Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.
de Winter, Niels J; Snoeck, Christophe; Claeys, Philippe
2016-01-01
The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.
Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel
Snoeck, Christophe; Claeys, Philippe
2016-01-01
The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal’s diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet. PMID:27875538
A Teaching Exercise to Introduce Stable Isotope Fractionation of Metals into Geochemistry Courses
ERIC Educational Resources Information Center
Weiss, Dominik J.; Harris, Caroline; Maher, Kate; Bullen, Thomas
2013-01-01
Variations in the isotopic composition of elements have been widely used to study earth's climate, biosphere, and interior, and more recently to track the fate of contaminants. Within the broad range of elements that exhibit measureable isotopic variations, metal stable isotopes are increasingly applied across the biological, geological,…
Metal stable isotopes in low-temperature systems: A primer
Bullen, T.D.; Eisenhauer, A.
2009-01-01
Recent advances in mass spectrometry have allowed isotope scientists to precisely determine stable isotope variations in the metallic elements. Biologically infl uenced and truly inorganic isotope fractionation processes have been demonstrated over the mass range of metals. This Elements issue provides an overview of the application of metal stable isotopes to low-temperature systems, which extend across the borders of several science disciplines: geology, hydrology, biology, environmental science, and biomedicine. Information on instrumentation, fractionation processes, data-reporting terminology, and reference materials presented here will help the reader to better understand this rapidly evolving field.
USING STABLE ISOTOPES FOR FISH DIETARY ANALYSES: COPING WITH TOO MANY SOURCES
Stable isotope analysis can provide a useful tool for determining time-integrated measures of proportional food source contributions to fish diets. Ratios of stable (non-radioactive) isotopes of common elements (e.g., C,N,S) vary among food sources, and tissues of consumers (e.g...
A quantitative approach to combine sources in stable isotope mixing models
Stable isotope mixing models, used to estimate source contributions to a mixture, typically yield highly uncertain estimates when there are many sources and relatively few isotope elements. Previously, ecologists have either accepted the uncertain contribution estimates for indiv...
Chew, Gina; Walczyk, Thomas
2013-04-02
Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.
Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)
Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas
2014-01-01
Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.
NASA Astrophysics Data System (ADS)
Bill, M.; Conrad, M. E.; Beller, H. R.; Bouskill, N.; Brodie, E.; Brown, W.; Carroll, R. W. H.; Kim, Y.; Nico, P. S.; Sorensen, P. O.; Tokunaga, T. K.; Wan, J.; Williams, K. H.
2017-12-01
Temperature and precipitation variability in response to climate change affects water cycling of a watershed and can potentially impact water quality, water availability, elemental and molecular fluxes, and biogeochemical processes. Here we report the application of light stable isotopic analysis to a large multidisciplinary project addressing watershed function. The study area is charaterized by a snow-dominated headwater catchment of the Colorado River (East River, Colorado). We are measuring H, C, O, and N stable isotopes in an effort to differentiate natural and climate induced perturbations to the hydrologic cycle on C and N cycling in a moutainous watershed. Water H and O stable isotopes of rain, snow, ground and surface water are being used to constrain source contributions to streamflow. H and O isotopes of water together with elemental concentations were used in end-member mixing analysis (EMMA) to chararacterize and quantify downstream flow. Results indicate runoff is dominated by snowmelt (66±13%) and to a lessor extent groundwater (26±11%) with sources moving toward near equal contributions during baseflow (45%). We are also using C and N stable isotopes in conjunction with elemental concentations to characterize leaf litter and to estimate nutrient inputs and decomposition rates. C and N isotopes are being used to characterize watershed soils, soil biomass, and sedimentary rocks to constrain carbon fluxes to the rivers and the atmosphere. We are analyzing variations of C, O, and N stable isotopes of CO2, N2O and CH4 greenhouse gases in different temperature, precipitation, and hydrological regimes to connect climate change with biogeochemical fluxes between the watershed and the atmosphere.
Lou, Yun-xiao; Fu, Xian-shu; Yu, Xiao-ping; Zhang, Ya-fen
2017-01-01
This paper focused on an effective method to discriminate the geographical origin of Wuyi-Rock tea by the stable isotope ratio (SIR) and metallic element profiling (MEP) combined with support vector machine (SVM) analysis. Wuyi-Rock tea (n = 99) collected from nine producing areas and non-Wuyi-Rock tea (n = 33) from eleven nonproducing areas were analysed for SIR and MEP by established methods. The SVM model based on coupled data produced the best prediction accuracy (0.9773). This prediction shows that instrumental methods combined with a classification model can provide an effective and stable tool for provenance discrimination. Moreover, every feature variable in stable isotope and metallic element data was ranked by its contribution to the model. The results show that δ2H, δ18O, Cs, Cu, Ca, and Rb contents are significant indications for provenance discrimination and not all of the metallic elements improve the prediction accuracy of the SVM model. PMID:28473941
Stable-isotope fingerprints of biological agents as forensic tools.
Horita, Juske; Vass, Arpad A
2003-01-01
Naturally occurring stable isotopes of light elements in chemical and biological agents may possess unique "stable-isotope fingerprints" depending on their sources and manufacturing processes. To test this hypothesis, two strains of bacteria (Bacillus globigii and Erwinia agglomerans) were grown under controlled laboratory conditions. We observed that cultured bacteria cells faithfully inherited the isotopic composition (hydrogen, carbon, and nitrogen) of media waters and substrates in predictable manners in terms of bacterial metabolism and that even bacterial cells of the same strain, which grew in media water and substrates of different isotopic compositions, have readily distinguishable isotopic signatures. These "stable-isotopic fingerprints" of chemical and biological agents can be used as forensic tools in the event of biochemical terrorist attacks.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.
2011-01-01
Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.
NASA Technical Reports Server (NTRS)
Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.
1978-01-01
Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.
NASA Astrophysics Data System (ADS)
Suarez, C. A.; Kohn, M. J.
2013-12-01
Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.
NASA Astrophysics Data System (ADS)
Barling, J.; Shiel, A.; Weis, D.
2006-12-01
Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del/amu for measured & mass bias corrected data that disagree outside of error. Either or both values can be incorrect. For samples, unlike experiments, the correct del/amu is not known in advance. Therefore, for sample analyses to be considered accurate, both measured and exponentially corrected del/amu should agree.
Evaluating cleansing effects on trace elements and stable isotope values in feathers of oiled birds.
Valladares, Sonia; Moreno, Roćio; Jover, Lluis; Sanpera, Carola
2010-01-01
Feathers of seabirds are widely used as a nondestructive tissue for pollution monitoring of trace elements, as well as convenient samples for trophic ecology studies by means of stable isotope analysis (SIA). Nevertheless, feathers can be occasionally impregnated with oil from deliberate ship discharges and from massive oil spill accidents. The feather structure makes them effective traps for particles and are subject to external contamination. It is unknown to what extent the oil adhered to feathers can change trace element concentrations or stable isotope signatures. This study has two primary objectives: (1) to assess if there are differences between trace element concentrations and stable isotope signatures of oiled and clean feathers, and (2) to determine if the cleansing of oiled feathers using commonly applied techniques such as sodium hydroxide (NaOH) washes in combination with an organic solvent (hexane) is more effective than using NaOH alone. In order to do this, we analysed trace elements (Se, Hg, Pb, Cu and Zn) and stable isotopes (delta(13)C and delta(15)N) of individual feathers of yellow-legged gulls (Larus michahellis) which were affected by the 2002 Prestige oil spill in Galicia (NW Spain). Two sets of feathers were analysed, one group were oil-free (Control group) and the other had oil adhered to its surface (Oiled group). We expected to find differences between control and oiled feathers when cleaning exclusively with NaOH and no differences when using hexane. Our results did not show significant differences between Control and Oiled groups as a consequence of the cleansing method used. Unexpectedly, the additional cleansing with hexane resulted in decreasing selenium concentrations and increasing zinc and delta(15)N values in all groups of feathers.
Calcium Isotopes in Foraminifera Shells: Evaluation for Paleo-temperature Reconstruction
NASA Astrophysics Data System (ADS)
Paytan, A.; Revello, C. A.; Bullen, T. D.
2002-12-01
The Ca stable isotope ratio of foraminifera shells has been suggested as a potential paleo-temperature proxy and has recently been applied in several studies to reconstruct glacial interglacial fluctuations in seawater temperatures. The major advantage of using Ca isotopes for paleo-temperature reconstruction is the relatively long residence time of Ca in the ocean. Thus, no spatial or temporal change in the Ca isotopic composition of seawater is expected over time scales much shorter than a million years. Moreover, since Ca is a major constituent of carbonate, and an isotopic ratio rather than an element concentration or element-element ratio (e.g. Mg/Ca, Sr/Ca) is measured, the Ca isotope proxy is much less likely to be affected by post depositional diagenetic alteration. However, preliminary results indicate that kinetic effects might largely control the Ca isotope fractionation involved in calcite shell formation. Before this new and exciting proxy can be utilized routinely, a better understanding of the parameters controlling Ca isotope fractionation in carbonate minerals in general and in foraminifera and other carbonate-secreting organisms is required. We have measured the Ca stable isotope ratio of several foraminifera species from core top sediments from two well-studied sites to determine the inter-species and within-species variability in Ca isotopes. We assess the effects of water temperature, calcification rate, and vital effects on the Ca stable isotope ratio of modern foraminifera and evaluate the potential of this proxy for paleo-temperature reconstruction.
Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants
One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...
NASA Astrophysics Data System (ADS)
Roberts, L. R.; Holmes, J. A.; Leng, M. J.; Sloane, H. J.; Horne, D. J.
2018-06-01
The trace element (Sr/Ca and Mg/Ca) and stable isotope (δ18O and δ13C) geochemistry of fossil ostracod valves provide valuable information, particularly in lacustrine settings, on palaeo-water composition and palaeotemperature. The removal of sedimentary and organic contamination prior to geochemical analysis is essential to avoid bias of the results. Previous stable isotope and trace element work on ostracod shells has, however, employed different treatments for the removal of contamination beyond simple 'manual' cleaning using a paint brush and methanol under a low-power binocular microscope. For isotopic work pre-treatments include chemical oxidation, vacuum roasting and plasma ashing, and for trace element work sonication, chemical oxidation and reductive cleaning. The impact of different treatments on the geochemical composition of the valve calcite has not been evaluated in full, and a universal protocol has not been established. Here, a systematic investigation of the cleaning methods is undertaken using specimens of the ubiquitous euryhaline species, Cyprideis torosa. Cleaning methods are evaluated by undertaking paired analyses on a single carapace (comprising two valves); in modern ostracods, whose valves are assumed to be unaltered, the two valves should have identical geochemical and isotopic composition. Hence, when one valve is subjected to the chosen treatment and the other to simple manual cleaning any difference in composition can confidently be assigned to the treatment method. We show that certain cleaning methods have the potential to cause alteration to the geochemical signal, particularly Mg/Ca and δ18O, and hence have implications for palaeoenvironmental reconstructions. For trace-element determinations we recommend cleaning by sonication and for stable isotope analysis, oxidation by hydrogen peroxide. These methods remove contamination, yet do not significantly alter the geochemical signal.
NASA Astrophysics Data System (ADS)
Creech, J. B.; Moynier, F.; Bizzarro, M.
2017-11-01
Stable isotope studies of highly siderophile elements (HSE) have the potential to yield valuable insights into a range of geological processes. In particular, the strong partitioning of these elements into metal over silicates may lead to stable isotope fractionation during metal-silicate segregation, making them sensitive tracers of planetary differentiation processes. We present the first techniques for the precise determination of palladium stable isotopes by MC-ICPMS using a 106Pd-110Pd double-spike to correct for instrumental mass fractionation. Results are expressed as the per mil (‰) difference in the 106Pd/105Pd ratio (δ106Pd) relative to an in-house solution standard (Pd_IPGP) in the absence of a certified Pd isotopic standard. Repeated analyses of the Pd isotopic composition of the chondrite Allende demonstrate the external reproducibility of the technique of ±0.032‰ on δ106Pd. Using these techniques, we have analysed Pd stable isotopes from a range of terrestrial and extraterrestrial samples. We find that chondrites define a mean δ106Pdchondrite = -0.19 ± 0.05‰. Ureilites reveal a weak trend towards heavier δ106Pd with decreasing Pd content, similar to recent findings based on Pt stable isotopes (Creech et al., 2017), although fractionation of Pd isotopes is significantly less than for Pt, possibly related to its weaker metal-silicate partitioning behaviour and the limited field shift effect. Terrestrial mantle samples have a mean δ106Pdmantle = -0.182 ± 0.130‰, which is consistent with a late-veneer of chondritic material after core formation.
Atwood, Meredith A
2013-04-30
Stable isotope analysis is a critical tool for understanding ecological food webs; however, results can be sensitive to sample preparation methods. To limit the possibility of sample contamination, freezing is commonly used to euthanize invertebrates and preserve non-lethal samples from vertebrates. For destructive sampling of vertebrates, more humane euthanasia methods are preferred to freezing and it is essential to evaluate how these euthanasia methods affect stable isotope results. Stable isotope ratios and elemental composition of carbon and nitrogen were used to evaluate whether the euthanasia method compromised the integrity of the sample for analysis. Specifically, the stable isotope and C:N ratios were compared for larval wood frogs (Rana sylvatica = Lithobates sylvaticus), an ectothermic vertebrate, that had been euthanized by freezing with four different humane euthanasia methods: CO2, benzocaine, MS-222 (tricaine methanesulfonate), and 70% ethanol. The euthanasia method was not related to the δ(13)C or δ(15)N values and the comparisons revealed no differences between freezing and any of the other treatments. However, there were slight (non-significant) differences in the isotope ratios of benzocaine and CO2 when each was compared with freezing. The elemental composition was altered by the euthanasia method employed. The percentage nitrogen was higher in CO2 treatments than in freezing, and similar (non-significant) trends were seen for ethanol treatments relative to freezing. The resulting C:N ratios were higher for benzocaine treatments than for both CO2 and ethanol. Similar (non-significant) trends suggested that the C:N ratios were also higher for animals euthanized by freezing than for both CO2 and ethanol euthanasia methods. The euthanasia method had a larger effect on elemental composition than stable isotope ratios. The percentage nitrogen and the subsequent C:N ratios were most affected by the CO2 and ethanol euthanasia methods, whereas non-significant trends suggested that benzocaine and CO2 altered the stable isotope ratios. It appears that the use of MS-222 and freezing with dry ice are the most appropriate euthanasia methods for ectothermic vertebrates. Copyright © 2013 John Wiley & Sons, Ltd.
Stable isotopes of sulfur are rarely used in studies of elemental cycling, trophic position or use of marine-derived nutrients by salmonids. The main reason for this probably is the reluctance on the part of isotope labs to expose their instruments to SO2 (because of its corrosi...
Phillips & Koch (2002) outlined a new stable isotope mixing model which incorporates differences in elemental concentrations in the determinations of source proportions in a mixture. They illustrated their method with sensitivity analyses and two examples from the wildlife ecolog...
Equilibrium stable-isotope fractionation of thallium and mercury
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2005-12-01
In this study first-principles quantum mechanical and empirical force-field models are used to estimate equilibrium mass-dependent isotopic fractionations among a variety of thallium and mercury compounds. High-precision MC-ICP-MS measurements have recently uncovered evidence of stable isotope fractionation for many elements, including 2-4‰ variability in the isotopic compositions of thallium[1] (atomic no. 81) and mercury[2] (atomic no. 80). The observed thallium- and mercury-isotope fractionations are remarkable, given that the magnitude of isotopic fractionation typically decreases as atomic number increases[3]. Stable isotope measurements could improve our understanding of geochemical and biogeochemical cycling of both elements, but little is known about the mechanisms driving these fractionations. A better understanding of the chemical processes controlling stable isotope compositions could help maximize the utility of these new geochemical tracers. Standard equilibrium stable isotope fractionation theory holds that the energy driving fractionation comes from isotopic effects on vibrational frequencies, which have generally not been measured. In the present study both quantum-mechanical and empirical force fields are used to estimate unknown frequencies. Results suggest that thallium and mercury fractionations of ≥ 0.5‰ are likely during the relevant redox reactions Tl+ ↔ Tl3+ and HgO ↔ Hg2+. Methyl-mercury and mercury-halide compounds like CH3HgCl will have ~ 1‰ higher 202Hg/198Hg than atomic vapor at room temperature. Fractionations between coexisting Hg2+ species appear to be much smaller, however. 205Tl/203Tl in Tl(H2O)_63+ is predicted to be ~0.5‰ higher than in coexisting Tl+-bearing substances. This result is in qualitative agreement with data from ferromanganese crusts [1], suggesting that Tl3+ in manganese-oxides will have higher 205Tl/203Tl than aqueous Tl+. Equilibrium fractionations for both elements are much smaller than the observed range of isotopic fractionations, however, which could point to a major role for kinetic-fractionation or Rayleigh-like distillation processes. Refs.: [1] Rehämper et al. (2002) EPSL 197:65. [2] Xie et al. (2005) J. Anal. Atomic Spectrom. 20:515. [3] Bigeleisen and Mayer (1947) J. Chem. Phys. 15:261.
