque patches that are apparently pseudomorphs after garnet and have pyralspite garnet compositions; using a garnet-orthopyroxene geobarometer, they indicate a lower crustal depth of approx 40 km. Abundant mafic granulites can be subdivided into those with Al2O3 = or 15% and showing considerable scatter on oxide variation diagrams. The high-alumina granulite xenoliths have relatively low 87Rb/86Sr but high 87Sr/86Sr, whereas the low-alumina and ultramafic xenoliths have a wide range of 87Rb/86Sr, but lower 87Sr/86Sr; the isotopic data indicate roughly the same age as that of overlying granitic plutons (approx 100 m.y.). However, the granitic rocks have initial 87Sr/86Sr ratios intermediate between those of the high-alumina and ultramafic xenoliths, suggesting that they result from the mixing of basaltic magma (represented by the ultramafic rocks) and crustal materials, with subsequent crystal fractionation.-R.A.H.

  11. Kiglapait Feldspar States 5 to <2 Kbar, 1250 to 240 Degrees C in 20 Ma: Liquidus, Solidus, Solvi, and Subsolidus with Sr Isotope Partitioning: a Review

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    2017-12-01

    The 1305 Ga Kiglapait Intrusion of coastal Labrador records the crystallization of troctolite through olivine gabbro to magnetite- and apatite-bearing rocks to monoclinic sanidine- mesoperthite-ferrosyenite below an inverted stratigraphy of a thin Upper Border Zone. The crystallization history was about 1 Ma. ¶The evolutionary history of Kiglapait feldspars in an 8.4 km thick magma chamber runs from plagioclase An70 at 5 kbar and 1250°C, cooling through to ferrosyenite with mesoperthite and two feldspars at 3 kbar and 1,000°C. The residual magma encountered the binodal solvus and finished crystallizing as an azeotrope with plagioclase (Or 21, An 15) and sanidine (Or 52, An 8) in liquid (Xor = 1/3; An 11). Cooling in the subsolidus brought the feldspars to compositions An15-Or 3, An0-Or 80-85 at 800-730°C. Metastable mesoperthite on the coherent solvus in various stages of late equilibration persists in the local assemblages. Arrested to complete feldspar symplectites suggest the local presence of a vapor phase. ¶Splits of the final Or-rich feldspar were found by mass spectrometry to have a dominant quantity of Rb and 87Sr/86Sr along with % amounts of Ba; in contrast, the plag fraction has very low Rb and 87Sr/86Sr. The estimated timing of the isotopic segregation was plausibly continuous with major-element fractionation or perhaps at the moment(s) of exsolution. ¶The cooling record of the solidified intrusion at 3 kbar is shown by 40Ar/39Ar data to have been rapid, reaching an ambient temperature near 240°C within the first 20 Ma, compared to the ambient country-rock temperature before intrusion of 350°C. The difference suggests a late uplift of the region after the Kiglapait magmatism. ¶Contributions from Y. Yu, T. Krogh, M. Hamilton, D. Lindsley, D. DePaolo, M. Jercinovic and S.R. Hart are especially acknowledged.

  12. Trace elements transport in western Siberia rivers across a permafrost gradient

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Krickov, I. A.; Kopysov, S. G.; Kolesnichenko, L. G.; Vorobyev, S. N.; Kirpotin, S. N.

    2015-11-01

    Towards a better understanding of trace element transport in permafrost-affected Earth surface environments, we sampled ∼ 60 large and small rivers (< 100 to ≤ 150 000 km2 watershed area) of Western Siberia Lowland (WSL) during spring flood and summer and winter base-flow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ∼ 40 major and trace elements in dissolved (< 0.45 μm) fraction allowed establishing main environmental factors controlling the transport of metals and trace elements in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentration was evidenced. Three category of trace elements were distinguished according to their concentration - latitude pattern: (i) increasing northward in spring and winter (Fe, Al, Ga (only winter), Ti (only winter), REEs, Pb, Zr, Hf, Th (only winter)), linked to leaching from peat and/or redox processes and transport in the form of Fe-rich colloids, (ii) decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding and (iii) elements without distinct trend from S to N whose variations within each latitude range were higher than the difference between latitudinal ranges (B, Li, Ti (except summer), Cr, V, Mn, Zn, Cd, Cs, Hf, Th). In addition to these general features, specific, northward increase during spring period was mostly pronounced for Fe, Mn, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A spring time northward decrease was observed for Ni, Cu, Zr, Rb. The southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). The Principal Component Analysis demonstrated two main factors potentially controlling the ensemble of TE concentration variation. The first factor, responsible for 16-20 % of overall variation, included trivalent and tetravalent hydrolysates, Cr, V, and DOC and presumably reflected the presence of organo-mineral colloids, as also confirmed by previous studies in Siberian rivers. The 2nd factor (8-14 % variation) was linked to the latitude of the watershed and acted on elements affected by the groundwater feeding (DIC, Sr, Mo, As, Sb, U), whose concentration decreased significantly northward during all seasons. Overall, the rank of environmental factors on TE concentration in western Siberian rivers was latitude (3 permafrost zones) > season > watershed size. The effect of the latitude was minimal in spring for most TE but highly visible for Sr, Mo, Sb and U. The main factors controlling the shift of river feeding from surface and subsurface flow to deep underground flow in the permafrost-bearing zone were the depth of the active (unfrozen) seasonal layer and its position in organic or mineral horizons of the soil profile. In the permafrost-free zone, the relative role of carbonate mineral-bearing base rock feeding vs. bog water feeding determined the pattern of trace element concentration and fluxes in rivers of various size as a function of season. Comparison of obtained TE fluxes in WSL rivers with those of other subarctic rivers demonstrated reasonable agreement for most trace elements; the lithology of base rocks was the major factor controlling the magnitude of TE fluxes. The climate change in western Siberia and permafrost boundary migration will affect essentially the elements controlled by underground water feeding (DIC, alkaline-earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids. Plant litter-originated divalent metals present as organic complexes may be retained via adsorption on mineral horizon. However, due to various counterbalanced processes controlling element source and sinks in plants - peat - mineral soil - river systems, the overall impact of the permafrost thaw on TE export from the land to the ocean may be smaller than that foreseen by merely active layer thickening and permafrost boundary shift.

  13. Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study

    NASA Technical Reports Server (NTRS)

    Elthon, Donald

    1988-01-01

    The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.

  14. Age Rb/Sr de 1670 M.a. pour les mylonites de l'accident du Sassandra (Côte d'Ivoire) conséquence pour la datation des mouvements fini-éburnéens dans le craton ouest-africain

    NASA Astrophysics Data System (ADS)

    Caen-Vachette, M.; Tempier, P.; Camil, J.

    An eight point Rb/Sr isochron determination on whole rocks yielded an age of 1670 M.a. for the mylonites from the Sassandra couloir of ductile deformation, which extends N-S. A similar age is proposed for the mylonite from a zone of parallel trend stretching NNW-SSE in the Reguibat dome (Mauritania). A correlation is suggested with the Guri fault of the Guayana shield in South America.

  15. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  16. Soil properties, strontium isotopic signatures and multi-element profiles to authenticate the origin of vegetables from small-scale regions: illustration with early potatoes from southern Italy.

    PubMed

    Zampella, Mariavittoria; Quétel, Christophe R; Paredes, Eduardo; Goitom Asfaha, Daniel; Vingiani, Simona; Adamo, Paola

    2011-10-15

    We propose a method for the authentication of the origin of vegetables grown under similar weather conditions, in sites less than 10 km distance from the sea and distributed over a rather small scale area (58651 km(2)). We studied how the strontium (Sr) isotopic signature and selected elemental concentrations ([Mn], [Cu], [Zn], [Rb], [Sr] and [Cd]) in early potatoes from three neighbouring administrative regions in the south of Italy were related to the geological substrate (alluvial sediments, volcanic substrates and carbonate rocks) and to selected soil chemical properties influencing the bioavailability of elements in soils (pH, cation exchange capacity and total carbonate content). Through multiple-step multivariate statistics (PLS-DA) we could assign 26 potatoes (including two already commercialised samples) to their respective eight sites of production, corresponding to the first two types of geological substrates. The other 12 potatoes from four sites of production had similar characteristics in terms of the geological substrate (third type) and these soil properties could be grouped together. In this case, more discriminative parameters would be required to allow the differentiation between sites. The validation of our models included external prediction tests with data of potatoes harvested the year before and a study on the robustness of the uncertainties of the measurement results. Annual variations between multi-elemental and Sr isotopic fingerprints were observed in potatoes harvested from soils overlying carbonate rocks, stressing the importance of testing long term variations in authentication studies. Copyright © 2011 John Wiley & Sons, Ltd. and European Union [2011].

  17. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  18. Variability of As and other fluid-mobile trace elements (FME) in Mariana forearc serpentinites and entrained crustal rocks

    NASA Astrophysics Data System (ADS)

    Johnston, R.; Ryan, J. G.

    2017-12-01

    In the Mariana subduction system, active serpentinite mud volcanoes are associated with the subduction of the Pacific plate beneath the Philippine Sea plate in a non-accretionary convergent plate margin. We are examining the systematics of As and other fluid-mobile trace elements (FME: Cs, Rb, Pb, B, Li) in serpentinized ultramafic clasts and serpentinite muds recovered during IODP Expedition 366 and previous ODP Legs (125, 195) to constrain the role of slab-derived fluids and the P-T° conditions at which fluids are mobilized. Arsenic concentrations in Exp. 366 serpentinites range from 0.08-2 ppm, while Cs varies from 0.001-0.9 ppm, Rb from 0.05-20 ppm and Pb varies from 0.02-10 ppm. The two different seamount summit sites examined (Yinazao: 55 km distance to trench; Asut Tesoru: 72 km to trench) (Hulme, 2010) show marked mobile element abundance differences, with Yinazao serpentinites showing lower As, Cs and Rb, and higher Pb contents than those from Asut Tesoru. Serpentinite mud samples from each seamount are on average higher in FME abundances than are associated serpentinized clasts, though their ranges overlap. Entrained mafic clasts are as high or higher in FME than the serpentinites, perhaps pointing to greater affinities for many of these elements during fluid-rock exchange. Asut Tesoru serpentinites are similar in As, Cs, and Rb abundances to those from S. Chamorro and Conical Seamounts (Savov et al 2005;2007), which also reflect greater distances to trench (78 and 86 km, respectively)(Hulme, 2010). The patterns of serpentinite FME abundances from seamount to seamount mimic to a great degree the dichotomy in cation abundances observed in their associated porefluids, where B and K are markedly lower, and Sr and Ca are markedly higher in Yinazao summit fluids than at the summits of Asut Tesoru, S. Chamorro, or Conical. These abrupt changes in serpentinite and fluid compositions likely reflect the initiation of carbonate and clay breakdown reactions on the downgoing plate in the earliest stages of subduction metamorphism.

  19. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.

    1987-01-01

    Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors

  20. The Determination of Soil-plant Transfer Coefficients of Cesium-137 and Other Elements by γ-Ray Measurement and PIXE Analysis, for use in the Remediation of Fukushima

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Fujita, A.; Toyama, S.; Terakawa, A.; Matsuyama, S.; Arai, H.; Osada, N.; Takyu, S.; Matsuyama, T.; Koshio, S.; Watanabe, K.; Ito, S.; Kasahara, K.

    Edible wild plants growing in the area around the Fukushima Daiichi nuclear power plant remain contaminated. It is important to identify plants with low levels of contamination for the restoration of agriculture in the area. We collected specimens of 10 wild plant species growing in Iitate village which is one of the most highly contaminated areas and also sampled the soil beneath each plant. We measured the specific activity of 137Cs and the concentrations of Na, Mg, Al, Si, P, S, K, Ca, Fe, Zn, Rb and Sr in these samples using a germanium detector and PIXE analysis, respectively. We compared the soil-plant transfer coefficient of 137Cs with those of each element and determined their correlation with 137Cs. It was found that a low Sr transfer coefficient could be used to determine the plants with a low 137Cs transfer coefficient. We suggest that PIXE analysis is a useful analysis technique for agricultural remediation projects in highly contaminated areas around the Fukushima Daiichi nuclear power plant.

  1. Fingerprints for main varieties of argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics.

    PubMed

    Di Paola-Naranjo, Romina D; Baroni, Maria V; Podio, Natalia S; Rubinstein, Hector R; Fabani, Maria P; Badini, Raul G; Inga, Marcela; Ostera, Hector A; Cagnoni, Mariana; Gallegos, Ernesto; Gautier, Eduardo; Peral-Garcia, Pilar; Hoogewerff, Jurian; Wunderlin, Daniel A

    2011-07-27

    Our main goal was to investigate if robust chemical fingerprints could be developed for three Argentinean red wines based on organic, inorganic, and isotopic patterns, in relation to the regional soil composition. Soils and wines from three regions (Mendoza, San Juan, and Córdoba) and three varieties (Cabernet Sauvignon, Malbec, and Syrah) were collected. The phenolic profile was determined by HPLC-MS/MS and multielemental composition by ICP-MS; (87)Sr/(86)Sr and δ(13)C were determined by TIMS and IRMS, respectively. Chemometrics allowed robust differentiation between regions, wine varieties, and the same variety from different regions. Among phenolic compounds, resveratrol concentration was the most useful marker for wine differentiation, whereas Mg, K/Rb, Ca/Sr, and (87)Sr/(86)Sr were the main inorganic and isotopic parameters selected. Generalized Procrustes analysis (GPA) using two studied matrices (wine and soil) shows consensus between them and clear differences between studied areas. Finally, we applied a canonical correlation analysis, demonstrating significant correlation (r = 0.99; p < 0.001) between soil and wine composition. To our knowledge this is the first report combining independent variables, constructing a fingerprint including elemental composition, isotopic, and polyphenol patterns to differentiate wines, matching part of this fingerprint with the soil provenance.

  2. Petrogenesis of mesozoic, peraluminous granites in the Lamoille canyon area, Ruby mountains, Nevada, USA

    USGS Publications Warehouse

    Lee, S.-Y.; Barnes, C.G.; Snoke, A.W.; Howard, K.A.; Frost, C.D.

    2003-01-01

    Two groups of closely associated, peraluminous, two-mica granitic gneiss were identified in the area. The older, sparsely distributed unit is equigranular (EG) with initial ??Nd ??? -8??8 and initial 87Sr/86Sr ???0??7098. Its age is uncertain. The younger unit is Late Cretaceous (???80 Ma), pegmatitic, and sillimanite-bearing (KPG), with ??Nd from -15??8 to -17??3 and initial 87Sr/86Sr from 0??7157 to 0??7198. The concentrations of Fe, Mg, Na, Ca, Sr, V, Zr, Zn and Hf are higher, and K, Rb and Th are lower in the EG. Major- and trace-element models indicate that the KPG was derived by muscovite dehydration melting (<35 km depth) of Neoproterozoic metapelitic rocks that are widespread in the eastern Great Basin. The models are broadly consistent with anatexis of crust tectonically thickened during the Sevier orogeny; no mantle mass or heat contribution was necessary. As such, this unit represents one crustal end-member of regional Late Cretaceous peraluminous granites. The EG was produced by biotite dehydration melting at greater depths, with garnet stable in the residue. The source of the EG was probably Paleoproterozoic metagraywacke. Because EG magmatism probably pre-dated Late Cretaceous crustal thickening, it required heat input from the mantle or from mantle-derived magma.

  3. Sr-Nd isotope geology and tectonomagmatic setting of the Dehsalm intrusives (Lut Block, Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Arjmandzadeh, Reza; Francisco Santos, Jose; Ribeiro, Sara

    2013-04-01

    The Dehsalm porphyritic shallow intrusives belong to the Lut Block volcanic-plutonic belt (central eastern Iran). Previous research on alteration, mineralization and hydrothermal fluids indicates that a Cu-Mo porphyry type mineralization system is related with these intrusives (Arjmandzadeh et al., 2012). The rocks studied in this work range in composition from gabbro-diorite to granite, with dominance of monzonites and quartz monzonites, and have geochemical features of high-K calc alkaline to shoshonitic volcanic arc suites. The trends of major element oxides on Harker diagrams, together with textural evidence, point to the crystal fractionation of clinopyroxene, Ca - plagioclase, hornblende, apatite and oxide minerals. Primitive mantle - normalized trace element spider diagrams display strong enrichment in LILE, such as Rb, Ba and Cs, and depletions in some high field strength elements (HFSE), such as Nb, Ti, Y and HREE. Chondrite-normalized plots show significant LREE enrichments, high LaN/YbN (21.5 to 31.0) and the lack of Eu anomaly. Sr/Y and La/Yb ratios of Dehsalm intrusives are respectively 31.6-72.2 and 21.5-33.5, which reveals that, despite their K-rich composition, these rocks also have some adakitic affinity. A Rb-Sr whole rock-feldspar-biotite age of 33.4±1 Ma was obtained in a quartz monzonite sample; this date may be interpreted as close to the intrusion age, considering that the chosen sample is almost unaltered and should have suffered fast cooling. The obtained age coincides, within error, with a previous geochronological result in a similar rock from the Chah-Shaljami area (Arjmandzadeh et al., 2011), further northwest along the eastern border of the Lut Block. 87Sr/86Sr(33Ma) and ɛNd(33Ma) values range from 0.70481 to 0.70508 and from +1.5 to +2.5, respectively, which fits into a supra-subduction mantle wedge source for the parental melts and indicates that crustal contribution for magma diversification was not relevant. Sr and Nd isotope compositions together with major and trace element geochemistry point to the origin of the parental magmas by melting of a metasomatized mantle source, with garnet behaving as a residual phase, whilst phlogopite was an important contributor to the generated melts. Both geochemical features of Dehsalm porphyries and its association with Cu-Mo mineralization agree with a mature continental arc setting related to the convergence of Afghan and Lut plates during Oligocene. The data on the Dehsalm granitoids reveal a strong affinity with the contemporary rocks from Chah-Shaljami, studied in a previous work (Arjmandzadeh et al., 2011). Moreover, the wider range of compositions (including more mafic compositions) at Dehsalm provides additional support for the suggestion that parental magmas have a mantle origin. Acknowledgements This research was financially supported by the Geobiotec Research Unit (funded by the Portuguese Foundation for Science and Technology, through project PEst-C/CTE/UI4035/2011), University of Aveiro, Portugal. Ministry of Sciences, Research and Technology of Iran granted a sabbatical scholarship of R. Arjmandzadeh in Portugal References Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J., Homam, S.M., 2011. Sr-Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran). Journal of Asian Earth Sciences 41: p. 283-296. Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J., Homam, S.M., 2012. Petrogenesis, tectonomagmatic setting and mineralization potential of Dehsalm granitoids, Lut block, Eastern Iran. Journal of Earth Sciences, accepted.

  4. Petrogenesis of the Baishan granite stock, Eastern Tianshan, NW China: Geodynamic setting and implications for potential mineralization

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Lu, WeiWei; Deng, Gang

    2017-11-01

    Located in a region rich in Cu-Ni and Mo mineralization, the Baishan granitic stock is barren for reasons that remain enigmatic. Whole rock elemental and Sr-Nd isotope analysis, major element analysis of a number of minerals, and zircon trace element, U-Pb and Hf isotope analysis were undertaken in order to reveal the petrogenesis of the granites. All granites show typical I-type characteristics including metaluminous to slightly peraluminous, calc-alkaline signatures with a strong depletion of Nb, Ta, Ti and P, enrichment of light rare earth elements and large ion lithophile elements (e.g., Cs, Rb, Th, U, K). In addition, a strong depletion in Ti and P, highly fractionated light rare earth element patterns and less fractionated heavy rare earth element patterns, and negative correlations between SiO2 and TiO2, Al2O3, MgO, FeOT, P2O5, Zr and Hf suggest significant fractional crystallization of amphibole, apatite, zircon and Ti-bearing minerals. Whole rock Sr-Nd and zircon Hf isotopic compositions show wide variations with (87Sr/86Sr)i values of 0.70358 to 0.70505, εNd (t) of 3.8 to 7.2, and εHf (t) of 2.4 to 12.2 indicating derivation from partial melting of juvenile lower crust with obvious addition of ancient crust. Zircon U-Pb ages indicate a formation age of 292 Ma, significantly older than the ore-forming granite porphyry and slightly older than the regional mafic-ultramafic, A-type and diabase magmatism of Eastern Tianshan. The granite stocks were likely derived during heating of ascending asthenospheric mantle above a mantle plume in the Early Permian. Mineral chemistry, saturation thermometry, mineral species and whole rock Fe2O3/FeO ratios indicate a crystallization temperature of > 980 to 665 °C, pressure of 1.6 kbar and oxygen fugacity of ≤ NNO for the granite stock. Comparing the geochemistry, magma source and crystallization environment for the Early Permian barren granite and Late Triassic ore-related granite porphyry, the low ratios of Sr/Y and low (La/Yb)N, and reduced oxidation state (≤ NNO) in the granitic stock are signatures of infertility for the Early Permian granite. This study implies high Mo mineralization potential for granitic rocks with high Sr/Y, (La/Yb)N and highly oxidized conditions.

  5. 87Sr/86Sr ratios in some eugeosynclinal sedimentary rocks and their bearing on the origin of granitic magma in orogenic belts

    USGS Publications Warehouse

    Peterman, Z.E.; Hedge, C.E.; Coleman, R.G.; Snavely, P.D.

    1967-01-01

    Rb and Sr contents and 87Sr/86Sr values were determined for samples of eugeosynclinal sedimentary rocks, mostly graywackes, from Oregon and California. These data are compatible with the theory of anataxis of eugeosynclinal sedimentary rocks in orogenic belts to produce granitic magmas provided that the melting occurs within several hundreds of m.y. after sedimentation. The low (87Sr/86Sr)0 values of the eugeosynclinal sedimentary rocks are related to the significant amounts of volcanogenic detritus present which probably were originally derived from the mantle. ?? 1967.

  6. U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil

    USGS Publications Warehouse

    Tatsumoto, M.; Unruh, D.M.; Desborough, G.A.

    1976-01-01

    U-Th-Pb systematics study of Allende inclusions showed that U, Th and Sr concentrations in Ca, Al (pyroxene)-rich chondrules and white and pinkish-white aggregate separates of Allende are five to ten times higher than those of the matrix, whereas Mg (olivine)-rich chondrules have U and Th concentrations about twice as high as the matrix. Th concentrations are extremely high in white aggregates and in pinkish-white (spinel-rich) aggregates while U and Sr concentrations in white aggregates are more than twice as high as those in pinkish-white aggregates. Large enrichment of these refractory elements in the white aggregates indicates that they contain high-temperature condensates from the solar nebula. The Pb concentrations in the inclusions are less than half of those in the whole rock and matrix, indicating that the matrix is a lower-temperature condensate. The isotopic composition of lead in the matrix is less radiogenic than that of the whole meteorite, whereas lead in Ca- and Al-rich chondrules and aggregates is extremely radiogenic. The 206Pb/204Pb ratio reaches as high as 55.9 in a white aggregate separate. The lead of Mg-rich chondrules is moderately radiogenic and the 206Pb/204Pb ratio ranges from 18 to 26. A striking linear relationship exists among leads in the chondrules, aggregates and matrix on the 207Pb/204Pb vs 204Pb/204Pb plot. The slope of the best fit line is 0.6188 ?? 0.0016, yielding an isochron age of 4553 ?? 4 m.y. The regression line passes through primordial lead values obtained from Canyon Diablo troilite. The data, when corrected for Canyon Diablo troilite Pb and plotted on a U-Pb concordia diagram, show that the pink and white aggregates and the Ca-Al-rich and Mg-rich inclusions have excess Pb and define a chord which intersects the concordia curve at 4548 ?? 25 m.y. and 107 ?? 70 m.y. The intercepts might correspond to the agglomeration age of the meteorite and a time of probably later disturbance, respectively. The matrix and some chondrules which contain less radiogenic lead did, however, not fit on the chord. The Rb-Sr data of Allende did not define an isochron suggesting that the Rb-Sr system was also disturbed by a later event, as suggested by the U-Pb concordia data. The lowest observed 87Sr/86Sr ratio in Allende inclusions is similar to the initial ratio of the Angra dos Reis achondrite (Papanastassiou, Thesis, 1970). The initial Pb isotopic composition of Orgueil calculated by a single-stage evolution model is more radiogenic than that of Canyon Diablo troilite. To reconcile the U-Pb data of Orgueil and Allende, we propose that the initial lead isotopic composition of the carbonaceous chondrites was slightly different from that of Canyon Diablo troilite Pb. ?? 1976.

  7. Neodymium and strontium isotopic study of Australasian tektites - New constraints on the provenance and age of target materials

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Papanastassiou, D. A.; Wasserburg, G. J.; Koeberl, C.

    1992-01-01

    The Nd and Sr isotopic compositions of Australasian tectites (including two flanged Australian tectites, two low-SiO2 Muong Nong-type tectites, and three high-SiO2 Muong Nong-type tectites) and the Nd, Sm, Sr, and Rb concentrations were investigated by isotope-dilution thermal ionization mass spectrometry, and the Sm-Nd and Rb-Sr isotope systematics were used to study the characteristics of the parental material. It is shown that the Nd and Sr isotopic data provide evidence that all Australasian tektites were derived from a single sedimentary formation with a narrow range of stratigraphic ages close to 170 Ma. It is suggested that all of the Australasian tektites were derived from a single impact event and that the australites represent the upper part of a melt sheet ejected at high velocity, whereas the indochinites represent melts formed at a lower level in the target material distributed closer to the area of the impact.

  8. The sources and time-integrated evolution of diamond-forming fluids - Trace elements and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.

    2014-01-01

    Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate, kimberlite-like 206Pb/204Pb and 208Pb/204Pb ratios. A multi-stage evolution of the diamond-forming fluids source can be constrained from our new isotopic data, indicating an Achaean enrichment event resulting in elevated U/Pb, Rb/Sr ratios and enrichment in LREEs. This source underwent a more recent fractionation, in the last 500 Myr that may have been related to the diamond-forming event. There is a strong correspondence between fluids with relatively unradiogenic Sr isotopes and relatively low (La, Nd, Sm)/(Nb, Zr) and (Ba, Th)/(Nb) ratios. Sr isotopic enrichment is accompanied by an increase in these ratios. The least trace element enriched and most isotopically depleted fluids are from the high-Mg carbonatitic suite. Thus, HDFs could be derived from asthenospheric mantle as low degree melts that interact to varying degrees with an ancient, metasomatized, rutile- and phlogopite bearing, sub continental lithosphere mantle. The internal heterogeneity in the Sr isotopic ratios within a single diamond suite and even within single diamonds may indicate fluid-mixing processes. Such mixing may occur during migration through preferred mantle veins and may be affected by the small-scale geochemical variability within them.

  9. Total elemental composition of soils contaminated with wastewater irrigation by combining IBA techniques

    NASA Astrophysics Data System (ADS)

    Huerta, L.; Contreras-Valadez, R.; Palacios-Mayorga, S.; Miranda, J.; Calva-Vasquez, G.

    2002-04-01

    The purpose of this work was to obtain the total elemental composition of agricultural soils irrigated with well water and wastewater. The studied area is located in the Valle del Mezquital in Hidalgo State, Mexico. The studied soils were collected, every two months during one year. Particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were applied for elemental analysis. PIXE analyses gave elemental contents of major and trace elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, and Pb). Total concentrations of Na, Mg, C, N and O were obtained by RBS and NRA. PIXE analyses were carried out with 2 MeV proton beams, RBS with 2 MeV helium ions, while NRA was applied with a 1.2 MeV deuterium beam. Results indicated that heavy metal total concentrations exceed the critical soil total concentrations according to environmental regulations.

  10. Determination of Elemental Composition of Malabar spinach, Lettuce, Spinach, Hyacinth Bean, and Cauliflower Vegetables Using Proton Induced X-Ray Emission Technique at Savar Subdistrict in Bangladesh

    PubMed Central

    Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal

    2015-01-01

    The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953

  11. Effects of guest atomic species on the lattice thermal conductivity of type-I silicon clathrate studied via classical molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, Tomohisa, E-mail: kumagai@criepi.denken.or.jp; Nakamura, Kaoru; Yamada, Susumu

    The effects of guest atomic species in Si clathrates on the lattice thermal conductivity were studied using classical molecular dynamics calculations. The interaction between a host atom and a guest atom was described by the Morse potential function while that between host atoms was described by the Tersoff potential. The parameters of the potentials were newly determined for this study such that the potential curves obtained from first-principles calculations for the insertion of a guest atom into a Si cage were successfully reproduced. The lattice thermal conductivities were calculated by using the Green-Kubo method. The experimental lattice thermal conductivity ofmore » Ba{sub 8}Ga{sub 16}Si{sub 30} can be successfully reproduced using the method. As a result, the lattice thermal conductivities of type-I Si clathrates, M{sub 8}Si{sub 46} (M = Na, Mg, K, Ca Rb, Sr, Cs, or Ba), were obtained. It is found that the lattice thermal conductivities of M{sub 8}Si{sub 46}, where M is IIA elements (i.e., M = Mg, Ca, Sr, or Ba) tend to be lower than those of M{sub 8}Si{sub 46}, where M is IA elements (i.e., M = Na, K, Rb, or Cs). Those of {sup m}M{sub 8}Si{sub 46}, where m was artificially modified atomic weight were also obtained. The obtained lattice thermal conductivity can be regarded as a function of a characteristic frequency, f{sub c}. That indicates minimum values around f{sub c}=2-4 THz, which corresponds to the center of the frequencies of the transverse acoustic phonon modes associated with Si cages.« less

  12. Geochemical fingerprinting and source discrimination in soils at the continental scale

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Sadeghi, Martiya; Ladenberger, Anna; Birke, Manfred; Reimann, Clemens

    2014-05-01

    Agricultural soil (Ap-horizon, 0-20 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site per 2500 km2. The resulting 2108 soil samples were air dried, sieved to <2 mm, milled and analysed for their major and trace element concentrations by wavelength dispersive X-ray fluorescence spectrometry (WD-XRF). The main goal of this study is to provide a global view of element mobility and source rocks at the continent scale, either by reference to crustal evolution or normalized patterns of element mobility during weathering processes. The survey area includes several sedimentary basins with different geological history, developed in different climate zones and landscapes and with different land use. In order to normalize the chemical composition of soils, mean values and standard deviation of the selected elements have been checked against values for the upper continental crust (UCC). Some elements turned out to be enriched relative to the UCC (Al, P, Zr, Pb) whereas others, like Mg, Na, Sr and Pb were depleted with regards to the variation represented by the standard deviation. The concept of UCC extended normalization patterns have been further used for the selected elements. The mean value of Rb, K, Y, Ti, Al, Si, Zr, Ce and Fe are very close to the UCC model even if standard deviation suggests slight enrichment or depletion, and Zr shows the best fit with the UCC model using both mean value and standard deviation. Lead and Cr are enriched in European soils when compared to UCC but their standard deviation values show very large variations, particularly towards very low values, which can be interpreted as a lithological effect. Element variability has been explored by looking at the variations using indicator elements. Soil data have been converted into Al-normalized enrichment factors and Na was applied as normalizing element for studying provenance source taking into account the main lithologies of the UCC. This latter normalization highlighted variations related to the soluble and insoluble behavior of some elements (K, Rb versus Ti, Al, Si, V, Y, Zr, Ba, and La, respectively), their reactivity (Fe, Mn, Zn), association with carbonates (Ca and Sr) and with phosphates (P and Ce). The maps of normalized composition revealed some problems with use of classical element ratios due to genetical differences in composition of parent material reflected, for example, in large differences in titanium content in bedrock and soil throughout the Europe.

  13. New age data on the geological evolution of Southern India

    NASA Technical Reports Server (NTRS)

    Taylor, Paul N.; Chadwick, B.; Friend, C. R. L.; Ramakrishnan, M.; Moorbath, Stephen; Viswanatha, M. N.

    1988-01-01

    The Peninsular Gneisses of Southern India developed over a period of several hundred Ma in the middle-to-late Archaean. Gneisses in the Gorur-Hassan area of southern Karnataka are the oldest recognized constituents: Beckinsale et al. reported a preliminary Rb-Sr whole-rock isochron age of 33558 + or - 66 Ma, but further Rb-Sr and Pb/Pb whole-rock isochron determinations indicate a slightly younger, though more precise age of ca 3305 Ma (R. D. Beckinsale, Pers. Comm.). It is well established that the Peninsular Gneisses constitute basement on which the Dharwar schist belts were deposited. Well-documented exposures of unconformities, with basal quartz pebble conglomerates of the Dharwar Supergroup overlying Peninsular Gneisses, have been reported from the Chikmagalur and Chitradurga areas, and basement gneisses in these two areas have been dated by Rb-Sr and Pb/Pb whole-rock isochron methods at ca 3150 Ma and ca 3000 Ma respectively. Dharwar supracrustal rocks of the Chitradurga schist belt are intruded by the Chitradurga Granite, dated by a Pb/Pb whole-rock isochron at 2605 + or - 18 Ma. These results indicate that the Dharwar Supergroup in the Chitradurga belt was deposited between 3000 Ma and 2600 Ma.

  14. Fluid inclusion, geochemical, Rb-Sr and Sm-Nd isotope studies on tungsten mineralized Degana and Balda granites of the Aravalli craton, NW India

    NASA Astrophysics Data System (ADS)

    Vijay Anand, Sundarrajan; Pandian, M. S.; Balakrishnan, S.; Sivasubramaniam, R.

    2018-06-01

    Granitic plutons occurring within and to the west of the Delhi Fold Belt in the Aravalli craton, northwestern India are the result of widespread felsic magmatism during Neoproterozoic, some of which are associated with greisen and skarn tungsten deposits. In this paper, we present the result of our study on fluid inclusions, geochemistry and geochronology of two such tungsten mineralized granite plutons at Degana and Balda, and interpret the nature of ore fluid, and petrogenesis and age of these mineralized granites. Fluid inclusion study reveals coexistence of moderate and hyper-saline aqueous fluid inclusions along with aqueous-carbonic inclusions, suggesting their origin due to liquid immiscibility during fluid-rock interaction. Geochemically, the granites are peraluminous, Rb enriched, Sr and Ba depleted and highly differentiated. The Rb-Sr isotopic systematics yielded 795± 11 Ma for Balda granite and 827± 8 Ma for Degana granite. We show that major phase of widespread granitoid magmatism and mineralization during the Neoproterozoic (840-790 Ma) in NW India is coeval with breakup of the Rodinia supercontinent and infer a causal relationship between them.

  15. History of the Pasamonte achondrite: Relative susceptibility of the SmNd, RbSr, and UPb systems to metamorphic events

    USGS Publications Warehouse

    Unruh, D.M.; Nakamura, N.; Tatsumoto, M.

    1977-01-01

    The RbSr, SmNd, and UPb systematics of the eucrite Pasamonte have been studied in order to investigate the relative susceptibility of the different systems to post-crystallization events and to determine the age and history of the meteorite. The RbSr and 238U-206Pb data of mineral separates do not define an isochron but the SmNd data define an internal isochron which corresponds to the formation age of 4.58 ?? 0.12 b.y. (109 years). The 207Pb-206Pb data of mineral separates define an apparent age of 4.53 ?? 0.03 b.y., however we conclude that this age, while in agreement with the SmNd age, is not strictly valid since the UPb data indicate at least three stages of evolution. The UPb data indicate that the parent body of the meteorite experienced brecciation shortly after the formation of the parent body surface (???4.2-4.45 b.y. ago) and a recent disturbance (collision?) 6 ?? 30 m.y. ago. The latter age is within the range of cosmic ray exposure ages for achondrites. ?? 1977.

  16. Dehydration and melting experiments constrain the fate of subducted sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Marie C.; Plank, Terry

    1999-12-01

    Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 +/- 25°C at 2 GPa, 810 +/- 15°C at 3 GPa, and 1025 +/- 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ~ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.

  17. Dehydration and melting experiments constrain the fate of subducted sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Marie C.; Plank, Terry

    2000-12-01

    Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 ± 25°C at 2 GPa, 810 ± 15°C at 3 GPa, and 1025 ± 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ˜ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.

  18. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada

    USGS Publications Warehouse

    Dodge, F.C.W.; Kistler, R.W.

    1990-01-01

    Microgranular quartz diorite and diorite inclusions are widespread in central Sierra Nevada granitoid rocks and are almost exclusively restricted to hornblende-bearing rocks, most commonly felsic tonalites and mafic granodiorites. The Nd-Sm and Rb-Sr systematics indicate that most inclusions were in isotopic equilibrium with enclosing materials at the time of formation. Silica contents of inclusions and granitoids are contiguous, but inclusions generally contain less than, and granitoids more than, 60% SiO2. Ferric oxide and H2O+ trends relative to SiO2 suggests many inclusions formed as concentrations of hydrous mafic minerals. Variation of other major element oxides and trace elements support this inference. Most inclusions represent fragmented crystal accumulations of early-formed, near-liquidus minerals generated from these previously mixed magmas. -from Authors

  19. Geochemical patterns in soils in and around Siddipet, Medak District, Andhra Pradesh, India.

    PubMed

    Dantu, Sujatha

    2010-11-01

    This paper reports the first results of geochemical survey carried out in and around Siddipet, taking soil (topsoil 0-25 cm and subsoil 70-95 cm) as the sampling media. The data were obtained in a consistent way from 61 sites. The samples were analyzed for 29 elements (As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) by X-ray fluorescence spectrometer, and baseline levels for these elements are presented. Results reveal that the correlation between the geochemical patterns in the soils developed on different litho-variants is not straight forward, but some general trends can be observed. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace elements while anthropogenic activities have secondary influence.

  20. Trace element evidence for a laterally inhomogeneous moon

    NASA Technical Reports Server (NTRS)

    Jovanovic, S.; Reed, G. W., Jr.

    1978-01-01

    A number of trace element interrelationships support the concept of a laterally inhomogeneous moon based originally on Clr/P2O5 ratios. The correspondence between Clr/P2O3 and Rb/Sr ratios in basalts are of special interest since the isotropic evolution of the latter pair of elements relates to the earliest history of the moon. This implies the times when the Clr/P2O5 relationships were established. The early magma ocean is conjectured to have been made up of non-intermixing seas resulting either from large convection cells or large body accretion. These mutually exclusive regions could be lunar geological provinces. It is proposed that the diversity of basalts from the Apollo 17 site is related to the lateral inhomogeneity of the moon. Ca/Na ratios in basalts show a trend which parallels that of Ru/Os and in a corresponding fashion may serve as a depth indicator.

  1. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma

    NASA Astrophysics Data System (ADS)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas

    2013-03-01

    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  2. Subalkaline andesite from Valu Fa Ridge, a back-arc spreading center in southern Lau Basin: petrogenesis, comparative chemistry, and tectonic implications

    USGS Publications Warehouse

    Vallier, T.L.; Jenner, G.A.; Frey, F.A.; Gill, J.B.; Davis, A.S.; Volpe, A.M.; Hawkins, J.W.; Morris, J.D.; Cawood, Peter A.; Morton, J.L.; Scholl, D. W.; Rautenschlein, M.; White, W.M.; Williams, Ross W.; Stevenson, A.J.; White, L.D.

    1991-01-01

    Tholeiitic andesite was dredged from two sites on Valu Fa Ridge (VFR), a back-arc spreading center in Lau Basin. Valu Fa Ridge, at least 200 km long, is located 40-50 km west of the active Tofua Volcanic Arc (TVA) axis and lies about 150 km above the subducted oceanic plate. One or more magma chambers, traced discontinuously for about 100 km along the ridge axis, lie 3-4 km beneath the ridge. The mostly aphyric and glassy lavas had high volatile contents, as shown by the abundance and large sizes of vesicles. An extensive fractionation history is inferred from the high SiO2 contents and FeO* MgO ratios. Chemical data show that the VFR lavas have both volcanic arc and back-arc basin affinities. The volcanic arc characteristics are: (1) relatively high abundances of most alkali and alkaline earth elements; (2) low abundances of high field strength elements Nb and Ta; (3) high U/Th ratios; (4) similar radiogenic isotope ratios in VFR and TVA lavas, in particular the enrichment of 87Sr 86Sr relative to 206Pb 204Pb; (5) high 238U 230Th, 230Th 232Th, and 226Ra 230Th activity ratios; and (6) high ratios of Rb/Cs, Ba/Nb, and Ba/La. Other chemical characteristics suggest that the VFR lavas are related to MORB-type back-arc basin lavas. For example, VFR lavas have (1) lower 87Sr 86Sr ratios and higher 143Nd 144Nd ratios than most lavas from the TVA, except samples from Ata Island, and are similar to many Lau Basin lavas; (2) lower Sr/REE, Rb/Zr, and Ba/Zr ratios than in arc lavas; and (3) higher Ti, Fe, and V, and higher Ti/V ratios than arc lavas generally and TVA lavas specifically. Most characteristics of VFR lavas can be explained by mixing depleted mantle with either small amounts of sediment and fluids from the subducting slab and/or an older fragment of volcanic arc lithosphere. The eruption of subalkaline andesite with some arc affinities along a back-arc spreading ridge is not unique. Collision of the Louisville and Tonga ridges probably activated back-arc extension that ultimately led to the creation and growth of Valu Fa Ridge. Some ophiolitic fragments in circum-Pacific and circum-Tethyan allochthonous terranes, presently interpreted to have originated in volcanic arcs, may instead be fragments of lithosphere that formed during early stages of seafloor spreading in a back-arc basin. ?? 1991.

  3. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    USGS Publications Warehouse

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  4. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.

    PubMed

    Halliday, Alex N

    2008-11-28

    New W isotope data for lunar metals demonstrate that the Moon formed late in isotopic equilibrium with the bulk silicate Earth (BSE). On this basis, lunar Sr isotope data are used to define the former composition of the Earth and hence the Rb-Sr age of the Moon, which is 4.48+/-0.02Ga, or 70-110Ma (million years) after the start of the Solar System. This age is significantly later than had been deduced from W isotopes based on model assumptions or isotopic effects now known to be cosmogenic. The Sr age is in excellent agreement with earlier estimates based on the time of lunar Pb loss and the age of the early lunar crust (4.46+/-0.04Ga). Similar ages for the BSE are recorded by xenon and lead-lead, providing evidence of catastrophic terrestrial degassing, atmospheric blow-off and significant late core formation accompanying the ca 100Ma giant impact. Agreement between the age of the Moon based on the Earth's Rb/Sr and the lead-lead age of the Moon is consistent with no major losses of moderately volatile elements from the Earth during the giant impact. The W isotopic composition of the BSE can be explained by end member models of (i) gradual accretion with a mean life of roughly 35Ma or (ii) rapid growth with a mean life of roughly 10Ma, followed by a significant hiatus prior to the giant impact. The former assumes that approximately 60 per cent of the incoming metal from impactors is added directly to the core during accretion. The latter includes complete mixing of all the impactor material into the BSE during accretion. The identical W isotopic composition of the Moon and the BSE limits the amount of material that can be added as a late veneer to the Earth after the giant impact to less than 0.3+/-0.3 per cent of ordinary chondrite or less than 0.5+/-0.6 per cent CI carbonaceous chondrite based on their known W isotopic compositions. Neither of these on their own is sufficient to explain the inventories of both refractory siderophiles such as platinum group elements and rhenium, and volatiles such as sulphur, carbon and water.