Efficient mixing of the solar nebula from uniform Mo isotopic composition of meteorites.
Becker, Harry; Walker, Richard J
2003-09-11
The abundances of elements and their isotopes in our Galaxy show wide variations, reflecting different nucleosynthetic processes in stars and the effects of Galactic evolution. These variations contrast with the uniformity of stable isotope abundances for many elements in the Solar System, which implies that processes efficiently homogenized dust and gas from different stellar sources within the young solar nebula. However, isotopic heterogeneity has been recognized on the subcentimetre scale in primitive meteorites, indicating that these preserve a compositional memory of their stellar sources. Small differences in the abundance of stable molybdenum isotopes in bulk rocks of some primitive and differentiated meteorites, relative to terrestrial Mo, suggest large-scale Mo isotopic heterogeneity between some inner Solar System bodies, which implies physical conditions that did not permit efficient mixing of gas and dust. Here we report Mo isotopic data for bulk samples of primitive and differentiated meteorites that show no resolvable deviations from terrestrial Mo. This suggests efficient mixing of gas and dust in the solar nebula at least to 3 au from the Sun, possibly induced by magnetohydrodynamic instabilities. These mixing processes must have occurred before isotopic fractionation of gas-phase elements and volatility-controlled chemical fractionations were established.
O'Neil, J.R.
1977-01-01
Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.
Garbarino, John R.; Taylor, Howard E.
1987-01-01
Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.
Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids
NASA Astrophysics Data System (ADS)
Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.
2011-12-01
The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed before chemical purification. Initial results provide an equilibrium 98Mo/95Mo isotope fractionation factor between metal and silicate liquids of -0.18±0.10% (2σ) at 1400°C and 1 GPa. Although the relative mass difference of these Mo isotopes is smaller than for Fe isotopes, this result implies that metal-silicate segregation may have led to mass-dependent stable Mo isotope fractionation, as opposed to Fe isotopes. A possible explanation is that the bonding environment of Mo may counterbalance its relatively small mass separation. At reducing conditions, Mo occurs in 4+ valence state in silicates [4] and thus its bond strength difference between metal and silicate may be more similar to that of Si than Fe. Stable Mo isotopes may thus become an important tool for constraining the conditions of core formation in asteroids and terrestrial planets. [1] Rubie et al. (2011) EPSL 301, 31-42. [2] Shahar et al. (2009) EPSL 288, 228-234. [3] Poitrasson et al. (2009) EPSL 278, 376-385. [4] Farges et al. (2006) Can. Min. 44, 731-753.
IUPAC Periodic Table of Isotopes for the Educational Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden N. E.; Holden,N.E.; Coplen,T.B.
2012-07-15
John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in thismore » area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).« less
Incorporating concentration dependence in stable isotope mixing models.
Phillips, Donald L; Koch, Paul L
2002-01-01
Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model assumes that the proportional contribution of a source to a mixture is the same for both elements (e.g., C, N). This may be a reasonable assumption if the concentrations are similar among all sources. However, one source is often particularly rich or poor in one element (e.g., N), which logically leads to a proportionate increase or decrease in the contribution of that source to the mixture for that element relative to the other element (e.g., C). We have developed a concentration-weighted linear mixing model, which assumes that for each element, a source's contribution is proportional to the contributed mass times the elemental concentration in that source. The model is outlined for two elements and three sources, but can be generalized to n elements and n+1 sources. Sensitivity analyses for C and N in three sources indicated that varying the N concentration of just one source had large and differing effects on the estimated source contributions of mass, C, and N. The same was true for a case study of bears feeding on salmon, moose, and N-poor plants. In this example, the estimated biomass contribution of salmon from the concentration-weighted model was markedly less than the standard model estimate. Application of the model to a captive feeding study of captive mink fed on salmon, lean beef, and C-rich, N-poor beef fat reproduced very closely the known dietary proportions, whereas the standard model failed to yield a set of positive source proportions. Use of this concentration-weighted model is recommended whenever the elemental concentrations vary substantially among the sources, which may occur in a variety of ecological and geochemical applications of stable isotope analysis. Possible examples besides dietary and food web studies include stable isotope analysis of water sources in soils, plants, or water bodies; geological sources for soils or marine systems; decomposition and soil organic matter dynamics, and tracing animal migration patterns. A spreadsheet for performing the calculations for this model is available at http://www.epa.gov/wed/pages/models.htm.
NASA Astrophysics Data System (ADS)
Nordhoff, P.; Wiegand, B.; Simon, K.; Rosendahl, W.; Hansen, B. T.; Kempe, S.
2003-12-01
Speleothems (stalagmites, stalactites, flowstones) are important archives for Late Quaternary continental climatic and paleo-environmental reconstruction. Speleothems form when calcium carbonate precipitates from solutions seeping into caves hosted e.g. in limestone or dolomite complexes. Information of past climate variability and changes in local environmental conditions can be obtained from signatures of the stable isotopes of oxygen and carbon as well as trace element pattern recorded in speleothems. Reconstruction of paleo-temperature and past environmental conditions from stable isotopes, however, require isotopic equilibrium between the drip water and the precipitating calcium carbonate. Results from Dietzel et al. (1992) and Johnson and Ingram (2001) indicate that the formation of modern travertine and speleothem calcite occurs under isotopic equilibrium. Factors that influence the stable oxygen and carbon isotope composition during speleothem precipitation include e.g. the moisture source and precipitation, photosynthetic pathways, the bedrock proportion, and the drip rate. This often leads to a situation with several variables. However, a specific interpretation is possible when dealing with environments where only one of the factors is dominant, or specific settings are assumed to be invariant, or further proxies like trace element variations help to define the frame conditions during speleothem formation. Concentrations of trace elements (e.g. Sr, Mg) which are co-precipitated with calcite are related to changes in the composition of the solution and strongly depend on the dissolution/precipitation dynamics along drip water flow paths. In a multiproxy approach they are a valuable tool for the interpretation of the recorded stable isotope variations. We present first results from different cave systems located in the Swabian Alps and the Harz Mountains (Germany). Our study includes a high-resolution multiproxy approach, using U/Th-TIMS data, stable oxygen/carbon isotope data, and geochemical compositions of speleothems, covering ages from the Late Pleistocene to the Early Holocene. The results are compared to geochemical data from host rocks, soil zones, cave sediments, drip water compositions, and recent calcium carbonate precipitates. Understanding the response of a cave system to the actual climatic, hydrologic and environmental regimen is a main requirement for the interpretation of "paleo-information" conserved in speleothems in order to lead to a coherent picture of past continental climate dynamics. References: Dietzel M., Usdowski E., and Hoefs J., (1992): Applied Geochemistry 7: 177-184. Johnson, K.R. and Ingram, B.L. (2001): Abstract volume, 4th Internat. Symp. On Applied Isotope Geochemistry, Pacific Groove, USA: 70-72.
Filippini, Maria; Nijenhuis, Ivonne; Kümmel, Steffen; Chiarini, Veronica; Crosta, Giovanni; Richnow, Hans H; Gargini, Alessandro
2018-05-30
Tetrachloroethene and trichloroethene are typical by-products of the industrial production of chloromethanes. These by-products are known as "chlorinated pitches" and were often dumped in un-contained waste disposal sites causing groundwater contaminations. Previous research showed that a strongly depleted stable carbon isotope signature characterizes chlorinated compounds associated with chlorinated pitches whereas manufactured commercial compounds have more enriched carbon isotope ratios. The findings were restricted to a single case study and one element (i.e. carbon). This paper presents a multi-element Compound-Specific Stable Isotope Analysis (CSIA, including carbon, chlorine and hydrogen) of chlorinated aliphatic contaminants originated from chlorinated pitches at two sites with different hydrogeology and different producers of chloromethanes. The results show strongly depleted carbon signatures at both sites whereas the chlorine and the hydrogen signatures are comparable to those presented in the literature for manufactured commercial compounds. Multi-element CSIA allowed the identification of sources and site-specific processes affecting chloroethene transformation in groundwater as a result of emergency remediation measures. CSIA turned out to be an effective forensic tool to address the liability for the contamination, leading to a conviction for the crimes of unintentional aggravated public water supply poisoning and environmental disaster. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, N. E.; Borg, L. E.; Eppich, G. R.
2015-07-09
The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.
Koletzko, B; Sauerwald, T; Demmelmair, H
1997-08-01
The increased employment of stable isotope tracers for diagnostic and research purposes frequently raises questions on potential risks associated with their use, which is of particular importance in the paediatric age group. Biological effects and the potential of adverse events has been evaluated in a large number of animal and, in part, also human studies. Possible differences in physical, chemical and biochemical behaviour resulting in kinetic and thermodynamic isotope effects between stable isotopes of the same element are related to the relative differences in atomic weight. Deuterium (2H), which differs markedly in mass from the predominant hydrogen isotope 1H, may induce serious side-effects at high concentrations in body fluids. The threshold dose for the occurrence of side-effects lies well above the usual tracer dosages for clinical use. In contrast to deuterium, heavier stable isotopes such as 13C, 15N or 18O that differ relatively little in mass from the predominant isotopes such as 12C, does not show any adverse biological effects even at highest enrichments. The doses of stable isotope tracer substances that are used for clinical diagnostic and research purposes appear safe and without any adverse effects. Stable isotope tracers should only be used in children if the trace is safe at the doses applied, and tracer is chemically pure and stable. In the case of intravenous application, the tracer preparation must also be sterile and pyrogen free.
Rast, Walter; Sutton, J.E.
1989-01-01
To assess one potential cause for the decline of the striped bass fishery in the Sacramento-San Joaquin Estuary, stable carbon and nitrogen isotope ratios were used to examine the trophic structures of the larval striped bass food chain, and to trace the flux of these elements through the food chain components. Study results generally confirm a food chain consisting of the elements, phytoplankton/detritus-->zooplankton/Neomysis shrimp-->larval striped bass. The stable isotope ratios generally become more positive as one progresses from the lower to the higher trophic level food chain components, and no unusual trophic structure was found in the food chain. However, the data indicate an unidentified consumer organism occupying an intermediate position between the lower and higher trophic levels of the larval striped bass food chain. Based on expected trophic interactions, this unidentified consumer would have a stable carbon isotope ratio of about 28/mil and a stable nitrogen isotope ratio of about 8/mi. Three possible feeding stages for larval striped bass also were identified, based on their lengths. The smallest length fish seem to subsist on their yolk sac remnants, and the largest length fish subsist on Neomysis shrimp and zooplankton. The intermediate-length fish represent a transition stage between primary food sources and/or use of a mixture of food sources. (USGS)
Stable Isotope Ratios as Biomarkers of Diet for Health Research
O’Brien, Diane M.
2016-01-01
Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703
Application of stable isotope ratio analysis for biodegradation monitoring in groundwater
Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.
2013-01-01
Stable isotope ratio analysis is increasingly being applied as a tool to detect, understand, and quantify biodegradation of organic and inorganic contaminants in groundwater. An important feature of this approach is that it allows degradative losses of contaminants to be distinguished from those caused by non-destructive processes such as dilution, dispersion, and sorption. Recent advances in analytical techniques, and new approaches for interpreting stable isotope data, have expanded the utility of this method while also exposing complications and ambiguities that must be considered in data interpretations. Isotopic analyses of multiple elements in a compound, and multiple compounds in the environment, are being used to distinguish biodegradative pathways by their characteristic isotope effects. Numerical models of contaminant transport, degradation pathways, and isotopic composition are improving quantitative estimates of in situ contaminant degradation rates under realistic environmental conditions.
NASA Astrophysics Data System (ADS)
Jin, Biao; Rolle, Massimo
2016-04-01
Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M., 2013. Integrated carbon and chlorine isotope modeling: Applications to chlorinated aliphatic hydrocarbons dechlorination. Environ. Sci. Technol. 47, 1443-1451. doi:10.1021/es304053h. [3] Jin, B., Rolle, M., 2014. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere 95, 131-139. doi:10.1016/j.chemosphere.2013.08.050.
Stable carbon and sulfur isotopes as records of the early biosphere
NASA Technical Reports Server (NTRS)
Desmarais, David J.
1989-01-01
The abundance ratios of the stable isotopes of light elements such as carbon and sulfur can differ between various naturally-occurring chemical compounds. If coexisting compounds have achieved mutual chemical and isotopic equilibrium, then the relative isotopic composition can record the conditions at which equilibrium was last maintained. If coexisting chemical compounds indeed formed simultaneously but had not achieved mutual equilibrium, then their relative isotopic compositions often reflect the conditions and mechanisms associated with the kinetically controlled reactions responsible for their production. In the context of Mars, the stable isotopic compositions of various minerals might record not only the earlier environmental conditions of the planet, but also whether or not the chemistry of life ever occurred there. Two major geochemical reservoirs occur in Earth's crust, both for carbon and sulfur. In rocks formed in low temperature sedimentary environments, the oxidized forms of these elements tend to be enriched in the isotope having the larger mass, relative to the reduced forms. In sediments where the organics and sulfides were formed by biological processes, these isotopic contrasts were caused by the processes of biological CO2 fixation and dissimilatory sulfate reduction. Such isotopic contrasts between oxidized and reduced forms of carbon and sulfur are permitted by thermodynamics at ambient temperatures. However, nonbiological chemical reactions associated with the production of organic matter and the reduction of organics and sulfides are extremely slow at ambient temperatures. Thus the synthesis of organics and sulfides under ambient conditions illustrates life's profound role as a chemical catalyst that has altered the chemistry of Earth's crust. Because the stable isotopes of carbon and sulfur can reflect their chemistry, they are useful probes of the Martian surface.
Yuan, Yuwei; Hu, Guixian; Chen, Tianjin; Zhao, Ming; Zhang, Yongzhi; Li, Yong; Xu, Xiahong; Shao, Shengzhi; Zhu, Jiahong; Wang, Qiang; Rogers, Karyne M
2016-07-20
Multielement and stable isotope (δ(13)C, δ(15)N, δ(2)H, δ(18)O, (207)Pb/(206)Pb, and (208)Pb/(206)Pb) analyses were combined to provide a new chemometric approach to improve the discrimination between organic and conventional Brassica vegetable production. Different combinations of organic and conventional fertilizer treatments were used to demonstrate this authentication approach using Brassica chinensis planted in experimental test pots. Stable isotope analyses (δ(15)N and δ(13)C) of B. chinensis using elemental analyzer-isotope ratio mass spectrometry easily distinguished organic and chemical fertilizer treatments. However, for low-level application fertilizer treatments, this dual isotope approach became indistinguishable over time. Using a chemometric approach (combined isotope and elemental approach), organic and chemical fertilizer mixes and low-level applications of synthetic and organic fertilizers were detectable in B. chinensis and their associated soils, improving the detection limit beyond the capacity of individual isotopes or elemental characterization. LDA shows strong promise as an improved method to discriminate genuine organic Brassica vegetables from produce treated with chemical fertilizers and could be used as a robust test for organic produce authentication.
A simple modification to the Elemental Analyzer coupled to Isotope Ratio Mass-Spectrometer (EA-IRMS) setup is described. This modification allows the users to measure nitrous oxide (N2O) and carbon dioxide (CO2) by injecting the gases directly into an online injector placed befor...
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael; ...
2016-11-17
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
Crock, J.G.; Seal, R.R.; Gough, L.P.; Weber-Scannell, P.
2003-01-01
We report the results of the elemental and stable isotopic analyses, as well as the composition of stomach contents, of Arctic grayling (Thymallus arcticus), an ecologically important resident freshwater sport and subsistence fish in the Fortymile River Mining District of the Interior Highlands Ecoregion in eastern Alaska. These data are presented here as a data compilation with minimal interpretation or discussion. Further analyses of the data will be presented elsewhere. The study area has been mined for placer gold for over a century and is currently experiencing renewed mineral exploration activity. The results for the analysis of 40 inorganic elements are reported for grayling muscle (fillet) tissue, liver tissue, and stomach contents from 34 individuals caught at 11 sites within the watershed. The 11 sites were classified as occurring within the following lithologies: metavolcanic (7 sites), metasedimentary (3 sites), and granitic intrusion (1 site). This information (along with fish tissue stable isotope data) is critical in the assessment of the influence of regional lithology on the fish chemical composition, especially the trace metal content. We report the nitrogen, carbon, and sulfur stable isotope composition of muscle samples. Nitrogen isotopes appear homogeneous (d15N = 7.6 to 9.7 permil) whereas carbon and sulfur isotope compositions of the same samples span a range from d 13C = ?33.1 to ?25.8 permil, and d 34S = ?8.4 to 8.2 permil. Stomach content material was examined for the occurrence and frequency of macroinvertebrate composition and diversity in three individual fish. Results showed a high degree of diversity with 9 to 15 invertebrate taxa; both aquatic and terrestrial forms were represented.
Nucleosynthetic Heterogeneity Controls Vanadium Isotope Variations in Bulk Chondrites
NASA Technical Reports Server (NTRS)
Nielsen, S. G.; Righter, K.; Wu, F.; Owens, J. D.; Prytulak, J.; Burton, K.; Parkinson, I.; Davis, D.
2018-01-01
The vanadium (V) isotope composition of early solar system materials have been hypothesized to be sensitive to high energy irradiation that originated from the young Sun. Vanadium has two isotopes with masses 50 and 51 that have (51)V/(50)V ratio of approximately 410. High energy irradiation produces (50)V from various target isotopes of Ti, Cr and Fe, which would result in light V isotope compositions (expressed as delta (51)V in per mille = 1000 x (((51)V/(50)V(sub sample)/(51)V/(50)V(sub AlfaAesar)) - 1)) relative to a presumably chondritic starting composition. Recently published V isotope data for calcium aluminium inclusions (CAIs) has revealed some very negative values relative to chondrites (by almost -4 per mille) that were indeed interpreted to reflect irradiation processes despite the fact that the studied CAIs all exhibited significant initial abundances of (10)Be, while only a few CAIs displayed light V isotope compositions. It is difficult to relate V isotope variations directly to a singular process because V only possesses two isotopes. Therefore, V isotope variations can principally be produced both mass dependent and independent processes. Mass dependent kinetic stable isotope fractionation is common in CAIs for refractory elements due to partial condensation/evaporation processes. The element strontium (Sr) has an almost identical condensation temperature to V and studies of stable Sr isotope compositions in CAIs reveal both heavy and light values relative to chondrites of several permil. These variations are similar in magnitude to those reported for V isotopes in CAIs, which suggests it is possible that some of the V isotope variation in CAIs could be due to kinetic stable isotope fractionation during condensation/evaporation processes.
Stable Isotopes in Evaluation of Greenhouse Gas Emissions
USDA-ARS?s Scientific Manuscript database
Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...
NASA Astrophysics Data System (ADS)
Winde, Vera; Mahler, Annika; Voss, Maren; Böttcher, Michael E.
2014-05-01
In the frame of the BMBF project BIOACID II we aim for an understanding of the natural distribution and variation of isotopic composition and C-N-S stoichiometry in Fucus vesiculosus growing around the coast line of the Kiel fjord (part of the Kiel bight). Environmental conditions (aquatic chemistry, temperature, salinity) were monitored, too. Some changes in aquatic chemistry are related to stress factors like human activity (e.g., waste input) and further factors leading to specific changes in the composition of Fucus vesiculosus. Sampling was carried out at different stations at the west and east coast of the Kiel Fjord. For each sampling station the aquatic chemistry (TA, pH, salinity, d13C(DIC), main and trace elements and nutrients) as well as the composition of the Fucus organic tissues (stoichiometry and stable isotope composition of carbon, nitrogen) are analysed. The Fucus tissue was sampled in three size classes (small, medium, large). It is shown, that Fucus vesiculosus indicates clear differences in the N contents and stable isotopes between the west and the east site of the Kiel Fjord. Stable nitrogen isotope signatures in Fucus vesiculosus, are useful proxies to identify the influence factors in the Fucus habitat. From the data it is obtained that the influence of human activity (wastewater treatment plant, harbour), small stream and drainage channels, which flow from the near coastal area into the bight, leads to different Fucus vesiculosus compositions. In future work, it is intended to extend the investigation to trace element signatures to further estimate environmental impacts.
Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm
2016-09-28
Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous stable isotope measurement and chemical composition analysis LASS-ICP-MS in combination with MC-ICP-MS is the method of choice. Copyright © 2016 Elsevier B.V. All rights reserved.
Steinitz, Ronnie; Lemm, Jeffrey M; Pasachnik, Stesha A; Kurle, Carolyn M
2016-01-15
Stable isotope analysis is a powerful tool for reconstructing trophic interactions to better understand drivers of community ecology. Taxon-specific stable isotope discrimination factors contribute to the best use of this tool. We determined the first Δ(13)C and Δ(15)N values for Rock Iguanas (Cyclura spp.) to better understand isotopic fractionation and estimate wild reptile foraging ecology. The Δ(13)C and Δ(15)N values between diet and skin, blood, and scat were determined from juvenile and adult iguanas held for 1 year on a known diet. We measured relationships between iguana discrimination factors and size/age and quantified effects of lipid extraction and acid treatment on stable isotope values from iguana tissues. Isotopic and elemental compositions were determined by Dumas combustion using an elemental analyzer coupled to an isotope ratio mass spectrometer using standards of known composition. The Δ(13)C and Δ(15)N values ranged from -2.5 to +6.5‰ and +2.2 to +7.5‰, respectively, with some differences among tissues and between juveniles and adults. The Δ(13)C values from blood and skin differed among species, but not the Δ(15)N values. The Δ(13)C values from blood and skin and Δ(15)N values from blood were positively correlated with size/age. The Δ(13)C values from scat were negatively correlated with size (not age). Treatment with HCl (scat) and lipid extraction (skin) did not affect the isotope values. These results should aid in the understanding of processes driving stable carbon and nitrogen isotope discrimination factors in reptiles. We provide estimates of Δ(13)C and Δ(15)N values and linear relationships between iguana size/age and discrimination factors for the best interpretation of wild reptile foraging ecology. Copyright © 2015 John Wiley & Sons, Ltd.
English, Matthew D; Robertson, Gregory J; Mallory, Mark L
2015-12-15
The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Mead, Chris
2014-01-01
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in…
Scott F. Pearson; Douglas J. Levey; Cathryn H. Greenberg; Carlos Martinez del Rio
2003-01-01
The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped...
NASA Astrophysics Data System (ADS)
de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe
2016-04-01
A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.
The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs
NASA Astrophysics Data System (ADS)
Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar
2016-06-01
The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate differentiation processes, such as partial mantle melting and crystal fractionation, can cause stable Cr isotopic fractionation on Earth and other planetary bodies.
Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua
2014-02-15
With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su
2018-09-01
This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Urgast, Dagmar S; Hill, Sarah; Kwun, In-Sook; Beattie, John H; Goenaga-Infante, Heidi; Feldmann, Jörg
2012-10-01
Zinc stable isotope tracers (⁶⁷Zn and ⁷⁰Zn) were injected into rats at two different time points to investigate the feasibility of using tracers to study zinc kinetics at the microscale within distinct tissue features. Laser ablation coupled to multi-collector ICP-MS was used to analyse average isotope ratios in liver thin sections and to generate bio-images showing zinc isotope ratio distribution in brain thin sections. Average isotope ratios of all samples from treated animals were found to be statistically different (P < 0.05) from samples from untreated control animals. Furthermore, differing isotope ratios in physiological features of the brain, namely hippocampus, amygdala, cortex and hypothalamus, were identified. This indicates that these regions differ in their zinc metabolism kinetics. While cortex and hypothalamus contain more tracer two days after injection than 14 days after injection, the opposite is true for hippocampus and amygdala. This study showed that stable isotope tracer experiments can be combined with laser ablation MC-ICP-MS to measure trace element kinetics in tissues at a microscale level.
NASA Technical Reports Server (NTRS)
Margolis, S. V.; Doehne, E. F.
1988-01-01
Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reifarth, R.; Bredeweg, T.A.; Esch, E.-I.
2005-05-24
One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand themore » nucleosynthesis of the heavy elements.« less
Silicon isotopes in angrites and volatile loss in planetesimals
Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix
2014-01-01
Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309
d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M
2013-12-17
The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.
Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples
NASA Astrophysics Data System (ADS)
Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.
2018-02-01
New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might provide a record of the nebular formation environment. The Te stable isotope fractionation of the carbonaceous chondrites CI and CM (and CO potentially) overlap within uncertainty with data for terrestrial Te standard solutions, sediments and ore samples. Assuming the silicate Earth displays similar Te isotope fractionation as the studied terrestrial samples, the data indicate that the late veneer might have been delivered by material similar to CI or CM (or possibly) CO carbonaceous chondrites in terms of Te isotope composition. Nine terrestrial samples display resolvable Te stable isotope fractionation of 0.85 and 0.60‰ for δ130/125Te for sediment and USGS geochemical exploration reference samples, respectively. Tellurium isotopes therefore have the potential to become a new geochemical sedimentary proxy, as well as a proxy for ore-exploration.
Riverine Carbon and the Sedimentary Record on the Continental Shelves
2005-09-30
focused on the Gulf of Lions: collecting sediment samples and carrying out elemental and stable carbon isotopic analysis . The field work was carried...organisms. For example, the predominance of nitrogen-free biomacromolecules (e.g. tannin , lignin, cellulose, cutin and suberin) over proteins (C:N ≈ 3-4...are cooperating with J. Fabres and A. Calafat (CRG Marine Geosciences) in carrying out elemental and isotopic analysis on suspended material
NASA Astrophysics Data System (ADS)
Seeley, M.; Walther, B. D.
2016-02-01
Atlantic tarpon, Megalops atlanticus, are highly migratory euryhaline predators that occupy different habitats throughout ontogeny. Specifically, Atlantic tarpon are known to inhabit oligohaline waters, although the frequency and duration of movements across estuarine gradients into these waters are relatively unknown. This species supports over a two billion dollar industry within the Gulf of Mexico and is currently listed as vulnerable under the International Union for the Conservation of Nature (IUCN). A new non-lethal method for reconstructing migrations across estuaries relies on trace element and stable isotope compositions of growth increments in scales. We analyzed Atlantic tarpon scales from the Texas coast to validate this method using inductively coupled plasma mass spectrometry (ICP-MS) for trace elements and isotope ratio mass spectrometry (IR-MS) for stable isotope ratios. Multiple scales were also taken from the same individual to confirm the consistency of elemental uptake within the same individual. Results show that scale Ba:Ca, Sr:Ca and δ13C are effective proxies for salinity, while enrichments in δ15N are consistent with known ontogenetic trophic shifts. In addition, chemical transects across multiple scales from the same individual were highly consistent, suggesting that any non-regenerated scale removed from a fish can provide equivalent time series. Continuous life history profiles of scales were obtained via laser ablation transects of scale cross-sections to quantify trace element concentrations from the core (youngest increments) to the edge (oldest increments). Stable isotope and trace element results together indicate that behavior is highly variable between individuals, with some but not all fish transiting estuarine gradients into oligohaline waters. Our findings will provide novel opportunities to investigate alternative non-lethal methods to monitor fish migrations across chemical gradients.
The New Element Curium (Atomic Number 96)
DOE R&D Accomplishments Database
Seaborg, G. T.; James, R. A.; Ghiorso, A.
1948-01-01
Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.
IRMS to study a common cocaine cutting agent: phenacetin.
Ladroue, Virginie; Dujourdy, Laurence; Besacier, Fabrice; Jame, Patrick
2017-03-01
Phenacetin is a pharmaceutical closely related to acetaminophen that has been banned in France for a long time due to its nephritic and carcinogenic adverse effects. It frequently appears in cocaine seizures as a cutting agent. Following both sanitary and intelligence motivations, this molecule was chosen for this study, and stable isotopes seemed to be the most appropriate tool. A total of 228 seized samples were collected over a 6-year period, and 8 standards of known origin were purchased. They were submitted to gas chromatography (GC) or elemental analysis - isotope ratio mass spectrometry (EA-IRMS) measurements, depending on their complexity. Stable isotope ratios of carbon, hydrogen, and nitrogen for a part of the sample set, were acquired. The isotopic values of phenacetin standards acquired from various providers located worldwide are quite spread, which indicates that stable isotopes could be used to discriminate manufacturers. However, the measured values of most of the seized samples are concentrated in a narrow range, tending to demonstrate that phenacetin is smuggled from a single source or similar ones. Consequently, stable isotopes could only be used to exclude that several samples come from a common source. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.
2003-02-28
Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, andmore » diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures require mixing models that incorporate elemental concentration.« less
Stable isotope and trace element studies of black bear hair, Big Bend ecosystem, Texas and Mexico
Shanks, W.C. Pat; Hellgren, Eric C.; Stricker, Craig A.; Gemery-Hill, Pamela A.; Onorato, David P.
2008-01-01
Hair from black bears (Ursus americanus), collected from four areas in the Big Bend ecosystem, has been analyzed for stable isotopes of carbon, nitrogen, and sulfur to determine major food sources and for trace metals to infer possible effects of environmental contaminants. Results indicate that black bears are largely vegetarian, feeding on desert plants, nuts, and berries. Mercury concentrations in bear hair are below safe level standards (
NASA Astrophysics Data System (ADS)
Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály
2016-04-01
Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment investigations of atmospheric carbonaceous aerosol. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 'National Excellence Program.
NASA Astrophysics Data System (ADS)
Nakada, Ryoichi; Tanimizu, Masaharu; Takahashi, Yoshio
2013-11-01
Many elements have become targets for studies of stable isotopic fractionation with the development of various analytical techniques. Although several chemical factors that control the isotopic fractionation of heavy elements have been proposed, it remains controversial which properties are most important for the isotopic fractionation of elements. In this study, the stable isotopic fractionation of neodymium (Nd) and samarium (Sm) during adsorption on ferrihydrite and δ-MnO2 was examined. This examination was combined with speciation analyses of these ions adsorbed on the solid phases by extended X-ray absorption fine structure (EXAFS) spectroscopy. Neodymium isotope ratios for Nd on ferrihydrite and δ-MnO2 systems were, on average, 0.166‰ and 0.410‰ heavier than those of the liquid phase, which correspond to mean isotopic fractionation factors between the liquid and solid phases (αLq-So) of Nd on ferrihydrite and δ-MnO2 of 0.999834 (2σ = ±0.000048) and 0.999590 (2σ = ±0.000106), respectively. Similarly, averaged Sm isotope ratios on ferrihydrite and δ-MnO2 were 0.206‰ and 0.424‰ heavier than those of the liquid phase and the corresponding αLq-So values were 0.999794 (±0.000041) and 0.999576 (±0.000134), respectively. These results indicate that the directions of isotopic fractionation in the Nd and Sm systems are in contrast with that recently found for Ce(III) systems despite the similar chemical characteristics of rare earth elements. EXAFS analyses suggest that the bond length of the first coordination sphere (REE-O bond) of Nd and Sm adsorbed on δ-MnO2 is shorter than that of their aqua ions, although this was not clear for the ferrihydrite systems. The shorter bond length relative to the aqua ion is indicative of a stronger bond, suggesting that the equilibrium isotopic fractionation for the Nd and Sm systems can be governed by bond strength as has often been discussed for isotopic fractionation in solid-water adsorption systems. Meanwhile, EXAFS analyses of the Ce/ferrihydrite system showed a distorted structure for the first coordination sphere that was not observed for Ce3+ aqua ions. Such distortion was also observed for La adsorption on ferrihydrite and δ-MnO2. In addition, previous studies have suggested a high stability of the hydrated state for La and Ce in terms of Gibbs free energy change. Thus, we suggest here that the difference in the stable isotopic fractionation for Ce (and predicted for La) vs. Nd and Sm can be explained by (i) the shorter bond lengths of adsorbed relative to dissolved species for Nd and Sm and (ii) the distorted structure of adsorbed Ce (and La) species and high stability of the aqua Ce ion.
NASA Astrophysics Data System (ADS)
Siklosy, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, Sz.; Lin, K.; Shen, C.-C.