  5. Compositional heterogeneity of the Sugarloaf melilite nephelinite flow, Honolulu Volcanics, Hawai'i

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Frey, Frederick A.; Garcia, Michael O.; Huang, Shichun; McWilliams, Michael; Beeson, Melvin H.

    2016-07-01

    The Sugarloaf flow is a melilite nephelinite erupted from the Tantalus rift during rejuvenated-stage volcanism on O'ahu, the Honolulu Volcanics. The flow ponded in Mānoa Valley forming a ∼15 m thick flow which was cored and sampled in a quarry. Nepheline from a pegmatoid segregation in the flow yielded a 40Ar-39Ar age of 76 ka. This age, combined with others, indicates that the Tantalus rift eruptions are some of the youngest on O'ahu. Honolulu Volcanics erupt on average about every 35-40 ka indicating that future eruptions are possible. We evaluated the compositional variability of 19 samples from the flow, including 14 from the core. Twelve samples are representative of the bulk flow, four are dark- or light-colored variants, one is a heavy rare earth element (REE)-enriched pegmatoid, and two visually resemble the bulk flow, but have chemical characteristics of the dark and light variants. Our objective was to determine intraflow heterogeneity in mineralogy and composition. Variable abundances of Na2O, K2O, Sr, Ba, Rb, Pb and U in the flow were caused by post-eruptive mobility in a vapor phase, most likely during or soon after flow emplacement, and heterogeneous deposition of secondary calcite and zeolites. Relative to fine-grained samples, a pegmatoid vein that crosscuts the flow is enriched in incompatible trace elements except Sr and TiO2. Element mobility after eruption introduced scatter in trace element ratios including light-REE/heavy-REE, and all ratios involving mobile elements K, Rb, Ba, Sr, Pb, and U. Lavas from some of the 37 Honolulu Volcanics vents have crosscutting REE patterns in a primitive mantle-normalized plot. Such patterns have been interpreted to reflect variable amounts of residual garnet during partial melting. Previous studies of lavas from different vents concluded that garnet, phlogopite, amphibole, and Fe-Ti oxides were residual phases of the partial melting processes that created the Honolulu Volcanics (Clague and Frey, 1982; Yang et al., 2003). However post-eruptive processes in the Sugarloaf flow also produced crossing REE patterns. Eruptions on the Tantalus rift, including the Sugarloaf flow, produced volatile- and crystal-rich ash with interstitial glass and melt inclusions in olivine containing 4.2-6.4 wt% MgO compared to the flow average of 11.8 wt%. This flow erupted as a partially crystallized viscous magma at least 100 °C below its liquidus. The slow advance and cooling of the 15-m thick 'a' ā low promoted the segregation of pegmatoids, formation of light and dark bands with differing proportions of melilite and clinopyroxene, and induced volatile-enhanced mobility of incompatible elements.

  6. Spectral identifiers from roasting process of Arabica and Robusta green beans using Laser-Induced Breakdown Spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Wirani, Ayu Puspa; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee (Coffea spp.) is one of the most widely consumed beverages in the world. World coffee consumption is around 70% comes from Arabica, 26% from Robusta , and the rest 4% from other varieties. Coffee beverages characteristics are related to chemical compositions of its roasted beans. Usually testing of coffee quality is subjectively tasted by an experienced coffee tester. An objective quantitative technique to analyze the chemical contents of coffee beans using LIBS will be reported in this paper. Optimum experimental conditions was using of 120 mJ of laser energy and delay time 1 μs. Elements contained in coffee beans are Ca, W, Sr, Mg, Na, H, K, O, Rb, and Be. The Calcium (Ca) is the main element in the coffee beans. Roasting process will cause the emission intensity of Ca decreased by 42.45%. In addition, discriminant analysis was used to distinguish the arabica and robusta variants, either in its green and roasted coffee beans. Observed identifier elements are Ca, W, Sr, and Mg. Overall chemical composition of roasted coffee beans are affected by many factors, such as the composition of the soil, the location, the weather in the neighborhood of its plantation, and the post-harvesting process of the green coffee beans (drying, storage, fermentation, and roasting methods used).

  7. Fine-resolved XRF geochemistry of bottom fills from Asian lakes

    NASA Astrophysics Data System (ADS)

    Phedorin (Fedorin), Mikhail

    2010-05-01

    Over the last fifteen years (1994-2009) several teams from Siberian Branch of Russian Academy of Science have carried out numerous studies of cores of bottom sediments from Asian lakes, to perform regional reconstructions of past climate changes. Within these researches, the method of x-ray fluorescence (XRF) has widely been used to predict downcore distributions of elements; high-resolution XRF scanning of cores has been employed since 1999. Experiments have been performed at XRF facilities of Siberian Synchrotron Center. In this presentation I report (1) ‘know-how's of quantitative processing of experimental fine-scanning XRF data for lacustrine cores, and (2) geochemical signatures of sediments from Asian lakes obtained after XRF fine-scanning of cores. (1) Quantitative prediction of concentrations of elements from fine-scanning XRF data is problematic because of varying water content along scanning profile, as well as due to varying matrix chemistry and sample optical thickness. All these cause varying inter-element influence that changes fluorescence flux through its absorption and/or secondary excitation. To overcome these difficulties we have used an adapted algorithm of fundamental parameters. The mathematical model based on this algorithm accounts for two events of photon/matter interaction. Element concentrations are estimated using reference samples and the internal standard procedure, both with correction of interference effects. The pore water content is inferred from its correlation with the coherent/incoherent scatter intensity ratio. Sediment density is found from water content by a reliable sedimentological law. Normalization to Compton scattering accounts for the irradiated mass of wet sediment controlled by porosity and sampling-related core disturbance. The mathematical model also includes these scattering variations related to lithology, water content, and density of samples. The new method was applied to XRF scans of cores to predict concentrations of ca. 20 elements. Tests against ICP-MS, neutron activation spectrometry and conventional XRF (with traditional pretreatment of samples) show good agreement. Neglect of the disturbing effects may cause errors up to 30-200% for different elements. (2) Cores studied represent three types of fills: terrigenous silicate sediments, sapropel muds and carbonate-reach deposits. The sediments were collected by bottom drilling from the following Asian lakes: Baikal (53°42'N, 108°21'E), Khubsugul (51°28'N, 100°25'E), Khakas Lakes (Shira: 54°30'N, 90°12'E and Bele: 54°41'N, 90°15'E), East Siberian lakes (Ochki: 51°30'N, 104°53'E; Kotokel: 52°49'N, 108°09'E; Tolondo: 58°18'N, 119°47'E; Kiran: 50°22'N, 106°27'E), West Siberian lakes (Beloye: 55°23'N, 82°41'E; Kirek: 56°12'N, 84°23'E; Teletskoye: 51°39'N, 87°40'E). In current report I also provide data obtained after studying stratified peat archives from East and West Siberia. The following elements have been determined for most of the cores: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Y, Zr, Nb, Mo, I, Ba, La, Ce, Pb, Th, U; in some experiments Cr, Ga, Ge, As, Se, Cd, Te, Sn, Pr, Nd were also determined. The vertical resolution of measurements was 0.1 to 1.0 mm. In this presentation I give examples of bigenic traces (Br, I and some other); of downcore variations of terrigenous clastic supply (marked by Ti, Zr, Th, as well K, Rb, Nb, La, Ce, etc.); of authigenic enrichment of layers with Fe, Mn; with Cu, Zn; of carbonate and sulphate layers (marked by Ca, Sr and some other); of sulphate/sulphide reducing (marked by Mo); of mobile elements enrichment (Sr, U, etc.); of using ratios of elements as very sensitive markers of changing sources of material supplied into deposits (Ti/Ca, Sr/Rb, Fe/Ti and other). The author is grateful to his colleagues from institutes of Siberian Branch of Russian Academy of Science (Institute of Nuclear Physics, Limnological Institute, Institute of Earths Crust, Institute of Geochemistry, Institute of Geology and Mineralogy, Institute of Biophysics) and from Novosibirsk State University and Irkutsk Polytechnic University for extensive collaboration.

  8. Petrogenesis of voluminous mid-Tertiary ignimbrites of the Sierra Madre Occidental, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Cameron, Maryellen; Bagby, William C.; Cameron, Kenneth L.

    1980-10-01

    The mid-Tertiary ignimbrites of the Sierra Madre Occidental of western Mexico constitute the largest continuous rhyolitic province in the world. The rhyolites appear to represent part of a continental magmatic arc that was emplaced when an eastward-dipping subduction zone was located beneath western Mexico. In the Batopilas region of the northern Sierra Madre Occidental the mid-Tertiary Upper Volcanic sequence is composed predominantly of rhyolitic ignimbrites, but volumetrically minor lava flows as mafic as basaltic andesite are also present. The basaltic andesite to rhyolite series is calc-alkalic and contains ˜1% K2O at 60% SiO2. Trace element abundances of a typical ignimbrite with 73% SiO2 are Sr ˜ 225 ppm, Rb ˜130 ppm, Y ˜32 ppm, Th ˜12 ppm, Zr ˜200 ppm, and Nb ˜15 ppm. The entire series plots as coherent and continuous trends on variation diagrams involving major and trace elements, and the trends are distinct from those of geographicallyassociated rocks of other suites. We interpret these and other geochemical variations to indicate that the rocks are comagmatic. Mineral chemistry, Sr isotopic data, and REE modelling support this interpretation. Least squares calculations show that the major element variations are consistent with formation of the basaltic andesite to rhyolite series by crystal fractionation of observed phenocryst phases in approximate modal proportions. In addition, calculations modelling the behavior of Sr with the incompatible trace element Th favor a fractional crystallization origin over a crustal anatexis origin for the rock series. The fractionating minerals included plagioclase (> 50%), and lesser amounts of Fe-Ti oxides, pyroxenes, and/or hornblende. The voluminous ignimbrites represent no more than 20% of the original mass of a mantle-derived mafic parental magma.

  9. Provenance and paleoweathering reconstruction of the Mesoproterozoic Hongshuizhuang Formation (1.4 Ga), northern North China

    NASA Astrophysics Data System (ADS)

    Luo, Qingyong; Zhong, Ningning; Wang, Yannian; Ma, Ling; Li, Min

    2015-10-01

    This is the first study presenting major and trace elemental data from the Mesoproterozoic Hongshuizhuang Formation shales in Yanshan basin, North China, in order to reconstruct its provenance and chemical weathering history. The shales are strongly depleted in Na2O and Sr and enriched in Y and transition metal elements relative to upper continental crust. Low Zr concentrations and various discriminant plots (e.g., Th/Sc-Zr/Sc and Al2O3-TiO2-Zr) indicate insignificant mineral sorting or recycling of these shales. The rocks show light rare earth element (REE) enrichment (La/YbCN = 3.99-6.92), flat heavy REE, and significantly negative Eu anomalies (Euan = 0.57-0.68) in chondrite-normalized REE patterns, similar to post-Archean Australian average shales. The fairly uniform REE patterns and trace element ratios indicate that the Hongshuizhuang Formation shales were derived from a felsic source area with granodiorite as the dominant contributor. Mixing calculations suggest a mixture of 30 % granite porphyry, 5 % basalt, and 65 % granodiorite as the possible source of the shales, also supporting that granodiorite was the predominant source. Intense chemical weathering of the source terrain is indicated by high values of the premetasomatized chemical index of alteration, plagioclase index of alteration, Rb/Sr, a strong positive correlation between TiO2 and Al2O3, depletion of CaO, Na2O, and Sr, and mineral compositions. Such strong chemical weathering suggests a warm and wet paleoclimate, perhaps due to high atmospheric CO2 and CH4 concentrations, and a near-equatorial location of the North China Craton in the Columbia supercontinent at 1.4 Ga.

  10. The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism

    NASA Astrophysics Data System (ADS)

    Zanetti, Alberto; Mazzucchelli, Maurizio; Rivalenti, Giorgio; Vannucci, Riccardo

    The Finero peridotite massif is a harzburgite that suffered a dramatic metasomatic enrichment resulting in the pervasive presence of amphibole and phlogopite and in the sporadic occurrence of apatite and carbonate (dolomite)-bearing domains. Pyroxenite (websterite) dykes also contain phlogopite and amphibole, but are rare. Peridotite bulk-rock composition retained highly depleted major element characteristics, but was enriched in K, Rb, Ba, Sr, LREE (light rare earth elements) (LaN/YbN=8-17) and depleted in Nb. It has high radiogenic Sr (87Sr/86Sr(270)=0.7055-0.7093), low radiogenic Nd (ɛNd(270)=-1 to -3) and EMII-like Pb isotopes. Two pyroxenite - peridotite sections examined in detail show the virtual absence of major and trace element gradients in the mineral phases. In both rock types, pyroxenes and olivines have the most unfertile major element composition observed in Ivrea peridotites, spinels are the richest in Cr, and amphibole is pargasite. Clinopyroxenes exhibit LREE-enriched patterns (LaN/YbN 16), negative Ti and Zr and generally positive Sr anomaly. Amphibole has similar characteristics, except a weak negative Sr anomaly, but incompatible element concentration 1.9 (Sr) to 7.9 (Ti) times higher than that of coexisting clinopyroxene. Marked geochemical gradients occur toward apatite and carbonate-bearing domains which are randomly distributed in both the sections examined. In these regions, pyroxenes and amphibole (edenite) arelower in mg## and higher in Na2O, and spinels and phlogopite are richer in Cr2O3. Both the mineral assemblage and the incompatible trace element characteristics of the mineral phases recall the typical signatures of ``carbonatite'' metasomatism (HFSE depletion, Sr, LILE and LREE enrichment). Clinopyroxene has higher REE and Sr concentrations than amphibole (amph/cpxDREE,Sr=0.7-0.9) and lower Ti and Zr concentrations. It is proposed that the petrographic and geochemical features observed at Finero are consistent with a subduction environment. The lack of chemical gradients between pyroxenite and peridotite is explained by a model where melts derived from an eclogite-facies slab infiltrate the overhanging harzburgitic mantle wedge and, because of the special thermal structure of subduction zones, become heated to the temperature of the peridotite. If the resulting temperature is above that of the incipient melting of the hydrous peridotite system, the slab-derived melt equilibrates with the harzburgite and a crystal mush consisting of harzburgite and a silica saturated, hydrous melt is formed. During cooling, the crystal mush crystallizes producing the observed sequence of mineral phases and their observed chemical characteristics. In this context pyroxenites are regions of higher concentration of the melt in equilibrium with the harzburgite and not passage-ways through which exotic melts percolated. Only negligible chemical gradients can appear as an effect of the crystallization process, which also accounts for the high amphibole/clinopyroxene incompatible trace element ratios. The major element refractory composition is explained by an initially high peridotite/melt ratio. The apatite, carbonate-bearing domains are the result of the presence of some CO2 in the slab-derived melt. The CO2/H2O ratio in the peridotite mush increased by crystallization of hydrous phases (amphibole and phlogopite) locally resulting in the unmixing of a late carbonate fluid. The proposed scenario is consistent with subduction of probably Variscan age and with the occurrence of modal metasomatism before peridotite incorporation in the crust.

  11. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  12. Evolution of the upper mantle beneath the southern Baikal rift zone: an Sr-Nd isotope study of xenoliths from the Bartoy volcanoes

    NASA Astrophysics Data System (ADS)

    Ionov, D. A.; Kramm, U.; Stosch, H.-G.

    1992-06-01

    Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr-Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr-Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300 400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe ˜2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.

  13. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  14. Alkaline magmatism in the Amambay area, NE Paraguay: The Cerro Sarambí complex

    NASA Astrophysics Data System (ADS)

    Gomes, C. B.; Velázquez, V. F.; Azzone, R. G.; Paula, G. S.

    2011-07-01

    The Early Cretaceous alkaline magmatism in the northeastern region of Paraguay (Amambay Province) is represented by stocks, plugs, dikes, and dike swarms emplaced into Carboniferous to Triassic-Jurassic sediments and Precambrian rocks. This magmatism is tectonically related to the Ponta Porã Arch, a NE-trending structural feature, and has the Cerro Sarambí and Cerro Chiriguelo carbonatite complexes as its most significant expressions. Other alkaline occurrences found in the area are the Cerro Guazú and the small bodies of Cerro Apuá, Arroyo Gasory, Cerro Jhú, Cerro Tayay, and Cerro Teyú. The alkaline rocks comprise ultramafic-mafic, syenitic, and carbonatitic petrographic associations in addition to lithologies of variable composition and texture occurring as dikes; fenites are described in both carbonatite complexes. Alkali feldspar and clinopyroxene, ranging from diopside to aegirine, are the most abundant minerals, with feldspathoids (nepheline, analcime), biotite, and subordinate Ti-rich garnet; minor constituents are Fe-Ti oxides and cancrinite as the main alteration product from nepheline. Chemically, the Amambay silicate rocks are potassic to highly potassic and have miaskitic affinity, with the non-cumulate intrusive types concentrated mainly in the saturated to undersaturated areas in silica syenitic fields. Fine-grained rocks are also of syenitic affiliation or represent more mafic varieties. The carbonatitic rocks consist dominantly of calciocarbonatites. Variation diagrams plotting major and trace elements vs. SiO 2 concentration for the Cerro Sarambí rocks show positive correlations for Al 2O 3, K 2O, and Rb, and negative ones for TiO 2, MgO, Fe 2O 3, CaO, P 2O 5, and Sr, indicating that fractional crystallization played an important role in the formation of the complex. Incompatible elements normalized to primitive mantle display positive spikes for Rb, La, Pb, Sr, and Sm, and negative for Nb-Ta, P, and Ti, as these negative anomalies are considerably more pronounced in the carbonatites. Chondrite-normalized REE patterns point to the high concentration of these elements and to the strong LRE/HRE fractionation. The Amambay rocks are highly enriched in radiogenic Sr and have TDM model ages that vary from 1.6 to 1.1 Ga, suggesting a mantle source enriched in incompatible elements by metasomatic events in Paleo-Mesoproterozoic times. Data are consistent with the derivation of the Cerro Sarambí rocks from a parental magma of lamprophyric (minette) composition and suggest an origin by liquid immiscibility processes for the carbonatites.

  15. Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymetallic soils from SW China.

    PubMed

    Falandysz, Jerzy; Zhang, Ji; Wiejak, Anna; Barałkiewicz, Danuta; Hanć, Anetta

    2017-08-01

    Yunnan Province in China is known for its high biodiversity of mushrooms and a diverse geochemistry of soil bedrock and polymetallic soils, but our knowledge of mineral compositions of mushrooms from Yunnan is scarce. The metallic trace elements, Ag, Ba, Co, Cd, Cs, Cu, Cr, Hg, Li, Mn, Ni, Pb, Rb, Sr, V, Tl, U and Zn, and the metalloids, As and Sb, have been investigated using validated methods with a dynamic reactive cell by mass spectroscopy - inductive coupled plasma and cold vapour - atomic absorption spectroscopy on three popular species of Boletus mushrooms from Southwestern China. The trace mineral profiles in caps and stipes of B. luridus (24 individuals), B. magnificus (29 individuals) and B. tomentipes (38 individuals) have been evaluated. The interspecific differences in the content of several trace elements could be attributed to known differences in the geochemistry of soils in Yunnan, but for copper a difference was observed within species. The mean values of concentrations in composite samples of caps for B. luridus, B. magnificus and B. tomentipes from three to four locations were at the ranges (mgkg -1 dry biomass): Ag (1.3-3.7), As (0.79-53), Ba (4.0-12), Co (0.68-1.2), Cd (0.79-2.2), Cs (0.67-55), Cu (37-77), Cr (5.0-7.6), Hg (2.1-5.4), Li (0.15-0.61), Mn (13-28), Ni (0.86-4.6), Pb (0.59-1.8), Rb (90-120), Sb (0.014-0.088), Sr (0.63-1.6), V (1.4-2.2), Tl (0.017-0.054), U (0.029-0.065) and Zn (130-180). Caps of Boletus mushrooms were richer in Ag, Cu, Hg and Zn than stipes, while other elements were distributed roughly equally between both morphological parts. B. luridus, B. magnificus and B. tomentipes grew in certain sites in Yunnan contained Ag, As, Ba, Cr, Hg, Ni, Sr or V at elevated concentration. A specific geochemistry of the soils type (latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China) can explain occurrence of some minerals at greater or elevated amount in mushrooms in Yunnan, while number of available research and data on mineral composition of mushrooms due to geochemical anomalies of soil parent material is so far little. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming

    2018-06-01

    The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional environments in the Early Cretaceous. This process resulted in the upwelling of the asthenospheric or lithospheric mantle, causing partial melting of the mafic lower crust and forming the adakitic dioritic melts.

  17. U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf systematics of returned Mars samples

    NASA Technical Reports Server (NTRS)

    Tatsumoto, M.; Premo, W. R.

    1988-01-01

    The advantage of studying returned planetary samples cannot be overstated. A wider range of analytical techniques with higher sensitivities and accuracies can be applied to returned samples. Measurement of U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf isotopic systematics for chronology and isotopic tracer studies of planetary specimens cannot be done in situ with desirable precision. Returned Mars samples will be examined using all the physical, chemical, and geologic methods necessary to gain information on the origin and evolution of Mars. A returned Martian sample would provide ample information regarding the accretionary and evolutionary history of the Martian planetary body and possibly other planets of our solar system.

  18. Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856

    NASA Astrophysics Data System (ADS)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2017-08-01

    The origin of the incompatible trace element (ITE) characteristics of enriched shergottites has been critical for examining two contradicting scenarios to explain how these Martian meteorites form. The first scenario is that it reflects ITE enrichment in an early-formed mantle reservoir whereas the second scenario attributes it to assimilation of ancient Martian crust (∼4-4.5 Ga) by ITE-depleted magmas. Strongly differentiated shergottite magmas may yield added constraints for determining which scenario can best explain this signature in enriched shergottites. The meteorite Northwest Africa (NWA) 856 is a basaltic shergottite that, unlike many enriched shergottites, lacks olivine and has undergone extensive differentiation from more primitive parent magma. In similarity to other basaltic shergottites, NWA 856 is comprised primarily of compositionally zoned clinopyroxenes (45% pigeonite and 23% augite), maskelynite (23%) and accessory minerals such as ulvöspinel, merrillite, Cl-apatite, ilmenite, pyrrhotite, baddeleyite and silica polymorph. The CI-chondrite normalized rare earth element (REE) abundance patterns for its maskelynite, phosphates, and its whole rock are flat with corresponding light-REE depletions in clinopyroxenes. The 87Rb-87Sr and 147Sm-143Nd internal isochron ages are 162 ± 14 (all errors are ±2σ) Ma and 162.7 ± 5.5 Ma, respectively, with an initial εNdI = -6.6 ± 0.2. The Rb-Sr isotope systematics are affected by terrestrial alteration resulting in larger scatter and a less precise internal isochron age. The whole rock composition is used in MELTS simulations to model equilibrium and fractional crystallization sequences to compare with the crystallization sequence from textural observations and to the mineral compositions. These models constrain the depth of initial crystallization to a pressure range of 0.4-0.5 GPa (equivalent to 34-42 km) in anhydrous conditions at the Fayalite-Magnetite-Quartz buffer, and consistently reproduce the observed mineralogy throughout the sequence with progressive crystallization. The Ti/Al ratios in the clinopyroxenes are consistent with initial crystallization occurring at these depths followed by polybaric crystallization as the parent magma ascended to the surface. The REE abundances in the clinopyroxenes and maskelynite are consistent with progressive crystallization in a closed system. The new results for NWA 856 are combined with other shergottite data and are compared to mixing and assimilation and fractional crystallization (AFC) models using depleted shergottite magmas and ancient Martian crust as end-members. The models indicate that the range of REE abundances and ratios, when taken in isolation, can be successfully explained for all shergottites by crustal contamination. However, no successful crustal contamination model can explain the restricted εNdI of -6.8 ± 0.2 over the wide range of Mg# (0.65-0.25), and corresponding trace element variations from enriched shergottites to depleted shergottites. The findings indicate that the origin of the long-term ITE-enriched signature in enriched shergottites and the geochemical variability seen in shergottites is not a result of crustal contamination but instead reflects ancient mantle heterogeneity.

  19. Sudbury project (University of Muenster-Ontario Geological Survey): Sr-Nd in heterolithic breccias and gabbroic dikes

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Deutsch, A.; Lakomy, R.; Brockmeyer, P.; Dressler, B.

    1992-01-01

    One major objective of our Sudbury project was to define origin and age of the huge breccia units below and above the Sudbury Igneous Complex (SIC). The heterolithic Footwall Breccia (FB) represents a part of the uplifted crater floor. It contains subrounded fragments up to several meters in size and lithic fragments with shock features (greater than 10 GPa) embedded into a fine- to medium-grained matrix. Epsilon(sub Nd)-epsilon(sub Sr) relationships point to almost exclusively parautochthonous precursor lithologies. The different textures of the matrix reflect the metamorphic history of the breccia layer; thermal annealing by the overlying hot impact melt sheet (SIC) at temperatures greater than 1000 C resulted in melting of the fine crushed material, followed by an episode of metasomatic K-feldspar growth and, finally, formation of low-grade minerals such as actinolite and chlorite. Isotope relationships in the Onaping breccias (Gray and Green Member) are much more complex. All attempts to date the breccia formation failed: Zircons are entirely derived from country rocks and lack the pronounced Pb loss caused by the heat of the slowly cooling impact melt sheet (SIC). Rb-Sr techniques using either lithic fragments of different shock stages or the thin slab method, set time limits for the apparently pervasive alkali mobility in these suevitic breccias. The data array and the intercept in the plots point to a major Rb-Sr fractionation around 1.54 Ga ago. This model age is in the same range as the age obtained for the metasomatic matrix of the FB. Rb-Sr dating of a shock event in impact-related breccias seems to be possible only if their matrix had suffered total melting by the hot melt sheet (FB) or if they contain a high fraction of impact melt (suevitic Onaping breccias), whereas the degree of shock metamorphism in rock or lithic fragments plays a minor role. In the Sudbury case, however, the impact melt in the seuvitic breccias is devitrified and recrystallized, which changed Rb/Sr ratios quite drastically. Therefore, the Onaping breccias give only age limits for alteration and low-grade metamorphism. The Sm-Nd system was not reset during the Sudbury event; clasts as well as the matrix in the FB and in the Onaping breccias show preimpact 'Archean' Nd isotope signatures.

  20. Dating low-temperature alteration of the upper oceanic crust

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.; Hinton, R. W.; Gillis, K. M.; Dosso, S. E.

    2011-12-01

    Off-axis hydrothermal systems lead to extensive chemical exchange between the oceans and upper oceanic crust but it is unclear when this exchange occurs. We address this using a new dating approach and via the re-evaluation of existing data that contain age information. We have developed a method to directly date adularia, a common alkali-rich phase in old oceanic crust, using the 40K to 40Ca radiogenic decay system. In situ analysis, using the Cameca 1270 ion microprobe at the University of Edinburgh, allows small, replacive, secondary mineral grains to be analyzed. In comparison to previous radiogenic dating of low-temperature secondary minerals, using Rb-Sr and K-Ar approaches on mineral separates, this approach has the advantages that: (i) analysis is not limited to large, void filling, grains; (ii) the initial isotopic ratio is well constrained; (iii) contamination and phase heterogeneity are minimized; and (iv) the daughter isotope is relatively immobile. However, the requirement to analyse doubly charged ions, to reduce molecular interferences and suppress the presence of 40K on 40Ca, leads to low count rates [1]; e.g. single spot ages have uncertainties of 10's of millions of years. Combining all analyses for a given sample gives best fitting instantaneous precipitation "ages" of 102 and 70 Myr for DSDP Holes 417A and 543A (versus crustal ages of 120 and 80 Myr). The scatter in the data are consistent with adularia precipitation over >30 Myr. The timing of carbonate precipitation in the upper oceanic crust can be constrained from comparison of their 87Sr/86Sr to the seawater Sr-isotope curve if the proportion of basaltic Sr in the fluid can be constrained. Modeling such data from 12 drill cores shows that they are best fit by a model in which >90% of carbonate precipitation occurs over ≤20 Myr after crustal formation [2]. Evaluation of published Rb-Sr "isochron" data [3,4] shows that these data can be explained in different ways. The "isochron" interpretation implies that secondary mineral crystallization occurs over a geologically brief interval, 10-50 Myr after crustal accretion, and that the clay minerals crystallize with a constant 87Sr/86Sr but variable Rb/Sr. None of these seem likely. Alternative models to explain these data include: (i) assuming a constant initial 87Sr/86Sr ratio but a different age for each mineral separate; (ii) a model including time varying fluid (and hence clay) Rb/Sr and 87Sr/86Sr; or (iii) mixing within the clay structure between alkali-rich and alkali-poor domains. In scenarios (i) and (ii) model mineral ages are different for each mineral separate analysed, and clay precipitation occurs over 10's of millions of years. The combination of age information from different approaches leads to a picture of low-temperature alteration of the ocean crust occurring over a few 10's of millions of years after crustal formation. A model incorporating all of these data is currently being developed to statistically test how well constrained the timing of secondary mineral crystallization is. [1] Harrison et al., EPSL v. 299 p. 426 (2010); [2] Gillis and Coogan (2011) EPSL v. 302 p. 385; [3] Hart and Staudigel (1986) GCA v50; p2751 [4] Richardson et al. (1980) JGR v85 p 7195.

  1. Development of a Certified Reference Material (NMIJ CRM 7203-a) for Elemental Analysis of Tap Water.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shin-Ichi; Kuroiwa, Takayoshi; Ariga, Tomoko; Kudo, Izumi; Koguchi, Masae; Heo, Sung Woo; Suh, Jung Ki; Lee, Kyoung-Seok; Yim, Yong-Hyeon; Lim, Youngran

    2017-01-01

    A certified reference material (CRM), NMIJ CRM 7203-a, was developed for the elemental analysis of tap water. At least two independent analytical methods were applied to characterize the certified value of each element. The elements certified in the present CRM were as follows: Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, and Zn. The certified value for each element was given as the (property value ± expanded uncertainty), with a coverage factor of 2 for the expanded uncertainty. The expanded uncertainties were estimated while considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the long-term stability, and the concentrations of the standard solutions for calibration. The concentration of Hg (0.39 μg kg -1 ) was given as the information value, since loss of Hg was observed when the sample was stored at room temperature and exposed to light. The certified values of selected elements were confirmed by a co-analysis carried out independently by the NMIJ (Japan) and the KRISS (Korea).

  2. Chronologic implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Cassata, William S.; Gaffney, Amy M.; Bizzarro, Martin

    2017-03-01

    Ages have been obtained using the 87Rb-87Sr, 147Sm-143Nd, and 146Sm-142Nd isotopic systems for one of the most slowly cooled lunar rocks, Apollo 17 Mg-suite troctolite 76535. The 147Sm-143Nd, 146Sm-142Nd, and Rb-Sr ages derived from plagioclase, olivine, and pyroxene mineral isochrons yield concordant ages of 4307 ± 11 Ma, 4299+29/-35 Ma, and 4279 ± 52 Ma, respectively. These ages are slightly younger than the age determined on ferroan anorthosite suite (FAS) rock 60025 and are therefore consistent with the traditional magma ocean model of lunar differentiation in which the Mg-suite is intruded into the anorthositic crust. However, the Sm-Nd ages record when the rock passed below the closing temperature of the Sm-Nd system in this rock at ∼825 °C, whereas the Rb-Sr age likely records the closure temperature of ∼650 °C. A cooling rate of 3.9 °C/Ma is determined using the ages reported here and in the literature and calculated closure temperatures for the Ar-Ar, Pb-Pb, Rb-Sr, and Sm-Nd systems. This cooling rate is in good agreement with cooling rates estimated from petrographic observations. Slow cooling can lower apparent Sm-Nd crystallization ages by up to ∼80 Ma in the slowest cooled rocks like 76535, and likely accounts for some of the variation of ages reported for lunar crustal rocks. Nevertheless, slow cooling cannot account for the overlap in FAS and Mg-suite rock ages. Instead, this overlap appears to reflect the concordance of Mg-suite and FAS magmatism in the lunar crust as indicated by ages calculated for the solidus temperature of 76535 and 60025 of 4384 ± 24 Ma and 4383 ± 17, respectively. Not only are the solidus ages of 76535 and 60025 nearly concordant, but the Sm-Nd isotopic systematics suggest they are derived from reservoirs that were minimally differentiated prior to ∼4.38 Ga. Although the Sr isotopic composition of 60025 indicates its source was minimally differentiated, the Sr isotopic composition of 76535 indicates it underwent fractionation just prior to solidification of the 76535. These observations are consistent with both a magma ocean or a serial magmatism model of lunar differentiation. In either model, differentiation of lunar source regions must occur near the solidification age of thee samples. Perhaps the best estimate for the formation age of lunar source regions is the Rb-Sr model age of the 76535 source region age of 4401 ± 32 Ma. This is in good agreement with Sm-Nd model ages for the formation of ur-KREEP and suggests that differentiation of a least part of the Moon could not have occurred prior to ∼4.43 Ga.

  3. Radionuclide transfer to reptiles.

    PubMed

    Wood, Michael D; Beresford, Nicholas A; Semenov, Dmitry V; Yankovich, Tamara L; Copplestone, David

    2010-11-01

    Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities.

  4. Rb-Sr and Sm-Nd Ages of Zagami DML and SR Isotopic Heterogeneity in Zagami

    NASA Technical Reports Server (NTRS)

    Nyquist, L.aurenceE.; Shih, C.-Y.; Reese, Y. D.

    2010-01-01

    Zagami contains lithologic heterogeneity suggesting that it did not form in a homogeneous, thick lava flow [1]. We have previously investigated the Sr and Nd isotopic systematics of Coarse-Grained (CG) and Fine-Grained (FG) lithologies described by [2]. Both appear to belong to Normal Zagami (NZ) [1,3], but their initial Sr-isotopic compositions differ [4,5]. Here we report new analyses of the Dark Mottled Lithology (DML, [3]) that show its age and initial Sr and Nd isotopic compositions to be identical within error limits with those of CG, but Sr initial isotopic compositions differ from those of FG.

  5. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2012-01-01

    Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.

  6. Rubidium Isotope Composition of the Earth and the Moon: Evidence for the Origin of Volatile Loss During Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.

    2016-12-01

    The Earth-Moon system has a variety of chemical and isotopic characteristics that provide clues to understanding the mechanism of lunar formation. One important observation is the depletion in moderately volatile elements in the Moon compared to the Earth. This volatile element depletion may be a signature of volatile loss during the Moon-forming Giant Impact. Stable isotopes are powerful tracers of such a process, since volatile loss via evaporation enriches the residue in heavy isotopes. However, early studies searching for the fingerprint of volatile loss failed to find any resolvable variations [1]. Recent work has now revealed heavy isotope enrichments in the Moon relative to the Earth for the moderately volatile elements Zn [2,3] and K [4]. The purely lithophile nature of Rb (in contrast to the chalcophile/lithophile nature of Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to study the origin of lunar volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. The Rb isotope compositions of terrestrial rocks define a narrow range, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). There is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. In particular, eucrites are significantly enriched in 87Rb (up to several per mil) relative to chondrites. Similarly, lunar basalts are enriched in 87Rb compared to terrestrial basalts, by 200 ppm for 87Rb/85Rb. These data are the first measurements of a resolvable difference in Rb isotope composition between the Earth and the Moon. The variations in Rb isotope composition between the Earth and the Moon are consistent with Rb isotope fractionation due to evaporation. References: [1] Humayun & Clayton GCA 1995. [2] Paniello et al. Nature 2012. [3] Kato et al. Nat. Comm. 2015. [4] Wang and Jacobsen Nature in press.

  7. Petrogenesis of the Late Jurassic peraluminous biotite granites and muscovite-bearing granites in SE China: geochronological, elemental and Sr-Nd-O-Hf isotopic constraints

    NASA Astrophysics Data System (ADS)

    Jiang, Yao-Hui; Zhu, Shu-Qi

    2017-12-01

    Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U-Pb dating and Lu-Hf isotopes, whole-rock element geochemistry and Sr-Nd-O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U-Pb dating shows that three plutons were emplaced in the Late Jurassic (159-148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3-74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures ( T Zr = 707-817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1-12.8‰, most > 9.5‰) and clearly negative ɛ Nd (T) (- 9.5 to - 11.8) and ɛ Hf (T) (in situ zircon) (- 13.1 to - 13.5). The muscovite-bearing granites have high SiO2 contents (74.7-78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04-1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671-764 °C, most < 745 °C) and also show a general decrease in T Zr with increasing SiO2. The muscovite-bearing granites have high Rb (up to 810 ppm) and high (K2O + Na2O)/CaO (up to 270), Rb/Sr (up to 42) and Rb/Ba (up to 30) as well as low K/Rb (< 150, down to 50), Zr/Hf (< 24, down to 11) and Nb/Ta (< 6, down to 2). They show similar Nd-O-Hf isotopic compositions to the biotite granites with ɛ Nd (T) of - 8.7 to - 12.0, δ18O of 8.7-13.0‰ (most > 9.5‰) and ɛ Hf (T) (in situ zircon) of - 11.3 to - 13.1. Geochemical data suggest the origin of the biotite granites and muscovite-bearing granites as follows: Partial melting of Precambrian metasedimentary rocks (mainly two-mica schist) in the lower crust at temperatures of ca. 820 °C generated the melts of the less felsic biotite granites. Such primary crustal melts underwent biotite-dominant fractionation crystallization, forming the felsic biotite granites. Progressive plagioclase-dominant fractionation crystallization from the evolved biotite granites produced the more felsic muscovite-bearing granites. Thus, the biotite granites belong to the S-type whereas the muscovite-bearing granites are highly fractionated S-type granites. We further suggest that during the formation of the muscovite-bearing granites the fractional crystallization was accompanied by fluid fractionation and most likely the addition of internally derived mineralizing fluids. That is why the large-scale polymetallic mineralization is closely related to the muscovite-bearing granites rather than biotite granites in SE China. This is important to further understand the source and origin of biotite granites and muscovite-bearing granites in SE China even worldwide.

  8. Geochemical constraints on provenance of the mid-Pleistocene red earth sediments in subtropical China

    NASA Astrophysics Data System (ADS)

    Hong, Hanlie; Wang, Chaowen; Zeng, Kefeng; Gu, Yansheng; Wu, Yuanbao; Yin, Ke; Li, Zhaohui

    2013-05-01

    The source of mid-Pleistocene red earth sediments in the middle to lower reaches of the Yangtze (Changjiang) River was investigated based on their geochemical characteristics. The Xuancheng and Jiujiang red earth sediments have similar major and trace element distribution patterns. Compared to the loess and paleosol deposits of the Chinese Loess Plateau, the upper continental crust (UCC), and the post-Archean Australian average shale (PAAS), the sediments display notable depletion of CaO, MgO, Na2O, and accumulation of TiO2, Al2O3, and Fe2O3(t). The trace element distribution patterns of the red earth sediments are also different from those of loess and the PAAS, but are similar to those of the loess deposits, except for lower values of mobile trace elements Sr, Ba, and Ni, and higher values of Zr and Y. The red earth samples have uniform La/Th ratios of ~ 2.8, compatible with those of the UCC, loess, and paleosol. They also have similar chondrite-normalized REE patterns, characterized by enriched LREE and relatively flat HREE profiles, and consistent negative Eu anomalies, similar to those of the UCC, the loess and paleosol, and the Yangtze deposits. These results suggest that the red earth sediments have been subject to considerable mixing prior to deposition and strong subsequent chemical weathering. The sediments have very uniform 143Nd/144Nd and 147Sm/144Nd ratios, this points to well-mixed and multi-recycled sediments. The 143Nd/144Nd and 87Sr/86Sr values of the red earth sediments match well with those of the deposits in the middle to lower reaches of the Yangtze River, but are different from those of the loess and paleosols. This suggests that the red earth sediments are derived from the drainage basins of the middle to lower Yangtze River and might have experienced more intense chemical weathering relative to the Yangtze deposits, as reflected by their higher Rb/Sr ratios, intense depletion of mobile elements and accumulation of immobile elements, as well as their well-developed net-like structure.

  9. Isotopic constraints on the age and early differentiation of the Earth.

    PubMed

    McCulloch, M T

    1996-03-01

    The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionated due to sequestering of Pb into the Earth's core. The long-lived Rb-Sr isotopic system provides constraints on the time interval for the accretion of the Earth as Rb underwent significant depletion by volatile loss during accretion of the Earth or its precursor planetesimals. A primitive measured 87Sr/86Sr initial ratio of 0.700502 +/- 10 has been obtained for an early Archean (3.46 Ga) barite from the Pilbara Block of Western Australia. Using conservative models for the evolution of Rb/Sr in the early Archean mantle allows an estimate to be placed on the Earth's initial Sr ratio at approximately 4.50 Ga, of 0.69940 +/- 10. This is significantly higher than that measured for the Moon (0.69900 +/- 2) or in the achondrite, Angra dos Reis (0.69894 +/- 2) and for a Rb/Sr ratio of approximately 1/2 of chondrites corresponds to a mean age for accretion of the Earth of 4.48 + /- 0.04 Ga. The now extinct 146Sm-142Nd (T1/2(146)=103 l0(6)yrs) combined with the long-lived 147Sm-143Nd isotopic systematics can also be used to provide limits on the time of early differentiation of the Earth. High precision analyses of the oldest (3.8-3.9 Ga) Archean gneisses from Greenland (Amitsoq and Akilia gneisses), and Canada (Acasta gneiss) do not show measurable (> +/- l0ppm) variations of 142Nd, in contrast to the 33 ppm 142Nd excess reported for an Archean sample. The general lack of 142Nd variations, combined with the presence of highly positive epsilon 143 values (+4.0) at 3.9 Ga, indicates that the record of large-scale Sm/Nd fractionation events was not preserved in the early-Earth from 4.56 Ga to approximately 4.3 Ga. This is consistent with large-scale planetary re-homogenisation during ongoing accretion of the Earth. The lack of isotopic anomalies in short-lived decay systems, together with the Pb and Sr isotopic constraints is thus consistent with core formation and accretion of the Earth occurring over an approximately 100 Ma interval following the formation of meteorites at 4.56 Ga.

  10. A geochronological 40Ar/39Ar and 87Rb/81Sr study of K-Mn oxides from the weathering sequence of Azul, Brazil

    NASA Astrophysics Data System (ADS)

    Ruffet, G.; Innocent, C.; Michard, A.; Féraud, G.; Beauvais, A.; Nahon, D.; Hamelin, B.

    1996-06-01

    KMn oxides of hollandite group minerals such as cryptomelane (K 1-2(Mn 3+, Mn 4+) 8O 16nH 2O) are often precipitated authigenically in weathering profiles. The presence of structural K allows these minerals to be dated by the KAr and 40Ar/ 39Ar methods, making it possible to study the progression of oxidation fronts during weathering processes. Within the context of a recent 40Ar/ 39Ar study of cryptomelane from the Azul Mn deposit in the Carajàs region (Amazônia, Brazil), Vasconcelos et al. (1994) defined three age clusters (65-69, 51-56, and 40-43 Ma) and proposed that they correspond to the episodic precipitation of the three generations of Mn oxide that have been identified in the deposit (Beauvais et al., 1987). We performed a laser probe 40Ar/ 39Ar and 87Rb/ 87Sr study on new samples from the same Mn deposit. Our 40Ar/ 39Ar data confirm that cryptomelane is a suitable mineral for 40Ar/ 39Ar dating, although in some cases we clearly identify the existence of 39Ar recoil effects. Although the corresponding age spectra are generally strongly disturbed, our results also confirm that the earliest cryptomelane generation is of Upper Cretaceous-Paleocene age. We obtained good plateau ages from veins and concretions of the second cryptomelane generation. Some of these results allow definition of a well-constrained age cluster at 46.7-48.1 Ma not observed by Vasconcelos et al. (1994). A petrographic study confirms that none of the samples analyzed in the present study contained material associated with the third generation of cryptomelane. We propose that these new results support the idea of a more or less continuous crystallization of KMn oxides, mainly constrained by local factors, rather than the model advanced by Vasconcelos et al. (1994), which suggests that each cryptomelane generation corresponds to distinct weathering events related to global climatic changes. 87Sr/ 86Sr data show large variations, clearly inherited from the 2.1 Ga parent rock of the Mn protore. The Rb/Sr results demonstrate that minimum fractionation occurs during cryptomelane crystallization, except for the latest generation, which is depleted in Sr. This precludes use of the Rb/Sr radiochronometer for dating secondary Mn oxides in laterites.

  11. Correlated study of initial Sr-87/Sr-86 and Al-Mg isotopic systematics and petrologic properties in a suite of refractory inclusions from the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Zinner, Ernst K.; Lundberg, Laura L.; Brannon, Joyce C.; Macpherson, Glenn J.

    1991-01-01

    The abundance and the distribution of Al-26, and the initial Sr-87/Sr-86 ratios were determined in a suite of six coarse-grained Ca-Al-rich inclusions from the Allende meteorite, using, respectively, petrographic and chemical characterizations and ion-probe mass spectrometric analyses of the Al-Mg isotopic system, and thermal emission spectrometric analyses of the Rb-Sr system. Results establish a firm association between primitive Al-26/Al-27 and primitive Sr-87/Sr-86 found in each of these inclusions. None of the results required interpretation in terms of heterogeneously distributed Al-26.

  12. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  13. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    NASA Astrophysics Data System (ADS)

    Akyuz, Sevim; Akyuz, Tanil; Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba; Basaran, Sait; Cakan, Banu

    2012-05-01

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry.

  14. Correlation by Rb-Sr geochronology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, John N.; Selverstone, Jane; Rosenfeld, John L.

    1993-06-01

    In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhulle (USH) and Lower Schieferhulle (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67(-0.13)+0.19 mm/million years and 0.88(-0.19)+0.34 mm/million years, respectively, indicating an average growth duration of 5.4 +- 1.7 million years. The duration of growth coupled withmore » the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7(-0.7)+1.2 x 10(-14) s-1 . Garnet growth in the sample from the USH occurred between 35.4 +- 0.6 and 30 +- 0.8 Ma. The garnet from the LSH grew at a rate of 0.23 +- 0.015 mm/mil lion years, between 62 +- 1.5 Ma and 30.2 +- 1.5 Ma. Contemporaneous cessation of garnet growth in both units at approximately 30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that these P - T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4(-2)+3 mm/year and 2 +- 1 mm/year, respectively. [References: 34]« less

  15. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunson, J; E.Borg, L; Nyquist, L E

    2008-11-17

    Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiationmore » was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.« less

  16. Comparison of the element composition in several plant species and their substrate from a 1500000-km2 area in Northern Europe.

    PubMed

    Reimann, C; Koller, F; Frengstad, B; Kashulina, G; Niskavaara, H; Englmaier, P

    2001-10-20

    Leaves of 9 different plant species (terrestrial moss represented by: Hylocomium splendens and Pleurozium schreberi; and 7 species of vascular plants: blueberry, Vaccinium myrtillus; cowberry, Vaccinium titis-idaea; crowberry, Empetrum nigrum; birch, Betula pubescens; willow, Salix spp.; pine, Pinus sylvestris and spruce, Picea abies) have been collected from up to 9 catchments (size 14-50 km2) spread over a 1500000 km2 area in Northern Europe. Soil samples were taken of the O-horizon and of the C-horizon at each plant sample site. All samples were analysed for 38 elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Th, Tl, U, V, Y, Zn and Zr) by ICP-MS, ICP-AES or CV-AAS (for Hg-analysis) techniques. The concentrations of some elements vary significantly between different plants (e.g. Cd, V, Co, Pb, Ba and Y). Other elements show surprisingly similar levels in all plants (e.g. Rb, S, Cu, K, Ca, P and Mg). Each group of plants (moss, shrubs, deciduous and conifers) shows a common behaviour for some elements. Each plant accumulates or excludes some selected elements. Compared to the C-horizon, a number of elements (S, K, B, Ca, P and Mn) are clearly enriched in plants. Elements showing very low plant/C-horizon ratios (e.g. Zr, Th, U, Y, Fe, Li and Al) can be used as an indicator of minerogenic dust. The plant/O-horizon and O-horizon/C-horizon ratios show that some elements are accumulated in the O-horizon (e.g. Pb, Bi, As, Ag, Sb). Airborne organic material attached to the leaves can thus, result in high values of these elements without any pollution source.

  17. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas.

    PubMed

    Lee, Khanghyun; Hur, Soon Do; Hou, Shugui; Hong, Sungmin; Qin, Xiang; Ren, Jiawen; Liu, Yapping; Rosman, Kevin J R; Barbante, Carlo; Boutron, Claude F

    2008-10-01

    A series of 42 snow samples covering over a one-year period from the fall of 2004 to the summer of 2005 were collected from a 2.1-m snow pit at a high-altitude site on the northeastern slope of Mt. Everest. These samples were analyzed for Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Sb, Pb, and Bi in order to characterize the relative contributions from anthropogenic and natural sources to the fallout of these elements in central Himalayas. Our data were also considered in the context of monsoon versus non-monsoon seasons. The mean concentrations of the majority of the elements were determined to be at the pg g(-1) level with a strong variation in concentration with snow depth. While the mean concentrations of most of the elements were significantly higher during the non-monsoon season than during the monsoon season, considerable variability in the trace element inputs to the snow was observed during both periods. Cu, Zn, As, Cd, Sb, and Bi displayed high crustal enrichment factors (EFc) in most samples, while Cr, Ni, Rb, and Pb show high EFc values in some of the samples. Our data indicate that anthropogenic inputs are potentially important for these elements in the remote high-altitude atmosphere in the central Himalayas. The relationship between the EFc of each element and the Al concentration indicates that a dominant input of anthropogenic trace elements occurs during both the monsoon and non-monsoon seasons, when crustal contribution is relatively minor. Finally, a comparison of the trace element fallout fluxes calculated in our samples with those recently obtained at Mont Blanc, Greenland, and Antarctica provides direct evidence for a geographical gradient of the atmospheric pollution with trace elements on a global scale.

  18. Trace elements in lake sediments measured by the PIXE technique

    NASA Astrophysics Data System (ADS)

    Gatti, Luciana V.; Mozeto, Antônio A.; Artaxo, Paulo

    1999-04-01

    Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernão Lake, that is an oxbow lake of the Moji-Guaçu River basin, in the state of São Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy.

  19. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  20. Relationship of orogen-parallel exhumation in the Tauern and Rechnitz Windows to eastward lateral escape of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Favaro, Silvia; Schuster, Ralf; Scharf, Andrea; Handy, Mark R.

    2013-04-01

    Neogene orogen-parallel extensional in the Tauern and Rechnitz Windows and eastward lateral extrusion of the Eastern Alps are manifested, respectively, by exhumation and cooling and by subsidence of pull-apart basins. These events overlap in time, giving rise to the question of their relationship. The Tauern Window exposes relics of the European continental margin (Subpenninic units) and Alpine Tethys Ocean (Penninic units) beneath units derived from the Adriatic microplate (Austroalpine nappes). In the eastern part of the Tauern Window, the Subpenninic and Penninic nappes are deformed by two domes (Sonnblick and Hochalm domes) and the intervening tight Mallnitz synform. Reddy et al. (1996) proposed that the Sonnblick dome cooled first based on a trend of decreasing Rb-Sr and Ar-Ar white mica and biotite ages from the northwestern part of the Sonnblick Dome to the southeastern part of the Hochalm dome. When combined with this existing dataset, new Rb/Sr biotite ages point to simultaneous cooling of the domes to below the closure temperature of this isotopic system. Rb-Sr muscovite ages decrease from 26-30 Ma in the northwest to 20-25 Ma in the southeast. Rb-Sr biotite ages young in the same direction from 20-23 Ma to 16-19 Ma. The biotite ages do not vary in a transect of the Mallnitz synform and are therefore inferred to post-date this structure. Apatite fission track data follow this same NW to SE trend. A SE increase in intensity of mylinitic shearing along strike of the Mallnitz synform is interpreted to be a manifestation of stretch faulting related to normal faulting along the central part of the Katschberg Shear Zone system at the eastern end of the Tauern Window (Scharf et al., submitted). We attribute the SE decrease of the biotite cooling ages to an increased component of tectonic unroofing towards the eastern margin of the Tauern Window. Three new Rb-Sr biotite ages in the range of 16-26 Ma from the lowermost Austroalpine units (Wechsel and Semmering nappes) immediately above the Rechnitz Window are also interpreted to reflect cooling during extensional exhumation. This age range overlaps with that of rapid subsidence and sedimentation in pull-apart basins of the Eastern Alps (17-12 Ma) and opening of the Pannonian Basin (21-15 Ma) behind the retreating Carpathian subduction orogen. This suggests that exhumation in the Rechnitz Window and lateral escape of the Eastern Alps were broadly coeval with both Adriatic indentation and Carpathian rollback subduction.

  1. Granitoids of different geodynamic settings of Baikal region (Russia) their geochemical evolution and origin

    NASA Astrophysics Data System (ADS)

    Antipin, Viktor; Sheptyakova, Natalia

    2016-04-01

    In the southern folded framing of the Siberian craton the granitoid magmatism of different ages involves batholiths, small low-depth intrusions and intrusion-dyke belts with diverse mineral and geochemical characteristics of rocks. Granitoid formation could be related to the Early Paleozoic collision stage and intra-plate magmatism of the Late Paleozoic age of the geologic development of Baikal area. The Early Paleozoic granitoids of Khamar-Daban Ridge and Olkhon region revealed their closeness in age and composition. They were referred to syncollision S-type formations derived from gneiss-schistose substratum of metamorphic sequences. The magmatic rocks were classified into various geochemical types comprising formations of normal Na-alkalinity (migmatites and plagiogranites), calc-alkaline and subalkaline (K-Na granitoids, granosyenites and quartz syenites) series. It is significant, that plagiomigmatites and plagiogranites in all elements repeat the shape of the chart of normalized contents marked for trend of K-Na granitoids, but at considerably lower level of concentrations of all elements. This general pattern of element distribution might indicate similar anatectic origin of both granitoid types, but from crustal substrata distinguished by composition and geochemical features. Comparative geochemical analysis pointed out that the source of melts of the Early Paleozoic granitoids of the Olkhon (505-477 Ma) and Khamar-Daban (516-490 Ma) complexes of the Baikal region could be the crustal substratum, which is obviously the criterion for their formation in the collisional geodynamic setting. Using the Late Paleozoic subalkaline magmatism proceeding at the Khamar-Daban Range (Khonzurtay pluton, 331 Ma) as an example, it was found that the formation of monzodiorite-syenite-leucogranite series was considerably contributed by the processes of hybridism and assimilation through mixing of the upper mantle basaltoid magma derived melts of granitic composition. The involvement of the deep source is indicated by low Rb/Sr ratios and 87Sr/86Sr ratio (0.70592±0.00021) in rocks (Kazimirovskiy, 2006). The intra-plate biotite granites and leucogranites are represented by rare-metal geochemical type of rocks (311-321 Ma). Geochemical evolution promoted an increase of F, Li, Rb, Cs, Sn, Be, Ta, and Pb and a decrease of Ba, Sr, Zn, Zr, Th, and U contents in rare-metal granites, that reflects their formation from deeply differentiated residual magma. The substance of the lower crust could have the composition of biotite-bearing granulites rich in lithophyle rare elements. It is noteworthy, that the composition and isotope-geochemical features of the supposed magma-forming substratum correspond to the characteristics of the ancient Precambrian continental crust of the Southern Baikal region. These conclusions agree with the results of preceding studies of rare-metal granites in the other regions of Central Asia (Kovalenko et al, 1999). Research has been supported by RNF grant № 15-17-10010.

  2. Sm-Nd and Initial Sr-87/Sr-86 Isotopic Systematics of Asuka 881394 and Cumulate Eucrites Yamato 980318/433 Compared

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Young, Y. D.; Takeda, H.

    2011-01-01

    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 and has a Pb-206/Pb-207 age of 4566.5 +/- 0.2 Ma, the oldest for an achondrite. Recent re-investigation of A881394 yielded revised initial Sm-146/Sm-144 = (9.1 +/- 1.4) x 10(exp -3), a Sm-147-Nd-143 age of 4525 +/- 58 Ma, a Rb-87-Sr-87 age of 4490 +/- 130 Ma, and initial Sr-87/Sr-86 = 0.698991 +/- 19, respectively. The relatively large uncertainties in the Sm-Nd and Rb-Sr ages are due to disturbances of the isotopic systematics of tridymite and other minor phases. A preliminary value for the Sm-147-Nd-143 age of the Yamato 980318 cumulate eucrite of 4560 +/- 150 Ma was refined in later work to 4567 +/- 24 Ma as reported orally at LPSC 35. Similarly, a preliminary value for Sm-146/Sm-144 = (7.7 +/- 1.2) x 10 (exp -3) was refined to (6.0 +/- 0.3) x 10(exp -3). For Yamato 980433, a Sm-147-Nd-143 age of 4542 +/-42 Ma and Sm-146/Sm-144 = (5.7 +/- 0.5) x 10(exp -3) has been reported. Because these two cumulate eucrites are paired, we consider them to represent one igneous rock and present their combined isotopic data here.

  3. Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements

    DOE PAGES

    Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.

    2017-08-25

    Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less

  4. Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.

    Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less

  5. Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements.

    PubMed

    Bonamici, Chloë E; Hervig, Richard L; Kinman, William S

    2017-09-19

    Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. Using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclides generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Furthermore, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.

  6. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  7. Geochemical and multi-isotopic ( 87Sr/ 86Sr, 143Nd/ 144Nd, 238U/ 235U) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA

    DOE PAGES

    Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; ...

    2017-10-25

    Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less

  8. Geochemistry of peraluminous tonalite and trondhjemite, the Cornucopia stock, Blue Mountains, NE Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.; Barnes, C.G.; Kistler, R.W.

    1993-04-01

    The Cretaceous Cornucopia stock was emplaced into a greenschist-facies Permo-Triassic arc terrane. The stock comprises five distinct units: hornblende biotite tonalite, biotite trondhjemite, and three cordierite biotite trondhjemites, all with late dacitic and granitic dikes. Tonalite and trondhjemites span a narrow range of SiO[sub 2] contents and exhibit characteristics of a high-Al tonalite-trondhjemite-dacite (TTD) suite: LREE enrichment, low Y (< 15 ppm), Nb (< 10 ppm), Rb/Sr ([le]0.04), and high Sr (550--800 ppm). Euhedral cordierite phenocrysts imply the trondhjemites were H[sub 2]O-rich and were emplaced at pressures of < 2 kbars. Trace element and REE models are consistent with anmore » origin for the tonalite and trondhjemites by variable degrees (< 40%) of partial melting of a low-K tholeiitic source, with a garnet amphibolite residuum. Individual units are not related by fractional crystallization, but instead represent distinct partial melts. High Sr contents in the TTD rocks, the presence of residual garnet, and abundant residual amphibole implied by partial melting models suggest that melting occurred under H[sub 2]O-rich conditions at P [ge] 8--10 kbars.« less

  9. Geochemical and multi-isotopic ( 87Sr/ 86Sr, 143Nd/ 144Nd, 238U/ 235U) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.

    Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less

  10. Age of Lunar Meteorite LAP02205 and Implications for Impact-Sampling of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Bogard, D. D.

    2005-01-01

    We have measured the age of lunar meteorite LAP02205 by the Rb-Sr and Ar-Ar methods. Sm-Nd analyses are in progress. The Rb-Sr and Ar-Ar ages indicate a crystallization age of approx. 3 Ga. Comparing the ages of LAP02205 and other lunar mare basaltic meteorites to mare surface ages based on the density of impact craters shows no significant bias in impact- sampling of lunar mare surfaces. Comparing the isotopic and geochemical data for LAP02205 to those for other lunar mare basalts suggests that it is a younger variant of the type of volcanism that produced the Apollo 12 basalts. Representative impact-sampling of the lunar surface

  11. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: a comparative study at the scale of the Czech Republic.

    PubMed

    Suchara, Ivan; Sucharova, Julie; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-05-01

    Moss (Pleurozium schreberi), grass (Avenella flexuosa), and 1- and 2-year old spruce (Picea abies) needles were collected over the territory of the Czech Republic at an average sample density of 1 site per 290km(2). The samples were analysed for 39 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn) using ICP-MS and ICP-AES techniques (the major nutrients Ca, K, Mg and Na were not analysed in moss). Moss showed by far the highest element concentrations for most elements. Exceptions were Ba (spruce), Mn (spruce), Mo (grass), Ni (spruce), Rb (grass) and S (grass). Regional distribution maps and spatial trend analysis were used to study the suitability of the four materials as bioindicators of anthropogenic contamination. The highly industrialised areas in the north-west and the far east of the country and several more local contamination sources were indicated in the distribution maps of one or several sample materials. At the scale of the whole country moss was the best indicator of known contamination sources. However, on a more local scale, it appeared that spruce needles were especially well suited for detection of urban contamination. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Recognition of spectral identifier from green coffee beans of arabica and robusta varieties using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.

  13. Lithium and boron in late-orogenic granites - Isotopic fingerprints for the source of crustal melts?

    NASA Astrophysics Data System (ADS)

    Romer, Rolf L.; Meixner, Anette; Förster, Hans-Jürgen

    2014-04-01

    Geochemically diverse late- and post-Variscan granites of the Erzgebirge-Vogtland, the Saxon Granulite Massif, and Thuringia (Germany) formed by anatectic melting of Palaeozoic sedimentary successions and associated mafic to felsic volcanic rocks. The compositional diversity of the least evolved of these granites is largely inherited from the protoliths. We present Li and B-isotopic data of these granites and compare them with the isotopic composition of their protoliths, to investigate whether (i) there exist systematic differences in the Li and B-isotopic composition among different granite types and (ii) Li and B-isotopic compositions provide information on the granite sources complementary to information from the isotopic composition of Sr, Nd, and Pb and the trace-element signatures. Low-F biotite and two-mica granite types have flat upper continental crust (UCC)-normalized trace-element pattern with variable enrichments in Li, Rb, Cs, Sn, and W and depletions in Sr, Ba, and Eu. These signatures are least pronounced for the Niederbobritzsch biotite granite, which has the largest contribution of mafic material, and most pronounced for the two-mica granites. The granites show a relatively narrow range of δ7Li values (-3.0 to -0.5) and a broad range of δ11B values (-13.4 to +20.1). The δ11B values are lower in rocks with distinctly higher contents of Li, Rb, Cs, and Sn. The high δ11B of the Niederbobritzsch granite may be explained by the melting of former altered oceanic crust in its source. Relative to UCC, intermediate-F to high-F low-P granites show strong depletions in Sr, Ba, Eu as well as Zr and Hf, strong enrichments in Li, Rb, and Cs as well as Nb, Sn, Ta, and W, and REE pattern with stronger enrichments for HREE than for LREE. These granites show narrow ranges of δ7Li (-2.0 to +1.6) and δ11B values (-14.7 to -9.1), reflecting the smaller variability of the Li and B-isotopic composition in their source lithologies. The anomalously high δ7Li value (14.7) of one granite sample (Burgberg), which is similar to δ7Li values of its wall rocks (up to 14.5), may indicate late-magmatic fluid-rock interaction with external, wall rock-derived fluids. Because of the small compositional range of most source lithologies, the Li and B-isotopic variation in the granites is also small indicating that the isotopic composition of Li and B does not represent a particularly sensitive source tracer, with the exception of source lithologies characterized by extreme δ7Li or δ11B values.

  14. Neogene felsic volcanic rocks in the Hoggar province: Volcanology, geochemistry and age of the Azrou trachyte-phonolite association (Algerian Sahara)

    NASA Astrophysics Data System (ADS)

    Ben El Khaznadji, Riad; Azzouni-Sekkal, Abla; Benhallou, Amel; Liégeois, Jean-Paul; Bonin, Bernard

    2017-03-01

    The Azrou volcanic district, located to the south-east to the Atakor district in the Hoggar, has a landscape is governed by a number of felsic volcanic highs and dissected mafic plateau lavas. Our new Rb-Sr age (i.e. 23.1 ± 1.6 Ma) indicates that the Azrou felsic lavas are contemporaneous with the Achkal ring complexes (Anahef region). The Azrou felsic lavas (mainly trachyte and phonolite) show remarkably homogeneous compositions both in major elements (57.5 ≤ SiO2≤ 63.1 wt%; 10.8 ≤(Na2O + K2O)≤12.4 wt%), trace elements (33.2 ≤ Th ≤ 107 ppm; 170 ≤ La≤472 ppm; 8.7<(La/Yb)N < 27.3) and radiogenic isotopes (0.703359 < 87Sr/86Sr < 0.706539; 0.512727 <143Nd/144Nd < 0.512925; 2<εNd <5.84. These data indicate that the lavas have been only very weakly contaminated by the Precambrian basement. Geodynamically, this genesis coupled with the low volume of both trachytic and phonolitic trends implies the reworking of pre-existing shear-zones allowing the rapid ascent of these small batches of magmas. This is in agreement with the general model of linear delamination along these shear zones due to the Africa-Europe convergence developed by Liégeois et al. (2005) and recently imaged by the magneto-telluric investigation of Bouzid et al. (2015).

  15. Sudbury project (University of Muenster-Ontario Geological Survey): Petrology, chemistry, and origin of breccia formations

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Deutsch, A.; Avermann, M.; Brockmeyer, P.; Lakomy, R.; Mueller-Mohr, V.

    1992-01-01

    Within the Sudbury Project of the University of Muenster and the Ontario Geological Survey special emphasis was put on the breccia formations exposed at the Sudbury structure (SS) because of their crucial role for the impact hypothesis. They were mapped and sampled in selected areas of the north, east, and south ranges of the SS. The relative stratigraphic positions of these units are summarized. Selected samples were analyzed by optical microscopy, SEM, microprobe, XRF and INAA, Rb-Sr and SM-Nd-isotope geochemistry, and carbon isotope analysis. The results of petrographic and chemical analysis for those stratigraphic units that were considered the main structural elements of a large impact basin are summarized.

  16. Geochemistry and evolution of MORB-type eclogites from the Münchberg Massif, southern Germany

    NASA Astrophysics Data System (ADS)

    Stosch, H.-G.; Lugmair, G. W.

    1990-08-01

    In the Münchberg Massif in the Variscan foldbelt of southern Germany two varieties of eclogite are known which are intercalated with amphibolite-facies meta-igneous and meta-sedimentary rocks: a dark kyanite-free and a lighter colored kyanite-bearing type. Kyanite-free eclogites, which are discussed here, have a major and trace element composition which suggests derivation from ocean-floor basalts with melt to cumulate compositions. Internal Sm sbnd Nd isochrons (clinopyroxene-amphibole-garnet) and one Rb sbnd Sr isochron (clinopyroxene-amphibole-mica) yield eclogitization ages in the range of 380 to 395 Ma. Thus, the age of eclogitization is only marginally higher ( < 15 Ma) than the age of amphibolite-facies metamorphism in the Münchberg Massif as derived from K sbnd Ar ages of amphiboles and micas from metasediments and meta-igneous rocks. A seven point whole-rock Sm sbnd Nd isochron for one eclogite body results in an age of 480 ± 23Ma with an initial ɛ Nd of 8.7 ± 0.6 and is likely to record the age of igneous formation of the eclogite protoliths. Sr isotopic compositions back-calculated to that time are anomalously high and variable if compared to Nd isotopes. This can be explained by alteration with an aqueous or fluid phase with high 87Sr 86Sr , most likely seawater, either during igneous formation in an oceanic rift environment or subduction-related eclogitization. In addition, some eclogites show a marked enrichment of incompatible, immobile elements and plot far below the whole-rock Sm sbnd Nd isochron. These features are ascribed to the presence of an evolved crustal component, probably acquired during extrusion of the basaltic protoliths by mixing with country-rock gneisses.

  17. Crustal Anatexis by Upwelling Mantle Melts in the N.Atlantic Igneous Province: the Isle of Rum, NW Scotland.

    NASA Astrophysics Data System (ADS)

    Hertogen, J.; Meyer, R.; Nicoll, G.; Troll, V. R.; Ellam, R. M.; Emeleus, C. H.

    2008-12-01

    Crustal anatexis is a common process in the rift-to-drift evolution during continental breakup and the formation of Volcanic Rifted Margins (VRM) systems. 'Early felsic-later mafic' volcanic rock associations on the Continent Ocean Boundary (COB) of the N.Atlantic Ocean have been sampled by ODP drilling on the SE Greenland margin and the the Vøring Plateau (Norwegian Sea). Such associations also occur further inland in the British Paleocene Igneous Province, such as on the Isle of Rum (e.g., Troll et al., Contrib. Min. Petrol., 2004, 147, p.722). Sr and Nd isotope and trace element geochemistry show that the Rum rhyodacites are the products of melting of Lewisian amphibolite gneiss. There are no indications of a melt contribution from Lewisian granulite gneiss. The amphibolite gneiss parent rock had experienced an ancient Cs and Rb loss, possibly during a Caledonian event, which caused 87Sr/86Sr heterogeneity in the crustal source of silicic melts. The dacites and early gabbros of Rum are mixtures of crustal melts and primary mantle melts. Rare Earth Element modelling shows that late stage picritic melts on Rum are close analogues for the parent melts of the Rum Layered Suite, and for the mantle melts that caused crustal anatexis of the Lewisian gneiss. These primary mantle melts have close affinities to MORB whose trace element content varies from slightly depleted to slightly enriched. The 'early felsic-later mafic' volcanic associations from Rum, and from the now drowned seaward dipping wedges on the shelf of SE Greenland and on the Vøring Plateau show geochemical differences that result from variations in the regional crustal composition and the depth at which crustal anatexis took place.

  18. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range.

    PubMed

    Juárez, Andrea; Arribére, María A; Arcagni, Marina; Williams, Natalia; Rizzo, Andrea; Ribeiro Guevara, Sergio

    2016-09-01

    Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.

  19. Generation and Evolution of Quaternary Magmas Beneath Tengchong: Sr-Nd-Pb-Hf Isotope and Zircon U-series Age Constraints

    NASA Astrophysics Data System (ADS)

    Zou, H.; Ma, M.; Fan, Q.; Xu, B.; Li, S. Q.; Zhao, Y.; King, D. T., Jr.

    2017-12-01

    The Tengchong volcanic field on the southeastern margin of the Tibetan Plateau represents rare Quaternary volcanic eruptions on the plateau. The Quaternary Tengchong volcanic field formed high-potassium calc-alkaline volcanic rocks that include trachybasalts, basaltic trachyandesites, trachyandesites, and dacites. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four young Tengchong volcanoes at Maanshan, Dayingshan, Heikongshan, and Laoguipo, in order to understand their magma genesis and evolution. Nd-Sr-Pb-Hf isotopes for the primitive Tengchong magma (trachybasalts with SiO2 <52.5 wt. % and MgO >5.5% wt. %) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the primitive magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area. With regard to the evolved magmas (basaltic trachyandesites and trachyandesites), good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process during magma evolution to form these basaltic trachyandesites and trachyandesites. Uranium-series zircon dating on these evolved lavas from Tengchong is used to constrain their magma evolution and residence timescales.

  20. Effect of agriculture on water quality of Lake Biwa tributaries, Japan.

    PubMed

    Nakano, Takanori; Tayasu, Ichiro; Yamada, Yoshihiro; Hosono, Takahiro; Igeta, Akitake; Hyodo, Fujio; Ando, Atsushi; Saitoh, Yu; Tanaka, Takuya; Wada, Eitaro; Yachi, Shigeo

    2008-01-15

    We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO(3), SO(4), NO(3), Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The delta(34)S values of SO(4) in the river water converged to 0+/-2 per thousand as the SO(4) concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO(3) concentration increased. In particular, both the delta(34)S values (0+/-2 per thousand) and the (87)Sr/(86)Sr ratios (0.7117+/-0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the delta(34)S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable (87)Sr/(86)Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg and Sr. Compared with tributary waters, the lake water was depleted in NO(3), owing to denitrification, and in Mn, owing to mineralization, which occur under the redox condition of bottom sediments. Excluding NO(3) and Mn, the compositions of both the dissolved elements and the Sr and S isotopes in the water of Lake Biwa can be approximately reproduced by simple mixing of the tributary water, indicating that these components provide effective indices for evaluating the relationship between the waters of the lake and its tributaries.

  1. Apollo 16 returned lunar samples - Lithophile trace-element abundances

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Schuhmann, S.; Kouns, C. W.; Lum, R. K. L.; Bickel, A. L.; Schnetzler, C. C.

    1973-01-01

    Lithium, K, Rb, Sr, Ba, rare-earth, Zr, and Hf abundances have been determined by mass-spectrometric isotope-dilution for Apollo 16 soils, anorthosite 61016, and 'basalt' 68415 whole-rock and separated pyroxene and plagioclase. Our sample of 61016 is similar to some other lunar anorthosites in lithophile trace-element concentrations but at a slightly lower level. It was probably accumulated from a little differentiated basalt. Basalt 68415 might be a homogeneous mixture of KREEP and anorthosite material; it appears to have crystallized under conditions as reducing as those holding for mare-basalts. The soil fines cover only a limited compositional range. No obvious chemical differences were noted between the Descartes and Cayley formations. Most of the compositional variation of the soils can be accounted for in terms of the addition of plagioclase. The existence of very high alumina basalt as an independent magma-type appears debatable in view of its KREEP-like lithophile trace-element relative concentrations and the observed lunar radioactivity distribution.

  2. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    USGS Publications Warehouse

    Downes, H.; Macdonald, R.; Upton, B.G.J.; Cox, K.G.; Bodinier, J.-L.; Mason, P.R.D.; James, D.; Hill, P.G.; Hearn, B.C.

    2004-01-01

    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzbugites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0??5121 (close to the host minette values) to 0??5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd/144Nd values (0??5113) and extremely high 87Sr/86Sr ratios in their constituent phlogopite, indicating an ancient (probably mid-Proterozoic) enrichment. This enriched mantle lithosphere later contributed to the formation of the high-K Eocene host magmas. The cumulate group ranges from clinopyroxene-rich mica peridotites (including abundant mica wehrlites) to mica clinopyroxenites. Most contain >30% phlogopite. Their mineral compositions are similar to those of phenocrysts in the host minettes. Their whole-rock compositions are generally poorer in MgO but richer in incompatible trace elements than those of the tectonite peridotites. Whole-rock trace element patterns are enriched in large ion lithophile elements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb, Ta Zr and Hf as in the host minettes, and their Sr-Nd isotopic compositions are also identical to those of the minettes. Their clinopyroxenes are LREE-enriched and formed in equilibrium with a LREE-enriched melt closely resembling the minettes. The cumulates therefore represent a much younger magmatic event, related to crystallization at mantle depths of minette magmas in Eocene times, that caused further metasomatic enrichment of the lithosphere. ?? Oxford University Press 2004; all rights reserved.

  3. Raman study of potassium silicate glasses containing Rb +, Sr 2+, Y 3+ and Zr 4+: Implications for cation solution mechanisms in multicomponent silicate liquids

    NASA Astrophysics Data System (ADS)

    Ellison, Adam J. G.; Hess, Paul C.

    1994-04-01

    The parallel- and perpendicular-polarized Raman spectra of (1 - x)K 2O · xM 2/zz+O · 4SiO 2e glasses are presented, where M is one of the Period V cations Rb +, Sr 2+, Y 3+ or Zr 4+. These compositions represent the equal-oxygen substitution of a Period V cation for K +, which preserves the ratio of non-bridging oxygen (NBO) to Si atoms but not, in general, the ratio of all oxygen to all cations. Rb + and K + occupy very similar sites and appear to share the same NBO with virtually no energetic penalty. As the valence of the Period V cation increases, so does the tendency of the cation to form silicate species that are depolymerized relative to the species dominating the structure of the bulk glass. The tendency to form regions comparatively rich in Si-O-Si bonds increases in the same sense. The dominant silicate species are those with 0 or 1 NBO in all glasses. The spectra indicate that K+ shares NBO with Rb + or Sr 2+, that there is relatively little sharing of NBO by K + and Y 3+, and that K + and Zr 4+ share the same NBO in what appears to be a nearly fixed bulk stoichiometric K:Zr ratio of 2:1. The latter provides a mechanism for the substantial increase in ZrO 2 solubility seen in peralkaline liquids. A novel means of expressing homogeneous equilibria in silicate liquids is presented, whereby it is possible to make concrete predictions about the coordination numbers of cations in silicate liquids and to predict how they might be affected by the presence of other cations.

  4. Modeling crust-mantle evolution using radiogenic Sr, Nd, and Pb isotope systematics

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti

    2015-04-01

    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with a D" layer -source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, compiled from published data. Different crustal growth scenarios (exponential, episodic, early and late growth), proposed in earlier studies, and its effect on the evolution of isotope systematics of terrestrial reservoirs is studied. Model simulations strongly favor a layered mantle structure satisfying majority of the isotopic constraints. In the successful model, which is similar to that proposed by Kellogg et al. (1999), the present-day UM comprises of 60% of mantle mass and extends to a depth 1600 km, whereas the LM becomes non-primitive and more enriched than the bulk silicate Earth, mainly due to addition of recycled crustal material. Modeling suggest that isotopic evolution of reservoirs is affected by the mode of crustal growth. Only two scenarios satisfied majority of the Rb-Sr and Sm-Nd isotopic constraints but failed to reproduce the present-day Pb-isotope systematics; exponential growth of crust (mean age, tc=2.3 Ga) and delayed and episodic growth (no growth for initial 900 Ma, tc=2.05 Ga) proposed by Patchett and Arndt (1986). However, assuming a slightly young Earth (4.45 Ga) better satisfies the Pb-isotope systematics. Although, the delayed crustal growth model satisfied Sr-Nd isotopic constraints, presence of early Hadean crust (4.03 and 4.4 Ga detrital zircon in Acasta gneiss and Yilgarn block, respectively), argues against it. One notable feature of successful models is an early depletion of incompatible elements (as well as Th/U ratio in the UM) by the initial 500 Ma, as a result of early formation of continental crust. Our results strongly favor exponential crustal growth and layered mantle structure. Patchett, P.J., Arndt, N.T. (1986), Earth and Planetary Science Letters, 78, 329-338. Kellogg, L.H., Hager, B.H., van der Hilst, R.D (1999), Science, 283, 1881-1884.

  5. Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb mineral ages from the 27.5 Ma fish canyon tuff reference standard

    USGS Publications Warehouse

    Lanphere, M.A.; Baadsgaard, H.

    2001-01-01

    The accuracy of ages measured using the 40Ar/39Ar technique is affected by uncertainties in the age of radiation fluence-monitor minerals. At present, there is lack of agreement about the ages of certain minerals used as fluence monitors. The accuracy of the age of a standard may be improved if the age can be measured using different decay schemes. This has been done by measuring ages on minerals from the Oligocene Fish Canyon Tuff (FCT) using the K-Ar, 40Ar/39Ar. Rb-Sr and U/Pb methods. K-Ar and 40Ar/39Ar total fusion ages of sanidine, biotite and hornblende yielded a mean age of 27.57 ?? 0.36 Ma. The weighted mean 40Ar/39Ar plateau age of sanidine and biotite is 27.57 ?? 0.18 Ma. A biotite-feldspar Rb-Sr isochron yielded an age of 27.44 ?? 0.16 Ma. The U-Pb data for zircon are complex because of the presence of Precambrian zircons and inheritance of radiogenic Pb. Zircons with 207Pb/235U < 0.4 yielded a discordia line with a lower concordia intercept of 27.52 ?? 0.09 Ma. Evaluation of the combined data suggests that the best age for FCT is 27.51 Ma. Published by Elsevier Science B.V.

  6. The role of correlation and solvation in ion interactions with B-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushko, Maria L.; Thomas, Dennis G.; Pabit, Suzette

    Ionic atmosphere around nucleic acids plays important roles in biological function. Large-scale explicit solvent simulations coupled to experimental assays such as anomalous small-angle X-ray scattering (ASAXS) can provide important insights into the structure and energetics of the ionic atmosphere but are time- and resource-intensive. In this paper, we demonstrate the use of classical density functional theory to model DNA-ion interactions and explore the balance between ion-DNA, ion-water, and ion-ion interactions. In particular, we compute the distribution of RbCl, SrCl2, and CoHexCl3 (cobalt hexammine chlo- ride) around a B-form DNA molecule. The accuracy of the DFT calculations was assessed by comparisonmore » between simulated and experimental ASAXS curves. As expected, these calculations revealed significant differences between the monovalent, divalent, and trivalent cations. About half of the DNA-bound Rb+ ions penetrate into the minor groove of the DNA and half adsorb on the DNA strands. The fraction of cations in the minor groove decreases for the larger Sr2+ ions and becomes zero for CoHex3+ ions, which all adsorb on the DNA strands. The distribution of CoHex3+ ions is mainly determined by Coulomb interactions, while ion-correlation forces play a central role in the monovalent Rb+ distribution and a combination of ion-correlation and hydration forces affect the Sr2+ distribution around DNA.« less

  7. Elemental composition of game meat from Austria.

    PubMed

    Ertl, Kathrin; Kitzer, Roland; Goessler, Walter

    2016-06-01

    Concentrations of 26 elements (B, Na, Mg, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Ba, Hg, Pb, U) in wild game meat from Austria were analysed using an inductively coupled plasma mass spectrometer. All investigated animals were culled during the hunting season 2012/2013, including 10 chamois (Rupicapra rupicapra), 9 hare (Lepus europaeus), 10 pheasant (Phasianus colchicus), 10 red deer (Cervus elaphus), 12 roe deer (Capreolus capreolus) and 10 wild boar (Sus scrofa). In 19 out of 61 meat samples lead concentrations were higher than 0.1 mg/kg, the maximum limit in meat as set by the European Commission (Regulation EC No 1881/2006), which is most likely caused by ammunition residues. Especially, pellet shot animals and chamois show a high risk for lead contamination. Despite ammunition residues all investigated muscle samples show no further health risk with respect to metal contamination.

  8. Air Pollution Study in the Republic of Moldova Using Moss Biomonitoring Technique.

    PubMed

    Zinicovscaia, Inga; Hramco, Constantin; Duliu, Octavian G; Vergel, Konstantin; Culicov, Otilia A; Frontasyeva, Marina V; Duca, Gheorghe

    2017-02-01

    Moss biomonitoring using the species Hypnum cupressiforme (Hedw.) and Pleurocarpous sp was applied to study air pollution in the Republic of Moldova. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, Hf, Ta, W, Pb, Th, and U) were determined by instrumental epithermal neutron activation analysis and atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Geographical distribution maps were prepared to point out the regions most affected by air pollution and relate this to potential sources of contamination. Median values of the elements studied were compared with data from the European moss biomonitoring program. The cities of Chisinau and Balti were determined to experience particular environmental stress.

  9. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Cauzid, J.; Philippot, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.; Golosio, B.

    2007-08-01

    World class Cu resources are concentrated in porphyry and epithermal ore deposits. Their formation remains partially understood, however, due to a lack of constraints on the partitioning properties of trace elements in general, and Cu in particular, between vapour and liquid phases evolved from boiling fluids at depth in the Earth's crust. Immiscible liquid and vapour fluid inclusions coexisting in a single quartz grain have been imaged in three dimensions by X-ray Fluorescence Computed Tomography (XFCT). Elemental spatial distributions confirm that Cu, and to a lesser extent As, partition into the vapour phase, whereas Mn, Fe, Zn, Br, Rb, Sr and Pb concentrate in the liquid inclusion. High resolution mapping of the vapour inclusions revealed that Cu is heterogeneously distributed at the scale of a single inclusion and is mostly concentrated as tiny daughter crystals.

  10. Elemental and Sr-Nd-Pb isotope geochemistry of the Florianópolis Dyke Swarm (Paraná Magmatic Province): crustal contamination and mantle source constraints

    NASA Astrophysics Data System (ADS)

    Marques, L. S.; De Min, A.; Rocha-Júnior, E. R. V.; Babinski, M.; Bellieni, G.; Figueiredo, A. M. G.