2009-04-01
Speleothems can provide accurate chronologies for reconstructions of climate change by combination of U/Th dating and climate-related geochemical compositions. Geochemical studies of speleothems from Central Europe are mostly based on stable C and O isotope analyses, thus, complex geochemical studies combining isotope and trace element measurements are needed for more reliable climate models for this transitional area between oceanic and continental regions. We present stable H-C-O isotope and trace element records obtained on speleothems covering the Last Interglacial (MIS 5e) and the transition to MIS 5d. A stalagmite from Baradla Cave grew from 127.5 to 110 ka. Accelerated growth rates have been detected by U/Th age data in the 127 to 126 ka and 119 to 117 ka parts. Trace element compositions and 230Th/232Th ratios suggest changes in the hydrological regime, whereby early calcite precipitates formed in fissures during the dry and cold glacial period were dissolved by the starting flux of infiltrating meteoric water (producing elevated dissolved ion concentration but low detrital Th component), then the increasing amount of dripwater during the interglacial period resulted in trace element dilution. Temperature and precipitation amount variations are also reflected by the stable isotope compositions. Oxygen isotope composition shows a continuous increase from 127.5 ka until about 118 ka most probably related to temperature rise, whereas C isotope values are shifted in negative direction suggesting increasing humidity in accordance with trace element contents. The presumably warmest period at ca. 118 ka is associated with rather arid climate as indicated by peak d18O values coinciding with the highest dD values of fluid inclusion water. This is followed by a pronounced negative shift in both O and H isotope values, similarly to recent Alpine studies (Meyer et al., 2008), most probably related to cooling. Hydrogen isotope compositions of fluid inclusion water evaluated together with calculated oxygen isotope compositions of water indicate warming and increasing significance of summer precipitation at the latest period of the last interglacial, then increasing importance of winter precipitation and/or changes in oceanic source composition during the cooling phase. The good agreement with other (Alpine and marine) records indicate a synchronous climate change. However, after a negative shift in the wet/warm phase (increasing soil activity), C isotope values start to increase already at about 119 ky BP, warning to the use of the two isotope systems as event correlation tools. In conclusion, our combined isotope and trace element study indicate a complex pattern of temperature and humidity variations during and right after the Last Interglacial. Acknowledgements — This study was financially supported by the Hungarian Scientific Research Fund (OTKA T 049713). Measurements of U-Th isotopic compositions and and 230Th dates were supported by the National Science Council grants (94-2116-M002-012, 97-2752-M002-004-PAE & -005-PAE to C.C.S.). [Meyer, M.; Spötl, C.; Mangini, A. (2008): The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quaternary Science Reviews, 27, 476-496.
Biomedical research applications of electromagnetically separated enriched stable isotopes
NASA Astrophysics Data System (ADS)
Lambrecht, R. M.
The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.
Coplen, Tyler B.; Qi, Haiping
2016-01-01
The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.
Coplen, Tyler B; Qi, Haiping
2016-09-01
The hydrogen isotopic composition (δ(2)HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)-SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ(2)HVSMOW-SLAP results when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ(2)HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised: [Formula: see text] [Formula: see text] where mUr=0.001=‰. On average, these revised δ(2)HVSMOW-SLAP values are 5.7mUr more positive than those previously measured. It is critical that readers pay attention to the δ(2)HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ(2)HVSMOW-SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale. Published by Elsevier Ireland Ltd.
Irrgeher, Johanna; Prohaska, Thomas
2016-01-01
Analytical ecogeochemistry is an evolving scientific field dedicated to the development of analytical methods and tools and their application to ecological questions. Traditional stable isotopic systems have been widely explored and have undergone continuous development during the last century. The variations of the isotopic composition of light elements (H, O, N, C, and S) have provided the foundation of stable isotope analysis followed by the analysis of traditional geochemical isotope tracers (e.g., Pb, Sr, Nd, Hf). Questions in a considerable diversity of scientific fields have been addressed, many of which can be assigned to the field of ecogeochemistry. Over the past 15 years, other stable isotopes (e.g., Li, Zn, Cu, Cl) have emerged gradually as novel tools for the investigation of scientific topics that arise in ecosystem research and have enabled novel discoveries and explorations. These systems are often referred to as non-traditional isotopes. The small isotopic differences of interest that are increasingly being addressed for a growing number of isotopic systems represent a challenge to the analytical scientist and push the limits of today's instruments constantly. This underlines the importance of a metrologically sound concept of analytical protocols and procedures and a solid foundation of data processing strategies and uncertainty considerations before these small isotopic variations can be interpreted in the context of applied ecosystem research. This review focuses on the development of isotope research in ecogeochemistry, the requirements for successful detection of small isotopic shifts, and highlights the most recent and innovative applications in the field.
Stable mineral recrystallization in low temperature aqueous systems: A critical review
NASA Astrophysics Data System (ADS)
Gorski, Christopher A.; Fantle, Matthew S.
2017-02-01
Minerals may undergo recrystallization reactions in low temperature (<100 °C) aqueous systems, during which they exchange isotopes and trace elements with the dissolved reservoir without undergoing overt structural, bulk compositional, or morphological changes. These interfacial reactions, which are often referred to in the literature as "atom exchange" and herein as "stable mineral recrystallization", have important implications for the use of isotopic and elemental proxies to interpret past temperatures, oxidation states, and aqueous chemistries on Earth. The reactions are also significant for modern environments, including engineered systems, as they imply that mineral lattices may be substantially more open to exchanging toxic elements and radionuclides with coexisting solutions than previously thought. To date, observations of stable mineral recrystallization are distributed among several disciplines, and no work has attempted to review their findings comprehensively. Accordingly, this review article presents laboratory evidence for stable mineral recrystallization, describes data collection and interpretation strategies, summarizes similar recrystallization systematics observed in multiple studies, explores the potential occurrence of stable mineral recrystallization in natural systems, and discusses possible mechanisms by which stable mineral recrystallization occurs. The review focuses primarily on carbonates, sulfates, and iron oxides because these minerals have been studied most extensively to date. The review concludes by presenting key questions that should be addressed in this field to further understand and account for stable mineral recrystallization in natural and engineered aqueous systems at low temperatures.
Paleoproxies: Heavy Stable Isotope Perspectives
NASA Astrophysics Data System (ADS)
Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.
2002-12-01
Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the potential to solve this problem for a given set of samples and thus to model the ocean system more accurately in different scales. Besides all complications some important applications of heavy stable isotopes as paleoproxies already emerge. Pilot studies indicate that Mo isotopes may present a proxy for the extend of anoxic condition in past oceans. On a finer scale the same system appears to provide a measure of (bio)-chemical redox-changes related to diagenesis. The Ca isotope system may complement more classical sea surface temperature proxies in particular environments. Promising results exist for polar waters (N. pachy left), as well as indications on the seasonality under global greenhouse conditions ~110-50 Ma ago. However, the heavily species dependent Ca isotope fractionation can not be interpreted by just adopting concepts and findings from the oxygen system. While a complication to the ease of use as SST proxy, this species dependence offers pathways to unravel different modes of bio-calcifications. Given the complexity of the matter, collaboration of specialists of different fields will be needed to develop successful process-related hypotheses and diagnostic tools.
Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.
Zhu, Dan; Bao, Huiming; Liu, Yun
2015-12-01
Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.
NASA Astrophysics Data System (ADS)
Neary, A.; McGee, D.; Tal, I.; Shakun, J. D.
2015-12-01
Marine Isotope Stage 11 (MIS 11) represents a long interglacial period of high temperatures and muted orbital variability that occurred around 424-374 kya, and is referred to as a 'super-interglacial'. MIS 11 is marked by especially pronounced high latitude warming in the Northern Hemisphere from 410-400 ka and thus presents a natural experiment for investigating the response of Great Basin precipitation to high latitude temperatures.MIS 11 is recorded by stalagmites LC3 and BT1 from Lehman Caves in Great Basin National Park, Nevada. LC3 represents 378-413 ka, while BT1 has a bottom age of 410 ka. Ongoing U-Th dating will refine chronologies from these samples. We will present stable isotope (δ13C and δ18O) and trace element (Mg/Ca and Sr/Ca) data from these stalagmites to study changes in precipitation recorded in them. Previous studies have shown a relationship between Mg/Ca, Sr/Ca, δ13C and prior calcite precipitation, and thus infiltration rates, in the cave system (Cross et al., 2015; Steponaitis et al., 2015). Meanwhile, δ18O has been shown to reflect larger scale atmospheric circulation.We will compare the records to previously published trace element and stable isotope data from more recent interglacials (Lachniet et al., 2014; Cross et al., 2015; Steponaitis et al., 2015) to test whether extensive high-latitude warming during MIS 11 was marked by anomalous precipitation patterns in the Great Basin. As they are coeval, we will also test the reproducibility between the stalagmites.References cited:Cross M., et al. (2015) Great Basin hydrology, paleoclimate, and connections with the North Atlantic: A speleothem stable isotope and trace element record from Lehman Caves, NV. Quaternary Science Reviews, in press.Steponaitis E., et al. (2015) Mid-Holocene drying the U.S. Great Basin recorded in Nevada speleothems. Quaternary Science Reviews, in press.Lachniet M. S., et al. (2014) Orbital control of western North America atmospheric circulation and climate over two glacial cycles. Nature Communications 5, 1-8.
Lucassen, Friedrich; Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A
2017-01-01
Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture.
Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A.
2017-01-01
Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture. PMID:28594902
Stable isotopic perturbation at the Ordovician-Silurian transition in NE Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, A.; Gruszczynski, M.; Malkowski, K.
1992-01-01
An interpretation of the time series of stable isotopic proportions of carbon, oxygen, and sulfur in rock samples from subsurface Ordovician-Silurian transition in north-eastern Poland demonstrates a clearcut perturbation that must imply some global scale controlling factors. This perturbation is particularly emphasized by its comparison to the sustained secular Paleozoic trend in isotopic characteristics of the oceanic system. On the other hand, this isotopic perturbation contrasts with unidirectional local changes in geochemical elemental proportions in the same rock samples. The perturbation is most parsimoniously explained as linked to the onset of a major glaciation. Its relationship to the second largestmore » mass extinction in the history of the biosphere still remains to be elucidated.« less
Effects of acidification on the isotopic ratios of Neotropical otter tooth dentin.
Carrasco, Thayara S; Botta, Silvina; Machado, Rodrigo; Colares, Elton P; Secchi, Eduardo R
2018-05-30
Stable carbon and nitrogen isotope ratios are widely used in ecological studies providing important information on the trophic ecology and habitat use of consumers. However, some factors may lead to isotopic variability, which makes difficult the interpretation of data, such as the presence of inorganic carbon in mineralized tissues. In order to remove the inorganic carbon, acidification is a commonly used treatment. The effects of two methods of acidification were tested: (i) dentin acidification with 10% HCl using the 'drop-by-drop' technique, and (ii) dentin acidification in an 'HCl atmosphere', by exposing the dentin to vaporous 30% hydrochloric acid. Results were compared with untreated subsamples. The stable carbon and nitrogen ratios of untreated and acidified subsamples were measured using an elemental analyzer coupled to an isotope ratio mass spectrometer. The nitrogen isotopic ratios were statistically different between the two acidification treatments, but no significant changes in carbon isotopic ratios were found in acidified and untreated samples. The results indicated that acidification had no effect on carbon isotopic ratios of Neotropical otter tooth dentin, while introducing a source of error in nitrogen isotopic ratios. Therefore, we conclude that acidification is an unnecessary step for C and N stable isotope analysis. Copyright © 2018 John Wiley & Sons, Ltd.
Fontaine, Michaël C; Tolley, Krystal A; Siebert, Ursula; Gobert, Sylvie; Lepoint, Gilles; Bouquegneau, Jean-Marie; Das, Krishna
2007-01-17
We investigated the feeding ecology and habitat use of 32 harbour porpoises by-caught in 4 localities along the Scandinavian coast from the North Sea to the Barents Sea using time-integrative markers: stable isotopes (delta13C, delta15N) and trace elements (Zn, Cu, Fe, Se, total Hg and Cd), in relation to habitat characteristics (bathymetry) and geographic position (latitude). Among the trace elements analysed, only Cd, with an oceanic specific food origin, was found to be useful as an ecological tracer. All other trace elements studied were not useful, most likely because of physiological regulation and/or few specific sources in the food web. The delta13C, delta15N signatures and Cd levels were highly correlated with each other, as well as with local bathymetry and geographic position (latitude). Variation in the isotopic ratios indicated a shift in harbour porpoise's feeding habits from pelagic prey species in deep northern waters to more coastal and/or demersal prey in the relatively shallow North Sea and Skagerrak waters. This result is consistent with stomach content analyses found in the literature. This shift was associated with a northward Cd-enrichment which provides further support to the Cd 'anomaly' previously reported in polar waters and suggests that porpoises in deep northern waters include Cd-contaminated prey in their diet, such as oceanic cephalopods. As stable isotopes and Cd provide information in the medium and the long term respectively, the spatial variation found, shows that harbour porpoises experience different ecological regimes during the year along the Scandinavian coasts, adapting their feeding habits to local oceanographic conditions, without performing extensive migration.
Chung, Ill-Min; Kim, Jae-Kwang; Jin, Yong-Ik; Oh, Yong-Taek; Prabakaran, Mayakrishnan; Youn, Kyoung-Jin; Kim, Seung-Hyun
2016-12-01
Compared to other foods, the use of common bio-elements to identify the geographical origin of potato remains limited. Thus, this study aimed to verify whether the cultivation regions of raw potato tubers could be determined by the stable isotope composition analysis of bio-elements. δ(13)CVPDB and δ(15)NAIR in potato were influenced by region and cultivar, whereas δ(18)OVSMOW and δ(34)SVCDT were only influenced by region (p<0.0001). A two-dimensional plot of δ(18)OVSMOW and δ(34)SVCDT effectively distinguished between high and low altitude regions, and also reliably discriminated Wanju, Haenam, and Boseong cultivars in low altitude regions. δ(34)SVCDT was the main component that was responsible for the separation of samples in the principal component analysis (eigenvector of -0.6209) and orthogonal projection to latent structure-discriminant analysis (VIP value of 1.0566). In conclusion, this study improves our understanding of how the isotope composition of potato tubers varies with respect to cultivation regions and cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.
Horacek, Micha; Hansel-Hohl, Karin; Burg, Kornel; Soja, Gerhard; Okello-Anyanga, Walter; Fluch, Silvia
2015-01-01
The indication of origin of sesame seeds and sesame oil is one of the important factors influencing its price, as it is produced in many regions worldwide and certain provenances are especially sought after. We joined stable carbon and hydrogen isotope analysis with DNA based molecular marker analysis to study their combined potential for the discrimination of different origins of sesame seeds. For the stable carbon and hydrogen isotope data a positive correlation between both isotope parameters was observed, indicating a dominant combined influence of climate and water availability. This enabled discrimination between sesame samples from tropical and subtropical/moderate climatic provenances. Carbon isotope values also showed differences between oil from black and white sesame seeds from identical locations, indicating higher water use efficiency of plants producing black seeds. DNA based markers gave independent evidence for geographic variation as well as provided information on the genetic relatedness of the investigated samples. Depending on the differences in ambient environmental conditions and in the genotypic fingerprint, a combination of both analytical methods is a very powerful tool to assess the declared geographic origin. To our knowledge this is the first paper on food authenticity combining the stable isotope analysis of bio-elements with DNA based markers and their combined statistical analysis. PMID:25831054
Horacek, Micha; Hansel-Hohl, Karin; Burg, Kornel; Soja, Gerhard; Okello-Anyanga, Walter; Fluch, Silvia
2015-01-01
The indication of origin of sesame seeds and sesame oil is one of the important factors influencing its price, as it is produced in many regions worldwide and certain provenances are especially sought after. We joined stable carbon and hydrogen isotope analysis with DNA based molecular marker analysis to study their combined potential for the discrimination of different origins of sesame seeds. For the stable carbon and hydrogen isotope data a positive correlation between both isotope parameters was observed, indicating a dominant combined influence of climate and water availability. This enabled discrimination between sesame samples from tropical and subtropical/moderate climatic provenances. Carbon isotope values also showed differences between oil from black and white sesame seeds from identical locations, indicating higher water use efficiency of plants producing black seeds. DNA based markers gave independent evidence for geographic variation as well as provided information on the genetic relatedness of the investigated samples. Depending on the differences in ambient environmental conditions and in the genotypic fingerprint, a combination of both analytical methods is a very powerful tool to assess the declared geographic origin. To our knowledge this is the first paper on food authenticity combining the stable isotope analysis of bio-elements with DNA based markers and their combined statistical analysis.
Stable Isotopes of Sr and Pb as Tracers of Sources of Airborne Particulate Matter in Kyrgyzstan
ConclusionsElemental concentrations were higher at the LIDAR site compared to the Bishkek site. Also, concentrations were higher during dust than non-dust events at both sites.The Sr isotopic ratios suggest dust from another region, such as from Western China, Africa, or Middle E...
Neutron activation analysis of nuclides from stellar and man-induced nuclear reactions
NASA Astrophysics Data System (ADS)
Oliver, L. L.