    2018-04-01

    The Florianópolis Dyke Swarm is located in Santa Catarina Island, comprising also the adjacent continental area, and belongs to the Paraná Magmatic Province (PMP). The dyke outcrops in the island are 0.1-70 m thick and most of them are coast-parallel (NE-SW trending), with subordinate NW-SE trending. The vast majority of the dykes has SiO2 varying from 50 to 55 wt% and relatively high-Ti (TiO2 > 3 wt%) contents and these rocks were divided using the criteria commonly used to distinguish the different magma-types identified in the volcanic rocks from the PMP. The Urubici dykes (Sr > 550 μg/g) are the most abundant and some of them experienced crustal contamination reaching to 10%, as evidenced by low P2O5/K2O (0.30-0.21), high (Rb/Ba)PM (1.0-2.2), and radiogenic Sr and Pb isotope compositions (87Sr/86Sri up to 0.70716 (back to 125 Ma) and 206Pb/204Pbm up to 19.093). The Pitanga (Sr < 550 μg/g) and the basaltic trachyandesite dykes are less abundant and almost all of them were also substantially affected by at least 15% of crustal assimilation, evidenced by high (Rb/Ba)PM (up to 2.6) and Sr (87Sr/86Sri = 0.70737-0.71758) and Pb (206Pb/204Pbm = 18.446-19.441) isotope ratios, as well as low P2O5/K2O values (0.30-0.18). The low-Ti (TiO2 < 2 wt%) dykes are scarce and show a large compositional variability (SiO2: 50.4-64.5 wt%), with similar geochemical characteristics of the low-Ti volcanic rocks (Gramado-Palmas) from southern PMP, although the most primitive dykes show hybrid characteristics of Ribeira and Esmeralda magmas. The presence of granitic xenoliths with border reactions and dykes with diffuse contacts indicate that crustal contamination probably occurred by assimilation from re-melted the host rocks. Considering only the high-Ti Urubici dykes that were not affected by crustal contamination, the Sr, Nd and Pb isotope mixing modelling indicates the participation of a heterogeneous metasomatized (refertilized) subcontinental lithospheric mantle (SCLM). This mantle source was originated by partial melting of a depleted sublithospheric mantle (DMM - Depleted Mantle MORB), which was hybridized by addition of pyroxenite (< 5%) and carbonatite (up to 2%) melts. The isotope mixing modelling also points to a significant participation (up to 50%) of Archean SCLM, not evidenced in the mantle sources of the northern PMP high-Ti Pitanga flows (dominated by Neoproterozoic SCLM).

  11. Age, geochemical and Sr Nd Pb isotopic constraints for mantle source characteristics and petrogenesis of Teru Volcanics, Northern Kohistan Terrane, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, S. D.; Stern, R. J.; Manton, M. I.; Copeland, P.; Kimura, J. I.; Khan, M. A.

    2004-11-01

    This paper presents new geochemical and geochronology data for the Teru Volcanic Formation (previously known as the Shamran Volcanics) exposed west of Gilgit in the Kohistan terrane of the Pakistani Himalayas. The Teru Volcanic Formation ranges from basalt through andesite to rhyolite and has subalkaline and midalkaline affinities. Trace-element compositions and isotopic characteristics suggest these magmas were formed in a subduction zone setting; isotopic studies also support this conclusion. It is suggested that these lavas originated from a depleted mantle source, which experienced contamination by variable subduction components. Model mixing calculations using 87Sr/ 86Sr and 143Nd/ 144Nd data suggest that addition of 0.2-0.6% of Indus margin sediments and/or 2-4% of fluids derived from Indus margin sediment can generate the compositional variation of the Teru Volcanic Formation. Two samples from the Teru Volcanic Formation yielded 40Ar/ 39Ar ages of 43.8+0.5 and 32.5+0.4 Ma. These ages make the volcanic rocks of the Teru Volcanic Formation the youngest reported in the Kohistan terrane. These volcanic rocks unconformably overly the Shunji Pluton, which has a 65 Ma Rb-Sr whole-rock isochron age. The results of this research suggest that subduction-related volcanism was active until 33 Ma in the India-Asia collision zone.

  12. Sm-Nd, Rb-Sr, and Mn-Cr Ages of Yamato 74013

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.- Y.; Reese, Y.D.

    2009-01-01

    Yamato 74013 is one of 29 paired diogenites having granoblastic textures. The Ar-39 - Ar-40 age of Y-74097 is approximately 1100 Ma. Rb-Sr and Sm-Nd analyses of Y-74013, -74037, -74097, and -74136 suggested that multiple young metamorphic events disturbed their isotopic systems. Masuda et al. reported that REE abundances were heterogeneous even within the same sample (Y-74010) for sample sizes less than approximately 2 g. Both they and Nyquist et al. reported data for some samples showing significant LREE enrichment. In addition to its granoblastic texture, Y-74013 is characterized by large, isolated clots of chromite up to 5 mm in diameter. Takeda et al. suggested that these diogenites originally represented a single or very small number of coarse orthopyroxene crystals that were recrystallized by shock processes. They further suggested that initial crystallization may have occurred very early within the deep crust of the HED parent body. Here we report the chronology of Y-74013 as recorded in chronometers based on long-lived Rb-87 and Sm-147, intermediate- lived Sm-146, and short-lived Mn-53.

  13. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Zhao, Kui-Dong; Chen, Wei; Jiang, Shao-Yong

    2018-05-01

    Mafic dykes are abundant and widely distributed in many granite-hosted uranium ore deposits in South China. However, their geochronology, petrogenesis and relationship with uranium mineralization were poorly constrained. In this study, apatite U-Pb dating, whole-rock major and trace element and Sr-Nd-Pb isotope analysis were conducted for the dolerite dykes from the Aigao uranium ore deposit. Apatite U-Pb isotopic data indicate that the mafic dykes were emplaced at Early Jurassic (189 ± 4 Ma), which provides new evidence for the rarely identified Early Jurassic magmatism in South China. Pyroxene from the dykes is mainly augite, and plagioclase belongs to albite. The dolerite samples have relatively low SiO2 contents (45.33-46.79 wt%), relatively high total alkali contents (K2O + Na2O = 4.11-4.58 wt%) and Al2O3 contents (13.39-13.80 wt%), and medium MgO contents (4.29-5.16 wt%). They are enriched in Nb, Ta, Ti, rare earth elements and depleted in Rb, K, Sr, Th, showing the typical OIB-like geochemical affinity. All the dolerite samples show homogeneous Sr-Nd-Pb isotopic compositions, with (87Sr/86Sr)i varying from 0.706049 to 0.707137, εNd(t) from +4.6 to +5.2, 206Pb/204Pb from 19.032 to 19.126 and 207Pb/204Pb from 15.641 to 15.653. The mafic dykes in the Aigao deposit should be derived from the partial melting of the asthenospheric mantle and formed in a within-plate extensional environment. The emplacement age of the mafic dykes is older than the uranium mineralization age. Therefore, CO2 in ore-forming fluids couldn't originate from the basaltic magma as suggested by previous studies. The dolerite dykes might only provide a favorable reducing environment to promote the precipitation of uraninite from oxidize hydrothermal fluids.

  14. 40K-40Ca and 87Rb-86Sr Dating by SIMS: The Double-Plus Advantage

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; McKeegan, K. D.; Schmitt, A. K.

    2009-12-01

    The decay of 40K to 40Ar forms the basis of the potassium-argon dating method, although only one out of every 10 parent atoms decays to daughter 40Ar. The other 90% decay to 40Ca giving, in principle, the 40K-40Ca decay system great potential for dating samples with high K/Ca. This method, however, has not been utilized as an ion-microprobe-based geochronometer, largely because these isotopes require a very high mass resolving power (MRP) of ~25k for full separation. We found that limiting secondary ion transmission in our ims1270 ion microprobe to ~20% permits sufficient separation of 40K from 40Ca (MRP≈ 20k) to permit isotope ratio analysis, albeit with 40Ca+ on the shoulder of the more intense 40K+ peak. A pegmatitic muscovite from Jack Hills (K-Ca age = 2.54 Ga; Fletcher et al., Chem. Geol. 138, 289) yields ~104 cps of both 40K+ and 40Ca+ with a 15 μm primary spot size and O- beam current of 10 nA. The 40Ca+ signal is >90% radiogenic and reflects a “common” Ca content of ≤ 100 ppm. However, application of the relative sensitivity factor (RSF) calculated from the Jack Hills muscovite to unknowns yields relatively high age dispersion, perhaps related to the incompletely separated mass interferences. Theorizing that the noble gas electronic structure of K+ would likely resist further electron loss, we investigated an alternative approach involving analysis of Ca++/K++. The double-plus method provides an important advantage in that K++ species are suppressed by a factor of ~103 relative to K+, thereby effectively removing 40K++ from the spectrum at m/e≈ 20 and leaving 40Ca++ free from any significant interferences at an MRP≈ 4k. Measurement of the much more abundant 39K++ then permits 40Ca++/40K++ to be calculated from the known 39K/40K ratio. We applied this approach to Precambrian muscovite samples obtaining ages similar to, but generally younger than, their associated 40Ar/39Ar ages. This could reflect a minor matrix effect or a lower intrinsic retentivity of 40Ca* relative to 40Ar* in white micas. This approach offers the potential to develop a branched-decay thermochronometer (K-Ca-Ar) permitting simultaneous solution of temperature-time history from μm-scale isotopic variations. A further advantage is that even low resolution SIMS instruments (e.g., ims7f) can utilize the double-plus method. Initial investigations using the same double-plus approach for Rb-Sr dating show promise. While resolving 87Rb+ from 87Sr+ requires an MRP of ~290k, unattainable using any current SIMS instrument, 87Rb++ is so strongly suppressed that determination of 87Sr++ is possible with minor peak stripping. 87Rb/86Sr can be determined either from 85Rb+/88Sr+ at MRP≈ 8k or by the use of energy filtering. In addition to micas, these approaches may be applicable to any mineral systems enriched in alkali metals relative to alkaline earths, such as alkali feldspars, feldspathoids, and alkaline halides.

  15. Spatial Variations and Sources of Trace Elements in Recent Snow from Glaciers at the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Huang, J.; Li, Y.; Li, Z.; Cozzi, G.; Turetta, C.; Barbante, C.; Xiong, L.

    2017-12-01

    Various trace element (TEs) could be long-range transported through the atmosphere and deposited onto the snow surface. Recently, with the development of economy of China and the surrounding countries, TEs such as Pb, Cd, Mo and Sb in several glaciers from the Tibetan Plateau (TP) have been gradually affected by anthropogenic activities. This study presents the acid leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the TP from April to May of 2013. The different concentrations of TEs in the surface snow and snow pit samples over the five glaciers show that TEs were influenced both by surrounding environment of glaciers and seasonal variations of atmospheric impurity loading. Comparison of TEs concentrations with data of other sites, elevated concentrations of As, Cu, Mo, Pb and Sb were observed in glaciers of TP, showing significant atmospheric TEs pollution. Enrichment factor(EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr and Cu mainly originated from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion and traffic emission made an important contribution to the Mo, Pb and Sb. Evidences from air mass back trajectories show the air masses arrived at QMLK mostly came from the Taklimakan desert, the TEs from the Taklimakan desert and the western TP could be transported to the MK and YZF glaciers . The air masses derived from the western TP and the southwestern TP affected the environment of the XDKMD and GRHK glaciers. Futhermore, the air masses passed through some big cities with developed industry and large population such as Urumqi, Bishkek, Dushanbe and some countries such as Pakistan and India could also bring pollutants to the studied glaciers.

  16. Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.

    2006-11-01

    Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals ( Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment.

  17. Sr and U isotope ratios in soil waters as tracers of weathering dynamic in soils (Strengbach catchment - Vosges-mountains; France).

    NASA Astrophysics Data System (ADS)

    Chabaux, François; Prunier, Jonathan; Pierret, Marie-Claire; Stille, Peter

    2013-04-01

    It is proposed in this study to highlight the interest of multi-tracer geochemical approaches combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to constrain the characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems. This is important if we want to predict and to model correctly the response of ecosystems to recent environmental changes. The approach is applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, along with the analysis of soil samples and vegetation samples from these two plots. The depth variation of elemental concentrations of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling. From the obtained data, it can be therefore proposed a scheme where in addition to the external flux associated to the decomposition of organic matter and throughfall, occurs a double lithogenic flux: a surface flux which can be associated to dissolution of secondary minerals contained in fine silt fractions and a deeper one, controlled by water-rock interactions which can mobilize elements from primary minerals like plagioclases or orthose. These results shows also that the Strengbach watershed is in a transient state of weathering with an important loss of nutriments such as Ca in soils solutions since 15years, associated with an increase of a lithogenic flux indicating a recent modification of weathering/dissolution reactions involved in the soil horizons. The origin of the weathering modification could be the consequence of the acid rains on weathering granitic bedrock or a consequence of forest exploitation incompatible with the nutriment reserve of soils with recent plantations of conifer, which impoverish soils.

  18. Mineralogy and petrology of cretaceous subsurface lamproite sills, southeastern Kansas, USA

    USGS Publications Warehouse

    Cullers, R.L.; Dorais, M.J.; Berendsen, P.; Chaudhuri, Sambhudas

    1996-01-01

    Cores and cuttings of lamproite sills and host sedimentary country rocks in southeastern Kansas from up to 312 m depth were analyzed for major elements in whole rocks and minerals, certain trace elements in whole rocks (including the REE) and Sr isotopic composition of the whole rocks. The lamproites are ultrapotassic (K2O/Na2O = 2.0-19.9), alkalic [molecular (K2O/Na2O)/Al2O3 = 1.3-2.8], enriched in mantle-incompatible elements (light REE, Ba, Rb, Sr, Th, Hf, Ta) and have nearly homogeneous initial Sr isotopic compositions (0.707764-0.708114). These lamproites could have formed by variable degrees of partial melting of harzburgite country rock and cross-cutting veins composed of phlogopite, K-Ti richterite, titanite, diopside, K-Ti silicates, or K-Ba-phosphate under high H2O/CO2 ratios and reducing conditions. Variability in melting of veins and wall rock and variable composition of the metasomatized veins could explain the significantly different composition of the Kansas lamproites. Least squares fractionation models preclude the derivation of the Kansas lamproites by fractional crystallization from magmas similar in composition to higher silica phlogopite-sanidine lamproites some believe to be primary lamproite melts found elsewhere. In all but one case, least squares fractionation models also preclude the derivation of magmas similar in composition to any of the Kansas lamproites from one another. A magma similar in composition to the average composition of the higher SiO2 Ecco Ranch lamproite (237.5-247.5 m depth) could, however, have marginally crystallized about 12% richterite, 12% sanidine, 7% diopside and 6% phlogopite to produce the average composition of the Guess lamproite (305-312 m depth). Lamproite from the Ecco Ranch core is internally fractionated in K2O, Al2O3, Ba, MgO, Fe2O3, Co and Cr most likely by crystal accumulation-removal of ferromagnesian minerals and sanidine. In contrast, the Guess core (305-312 m depth) has little fractionation throughout most of the sill except in several narrow zones. Lamproite in the Guess core has large enrichments in TiO2, Ba, REE, Th, Ta and Sc and depletions in MgO, Cr, Co and Rb possibly concentrated in these narrow zones during the last dregs of crystallization of this magma. The Ecco Ranch sill did not show any evidence of loss of volatiles or soluble elements into the country rock. This contrasts to the previously studied, shallow Silver City lamproite which did apparently lose H2O-rich fluid to the country rock. Perhaps a greater confining pressure and lesser amount of H2O-rich fluid prevented it from escaping.

  19. Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia

    2017-05-01

    Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.

  20. Mobility of plume-derived volcanogenic elements in meteoric water at Nyiragongo volcano (Congo) inferred from the chemical composition of single rainfall events

    NASA Astrophysics Data System (ADS)

    Liotta, Marcello; Shamavu, Patient; Scaglione, Sarah; D'Alessandro, Walter; Bobrowski, Nicole; Bruno Giuffrida, Giovanni; Tedesco, Dario; Calabrese, Sergio

    2017-11-01

    The chemical composition of single rainfall events was investigated at Nyiragongo volcano (Democratic Republic of Congo) with the aim of determining the relative contributions of plume-derived elements. The different locations of the sampling sites allowed both plume-affected samples (hereafter referred to as ;fumigated samples;) and samples representative of the local background to be collected. The chemical composition of the local background reflects the peculiar geographic features of the area, being influenced by biomass burning, geogenic dust, and biological activity. Conversely, fumigated samples contain large amounts of volcanogenic elements that can be clearly distinguished from the local background. These elements are released into the atmosphere from the persistently boiling lava lake of the Nyiragongo crater and from the neonate lava lake of Nyamulagira. These emissions result in a volcanic plume that includes solid particles, acidic droplets, and gaseous species. The chemical signature of the volcanic emissions appears in falling raindrops as they interact with the plume. HCl and HBr readily dissolve in water, and so their ratio in rain samples reflects that of the volcanic plume. The transport of HF is mediated by the large amount of silicate particles generated at the magma-air interface. SO2 is partially converted into SO42- that dissolves in water. The refractory elements dissolved in rain samples derive from the dissolution of silicate particles, and most of them (Al, Mg, Ca, and Sr) are present at exactly the same molar ratios as in the rocks. In contrast, elements such as Na, K, Rb, Cu, and Pb are enriched relative to the whole-rock composition, suggesting that they are volatilized during magma degassing. After correcting for the dissolution of silicate particles, we can define that the volatility of the elements decreases in the following order: Pb ≫ Rb > K > Na. This finding, which is the first for a volcanic plume, is consistent with previous measurements in high-temperature fumaroles at other volcanic areas.

  1. First Principles Investigation of Fluorine Based Strontium Series of Perovskites

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2016-11-01

    Density functional theory is used to explore structural, elastic, and mechanical properties of SrLiF3, SrNaF3, SrKF3 and SrRbF3 fluoroperovskite compounds by means of an ab-initio Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method. Several lattice parameters are employed to obtain accurate equilibrium volume (Vo). The resultant quantities include ground state energy, elastic constants, shear modulus, bulk modulus, young's modulus, cauchy's pressure, poisson's ratio, shear constant, ratio of elastic anisotropy factor, kleinman's parameter, melting temperature, and lame's coefficient. The calculated structural parameters via DFT as well as analytical methods are found to be consistent with experimental findings. Chemical bonding is used to investigate corresponding chemical trends which authenticate combination of covalent-ionic behavior. Furthermore electron density plots as well as elastic and mechanical properties are reported for the first time which reveals that fluorine based strontium series of perovskites are mechanically stable and posses weak resistance towards shear deformation as compared to resistance towards unidirectional compression while brittleness and ionic behavior is dominated in them which decreases from SrLiF3 to SrRbF3. Calculated cauchy's pressure, poisson's ratio and B/G ratio also proves ionic nature in these compounds. The present methodology represents an effective and influential approach to calculate the whole set of elastic and mechanical parameters which would support to understand various physical phenomena and empower device engineers for implementing these materials in numerous applications.

  2. Origin and evolution of the Ilmeny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-element compositions, and Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.; Belousova, E. A.; Sharygin, V. V.; Belyatsky, B. V.; Bayanova, T. B.

    2013-02-01

    The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.

  3. Geochemistry of Cretaceous granites from Mianning in the Panxi region, Sichuan Province, southwestern China: Implications for their generation

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Huang, Zhilong; Qi, Liang; Fu, Pingqing; Liu, Congqiang; Li, Endong; Guan, Tao

    2007-03-01

    The Cretaceous granites of Mianning, located in the northern Panxi region, were emplaced after collision of the Tibetan Plateau and Yangtze Block. These granites have very high K 2O + Na 2O, Ga, Zr, Nb, Y, REE (except Eu), and very low MgO, CaO, P 2O 5, and Sr contents relative to M-, I- or S-type granites. Based on the chemical discrimination criteria of Whalen et al . [Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, distribution and petrogenesis. Contributions to Mineralogy and Petrology 95, 407-419], most of them are A-type granites. Moreover, the granites plot in the range of post-collision granites and belong to the A2 type. Elevated initial Sr isotopic ratios (>0.72) suggest their derivation dominantly from a crustal source. These features are consistent with granite formation in a post-orogenic setting, such as after subduction or collision between of the Tibetan Plateau and Yangtze Block. In addition, the granites are characterized by low abundances of Ba, Sr, P, Ti, and Eu, positive correlation between Ba and Eu anomalies, and negative correlation between Rb and K/Rb. Plots of Rb vs. Sr suggest that fractional crystallization affected the final compositions of these granites after melting from a dominantly crustal source. From the late Proterozoic to late Mesozoic, the crustal composition, compared to that of the mantle, appears to have increased in the Panxi region. While the mantle component played an important part in the generation of Cretaceous granites in southeastern China, its influence was relatively minor in the Panxi region. Thus, there was a significant difference in mantle evolution between southeastern China and the Panxi region, which led to different metallogenic processes.

  4. Sediment Sources, Depositional Environment, and Diagenetic Alteration of the Marcellus Shale, Appalachian Basin, USA: Nd, Sr, Li and U Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.

    2017-12-01

    The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.

  5. Tourmaline orbicules in peraluminous monzogranites of Argentina: A study case of fluid-rock interaction between leucogranite and country-rock metasediments

    NASA Astrophysics Data System (ADS)

    Lira, Raúl; Poklepovic, María F.

    2017-12-01

    Tourmaline orbicules hosted in peraluminous granites are documented worldwide. Seven occurrences were identified in Argentina. Petrography, mineral chemistry, whole-rock geochemistry mass balance and microthermometric studies were performed in orbicules formed at the cupola of a peraluminous A-type leucogranite (Los Riojanos pluton), as well as complementary investigation was achieved in other orbicules of similar geological setting. Mass balance computations in zoned orbicules consistently confirmed immobility of Si both in core and halo, immobility of K and little loss of Al during halo reactions. Elements gained and lost in the schorl-rich core are Fe, Al, Mg, Ti, Ba, Sr, Y and Zr, and Na, K, Rb and Nb, respectively; in the halo, K, Ba, Sr, Y, Zr and locally CaO, were gained, and Fe, Mg, Na, Al, Rb and Nb were lost. The schorl-rich core is enriched in LREE relative to the leucogranite host. A temperature-salinity plot from fluid inclusion data delineates a magmatic-meteoric mixing trend of diluting salinity with descending temperature. Computed δDH20 values from Los Riojanos orbicule schorl suggest magmatic and magmatic-meteoric mixed origins. In Los Riojanos, mass balance constraints suggest that Fe, Mg, Ba, Sr and metallic traces like Zn and V (±Pb) were most likely derived from country-rock schists and gneisses through fluid-rock exchange reactions. A late magmatic-, volatile-rich- fluid exsolution scenario for the formation of orbicules is envisaged. Schorl crystallization was likely delayed to the latest stages of leucogranite consolidation, not only favored by the high diffusivity of B2O3 preferentially partitioned into the exsolved aqueous-rich fluid, but also likely limited to the low availability of Fe and Mg from the scarce granitic biotite, and to the high F- content of the melt. The spatial confination of orbicules to the contact zone granite-metasediments suggests that orbicules were not formed until exsolved fluids reached the boundary with the biotite-rich country-rock.

  6. Deformation in the hanging wall of Cretaceous HP rocks (Austroalpine Ötztal-Stubai Complex, European Eastern Alps): constraints on timing, conditions and kinematics

    NASA Astrophysics Data System (ADS)

    Habler, Gerlinde; Thöni, Martin; Grasemann, Bernhard; Sölva, Helmuth; Cotza, Gianluca

    2010-05-01

    The position and nature of the tectonic boundary between the Cretaceous eclogite facies metamorphic Texel Complex (Sölva et al. 2005, TC) and the Ötztal-Stubai Complex sensu stricto (OSC) with predominantly pre-Cretaceous tectonometamorphic imprint remained a matter of discussion (Fügenschuh et al. 2009). Sölva et al (2005) described the Cretaceous Schneeberg Normal Fault Zone (SNFZ) as the major tectonic boundary between the exhuming TC and the OSC, where the major portion of ductile deformation was partitioned into the rheologically weak Schneeberg/Monteneve Unit (SMU). In contrast, other authors proposed a model of a coherent vertical crustal section in the southern OSC (Schmid and Haas 1989), which was rotated and exhumed by erosion due to Oligocene large scale refolding (Fügenschuh et al. 2009). Here, new Rb-Sr data of muscovite and biotite from para- and orthogneisses from the Ferwalltal and Timmelsjoch areas (Austria/Italy) were correlated with mineral chemical and structural data in order to constrain the age and kinematics of the predominant deformational imprint in the OSC representing the hanging wall of the SNFZ. In the Ferwalltal the undisturbed OSC/SMU boundary is exposed. Above that boundary an amphibolite facies mylonitic foliation (Sc1) represented by the compositional layering of coarse grained Qtz, Bt and dynamically recrystallized Pl interferes with an overprinting mylonitic foliation (Sc2) with spatially heterogeneous intensity. Sc1-planes were syn-tectonically overgrown by euhedral Grt with single phase continuous prograde chemical zoning and Bt-porphyroblasts. Dc2 postdated garnet growth and caused the formation of SCC' fabrics in Bt-Pl gneisses. Still Qtz recrystallized dynamically, whereas Ms and Bt newly crystallized during Dc2. In the study area, the lithological boundaries in the OSC mainly are subparallel to the predominant foliation Sc1. These planes dip with 45-50° to the NW-NNW and show a WNW-plunging stretching lineation (LSc1) of dynamically recrystallized plagioclase and quartz. Shear kinematics of Dc1 alternate between Top to WNW or ESE. Sc2 foliation planes and the lithological-tectonic OSC/SMU boundary dip with intermediate angles towards N - NNW but also bear a W-plunging stretching lineation (LSc2). Dc2 structures consistently indicate W-directed shear kinematics. Due to the angular relationship of Sc1 and Sc2 the lithological boundaries of the OSC are truncated at the boundary with the SMU. Cretaceous Rb-Sr isochrons were obtained from Bt-granite-gneiss about 400m structurally above the OSC/SMU boundary. Fine-grained muscovite forming part of the major foliation Sc1 yielded a Rb-Sr Ms-WR age of 86.1 ± 0.9 Ma interpreted as a crystallization age constraining the timing of Dc1. The evidence of isotopic equilibration was supported by the homogeneous major element Ms composition. Rb-Sr Bt-WR data from the same material yielded 80.8±0.8 Ma interpreted to reflect cooling below c. 300°C. Several Rb-Sr Bt-WR data obtained from the Ferwalltal area gave age-results between 80.0 and 84.7 Ma and thus range among numerous Bt-WR Rb-Sr ages available from the wider study area (Thöni and Hoinkes 1987). Both deformation stages Dc1 and Dc2 predate this cooling period, as the Qtz-mica-fabrics demand significantly higher T-conditions. Subsequent deformation covers strongly partitioned brittle-ductile shear zones dipping with 50 - 60° to NW, as well as ultra-cataclasites bearing pseudotachylites, which reactivated Sc1- or Sc2 planes about 50 - 70 meters above the OSC/SMU boundary. Both brittle-ductile and brittle structures showed W-directed kinematics of normal faulting. The continuation of consistent shear kinematics to the brittle regime, as well as the extensive database of mica ages indicating cooling to below c. 300°C in the OSC adjacent to the SMU between 85 - 80 Ma (Thöni and Hoinkes 1987, with references) contradict a model of Oligocene ductile refolding. References: Fügenschuh B, Flöss D, Speckbacher R (2009) In Alpine Workshop Cogne. Schmid SM, Haas R (1989) Tectonics 8: 697-718. Sölva H, Grasemann B, Thöni M, Thiede RC, Habler G (2005) Tectonophysics 401: 143-166. Thöni M, Hoinkes G (1987) In Geodynamics of the Eastern Alps, pp. 200-213. Edited by Flügel HW and Faupl P. Vienna: Deuticke.

  7. A Pan African age for the HP-HT granulite gneisses of Zabargad island: implications for the early stages of the Red Sea rifting

    NASA Astrophysics Data System (ADS)

    Lancelot, Joël R.; Bosch, Delphine

    1991-12-01

    Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, Sm sbnd Nd and Rb sbnd Sr internal isochrons yield Pan African dates for felsic and basic granulites collected 500-600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined Rb sbnd Sr and Sm sbnd Nd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the Sm sbnd Nd and Rb sbnd Sr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the Rb sbnd Sr isotopic system of the mafic granulite. The initial 143Nd/ 144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.

  8. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian Shield (Egypt): Constraints from whole-rock geochemistry and Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Mohamed, Haroun A.; Hauzenberger, Christoph; Ahmed, Awaad F.

    2018-04-01

    Mineral chemistry, whole-rock geochemical and Sr-Nd isotopic data are reported for the Abu-Diab granitoids in the northern Arabian-Nubian Shield (ANS) of Egypt, to investigate their petrogenesis and geodynamic significance. Gabal Abu-Diab constitute a multiphase pluton, consisting largely of two-mica granites (TMGs) enclosing microgranular enclaves and intruded by garnet bearing muscovite granites (GMGs) and muscovite granites (MGs). The granitoids are weakly peraluminous (A/CNK = 1.01-1.12) and show high SiO2 (>72.9 wt%) and alkali (K2O + Na2O = 8.60-9.13) contents. The geochemical features show that they are post-collisional and highly fractionated A-type granitoids. Compared to their host TMGs, the microgranular enclaves are strongly peraluminous (A/CNK = 1.18-1.24) with lower SiO2 and higher abundances of trace elements. The TMGs are depleted in Ba, Nb, P and Ti and are enriched in LREEs relative to HREEs with weakly negative Eu anomalies (Eu/Eu* = 0.45-0.64). In contrast, the GMGs and MGs are extremely depleted in Ba, Sr and Ti and have tetrad-type REE patterns (TE1-3 = 1.1-1.3) with strongly pronounced negative Eu anomalies (Eu/Eu* = 0.03-0.26), similar to rare metals bearing granites. The Ediacaran (585 ± 24 Ma) TMGs, are characterized by restricted and relatively low initial 87Sr/86Sr ratios (0.70337-0.70382) that suggests their derivation from a depleted mantle source, with little contamination from the older continental crust. In contrast, the GMGs and MGs have extremely high 87Rb/86Sr and 87Sr/86Sr ratios that reflect the disturbance of the Rb-Sr isotopic system and may give an indication for magmatic-fluid interaction. However, all the granitoids display positive εNd(t) (4.41-6.57) and depleted mantle model ages TDM2 between 777 and 956 Ma, which indicate their derivation from a Neoproterozoic juvenile magma sources and preclude the occurrence of pre-Neoproterozoic crustal rocks in the ANS. The microgranular enclaves represent globules of hot mafic magma that have injected and partly mixed with the colder and more felsic TMGs magma. Geochemical and isotopic data along with petrogenetic modelling, suggest that the TMGs were formed by low degrees of partial melting of the pre-existing I-type granodiorites, followed by extensive fractional crystallization and fluid fractionation to produce the geochemically specialized rare metals GMGs and MGs in the margin of Abu-Diab pluton. During the post-collisional stage of ANS and due to lithospheric delamination processes, the underplated fluid/volatile rich mantle magma had interplated and migrated upward to shallow crustal levels, through extensional faults/shear zones, and enhanced the partial melting and fractionation of granodiorites to eventually form Abu-Diab A-type granitoids.

  9. Additional Sr Isotopic Heterogeneity in Zagami Olivine-Rich Lithology

    NASA Technical Reports Server (NTRS)

    Misawa, K.; Niihara, T.; Shih, C.-Y; Reese, Y. D.; Nyquist, L. E.; Yoneda, S.; Yamashita, H.

    2012-01-01

    Prior isotopic analyses of Zagami have established differing initial Sr-87/Sr-86 (ISr) ratios of among Zagami lithologies, fine-grained (FG), coarse-grained (CG), and dark mottled lithologies (DML)]. The Zagami sample (KPM-NLH000057) newly allocated from the Kanagawa Prefectural Museum of Natural History contained DML and the Ol-rich lithology which included more ferroan olivines (Ol-rich: Fa(sub 97- 99) vs late-stage melt pockets: Fa(sub 90-97)]). We have combined mineralogy-petrology and Rb-Sr isotopic studies on the Kanagawa Zagami sample, which will provide additional clues to the genesis of enriched shergottites and to the evolution of Martian crust and mantle

  10. The use of a single multielement standard for trace analysis in biological materials by external beam PIXE

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.; Khaliquzzaman, M.; Islam, M. M.; Khan, A. H.

    1984-04-01

    The validity of the use of a single multielement standard for mass calibration in thick-target external beam PIXE analysis of biological materials has been investigated. In this study, the NBS orchard leaf, SRM 1571, was used as the basic standard for trace element analysis in other biological materials. Using the present procedure, the concentrations of K, Ca, Mn, Fe, Ni, Cu, Zn, Br, Rb and Sr were determined in several NBS reference materials such as bovine liver, spinach, rice flour, etc., generally in 20 μC irradiations with 2.0 MeV protons. The analytical results are compared with certified values of the NBS as well as with other measurements and the sources of errors are discussed.

  11. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source

    NASA Astrophysics Data System (ADS)

    Ying, Jifeng; Zhou, Xinhua; Zhang, Hongfu

    2004-08-01

    Major and trace element and Nd-Sr isotope data of the Mesozoic Laiwu-Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu-Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/ 86Sr (0.7095-0.7106) and very low ɛNd (-18.2 to -14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd-Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.

  12. Effect of hydrostatic pressure on physical properties of strontium based fluoroperovskites for novel applications

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2018-02-01

    Density functional theory (DFT) is employed to calculate the effect of pressure variation on electronic structure, elastic parameters, mechanical durability, and thermodynamic aspects of SrRbF3, in combination with Quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which cubic stability of SrRbF3 fluoroperovskite remains valid. Significant influence of compression on wide range of elastic parameters and related mechanical properties have been discussed, to utilize this material in low birefringence lens fabrication technology. Apart of linear dependence on elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. Moreover, successful prediction of important thermodynamic aspects such as volume expansion coefficient (α), Debye temperature (θ D), heat capacities (Cp and Cv) are also done within wide pressure and temperature ranges.

  13. Rb-Sr, Sm-Nd, and U-Pb geochronology of the rocks within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Klötzli, Urs; Thöni, Martin; Grasemann, Bernhard; Edwards, Michael A.

    2012-08-01

    In southern Thailand, the Khlong Marui shear zone is dominated by a NNE-SSW striking high topographic lozenge shaped area of ca. 40 km long and 6 km wide between the Khlong Marui Fault and the Bang Kram Fault. The geology within this strike-slip zone consists of strongly deformed layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins with a steeply dipping foliation. The strike-slip deformation is characterized by dextral ductile deformation under amphibolite facies and low to medium greenschist facies. In situ U-Pb ages of inherited zircon cores from all zircons in the Khlong Marui shear zone indicate that they have the same material from the Archean. Late Triassic to Late Cretaceous ages obtained for zircon outer cores of the mylonitic granite are probably related to a period of magmatic activity that was significantly influenced by the West Burma and Shan-Thai collision and the subduction along the Sunda Trench. The early dextral ductile deformation phase of the Khlong Marui shear zone in the Early Eocene suggested by U-Pb ages of zircon rims, and the later dextral transpressional deformation in the Late Eocene indicated by mica Rb-Sr ages. Rb-Sr, Sm-Nd, and U-Pb dating correlation implies that the major exhumation period of the ductile lens was in the Eocene. This period was tectonically influenced in the SE Asia region by the early India-Asia collision.

  14. Dating Paleogene Subduction in the Alborán Domain (Alpujárride Complex, S. Spain)

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Ashley, K.; Loewy, S. L.; Platt, J. P.

    2016-12-01

    The multimineral 87Rb/86Sr method has been used in recent studies to date subduction in high-pressure (HP) metamorphic belts of the Mediterranean region. In the Alpujárride Complex, the largest tectonic unit of the Alborán Domain, southern Spain, the timing of burial and HP metamorphism is controversial, with published 40Ar/39Ar white mica ages that range from 48Ma to 25Ma. Dating the HP event is complicated by a pervasive high-temperature (HT) metamorphic overprint (23-19Ma) associated with late-orogenic extension. We have identified 5 rock samples for 87Rb/86Sr dating which preserve a HP equilibrium assemblage: a garnet-staurolite-chloritoid schist, two calcareous Mg-chloritoid schists and two calcareous phyllites with previous 40Ar/39Ar ages of 48Ma and 41Ma. Improved constraints on the time gap between HP and HT metamorphism are important to test geodynamic models of the Alborán Domain, which range from prolonged thickening of continental lithosphere followed by extensional collapse, to punctuated subduction followed by back-arc extension. Furthermore, determining the onset and duration of HP metamorphism has broad implications for whether the Alborán Domain formed in the context of a single Alpine belt, or a separate and local accretionary setting. Lastly, this study will test the advantages and limitations of the 87Rb/86Sr method in a HP domain with a late HT overprint, a very common issue in orogenic systems.

  15. Geochemistry and petrogenesis of lamproites, late cretaceous age, Woodson County, Kansas, U.S.A.

    USGS Publications Warehouse

    Cullers, R.L.; Ramakrishnan, S.; Berendsen, P.; Griffin, T.

    1985-01-01

    Lamproite sills and their associated sedimentary and contact metamorphic rocks from Woodson County, Kansas have been analyzed for major elements, selected trace elements, and strontium isotopic composition. These lamproites, like lamproites elsewhere, are alkalic (molecular K2O + Na2O Al2O3 = 1.6-2.6), are ultrapotassic ( K2O Na2O = 9.6-150), are enriched in incompatible elements (LREE or light rare-earth elements, Ba, Th, Hf, Ta, Sr, Rb), and have moderate to high initial strontium isotopic compositions (0.7042 and 0.7102). The silica-saturated magma (olivine-hypersthene normative) of the Silver City lamproite could have formed by about 2 percent melting of a phlogopite-garnet lherzolite under high H2O CO2 ratios in which the Iherzolite was enriched before melting in the incompatible elements by metasomatism. The Rose Dome lamproite probably formed in a similar fashion although the extreme alteration due to addition of carbonate presumably from the underlying limestone makes its origin less certain. Significant fractional crystallization of phases that occur as phenocrysts (diopside, olivine, K-richterite, and phlogopite) in the Silver City magma and that concentrate Co, Cr, and Sc are precluded as the magma moved from the source toward the surface due to the high abundances of Co, Cr, and Sc in the magma similar to that predicted by direct melting of the metasomatized Iherzolite. Ba and, to a lesser extent, K and Rb and have been transported from the intrusions at shallow depth into the surrounding contact metamorphic zone. The Silver City lamproite has vertical fractionation of some elements due either to volatile transport or to variations in the abundance of phenocrysts relative to groundmass most probably due to flow differentiation although multiple injection or fractional crystallization cannot be conclusively rejected. ?? 1985.

  16. Dust in Rain During Drought: An Overlooked Pathway for Elemental Flux to Ecosystems

    NASA Astrophysics Data System (ADS)

    Ponette-González, A.; Collins, J. D., Jr.; Manuel, J. E.; Byers, T. A.; Glass, G. A.; Weathers, K. C.; Gill, T. E.

    2017-12-01

    Airborne dust has the potential to alter ecosystem productivity and biogeochemical cycles at local to global scales by enhancing atmospheric deposition of critical limiting nutrients and toxic pollutants. Suspended dust particles are delivered to ecosystems directly via dry deposition or in precipitation (wet deposition) by rainout and washout. Compared to dry deposition, dust removal by precipitation (dust-in-rain) is a seldom quantified yet potentially significant flux between the atmosphere and ecosystems. We quantified dust effects on the ionic and elemental composition of precipitation and on wet deposition rates at a National Atmospheric Deposition Program (NADP) monitoring site in west Texas during the extreme 2012 drought. Dust events were identified using meteorological data for stations within a 150-km radius buffer surrounding the NADP site. Data on the dissolved chemistry of weekly wet deposition samples and elemental analysis of the particulate fraction were analyzed. Calcium was the dominant dissolved ion in rainwater, comprising 61% of the total measured solute content during dust-in rain weeks. In the particulate fraction, Fe alone made up 81% of the elemental composition during dust-in-rain weeks. At this site, five dust-in-rain weeks delivered 19% of the annual water input (51 mm water). However, these weeks contributed 46-70% of the annual dissolved Ca2+, Mg2+, K+, Na+, PO43-, and Cl- flux and >55% of the particulate Fe, Ti, V, Ni, Rb, Ga, and Br flux. Sourcing analysis, conducted using an End-Member Mixing Algorithm (EMMA) on the particulate fraction identified Fe, Cu, Rb, and Sr end-members, representing 87% of the total elemental variance. In addition, EMMA showed that dust-in-rain weeks were more well mixed than other rainfall weeks. Preliminary findings for this west Texas site show that infrequent dust-in-rain events constitute an important but overlooked proportion of the elemental flux to ecosystems during severe drought.

  17. Rb-Sr and Sm-Nd Studies of Olivine-Phyric Shergottites RBT 04262 and LAR 06319: Isotopic Evidence for Relationship to Enriched Basaltic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L.E.; Shih, C.-Y.; Reese, Y.

    2009-01-01

    RBT 04262 and LAR 06319 are two Martian meteorites recently discovered in Antarctica. Both contain abundant olivines, and were classified as olivine-phyric shergottites. A detailed petrographic study of RBT 04262 suggested it should be reclassified as a lherzolitic shergottite. However, the moderately LREE-depleted REE distribution pattern indicated that it is closely related to enriched basaltic shergottites like Shergotty, Zagami, Los Angeles, etc. In earlier studies of a similarly olivinephyric shergottite NWA 1068 which contains 21% modal olivine, it was shown that it probably was produced from an enriched basaltic shergottite magma by olivine accumulation . As for LAR 06319, recent petrographic studies suggested that it is different from either lherzolitic shergottites or the highly LREE-depleted olivine-phyric shergottites. We performed Rb-Sr and Sm-Nd isotopic analyses on RBT 04262 and LAR 06319 to determine their crystallization ages and Sr and Nd isotopic signatures, and to better understand the petrogenetic relationships between them and other basaltic, lherzolitic and depleted olivine-phyric shergottites.

  18. Concordant Rb-Sr and Sm-Nd Ages for NWA 1460: A 340 Ma Old Basaltic Shergottite Related to Lherzolitic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Reese, Y. D.; Irving, A. J.

    2006-01-01

    Preliminary Rb-Sr and Sm-Nd ages reported by [1] for the NWA 1460 basaltic shergottite are refined to 336+/-14 Ma and 345+/-21 Ma, respectively. These concordant ages are interpreted as dating a lava flow on the Martian surface. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the lherzolitic shergottites and basaltic shergottite EETA79001, lithology B. We also examine the suggestion that generally "young" ages for other Martian meteorites should be reinterpreted in light of Pb-207/Pb-206 - Pb-204/Pb-206 isotopic systematics [2]. Published U-Pb isotopic data for nakhlites are consistent with ages of approx.1.36 Ga. The UPb isotopic systematics of some Martian shergottites and lherzolites that have been suggested to be approx.4 Ga old [2] are complex. We nevertheless suggest the data are consistent with crystallization ages of approx.173 Ma when variations in the composition of in situ initial Pb as well as extraneous Pb components are considered.

  19. Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA

    NASA Astrophysics Data System (ADS)

    França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.

    2010-10-01

    The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.

  20. ED-XRF spectrometry-based comparative inorganic profile of leaf-derived in vitro calli and in vivo leaf samples of Phyllanthus amarus Schum. & Thonn.--a hepatoprotective herb.

    PubMed

    Nayak, P; Behera, P R; Thirunavoukkarasu, M; Chand, P K

    2011-03-01

    The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-á-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Diatremes of the Hopi Buttes, Arizona; chemical and statistical analyses

    USGS Publications Warehouse

    Wenrich, K.J.; Mascarenas, J.F.

    1982-01-01

    Lacustrine sediments deposited in maar lakes of the Hopi Buttes diatremes are hosts for uranium mineralization of as much as 1500 ppm. The monchiquites and limburgite turfs erupted from the diatremes are distinguished from normal alkalic basalts of the Colorado Plateau by their extreme silica undersaturation and high water, TiO2, and P2O5 contents. Many trace elements are also unusually abundant, including Ag, As, Ba, Be, Ce, Dy, Eu, F, Gd, Hf, La, Nd, Pb, Rb, Se, Sm, Sn, Sr, Ta, Tb, Th, U, V, Zn, and Zr. The lacustrine sediments, which consist predominantly of travertine and clastic rocks, are the hosts for syngenetic and epigenetic uranium mineralization of as much as 1500 ppm uranium. Fission track maps show the uranium to be disseminated within the travertine and clastic rocks, and although microprobe analyses have not, as yet, revealed discrete uranium-bearing phases, the clastic rocks show a correlation of high Fe, Ti, and P with areas of high U. Correlation coefficients show that for the travertines, clastics, and limburgite ruffs, Mo, As, Sr, Co, and V appear to have the most consistent and strongest correlations with uranium. Many elements, including many of the rare-earth elements, that are high in these three rocks are also high in the monchiquites, as compared to the average crustal abundance for the respective rock type. This similar suite of anomalous elements, which includes such immobile elements as the rare earths, suggests that Fluids which deposited the travertines were related to the monchiquitic magma. The similar age of about 5 m.y. for both the lake beds and the monchiquites also appears to support this source for the mineralizing fluids.

  2. Beta-delayed neutron emission from 94Rb at CARIBU

    NASA Astrophysics Data System (ADS)

    Wilson, Gemma; Chowdhury, P.; Lister, C.; Brown, T.; Chillery, T.; Copp, P.; Doucet, E.; Carpenter, M.; Savard, G.; Zhu, S.; Mitchell, Aj

    2017-09-01

    Beta-delayed neutron emission studies are important in the astrophysical r-process, nuclear structure and for nuclear reactor safety and design. The probability of β-delayed neutron emission in 94Sr is 10.2(2)%. Many of the γ rays in 94Sr are misplaced, and an estimated 26% are thought to be missing. Recently, substantial γ strength from above the neutron separation energy in 94Sr has been reported. An experiment to understand this high-lying γ strength was performed with the X-Array (a high-efficiency HPGe clover array), SCANS (Small CLYC Array for Neutron Scattering) and the SATURN decay station (Scintillator And Tape Using Radioactive Nuclei) for γ, fast-neutron and β-particle detection, respectively. Data from β decay of 94Rb ions delivered from CARIBU were collected in a triggerless digital data acquisition system, with detected β, n, and γ events correlated offline. A new 94Sr level scheme will be presented, with confirmation of new levels and transitions, in addition to evidence of γ strength above the neutron separation energy. NNSA Stewardship Science Academic Alliance Program through USDOE under Grant DE-NA0002932; USDOE, Office of Nucl Phys, under Contract No. DE-FG02-96ER40978; Louisiana State Board of Regents RCS LEQSF(2016-19)-RD-A-09; DE-AC02-06CHI1357.

  3. Investigation of drinking water quality in Kosovo.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  4. Recent paleoseismicity record in Prince William Sound, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Kuehl, Steven A.; Miller, Eric J.; Marshall, Nicole R.; Dellapenna, Timothy M.

    2017-12-01

    Sedimentological and geochemical investigation of sediment cores collected in the deep (>400 m) central basin of Prince William Sound, along with geochemical fingerprinting of sediment source areas, are used to identify earthquake-generated sediment gravity flows. Prince William Sound receives sediment from two distinct sources: from offshore (primarily Copper River) through Hinchinbrook Inlet, and from sources within the Sound (primarily Columbia Glacier). These sources are found to have diagnostic elemental ratios indicative of provenance; Copper River Basin sediments were significantly higher in Sr/Pb and Cu/Pb, whereas Prince William Sound sediments were significantly higher in K/Ca and Rb/Sr. Within the past century, sediment gravity flows deposited within the deep central channel of Prince William Sound have robust geochemical (provenance) signatures that can be correlated with known moderate to large earthquakes in the region. Given the thick Holocene sequence in the Sound ( 200 m) and correspondingly high sedimentation rates (>1 cm year-1), this relationship suggests that sediments within the central basin of Prince William Sound may contain an extraordinary high-resolution record of paleoseismicity in the region.

  5. Geochemical Evidence for Mantle Enrichment and Lower Crustal Assimilation in Orogenic Volcanics from Monte Arcuentu, Southern Sardinia: Implications for Geodynamics and Evolution of the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Vero, S.; Kempton, P. D.; Downes, H.

    2016-12-01

    Miocene (ca. 18Ma) subduction-related basalts and basaltic andesites from Monte Arcuentu (MA), southern Sardinia, show a remarkable correlation between SiO2 and 87Sr/86Sr (up to 0.711) that contrasts with most other orogenic volcanics worldwide. MgO ranges from 13.4 - 2.4 wt%, yet the rocks form a baseline trend at low SiO2 (51-56 wt%) from which other arcs diverge toward high SiO2. In contrast, MA exhibits a steep trend that extends toward the field of lithosphere-derived, lamproites from central Italy. New high-precision Pb and Hf isotope data help to constrain the petrogenesis of these rocks. The most primitive MA rocks (MgO > 8.5wt%) were derived from a mantle wedge metasomatized by melts derived from terrigenous sediment, likely derived from Archean terranes of N Africa. This metasomatized source had high 87Sr/86Sr (O.705-0.709) and 7/4Pb (15.65 - 15.67) with low ɛHf (-1 to +8) and ɛNd (+1 to -6), but does not account for the full range of isotopic compositions observed. More evolved rocks (MgO < 8.5 wt%) have higher 87Sr/86Sr (0.711) and 7/4Pb (15.68), lower ɛHf (-8) and ɛNd (-9). However, one group of evolved rocks with low Rb/Ba trends toward low 6/4Pb whereas another group with high Rb/Ba extends to high 6/4Pb. Mixing calculations suggest that evolved rocks with low Rb/Ba - low 6/4Pb interacted with Hercynian-type lower crust. High Rb/Ba - high 6/4Pb rocks may have interacted with lithospheric mantle similar to that sampled by Italian lamproites, but upper crustal contamination cannot be ruled out. Partial melting of these normally refractory lithologies was facilitated by the rapid extension, and subsequent mantle upwelling, that occurred as Sardinia rifted and rotated away from the European plate during the Miocene (32-15 Ma). High rates of melt accumulation and high melt fractions ponded near the MOHO, creating a "hot zone", enabling mafic crustal melting. Fractional crystallization under these PT conditions involved olivine + cpx with little or no plag, such that differentiation proceeded without significant increase in SiO2. High rates of extension may also have facilitated rapid ascent of magmas to the surface with minimal interaction with mid- to upper crust. The MA rocks provide insights into lower crustal assimilation process that may be obscured by upper crustal AFC processes in other suites.

  6. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  7. Lithospheric control on basaltic magma compositions within a long-lived monogenetic magmatic province: the Cainozoic basalts of eastern Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Nicholls, I. A.; Maas, R.

    2012-12-01

    Basaltic volcanism, ranging in age from Late Jurassic to Holocene and extending across southern Victoria in south-eastern Australia was initiated ~ 95 Ma ago during the earliest stages of rifting associated with opening of the Tasman Sea and Southern Ocean. Volcanic activity has continued sporadically since that time with the only major hiatus being between 18 and 7 Ma (Price et al, 2003). Basaltic rocks with ages in the range 18-90 Ma occur in small lava fields scattered across eastern and south-eastern Victoria and have also been recovered from bore holes in the west of the state. These have in the past been referred to as the "Older Volcanics" to differentiate them from more volumetrically extensive and younger (< 5 Ma) lava fields to the west. Older Volcanics vary in composition from SiO2-undersaturated basanites, basalts and hawaiites through transitional basalts to hypersthene normative tholeiites. Strontium, Nd and Pb isotopic compositions lie between DM and EM 2 in Sr-Nd-Pb isotopic space. They are isotopically similar to Samoan OIB but different from intra-plate rocks of the New Zealand-Antarctic diffuse alkaline magmatic province (DAMP). Trace element compositions are generally characterised by enrichment of Cs, Ba, Rb, Th, U, Nb, K and light REE over heavy REE, Ti, Zr and Y but there is subtle diversity within and between particular lava fields. (La/Yb)n and K/Nb ratios show significant variation and some basalts are relatively enriched in Sr, P and Pb. Potassium and Rb show distinctive relative depletions in some samples and this could be indicating low degree melting with residual phlogopite. When Sr isotope data for Older Volcanics are projected onto an east-west profile they outline distinctive discontinuities that can be related to surface and subsurface structural features within the basement. This has previously been identified in the "Newer Volcanics" (< 5 Ma) province of western Victoria (Price et al., 1997, 2003). Both Proterozoic and Palaeozoic lithospheric blocks are present beneath southern Victoria and the lowest 87Sr/86Sr ratios are observed in basalts erupted above the Proterozoic (Selwyn) block. The inference is that there is a lithospheric control on basaltic magma chemistry and since a substantial proportion of Older Volcanics have the geochemical characteristics of primary magmas, this could indicate that magmas have been sourced from regionally heterogeneous sub-continental lithospheric mantle. References Price, RC, Gray, CM, Frey, FA. (1997). Strontium isotopic and trace element heterogeneity in the plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochimica et Cosmochimica Acta 61, 171-192. Price RC, Nicholls, IA, Gray, CM. (2003). Cainozoic igneous activity: widespread volcanism resulting from long-term mantle instability and rifting. In: Birch, WD (ed.). Geology of Victoria, Geological Society of Australia Special Publication 23, 360-375.

  8. Deviations from Born-Oppenheimer mass scaling in spectroscopy and ultracold molecular physics

    NASA Astrophysics Data System (ADS)

    Lutz, Jesse J.; Hutson, Jeremy M.

    2016-12-01

    We investigate Born-Oppenheimer breakdown (BOB) effects (beyond the usual mass scaling) for the electronic ground states of a series of homonuclear and heteronuclear alkali-metal diatoms, together with the Sr2 and Yb2 diatomics. Several widely available electronic structure software packages are used to calculate the leading contributions to the total isotope shift for commonly occurring isotopologs of each species. Computed quantities include diagonal Born-Oppenheimer corrections (mass shifts) and isotopic field shifts. Mass shifts dominate for light nuclei up to and including K, but field shifts contribute significantly for Rb and Sr and are dominant for Yb. We compare the ab initio mass-shift functions for Li2, LiK and LiRb with spectroscopically derived ground-state BOB functions from the literature. We find good agreement in the values of the functions for LiK and LiRb at their equilibrium geometries, but significant disagreement with the shapes of the functions for all 3 systems. The differences may be due to contributions of nonadiabatic terms to the empirical BOB functions. We present a semiclassical model for the effect of BOB corrections on the binding energies of near-threshold states and the positions of zero-energy Feshbach resonances.

  9. Pan-African alkali granites and syenites of Kerala as imprints of taphrogenic magmatism in the South Indian shield

    NASA Technical Reports Server (NTRS)

    Santosh, M.; Drury, S. A.; Iyer, S. S.

    1988-01-01

    Granite and syenite plutons with alkaline affinities ranging in age from 550 to 750 Ma sporadically puncture the Precambrian granulites of the Kerala region. All the bodies are small (20 to 60 sq km), E-W to NW-SE elongated elliptical intrusives with sharp contacts and lie on or close to major late Proterozoic lineaments. Geochemical plots of A-F-M and An-Ab-Or relations show an apparent alkali enrichment trend on the former, but the plutons define relatively distinct fields on the latter. Most of the plutons are adamellitic to granitic by chemistry. The variations of SiO2 with log sub 10 K2O/MgO (1) brings out the distinct alkaline nature of the plutons. Some of the granites are extremely potassic, like the Peralimala pluton, which shows up to 11.8 percent K2O. On a SiO2-Al2O3-Na2O+K2O (mol percent) plot, the plutons vary from peraluminous to peralkaline, but none are nepheline normative. Low MgO, low to moderate CaO and high Fe2O3/FeO values are other common characteristics. Among trace elements, depletion of Ba, Sr and Rb with high K/Ba and K/Rb values are typical. Overall, the plutons show a trend of decreasing K/Rb ratio with increasing K content. Individual plutons show more clearly defined trends similar to those from granitic masses characterized by plagioclase fractionation.

  10. Early history of the moon: Implications of U-Th-Pb and Rb-Sr systematics

    NASA Technical Reports Server (NTRS)

    Tatsumoto, M.; Nunes, P. D.; Unruh, D. M.

    1974-01-01

    Anorthosite 60015 contains the lowest initial Sr-87/Sr-86 ratio (0.69884 + or - 0.00004) yet reported for a lunar sample. The initial ratio is equal to that of the achondrite Angra dos Reis and slightly higher than the lowest measured Sr-87/Sr-86 ratio for an inclusion in the C3 carbonaceous chondrite Allende. The Pb-Pb ages of both Angra dos Reis and Allende are 4.62 x 10 to the 9th power years (4.62 billion years). Thus, the initial Sr-87/Sr-86 ratio found in lunar anorthosite 60015 strongly supports the hypothesis that the age of the moon is about 4.65 b.y. The U-238/Pb-204 value estimated for the source of the excess lead in orange soil 74220 is lower than the values estimated for the sources of KREEP (600-1000), high K (300-600) and low K (100-300) basalts.

  11. Radiogenic Isotopes in Weathering and Hydrology

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Erel, Y.

    2003-12-01

    There are a small group of elements that display variations in their isotopic composition, resulting from radioactive decay within minerals over geological timescales. These isotopic variations provide natural fingerprints of rock-water interactions and have been widely utilized in studies of weathering and hydrology. The isotopic systems that have been applied in such studies are dictated by the limited number of radioactive parent-daughter nuclide pairs with half-lives and isotopic abundances that result in measurable differences in daughter isotope ratios among common rocks and minerals. Prior to their application to studies of weathering and hydrology, each of these isotopic systems was utilized in geochronology and petrology. As in the case of their original introduction into geochronology and petrology, isotopic systems with the highest concentrations of daughter isotopes in common rocks and minerals and systems with the largest observed isotopic variations were introduced first and have made the largest impact on our understanding of weathering and hydrologic processes. Although radiogenic isotopes have helped elucidate many important aspects of weathering and hydrology, it is important to note that in almost every case that will be discussed in this chapter, our fundamental understanding of these topics came from studies of variations in the concentrations of major cations and anions. This chapter is a "tools chapter" and thus it will highlight applications of radiogenic isotopes that have added additional insight into a wide spectrum of research areas that are summarized in almost all of the other chapters of this volume.The first applications of radiogenic isotopes to weathering processes were based on studies that sought to understand the effects of chemical weathering on the geochronology of whole-rock samples and geochronologically important minerals (Goldich and Gast, 1966; Dasch, 1969; Blaxland, 1974; Clauer, 1979, 1981; Clauer et al., 1982); as well as on the observation that radiogenic isotopes are sometimes preferentially released compared to nonradiogenic isotopes of the same element during acid leaching of rocks ( Hart and Tilton, 1966; Silver et al., 1984; Erel et al., 1991). A major finding of these investigations was that weathering often results in anomalously young Rb-Sr isochron ages, and discordant Pb-Pb ages. Rubidium is generally retained relative to strontium in whole-rock samples, and in some cases radiogenic strontium and lead are lost preferentially to common strontium and lead from weathered minerals.The most widely utilized of these isotopic systems is Rb-Sr, followed by U-Pb. The K-Ar system is not directly applicable to most studies of rock-water interaction, because argon is a noble gas, and upon release during mineral weathering mixes with atmospheric argon, limiting its usefulness as a tracer in most weathering applications. Argon and other noble gas isotopes have, however, found important applications in hydrology (see Chapter 5.15). Three other isotopic systems commonly used in geochronology and petrology include Sm-Nd, Lu-Hf, and Re-Os. These parent and daughter elements are in very low abundance and concentrated in trace mineral phases. Sm-Nd, Lu-Hf, and Re-Os have been used in a few weathering studies but have not been utilized extensively in investigations of weathering and hydrology.The decay of 87Rb to 87Sr has a half-life of 48.8 Gyr, and this radioactive decay results in natural variability in the 87Sr/86Sr ratio in rubidium-bearing minerals (e.g., Blum, 1995). The trace elements rubidium and strontium are geochemically similar to the major elements potassium and calcium, respectively. Therefore, minerals with high K/Ca ratios develop high 87Sr/86Sr ratios over geologic timescales. Once released into the hydrosphere, strontium retains its isotopic composition without significant fractionation by geochemical or biological processes, and is therefore a good tracer for sources and cycling of calcium. The decay of 235U to 207Pb, 238U to 206Pb, and 232Th to 208Pb have half-lives of 0.704 Gyr, 4.47 Gyr, and 14.0 Gyr, respectively, and result in variations in the 207Pb/204Pb, 206Pb/204Pb, and 208Pb/204Pb ratios (e.g., Blum, 1995). Uranium-234 has a half-life of 0.25 Myr and the ratio 234U/238U approaches a constant secular equilibrium value in rocks and minerals if undisturbed for ˜1 Myr. Differences in this ratio are often observed in solutions following rock-water interaction and have been used in studies of weathering and hydrology. Uranium and thorium tend to be highly concentrated in the trace accessory minerals such as zircon, monazite, apatite, and sphene, which therefore develop high 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios. Once released into the hydrosphere, lead retains its isotopic composition without significant geochemical or biological fractionation and tends to generally follow the chemistry of iron in soils and aqueous systems (Erel and Morgan, 1992). The use of the U-Th disequilibrium series as a dating tool falls outside the scope of this chapter and is reviewed in Chapters 6.14 and 6.17 as well as Chapter 3.15. The decay of 147Sm to 143Nd, 176Lu to 176Hf, and 187Re to 187Os have half-lives of 106 Gyr, 35.7 Gyr, and 42.3 Gyr, respectively, and result in natural variability in the 144Nd/143Nd, 176Hf/177Hf, and 187Os/188Os ratios (e.g., Blum, 1995). Neodymium is a rare earth element (REE), hafnium is a transition metal with chemical similarities to zirconium, and osmium is a platinum group element. The geochemical behaviors of these elements in the hydrosphere are largely determined by these chemical affinities.

  12. Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California

    USGS Publications Warehouse

    Böhlke, John Karl; Kistler, R. W.

    1986-01-01

    Gold-bearing quartz veins occur in and near major fault zones in deformed oceanic and island-arc rocks west of the main outcrop of the Sierra Nevada composite batholith. Veins typically occupy minor reverse faults that crosscut blueschist to amphibolite-grade metamorphic rocks whose metamorphic ages range from early Paleozoic to Jurassic. Vein micas and carbonate-quartz-mica assemblages that formed by hydrothermal metasomatism of ultramafic wall rocks in the Alleghany, Grass Valley, Washington, and Mother Lode districts yield concordant K-Ar and Rb-Sr ages. The dated veins are significantly younger than prograde metamorphism, penetrative deformation, and accretion of their host rocks to the continental margin. New and previously published mineralization ages from 13 localities in the Sierra foothills range from about 140 to 110 m.y. ago, with mean and median between 120 and 115 m.y. The age relations suggest that mineralizing fluids were set in motion by deep magmatic activity related to the resumption of east-dipping subduction along the western margin of North America following the Late Jurassic Nevadan collision event.CO 2 -bearing fluids responsible for metasomatism and much of the vein mica, carbonate, albite, and quartz deposition in several northern mines were isotopically heavy (delta 18 O [asymp] 8-14ppm; delta D between about -10 and -50ppm) and do not resemble seawater, magmatic, or meteoric waters. Metasomatic and vein-filling mica, dolomite, magnesite, and quartz in altered ultramafic rocks generally formed from fluids with similar Sr and O isotope ratios at a given locality. Consistent quartz-mica delta 18 O fractionations (delta 18 O (sub Q-M) = 4.5-4.9ppm) from various localities imply uniform equilibration temperatures, probably between 300 degrees and 350 degrees C. On a local (mine) scale, fluids responsible for both carbonate alteration of mafic and ultramafic wall rocks and albitic alteration of felsic and pelitic rocks had similar Sr isotope ratios.Samples from three veins in the central Alleghany district fit a 115.7 + or - 3-m.y. Rb-Sr isochron with a ( 87 Sr/ 86 Sr) i value of approximately 0.7119. Inferred 87 Sr/ 86 Sr ratios of metasomatic fluids from mines in different parts of the foothills region vary considerably (0.704-0.718), suggesting that Sr was derived from sources ranging from "western assemblage" Mesozoic ophiolitic or arc volcanic rocks to early Paleozoic continent-derived clastic rocks of the Shoo Fly Complex. Systematic geographic variations in both Sr and O isotopes can be rationalized by assuming extensive fluid interaction with rocks similar to the ones that are exposed within a few kilometers of the veins, but the ultimate sources of the fluids, and of Au and other constituents, may be independent of these. Isotopically lighter (meteoric?) fluids deposited some late quartz overgrowths and occupied secondary fluid inclusions in earlier vein quartz.

  13. The granite problem as exposed in the southern Snake Range, Nevada

    USGS Publications Warehouse

    Lee, D.E.; Christiansen, E.H.

    1983-01-01

    A geochemically and mineralogically diverse group of granitoids is present within an area of 900 km2 in the southern Snake Range of eastern Nevada. The granitoids exposed range in age from Jurassic through Cretaceous to Oligocene and include two calcic intrusions, two different types of two-mica granites, and aplites. The younger intrusions appear to have been emplaced at progressively more shallow depths. All of these granitoid types are represented elsewhere in the eastern Great Basin, but the southern Snake Range is distinguished by the grouping of all these types within a relatively small area. The Jurassic calcic pluton of the Snake Creek-Williams Canyon area displays large and systematic chemical and mineralogical zonation over a horizontal distance of five km. Although major element variations in the pluton compare closely with Daly's average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent, trace element (Rb, Sr, Ba) variations show that the zonation is the result of in situ fractional crystallization, with the formation of relatively mafic cumulates on at least one wall of the magma chamber. Models of trace element and isotopic data indicate that relatively little assimilation took place at the level of crystallization. Nonetheless, an initial 87Sr/86Sr value of 0.7071 and ??18O values of 10.2 to 12.2 permil suggest a lower crustal magma that was contaminated by upper crustal clastic sedimentary rocks before crystallization. The involvement of mantle-derived magmas in its genesis is difficult to rule out. Two other Jurassic plutons show isotopic and chemical similarities to the Snake Creek-Williams Canyon pluton. Cretaceous granites from eastern Nevada that contain phenocrystic muscovite are strongly peraluminous, and have high initial Sr-isotope ratios and other features characteristic of S-type granitoids. They were probably derived from Proterozoic metasediments and granite gneisses that comprise the middle crust of this region. Another group of granitoids (including the Tertiary aplites) show chemical, mineralogic, and isotopic characteristics intermediate between the first two groups and may have been derived by contamination of magmas from the lower crust by the midcrustal metasediments. ?? 1983 Springer-Verlag.

  14. Production of plutonium, yttrium and strontium tracers for using in environmental research

    NASA Astrophysics Data System (ADS)

    Arzumanov, A.; Batischev, V.; Berdinova, N.; Borissenko, A.; Chumikov, G.; Lukashenko, S.; Lysukhin, S.; Popov, Yu.; Sychikov, G.

    2001-12-01

    Summary of cyclotron production methods of 237Pu (45,2 d), 88Y (106,65 d) and 85Sr (64,84 d) tracers via nuclear reactions with protons and alphas on 235U, 88Sr and 85Rb targets in wide energy range is given. Chemical methods of separation and purification of the tracers from the irradiated uranium, strontium and rubidium targets are described. The tracers were used for determination of Pu (239-240), Sr-90 and Am-241 in the samples (soil, plants, underground waters) from Semipalatinsk Test Site. Obtained results are discussed.

  15. Early Proterozoic activity on Archean faults in the western Superior province - evidence from pseudotachylite

    USGS Publications Warehouse

    Peterman, Z.E.; Day, W.

    1989-01-01

    Major transcurrent faults in the Superior province developed in the Late Archean at the close of the Kenoran orogeny. Reactivation of some of these faults late in the Early Proterozoic is indicated by Rb-Sr analyses of pseudotachylite from the Rainy Lake-Seine River and Quetico faults in the Rainy Lake region of Minnesota and Ontario. Fault veins of pseudotachylite and immediately adjacent country rock at two localities yielded subparallel isochrons that are pooled for an age of 1947??23 Ma. K-Ar and Rb-Sr biotite ages register earlier regional cooling of the terrane at about 2500 Ma with no evidence of younger thermal overprinting at temperatures exceeding 300??C. Accordingly, the 1947??23 Ma age is interpreted as dating the formation of the pseudotachylite. Reactivation of existing faults at this time was caused by stresses transmitted from margins of the Superior province where compressional tectonic events were occurring. -Authors

  16. Dated eclogitic diamond growth zones reveal variable recycling of crustal carbon through time

    NASA Astrophysics Data System (ADS)

    Timmerman, S.; Koornneef, J. M.; Chinn, I. L.; Davies, G. R.

    2017-04-01

    Monocrystalline diamonds commonly record complex internal structures reflecting episodic growth linked to changing carbon-bearing fluids in the mantle. Using diamonds to trace the evolution of the deep carbon cycle therefore requires dating of individual diamond growth zones. To this end Rb-Sr and Sm-Nd isotope data are presented from individual eclogitic silicate inclusions from the Orapa and Letlhakane diamond mines, Botswana. δ13 C values are reported from the host diamond growth zones. Heterogeneous 87Sr/86Sr ratios (0.7033-0.7097) suggest inclusion formation in multiple and distinct tectono-magmatic environments. Sm-Nd isochron ages were determined based on groups of inclusions with similar trace element chemistry, Sr isotope ratios, and nitrogen aggregation of the host diamond growth zone. Diamond growth events at 0.14 ± 0.09, 0.25 ± 0.04, 1.1 ± 0.09, 1.70 ± 0.34 and 2.33 ± 0.02 Ga can be directly related to regional tectono-magmatic events. Individual diamonds record episodic growth with age differences of up to 2 Ga. Dated diamond zones have variable δ13 C values (-5.0 to -33.6‰ vs PDB) and appear to imply changes in subducted material over time. The studied Botswanan diamonds are interpreted to have formed in different tectono-magmatic environments that involve mixing of carbon from three sources that represent: i) subducted biogenic sediments (lightest δ13 C, low 87Sr/86Sr); ii) subducted carbonate-rich sediments (heavy δ13 C, high 87Sr/86Sr) and iii) depleted upper mantle (heavy δ13 C, low 87Sr/86Sr). We infer that older diamonds from these two localities are more likely to have light δ13 C due to greater subduction of biogenic sediments that may be related to hotter and more reduced conditions in the Archaean before the Great Oxidation Event at 2.3 Ga. These findings imply a marked temporal change in the nature of subducted carbon beneath Botswana and warrant further study to establish if this is a global phenomenon.

  17. Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2

    PubMed Central

    Kang, Lei; Lin, Zheshuai; Qin, Jingui; Chen, Chuangtian

    2013-01-01

    With the rapid developments of the all-solid-state deep-ultraviolet (deep-UV) lasers, the good nonlinear optical (NLO) crystal applied in this spectral region is currently lacking. Here, we design two novel NLO carbonates KBeCO3F and RbAlCO3F2 from the first-principles theory implemented in the molecular engineering expert system especially for NLO crystals. Both structurally stable crystals possess very large energy band gaps and optical anisotropy, so they would become the very promising deep-UV NLO crystals alternative to KBBF. Recent experimental results on MNCO3F (M = K, Rb, Cs; N = Ca, Sr, Ba) not only confirm our calculations, but also suggest that the synthesis of the KBeCO3F and RbAlCO3F2 crystals is feasible. PMID:23455618

  18. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor.

    PubMed

    Moreno, Teresa; Querol, Xavier; Castillo, Sonia; Alastuey, Andrés; Cuevas, Emilio; Herrmann, Ludger; Mounkaila, Mohammed; Elvira, Josep; Gibbons, Wes

    2006-10-01

    The Sahara-Sahel Dust Corridor runs from Chad to Mauritania and expels huge amounts of mineral aerosols into the Atlantic Ocean. Data on samples collected from Algeria, Chad, Niger, and Western Sahara illustrate how corridor dust mineralogy and chemistry relate to geological source and weathering/transport history. Dusts sourced directly from igneous and metamorphic massifs are geochemically immature, retaining soluble cations (e.g., K, Na, Rb, Sr) and accessory minerals containing HFSE (e.g., Zr, Hf, U, Th) and REE. In contrast, silicate dust chemistry in desert basins (e.g., Bodélé Depression) is influenced by a longer history of transport, physical winnowing (e.g., loss of Zr, Hf, Th), chemical leaching (e.g., loss of Na, K, Rb), and mixing with intrabasinal materials such as diatoms and evaporitic salts. Mineral aerosols blown along the corridor by the winter Harmattan winds mix these basinal and basement materials. Dusts blown into the corridor from sub-Saharan Africa during the summer monsoon source from deeply chemically weathered terrains and are therefore likely to be more kaolinitic and stripped of mobile elements (e.g., Na, K, Mg, Ca, LILE), but retain immobile and resistant elements (e.g., Zr, Hf, REE). Finally, dusts blown southwestwards into the corridor from along the Atlantic Coastal Basin will be enriched in carbonate from Mesozoic-Cenozoic marine limestones, depleted in Th, Nb, and Ta, and locally contaminated by uranium-bearing phosphate deposits.

  19. The potential of inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous determination of trace elements in whole blood, plasma and serum.

    PubMed

    Krachler, M; Irgolic, K J

    1999-11-01

    The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.

  20. Slab-derived components in the subcontinental lithospheric mantle beneath Chilean Patagonia: Geochemistry and Sr-Nd-Pb isotopes of mantle xenoliths and host basalt

    NASA Astrophysics Data System (ADS)

    Jalowitzki, Tiago; Gervasoni, Fernanda; Conceição, Rommulo V.; Orihashi, Yuji; Bertotto, Gustavo W.; Sumino, Hirochika; Schilling, Manuel E.; Nagao, Keisuke; Morata, Diego; Sylvester, Paul

    2017-11-01

    In subduction zones, ultramafic xenoliths hosted in alkaline basalts can yield significant information about the role of potential slab-derived components in the subcontinental lithospheric mantle (SCLM). Chemical and isotopic heterogeneities in such xenoliths are usually interpreted to reflect melt extraction followed by metasomatic re-enrichment. Here we report new whole-rock major, trace element and isotopic (Sr-Nd-Pb) data for a Proterozoic suite of 17 anhydrous spinel-lherzolites and Eocene (new K-Ar data) host alkaline basalt found near Coyhaique ( 46°S), Aysén Region, Chile. These Patagonian nodules are located in a current back-arc position, 100 km east of the present day volcanic arc and 320 km from the Chile Trench. The mantle xenoliths consist of coarse- to medium-grained spinel-lherzolites with trace element compositions characteristic of a subduction zone setting, such as pronounced negative Nb, Ta and Ti anomalies coupled with significant enrichment of LILEs (e.g., U) and chalcophile elements (W, Pb and Sn). Most of them are characterized by flat to depleted light-rare earth element (LREE) patterns (Ce/YbN = 0.6-1.1) coupled with less radiogenic Sr-Pb (87Sr/86Sr = 0.702422-0.703479; 206Pb/204Pb = 18.212-18.539) and more radiogenic Nd isotopic compositions (143Nd/144Nd = 0.512994-0.513242), similar to the depleted mantle component (DMM or PREMA). In contrast, samples with slight LREE enrichment (Ce/YbN = 1.3-1.8) show more radiogenic Sr-Pb (87Sr/86Sr = 0.703791-0.704239; 206Pb/204Pb = 18.572-18.703) and less radiogenic Nd isotopic compositions (143Nd/144Nd = 0.512859-0.512934), similar to the EM-2 reservoir. These new geochemical and isotope data suggest that the Coyhaique spinel-lherzolites are derived from a heterogeneous SCLM resulting from mixing between a depleted mantle component and up to 10% of slab-derived components. The enriched component added to the SCLM represents variable extents of melts of both subducted Chile Trench sediments and modified oceanic crust throughout the initial stages of the Farallón-Aluk ridge collision during Paleocene to Eocene time. However, based on the tectonic evolution of southern South America, we cannot exclude the influence of long-lived subduction events beneath south Patagonia. Although we believe that the studied samples were brought to the surface in this geodynamic context, there is no evidence that ocean island basalt (OIB)-like melts related to the Farallón-Aluk asthenospheric slab window affected the peridotite composition. The host alkaline basalt is a single unit with a HIMU-like OIB signature characterized by marked positive Nb-Ta anomalies coupled with negative anomalies in highly incompatible and fluid-mobile elements (Rb, K, Pb, and Sr). The compositional similarity between the HIMU-like OIB mantle source and the host basalt is also evident from trace element ratios [(Ba-Th-K-La-Zr)/Nb] as well as by the low 87Sr/86Sri (0.703039-0.703058) and relatively high 143Nd/144Ndi (0.512880-0.512874) and 206Pb/204Pb (19.333-19.389) isotopic ratios. The low 206Pb/204Pb ratios compared to end-member HIMU lavas (e.g., Sta. Helena and the Cook-Austral Islands) suggest that this region was modified by processes associated with a prolonged period of subduction related to the Andean orogenesis and the recycling of several oceanic plates beneath the continent, following the Mesozoic breakup of Gondwana or an even older subduction-related event with young recycling ages (< 2 Ga).

  1. Early paleozoic granodioritic plutons in the Shedong W-Mo ore district, Guangxi, southern China: Products of re-melting of middle Proterozoic crust due to magma underplating

    NASA Astrophysics Data System (ADS)

    Jiang, Xingzhou; Kang, Zhiqiang; Xu, Jifeng; Feng, Zuohai; Pang, Chongjin; Fang, Guicong; Wu, Jiachang; Xiong, Songquan

    2017-06-01

    The Shedong W-Mo ore district in the south-central Dayaoshan Uplift of Guangxi, southern China hosts the Baoshan and Pingtoubei deposits, both of which occur in granodioritic plutons. Zircon U-Pb dating of granodiorites and its mafic microgranular enclaves (MMEs) in the Baoshan deposit yielded ages of 439.8 ± 3.2 and 441.1 ± 2.2 Ma, respectively. Granodiorites have moderate SiO2 (54.5-63.0 wt.%) and high Al2O3 (15.4-17.8 wt.%) contents, wide variations in major element ratios, significant rare earth element fractionation, and small negative Eu anomalies. They are rich in Th, U, Zr, and Hf, and depleted in Ba, Nb, and Ti. Their initial 87Sr/86Sr, εNd(t), and εHf(t) values are in the range of 0.7086-0.7091, -5.2 to -6.6 and -6.3 to +1.6, respectively. Rounded or lenticular MMEs have relatively low silica and high mafic components, depletion in Eu, Sr, and Zr, and marked negative Eu anomalies. Rb/Sr and Nb/Ta ratios, and εNd(t) and εHf(t) values of the MMEs are higher than those of host granodiorites, indicating a different magmatic source. Zircon U-Pb dating of the unexposed granodiorite porphyry in the Pingtoubei deposit yielded an age of 440.0 ± 1.7 Ma. The granodiorite porphyries have high SiO2 and low K2O, FeOT, and MgO contents, with similar trace element features to the granodiorites at the Baoshan deposit, although the former has small negative Eu anomalies. Its initial 87Sr/86Sr values range from 0.7162 to 0.7173, εNd(t) values from -8.7 to -12.3, and εHf(t) values from -7.8 to +1.3, indicative of a crustal source. Nd and Hf two-stage model ages of the granodiorites, MMEs, and granodiorite porphyries have a narrow range between 1.3 and 2.2 Ga. We propose that the granodiorites and MMEs at the Baoshan deposit were produced through re-melting of middle Proterozoic crust as a result of underplating of mantle-derived magmas in a transitional compression-to-extension tectonic setting. Mantle-derived magmas provided the heat and material for the formation of the granodiorites and MMEs.

  2. Rb-Sr and K-Ar age of globular phyllosilicates and biostratigraphy of the Riphean deposits of the Olenek Uplift (North Siberia)

    NASA Astrophysics Data System (ADS)

    Zaitseva, T. S.; Gorokhov, I. M.; Semikhatov, M. A.; Ivanovskaya, T. A.; Kuznetsov, A. B.; Dorzhieva, O. V.

    2017-11-01

    This work presents results of the complex mineralogical, geochemical, and isotope-geochronological investigation of globular dioctahedral 2: 1 phyllosilicates (GPS) of the illite-glauconite series from the Riphean sequences of the Olenek Uplift. It is established that GPS (glauconite, Al-glauconite, Fe-illite) in deposits of the Arymass, Debengda, and Khaipakh formations are represented by mixed-layer varieties of two types: (1) with relatively low (<10%) and (2) higher (10-20%) contents of expandable layers. Among the mixed-layer varieties are those with disordered alternation of micaceous and smectite layers (R = 0), as well as with tendency to ordering (R ≥ 1). The parameter b of an elementary cell of minerals varies from 9.18 to 9.72 Å. The Rb-Sr age dating of GPS was first carried out in combination with the calculation of theoretical pattern of the cation distribution in the mineral structure and comparison of the calculation results obtained with the Mössbauer and IR spectroscopy data. This approach is based on the assumption that development and evolution of isotope systems in GPS are synchronous with the evolution of the crystalline structure of the mineral at various stages of the geological and geochemical history of the development of sedimentary units. Analysis of the obtained data allows us to state that the structural features of the Riphean GPS from the Olenek section reflect the early diagenetic stages of the formation of the minerals studied. The 87Sr/86Sr initial ratios in the studied sediments are consistent with the range of variations in this ratio in the Middle Riphean Ocean (0.7049-0.7061). The Rb-Sr and K-Ar ages of the GPS of the Arymass (1305 ± 8 and 1302 Ma, respectively), Debengda (1265 ± 12 and 1284 ± 22 Ma), and Khaipakh (1172 ± 18 and 1112 ± 24 Ma) formations in the Olenek Uplift section are close to the accumulation time of corresponding deposits and, correspondingly, have significance for stratigraphic correlations.

  3. Caractérisation pétrologique et géochimique du magmatisme ubendien du secteur de Pepa-Lubumba, sur le plateau des Marungu (Nord-Est du Shaba, Zaire). Signification géodynamique dans l'évolution de la chaîne ubendienne

    NASA Astrophysics Data System (ADS)

    Kabengele, M.; Lubala, R. T.; Cabanis, B.

    Volcanic and plutonic rocks of Pepa-Lubumba area in the Marungu plateau (Zaire) are mainly represented by intermediate and acid members which contain low abundances in TiO 2 (0.3 - 1.3 wt%). All these rocks exhibit a high-K calc-alkaline affinity and belong to a calc-alkaline continental-margin series. The large proportion of frequently zoned (normal and reverse zoning) plagioclase, the presence of hydrous phases (tschermakitic and Mg-hornblende, Mg-biotite), the early crystallization of FeTi oxides indicate crystallization under high water pressure conditions, consistent with a calc-alkaline affinity. High abundances in K, Rb, Sr and Ba; lack of correlation between Rb and Ba, low values of Rb/Zr (0.5 - 0.9) in granitoids, high contents of LREE and HFSE (Th/Ta : 6 - 14), are characteristic of "Andinotype" magmas. A whole rock RbSr isochron gives an emplacement age for granitoids of 1861 ± 28 Ma (MSWD : 0.82), Sr initial ratio of 0.7026 and epsilon Sr i of + 4.7. PbPb isotopes systematics for the same rocks give the following ratio ranges : 206Pb/ 204Pb : 17.26 - 20.10; 207Pb/ 204Pb 15.52 - 15.85, 208Pb/ 204Pb : 37.2 - 41.80. The low Sr initial ratio indicates an upper mantle source; while the PBPb isotope ratios suggest that the mantellic liquids have been contaminated by crustal material en route to the upper levels. In the regional geologic context, this magmatism forms a part of an important plutovolcanic Ubendian (Early Proterozoic) complex which crops out in Western Tanzania, North-Eastern Zambia and Marungu plateau (Zaire) and contains two magmatic cycles which define a spatial and temporal zonation suggesting a geodynamic evolution model for the Ubendian belt comprising subduction-obduction-collision processes. This latter episode has been relayed by a relaxation phase marked by emplacement of a third tholeiitic basic plutonic cycle.

  4. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  5. Composition and Source Identification of Chemical Species in Dust from Selected Indoor Environments in Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Ogundele, Lasun T.; Olasinde, Roseline T.; Owoade, Oyediran K.; Olise, Felix S.

    2018-05-01

    This study presents the elemental compositions and concentrations of indoor dust and identifies the major sources in some selected indoor environments in Ile-Ife, Nigeria. The dust samples were collected from 16 indoor environments comprising offices, churches, residential and staff quarters using a cyclonic high power vacuum cleaner. The dust samples were analyzed for elemental concentrations using x-ray fluorescences. The data sets were analyzed for the possible sources and their contributions using Principal Component Factor Analysis (PCFA). The result showed that dust samples contained several elements: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Ga, As, Rb, Sr, Se, Zr, V, and Sc. The PCFA identified three factors with the percentage variance of 92, 77, 71 and 68%, for the office, church, residential, and staff quarters, respectively, for the combined elemental data of each of the site classes. The identified sources were track-in-soil, road and windblown soil dust, paint debris, household dust from personal care materials, cooking, and cleaning activities. The unintentional track-in-soil due to mobility of the occupants, structural materials, and outdoor air was the major sources contributing to the indoor dust.

  6. Vibronic Transitions in the X-Sr Series (X=Li, Na, K, Rb): on the Accuracy of Nuclear Wavefunctions Derived from Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Pototschnig, Johann V.; Hauser, Andreas W.; Ernst, Wolfgang E.