Neutron activation and gamma counting were used to determine the relative abundances of six stable tellurium isotopes in the acid-etched residues of the Allende meteorite. The results were correlated with the isotopic compositions of xenon and the elemental abundances of helium and neon in similarly prepared residues. Nucleosynthesis appears to be the only viable explanation or the anomalous isotopic and elemental compositions observed in these residues. Results suggest that the solar system condensed from an isotopically and chemically zoned nebula that was produced by the explosion of a supernova, concentric with the present Sun. A combination of neutron activation and mass spectrometry was used to determine the concentrations of fissiogenic iodine 129 and stable iodine 127 in rain, milk and the thyroids of man, cow and deer from Missouri. Rain and deer thyroids show the highest average values of the iodine 129/iodine 127 ratio. Milk and the thyroids of cattle and humans show successively lower values of the iodine 129/iodine 127 ratio due to dietary additives of mineral iodine and to biological averaging.
The fate of moderately volatile elements during planetary formation in the inner Solar System
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Moynier, F.
2017-12-01
Moderately volatile element abundances are variable among inner Solar System bodies, with differing degrees of depletion compared to chondrites. These variations are a consequence of the processes of planetary formation. The conditions and the specific mechanisms of planetary accretion and differentiation can be investigated by analyzing the stable isotope compositions of terrestrial and extraterrestrial samples. The moderately volatile lithophile elements are particularly useful to distinguish between the effects of accretion and those of core formation. Recent work has shown isotope variations in inner Solar System bodies for the moderately volatile elements Zn and K. The purely lithophile nature of Rb (in contrast to Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to further study moderately volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. Terrestrial rocks define a narrow range in Rb isotope composition, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). Larger Rb isotope variations are observed in extraterrestrial materials. Carbonaceous chondrites display a trend toward lighter Rb isotope composition coupled with decreasing Rb/Sr, opposite to the effect expected if their volatile element variations were caused by evaporative loss of Rb. This relationship indicates that the volatile element abundance variations in carbonaceous chondrites are not due to evaporation or condensation, but rather are due to the mixing of chemically and isotopically distinct primordial reservoirs. In contrast, there is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. Significant heavy isotope enrichments (up to several per mil for 87Rb/85Rb) are found for volatile-depleted planetesimals, including eucrites. In addition, lunar rocks also display heavy Rb isotope enrichments compared to the BSE. The most likely cause of these variations is Rb isotope fractionation due to evaporation during accretion.
Coplen, Tyler B.
2000-01-01
The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program, the Laboratory Information Management System (LIMS) for Light Stable Isotopes, is presented herein. Major benefits of this system include (i) a dramatic improvement in quality assurance, (ii) an increase in laboratory efficiency, (iii) a reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) a decrease in errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for laboratories. LIMS for Light Stable Isotopes is available for both Microsoft Office 97 Professional and Microsoft Office 2000 Professional as versions 7 and 8, respectively. Both source code (mdb file) and precompiled executable files (mde) are available. Numerous improvements have been made for continuous flow isotopic analysis in this version (specifically 7.13 for Microsoft Access 97 and 8.13 for Microsoft Access 2000). It is much easier to import isotopic results from Finnigan ISODAT worksheets, even worksheets on which corrections for amount of sample (linearity corrections) have been added. The capability to determine blank corrections using isotope mass balance from analyses of elemental analyzer samples has been added. It is now possible to calculate and apply drift corrections to isotopic data based on the time of day of analysis. Whereas Finnigan ISODAT software is confined to using only a single peak for calculating delta values, LIMS now enables one to use the mean of two or more reference injections during a continuous flow analysis to calculate delta values. This is useful with Finnigan?s GasBench II online sample preparation system. Concentrations of carbon, nitrogen, and sulfur can be calculated based one or more isotopic reference materials analyzed with a group of samples. Both sample data and isotopic analysis data can now be exported to Excel files. A calculator for determining the amount of sample needed for isotopic analysis based on a previous amount of sample and continuous flow area is now an integral part of LIMS for Light Stable Isotopes. LIMS for Light Stable Isotopes can now assign an error code to Finnigan elemental analyzer analyses in which one of the electrometers has saturated due to analysis of too much sample material, giving rise to incorrect isotopic abundances. Information on downloading this report and downloading code and databases is provided at the Internet addresses: http://water.usgs.gov/software/geochemical.html or http://www.geogr.uni-jena.de/software/geochemical.html in the Eastern Hemisphere.
Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore
2015-06-15
With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Johnson, Craig A.; Stricker, Craig A.; Gulbransen, Cayce A.; Emmons, Matthew P.
2018-02-14
This report describes procedures used in the Geology, Geophysics, and Geochemistry Science Center of the U.S. Geological Survey in Denver, Colorado, to determine the stable-isotope ratios 13C/12C, 15N/14N, and 34S/32S in solid materials. The procedures use elemental analyzers connected directly to gas-source isotope-ratio mass spectrometers. A different elemental–analyzer–mass-spectrometer system is used for 13C/12C and 15N/14N than is used for 34S/32S to accommodate differences in reagents, catalysts, and instrument settings.
Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans
Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; ...
2012-01-01
Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less
Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.
Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based onmore » the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less
Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret
Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less
Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans
Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; Ehleringer, James; West, Jason; Gill, Gary; Duckworth, Douglas
2012-01-01
Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1% versus 55.9 ± 2.1% and 40.2 ± 1.8% for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model. PMID:22919270
Stable Chlorine Isotope Study: Application to Early Solar System Materials
NASA Technical Reports Server (NTRS)
Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.
2010-01-01
A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC.
Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko
2018-01-01
Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.
Collins, Michael; Cawley, Adam T; Heagney, Aaron C; Kissane, Luke; Robertson, James; Salouros, Helen
2009-07-01
Conventional chemical profiling of methylamphetamine has been used for many years to determine the synthetic route employed and where possible to identify the precursor chemicals used. In this study stable isotope ratio analysis was investigated as a means of determining the origin of the methylamphetamine precursors, ephedrine and pseudoephedrine. Ephedrine and pseudoephedrine may be prepared industrially by several routes. Results are presented for the stable isotope ratios of carbon (delta(13)C), nitrogen (delta(15)N) and hydrogen (delta(2)H) measured in methylamphetamine samples synthesized from ephedrine and pseudoephedrine of known provenance. It is clear from the results that measurement of the delta(13)C, delta(15)N and delta(2)H stable isotope ratios by elemental analyzer/thermal conversion isotope ratio mass spectrometry (EA/TC-IRMS) in high-purity methylamphetamine samples will allow determination of the synthetic source of the ephedrine or pseudoephedrine precursor as being either of a natural, semi-synthetic, or fully synthetic origin. Copyright (c) 2009 Commonwealth of Australia.
Modeling stable isotope transport in metamorphic and hydrothermal systems
NASA Astrophysics Data System (ADS)
Baumgartner, L. P.; Mueller, T.; Skora, S.; Begue, F.
2007-12-01
Stable isotopes are powerful tools for deciphering the fluid flow histories of metamorphic terrains. The nature of fluid flow, fluid sources, and fluid fluxes can be delineated in well constrained studies. Continuum mechanics models for stable isotope fluid-rock exchange were developed and used over the last three decades in an attempt to accurately interpret the signatures left behind by fluid flow in the earths crust. The efforts have been hampered by the realization that the exchange of many stable isotopes, e.g. oxygen and carbon, by intracrystalline diffusion, hence without re-organization of the crystal lattice, appears to be too slow to achieve significant exchange. This should lead to relatively flat isotopic exchange profiles on hand-, outcrop, or aureole scale. Nevertheless, isotopic fronts are typically sharp (sub mm to cm scale), when measured in the field. This has lead to the suggestion that these sharp fronts correspond to the sides of infiltration fronts, implying the data to have been collected at a high angle to the infiltration direction. Nevertheless, the fact that the oxygen and carbon fronts are located at the same place is not explained by this. A review of published carbon and oxygen data reveals that many contact aureoles show linear trends in oxygen-carbon isotope ratio diagrams for carbonate sample suits. This implies that the fluid composition infiltrating the aureoles had essentially an X(CO2) of 0.5. This is in contrast to skarn mineralogy developed, which requires a water-rich fluid, in agreement with the general notion that igneous fluids are water-rich. These and other observations indicate that the mass transport equation used for stable isotope exchange needs to be improved to model appropriately the actual isotope kinetics during fluid-rock exchange. Detailed isotope studies on systems where net transport reactions are driven by mass transport have led us to identify different exchange mechanisms, including: a) the stable isotope exchange is given by instantaneous mass balance written for the isotope during reaction; b) equilibrium precipitation of products, but slow exchange kinetics for reactants. These observations require that the reactive term in the stable isotope reactive transport equation is re-written to include the net transfer reactions, which in turn implies the solution of the transport equation for the elements driving the reaction.
Stable isotopes in Lithuanian bioarcheological material
NASA Astrophysics Data System (ADS)
Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas
2015-04-01
Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger Schutkowski. "Diet and social status during the La Tène period in Bohemia: carbon and nitrogen stable isotope analysis of bone collagen from Kutná Hora-Karlov and Radovesice." Journal of Anthropological Archaeology 24.2 (2005): 135-147. Schutkowski, Holger, et al. "Diet, status and decomposition at Weingarten: trace element and isotope analyses on early mediaeval skeletal material." Journal of Archaeological Science 26.6 (1999): 675-685. Zernitskaya, Valentina, et al. "Vegetation pattern and sedimentation changes in the context of the Lateglacial climatic events: Case study of Staroje Lake (Eastern Belarus)." Quaternary International (2014).
NASA Astrophysics Data System (ADS)
Kasson, A.
2016-12-01
In January 2016, elementar Analysensysteme, GmbH (Germany), in conjunction with their daughter company, Isoprime Ltd. (United Kingdom) released the Precision isotope ratio mass spectrometer. The Precision is the newest light element IRMS on the market and adds some unique hardware and software functionalities to the basic core of stable isotopic research previously unseen. Although this system is designed to make the typical bulk and compound specific measurements that functioning stable isotope laboratories have been accustomed to, it has been designed to make complicated measurements of isotopologues, isotopomers and clumped isotopes much more turnkey and user friendly. Here we focus on some datasets that have been collected from three different beta test sites and highlight the functional use of the new hardware in conjunction with ionOS operating software. As part of those highlights, the improved precision, accuracy and ion optics of the Precision IRMS will be demonstrated. In addition, we intend to show that the reprocessing functions on the ionOS software package are not only beneficial to users of just the Precision IRMS, but to the entire stable isotope community as a whole.
Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber
Zhu, Dan; Bao, Huiming; Liu, Yun
2015-01-01
Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ57Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ57Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ57Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted. PMID:26620121
Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.
Chahrour, Osama; Cobice, Diego; Malone, John
2015-09-10
Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.
Origin and timescale of volatile element depletion in crustal and mantle reservoirs
NASA Astrophysics Data System (ADS)
Moynier, Frederic; Day, James M. D.
2014-05-01
Volatile elements play a fundamental role in the evolution of planets. Understanding of how volatile budgets were set in planets, and how and to what extent planetary bodies became volatile-depleted during the earliest stages of Earth and Solar System formation remain poorly understood, however. It has been proposed that the depletion is due to incomplete condensation (volatile elements were not there in the first place, in which case the timing would have to be fast, <1Myr), or that planetary bodies lost volatile elements through evaporation (post-accretion volatilization). Volatilization is known to fractionate isotopes, thus comparing isotope ratios of volatile element between samples is a powerful tool for understanding the origin of volatile element abundance variations. For example, recent work has shown that lunar basalts are enriched in the heavier isotopes of Zn (~1 ‰ for 66Zn/64Zn) compared to chondrites, terrestrial and martian basalts. We will discuss these Zn isotopic data of crustal and mantle rocks, as well as other stable isotopic systems (e.g., Si) in relation with the giant impact theory of lunar origin, as well as the lunar magma ocean and expand to other parent bodies (e.g., angrites). The timescale of depletion in volatile elements of Solar System material is estimated by using radiogenic systems for which the parent and daughter elements have different volatility. Here we focus on the Rb-Sr and Mn-Cr isotopic systems and discuss the timescales and implications for the origin of volatile element depletion (solar nebula stage vs. planetary stage).
Platinum stable isotopes in ferromanganese crust and nodules
NASA Astrophysics Data System (ADS)
Corcoran, Loretta; Seward, Terry; Handler, Monica R.
2015-04-01
Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (< ±1) in the stable isotopic composition of marine platinum, raising the potential of adding platinum to the growing arsenal of paleoceanographic tracers. A method has been developed to measure the platinum isotopic composition using double spike MC-ICPMS analysis [2]and applied to a global suite of modern Fe-Mn crust and nodules. Combining synchrotron XAFS analyses of platinum adsorbed onto Fe-Mn oxide and oxyhydroxide surfaces to determine oxidation state and bonding environment, with platinum stable isotopic measurements allowing us to evaluate both platinum incorporation onto these sediments and the associated degree of platinum isotopic fractionation. Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.
Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon
van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.
2010-01-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062
Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.
Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W
2010-10-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.
Craddock, J.P.; McGillion, M.S.; Webers, G.F.
2007-01-01
Cambrian carbonates in the Heritage Range of the Ellsworth Mountains, West Antarctica host a series of carbonate-rich breccia bodies that formed contemporaneously with the Permian Gondwanide orogen. The breccia bodies had a three-stage genesis, with the older breccias containing Cambrian limestone (and marble) clasts supported by calcite, whereas the younger breccias are nearly clast-free and composed entirely of matrix calcite. Breccia clasts, calcite matrix and detrital matrix samples were analyzed using x-ray fluorescence (major and trace elements), x-ray diffraction, and stable isotopes (C, O) and suggest that the breccias formed as part of a closed geochemical system, at considerable depth, within the Cambrian limestone host as the Ellsworth Mountains deformed into a fold-and-thrust belt along the margin of Gondwana
2016-01-01
Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13C), nitrogen (15N), oxygen (18O), and hydrogen (2H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to “trace” the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC‐MS to LC‐MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level. Importantly, it will detail how this development has been closely aligned to the technological development within the area of mass spectrometry. Without the dedicated development provided by these mass spectrometrists over the past century, the use of stable isotope tracers within the field of protein metabolism would not be as widely applied as it is today, this relationship will no doubt continue to flourish in the future and stable isotope tracers will maintain their importance as a tool within the biological sciences for many years to come. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Mass Spec Rev PMID:27182900
NASA Astrophysics Data System (ADS)
Jayaram, S.; Daeid, N. Nic; Kerr, W. J.; Kemp, H. F.; Meier-Augenstein, W.
2012-04-01
This work exposes the variation in light element stable isotopic abundance values of 13C, 2H and 15N) derived from the analysis of methylamphetamine synthesized via 2 different synthetic routes popular with clandestine laboraties, the Hypophosphorous and the Moscow route. We repeatedly prepared the final product using known clandestine synthetic methods where the precursors, catalysts and reducing agents have themselves been derived from house hold products and commonly available cold medications. Methylamphetamine was prepared from both lab grade pseudoephedrine and pseudoephedrine extracted (using three different solvent systems) from Sudafed®, an over-the-counter cold medication widely available in the United Kingdom. Six repetitive batches of the final product were produced in each case to provide within and between batch variations thus yielding a total of 48 samples (24 for each route). We have demonstrated that stable isotope analysis by Isotope Ratio Mass Spectrometry (IRMS) is potentially useful in the comparison and discrimination of batches of methylamphetamine produced for each route and for each precursor depending on the solvent used for extracting the pseudoephedrine starting material. To our knowledge this is the first time multivariate stable isotope analysis has been applied to methylamphetamine samples synthesized from pseudoephedrine extracted from over-the-counter cold medications.
NASA Astrophysics Data System (ADS)
Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens
2016-04-01
Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.
Deschner, Tobias; Fuller, Benjamin T; Oelze, Vicky M; Boesch, Christophe; Hublin, Jean-Jacques; Mundry, Roger; Richards, Michael P; Ortmann, Sylvia; Hohmann, Gottfried
2012-01-15
A mounting body of evidence suggests that changes in energetic conditions like prolonged starvation can be monitored using stable isotope ratios of tissues such as bone, muscle, hair, and blood. However, it is unclear if urinary stable isotope ratios reflect a variation in energetic condition, especially if these changes in energetic condition are accompanied by shifts in dietary composition. In a feeding experiment conducted on captive bonobos (Pan paniscus), we monitored urinary δ(13)C, δ(15)N, total C (carbon), total N (nitrogen), and C/N ratios and compared these results with glucocorticoid levels under gradually changing energy availability and dietary composition. Measurements of daily collected urine samples over a period of 31 days showed that while shifts in urinary isotope signatures of δ(13)C and δ(15)N as well as total C were best explained by changes in energy consumption, urinary total N excretion as well as the C/N ratios matched the variation in dietary composition. Furthermore, when correcting for fluctuations in dietary composition, the isotope signatures of δ(13)C and δ(15)N as well as total C correlated with urinary glucocorticoid levels; however, the urinary total N and the C/N ratio did not. These results indicate for the first time that it is possible to non-invasively explore specific longitudinal records on animal energetic conditions and dietary compositions with urinary stable isotope ratios and elemental compositions, and this research provides a strong foundation for investigating how ecological factors and social dynamics affect feeding habits in wild animal populations such as primates. Copyright © 2011 John Wiley & Sons, Ltd.