    2016-06-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. The preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. On the theoretical side, highly accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. Particularly problematic is the correct description of potential features at large intermolecular distances. Franck-Condon overlap integrals for nuclear wavefunctions in barely bound vibrational states are extremely sensitive to inaccuracies of the potential at long range. In this study, we compare the predictions of common, wavefunction-based ab initio techniques for a known de-excitation mechanism in alkali-alkaline earth dimers. It is the aim to analyze the predictive power of these methods for a preliminary evaluation of potential cooling mechanisms in heteronuclear open shell systems which offer the experimentalist an electric as well as a magnetic handle for manipulation. The series of X-Sr molecules, with X = Li, Na, K and Rb, has been chosen for a direct comparison. Quantum degenerate mixtures of Rb and Sr have already been produced, making this combination very promising for the production of ultracold molecules. B. Pasquiou, A. Bayerle, S. M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 2013, 88, 023601

  7. Assessing Chronology and Mantle Evolution In-Situ with CODEX

    NASA Astrophysics Data System (ADS)

    Anderson, F. S.; Levine, J.; Whitaker, T.

    2017-12-01

    Understanding lunar bombardment history is crucial to understanding the dynamic evolution of the Moon. Using an instrument called CODEX (Chemistry, Organics, and Dating Experiment) intended for in-situ dating [1-5], we have obtained Pb-Pb dates for Martian meteorites Zagami and Northwest Africa (NWA) 7034, and lunar meteorites Miller Range 05035, LaPaz Icefield 02205, and NWA 032. In conjunction with our previous Rb-Sr success, these measurments demonstrate the potential for in-situ measurements of the Moon. Some of these Pb dates are consistent with young age estimates, however, many are consistent with previous anomalously old Pb measurements for lunar and SNC meteorites. Proposed explanations for this paradox include terrestrial Pb contamination, that the SNC's are actually ancient and reset in Rb/Sr, that there are multiple isotopic reservoirs sampled by the impact process, or that multiple reservoirs are sampled during the volcanic emplacement. In the future, we plan to use CODEX to test these hypotheses by making measurements on outcrops in-situ on Mars or the Moon, avoiding terrestrial or impact mixing. If in-situ Rb-Sr and Pb-Pb measurements are not concordant, then we are likely constraining the common Pb signature, and hence mantle evolution, of the Moon or Mars. Alternatively, we are likely obtaining a robust age estimate. References: [1] F. S. Anderson et al. LPSC 1246, 2 (2017); [2] F. S. Anderson et al. LPSC 2957, 2 (2017); [3] S. Beck et al., LPSC, 3001, 2 (2017); [4] T. J. Whitaker et al. LPSC 2328, 2 (2017); [5] F. S. Anderson et al. RCMS 29, 191 (2015);

  8. 40Ar/39Ar geochronology and paleomagnetism of Independence volcano, Absaroka volcanic supergroup, Beartooth mountains, Montana

    USGS Publications Warehouse

    Harlan, S.S.; Snee, L.W.; Geissman, J.W.

    1996-01-01

    Independence volcano is a major volcanic complex in the lower part of the Absaroka Volcanic Supergroup (AVS) of Montana and Wyoming. Recently reported Rb-Sr mineral dates from the complex give apparent ages of 91 and 84 Ma, whereas field relationships and the physical and compositional similarity of the rocks with other dated parts of the AVS indicate an Early to Middle Eocene age for eruption and deposition. To resolve the conflict between age assignments based on stratigraphic correlations and Rb-Sr dates, we report new paleomagnetic data and 40Ar/39Ar dates for Independence volcano. Paleomagnetic data for the stock and an and andesite plug that cuts the stock are well grouped, of reverse polarity, and yield a virtual geomagnetic pole that is essentially identical to Late Cretaceous and Tertiary reference poles. The reverse polarity indicates that the magnetization of these rocks is probably younger than the Cretaceous normal superchron, or less than about 83.5 Ma. Hornblende from a volcanic breccia near the base of the volcanic pile gives a 40Ar/39Ar age of 51.57 Ma, whereas biotites from a dacite sill and a granodiorite stock that forms the core of the volcano give dates that range from 49.96 to 48.50 Ma. These dates record the age of eruption and intrusion of these rocks and clearly show that the age of Independence volcano is Early to Middle Eocene, consistent with stratigraphic relations. We suggest that the Rb-Sr mineral dates from the Independence stock and related intrusions are unreliable.

  9. Subduction factory in an ampoule: Experiments on sediment-peridotite interaction under temperature gradient conditions

    NASA Astrophysics Data System (ADS)

    Woodland, A. B.; Bulatov, V. K.; Brey, G. P.; Girnis, A. V.; Höfer, H. E.; Gerdes, A.

    2018-02-01

    To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H2O (6.9 wt%) and CO2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10-100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the "basic" setup has the sediment layer at the bottom in the cold zone (400-1200 °C) overlain by peridotite at 900-1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene-garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate-silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene-garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures <700 °C; and (7) occurrence of accessory zircon, rutile and phosphates in the coldest regions. In terms of element redistribution, the peridotite becomes strongly enriched in SiO2 compared to the starting composition, and the sediment gains MgO, FeO and Cr2O3. Potassium is fully extracted into the melt, while Na and Ca are largely retained in the coldest part of the metasediment layer in clinopyroxene, Ca-rich garnet and aragonite. The melt is a product of interaction between partial melt or fluid from the sediment and peridotite. It has a silico-carbonatite composition with variable SiO2, MgO, FeO and CaO contents and low Al2O3. The addition of Cl has almost no effect on element distribution, whereas the addition of F results in the appearance of humite-group minerals containing significant amounts of Ti. Trace-element distribution is controlled by pressure, temperature and mineral assemblages. At low temperatures in the sediment layer (<700 °C) Ba, Rb, Sr and Li are much more mobile than REE and HFSE, which results in high Ba/La, Ba/Nb, Sr/Nb etc. (fluid metasomatism). At higher temperatures in the sediment layer, the melt is markedly enriched in Ba, Rb, Sr, LREE and U relative to Ti, MREE and HREE. Negative Nb-Ta and Zr-Hf anomalies in melts are caused by the retention of rutile, zircon and humite-group minerals in the solid residue. Thermodiffusion may affect the ratios of some highly incompatible elements (e.g., Ta/La). Possible applications of the results to natural deep subduction are discussed in view of variations in mineral assemblages and trace element ratios.

  10. Superconductivity in Hydrides Doped with Main Group Elements Under Pressure

    NASA Astrophysics Data System (ADS)

    Shamp, Andrew; Zurek, Eva

    2017-01-01

    A priori crystal structure prediction techniques have been used to explore the phase diagrams of hydrides of main group elements under pressure. A number of novel phases with the chemical formulas MHn, n > 1 and M = Li, Na, K, Rb, Cs; MHn, n > 2 and M= Mg, Ca, Sr, Ba; HnI with n > 1 and PH, PH2, PH3 have been predicted to be stable at pressures achievable in diamond anvil cells. The hydrogenic lattices within these phases display a number of structural motifs including H2δ- , H-, H-3 , as well as one-dimensional and three-dimensional extended structures. A wide range of superconducting critical temperatures, Tcs, are predicted for these hydrides. The mechanism of metallization and the propensity for superconductivity are dependent upon the structural motifs present in these phases, and in particular on their hydrogenic sublattices. Phases that are thermodynamically unstable, but dynamically stable, are accessible experimentally. The observed trends provide insight on how to design hydrides that are superconducting at high temperatures.

  11. Timing, mantle source and origin of mafic dykes within the gravity anomaly belt of the Taihang-Da Hinggan gravity lineament, central North China Craton

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Feng, Guangying; Xu, Mengjing; Coulson, Ian M.; Guo, Xiaolei; Guo, Zhuang; Peng, Hao; Feng, Qiang

    2017-09-01

    Six mafic dyke swarms crop out in Hebei Province within the Taihang-Da Hinggan gravity lineament magmatic belt, China, and were sampled. Here, we present new zircon laser ablation-inductively coupled plasma-mass spectrometry U-Pb age, whole rock geochemical, and Sr-Nd-Pb-Hf isotopic data for the six areas where these mafic dykes occur. The mafic (dolerite) dykes formed between 131.6 ± 1.6 and 121.6 ± 1.1 Ma, and are enriched in the light rare earth elements (LREE), some of the large ion lithophile elements (LILE; e.g., Rb, Ba, and Sr) and Pb, and are depleted in Th, U, Nb and Ta; some samples are also depleted in Eu. The dykes have high initial 87Sr/86Sr ratios (0.7055-0.7057), negative εNd (t) values (-12.5 to -11.9), relatively constant Pb isotopic ratios ((206Pb/204Pb)i = 16.45-16.51, (207Pb/204Pb)i = 15.44-15.51, (208Pb/204Pb)i = 36.49-36.53), negative εHf (t) values (-18.2 to -15.1), and old Nd (TNdDM2; 2.17-2.47 Ga) and Hf (THfDM2; 2.28-2.33 Ga) model ages. These geochronological, geochemical, and isotopic data indicate that the dykes were derived from magmas generated by low to moderate degree partial melting (1.0%-10%) of an EM1-like garnet lherzolite mantle source; these magmas fractionated olivine, clinopyroxene, and hornblende prior to emplacement, and assimilated minimal amounts of crustal material. Several possible models have previously been proposed to explain the origin of Mesozoic magmatism in this region. However, here we propose a foundering model for these studied mafic dykes, involving the foundering of eclogite from thickened lower crust due to the collision between the Siberian Craton and the North China Craon.

  12. Geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Zhunsujihua granitoid intrusions associated with the molybdenum deposit, northern Inner Mongolia, China: implications for petrogenesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojun; Lentz, David R.; Yao, Chunliang; Liu, Rui; Yang, Zhen; Mei, Yanxiong; Fan, Xianwang; Huang, Fei; Qin, Ying; Zhang, Kun; Zhang, Zhenfei

    2018-03-01

    The Zhunsujihua porphyry molybdenum deposit, located in northern Inner Mongolia of China that belongs to Central-Asian Orogenic Belt (CAOB), is the only Mo deposit formed in the late Carboniferous in this area so far. Its mineralization is mainly restricted to the Zhunsujihua granitoid intrusions, which are composed of the main granodiorite (GD) and crosscutting, virtually coeval minor syn-ore leucogranite (LG) and diorite porphyry (DP) dykes. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 300.0 ± 2.0, 299.3 ± 2.0, and 299.0 ± 2.6 Ma for the GD, LG, and DP, respectively. The major and trace element lithogeochemical data show that the GD and LG are metaluminous to weakly peraluminous, high-K calc-alkaline series with I-type granite characteristics, strongly oxidized, with low concentrations of Ba, Nb, Sr, P, and Ti and elevated K and Rb contents, indicating typical arc magmatic features. The LG is a product derived by extensive fractional crystallization of a parental magma similar to the GD as evident from the lower Eu/Eu*, Nb/Ta, Zr/Hf, and T Zr. The moderately altered DP exhibits high concentrations of K, Rb, Cs, LREE, Y, and low Sr/Y, with a positive ɛ Nd (300 Ma), which indicates a mantle or juvenile source associated with an arc setting. The Sr-Nd-Hf isotope data show low I Sr (0.70406-0.70461) and moderate ɛ Nd (300 Ma) (-0.9 to 1.5) for the GD and LG, and relatively high ɛ Hf (300 Ma) values (-3.6 to +11.2) for the GD, suggesting the magma mainly originated from the juvenile lower crust that was derived from depleted mantle, with a minor component of ancient continental crust. Lead isotope data have characteristics of a lower crust source with minor contamination by upper crustal material. Combined with previous research, the Zhunsujihua granitoid intrusions developed in an intracontinental volcanic arc (Uliastai) associated with northward subduction of the Paleo-Asian Ocean plate during late Carboniferous to early Permian; this suggests that the subduction of Paleo Asian Ocean may have continued to late Carboniferous, and the Hengenshan basin is probably closed during the early Permian. Fractional crystallization is the main evolutionary process of the felsic magma, which has played an important role in the Mo mineralization. The coeval DP may have provided additional heat for the extended evolution of the crystallizing felsic magma chamber.

  13. An evolving tectonic environment of Late Carboniferous to Early Permian granitic plutons in the Chinese Altai and Eastern Junggar terranes, Central Asian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Liu, Dongdong; Luo, Qun; Liu, Luofu; Zhang, Yunzhao; Zhu, Deyu; Wang, Pengfei; Dai, Quanqi

    2018-06-01

    The Central Asian Orogenic Belt (CAOB) represents one of the most important sites of juvenile crustal growth during the Phanerozoic. Located in the central part of the CAOB, the Chinese Altai and Eastern Junggar terranes record the collisional processes between the peri-Siberian and Kazakhstan orogenic systems. However, the precise timing of collision between the two terranes remains controversial. The Wukuli and Kadelat plutons in the Chinese Altai belt are dated at ∼305 and ∼280 Ma respectively, whereas the Aketas pluton in the Eastern Junggar terrane is dated at ∼308 Ma. Granites from the Wukuli and Kadelat plutons are strongly peraluminous (A/CNK > 1.1), and are characterized by low Al2O3, Na2O, MnO, MgO, CaO and heavy rare earth element (HREE) contents, but with high SiO2, K2O and Rb contents as well as high Rb/Sr ratios. Granites from the Wukuli pluton have low εNd(t) and εHf(t) values of -3.7 to -3.4 and -9.7 to +4.9, whereas those from the Kadelat pluton have values of -3.6 to -3.4 and -8.0 to +2.6. These features suggest S-type affinity for the Wukuli and Kadelat plutons with magma derivation through partial melting of Mesoproterozoic metasediments. The Aketas pluton is composed of weakly peraluminous quartz monzonites that have A/CNK values ranging from 0.92 to 1.08, with high Na2O, Sr, and Sr/Y, and low Y, Yb, Nb, and Ta. These rocks display positive εNd(t) (+4.8 to +6.4) and εHf(t) (+9.7 to +14.6) values, and low initial 87Sr/86Sr ratios (0.703357-0.703868), similar to modern adakites, suggesting that the quartz monzonites were derived from the partial melting of lower crustal material. The geochemical characteristics suggest that the Aketas pluton was formed in a subduction-related setting, the Wukuli pluton in a syn-collisional setting, and the Kadelat pluton in the subsequent post-orogenic strike-slip-related setting. In combination with data from other granitoids in these two terranes, the Aketas pluton represents the youngest record of subduction-related environments, suggesting that the final collision between the Chinese Altai and Eastern Junggar terranes might have occurred between 308 and 304 Ma.

  14. Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of dating hydrothermal illites

    NASA Astrophysics Data System (ADS)

    Gilg, H. Albert; Frei, Robert

    1994-05-01

    Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions (< 0.6 μm) during cooling of the hydrothermal system probably played the most important role in the disturbance of the K/Ar system. Conventional K/Ar ages of < 2 μm fractions from high-temperature illites (> 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons of natural, coarser grained (> 0.6 μm) size fractions of illites from single samples, even when slightly contaminated with feldspars, may yield meaningful ages either of the formation or of a reheating event. The Rb/Sr dating of hydrothermal clays is sensitive to contamination by adsorbed strontium, which may not be cogenetic with the clay, as well as feldspars, which may not have been homogenized isotopically by the illitization process.

  15. Signals of pollution revealed by trace elements in recent snow from mountain glaciers at the Qinghai-Tibetan plateau.

    PubMed

    Li, Yuefang; Li, Zhen; Cozzi, Giulio; Turetta, Clara; Barbante, Carlo; Huang, Ju; Xiong, Longfei

    2018-06-01

    In order to extract pollution signal of trace elements (TEs) in glacier snow at the Qinghai-Tibetan plateau of China by human activities, concentrations of 18 TEs (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y and Th in digested snow samples from five glaciers in April-May 2013 before monsoon season were measured. Results shown that higher TEs concentrations were found in glaciers at the northern plateau while lower concentrations in glaciers at the central and southern plateau. Discussion revealed that EF values calculated from elements with mass fraction <30% such as Ti and Al, etc in traditional acid leached samples, will overestimate at least 4.6 times the contribution of other sources than dust for TEs such as Sb, Sr, As, Cu and Pb etc. Analysis indicated that most TEs mainly originated from dust sources, whereas Pb, Cu, Mo and Sb showed occasionally significant contributions from polluted sources in three snow pits and the GRHK surface snow samples. The pollution probably originated from mining and smelting, road transport emissions on the plateau and some regions outside of the plateau. Dust provenance tracing results based on REEs indicated that Taklimakan Desert, Qaidam Basin, and Tibetan surface soil were the potential dust sources for the studied glaciers, while the Indian Thar Desert was an occasional dust sources for YZF,XDKMD and GRHK snow samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Geochemical associations between fluorite mineralization and A-type shoshonitic magmatism in the Keban-Elazig area, East Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Akgul, Bunyamin

    2015-11-01

    Keban fluorite mineralizations are closely related Coniacian-Campanian subvolcanics intruded into Permian-Triassic Keban metamorphites; this event caused pyrometasomatic, porphyry, and vein-type Pb-Zn-Ag, Cu, W, and Pb-Zn-Ag-Mo-F mineralizations. These rocks are syenitic and syenomonzonitic in composition and have high Al2O3, alkali (Na2O + K2O), FeO*/MgO, Zr, Nb, Ta, Ga, Rb, Y, and rare earth element (REE) contents. They are A-type, metaluminous, and all fall in the shoshonitic series field in K2O vs SiO2 and Th/Yb vs Ta/Yb diagrams. The trace element contents and discriminations indicate that the Keban syenitoids were derived from lithospheric mantle metasomatized by oceanic-crust/sediment fluids. The metal and halogen contents of the Keban mineralizations apparently originated from metasomatized mantle and were transported to the crust by syenitoid magmas. Clear resemblances in chondrite-normalized REE patterns, LREE-HREE partionation, and high LILE contents of the magmatics and fluorites indicate a close kinship between the syenitoids and fluorite mineralizations. The HFSE contents of the fluorites are lower than those of the magmatics, as HFSEs are not soluble in aqueous fluids. The fluorites are products of early-phase alkali magmatism (LREE > HREE). The high contents of Rb, Sr, and Ba of fluorites are inherited from the magma, which also has very high contents of these elements. In Sc-∑REE, (La/Yb)n-(Eu/Eu*)n and (Tb/La)n-(Tb/Ca)n diagrams, Keban fluorites fall into distinct areas from Akcakisla-Akdagmadeni and Celikhan-Adiyaman fluorites.

  17. Linking major and trace element headwater stream concentrations to DOC release and hydrologic conditions in a bog and peaty riparian zone

    NASA Astrophysics Data System (ADS)

    Broder, Tanja; Biester, Harald

    2017-04-01

    Peatlands and organic-rich riparian zones are known to export large amounts of dissolved organic carbon (DOC) to surface water. In organic-rich, acidic headwater streams main carriers for element export are dissolved organic matter (DOM) and organic-iron complexes. In this environment DOM might also act as major carrier for metals, which otherwise may have a low solubility. This study examines annual and short term event-based variations of major and trace elements in a headwater catchment. Patterns are used to trace hydrological pathways and element sources under different hydrologic preconditions. Furthermore, it elucidates the importance of DOC as carrier of different elements in a bog and a peaty riparian catchment. The study was conducted in a small headwater stream draining an ombrotrophic peatland with an adjacent forested area with peaty riparian soils in the Harz Mountains (Germany). Discharge sampling was conducted weekly at two sites from snowmelt to begin of snowfall and in high resolution during selected discharge events in 2013 and 2014. Element concentrations were measured by means of ICP-MS and ICP-OES. A PCA was performed for each site and for annual and event datasets. Results show that a large number of element concentrations strongly correlate with DOC concentrations at the bog site. Even elements like Ca and Mg, which are known to have a low affinity to DOC. Congruently, the first principal component integrates the DOC pattern (element loadings > 0.8: Ca, Fe, Mg, Mn, Zn, As, Sr, Cd, DOC) and explained about 35 % of total variance and even 50 % during rain events (loadings > 0.8: Al, Ca, Fe, Mg, Mn, Zn, Li, Co, As, Sr, Cd, Pb, DOC). The study cannot verify that all correlating elements bind to DOC. It is likely that also a common mobilization pattern in the upper peat layer by plant decomposition causes the same response to changes in hydrologic pathways. Additionally, a low mineral content and an enrichment of elements like Fe and Mn in the upper peat layers due to prevailing redox conditions might play a major role in a bog environment. At the peaty riparian zone only Ca, Fe, and Sr strongly correlated with DOC over the annual record. The PCA of the annual record display no clear DOC component here, but indicates that DOC is influenced by Component one (element loadings > 0.8: Ca, Mg, Zn, Co, Sr) and two (Al, V, La, Pb, U) suggesting different DOC sources in the peaty riparian zone. A large number of elements correlate with DOC during rain event sampling at the riparian zone. In contrast to the bog site the event-based riparian zone PCA distinguished a clear discharge related component with mineral, groundwater related elements (K, Rb, In, Cs, NO3- and SO42-). Pattern of the mineral and DOC components prove that during base flow discharge is generated in a shallow groundwater layer and successively increases upward to the organic-rich upper soil layer with increasing discharge. Contrarily, bog element pattern confirm a dominating surface-near discharge, due to high hydraulic conductivities.

  18. Geochemical constraints on the origin of high-Mg andesites in the southernmost Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Chu, C.; Chung, S.; Shinjo, R.; Gallet, S.; Wang, S.; Chen, C.

    2007-12-01

    The Okinawa Trough, extending from SW Kyushu to NE Taiwan, is a backarc basin of the Ryukyu arc-trench system due to subduction of the Philippine Sea plate under the Eurasian plate. The southernmost part of the Okinawa Trough (SPOT), however, does not situate in a simple backarc setting but is an embryonic rift zone in which early arc volcanism takes place. Kueishantao that consists mainly of andesitic flows dated to be ~7000 yr old is an emerged volcanic islet thus formed in SPOT. Here we report whole-rock major and trace element, and Sr-Nd-Pb-Hf isotope compositions of the Kueishantao andesites. Some of the samples have unexpectedly high magnesium, with MgO ≥ 5 wt.% and Mg# > 0.5, relative to their silica contents (SiO2 ~ 60 wt.%), so can be coined as high-Mg andesites (HMAs). These HMAs display enrichments in Cs, Rb, Ba, Th, U, LREE and Pb, and depletions in HFSE, in the incompatible element variation diagram. Their overall geochemical compositions are similar to those of the mean continental crust proposed by Rudnick and Fountain (1995). The HMAs have uniform radiogenic isotope ratios, with low ÕɛNd (-4.3 to -5.0), low ÕɛHf (-0.9 to -2.4), and high 87Sr/86Sr (~0.706) and 206Pb/204Pb (~18.75). In contrast to previous notion that calls for significant contamination of upper continental crust in the magma chamber, we propose the Kueishantao HMAs to have resulted from partial melting of the subducted sediments and altered Philippine Sea crust followed by melt-mantle interaction in the mantle wedge. This interpretation is consistent with seismic tomographic results under the SPOT region marking with a combination of collision/extension/subduction tectonic context off NE Taiwan.

  19. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  20. Partial-melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, south China: A case study at the giant Zhuxi W-Cu skarn deposit

    NASA Astrophysics Data System (ADS)

    Song, Shiwei; Mao, Jingwen; Zhu, Yongfeng; Yao, Zaiyu; Chen, Guohua; Rao, Jianfeng; Ouyang, Yongpeng

    2018-04-01

    The Zhuxi W-Cu deposit, located in the Jiangnan porphyry-skarn W belt, is a world-class W deposit. We studied three coeval mineralization-related intrusions composed of biotite monzogranite, fine-grained granite, and granite porphyry in the Zhuxi mine. These rocks contain peritectic garnet and K-feldspar. The LA-ICP-MS U-Pb dating of zircon from the biotite monzogranite, fine-grained granite, and granite porphyry yields average ages of 149.38 ± 0.86 Ma, 149.0 ± 1.0 Ma, and 148.30 ± 1.4 Ma, respectively. The Zhuxi granites are enriched in Cs, Rb, and U and depleted in Ba, Sr, and Ti, with ASI [molar Al2O3 / (CaO + Na2O + K2O)] values of 1.03-2.15. The fine-grained granite exhibits initial 87Sr/86Sr values of 0.716-0.717 and εNd(t) values ranging from -9.61 to -9.21. The εHf(t) values of the biotite monzogranite and fine-grained granite range from -8.83 to -6.30 and from -9.86 to -7.62, respectively. The Sr-Nd-Hf isotopic compositions of these rocks are similar to those of the fertile Neoproterozoic metasedimentary rocks in the Jiangnan W belt. The Zhuxi granites are S-type granites based on their mineral assemblages and geochemical characteristics. The Hf isotopic compositions, Sr-Nd isotopic characteristics, and trace element modelling suggest that the studied granites formed from the dehydration melting of fertile Neoproterozoic metasedimentary rocks caused by the Late Jurassic underplating of OIB-like basaltic magma.

  1. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-03-01

    The paper provides physicians and clinical chemists with statistical data (concentration ranges, geometric mean values, selected percentiles, etc.) about 30 urinary trace elements in order to determine whether people have trace element deficiencies or have been exposed to higher elemental concentrations. Morning urine samples of 72 children and 87 adults from two geographical areas of Germany were collected and the elements Li, Be, V, Cr, Mn, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Pt, Au, Pb, Tl, Bi and U were determined by inductively coupled plasma mass spectrometry (ICP-MS) with a new octopole based collision/reaction cell. The urine samples were analysed directly after a simple 1/5 (V/V) dilution with deionised water and nitric acid. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews. The described concentration data down to the ng/l range are very useful for the formulation of reference values. For some elements either new data are described (e.g., for V, Ga, In, Bi, Rh, Mn) or differences to earlier studies were found (e.g., for Be, As). For other elements (e.g., Sb, Se, Mo, Ba, Cu, Zn, Li) our results are in good correlation with previous studies and also complemented with urinary trace element concentrations for children.

  2. A Geochemical View on the Interplay Between Earth's Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Chauvel, C.

    2017-12-01

    Over most of Earth history, oceanic and continental crust was created and destroyed. The formation of both types of crust involves the crystallization and differentiation of magmas producing by mantle melting. Their destruction proceeds by mechanical erosion and weathering above sea level, chemical alteration on the seafloor, and bulk recycling in subduction zones. All these processes enrich of some chemical element and deplete others but each process has its own effect on chemical elements. While the flux of material from mantle to crust is well understood, the return flux is much more complex. In contrast to mantle processes, erosion, weathering, chemical alteration and sedimentary processes strongly decouple elements such as the rare earths and high-field strength elements due to their different solubilities in surface fluids and mineralogical sorting during transport. Soluble elements such as strontium or uranium are quantitatively transported to the ocean by rivers and decoupled from less soluble elements. Over geological time, such decoupling significantly influences the extent to which chemical elements remain at the Earth's surface or find their way back to the mantle through subduction zones. For example, elements like Hf or Nd are retained in heavy minerals on continents whereas U and Sr are transported to the oceans and then in subduction zones to the mantle. The consequence is that different radiogenic isotopic systems give disparate age estimates for the continental crust; e.g, Hf ages could be too old. In subduction zones, chemical elements are also decoupled, due to contrasting behavior during dehydration or melting in subducting slabs. The material sent back into the mantle is generally enriched in non-soluble elements while most fluid-mobile elements return to the crust. This, in turn, affects the relationship between the Rb-Sr, Sm-Nd, Lu-Hf and U-Th-Pb isotopic systems and creates correlations unlike those based on magmatic processes. By quantifying the difference between isotopic arrays created by magmatic processes vs. surface and subduction processes, we can determine how crust recycling creates isotopic heterogeneities in the mantle.

  3. Tectonic affinities of the accreted basalts in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Yang, Huai-Jen; Liu, Yung-Hsin; Huang, Kuo-Fang; Takazawa, Eiichi

    2018-06-01

    Tectonic affinities of accreted basalts provide constraints on mass transport in convergent boundaries, improving our understandings on the evolution of regional geology. In this study, nineteen accreted basalts from the southernmost tip of Taiwan Island, which is on the convergent boundary between the Eurasian and Philippine Sea Plates, were analyzed for element concentrations as well as Sr, Nd, Hf, and Pb isotope ratios to investigate their tectonic affinities. All the samples contain > 3% LOI, reflecting post-magmatic alteration. LOI and Nb variation diagrams together with comparisons to oceanic basalt compositions indicated that the concentrations of most major elements and Rb, Sr, and Ba were modified by post-magmatic processes to varying extents, while P2O5, REE and HFSE remained immobile. Although some samples show Pb loss, most samples have Pb concentrations not affected by post-magmatic processes. Isotope ratios of Pb, Nd and Hf, generally reflect the mantle source characteristics. The εNd-εHf relationship and trace element abundance ratios indicated that the LREE-depleted samples were mostly scraped off the subducting South China Sea floor, reflecting the volumetric dominance of N-MORB on ocean floors. The overriding Philippine Sea Plate contributed both N-MORB and E-MORB to the accretionary prism. The tectonic affinities of the LREE-enriched samples, however, could not be unambiguously determined for the large geochemical variability of OIB from both subducting and overlying slabs. Based on our results, it is proposed that the tectonic affinity of the basalts in an accretionary prism can indicate the subduction polarity of the associated convergent boundary, providing a constraint for regional geology evolution.

  4. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed Rb-Sr and K-Ar mineral ages are obtained on rocks of the metamorphic complex and on the granite. These ages range from about 2,400 to 1,420 million years and are part of a regional pattern of lowered mineral ages of Precambrian W rocks of southern Wyoming. A major discontinuity in these mineral ages occurs along a line extending from the northern Laramie Range, through the northern part of the Granite Mountains, to the southeastern Wind River Mountains. North of this line, Rb-Sr and K-Ar biotite ages are 2,300 million years or greater, whereas to the south, the biotite ages decrease drastically over a short distance, to a common range of 1,600-1,400 million years. We suggest that these lowered ages represent regional cooling below the 300 0 C isotherm as a consequence of uplift and erosion of the large crustal block occurring south of the age discontinuity. In this interpretation, the westerly-trending age discontinuity would be a zone of major crustal dislocation that resulted from vertical tectonics in late Precambrian X or early Precambrian Y time.

  5. Petroleum formation during serpentinization: the evidence of trace elements

    NASA Astrophysics Data System (ADS)

    Szatmari, P.; Fonseca, T. C.; Miekeley, N. F.

    2002-05-01

    An organic source of petroleum formation is well attested by many biomarkers. This need not, however, exclude contribution from inorganic sources. During serpentinization, in the absence of free oxygen, oxidation of bivalent Fe to magnetite breaks up the water molecule, generating hydrogen and creating one of the most reducing environments near the Earth's surface (Janecky & Seyfried, 1986). Szatmari (1989) proposed that some petroleum forms at plate boundaries by Fischer-Tropsch-type synthesis over serpentinizing peridotites and suggested that Ni, an element rare in the continental crust but important in both petroleum and the mantle, may be indicative of such a source. Recently, Holm and Charlou (2001) observed hydrocarbon formation by Fischer-Tropsch-type synthesis over serpentinizing peridotites of the Mid-Atlantic Ridge. To test whether the relative amounts of other trace elements in petroleum are in agreement with a serpentinizing source, we analyzed by internally coupled plasma-mass spectroscopy (ICP-MS) 22 trace elements in 68 oils sampled in seven sedimentary basins throughout Brazil. We found that trace elements in the oils correlate well with mantle peridotites and reflects the process of hydrothermal serpentinization during continental breakup. Four groups may be distinguished. In serpentinites, trace elements of the first group, Ti, Cr, Mn, and Fe, are largely retained in low-solubility magnetite and other spinels formed during serpentinization or inherited from the original peridotites. In the oils, when normalized to mantle peridotites, these elements are at relatively low levels, about 10,000 times less than their abundances in mantle peridotites, reflecting their low availability from stable minerals. In contrast, trace elements of the second group, which includes V, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Ba, La, Ce, and Nd, pass during serpentinization mostly into serpentine minerals or solution. In the oils, when normalized to mantle peridotites, these elements are at higher levels than those of the first group, about 300 times less than their abundances in mantle peridotites, reflecting their higher availability during serpentinization. Within both groups, trace metal ratios and A/(A+B) type proportionalities in the oils are close to mantle peridotites. V behaves somewhat differently: in lacustrine sequences V contents in the oils are low and the ratios of V to other elements of the second group are mantle-like, whereas in marine sequences V and its ratios to other trace elements rise by orders of magnitude. Trace elements commonly enriched in formation fluids and hydrothermal brines (Rb, Sr, Ba, Cu, Zn), when normalized to mantle peridotites, are enriched in the oils by about 0.5 order of magnitude relative to other elements of the second group. The third group of elements includes S, Mo, and As. These elements occur in the oils at abundances similar to sea water and are, when normalized to mantle peridotites and Ni, enriched in the oils by several orders of magnitude, indicating sea water reacting with peridotites during sepentinization as their possible source. Finally trace elements of the fourth group, such as Pb and Ag, are enriched in the oils by several orders of magnitude relative to both mantle peridotites and sea water and were presumably mobilized from shales by hydrothermal fluids. References:Holm, N.G. and Charlou, J.L., 2001, EPSL 191, 1-8. Janecky, D.R. and Seyfried, W.E., 1986, Geochim. Cosmochim. Acta 50, 1357-1378. Szatmari, P., 1989, AAPG Bull. 73, 989-998.

  6. Ages and petrogenesis of Jurassic and Cretaceous intrusive rocks in the Matsu Islands: Implications for lower crust modification beneath southeastern China

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yuan; Yang, Jin-Hui; Ji, Wei-Qiang

    2017-12-01

    Major and trace element, whole-rock Sr-, Nd- and Hf-isotope, zircon U-Pb age and Hf-O isotope data are reported for the intrusive rocks from the Matsu Islands in the coastal area of southeastern (SE) China, in order to study the ages, sources and petrogenesis of these rocks and evolution of the lower crust. The rocks include gneissic granite, massive granite, brecciated granite and diabase. Secondary ion mass spectrometer (SIMS) zircon U-Pb dating reveals that the rocks in the Matsu Islands were emplaced at ∼160 Ma, ∼130 Ma and ∼94 Ma. The Jurassic granites (∼160 Ma) have high SiO2 (74.1-74.5 wt%) and K2O + Na2O (8.32-8.33 wt%) contents and high Rb/Sr ratios of 0.6-1.2 and (La/Yb)CN ratios of 12.6-19.4. Their relatively high initial 87Sr/86Sr ratios (0.7074-0.7101), variable and negative εNd(t) values (-9.2 to -5.4), and variable zircon εHf(t) (-17.0 to +5.2) and δ18O (4.7-8.1‰) values indicate they were mainly derived from an ancient lower crustal source, but with involvement of high εHf(t) and low δ18O materials. The Early Cretaceous diabase (∼130 Ma) has SiO2 content of 56.5 wt%, relatively high MgO concentration, low initial 87Sr/86Sr ratio and negative εNd(t) value, similar to geochemical features of other Cretaceous mafic rocks in the coastal area of SE China. Zircons from the diabase have high εHf(t) values (-5.5 to +0.2) and relatively low δ18O values of 4.2-5.0‰. These characteristics indicate that the parental magma of the diabase was generated by partial melting of enriched lithospheric mantle, which have been metasomatised by altered oceanic crust-derived low-δ18O fluids. For the Cretaceous granitoids (∼130 Ma and 94 Ma), they have relatively low SiO2 (68.0-71.3 wt%) and K2O + Na2O (5.30-7.55 wt%) contents and low Rb/Sr ratios and (La/Yb)CN ratios of 5.8-7.1. They have low initial 87Sr/86Sr ratios (0.7071-0.7082), homogeneous εNd(t) (-4.3 to -4.5) and relatively high zircon εHf(t) values (-3.7 to +1.2) and low δ18O values (4.6-5.9‰). Their isotopic compositions are similar to those of the diabases in this study as well as other Cretaceous mafic rocks in the coastal area of SE China, suggesting that the sources of the Cretaceous granitoids might be the newly formed lower crust related to the underplated mafic rocks. Whole-rock geochemical, Sr-Nd and zircon Hf-O isotopic compositions indicate that the Jurassic granitoids are most likely generated by partial melting of relatively ancient basement rocks, whereas the Cretaceous granitoids were generated by partial melting of relatively young lower crustal rocks with addition of mantle-derived magma. This distinction implies that the pre-existing ancient lower crust beneath the coastal area of SE China has been modified by large-scale mafic magma underplating. Therefore, underplating of mantle-derived mafic magma would result in modification of the pre-existing ancient lower crust and formation of the relatively juvenile lower crust.

  7. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  8. Investigation of Drinking Water Quality in Kosovo

    PubMed Central

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  9. Hafnium isotope results from mid-ocean ridges and Kerguelen.

    USGS Publications Warehouse

    Patchett, P.J.

    1983-01-01

    176Hf/177Hf ratios are presented for oceanic volcanic rocks representing both extremes of the range of mantle Hf-Nd-Sr isotopic variation. Hf from critical mid-ocean ridge basalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/Sr-Sm/Nd-Lu/Hf fractionation relationships. At the other extreme of mantle isotopic compositions, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of Hf-Nd-Sr isotopic relatonships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean-island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation.-G.R.

  10. Hafnium isotope results from mid-ocean ridges and Kerguelen

    USGS Publications Warehouse

    Jonathan, Patchett P.

    1983-01-01

    176Hf/177Hf ratios are presented for oceanic volcanics representing both extremes of the range of mantle HfNdSr isotopic variation. Hf from critical mid-ocean ridgebasalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/SrSm/NdLu/Hf fractionation relationships. At the other extreme of mantle isotopic composition, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of HfNdSr c relationships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation. ?? 1983.

  11. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses.

    PubMed

    Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi

    2014-09-02

    Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.

  12. Sign Changes in the Electric Dipole Moment of Excited States in Rubidium-Alkaline Earth Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2015-06-01

    In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347

  13. Geochemistry of the Shuksan greenschists and blueschists, North Cascades, Washington: Variably fractionated and altered metabasalts of oceanic affinity

    NASA Astrophysics Data System (ADS)

    Dungan, M. A.; Vance, J. A.; Blanchard, D. P.

    1983-06-01

    The Shuksan schist comprises a structurally coherent, metabasaltic member of the Easton Formation, the uppermost allochthon (Shuksan thrust plate) in the thrust system of the western North Cascades of Washington State. Late Jurassic metamorphism at moderately high P/T produced interlayering of actinolite-bearing greenschist assemblages with blue amphibole-bearing rocks. Major and trace element analyses of twelve greenschist and blueschist samples have been used to establish similarities between the basaltic protolith and moderately to strongly fractionated Type I MORB, to distinguish the effects of seafloor alteration superimposed on the primary igneous chemistry, and to evaluate the origin and nature of the chemical controls which produced the two mineral assemblages. The twelve analyzed samples exhibit moderate to strong LREE depletion, and characteristically low concentrations of other non-labile trace elements such as Nb, Th and Hf. The highly to moderately incompatible elements Ti, P, Nb, Zr, Hf, Y, Sc, and the REE vary by factors of 1.5 to 3.5 within the suite in a systematic pattern, increasing smoothly with increasing total iron. The relative enrichments of these elements are inversely proportional to bulk partition coefficients estimated for fractionation of basaltic magmas. The magnitude of the negative europium anomaly increases with overall incompatible element enrichment. These variations are consistent with the production of a wide spectrum of compositions by different degrees of low pressure fractionation of similar Type I MORB parent magmas. The concentrations of Sr, Rb, Na, and K vary irregularly and do not correlate with the non-labile trace elements. K and Rb are substantially elevated over typical MORB values in most samples and exhibit a consistently lower ratio (K/Rb=400 vs 1000) than fresh MORB. Concentrations of these four elements are believed to have been modified by low temperature seafloor alteration (pre-metamorphic) characterized by the formation of K-rich celadonitic clays, palagonite and minor potassium feldspar. The critical chemical variables that control the occurrence of actinolite and blue amphibole in the Shuksan schists are total iron, Fe2O3-content and Na/Ca (all high in blueschists). The chemical features were largely established by magmatic processes and inherited from the igneous parent rocks; the chemically more evolved samples are blueschists. The Fe2O3-content and Na/Ca, however, may be modified during alteration, rendering initial bulk compositions near the chemical boundary susceptible to changes which may shift rock compositions from one compatibility field to the other. Heterogeneous alteration of pillow lavas and other fragmental deposits, followed by intense flattening during metamorphism, provides a mechanism for generating blueschists and greenschists interlayered on the cm scale.

  14. An In-Situ Rb-Sr Dating & Organics Characterization Instrument For A MER+ Sized Rover

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Whitaker, T.; Nowicki, K.; Zacny, K.; Pierce, J.

    2012-12-01

    We posit that a Mars in-situ geochronology mission that will triage and validate samples for Mars Sample Return (MSR) is technically feasible in the 2018-2022 time frame and addresses the competing scientific, political, and fiscal requirements for flight in this decade.The mission must be responsive to the astrobiological and chronological science goals of the MEPAG, Decadal Survey (DS), and E2E-iSAG, and avoid the MSR appearance of long term political commitment and cost. These requirements can best be accomplished by a rover with a coring drill. JPL has reassessed the MER landing system performance, and determined that the system is capable of significantly higher landed mass (~40-60 kg plus reserve), allowing more sophisticated instruments to be carried. The instrument package is comprised of a time of flight (TOF) mass spectrometer combined with a laser desorption resonance ionization source to sensitively measure isobar free Rb-Sr isotopes for geochronology and organics characterization. The desorption laser is also used with a μRaman/LIBS for mineral characterization, which in combination with the TOF, will additionally provide measurements of K-Ar isotopes for a second form of radiometric dating. The laser desorption resonance ionization mass spectrometry (LDRIMS) technique avoids the interference and mass resolution issues associated with geochronology measurements, and has miniaturization potential. A sample is placed in the TOF mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. Ions are suppressed by an electric field and the plume of expanding particles is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, for Rb. We have partially miniaturized the instrument, including Sr lasers, ablation laser, and mass spectrometer, and will soon to start using the instrument for field measurements. Our current prototype can measure the isotope ratio of lab standards with 10 ppm net Sr or Rb to a precision of ±0.1% (1σ), with a sensitivity of 1:10^10 in ~15 minutes. Before working with high value samples, we are validating the technique on terrestrial materials such as the Boulder Creek Granite (BCG). Using LDRIMS, we have succeeded at producing a moderate precision date for BCG of 1.72±0.087 Ga (n=288, MSWD=1; ±0.60 Ga for MSWD=2). Our mission feeds forward into MSR by validating that the collected samples are astrobiologically and geochronologically relevant, and triages those samples by scientific priority for return by MSR. Figure 1: Calibrated repeat isochron of the BCG.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negret, Alexandru; Singh, Balraj

    The experimental nuclear spectroscopic data for known nuclides of mass number 75 (Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr) have been evaluated and presented together with Adopted properties for levels and γ rays. New high-spin data are available for {sup 75}Ga, and {sup 75}Rb; and lifetime data for high-spin states in {sup 75}Br and {sup 75}Kr. For ΔJ =1, M1+E2 transitions in two rotational bands in {sup 75}Kr, several B(E2)(W.u.) values are anomalously high, deviating by 2–3 σ values from currently accepted RUL(E2) = 300. In the opinion of the evaluators, there is needmore » to remeasure level lifetimes and multipole mixing ratios in {sup 75}Kr to resolve this serious discrepancy. New precise single-particle transfer cross section data are available for {sup 75}Ga, {sup 75}Ge, {sup 75}As and {sup 75}Se from several different reactions (2009Ka06,2008Sc03); these data give information for occupancy of valence neutron orbitals in the ground states of target nuclides: {sup 76}Ge, {sup 76}Se and {sup 78}Se. No significant new data since the 1999 NDS for A = 75 have been reported for {sup 75}As and {sup 75}Se. No data are yet available for excited states in {sup 75}Co, {sup 75}Ni and {sup 75}Sr. For {sup 75}Fe, only the isotopic identification is made with one observed event. The radioactive decay schemes of {sup 75}Co and {sup 75}Ni are unknown while those for {sup 75}Rb and {sup 75}Sr are incomplete. This work supersedes the data presented in the previous NDS evaluation of A = 75 published by 1999Fa05.« less

  16. Molecular Spectra of RbSr: Helium Droplet Assisted Preparation of a Diatomic Molecule

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Buchsteiner, Thomas; Pototschnig, Johann V.; Ernst, Wolfgang E.