Stable isotope reactive transport modeling in water-rock interactions during CO2 injection
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre
2010-05-01
Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.
NASA Astrophysics Data System (ADS)
McCoy-West, A.
2017-12-01
Radiogenic neodymium isotopes have been widely used in studies of planetary accretion to constrain the timescales of early planetary differention [1]. Whereas stable isotope varitaions potentially provide information on the the processes that occur during planet formation. Experimental work suggests that the Earth's core contains a significant proportion of sulfide [2], and recent experimental work shows that under reducing conditions sulfide can incorporate substantial quantities of refractory lithophile elements [including Nd; 3]. If planetary embroyos also contain sulfide-rich cores, Nd stable isotopes have the potential to trace this sulfide segregation event in highly reduced environments, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Here we present 146Nd/144Nd data, obtained using a double spike TIMS technique, for a range of planetary bodies formed at variable oxidation states including samples from the Moon, Mars, the asteriod 4Vesta and the Angrite and Aubrite parent bodies. Analyses of chondritic meteorites and terrestrial igneous rocks indicate that the Earth has a Nd stable isotope composition that is indistinguishable from that of chondrites [4]. Eucrites and martian meteorites also have compositons within error of the chondritic average. Significantly more variabilty is observed in the low concentration lunar samples and diogienite meteorites with Δ146Nd = 0.16‰. Preliminary results suggest that the Nd stable isotope composition of oxidised planetary bodies are homogeneous and modifications are the result of subordinate magmatic processes. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Labidi et al. Nature 501, 208 (2013); [3] Wohlers &Wood, Nature 520, 337 (2015); [4] McCoy-West et al. Goldschmidt Ab. 429 (2017).
Oxygen isotope corrections for online δ34S analysis
Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.
2002-01-01
Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the δ34S isotopic composition of plants, animals and soils. We found that the online technology for automated δ34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated δ34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.
Isotope effects on the optical spectra of semiconductors
NASA Astrophysics Data System (ADS)
Cardona, Manuel; Thewalt, M. L. W.
2005-10-01
Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.
Comparison between PGAA and ID-AMS analysis for determining chlorine content in whole rock basalt
NASA Astrophysics Data System (ADS)
di Nicola, L.; Schnabel, C.; Wilcken, K. M.; Gméling, K.
2009-04-01
Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt gamma (neutron) activation analysis (PGAA). The second method is isotope dilution based on isotopically-enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty six (26) whole rock samples have been processed for PGAA and ID-AMS analyses. Elemental analysis by PGAA provides concentrations of major, minor and trace elements including the target elements for 36Cl production (K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Cl, Sm and Gd). The Cl concentrations determined during this study constitute the first inter-comparison for concentrations below 100 μCl/g. Our results show no significant difference in Cl concentrations between methods, and comparable uncertainties. This agreement guarantees that during the procedure we employ for whole rock sample no significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibration, prior to AgCl precipitation. Furthermore, we show that the elemental analysis by PGAA offers anadvance for the interpretation of 36Cl measurements. It allows simultaneous measurement of major and most trace element concentrations with a precision necessary for calculating the relative contributions to 36Cl production rates of the different mechanisms. Finally, the Cl concentration can be used to optimize the amount of isotopically-enriched spike for AMS-ID sample preparation for 36Cl.
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements
Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.
2017-08-25
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements.
Bonamici, Chloë E; Hervig, Richard L; Kinman, William S
2017-09-19
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. Using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclides generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Furthermore, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.
Stable isotopes of transition and post-transition metals as tracers in environmental studies
Bullen, Thomas D.; Baskaran, Mark
2011-01-01
The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.
Skierszkan, E K; Mayer, K U; Weis, D; Beckie, R D
2016-04-15
The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper-Zn-Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS2) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ(98)Mo among molybdenites ranged from -0.6 to +0.6‰ (n=9) while sphalerites showed no δ(66)Zn variations (0.11±0.01‰, 2 SD, n=5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ(98)Mo (-0.1 to +2.1‰) and 0.7‰ in δ(66)Zn (-0.4 to +0.3‰) in mine drainage over a wide pH range (pH2.2-8.6). Lighter δ(66)Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn5(OH)6(CO3)2) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89±1.25‰, 2 SD, n=16), with some overlap, in comparison to molybdenites and waste rock (0.13±0.82‰, 2 SD, n=9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power of Mo and Zn isotope ratios to track the fate of these elements in mine drainage. Copyright © 2015 Elsevier B.V. All rights reserved.
Vogt, Carsten; Dorer, Conrad; Musat, Florin; Richnow, Hans-Hermann
2016-10-01
Multi-element compound-specific isotope fractionation (ME-CSIA) has become a state-of-the-art approach for identifying biotransformation reactions. In the last decade, several studies focused on the combined analysis of carbon and hydrogen stable isotopes upon biodegradation of hydrocarbons due to its widespread environmental occurrence as contaminants, often in high concentrations. Most known initial transformation reactions of hydrocarbons have been isotopically characterized in laboratory experiments using model cultures. The data suggest that several of these reactions - especially those occurring under anoxic conditions - can be identified by ME-CSIA, although a number of constraints have been realized which may lead to wrong ME-CSIA data interpretations in field studies. Generally, the applicability of ME-CSIA regarding hydrocarbon biodegradation needs to be corroborated in future field studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria
NASA Technical Reports Server (NTRS)
Fry, B.; Gest, H.; Hayes, J. M.
1988-01-01
Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.
Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr
2016-07-07
Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.
Thermal Neutron Capture onto the Stable Tungsten Isotopes
NASA Astrophysics Data System (ADS)
Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Revay, Zs.; Szentmiklósi, L.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J.; Krticka, M.; Nichols, A.
2012-02-01
Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.
Solid tags for identifying failed reactor components
Bunch, Wilbur L.; Schenter, Robert E.
1987-01-01
A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.
Strontium stable isotope behaviour accompanying basalt weathering
NASA Astrophysics Data System (ADS)
Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.
2016-12-01
The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.
Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data.
Thomas, Stephen M; Crowther, Thomas W
2015-05-01
The stable isotopes of carbon ((12)C, (13)C) and nitrogen ((14)N, (15)N) represent powerful tools in food web ecology, providing a wide range of dietary information in animal consumers. However, identifying the temporal window over which a consumer's isotopic signature reflects its diet requires an understanding of elemental incorporation, a process that varies from days to years across species and tissue types. Though theory predicts body size and temperature are likely to control incorporation rates, this has not been tested empirically across a morphologically and phylogenetically diverse range of taxa. Readily available estimates of this relationship would, however, aid in the design of stable isotope food web investigations and improve the interpretation of isotopic data collected from natural systems. Using literature-derived turnover estimates from animal species ranging in size from 1 mg to 2000 kg, we develop a predictive tool for stable isotope ecologists, allowing for estimation of incorporation rates in the structural tissues of entirely novel taxa. In keeping with metabolic scaling theory, we show that isotopic turnover rates of carbon and nitrogen in whole organisms and muscle tissue scale allometrically with body mass raised approximately to the power -0.19, an effect modulated by body temperature. This relationship did not, however, apply to incorporation rates in splanchnic tissues, which were instead dependent on the thermoregulation tactic employed by an organism, being considerably faster in endotherms than ectotherms. We believe the predictive turnover equations we provide can improve the design of experiments and interpretation of results obtained in future stable isotopic food web studies. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
NASA Astrophysics Data System (ADS)
Larson, P. B.; Nichols, H. J.; Wolff, J. A.; Marti, J.
2001-12-01
As part of an ongoing project investigating assimilation in ocean island magmas, we are measuring stable isotope ratios of hydrothermally altered lithic fragments in phonolitic pyroclastic deposits from Tenerife, Canary Islands. Nepheline syenite blocks occur in the 0.196 Ma El Abrigo ignimbrite of the Diego Hernandez Formation (DHF). The DHF is the most recent of at least three caldera-forming magmatic cycles on Tenerife. The blocks are fragments of evolved plutons that are chemically similar to phonolites but extend to more strongly differentiated compositions. Distinct major and trace element concentrations suggest that the blocks derive from two intrusions, here referred to as A and B. The B syenites have chemical affinities with the El Abrigo phonolite, and some blocks contain small pockets of residual glass, suggesting that the B pluton may have been coeval with the El Abrigo magma. O isotope ratios of the B syenites lie within the range 4.8 to 7.0 per mil. The B samples are mostly fresh, and their higher O isotope ratios are near pristine magmatic values. Lower values occur in rocks with mild hydrothermal mineralogic alteration, and their values reflect limited high-temperature water-rock isotope exchange. O isotope ratios for A blocks are lower (0.1 to 6.3 per mil, most less than 2.0 per mil), and some samples show extensive mineral alteration. Near-ubiquitous alteration among the A samples, distinct major and trace element compositions, and lack of glass show that this syenite was older than, and unrelated to, the El Abrigo magma. Syenite D/H ratios range from -90 to -120 per mil. O vs H isotope relations indicate that an 18O-depleted meteoric water was the most important reservoir for the high-temperature hydrothermal fluid. Assimilation of altered syenite should provide a distinct stable isotope fingerprint that would be inherited by the product magma. DHF phonolites yield O ratios in the range 5.5 to 7.0 per mil, which may be this fingerprint. Assimilation of variably altered syenites, with accompanying fractionation, is a viable mechanism for producing this stable isotope variability in the magmas.
Human Provenancing: It's Elemental…
NASA Astrophysics Data System (ADS)
Meier-Augenstein, Wolfram; Kemp
2009-04-01
Forensic science already uses a variety of methods often in combination to determine a deceased person's identity if neither personal effects nor next of kin (or close friends) can positively identify the victim. While disciplines such as forensic anthropology are able to work from a blank canvass as it were and can provide information on age, gender and ethnical grouping, techniques such as DNA profiling do rely on finding a match either in a database or a comparative sample presumed to be an ante-mortem sample of the victim or from a putative relation. Chances for either to succeed would be greatly enhanced if information gained from a forensic anthropological examination and, circumstances permitting a facial reconstruction could be linked to another technique that can work from a blank canvass or at least does not require comparison to a subject specific database. With the help of isotope ratio mass spectrometry even the very atoms from which a body is made can be used to say something about a person that will help to focus human identification using traditional techniques such as DNA, fingerprints and odontology. Stable isotope fingerprinting works on the basis that almost all chemical elements and in particular the so-called light elements such as carbon (C) that comprise most of the human body occur naturally in different forms, namely isotopes. 2H isotope abundance values recorded by the human body through food and drink ultimately reflect averaged isotopic composition of precipitation or ground water. Stable isotope analysis of 2H isotopic composition in different human tissue such as hair, nails, bone and teeth enables us to construct a time resolved isotopic profile or ‘fingerprint' that may not necessarily permit direct identification of a murder victim or mass disaster victim but in conjunction with forensic anthropological information will provide sufficient intelligence to construct a profile for intelligence lead identification stating where a victim was from (point of origin), how old they were, what their ‘life style' was and even if and where they had recently travelled. Data from several criminal investigations are presented to illustrate potential and limitation of stable isotope analysis of human tissue in aid of victim identification.
Multiple stable isotope fronts during non-isothermal fluid flow
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas
2018-02-01
Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.
Precise and accurate isotope ratio measurements by ICP-MS.
Becker, J S; Dietze, H J
2000-09-01
The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.
Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method
NASA Astrophysics Data System (ADS)
Borysiuk, Maciek; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan
2015-04-01
The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: 16O, 17O and 18O. We procured samples highly enriched with all three isotopes. Isotopes 16O and 18O were easily detected in the enriched samples, but no significant signal from 17O was detected in the same samples. The measured yield was too low to detect 18O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with 16O was clearly visible.
Schneiders, S; Holdermann, T; Dahlenburg, R
2009-06-01
The isotope ratios of amphetamine type stimulants (ATS) depend as well on the precursor as the synthetic pathway. For clandestine production of amphetamine and methamphetamine, 1-phenyl-2-propanone (P2P, benzylmethylketone) is a commonly used precursor. Our aim was to determine the variation of the isotope ratios within precursor samples of one manufacturer and to compare seized samples of unknown sources to these values. delta13C(V-PDB), delta2H(V-SMOW) and delta118O(V-SMOW) isotope ratios were determined using elemental analysis (EA) and gas chromatography (GC) coupled toan isotope ratio mass spectrometer (IRMS). The comparison of all seized samples to the data of the samples of one manufacturer revealed considerable differences. The results show that IRMS provides a high potential in differentiating between precursors from different manufacturers for the clandestine production of ATS and identifying corresponding sources.
NASA Astrophysics Data System (ADS)
Horton, Travis W.; Defliese, William F.; Tripati, Aradhna K.; Oze, Christopher
2016-01-01
Growing pressure on sustainable water resource allocation in the context of global development and rapid environmental change demands rigorous knowledge of how regional water cycles change through time. One of the most attractive and widely utilized approaches for gaining this knowledge is the analysis of lake carbonate stable isotopic compositions. However, endogenic carbonate archives are sensitive to a variety of natural processes and conditions leaving isotopic datasets largely underdetermined. As a consequence, isotopic researchers are often required to assume values for multiple parameters, including temperature of carbonate formation or lake water δ18O, in order to interpret changes in hydrologic conditions. Here, we review and analyze a global compilation of 57 lacustrine dual carbon and oxygen stable isotope records with a topical focus on the effects of shifting hydrologic balance on endogenic carbonate isotopic compositions. Through integration of multiple large datasets we show that lake carbonate δ18O values and the lake waters from which they are derived are often shifted by >+10‰ relative to source waters discharging into the lake. The global pattern of δ18O and δ13C covariation observed in >70% of the records studied and in several evaporation experiments demonstrates that isotopic fractionations associated with lake water evaporation cause the heavy carbon and oxygen isotope enrichments observed in most lakes and lake carbonate records. Modeled endogenic calcite compositions in isotopic equilibrium with lake source waters further demonstrate that evaporation effects can be extreme even in lake records where δ18O and δ13C covariation is absent. Aridisol pedogenic carbonates show similar isotopic responses to evaporation, and the relevance of evaporative modification to paleoclimatic and paleotopographic research using endogenic carbonate proxies are discussed. Recent advances in stable isotope research techniques present unprecedented opportunities to overcome the underdetermined nature of stable isotopic data through integration of multiple isotopic proxies, including dual element 13C-excess values and clumped isotope temperature estimates. We demonstrate the utility of applying these multi-proxy approaches to the interpretation of paleohydroclimatic conditions in ancient lake systems. Understanding past, present, and future hydroclimatic systems is a global imperative. Significant progress should be expected as these modern research techniques become more widely applied and integrated with traditional stable isotopic proxies.
NASA Astrophysics Data System (ADS)
Albut, Gülüm; Babechuk, Michael G.; Kleinhanns, Ilka C.; Benger, Manuela; Beukes, Nicolas J.; Steinhilber, Bernd; Smith, Albertus J. B.; Kruger, Stephanus J.; Schoenberg, Ronny
2018-05-01
Previously reported stable Cr isotopic fractionation in Archaean paleosols and iron formations (IFs) have been interpreted as a signature of oxidative weathering of Cr(III) to Cr(VI) in soils, and delivery of isotopically heavy Cr(VI) into the oceans. One of the oldest reported fingerprints of this process is isotopically heavy Cr preserved in the 2.95 Ga old Ijzermijn IF, Sinqeni Formation of the Mozaan Group (Pongola Supergroup), South Africa and could suggest that atmospheric free oxygen was present ca. 600 million years earlier than the Great Oxidation Event (GOE). However, fractionated stable Cr isotopic signatures have only been found to date in surface outcrop samples of the White Mfolozi Inlier exposed along the White Mfolozi River Gorge. In this study, the latter outcrop was resampled along with two drill cores of the Ijzermijn IF and a drill core of the Scotts Hill IF to represent multiple exposures of Mozaan Group IFs with different states of preservation. A detailed geochemical comparison on bulk samples of different units was undertaken using stable Cr isotopes coupled with trace and major elements. Outcrop iron-rich mudstones (Fe - lutites) show very low LOI [wt] %, and very low Fe(II)/Fetot ratios, and lower Ca and Mg relative to equivalent facies in drill cores, indicating the effects that oxidative recent surface weathering had on Fe/Mn-rich carbonate minerals of the IF. Overall rare earth element and yttrium (REE + Y) mixing models agree well with previous studies, confirming that they were minimally disturbed by weathering and are consistent with a high magnitude of continental solutes delivered in a near-shore depositional environment, with a minor contribution of hydrothermally derived fluids that upwelled into shallower depositional setting. Importantly, all drill core samples of this study revealed δ53/52Cr values within the igneous inventory, despite variable amounts of detrital Cr input that includes nearly detritus-free, chert/jasper-rich units. By contrast, a specific group of Fe-lutite samples near the base of White Mfolozi River outcrop bear fractionated Cr isotopic signatures with δ53/52Cr values up to 0.418‰. These outcrop samples also display unusually high U/Th ratios (max. 12.6) as well as enrichments of other elements (W, Tl, As, MREE) that far exceed that observed in correlative drill core units. These observations together with the lack of Cr isotopic fractionation in drill core samples lead us to propose that the heavy δ53/52Cr values of Fe-lutites from outcrop Ijzermijn IF samples reported here and in a previous study are the product of modern oxidative weathering rather than an indicator for Mesoarchaean oxidative weathering at ca. 2.95 Ga.
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Moynier, F.
2016-12-01
The Earth-Moon system has a variety of chemical and isotopic characteristics that provide clues to understanding the mechanism of lunar formation. One important observation is the depletion in moderately volatile elements in the Moon compared to the Earth. This volatile element depletion may be a signature of volatile loss during the Moon-forming Giant Impact. Stable isotopes are powerful tracers of such a process, since volatile loss via evaporation enriches the residue in heavy isotopes. However, early studies searching for the fingerprint of volatile loss failed to find any resolvable variations [1]. Recent work has now revealed heavy isotope enrichments in the Moon relative to the Earth for the moderately volatile elements Zn [2,3] and K [4]. The purely lithophile nature of Rb (in contrast to the chalcophile/lithophile nature of Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to study the origin of lunar volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. The Rb isotope compositions of terrestrial rocks define a narrow range, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). There is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. In particular, eucrites are significantly enriched in 87Rb (up to several per mil) relative to chondrites. Similarly, lunar basalts are enriched in 87Rb compared to terrestrial basalts, by 200 ppm for 87Rb/85Rb. These data are the first measurements of a resolvable difference in Rb isotope composition between the Earth and the Moon. The variations in Rb isotope composition between the Earth and the Moon are consistent with Rb isotope fractionation due to evaporation. References: [1] Humayun & Clayton GCA 1995. [2] Paniello et al. Nature 2012. [3] Kato et al. Nat. Comm. 2015. [4] Wang and Jacobsen Nature in press.
Golan Heights Groundwater Systems: Separation By REE+Y And Stable Isotopes
NASA Astrophysics Data System (ADS)
Siebert, C.; Geyer, S.; Knoeller, K.; Roediger, T.; Weise, S.; Dulski, P.; Moeller, P.; Guttman, J.
2008-12-01
In a semi-arid to arid country like Israel, all freshwater resources are under (over-) utilization. Particularly, the Golan Heights rank as one of the most important extraction areas of groundwater of good quality and quantity. Additionally the mountain range feed to a high degree the most important freshwater reservoir of Israel, the Sea of Galilee. Hence, knowing the sources and characters of the Golan Heights groundwater systems is an instantaneous demand regarding sustainable management and protection. Within the "German-Israeli-Jordanian-Palestinian Joint Research Program for the Sustainable Utilisation of Aquifer Systems", hundreds of water samples were taken from all over the Jordan-Dead Sea rift-system to understand groundwater flow-systems and salinisation. For that purpose, each sample was analysed for major and minor ions, rare earth elements including yttrium (REY) and stable isotopes of water (d18O, d2H). The REY distribution in groundwater is established during infiltration by the first water-rock interaction and consequently reflects the leachable components of sediments and rocks of the recharge area. In well- developed flow-systems, REY are adsorbed onto pore surfaces are in equilibrium with the percolating groundwater, even if the lithology changes (e.g. inter-aquifer flow). Thus, groundwater sampled from wells and springs still show the REY distribution pattern established in the recharge area. Since high temperatures do not occur in Golan Heights, d2H and d18O are less controlled by water-rock interaction than by climatic and geomorphological factors at the time of replenishment. Applying the REY signature as a grouping criterion of groundwaters, d18O vs. d2H plots yield a new dimension in interpreting isotope data. The combined use of hydrochemical and isotopic methods enabled us to contain the areas of replenishment and the flow-paths of all investigated groundwater in the Golan Heights. Despite location, salinity or temperature of spring or well waters, stable isotopes showed, that the main area of recharge is the elevated Hermon-Massif, with high annually precipitation amounts. The major element composition of fresh water well Alonei HaBashan 3, situated in the basaltic Upper Golan Heights, is defined by a pre-Neogenic limy aquifer and the contact to basalts. However, REY pattern refer to a calcareous infiltration area. Stable isotope signatures are lighter than in the recharge of comparable elevated Upper Galilee. Further to the south, in the Yarmouk gorge hot Mezar springs occur, which show stable isotope signatures even lighter than in water of Alonei Habshan 3. Both, REY pattern and hydrochemistry show infiltration into and contact to the Sr-rich limestone aquifer of the Mt. Scopus group. That adds up to an infiltration area some 50 km to the north, the nearest elevated area where carbonates crop out. Nearby Mezar, hot Hammat Gader springs occur, which show comparable isotopic signatures and hydrochemical composition. However, the REY-patterns indicate infiltration in basalts. By means of those three examples we could show, that the use of a combined hydrochemical and isotopic approach reveals complex and large-scale groundwater infiltration- and flow-systems much better than a focused view on a specific band of elements.
NASA Astrophysics Data System (ADS)
Lopez-Veneroni, D. G.; Vega, E.
2013-05-01
The stable carbon isotope composition of atmospheric particles (PM2.5) was measured at La Merced (MER), a commercial site in the eastern sector, and at Xalostoc (XAL) an industrial site in the NE sector of Mexico City, during three sampling periods in autumn 2003, and spring and autumn 2004. At each site and sampling campaign particle samples were collected daily with minivol samplers during two week periods. Ancillary data included organic and elemental carbon, trace elements and ionic species. This data base was complement with air quality data from the RAMA (Automatic Atmospheric Monitoring Network). In general, particle concentrations, ionic species and some air quality species showed higher concentrations in autumn and lowest values in spring. Moreover, the concentrations of these chemical species were highest at XAL compared to MER. The stable carbon isotope composition of PM2.5 during autumn 2003 and spring 2004 had and average value of -26.04 (± 1.54) ‰ vs. PDB. Differences in the isotopic composition between the two sites were non significant. The average δ13C during these seasons were 1 ‰ lighter relative to data collected previously at these sites during 2000 and 2001, and is consistent with a predominant source of hydrocarbon combustion. In autumn 2004, however, average δ13C at XAL and MER increased to -22.8 (± 0.9) and -20.6 (± 3.1) ‰, respectively. Organic carbon concentrations during this period increased concomitantly at these sites. The shift in the isotopic composition in ambient particles suggests a predominance of soil-derived carbon during this period. The possible causes and implications of this are discussed.
Ultrahigh thermal conductivity of isotopically enriched silicon
NASA Astrophysics Data System (ADS)
Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter
2018-03-01
Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.
Domagalski, Joseph L.; Alpers, Charles N.; Slotton, Darrell G.; Suchanek, Thomas H.; Ayers, Shaun M.
2004-01-01
Concentrations and mass loads of total mercury and methylmercury in streams draining abandoned mercury mines and near geothermal discharge in Cache Creek Basin, California, were measured during a 17-month period from January 2000 through May 2001. Rainfall and runoff averages during the study period were lower than long-term averages. Mass loads of mercury and methylmercury from upstream sources to downstream receiving waters, such as San Francisco Bay, were generally the highest during or after winter rainfall events. During the study period, mass loads of mercury and methylmercury from geothermal sources tended to be greater than those from abandoned mining areas because of a lack of large precipitation events capable of mobilizing significant amounts of either mercury-laden sediment or dissolved mercury and methylmercury from mine waste. Streambed sediments of Cache Creek are a source of mercury and methylmercury to downstream receiving bodies of water such as the Delta of the San Joaquin and Sacramento Rivers. Much of the mercury in these sediments was deposited over the last 150 years by erosion and stream discharge from abandoned mines or by continuous discharges from geothermal areas. Several geochemical constituents were useful as natural tracers for mining and geothermal areas. These constituents included aqueous concentrations of boron, chloride, lithium, and sulfate, and the stable isotopes of hydrogen and oxygen in water. Stable isotopes of water in areas draining geothermal discharges were enriched with more oxygen-18 relative to oxygen-16 than meteoric waters, whereas the enrichment by stable isotopes of water from much of the runoff from abandoned mines was similar to that of meteoric water. Geochemical signatures from stable isotopes and trace-element concentrations may be useful as tracers of total mercury or methylmercury from specific locations; however, mercury and methylmercury are not conservatively transported. A distinct mixing trend of trace elements and stable isotopes of hydrogen and oxygen from geothermal waters was apparent in Sulphur Creek and lower Bear Creek (tributaries to Cache Creek), but the signals are lost upon mixing with Cache Creek because of dilution.
Jakubowicz, Michal; Berkowski, Blazej; López Correa, Matthias; Jarochowska, Emilia; Joachimski, Michael; Belka, Zdzislaw
2015-01-01
This study investigates stable isotope signatures of five species of Silurian and Devonian deep-water, ahermatypic rugose corals, providing new insights into isotopic fractionation effects exhibited by Palaeozoic rugosans, and possible role of diagenetic processes in modifying their original isotopic signals. To minimize the influence of intraskeletal cements on the observed signatures, the analysed specimens included unusual species either devoid of large intraskeletal open spaces ('button corals': Microcyclus, Palaeocyclus), or typified by particularly thick corallite walls (Calceola). The corals were collected at four localities in the Holy Cross Mountains (Poland), Mader Basin (Morocco) and on Gotland (Sweden), representing distinct diagenetic histories and different styles of diagenetic alteration. To evaluate the resistance of the corallites to diagenesis, we applied various microscopic and trace element preservation tests. Distinct differences between isotopic compositions of the least-altered and most-altered skeleton portions emphasise a critical role of material selection for geochemical studies of Palaeozoic corals. The least-altered parts of the specimens show marine or near-marine stable isotope signals and lack positive correlation between δ13C and δ18O. In terms of isotopic fractionation mechanisms, Palaeozoic rugosans must have differed considerably from modern deep-water scleractinians, typified by significant depletion in both 18O and 13C, and pronounced δ13C-δ18O co-variance. The fractionation effects exhibited by rugosans seem similar rather to the minor isotopic effects typical of modern non-scleractinian corals (octocorals and hydrocorals). The results of the present study add to growing evidence for significant differences between Scleractinia and Rugosa, and agree with recent studies indicating that calcification mechanisms developed independently in these two groups of cnidarians. Consequently, particular caution is needed in using scleractinians as analogues in isotopic studies of extinct coral lineages. Answering some of the pertinent palaeoecological questions, such as that of the possibility of photosymbiosis in Palaeozoic corals, may not be possible based on stable isotope data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna
This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t 1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.
Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; ...
2015-10-26
This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t 1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.
Dunn, Philip J H; Malinovsky, Dmitry; Goenaga-Infante, Heidi
2015-04-01
We report a methodology for the determination of the stable carbon absolute isotope ratio of a glycine candidate reference material with natural carbon isotopic composition using EA-IRMS. For the first time, stable carbon absolute isotope ratios have been reported using continuous flow rather than dual inlet isotope ratio mass spectrometry. Also for the first time, a calibration strategy based on the use of synthetic mixtures gravimetrically prepared from well characterised, highly (13)C-enriched and (13)C-depleted glycines was developed for EA-IRMS calibration and generation of absolute carbon isotope ratio values traceable to the SI through calibration standards of known purity. A second calibration strategy based on converting the more typically determined delta values on the Vienna PeeDee Belemnite (VPDB) scale using literature values for the absolute carbon isotope ratio of VPDB itself was used for comparison. Both calibration approaches provided results consistent with those previously reported for the same natural glycine using MC-ICP-MS; absolute carbon ratios of 10,649 × 10(-6) with an expanded uncertainty (k = 2) of 24 × 10(-6) and 10,646 × 10(-6) with an expanded uncertainty (k = 2) of 88 × 10(-6) were obtained, respectively. The absolute carbon isotope ratio of the VPDB standard was found to be 11,115 × 10(-6) with an expanded uncertainty (k = 2) of 27 × 10(-6), which is in excellent agreement with previously published values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantone, M.C.
The interest in biokinetic studies is driven by problems related to the physiopathology of oligoelements, chemical elemental pollution and radioactive release in case of nuclear accidents. The application of stable isotopes as tracers in studies of trace elements in the area of nutritional and food science is particularly attractive and specifically if considering the investigations on the most radiosensitive age groups of the population and the repeated studies on healthy people for the assessment of the bioavailability of different compounds. A tracer method based on stable isotope administration, which combines the simultaneous use of two tracers and proton activation analysismore » is presented. A study aimed to obtain molybdenum biokinetic data in humans was performed. One tracer ({sup 96}Mo) was orally administered and another ({sup 95}Mo) was intravenously injected to two fasting volunteer subjects. Venous blood samples were withdrawn at different postinjection times. The concentration in plasma for both the isotopes was determined by measuring the intensities of the gamma-lines from the technetium radioisotopes produced via (p,n) reactions. In the adopted experimental conditions a minimum detectable concentration of 2 ng isotope/ml plasma was attained. The parameters describing molybdenum kinetics were obtained for the two individuals. Moreover, the investigation was repeated with different tracer amounts for one of the two subjects, in both fasting and non-fasting condition.« less
Ti Isotopes: Echoes of Grain-Scale Heterogenaity in the Protoplanetary Disk
NASA Technical Reports Server (NTRS)
Jordan, M. K.; Kohl, I. E.; McCain, K. A.; Simon, J. I.; Young, E. D.
2017-01-01
Calcium-aluminum-rich inclusions (CAIs) are the oldest surviving solids to have formed in the Solar System. Their chemical and isotopic compositions provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of how solids formed in the solar nebula, an important step in the eventual process of planet building. The isotopic compositions of CAIs are primarily controlled by volatility. Evaporation/sublimation are well understood through both theory and experimental work to produce an enrichment in the heavy isotopes of an element, but less is understood about the effects of condensation. Mass-dependent fractionation can potentially provide a record of nebular condensation. Ti is not likely to experience evaporation due to its refractory nature, making it a useful tool for assessing the effects of condensation. We have undertaken a study of the stable isotope fractionation of Ti isotopes as a tracer of processes that predate the last evaporation events affecting CAIs. We compare the 49Ti/47Ti stable isotope ratio with excess 50Ti common in CAIs. We have collected Ti, Mg, Si, and Ca isotope data for a suite of CAIs in order to search for heterogeneity in each of these isotope systems, and for potential correlations among them. We compare our results to expectations for condensation.
Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt
2017-01-01
Conclusions: The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment. Copyright © 2016 John Wiley & Sons, Ltd.
Matley, J K; Fisk, A T; Tobin, A J; Heupel, M R; Simpfendorfer, C A
2016-01-15
Stable isotope ratios (δ(13)C and δ(15)N values) provide a unique perspective into the ecology of animals because the isotope ratio values of consumers reflect the values in food. Despite the value of stable isotopes in ecological studies, the lack of species-specific experimentally derived diet-tissue discrimination factors (DTDFs) and turnover rates limits their application at a broad scale. Furthermore, most aquatic feeding experiments use temperate, fast-growing fish species and few have considered medium- to large-sized adults with low growth rates from tropical ecosystems. A controlled-diet stable isotope feeding trial was conducted over a 196-day period for the adult predatory reef fish leopard coralgrouper (Plectropomus leopardus). This study calculated δ(13)C and δ(15)N DTDFs and turnover rates in five tissues (liver, plasma, red blood cells (RBC), fin, and muscle) using a continuous flow isotope ratio mass spectrometer equipped with an elemental analyzer. In addition, the effect of chemical lipid extraction (LE) on stable isotope values was examined for each tissue. Turnover was mainly influenced by metabolism (as opposed to growth) with LE δ(15)N half-life values lowest in fin (37 days) and plasma (66 days), and highest in RBC (88 days) and muscle (126 days). The diet-tissue discrimination factors for δ(15)N values in all tissues (Δ(15)N: -0.15 to 1.84‰) were typically lower than commonly reported literature values. Lipid extraction altered both δ(15) N and δ(13)C values compared with untreated samples; however, for the δ(15)N values, the differences were small (mean δ(15)N(LE-Bulk) <0.46‰ in all tissues). This study informs future interpretation of stable isotope data for medium- to large-sized fish and demonstrates that DTDFs developed for temperate fish species, particularly for δ(15)N values, may not apply to tropical species. Sampling of muscle and/or RBC is recommended for a relatively long-term representation of feeding habits, while plasma and/or fin should be used for a more recent indication of diet. Copyright © 2015 John Wiley & Sons, Ltd.