    2014-06-01

    We report on the first spectroscopic investigation of the ground and excited states of RbSr. The molecules are prepared in their vibronic ground state (X^2Σ^+1/2, ν" = 0) in a sequential pickup process on the surface of helium nanodroplets, confined in a cold (0.38 K) and weakly perturbing superfluid environment. Utilizing resonance-enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy our investigations cover the spectral regime of 11500 cm-1 - 23000 cm-1. The weak interaction between molecules and helium droplets causes a broadening of the observed transitions. For spectrally resolved band systems the helium droplet isolation approach facilitates the determination of molecular constants. Our assignment is assisted by theoretical calculations of potential energy curves based on a multireference configuration interaction (MRCI) approach. Several strong transitions could be identified; the most prominent spectral feature is a vibrational resolved band system at 14000 cm-1. In contrast to the excitation spectra, dispersed fluorescence (DF) spectra are not influenced by the helium environment, because the molecules leave the droplets upon photoexcitation, revealing detailed insights into the electronic structure of the free RbSr molecule. G. Krois, J.V. Pototschnig, F. Lackner and W.E. Ernst, J. Phys. Chem. A, 117 (50), 13719-13731 (2013) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) P.S. Żuchowski, R. Guerout, and O. Dulieu, arXiv preprint arXiv:1402.0702 (2014) B. Pasquiou, A. Bayerle, S.M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 88 (2), 023601 (2013).

  17. In-Situ Geochronology: Extending Larims to Pb-Pb Isocrhons

    NASA Astrophysics Data System (ADS)

    Whitaker, Tom; Anderson, Scott; Levine, Jonathan

    2016-04-01

    Introduction: We have previously described development of Laser Ablation Resonance Ionization Mass Spectrometry (LARIMS) for in-situ determination of the radiometric age of rocks using isotope ratios of Rb and Sr [1,2]. LARIMS uses laser resonance excitation of the target elements, which provides elemental selectivity, thus eliminating isobaric interferences with little or no sample preparation and allowing thousands of samples to be measured in significantly shorter periods of time than traditional methods. We have recently begun research that aims to extend the Rb-Sr capability to include Pb-Pb measurements. Preliminary measurements of Standard Reference Material 612 (SRM-612) from the National Institute of Standards and Technology (NIST) demonstrate that resonance ionization of Pb can measure samples with as little as 0.12 ppm total Pb. Background: In-situ LARIMS will enable measurements of 1) isotope geochemistry relevant for chronology and igneous evolution, 2) light isotopes relevant for habitability, life, and climate history, as well as 3) elemental abundances relevant to understanding local and regional geology. In particular, the elemental selectivity of LARIMS makes isotopic geochronology measurements possible that heretofore required extensive sample preparation and were thought to be practically impossible for in-situ measurements. For example, we have used Rb-Sr LARIMS to analyze a piece of the Martian meteorite Zagami and the Duluth Gabbro, a lunar analogue. In these measurements, we obtained isochron ages consistent with the published ages within 200 Ma. Pb-Pb geochronology is well-suited for LARIMS analysis. The use of a single element simplifies the laser system and eliminates inter-element fractionation that can be problematic in Rb-Sr analysis or other multi-element LARIMS measurements. In general, there is less interference at masses corresponding to Pb isotopes than at lighter masses. However, there are potential interferences such as Hg and HfO2, which have been known to cause problems in Inductively Coupled Plasma Mass Spectrometry (ICPMS) of Pb isotopes [3]. LARIMS enables a simple check for interfering species by detuning the laser wavelength off the Pb resonance. The resonance ionization signal for the desired species should disappear when the resonance laser is detuned. Any residual signal is due to an interfering species. Three resonance ionization laser schemes were examined for initial LARIMS analysis of Pb: 1) a 2+1 scheme that uses λ1 = λ2 = 450.3 nm (the first transition in this scheme is a simultaneous two-photon excitation), 2) a 1+1+1 scheme using λ1 = 283.3 nm, λ2 = 600.2 nm and λ3 < 1270 nm, and 3) a 1+1 scheme that uses λ1 = λ2 = 283.3 nm. One-photon resonance excitations have cross-sections that are orders of magnitude greater than either two-photon resonance excitations or photoionization processes. Therefore, although schemes 1) and 3) have the advantage of requiring fewer lasers, they also require high-intensity blue or UV wavelengths. This adversely affects the selectivity of the resonance ionization process. Scheme 2) uses low-intensity UV and visible wavelengths and a high-intensity IR wavelength. This is the preferred scheme and was selected for our initial Pb LARIMS measurements. Preliminary Results: A laser system capable of producing the required wavelengths for scheme 2) was assembled. A Nd:YAG laser pumped dye laser produces 566.6 nm light, which is frequency-doubled in a beta barium borate crystal. A second Nd:YAG pumped dye laser produces the 600.2 nm light for the second resonance in scheme 2). The fundamental of one of the Nd:YAG lasers (1064 nm) is used for the final photoionization step. We focus the fifth harmonic (213 nm) of another Nd:YAG laser onto the sample to ablate material off the surface. Electric fields suppress the ions created in the ablation process, preventing these ions from entering the mass spectrometer. The three resonance ionization laser lasers spatially overlap the ablated plume about 1 mm off the surface. These three resonance ionization wavelengths are synchronized in time with each other but delayed with respect to the ablation laser pulse. For Pb, the resonance ionization signal peaks at about 9 μsec delay. The electric field that initially suppressed ablated ions is reversed before the resonance lasers are fired, thus extracting the ions selectively created by resonance ionization into a multi-bounce time-of-flight mass spectrometer (MBTOF-MS). The MBTOF-MS separates the isotopes in time, allowing analysis of isotope ratios. We have used this technique to analyze NIST SRM-612, a glass wafer containing 38.57 ppm Pb along with a number of other constituents. The mass spectrum shows all of the Pb isotopes, with the even isotopes in the expected ratios. However, we have found that the Pb-207 peak height is very sensitive to the exact wavelength of the 600.2 nm light used for the second excitation. The height of this odd isotope can be significantly modified with minute changes in the 600.2 nm wavelength that don't affect the peak heights of the even isotopes. This is due to the well-known odd-even isotope anomaly in resonance ionization. Because of the sensitivity of the Pb-207 peak to the exact wavelength, a standard with known Pb isotope ratios is analyzed frequently to allow calibration of the isotope ratios. In very preliminary LARIMS spectra obtained for SRM-612, the measured Pb-208 signal-to-baseline noise is over 600:1. This corresponds to a minimum detection limit of 0.12 ppm total Pb. We anticipate improving the signal-to-noise with optimization of TOF voltages and ablation laser intensity. Future Work: We are in the process of measuring an isochron for a sample of Duluth Gabbro and anticipate having results available for the conference. We are also exploring the use of fiber lasers for LARIMS analyses of Pb. Fiber lasers are small, lightweight, and extremely robust, making them ideal for space missions. We are presently developing fiber lasers for our Rb-Sr LARIMS work and we have investigated ways to efficiently combine wavelengths from Er-, Yb-, and Tm-doped fibers to generate both the 283.3 nm wavelength and 600.2 nm wavelength needed for Pb LARIMS. Concepts utilizing wavelengths readily generated in these fibers have been developed. References: F.S. Anderson, J. Levine, and T.J. Whitaker, Rapid Comm. in Mass Spect., 2015, 29, 191-204. F.S. Anderson, J. Levine, T.J. Whitaker, Rapid Comm. in Mass Spect., 2015, 29, 1457-1464. R.W. Hinton and J V Long, Earth Planet. Sci. Lett 1979, 45, 309-325.

  18. Post-collisional subvolcanic rhyolites associated with the Neoproterozoic Pelotas Batholith, southern Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, Diego Skieresz de; Sommer, Carlos Augusto; Philipp, Ruy Paulo; Lima, Evandro Fernandes de; Basei, Miguel Ângelo Stipp

    2015-11-01

    Neoproterozoic volcanic and subvolcanic rhyolitic systems in southernmost Brazil are correlated with acid magmatism linked to different petrotectonic associations of the Sul-Rio-Grandense Shield. A portion of this volcanism in the Dom Feliciano Belt is associated with the Pelotas Batholith, which resulted from magmatic episodes associated with the Ediacaran post-collisional evolution of southern Brazil. Ana Dias Rhyolite is the main subvolcanic occurrence of this volcanism that took place in the Quitéria region, in the central part of Rio Grande do Sul State. The acid magmatism has been commonly associated with the most differentiated granite suite phases during the final stages of emplacement of the Pelotas Batholith. The Ana Dias Rhyolite is characterized as an intrusive body with rocks that present a porphyritic to seriated texture and a gradational variation to fine-grained equigranular rocks. New zircon U-Pb dating indicates crystallization age of 581.9 ± 1.9 Ma for the Ana Dias Rhyolite. Geochemistry data characterize the rhyolites as belonging to the alkaline series; they present a metaluminous to peraluminous character; elevated SiO2 and alkali concentrations, high FeOt/FeOt + MgO ratios and agpaitic index; and low Al2O3, CaO, and MgO contents. The Zr, Rb, Y, Nb, and Ga concentrations are moderate when compared with the relatively low Ba and Sr contents. These geochemistry characteristics are common in acid magmas with alkaline affinity. The behavior of certain trace elements and REE demonstrate enrichment in more incompatible elements, in addition to the negative anomaly of Ba, the slight enrichment in Ce relative to adjacent elements, as well as the enrichment in K2O and Rb relative to Nb, suggesting magmas derived from mantle sources enriched in incompatible elements with some crustal contamination. The chemical characteristics are similar to those of A-type granites associated with Neoproterozoic post-collision magmatism in the Sul-Rio-Grandense Shield.

  19. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge

    NASA Astrophysics Data System (ADS)

    Michard, A.; Montigny, R.; Schlich, R.

    1986-05-01

    Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.

  20. Lone pair effect, structural distortions, and potential for superconductivity in Tl perovskites.

    PubMed

    Schoop, Leslie M; Müchler, Lukas; Felser, Claudia; Cava, R J

    2013-05-06

    Drawing the analogy to BaBiO3, we investigate via ab initio electronic structure calculations potential new superconductors of the type ATlX3 with A = Rb and Cs and X = F, Cl, and Br, with a particular emphasis on RbTlCl3. On the basis of chemical reasoning, supported by the calculations, we show that Tl-based perovskites have structural and charge instabilities driven by the lone pair effect, similar to the case of BaBiO3, effectively becoming A2Tl(+)Tl(3+)X6. We find that upon hole doping of RbTlCl3, structures without Tl(+) and Tl(3+) charge disproportionation become more stable, although the ideal cubic perovskite, often viewed as the best host for superconductivity, should not be the most stable phase in the system. The known superconductor (Sr,K)BiO3 and hole doped RbTlCl3, predicted to be most stable in the same tetragonal structure, display highly analogous calculated electronic band structures.

  1. Spin waves and magnetic exchange interactions in insulating Rb(0.89)Fe(1.58)Se(2).

    PubMed

    Wang, Miaoyin; Fang, Chen; Yao, Dao-Xin; Tan, GuoTai; Harriger, Leland W; Song, Yu; Netherton, Tucker; Zhang, Chenglin; Wang, Meng; Stone, Matthew B; Tian, Wei; Hu, Jiangping; Dai, Pengcheng

    2011-12-06

    The parent compounds of iron pnictide superconductors are bad metals with a collinear antiferromagnetic structure and Néel temperatures below 220 K. Although alkaline iron selenide A(y)Fe(1.6+x)Se(2) (A=K, Rb, Cs) superconductors are isostructural with iron pnictides, in the vicinity of the undoped limit they are insulators, forming a block antiferromagnetic order and having Néel temperatures of roughly 500 K. Here we show that the spin waves of the insulating antiferromagnet Rb(0.89)Fe(1.58)Se(2) can be accurately described by a local moment Heisenberg Hamiltonian. A fitting analysis of the spin wave spectra reveals that the next-nearest neighbour couplings in Rb(0.89)Fe(1.58)Se(2), (Ba,Ca,Sr)Fe(2)As(2), and Fe(1.05)Te are of similar magnitude. Our results suggest a common origin for the magnetism of all the Fe-based superconductors, despite having different ground states and antiferromagnetic orderings.

  2. First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Saito, Riichiro

    2017-11-01

    Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.

  3. Ar-40/Ar-39 age of the Shergotty achondrite and implications for its post-shock thermal history

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Nyquist, L. E.; Husain, L.

    1979-01-01

    Ar-40/Ar-39 measurements are used to determine the age of the Shergotty achondrite and the chronology of the shock event responsible for the complete conversion of its plagioclase to maskelynite is discussed. Apparent ages are found to vary between 240 and 640 million years for the whole rock sample, with a plateau age of 254 million years for a maskelynite separate. The Rb-Sr age of 165 million years determined by Nyquist at al (1978) suggests that the maskelynite as well as the whole rock was incompletely degassed. Argon diffusion characteristics indicate a post-shock cooling time greater than 1000 years and a burial depth greater than 300 m for a thermal model of a cooling ejecta blanket of variable thickness. It is concluded that the shock event which degassed the argon and reset the Rb-Sr systematics occurred between 165 and 250 million years ago when the parent body experienced a collision in the asteroid belt.

  4. Rb-Sr Isotopic Studies Of Antarctic Lherzolitic Shergottite Yamato 984028

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Misawa, K.

    2009-01-01

    Yamato 984028 is a Martian meteorite found in the Yamato Mountains of Antarctica. It is classified as a lherzolitic shergottite and petrographically resembles several other lherzolitic shergottites, i.e. ALHA 77005, LEW 88516, Y-793605 and Y-000027/47/97 [e.g. 2-5]. These meteorites have similarly young crystallization ages (152-185 Ma) as enriched basaltic shergottites (157-203 Ma), but have very different ejection ages (approximately 4 Ma vs. approximately 2.5 Ma), thus they came from different martian target crater areas. Lherzolitic shergottites have mg-values approximately 0.70 and represent the most mafic olivine-pyroxene cumulates. Their parental magmas were melts derived probably from the primitive Martian mantle. Here we present Rb-Sr isotopic data for Y-984028 and compare these data with those obtained from other lherzolitic and olivine-phyric basaltic shergottites to better understand the isotopic characteristics of their primitive mantle source regions. Corresponding Sm-Nd analyses for Y-984028 are in progress.

  5. Rb-Sr and Sm-Nd Isotopic Studies of Antarctic Nakhlite MIL 03346

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2006-01-01

    Nakhlites are olivine-bearing clinopyroxenites with cumulate textures, and probably came from Mars [e.g., 1]. A total of seven nakhlites have been identified so far. Unlike other martian meteorites (e.g., shergottites), nakhlites have been only moderately shocked and their original igneous textures are still well-preserved. Also, these meteorites have similarly older crystallization ages of approx.1.3 Ga compared to shergottites with ages of approx.0.18-0.57 Ga [e.g., 2]. MIL 03346 is characterized by abundant (approx.20 vol %) glassy mesostasis, indicating that it cooled rapidly and probably formed near the top [3] or at the bottom [4] of the chilled margin of a thick intrusive body. The mesostasis quenched from the trapped intercumulus liquid may provide information on the parent magma compositions of the nakhlites. In this report, we present Rb-Sr and Sm-Nd isotopic data for MIL 03346, discuss correlation of its age with those of other nakhlites and the nature of their source regions in the Martian mantle.

  6. U-Th-Pb, Rb-Sr, and Sm-Nd isotopic systematics of lunar troctolitic cumulate 76535 - Implications on the age and origin of this early lunar, deep-seated cumulate

    NASA Technical Reports Server (NTRS)

    Premo, Wayne R.; Tatsumoto, M.

    1992-01-01

    The U-Th-Pb, Rb-Sr, and Sm-Nd isotopic systematics of four lightly leached residues of pristine, high-Mg, troctolitic cumulate 76535 were analyzed in order to determine their ages and magma sources. The data indicate that the cumulate was in isotopic equilibrium with a fluid or magma characterized by a high U-238/Pb-204 (mu) value of 600 at 4.236 Ga. Two and three stage Pb evolution calculations define even greater source mu values of about 1000, assuming low lunar initial mu values between 5 and 40 prior to about 4.43 Ga. These results are similar to mu values for KREEP sources and are also consistent with values from 78235, suggesting that at least some high-Mg suite rocks were derived from magma sources with high-mu values similar to KREEP, and support that idea that these rocks postdate primary lunar differentiation and formation of ferroan anorthosites.

  7. Determination of Trace Elements in Edible Nuts in the Beijing Market by ICP-M.

    PubMed

    Yin, Liang Liang; Tian, Qing; Shao, Xian Zhang; Kong, Xiang Yin; Ji, Yan Qin

    2015-06-01

    Nuts have received increased attention from the public in recent years as important sources of some essential elements, and information on the levels of elements in edible nuts is useful to consumers. Determination of the elemental distributions in nuts is not only necessary in evaluating the total dietary intake of the essential elements, but also useful in detecting heavy metal contamination in food. The aim of this study was to determine the mineral contents in edible nuts, and to assess the food safety of nuts in the Beijing market. Levels of Li, Cr, Mn, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, Th, and U in 11 types of edible nuts and seeds (macadamia nuts, lotus nuts, pistachios, sunflower seeds, pine nuts, almonds, walnuts, chestnuts, hazelnuts, cashews, and ginkgo nuts) as well as raisins were determined by inductively coupled plasma mass spectrometry (ICP-MS). The accuracy of the method was validated using standard reference materials GBW10014 (cabbage) and GBW10016 (tea). Our results provide useful information for evaluating the levels of trace elements in edible nuts in the Beijing market, will be helpful for improving food safety, and will aid in better protecting consumer interests. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. The Rb problem in massive AGB stars.

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} < M < 8 M_{⊙}) in their last nuclear-burning phase, when they develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  9. Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Hatting, Karina; Santos, Roberto V.; Sondag, Francis

    2014-05-01

    The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni-Madeira River. This river has a larger difference in the Sr isotopic composition between the diluted and solid phases, which has been assigned to the high level of weathering of its sediment source area. In the Beni-Madeira River sub-basin dominates weathering of silicate rocks, while in the Marañón-Solimões River sub-basin there also weathering of carbonate and evaporitic rocks.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, R.P.; Irifune, T.; Shimizu, N.

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110,more » 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as the product of melting of deeply recycled (subducted) Archean-age metasediments in the mantle transition zone [Murphy, D.T., Collerson, K.D., Kamber, B.S., 2002. Lamproites from Gaussberg, Antartica: possible transition zone melts of Archaean subducted sediments. J. Petrol. 43, 981-1001]. Here we report the results of phase equilibria experiments on two different natural sedimentary compositions (a high-grade metapelite with < 1 wt.% H{sub 2}O, and a marine 'mud' with 8 wt.% H{sub O}) at 16-23 GPa. In both materials, the high-pressure mineral assemblages contain {approx} 15-30 wt.% K-hollandite (KAlSi{sub 3}O{sub 8}), in addition to stishovite, garnet, an Al-silicate phase (kyanite or phase egg), and a Fe-Ti spinel (corundum). Ion microprobe analyses of K-hollandite for a range of trace elements reveal that this phase controls a significant proportion of the whole-rock budget of incompatible, large-ion lithophile elements (LILEs, e.g., Rb, Ba, Sr, K, Pb, La, Ce and Th). Comparisons between the abundances and ratios of these elements in K-hollandite with those in EM-I type ocean-island basalts from Pitcairn Island and related seamounts, and with the Gaussberg lamproites, indicate the presence of deeply recycled, continent-derived sediments in these lavas sources. Our results suggest that the incompatible trace-element signature of EM-I OIB reservoirs in general and of the Gaussberg lamproites in particular can be attributed to recycling of K-hollandite-bearing continental sediments to transition zone depths.« less

  11. Multi-elemental analysis of Lentinula edodes mushrooms available in trade.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Rzymski, Piotr; Niedzielski, Przemysław; Gąsecka, Monika; Jasińska, Agnieszka; Budzyńska, Sylwia; Budka, Anna

    2017-03-04

    The present study investigated the content of 62 elements in the fruiting bodies of Lentinula edodes (Shiitake mushroom) cultivated commercially in Poland on various substrates from 2007-2015. The general mean content (mg kg -1 dry weight (DW)) of the studied elements ranked in the following order: K (26,335) > P (11,015) > Mg (2,284) > Ca (607) > Na (131) > Zn (112) > Fe (69) > Mn (33) > B (32) > Rb (17) > Cu (14.5) > Al (11.2) > Te (2.9) > As (1.80) > Cd (1.76) > Ag (1.73) > Nd (1.70) > Sr (1.46) > Se (1.41) > U (1.11) > Pt (0.90) > Ce (0.80) > Ba (0.61) > Co (0.59) > Tl (0.58) > Er (0.50) > Pb (0.42) > Li (0.40) > Pr (0.39) > Ir (0.37) > In (0.35) > Mo (0.31) > Cr (0.29) > Ni (0.28) > Sb (0.26) > Re (0.24) > Ti (0.19) > Bi (0.18) > Th (0.12) > La (0.10) = Pd (0.10) > Os (0.09) = Zr (0.09) > Rh (0.08) > Ho (0.07) > Ru (0.06) > Sm (0.04) = Eu (0.04) = Tm (0.04) > Gd (0.03) > Sc (0.02) = Y (0.02) > Lu (0.01) = Yb (0.01) = V (0.01). The contents of Au, Be, Dy, Ga, Ge, Hf, and Tb were below the limits of detection (0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.02 mg kg -1 respectively). The concentrations of Al, As, B, Ba, Ca, Cd, Cr, Er, Fe, In, Lu, Mn, Nd, Sr, Ti, Tm, and Zr were comparable over the period the mushrooms were cultivated. The study revealed that Lentinula edodes contained As and Cd at levels potentially adverse to human health. This highlights the need to monitor these elements in food products obtained from this mushroom species and ensure that only low levels of these elements are present in cultivation substrates.

  12. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.

    PubMed

    Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto

    2012-09-01

    A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Distribution of Heavy Metals in Surface Sediments of the Bay of Bengal Coast

    PubMed Central

    Hasan, M. R.; Khan, M.; Aktar, S.; Fatema, K.

    2017-01-01

    The concentrations of major (Si, Al, Ca, Fe, and K) and minor (Cd, Mn, Ni, Pb, U, Zn, Co, Cr, As, Cu, Rb, Sr, and Zr,) elements in the surficial sediments were studied in an attempt to establish their concentration in the Bengal coast. It was revealed that the majority of the trace elements have been introduced into the Bengal marine from the riverine inflows that are also affected by the impact of industrial, ship breaking yard, gas production plant, and urban wastes. The concentration of heavy metals was measured using Atomic Absorption Spectroscopy and Energy Dispersive X-ray fluorescence instruments. The highest concentrations for several trace elements were thus recorded which generally decrease with distance from the coast. It was observed that the heavy metal concentrations in the sediments generally met the criteria of international marine sediment quality. However, both the contamination factor and pollution load index values suggested the elevation of some metals' concentrations in the region. Constant monitoring of the Bengal coast water quality needs to be recorded with a view to minimizing the risk of health of the population and the detrimental impacts on the aquatic ecosystem. PMID:28255298

  14. Reference Values of 14 Serum Trace Elements for Pregnant Chinese Women: A Cross-Sectional Study in the China Nutrition and Health Survey 2010-2012.

    PubMed

    Liu, Xiaobing; Zhang, Yu; Piao, Jianhua; Mao, Deqian; Li, Yajie; Li, Weidong; Yang, Lichen; Yang, Xiaoguang

    2017-03-21

    The development of reference values of trace elements is recognized as a fundamental prerequisite for the assessment of trace element nutritional status and health risks. In this study, a total of 1400 pregnant women aged 27.0 ± 4.5 years were randomly selected from the China Nutrition and Health Survey 2010-2012 (CNHS 2010-2012). The concentrations of 14 serum trace elements were determined by high-resolution inductively coupled plasma mass spectrometry. Reference values were calculated covering the central 95% reference intervals (P2.5-P97.5) after excluding outliers by Dixon's test. The overall reference values of serum trace elements were 131.5 (55.8-265.0 μg/dL for iron (Fe), 195.5 (107.0-362.4) μg/dL for copper (Cu), 74.0 (51.8-111.3) μg/dL for zinc (Zn), 22.3 (14.0-62.0) μg/dL for rubidium (Rb), 72.2 (39.9-111.6) μg/L for selenium (Se), 45.9 (23.8-104.3) μg/L for strontium (Sr), 1.8 (1.2-3.6) μg/L for molybdenum (Mo), 2.4 (1.2-8.4) μg/L for manganese (Mn), 1.9 (0.6-9.0) ng/L for lead (Pb), 1.1 (0.3-5.6) ng/L for arsenic (As), 835.6 (219.8-4287.7) ng/L for chromium (Cr), 337.9 (57.0-1130.0) ng/L for cobalt (Co), 193.2 (23.6-2323.1) ng/L for vanadium (V), and 133.7 (72.1-595.1) ng/L for cadmium (Cd). Furthermore, some significant differences in serum trace element reference values were observed between different groupings of age intervals, residences, anthropometric status, and duration of pregnancy. We found that serum Fe, Zn, and Se concentrations significantly decreased, whereas serum Cu, Sr, and Co concentrations elevated progressively compared with reference values of 14 serum trace elements in pregnant Chinese women. The reference values of serum trace elements established could play a key role in the following nutritional status and health risk assessment.

  15. Trace element analysis of synthetic mono- and poly-crystalline CaF 2 by ultraviolet laser ablation inductively coupled plasma mass spectrometry at 266 and 193 nm

    NASA Astrophysics Data System (ADS)

    Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.

    2002-06-01

    The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.

  16. New production systems at ISOLDE

    NASA Astrophysics Data System (ADS)

    Hagebø, E.; Hoff, P.; Jonsson, O. C.; Kugler, E.; Omtvedt, J. P.; Ravn, H. L.; Steffensen, K.

    1992-08-01

    New target systems for the ISOLDE on-line mass separator facility are presented. Targets of carbides, metal/graphite mixtures, foils of refractory metals, molten metals and oxides have been tested. Beams of high intensity of neutron-rich isotopes of a large number of elements are obtained from a uranium carbide target with a hot plasma-discharge ion source. A target of ZrO 2 has been shown to provide high intensity beams of neutron-deficient isotopes of Mn, Cu, Zn, Ga, Ge, As, Se, Br, Kr and Rb, while a SiC target with a hot plasma ion source gives intense beams of radioactive isotopes of a number of light elements. All these systems are rather chemically unselective. Chemically selective performance has been obtained for several systems, i.e.: the production of neutron-deficient Au from ( 3He, pχn) reactions on a Pt/graphite target with a hot plasma ion source; the production of neutron-deficient Lu and LuF + and Hf and HfF 3+ from a Ta-foil target with a hot plasma ion source under CF 4 addition; the production of neutron-deficient Sr as SrF + and Y as YF 2+ form a Nb-foil target with a W surface ionizer under CF 4 addition; the production of neutron-deficient Se as COSe + from a ZrO 2 target with a hot plasma ion source under O 2 addition; and the production of radioactive F from a SiC target with a hot plasma ion source operating in Al vapour.

  17. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  18. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Feng, Chengyou; Zhao, Yiming; Li, Daxin

    2015-12-01

    The post-collisional magmatism of Qiman Tagh is characterized by the intrusion of voluminous intermediate to felsic granitoids, including syenogranite, monzogranite, granodiorite, tonalite and diorite. The granitoids can be divided into two magmatic suites: Calc-alkaline (CA) and alkaline (Alk), which were emplaced from ~ 236 Ma to ~ 204 Ma. The CA suite contains metaluminous granodiorites and monzogranites. Typical Qiman Tagh CA granodiorites show moderately fractionated REE patterns ((La/Yb)N = 4.35-25.11) with significant negative Eu anomalies (Eu/Eu* = 0.54-1.34), and the primitive mantle-normalized spidergrams show strong depletion of Nb and Sr. The Qiman Tagh CA monzogranites show similar fractionated REE patterns ((La/Yb)N = 2.70-13.5) with less prominent negative Eu anomalies, and the chondrite-normalized spidergrams show strongly depleted Ba, Nb and Sr. The Alk suite, including syenogranite, is highly potassic (K2O/Na2O = 1.09-3.56) and peraluminous (A/CNK = 0.91-1.06). Compared to typical Qiman Tagh CA granodiorites, the Qiman Tagh Alk granitoids can be distinguished by their higher Rb, Nb, Ga/Al, FeO*/MgO, Y/Sr and Rb/Sr, as well as their lower Mg#, MgO, CaO, Al2O3, Sr, Co, V, Eu/Eu*, Ba/Nb, La/Nb, Ba/La and Ce/Nb. The Qiman Tagh CA rocks were most likely to be derived from the partial melting of garnet-amphibolite-facies rocks in the lower crust, leaving behind anhydrous granulite-facies rocks with plagioclase and garnet in the residue. The Alk rocks may have formed by the continued partial melting of granulite-facies rocks at elevated temperatures (> 830 °C).

  19. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Niu, Yaoling; Li, Jiyong; Ye, Lei; Kong, Juanjuan; Chen, Shuo; Zhang, Yu; Zhang, Guorui

    2016-02-01

    We present zircon U-Pb ages and geochemical data on the late Triassic mafic dikes (diabase) and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in the East Kunlun Orogenic Belt (EKOB). These rocks give a small age window of 228-218 Ma. The mafic dikes represent evolved alkaline basaltic melts intruding ~ 8-9 Myrs older and volumetrically more abundant A-type granite batholith. Their rare earth element (REE) and multi-element patterns are similar to those of the present-day ocean island basalts (OIBs) except for a weak continental crustal signature (i.e., enrichment of Rb and Pb and weak depletion of Nb, Ta and Ti). Their trace element characteristics together with the high 87Sr/86Sr (0.7076-0.7104), low εNd(t) (- 2.18 to - 3.46), low εHf(t) (- 2.85 to - 4.59) and variable Pb isotopic ratios are consistent with melts derived from metasomatized subcontinental lithospheric mantle with crustal contamination. The felsic volcanic rocks are characterized by high LREE/HREE (e.g., [La/Yb]N of 5.71-17.00) with a negative Eu anomaly and strong depletion in Sr and P, resembling the model upper continental crust (UCC). Given the high 87Sr/86Sr (0.7213-0.7550) and less negative εNd(t) (- 3.83 to - 5.09) and εHf(t) (- 3.06 to - 3.83) than the UCC plus the overlapping isotopes with the mafic dikes and high Nb-Ta rhyolites, the felsic volcanic rocks are best interpreted as resulting from melting-induced mixing with 45-50% crustal materials and 50-55% mantle-derived mafic melts probably parental to the mafic dikes. Such mantle-derived melts underplated and intruded the deep crust as juvenile crustal materials. Partial melting of such juvenile crust produced felsic melts parental to the felsic volcanic rocks in the EKOB. We hypothesize that the late Triassic mafic dikes and felsic volcanic rocks are associated with post-collisional extension and related orogenic collapse. Such processes are probably significant in causing asthenospheric upwelling, decompression melting, induced melting of the prior metasomatized mantle lithosphere and the existing crust. This work represents our ongoing effort in understanding the origin of the juvenile crust and continental crustal accretion through magmatism in the broad context of orogenesis from seafloor subduction to continental collision and to post-collisional processes.

  20. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block: Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Xu, Zhaowen; Lu, Xiancai; Fu, Bin; Lu, Jianjun; Yang, Xiaonan; Zhao, Zengxia

    2016-01-01

    The origin and tectonic setting of Early Cretaceous adakitic rocks from the Luxi terrane in the eastern North China Block (NCB) remain debated. To resolve this issue, we determined whole-rock geochemistry, zircon U-Pb ages, and in situ Hf-O isotopes of the Mengyin and Liujing adakitic porphyries from the Luxi terrane. Zircon U-Pb dating results reveal that both the Mengyin and Liujing plutons were emplaced during the Early Cretaceous, with weighted mean 206Pb/238U ages of 130 ± 1 Ma (2σ) and 131 ± 2 Ma (2σ), respectively. In addition, abundant Neoarchean-Paleoproterozoic inherited zircon cores are identified in the Mengyin adakitic porphyry with 207Pb/206Pb ages ranging from 2.53 to 2.42 Ga. Rocks of both plutons are silicic (SiO2 = 65.4-70.2 wt.%), metaluminous, and alkaline in composition, comprising mainly quartz syenite porphyries. Samples from both plutons are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Sr, and Ba), and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs) (e.g., Nb, Ta, and Ti), and heavy rare earth elements (HREEs), and have either positive or no Eu anomalies. In addition, both adakitic porphyries have high Mg# values (51-64), high Sr and La contents, low Y and Yb contents, and high Sr/Y (Mengyin = 149-264; Liujing = 58-110) and (La/Yb)N (Mengyin = 32.4-45.3; Liujing = 43.8-53.1) ratios, similar to adakitic rocks worldwide. The Mengyin adakitic porphyry has higher whole-rock εNd(t) values (-5.8 to - 4.1), more radiogenic Pb [(206Pb/204Pb)i = 18.35-18.39, (207Pb/204Pb)i = 15.55-15.56, (208Pb/204Pb)i = 38.20-38.23], higher zircon rim εHf(t) values (+ 3.3 to + 8.8) and δ18O values (+ 6.5‰ to + 7.9‰), and lower (87Sr/86Sr)i ratios (0.7049-0.7050) than the Liujing adakitic porphyry [εNd(t) = - 12.4 to - 12.2, (206Pb/204Pb)i = 17.63-17.72, (207Pb/204Pb)i = 15.56-15.58, (208Pb/204Pb)i = 37.76-37.94, εHf(t) = - 14.8 to - 11.2, δ18O = + 5.9‰ to + 7.1‰, (87Sr/86Sr)i = 0.7090-0.7091]. The Mengyin adakitic porphyry was most likely derived from partial melting of subducted oceanic slab with some input of NCB Neoarchean-Paleoproterozoic lower crust components. The Liujing adakitic porphyry was probably derived from partial melting of delaminated newly underplated thick lower crust, which then interacted with above asthenospheric mantle peridotite. Slab rollback together with the ridge subduction of the Paleo-Pacific slab was the most likely geodynamic mechanism for formation of the Early Cretaceous Mengyin and Liujing adakitic porphyries.

  1. Demonstration Of A Portable Approach For Rb-Sr Geochronology On The Boulder Creek Granite: Implications For Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Nowicki, K.; Whitaker, T.

    2011-12-01

    We have succeeded at producing a Rubidium-Strontium (Rb-Sr) geochronology measurement of the Boulder Creek Granite of 1.369±0.144 Ga (MSWD=1; actual value 1.34±0.07 Ga [0]) in under 5 hours using a laser desorption resonance ionization mass spectrometer (LDRIMS) that can be miniaturized for portable use. The LDRIMS approach would enable new in-situ radiometric measurements for the Moon and Mars that would significantly improve geologic interpretation of these complex surfaces and constrain impactor flux throughout the solar system. Models of the age error based on existing Rb-Sr measurements of Mars meteorites using 100-1000 LDRIMS measurements at ±0.1% (1σ) accuracy show that analytical uncertainties <±50 Ma are possible [1]. The LDRIMS technique avoids the interference and mass resolution issues associated with other geochronology measurements [2]. Our current prototype can measure the isotope ratio of lab standards with 10 ppm net Sr or Rb to a precision of ±0.1% (1σ), with a sensitivity of 1:1010 in ~15 minutes. The speed of the LDRIMS measurement allows thousands of samples to be measured in significantly shorter periods of time than traditional methods, with little or no sample preparation. This abstract focuses on samples of the Boulder Creek Granite from Elephant Butte located in Boulder, Colorado, composed of a "gneissic quartz monzonite and granodiorite with local facies of aplite, alaskite, hornblende diorite, and pegmatite" [3]. We rough cut a block of Boulder Creek Granite to fit our sample holder, verifying that a range of quartz, plagioclase, hornblende and biotite were visible, and placing it in our sample chamber. 3000 laser desorption shots were acquired at each of 97 spots manually separated in a rastering fashion by ~300-500 μm. For this initial experiment, no attempt was made to localize desorption to a single mineral, or identify the mineral under desorption. The age error of ±144 m.y. is consistent with our analytical models for a small number of measurements at moderate precision, however, when more measurements are completed, we anticipate that the age error will improve to <50-100 m.y. values [1]. Finally, the instrument can also be used to measure the chemistry of a sample using laser desorption secondary ionization mass spectrometry (LDSIMS), simply by turning up the power of the RI lasers. In addition to geochronology, the TOF has demonstrated resolution of 80K+, enabling us to separate light isotopes and measure heavy organics relevant for astrobiology.

  2. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-01-01

    The trace elements Ag, As, Au, B, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Ga, Hf, Hg, In, La, Mn, Mo, Ni, Pb, Pd, Rb, Rh, Ru, Sb, Se, Sn, Sr, Te, Th, Tl, U, V, W, Y and Zr were determined in 130 human blood samples from occupationally non-exposed volunteers living in the greater area of Bremen in northern Germany. The blood samples were collected in lithium heparin monovettes developed for trace metal determination and were analysed by inductively coupled plasma mass spectrometry (ICP-MS) with an octopole-based collision/reaction cell. For sample introduction into the ICP, the blood samples were diluted 1/10 (V/V) with a 0.1% Triton-X-100 and 0.5% (V/V) ammonia solution. The method validation of our developed routine method is described for all 37 elements and results about internal and external quality assurance are discussed. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews, including smoking habits, seafood consumption and the type of dental alloys in the teeth. Mean values, geometric mean values, ranges and selected percentiles of all elemental concentrations in human blood are presented, which helps toxicologists and clinical chemists planning research about exposition to metals and health effects caused by exposition to metals.

  3. Sr isotopic tracer study of the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.

  4. Discrimination of wine from grape cultivated in Japan, imported wine, and others by multi-elemental analysis.

    PubMed

    Shimizu, Hideaki; Akamatsu, Fumikazu; Kamada, Aya; Koyama, Kazuya; Okuda, Masaki; Fukuda, Hisashi; Iwashita, Kazuhiro; Goto-Yamamoto, Nami

    2018-04-01

    Differences in mineral concentrations were examined among three types of wine in the Japanese market place: Japan wine, imported wine, and domestically produced wine mainly from foreign ingredients (DWF), where Japan wine has been recently defined by the National Tax Agency as domestically produced wine from grapes cultivated in Japan. The main objective of this study was to examine the possibility of controlling the authenticity of Japan wine. The concentrations of 18 minerals (Li, B, Na, Mg, Si, P, S, K, Ca, Mn, Co, Ni, Ga, Rb, Sr, Mo, Ba, and Pb) in 214 wine samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and ICP-atomic emission spectrometry (ICP-AES). In general, Japan wine had a higher concentration of potassium and lower concentrations of eight elements (Li, B, Na, Si, S, Co, Sr, and Pb) as compared with the other two groups of wine. Linear discriminant analysis (LDA) models based on concentrations of the 18 minerals facilitated the identification of three wine groups: Japan wine, imported wine, and DWF with a 91.1% classification score and 87.9% prediction score. In addition, an LDA model for discrimination of wine from four domestic geographic origins (Yamanashi, Nagano, Hokkaido, and Yamagata Prefectures) using 18 elements gave a classification score of 93.1% and a prediction score of 76.4%. In summary, we have shown that an LDA model based on mineral concentrations is useful for distinguishing Japan wine from other wine groups, and can contribute to classification of the four main domestic wine-producing regions of Japan. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Nuclear Data Sheets for A = 91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglin, Coral M.

    2013-10-15

    Experimental nuclear structure and decay data for all known A=91 nuclides (As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd) have been evaluated. This evaluation, covering data received by 1 September 2013, supersedes the 1998 evaluation by C. M. Baglin published in Nuclear Data Sheets86, 1 (1999) (15 December 1998 literature cutoff), and subsequent evaluations by C. M. Baglin added to the ENSDF database for Kr, Sr and Zr (29 December 2000 literature cutoff) and by B. Singh for {sup 91}Tc (6 November 2000 literature cutoff)

  6. Source characteristics and tectonic setting of mafic-ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic-ultramafic intrusion

    NASA Astrophysics Data System (ADS)

    Chen, Bao-Yun; Yu, Jin-Jie; Liu, Shuai-Jie

    2018-05-01

    The newly discovered Lubei sulfide-bearing mafic-ultramafic intrusion forms the western extension of the Huangshan-Jin'erquan mafic-ultramafic intrusion belt in East Tianshan, NW China. The Lubei intrusion comprises hornblende peridotite, lherzolite, and harzburgite in its southern portion, gabbro in its middle portion, and hornblende gabbro in its northern portion. Intrusive relationships indicate that three magma pulses were involved in the formation of the intrusion, and that they were likely evolved from a common primitive magma. Estimated compositions of the Lubei primitive magma are similar to those of island arc calc-alkaline basalt except for the low Na2O and CaO contents of the Lubei primitive magma. This paper reports on the mineral compositions, whole-rock major and trace element contents, and Rb-Sr and Sm-Nd isotopic compositions of the Lubei intrusion, and a zircon LA-MC-ICP-MS U-Pb age for hornblende gabbro. The Lubei intrusion is characterized by enrichment in large-ion lithophile elements, depletion in high-field-strength elements, and marked negative Nb and Ta anomalies, with enrichment in chondrite-normalized light rare earth elements. It exhibits low (87Sr/86Sr)i ratios of 0.70333-0.70636 and low (143Nd/144Nd)i ratios of 0.51214-0.51260, with positive εNd values of +4.01 to +6.33. LA-ICP-MS U-Pb zircon ages yielded a weighted-mean age of 287.9 ± 1.6 Ma for the Lubei intrusion. Contemporaneous mafic-ultramafic intrusions in different tectonic domains in North Xinjiang show similar geological and geochemical signatures to the Lubei intrusion, suggesting a source region of metasomatized mantle previously modified by hydrous fluids from the slab subducted beneath the North Xinjiang region in the early Permian. Metasomatism of the mantle was dominated by hydrous fluids and was related to subduction of the Paleo-Asian oceanic lithosphere during the Paleozoic. Sr-Nd-Pb isotopic compositions suggest that the mantle source was a mixture of depleted mid-ocean-ridge-basalt mantle and enriched-mantle I components. The Permian mafic-ultramafic intrusions in North Xinjiang were formed from tholeiitic basaltic magmas derived from decompression partial melting of the metasomatized mantle in a post-collision extensional tectonic setting. The tholeiitic basaltic magmas are equivalent to the voluminous underplated basaltic magmas that formed during vertical crustal growth of the Central Asian Orogenic Belt in the later Paleozoic.

  7. Compositional variation within thick (>10 m) flow units of Mauna Kea Volcano cored by the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Vollinger, Michael J.; Frey, Frederick A.; Rhodes, J. Michael; Zhang, Qun

    2016-07-01

    Geochemical analyses of stratigraphic sequences of lava flows are necessary to understand how a volcano works. Typically one sample from each lava flow is collected and studied with the assumption that this sample is representative of the flow composition. This assumption may not be valid. The thickness of flows ranges from <1 to >100 m. Geochemical heterogeneity in thin flows may be created by interaction with the surficial environment whereas magmatic processes occurring during emplacement may create geochemical heterogeneities in thick flows. The Hawaii Scientific Drilling Project (HSDP) cored ∼3.3 km of basalt erupted at Mauna Kea Volcano. In order to determine geochemical heterogeneities in a flow, multiple samples from four thick (9.3-98.4 m) HSDP flow units were analyzed for major and trace elements. We found that major element abundances in three submarine flow units are controlled by the varying proportion of olivine, the primary phenocryst phase in these samples. Post-magmatic alteration of a subaerial flow led to loss of SiO2, CaO, Na2O, K2O and P2O5, and as a consequence, contents of immobile elements, such as Fe2O3 and Al2O3, increase. The mobility of SiO2 is important because Mauma Kea shield lavas divide into two groups that differ in SiO2 content. Post-magmatic mobility of SiO2 adds complexity to determining if these groups reflect differences in source or process. The most mobile elements during post-magmatic subaerial and submarine alteration are K and Rb, and Ba, Sr and U were also mobile, but their abundances are not highly correlated with K and Rb. The Ba/Th ratio has been used to document an important role for a plagioclase-rich source component for basalt from the Galapagos, Iceland and Hawaii. Although Ba/Th is anomalously high in Hawaiian basalt, variation in Ba abundance within a single flow shows that it is not a reliable indicator of a deep source component. In contrast, ratios involving elements that are typically immobile, such as La/Nb, La/Th, Nb/Th, Ce/Pb, Sr/Nd, La/Sm, Sm/Yb, Nb/Zr, Nb/Y and La/Yb, are uniform within the units, and they can be used to constrain petrogenetic processes. Nevertheless all elements are mobile under some conditions. For example, a surprising result is that relative to other samples, the uppermost sample collected from subaerial flow Unit 70, less than 1 m below the flow surface, is depleted in P, HREE and Y relative to all other samples from this flow unit. This result is complementary to the P, REE and Y enrichment found in subaerial lava flows from several Hawaiian shields, e.g., Kahoolawe and Koolau Volcanoes. These enrichments require mobilization of REE and followed by deposition a P-rich mineral.

  8. [Rapid determination of major and trace elements in the salt lake clay minerals by X-ray fluorescence spectrometry].

    PubMed

    Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu

    2010-03-01

    A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.

  9. Publications - RI 2005-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Solomon Bibliographic Reference Werdon, M.B., Stevens, D.S.P., Newberry, R.J., Szumigala, D.J., Athey, J.E ; Geochronology; Geology; Igneous Rocks; Mesozoic; Metamorphic Rocks; Nome; Nome Group; Ordovician; Paleozoic ; Plutonic Rocks; Proterozoic; Quaternary; Rb-Sr; STATEMAP Project; Seward Peninsula; Solomon Schist

  10. Preparation of hair for measurement of elements by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Puchyr, R F; Bass, D A; Gajewski, R; Calvin, M; Marquardt, W; Urek, K; Druyan, M E; Quig, D

    1998-06-01

    The preparation of hair for the determination of elements is a critical component of the analysis procedure. Open-beaker, closed-vessel microwave, and flowthrough microwave digestion are methods that have been used for sample preparation and are discussed. A new digestion method for use with inductively coupled plasma-mass spectrometry (ICP-MS) has been developed. The method uses 0.2 g of hair and 3 mL of concentrated nitric acid in an atmospheric pressure-low-temperature microwave digestion (APLTMD) system. This preparation method is useful in handling a large numbers of samples per day and may be adapted to hair sample weights ranging from 0.08 to 0.3 g. After digestion, samples are analyzed by ICP-MS to determine the concentration of Li, Be, B, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Se, Rb, Sr, Zr, Mo, Pd, Ag, Cd, Sn, Sb, I, Cs, Ba, Pt, Au, Hg, Tl, Pb, Bi, Th, and U. Benefits of the APLTMD include reduced contamination and sample handling, and increased precision, reliability, and sample throughput.

  11. An isotopic study of the Ni-Cu-PGE-rich Wellgreen intrusion of the Wrangellia Terrane: Evidence for hydrothermal mobilization of rhenium and osmium

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Reisberg, Laurie; Zindler, Alan; Wyman, Derek; Hulbert, Larry

    1994-01-01

    Re-Os, Sm-Nd, Rb-Sr, and oxygen isotope systematics of the Wellgreen intrusion in the Wrangellia terrane were investigated in an effort to deduce the origin of this mafic-ultramafic sill and its attendant Ni-Cu-PGE deposit. Radiogenic initial Os ratios (1.06-1.82) and Sr ratios (0.7044-0.7062), and heavy δ18O (7.3-7.9%.) suggest alteration of the intrusion by hydrothermal fluids that carried radiogenic 187Os and 87Sr from the surrounding country rocks. The great majority (>99%) of the Os, however, and by inference the other PGEs, derived from a mantle-derived magma that suffered little or no interaction with the crust prior to crystallization. Initial Nd isotope ratios are not as variable ( ɛNd( t) ranges from 2.02-4.49) and suggest that the rocks were derived from a light-rare-earth-element depleted mantle source. The Nd results, together with Os data from relatively undisturbed wehrlites, are compatible with either a plume ( RICHARDS et al., 1991) or island arc ( SAMSON et al., 1990) model for Wrangellia. This study contributes to a growing body of evidence that documents the ready mobilization of Os in hydrothermal fluids. The potential effects of this mobility must be carefully evaluated prior to invoking crustal assimilation to explain variable and radiogenic Os initial ratios in layered intrusions.

  12. Major to ultra trace elements in rainfall collected in suburban Tokyo

    NASA Astrophysics Data System (ADS)

    Shimamura, Tadashi; Iwashita, Masato; Iijima, Satoe; Shintani, Megumi; Takaku, Yuichi

    Major to ultra trace elements such as rare earth elements (REEs), platinum group elements (PGEs) in 20 rainfall events from suburban Tokyo were determined by inductively coupled plasma mass spectrometry (ICP-MS). Anion species were also determined by an ion chromatography (IC). The concentrations of PGEs were so low that only Pt was detected in some rainfall events. Enrichment factors (EFs), refer to soil and sea salt components, were calculated for the measured elements (with Al and Na as references). Be, (Na), Mg, (Al), Si, Cl, K, Fe, Rb, Sr, REEs (except La, Gd), Ta, and U were mostly originated from natural materials (soil and sea salt). For Li, B, Ca, Mn, Sr, Ba, and Cs, the contribution of natural materials was significant. EFs for Cu, Zn, As, Se, Sb, Cd, Pb, Bi, Ag, Te, Au, Pt, SO 4-S and NO 3-N exceeded 100 indicating non-crustal, non-sea salt origin, presumably anthropogenic; however, contribution of volcanic gases could not be excluded for As, Se, Te and Bi. Pt seemed to be uniformly distributed worldwide and a catalyst for automobile emission control may be the main source. Au also showed uniform distribution. On the other hand, EFs for Zr, Nb, Hf and Th were less than unity. Probably these elements resided in acid resistant refractory fine minerals that did not decompose with acid treatment, and did not evaporate and ionize in the ICP. An alternative explanation is that the concentration of these elements was lower in the soil of the sampling area than the average crust. In the crust normalized REE pattern plot, La, Eu and Gd showed clear positive anomalies. La and Gd could have anthropogenic components. A possible source of La and Gd is cracking catalyst for petrol refining, but this source does not fully explain the anomaly. The source of Gd may also be Gd-DTPA (Gadolinium (III) diethyltriaminepentaacetic acid) used for Magnetic Resonance Imaging (MRI) contrast agents. The Eu origin may be soil with higher concentration than the crust average.

  13. Petrology and isotopic geochemistry of the Archaean basement lithologies near Gardiner, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, R.E.; Sinha, A.K.

    1985-01-01

    In an attempt to recognize potential source rocks for some of the rhyolites of the Yellowstone Rhyolite Plateau, four major exposures of Precambrian rocks have been analyzed for major and trace elements and isotopic composition. The terrain is characterized by granitic gneisses with subordinant mica schist, quartzite, amphibolite, and two-mica granite. The gneiss units from the northern (Yankee Jim Canyon) and eastern (Lamar Canyon) outcrops are characterized by k-feldspar augen in a gneissic groundmass of two-feldspar--quartz--mica--epidote. The feldspar compositions are Or/sub 95/ and An/sub 5-15/ indicating metamorphic re-equilibration. Mafic phases are iron-rich with Fe:Mg of 1.0 in epidote, 0.7 inmore » pyroxene, and 0.5 in biotite. Sr isotopic analyses yield present day values of 0.7201-0.7519 for Lamar Canyon, 0.7157-0.7385 for Yankee Jam Canyon, and 0.7200-0.7679 for mica schist from the western and northern outcrops. Rb-Sr whole-rock data indicate a complicated isotopic history with ages ranging from 2800 to 3600 my. The 2800 my ages are consistent with ages for the Tobacco Root and Ruby Mountains to the NW (James and Hedge, 1980) and the Beartooth Range to the NE (Nunes and Tilton, 1971) while the 3600 my age may be related to the formation of the protolith. The rhyolites of the northern Yellowstone Rhyolite Plateau (Sr/sub I/=0.7100) cannot be derived from the exposed Archaean rocks based on Sr isotopic and whole-rock chemistry, and must be derived from lithologies not exposed in the area. This study shows that care must be taken when using surface lithologies to model potential sources materials for volcanic rocks in an associated terrain.« less

  14. Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA

    USGS Publications Warehouse

    Volkert, R.A.; Feigenson, M.D.; Patino, L.C.; Delaney, J.S.; Drake, Avery A.

    2000-01-01

    Voluminous late Mesoproterozoic monzonite through granite of the Vernon Supersuite underlies an area of approximately 1300 km2 in the Highlands of northern New Jersey. The Vernon Supersuite consists of hastingsite ?? biotite-bearing granitoids of the Byram Intrusive Suite (BIS) and hedenbergite-bearing granitoids of the Lake Hopatcong Intrusive Suite (LHIS). These rocks have similar major and trace element abundances over a range of SiO2 from 58 to 75 wt.%, are metaluminous to weakly peraluminous, and have a distinctive A-type chemistry characterized by high contents of Y, Nb, Zr, LREE, and Ga/Al ratios, and low MgO, CaO, Sr and HREE. Whole-rock Rb-Sr isochrons of BIS granite yield an age of 1116 ?? 41 Ma and initial 87Sr/86Sr ratio of 0.70389, and of LHIS granite an age of 1095 ?? 9 Ma and initial 87Sr/86Sr ratio of 0.70520. Both suites have similar initial 143Nd/144Nd ratios of 0.511267 to 0.511345 (BIS) and 0.511359 to 0.511395 (LHIS). Values of ??(Nd) are moderately high and range from +1.21 to +2.74 in the BIS and +2.24 +2.95 in the LHIS. Petrographic evidence, field relationships, geochemistry, and isotopic data support an interpretation of comagmatism and the derivation of both suites from a mantle-derived or a juvenile lower crustal parent with little crustal assimilation. Both suites crystallized under overlapping conditions controlled by P-T-f(H(2)O). Lake Hopatcong magma crystallized at a liquidus temperature that approached 900??C and a pressure of about 6 kbar, and remained relatively anhydrous throughout its evolution. Initial P-T conditions of the Byram magma were ??? 850??C and about 5.5 kbar. BIS magma was emplaced contemporaneous with, or slightly preceding LHIS magma, and both magmas were emplaced during a compressional tectonic event prior to granulite facies metamorphism that occurred in the Highlands between 1080 and 1030 Ma. (C) 2000 Elsevier Science B.V. All rights reserved.

  15. [The elemental composition of teeth hard tissues depending on the state of the environment].

    PubMed

    Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K

    2014-01-01

    At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.

  16. The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Kesler, V. G.; Meng, Guangsi; Lin, Z. S.

    2012-10-01

    The electronic structure of RbTiOPO4 has been investigated with x-ray photoemission spectroscopy. Detailed photoemission spectra of the element core levels have been recorded under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The chemical bonding parameters are compared to those reported for complex titanates and phosphates. The band structures of KTiOPO4, RbTiOPO4, K0.535R0.465TiOPO4 and TlTiOPO4 have been calculated by ab initio methods and compared to available experimental results. It is found that the band structure of KTP-type phosphate crystals is weakly dependent on the nature of the A-site (A=K, Rb, Tl) element.

  17. Petrogenesis of Early Cretaceous granitoids from southwest Zhejiang, NE South China Block and its geodynamic implication

    NASA Astrophysics Data System (ADS)

    Pan, Fa-Bin; Liu, Rong; Jin, Chong; Jia, Bao-Jian; He, Xiaobo; Gao, Zhong; Tao, Lu; Zhou, Xiao-Chun; Zhang, Li-Qi

    2018-05-01

    In situ zircon U-Pb ages, whole-rock major and trace elements, and Sr-Nd isotopic compositions of the Sucun, Yunfeng, and Jingning intrusions from southwest Zhejiang, NE South China Block, are presented to trace their petrogenesis and shed light on its lithosphere evolution. LA-ICP-MS U-Pb zircon dating shows that the Sucun quartz monzonite and Jingning monzogranite were emplaced at 135 Ma, and the Yunfeng quartz monzonite and Jingning granite were emplaced at 104 and 112 Ma, respectively. All these intrusions are metaluminous to weakly peraluminous and lie within high-K calc-alkaline to shoshonite series field (SiO2 = 66-76 wt%, A/CNK = 0.95-1.09, K2O/Na2O = 0.78-1.77). The Yunfeng quartz monzonite clearly have lower K2O and total REE contents, and higher CaO, Na2O, Al2O3, P2O5, MgO, and TiO2 contents, and relatively less enriched Sr-Nd isotopic compositions than those of the Sucun quartz monzonite, indicating that the Yunfeng quartz monzonite were derived from partial melting of a more juvenile lower crust sources compared with the magma source of the Sucun quartz monzonite. The Jingning monzogranite exhibit similar major elements covariations and Nd isotopic compositions, but higher Ba, Sr, and Eu contents and lower Rb, Th, and U contents than those of the Jingning granite. The geochemical features imply that the Jingning monzogranite and granite were fluid-present and fluid-absent anatexis products of the same Paleoproterozoic crustal source, respectively. Whole-rock Sr-Nd isotopic data imply that the estimated amounts of juvenile mantle-derived melts input into the mature crust show southeastward decreasing trend away from the Jiangshan-Shaoxing fault. We propose that roll-back and retreat of the Paleo-Pacific subducting plate might cause extensive asthenosphere mantle upwelling in East China, and the mantle-derived melts tend to rise through the regional main fault zones and preferentially modify the lithosphere nearby these faults.

  18. Interpretation of Ferroan Anorthosite Ages and Implications for the Lunar Magma Ocean

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Draper, D. S.

    2017-01-01

    Ferroan Anorthosites (FANs) are considered to have purportedly crystallized directly from the lunar magma ocean (LMO) as a flotation crust. LMO modeling suggests that such anorthosites started to form only after greater than 70 percent of the LMO had crystallized. Recent age dates for FANs have questioned this hypothesis as they span too large of an age range. This means a younger age for the Moon-forming giant impact or the LMO hypothesis is flawed. However, FANs are notoriously difficult to age-date using the isochron method. We have proposed a mechanism for testing the LMO hypothesis through using plagioclase trace element abundances to calculate equilibrium liquids and compare them with LMO crystallization models. We now examine the petrography of the samples that have Sm-Nd (Samarium-Neodymium) age dates (Rb-Sr (Rubidium-Strontium) isotopic systematics may have been disturbed) and propose a relative way to age date FANs.

  19. Preliminary Results from the Viking X-ray Fluorescence Experiment: The First Sample from Chryse Planitia, Mars.

    PubMed

    Toulmin, P; Clark, B C; Baird, A K; Keil, K; Rose, H J

    1976-10-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking x-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the martian surface, but if it coats silicate grains, the coatings must be very thin (

  20. Preliminary results from the Viking X-ray fluorescence experiment - The first sample from Chryse Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Toulmin, P., III; Rose, H. J., Jr.; Clark, B. C.; Baird, A. K.; Keil, K.

    1976-01-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking X-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample's being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the Martian surface, but if it coats silicate grains, the coatings must be very thin or discontinuous. A high abundance of Fe, relatively low abundances of Al, Rb, Sr, and Zr, and a high Ca/K ratio are distinctive features of the spectra. Preliminary determinations indicate the following abundances (as percentages by weight): Fe, 14 plus or minus 2; Ti, less than 1; S, 2 to 5; the Ca/K ratio by weight is greater than 5.

  1. Preliminary results from the viking x-ray fluorescence experiment: The first sample from chryse planitia, Mars

    USGS Publications Warehouse

    Toulmin, P.; Clark, B. C.; Baird, A.K.; Keil, Klaus; Rose, H.J.

    1976-01-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking x-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the martian surface, but if it coats silicate grains, the coatings must be very thin (??? 2 micrometers) or discontinuous. A high abundance of Fe, relatively low abundances of Al, Rb, Sr, and Zr, and a high Ca/K ratio are distinctive features of the spectra. Preliminary determinations indicate the following abundances (as percentages by weight): Fe, 14 ?? 2; Ti < 1; S, 2 to 5; the Ca/K ratio by weight is greater than 5.

  2. Elemental geochemistry and strontium-isotope stratigraphy of Cenomanian to Santonian neritic carbonates in the Zagros Basin, Iran

    NASA Astrophysics Data System (ADS)

    Navidtalab, Amin; Rahimpour-Bonab, Hossain; Huck, Stefan; Heimhofer, Ulrich

    2016-12-01

    A Neo-Tethyan upper Cenomanian-Santonian neritic carbonate ramp succession (Sarvak and Ilam formations), drilled in the Zagros Basin in southwest Iran, was investigated via detailed sedimentology, microfacies analysis, elemental geochemistry and Sr-isotope stratigraphy (SIS). The succession contains two exposure surfaces, which are known as the CT-ES and mT-ES (Cenomanian-Turonian and middle Turonian, respectively), and associated prominent negative carbon-isotope excursions that represent important regional stratigraphic marker horizons. Precise knowledge about the onset of platform exposure and the duration of the exposure-related hiatus, however, is currently lacking due to a rather low-resolved shallow-water biostratigraphic framework and a bulk carbonate carbon-isotope pattern that clearly differs from global Late Cretaceous reference curves. Therefore, the existing bio-chemostratigraphic framework was complemented by bulk carbonate strontium-isotope stratigraphy (SIS). As bulk carbonate material is in particular prone to diagenetic alteration, a careful selection of least altered samples has been carried out by means of elemental geochemistry and petrography. In contrast to what could be expected, the meteoric alteration of limestones beneath both exposure surfaces is not clearly expressed by increasing iron and manganese and coeval decreasing strontium contents. On the contrary, the impact of meteoric diagenesis is well illustrated via pronounced increases in Rb concentrations and concomitant prominent positive shifts to radiogenic strontium-isotope values, an observation that clearly reflects the decay of continentally derived 87Rb into 87Sr. Rubidium corrected strontium-isotope values place the CT-ES around the Cenomanian-Turonian boundary and point to an exposure duration of less than 0.4 Myr. This rather short-term CT-ES related hiatus is supported by petrographic evidence, which indicates a youth karstification stage of strata beneath the CT-ES. Following SIS, the Ilam-Sarvak transition at the top of Nezzazatinella-Dicyclina interval zone coincides with the mT-ES. Carbonates placing above this transition (Ilam Formation) are ascribed to the earliest to latest early Santonian, while carbonates immediately beneath the mT-ES (Sarvak Formation) are dated as late Turonian. SIS thus indicates a long-lasting hiatus of 4.5 Myr associated with the mT-ES. Emergence represented by the CT-ES is here proposed as harbinger of the mT-ES in the Zagros Basin, which most likely resulted from stepwise peripheral bulging due to ophiolite obduction in combination with a small-scale global sea level fall around 94 Ma.

  3. Rb-Sr isotopic studies of postorogenic granites from the eastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Stuckless, J.S.; Futa, Kiyoto

    1987-01-01

    Available data indicate that postorogenic granites tend to be older in the southern part of the Arabian Shield. This suggests that plutonism started in the south and progressed to the north. Initial 87Sr/86Sr values also form a regional pattern. These ratios tend to be higher in the eastern part of the Arabian Shield, and suggest one source of continental affinity to the east and one of oceanic affinity to the west. The distribution of initial strontium isotope ratios does not clearly discriminate between the various models for Shield evolution; however, a sedimentary source region of mixed end members seems more compatible with the data pattern than models based on discrete boundaries between unrelated accreted blocks.

  4. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  5. Geochronology and geochemistry of lithologies of the Tabuaço W-prospect area (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Cerejo, Tiago; Francisco Santos, Jose; Sousa, Joao Carlos; Castanho, Nuno; Sergio, Gabriel; Ribeiro, Sara

    2016-04-01

    This work is focussed on lithologies occurring at Quinta de São Pedro das Águias, which is located in the Tabuaço prospect (an area of 45 km2 where exploration for W-skarn deposits is taking place, in northern Portugal, close to the Douro valley). At Quinta de São Pedro das Águias several lithologies are recognized: "normal" phyllites, black phyllites (graphite-bearing), marbles, calcsilicate (s.s.) rocks and skarns (sometimes, scheelite-bearing), belonging to the Bateiras Formation, of the Douro Group (one of the two major subdivisions of the Neoproterozoic-Cambrian Dúrico-Beirão Supergroup); Paredes da Beira-Tabuaço granite; several aplitic and pegmatitic bodies. The studied area belongs to the Central Iberian Zone, a geotectonic unit of the Iberian Variscan Chain. Rb-Sr isotope analyses done in the scope of this work, provided a 316 ± 7 Ma whole-rock isochron (MSWD = 1.7; initial 87Sr/86Sr = 0.7146) for the granitoids, using the 87Rb decay constant recently recommended by IUPAC-IUGS (Villa et al., 2015). This date is interpreted here as the emplacement age of those rocks, during a late stage of the Variscan D3. The granite revealed a S-type nature, namely because it is a muscovite granite, it shows a peraluminous composition (average A/CNK = 1.28), and the Sr and Nd isotope fingerprints (-8.9 ≤ ɛNd(316Ma) ≤ -7.8; +0.7105 ≤ 87Sr/86Sr(316Ma) ≤ 0.7182) fit into the composition of metasedimentary crust. The analysed phyllites show the following isotopic compositions: -9.7 ≤ ɛNd(316Ma) ≤ -8.2; +0.7148 ≤ 87Sr/86Sr(316Ma) ≤ 0.7188. Therefore, the isotope signatures, at 316 Ma, of the granite and of the studied metapelites overlap, suggesting that the parental magma was generated by anatexis of Grupo do Douro metasediments. According to their petrographic, geochemical and isotopic features, aplites and pegmatites are viewed as extreme differentiates from the granite. São Pedro das Águias metapelites show biotite zone parageneses. Geochemically, their REE normalized patterns are very similar to those displayed by NIBAS and by other upper crustal reference compositions. Isotopically, especially due to their lower ɛNd316, the studied metapelites are clearly distinct from the Grupo das Beiras metasediments (the other major division of the Dúrico-Beirão Supergroup), and, instead, they resemble other metasedimentary units of the Iberian Massif. Several lines of evidence, namely the isotope data (-8.1 ≤ ɛNd(316Ma) ≤ -6.4; +0.7090 ≤ 87Sr/86Sr(316Ma) ≤ 0.7102) and the occurrence of fine intercalations of sub-mm layers enriched in phyllosilicates, suggest that calcsilicate (s.l.) rocks owe their composition not only to metasomatism that accompanied the granite intrusion, but also to an inheritance from their protoliths, which should have resulted from mixed sedimentation, both chemical and terrigenous. This work was financially supported by: - FEDER funds trough Operational Programme Competitiveness Factors - COMPETE and by national funds through FCT - Fundação para a Ciência e a Tecnologia in the scope of projects Petrochron (PTDC/CTE-GIX/112561/2009) and Geobiotec (UID/GEO/04035/2013); - Colt Resources. Reference: Villa, I.M., De Bièvre, P., Holden, N.E., Renne, P.R., 2015. IUPAC-IUGS recommendation on the half life of 87Rb. Geochim. Cosmochim. Acta 164, 382-385.

  6. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang

    2015-05-01

    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  7. Photoemission and muon spin relaxation spectroscopy of the iron-based Rb0.77Fe1.61Se2 superconductor: Crucial role of the cigar-shaped Fermi surface

    NASA Astrophysics Data System (ADS)

    Maletz, J.; Zabolotnyy, V. B.; Evtushinsky, D. V.; Yaresko, A. N.; Kordyuk, A. A.; Shermadini, Z.; Luetkens, H.; Sedlak, K.; Khasanov, R.; Amato, A.; Krzton-Maziopa, A.; Conder, K.; Pomjakushina, E.; Klauss, H.-H.; Rienks, E. D. L.; Büchner, B.; Borisenko, S. V.

    2013-10-01

    In this study, we investigate the electronic and magnetic properties of Rb0.77Fe1.61Se2 (Tc = 32.6 K) in normal and superconducting states by means of photoemission and μSR spectroscopies as well as band-structure calculations. We demonstrate that the unusual behavior of these materials is the result of separation into metallic (˜12%) and insulating (˜88%) phases. Only the former becomes superconducting and has a usual electronic structure of electron-doped FeSe slabs. Our results thus imply that the antiferromagnetic insulating phase is just a by-product of Rb intercalation and its magnetic properties have no direct relation to the superconductivity. Instead, we find that also in this class of iron-based compounds, the key ingredient for superconductivity is a certain proximity of a Van Hove singularity to the Fermi level.

  8. Origin and timescale of volatile element depletion in crustal and mantle reservoirs

    NASA Astrophysics Data System (ADS)

    Moynier, Frederic; Day, James M. D.

    2014-05-01

    Volatile elements play a fundamental role in the evolution of planets. Understanding of how volatile budgets were set in planets, and how and to what extent planetary bodies became volatile-depleted during the earliest stages of Earth and Solar System formation remain poorly understood, however. It has been proposed that the depletion is due to incomplete condensation (volatile elements were not there in the first place, in which case the timing would have to be fast, <1Myr), or that planetary bodies lost volatile elements through evaporation (post-accretion volatilization). Volatilization is known to fractionate isotopes, thus comparing isotope ratios of volatile element between samples is a powerful tool for understanding the origin of volatile element abundance variations. For example, recent work has shown that lunar basalts are enriched in the heavier isotopes of Zn (~1 ‰ for 66Zn/64Zn) compared to chondrites, terrestrial and martian basalts. We will discuss these Zn isotopic data of crustal and mantle rocks, as well as other stable isotopic systems (e.g., Si) in relation with the giant impact theory of lunar origin, as well as the lunar magma ocean and expand to other parent bodies (e.g., angrites). The timescale of depletion in volatile elements of Solar System material is estimated by using radiogenic systems for which the parent and daughter elements have different volatility. Here we focus on the Rb-Sr and Mn-Cr isotopic systems and discuss the timescales and implications for the origin of volatile element depletion (solar nebula stage vs. planetary stage).

  9. Concretionary manganese-iron oxides in streams and their usefulness as a sample medium for geochemical prospecting

    USGS Publications Warehouse

    Nowlan, G.A.

    1976-01-01

    Correlation studies of 400 samples of sieved stream sediments and 325 samples of fluvial, concretionary Mn-Fe oxides from Maine resulted in the separation of elements into the following categories: (1) elements not scavenged by Mn-Fe oxides - B, Cr, K, Mg, Rb, Sc, Ti, V, and Zr; (2) elements probably not scavenged by Mn-Fe oxides - Ag, Be, Ca, Ga, La, Sb, and Y; (3) elements scavenged weakly by Mn-Fe oxides - Cu, Mo, Pb, and Sr; (4) elements scavenged strongly by Mn oxides - Ba, Cd, Co, Ni, Tl, and Zn; and (5) elements scavenged strongly by Fe oxides - As and In. Studies of the scavenged elements showed that the deviation from the mean is characteristically greater in oxide samples as compared to sieved sediments from the same locality. However, a significant increase in contrast between anomalous and background localities, when oxides are the sample medium, more than offsets the disadvantage of data scatter. The use of oxides as a sampling medium clearly and significantly accentuates anomalous localities. In general, non-ratioed data on oxides give very nearly the same results as data consisting of scavenged elements ratioed to Mn and Fe. However, ratioed data expand the geographic area of specific anomalies. Cd and Zn consistently show strong correlations with concretionary Mn-Fe oxides, but their concentrations in the oxides do not generally show as much contrast between anomalous and background localities as do Cu, Mo, and Pb. These latter elements are strongly scavenged where rocks are mineralized. ?? 1976.

  10. Petrogenesis of Luchuba and Wuchaba granitoids in western Qinling: geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Kong, Juanjuan; Niu, Yaoling; Duan, Meng; Zhang, Yu; Hu, Yan; Li, Jiyong; Chen, Shuo

    2017-12-01

    The West Qinling Orogenic Belt (WQOB) is a major portion of the Qinling-Dabie-Sulu Orogen and holds essential information for understanding the prolonged evolution of the northeastern branch of the Paleo-Tethys in East Asia. This study focuses on the petrogenesis of granitoids from Luchuba and Wuchaba plutons in the WQOB. We obtained zircon U-Pb ages of 211 ± 1.4 Ma for the Luchuba pluton and 218.7 ± 1.3 Ma for the Wuchaba pluton, which are the same as the proposed timing of continental collision at ˜220 Ma. We thus interpret the granitoids to represent a magmatic response to the collision between the North China Craton (NCC) and the Yangtze Block (YB). The two plutons are metaluminous to weakly peraluminous I-type granitoids. Samples from the two plutons show strong light rare earth element (REEs) enrichment and weak heavy REE depletion, with varying negative Eu anomalies, which is most consistent with significant plagioclase fractionation although the possible effect of plagioclase as residual phase in the magma source region cannot be ruled out. In primitive mantle normalized multi-element variation diagrams, nearly all the samples show negative Nb, Ta, P and Ti anomalies and relative enrichment in Rb, Pb, U and K. These characteristics resemble those of the average continental crust. The Luchuba pluton has lower (87Sr/86Sr)i (0.7051 to 0.7104), higher ɛNd(t) (-8.11 to -5.73) and ɛHf(t) (-6.70 to -1.65) than mature continental crust ([87Sr/86Sr] i > 0.72, ɛNd(t) < -12). The Wuchaba pluton also has lower (87Sr/86Sr)i (0.7069 to 0.7080), higher ɛNd(t) (-9.86 to -3.34) and ɛHf(t) (-5.69 to 1.58) than mature continental crust. We conclude that the Luchuba and Wuchaba granitoids in the WQOB are best explained as resulting from fractional crystallization with crustal assimilation of parental magmas derived from melting of Mianlue oceanic crust under amphibolite facies conditions during the initial stage of continental collision between the North China Craton and the Yangtze Block. Mafic magmatic enclaves (MMEs) of Wuchaba pluton are earlier cumulates of the same magmatic system. The Mianlue oceanic crust (MORB-like) contributes to the source of the Luchuba and Wuchaba granitoids, pointing to the significance of melting of oceanic crust for continental crust accretion.

  11. Total reflection X-ray Fluorescence determination of interfering elements rubidium and uranium by profile fitting

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Khooha, Ajay; Singh, Ajit Kumar; Tiwari, M. K.; Misra, N. L.

    2018-06-01

    Systematic studies to assess the analytical parameters obtained in the total reflection X-ray fluorescence (TXRF) determinations of interfering elements Rb and U using profile fitting are reported in the present manuscript. The X-ray lines Rb Kα and U Lα having serious spectral interference (ΔE = 218 eV), have been used as analytical lines. The intensities of these X-ray lines have been assessed using profile fitting. In order to compare the analytical results of Rb determinations in presence of U, with and without U excitation, synchrotron radiation was tuned to energy just above and below the U Labs edge. This approach shall excite both Rb Kα and U Lα simultaneously and Rb Kα selectively. Finally, the samples were also analyzed with a laboratory based TXRF spectrometer. The analytical results obtained in all these conditions were comparable. The authenticity of the results was assessed by analyzing U with respect to Rb in Rb2U(SO4)3, a standard reference material for U. The average precision obtained for TXRF determinations was below 3% (RSD, n = 3, 1σ) and the percent deviation of TXRF values from the expected values calculated on the basis of sample preparation was within 3%.

  12. Petrological and geochemical study of doleritic intrusions of Moatize area, Tete Province, Mozambique

    NASA Astrophysics Data System (ADS)

    Ilídio Mário, Rui; Mendes, Maria Helena; Francisco Santos, Jose; Ribeiro, Sara

    2017-04-01

    The dolerite samples studied in this work are part of drilling cores, obtained during exploration campaigns by the Ncondezi Coal Company, in the prospect area 805L, located at NE of Moatize, Tete Province, Mozambique. The dolerite bodies are intrusive into sedimentary formations of the Karoo Supergroup. The intrusions have a probable Jurassic age, around 180 Ma, based on a geochronological information (GTK Consortium, 2006) from a similar body cropping out in another area of the Tete Province. The studied rocks were affected by hydrothermal alteration, testified by the pervasive occurrence of the assemblage serpentine + chlorite + sericite + sphene + calcite ± epidote ± tremolite-actinolite, and by filling of vesicles and fractures by calcite, pyrite or calcite + pyrite ± quartz. However, the selected samples preserve igneous intergranular textures. Petrographic evidence suggests that the primary mineral associations included plagioclase, titanaugite, olivine, apatite, opaques, biotite and hornblende. These assemblages are variably preserved and, in the samples most intensely altered, the igneous minerals were almost totally replaced. Whole-rock major and trace element data, with particular emphasis on immobile elements, indicate that the analysed samples are basic and that they can be seen as cogenetic, belonging to the alkaline series and showing compositions similar to present-day intraplate basalts. The Rb-Sr and Sm-Nd data seem to confirm the cogenetic nature of the studied dolerites. In fact, in the least altered samples, both [87Sr/86Sr]180Ma and ɛNd180Ma define relatively small ranges: +0.7050 ≥ [87Sr/86Sr]180Ma ≥ 0.7038 +10 ≥ ɛSr180Ma ≥ -7 and +3.6 ≥ ɛNd180Ma ≥ +1.7. In addition, this clearly indicates that parental melts were generated in a mantle source and that magmas did not undergo significant crustal contamination during their ascent and emplacement. The described isotopic compositions, besides plotting in an area common to OIB, are similar to those found in igneous rocks related to the rifting process in Tanzania and Kenya. Samples that were more intensely affected by hydrothermal alteration display similar ɛNd180Ma values, but show more radiogenic Sr signatures (up to [87Sr/86Sr]180Ma = 0.7063). This indicates a significant crustal contribution in the aqueous fluids responsible for the hydrothermal processes. The whole set of obtained data is in agreement with a magmatic event related with the activity of a mantle plume which caused not only a thermal effect but also geochemical enrichment in the mantle source of the parental magmas of the studied rocks. Reference: GTK Consortium (2006). Map Explanation; Volume 1: Sheets 2032 - 2632. Direcção Nacional de Geologia de Moçambique, Maputo, 341 pp. Acknowledgments: Ncondezy Coal Company, for providing the samples; FCT (Portugal), through project GeoBioTec (UID/GEO/04035/2013), for the financial support.

  13. Application of inorganic element ratios to chemometrics for determination of the geographic origin of welsh onions.

    PubMed

    Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi

    2004-09-22

    The composition of concentration ratios of 19 inorganic elements to Mg (hereinafter referred to as 19-element/Mg composition) was applied to chemometric techniques to determine the geographic origin (Japan or China) of Welsh onions (Allium fistulosum L.). Using a composition of element ratios has the advantage of simplified sample preparation, and it was possible to determine the geographic origin of a Welsh onion within 2 days. The classical technique based on 20 element concentrations was also used along with the new simpler one based on 19 elements/Mg in order to validate the new technique. Twenty elements, Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, and Tl, in 244 Welsh onion samples were analyzed by flame atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry. Linear discriminant analysis (LDA) on 20-element concentrations and 19-element/Mg composition was applied to these analytical data, and soft independent modeling of class analogy (SIMCA) on 19-element/Mg composition was applied to these analytical data. The results showed that techniques based on 19-element/Mg composition were effective. LDA, based on 19-element/Mg composition for classification of samples from Japan and from Shandong, Shanghai, and Fujian in China, classified 101 samples used for modeling 97% correctly and predicted another 119 samples excluding 24 nonauthentic samples 93% correctly. In discriminations by 10 times of SIMCA based on 19-element/Mg composition modeled using 101 samples, 220 samples from known production areas including samples used for modeling and excluding 24 nonauthentic samples were predicted 92% correctly.

  14. Realization of a gain with electromagnetically induced transparency system using non-degenerate Zeeman sublevels in 87 Rb

    NASA Astrophysics Data System (ADS)

    Zhou, Minchuan; Zhou, Zifan; Shahriar, Selim M.

    2017-11-01

    Previously, we had proposed an optically-pumped five-level Gain EIT (GEIT) system, which has a transparency dip superimposed on a gain profile and exhibits a negative dispersion suitable for the white-light-cavity signal-recycling (WLC-SR) scheme of the interferometric gravitational wave detector (Zhou et al., 2015). Using this system as the negative dispersion medium (NDM) in the WLC-SR, we get an enhancement in the quantum noise (QN) limited sensitivity-bandwidth product by a factor of ∼ 18. Here, we show how to realize this GEIT system in a realistic platform, using non-degenerate Zeeman sublevels in cold Rb atoms, employing anomalous dispersion at 795 nm. Using the Caves model for a phase insensitive linear amplifier, we show that an enhancement of the sensitivity-bandwidth product by a factor of ∼ 17 is possible for potentially realizable experimental parameters. While the current LIGO apparatus uses light at 1064 nm, a future embodiment thereof may operate at a wavelength that is consistent with the wavelength considered here.

  15. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China

    NASA Astrophysics Data System (ADS)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min

    2017-08-01

    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  16. Assessment of atmospheric deposition of heavy metals and other elements in Belgrade using the moss biomonitoring technique and neutron activation analysis.

    PubMed

    Anicić, Mira; Frontasyeva, Marina V; Tomasević, Milica; Popović, Aleksandar

    2007-06-01

    This study aimed at assessing atmospheric deposition of heavy metals and other elements using the moss genera Brachythecium sp. (B. rutabulum and B. salebrosum) and Eurhynchium sp. (E. hians and E. striatum) collected in autumn 2004 in the urban area of Belgrade. The concentrations of 36 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Dy, Hf, Ta, W, Hg, Th, U) were determined in moss and local topsoil samples by instrumental neutron activation analysis. The concentration of elements in moss positively correlated to those obtained for topsoil. High enrichment factors for As, Zn, Mo, Br, Sb, Se, Hg and Cl, calculated to continental crust composition, gave an evidence for anthropogenic impact on urban area, mainly due to intensive vehicular traffic and fossil fuel combustion. The concentration of elements in moss, characteristic for fossil fuel combustion, obtained in this study were substantially lower than in the previous investigation (2000) conducted in the area of Belgrade. The level of concentrations for V, Cr, Ni, and As in moss from this study correlated to those measured for neighboring countries, and were several times higher than the base-level data from low polluted areas. The level of accumulated elements in both investigated moss genera were similar and all studied species could be combined for biomonitoring purposes in urban areas.

  17. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    DOEpatents

    Lin, Manhua; Pillai, Krishnan S.

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05

  18. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    PubMed

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  19. Genetic interpretation of lead-isotopic data from the Columbia River basalt group, Oregon, Washington, and Idaho.

    USGS Publications Warehouse

    Church, S.E.

    1985-01-01

    Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.

  20. Evolution of depleted mantle: The lead perspective

    NASA Astrophysics Data System (ADS)

    Tilton, George R.

    1983-07-01

    Isotopic data have established that, compared to estimated bulk earth abundances, the sources of oceanic basaltic lavas have been depleted in large ion lithophile elements for at least several billions of years. Various data on the Tertiary-Mesozoic Gorgona komatiite and Cretaceous Oka carbonatite show that those rocks also sample depleted mantle sources. This information is used by analogy to compare Pb isotopic data from 2.6 billion year old komatiite and carbonatite from the Suomussalmi belt of eastern Finland and Munro Township, Ontario that are with associated granitic rocks and ores that should contain marked crustal components. Within experimental error no differences are detected in the isotopic composition of initial Pb in either of the rock suites. These observations agree closely with Sr and Nd data from other laboratories showing that depleted mantle could not have originated in those areas more than a few tenths of billions of years before the rocks were emplaced. On a world-wide basis the Pb isotope data are consistent with production of depleted mantle by continuous differentiation processes acting over approximately the past 3 billion years. The data show that Pb evolution is more complex than the simpler models derived from the Rb-Sr and Sm-Nd systems. The nature of the complexity is still poorly understood.

Top