Franke, Steffi; Lihl, Christina; Renpenning, Julian; Elsner, Martin; Nijenhuis, Ivonne
2017-12-01
Chlorinated ethanes belong to the most common groundwater and soil contaminants. Of these, 1,2-dichloroethane (1,2-DCA) is a man-made, persistent and toxic contaminant, released due to improper waste treatment at versatile production sites. This study investigated the anaerobic transformation of 1,2-DCA by Dehalococcoides mccartyi strain 195 and strain BTF08 using triple-element compound-specific stable isotope analysis of carbon, chlorine and hydrogen for the first time. Isotope fractionation patterns for carbon (εCBTF08 = -28.4 ± 3.7‰; εC195 = -30.9 ± 3.6‰) and chlorine (εClBTF08 = -4.6 ± 0.7‰; εCl195 = -4.2 ± 0.5‰) within both investigated D. mccartyi strains, as well as the dual-element analysis (ΛBTF08 = 6.9 ± 1.2; Λ195 = 7.1 ± 0.2), supported identical reaction mechanisms for dehalogenation of 1,2-DCA. Hydrogen isotope fractionation analysis revealed dihaloelimination as prevalent reaction mechanism. Vinyl chloride as major intermediate could be excluded by performing the experiment in deuterated aqueous media. Furthermore, evaluation of the derived apparent kinetic isotope effects (AKIECBTF08 = 1.029/AKIEC195 = 1.031; AKIEClBTF08 = 1.005/AKIECl195 = 1.004) pointed towards simultaneous abstraction of both involved chlorine-substituents in a concerted matter. It was shown that D. mccartyi strain BTF08 and strain 195 are capable of complete, direct dihaloelimination of 1,2-DCA to ethene. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.
Bolsunovsky, Alexander
2011-09-01
The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.
A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.
Sakai, Saburo; Matsuda, Shinichi
2017-04-18
Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.
Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research
NASA Astrophysics Data System (ADS)
Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas
2014-05-01
During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer studies is critically discussed, where special emphasis is set on evaluating different data processing strategies on the example of enriched stable Sr isotopes.1 The analytical key parameters such as blank (Kr, Sr and Rb), variation of the natural Sr isotopic composition in the sample, mass bias, interferences (Rb) and total combined uncertainty are considered. A full metrological protocol for data processing using IPD is presented based on data gained during two transgenerational marking studies of fish, where the transfer of a Sr isotope double spike (84Sr and 86Sr) from female spawners of common carp (Cyprinus carpio L.) and brown trout (Salmo trutta f.f.)2 to the centre of the otoliths of their offspring was studied by (LA)-MC-ICP-MS. 1J. Irrgeher, A. Zitek, M. Cervicek and T. Prohaska, J. Anal. At. Spectrom., 2014, 29, 193-200. 2A. Zitek, J. Irrgeher, M. Kletzl, T. Weismann and T. Prohaska, Fish. Manage. Ecol., 2013, 20, 654-361.
Light stable isotope analysis of meteorites by ion microprobe
NASA Technical Reports Server (NTRS)
Mcsween, Harry Y., Jr.
1994-01-01
The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.
NASA Astrophysics Data System (ADS)
Dawson, K.; Scheller, S.; Dillon, J. G.; Orphan, V. J.
2016-12-01
Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with 13C-acetate, 15N-ammonium, and 33S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope (13C/12C, 15N/14N, and 33S/32S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned 2200 cellular regions of interest (ROIs) into 5 distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA.
Dawson, Katherine S.; Scheller, Silvan; Dillon, Jesse G.; Orphan, Victoria J.
2016-01-01
Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with 13C-acetate, 15N-ammonium, and 33S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope (13C/12C, 15N/14N, and 33S/32S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA. PMID:27303371
NASA Astrophysics Data System (ADS)
Blamart, D.; Rollion-Bard, C.; Meibom, A.; Cuif, J.; Juillet-Leclerc, A.; Dauphin, Y.; Douarin, M.
2007-12-01
The geochemistry (stable isotopes and trace elements) of biogenic carbonates has been widely used for more than fifty years to reconstruct past climatic variability. During this time, the studies were mainly based on bulk sampling limiting sometimes the interpretations of the geochemical data as paleoclimatic proxies. Recently, high spatial resolution sampling techniques, such as micro-mill and SIMS, have been employed in the study of C, O and B isotopic compositions and trace elements (Mg, Sr) in the skeletons of a variety of (deep-sea) coral species. These studies have documented dramatic 'vital effects' and uncovered a systematic relationship between skeletal ultra-structure and stable isotopic composition. The formation of skeleton corals follows a universal two-step growth process. At the tips of the skeletal structures, the mineralizing cell layer produces centers of calcification (COC) or, equivalently, Early Mineralization Zone (EMZ). These EMZ are subsequently overgrown by fibrous aragonite(FA) consisting of cyclically added layers. The EMZ are characterized by systematically lighter C and O isotopic compositions compared with the adjacent FA. A number of geochemical models have been proposed, in which this systematic stable isotopic difference between EMZ and FA is ascribed to a biologically induced variation in the pH of a proposed Extra-cytoplasmic Calcifying Fluid (ECF) reservoir. In these models, relatively high pH conditions during the formation of EMZ result in relatively light C and O isotopic compositions compared with FA, which form under generally lower pH conditions. A direct test of such models would be possible if the Boron isotopic composition, which is pH sensitive, of EMZ and FA could be measured. We performed ion microprobe d11B measurements for EMZ and FA in Lophelia pertusa, a deep-sea coral common in the North-East Atlantic Ocean. We observe a systematic difference in B isotopic composition between the EMZ and FA skeleton. In EMZ, the measured δ11B values are consistently low. Fibrous aragonite is characterized by systematically higher d11B values, but also display B isotopic heterogeneity associated with specific growth bands in the calyx wall. The magnitude of the observed B isotopic variations cannot be explained by changes in environmental conditions and are likely caused by biological processes involved in the biomineralization of new skeleton; i.e. 'vital' effects. The observed B isotopic variations are opposite to the predictions of geochemical models for vital effects. Our data indicate that pH variations are not responsible for the observed stable isotopic fractionations. Geochemical models therefore do not provide an adequate framework within which to understand coral skeletal formation. Without a better understanding of these processes, which require experiments, the use of B isotopic composition to reconstruct paleo-pH variations in the oceans must be considered problematic - at least as far as Lophelia pertusa is concerned.
Interrogating Host-virus Interactions and Elemental Transfer Using NanoSIMS
NASA Astrophysics Data System (ADS)
Pasulka, A.; Thamatrakoln, K.; Poulos, B.; Bidle, K. D.; Sullivan, M. B.; Orphan, V. J.
2016-02-01
Marine viruses (bacteriophage and eukaryotic viruses) impact microbial food webs by influencing microbial community structure, carbon and nutrient flow, and serving as agents of gene transfer. While the collective impact of viral activity has become more apparent over the last decade, there is a growing need for single-cell and single-virus level measurements of the associated carbon and nitrogen transfer, which ultimately shape the biogeochemical impact of viruses in the upper ocean. Stable isotopes have been used extensively for understanding trophic relationships and elemental cycling in marine food webs. While single-cell isotope approaches such as nanoscale secondary ion mass spectrometry (nanoSIMS) have been more readily used to study trophic interactions between microorganisms, isotopic enrichment in viruses has not been described. Here we used nanoSIMS to quantify the transfer of stable isotopes (13C and 15N) from host to individual viral particles in two distinct unicellular algal-virus model systems. These model systems represent a eukaryotic phytoplankton (Emiliania huxleyi strain CCMP374) and its 200nm coccolithovirus (EhV207), as well as a cyanobacterial phytoplankton (Synechococcus WH8101) and its 80nm virus (Syn1). Host cells were grown on labeled media for multiple generations, subjected to viral infection, and then viruses were harvested after lysis. In both cases, nanoSIMS measurements were able to detect 13C and 15N in the resulting viral particles significantly above the background noise. The isotopic enrichment in the viral particles mirrored that of the host. Through use of these laboratory model systems, we quantified the sensitivity (ion counts), spatial resolution, and reproducibility, including sources of methodological and biological variability, in stable isotope incorporation into viral particles. Our findings suggest that nanoSIMS can be successfully employed to directly probe virus-host interactions at the resolution of individual viral particles and quantify the amount of carbon and nitrogen transferred into viruses during infection of autotrophic phytoplankton.
CCQM-K140: carbon stable isotope ratio delta values in honey
NASA Astrophysics Data System (ADS)
Dunn, P. J. H.; Goenaga-Infante, H.; Goren, A. C.; Şimşek, A.; Bilsel, M.; Ogrinc, N.; Armishaw, P.; Hai, L.
2017-01-01
As there can be small but measureable differences in isotope ratios between different sources of the same element/compound/material, isotope ratio measurements are applied in a number of different fields including archaeology, environmental science, geochemistry, forensic science and ecology. Isotope ratios for the light elements (H, C, N, O and S) are typically reported as δ-values which are isotope ratios expressed relative to an internationally agreed standard (this standard is the zero-point on the scale), although absolute isotope ratios which are traceable to the SI have also been reported. The IAWG has been granted a traceability exception for the use of arbitrary delta scales until SI traceability can be established at the required level of uncertainty but this goal is some years away. While the CCQM IAWG has previously organised several pilot studies on isotope ratio determination (CCQM-P75: Stable isotope delta values in methionine, 2006; CCQM-P105: Sr isotope ratios in wine, 2008; CCQM-K98: Pb isotope ratios in bronze with additional delta values in CCQM-P134, 2011), it has been a number of years since delta values of light elements have been considered and there has been no key comparison (KC). Therefore, the IAWG has included the need for a KC (CCQM-K140) based on an arbitrary delta scale in its program to support ongoing requirements to demonstrate core capabilities as well as specific claims of measurement capability (CMCs) in this area. The performance of all five of the CCQM-K140 participants was very good, illustrating their ability to obtain accurate results for carbon isotope ratios, within the calibration range afforded by internationally agreed reference materials (δ13CVPDB-LSVEC between -47.32 % and +535.3 %) with measurement uncertainties of between 0.08 and 0.28 %. This was despite the fact that no two participants used exactly the same approach in terms of instrumentation or data treatment. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Germanium Isotopes - the Global Budget and Paleoceanographic Potential
NASA Astrophysics Data System (ADS)
Baronas, J. J.; Hammond, D. E.; Rouxel, O. J.
2017-12-01
The distribution of element isotope ratios in rocks, sediments, rivers, and seawater can provide key insights about the operation and coupling of various biogeochemical cycles that are directly or indirectly responsible for the climate and habitability of the Earth surface environment. Germanium (Ge) is a trace element that shares many chemical similarities with silicon (Si), in addition to some siderophilic, chalcophilic, and organophilic properties. As a result, Ge stable isotope ratios (δ74Ge) and Ge/Si ratios can be used to trace various biogeochemical processes. These include silicate rock weathering, which modulates atmospheric pCO2 and supplies nutrients to ecosystems, biogenic silica formation, which is coupled to ocean productivity, and marine sediment diagenesis, which ultimately controls the removal of material from the Earth's surface. I will present an overview of my dissertation research concerning the global Ge isotope cycle, with insights into Ge isotope fractionation during secondary mineral precipitation during weathering on continents and during authigenesis in marine sediments. I will also discuss the potential for the δ74Ge sedimentary record to be used as a paleoceanographic proxy, given the constraints on the global Ge isotope budget.
Online analysis of chlorine stable isotopes in chlorinated ethylenes: an inter-laboratory study
NASA Astrophysics Data System (ADS)
Bernstein, Anat; Shouakar-Stash, Orfan; Hunkeler, Daniel; Sakaguchi-Söder, Kaori; Laskov, Christine; Aravena, Ramon; Elsner, Martin
2010-05-01
In the last decade, compound-specific stable isotopes analysis of groundwater pollutants became an important tool to identify different sources of the same pollutant and for tracking natural attenuating processes in the sub-surface. It has been shown that trends in the isotopic composition of the target compounds can shed light on in-situ processes that are otherwise difficult to track. Analytical methods of carbon, nitrogen and hydrogen were established and are by now frequently used for a variety of organic pollutants. Yet, the motivation of introducing analytical methods for new isotopes is emerging. This motivation is further enhanced, as advantages of using two or more stable isotopes for gaining better insight on degradation pathways are well accepted. One important element which demands the development of appropriate analytical methods is chlorine, which is found in various groups of organic pollutants, among them the chlorinated ethylenes. Chlorinated ethylenes are considered as high priority environmental pollutants, and the development of suitable chlorine isotope methods for this group of pollutants is highly desired. Ideally, stable isotope techniques should have the capability to determine the isotopic composition of and individual target compound in a non-pure mixture, without the requirement of a laborious off-line treatment. Indeed, in the last years two different concepts for on-line chlorine isotope analysis methods were introduced, by using either a standard quadrapole GC/MS (Sakaguchi-Söder et al., 2007) or by using a GC/IRMS (Shouakar-Stash et al., 2006). We present a comparison of the performances of two concepts, carried out in five different laboratories: Waterloo (GC/IRMS), Neuchâtel (GC/MS), Darmstadt (GC/MS), Tübingen (GC/MS) and Munich (GC/IRMS). This comparison was performed on pure trichloroethylene and dichloroethylene products of different manufactures, as well as trichloroethylene and dichloroethylene samples that were exposed to biodegradation. This study sets standards for further application of these techniques to distinguish sources and track degradation processes in the sub-surface.
Wu, Yuluan; Luo, Donghui; Dong, Hao; Wan, Juan; Luo, Haiying; Xian, Yanping; Guo, Xindong; Qin, Fangfang; Han, Wanqing; Wang, Li; Wang, Bin
2015-05-01
The stable carbon and nitrogen isotopic compositions (δ(13)C and δ(13)N) of different cereal grains from different regions were determined, using element analyser-stable isotope ratio mass spectrometry (EA-SIRMS) as the key method. Systematically, δ(13)C and δ(13)N of 5 kinds of cereal grains of different origins, 30 wheat samples from different cultivation areas and 160 rice samples of different cultivars from Guangdong province of China were examined. The results indicated that the δ(13)C values of rice, soybean, millet, wheat and corn were significantly (P < 0.05) different within different origins (Heilongjiang, Shandong and Jiangsu province of China), respectively, while δ(13)N values were not. Interestingly, there exists discrimination between these 5 kinds of cereals grains, no matter C-3 or C-4 plants. Further study showed that the δ(13)C values of wheat from Australia, the USA, Canada, and Jiangsu and Shandong province of China were also significantly (P < 0.01) different. Furthermore, the P-value test for 160 rice samples of 5 cultivars was not significant (P > 0.05), which indicated that the cultivar of cereal grains was not significant based on δ(13)C value. Thus, the comparison of δ(13)C would be potentially useful for rapid and routine discrimination of geographical origin of cereal grains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon
Day, James M. D.; Moynier, Frederic
2014-01-01
The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ (238U/204Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss. PMID:25114311
NASA Astrophysics Data System (ADS)
Lavrentyeva, G. V.; Geshel, I. V.
2012-04-01
From huge number of the radionuclides generated by anthropogenous activity the major value the group of biologically active radionuclides has. First of all, it Sr-90 and Cs-137 which play an important role in various radiological situations. In researches on studying of laws of behavior in environment Sr -90 and Cs-137 the basic attention was given to studying of influence of their chemical analogs Ca and K, instead of stable isotopes Sr and Cs. However, even low concentration of stable isotopes Sr and Cs in soil can influence on biogeochemical behavior of radionuclides. Objects of research: dernovo-podsolic soil, summer barley of grade, stable and radioactive isotopes Sr, Cs. Schemes of experiments provided entering of 8 doses stable Cs and Sr in the range from 0 to 500-750 mg/kg of air-dry weight of soil and 50 kBq of radionuclides on each frequency. Absorption of radionuclides by plants will be defined by two parametres of transport. The first - factor of transition (TF), which characterises level of regulation of process of carrying over of a radionuclide from soil in plants and depends on distribution of an element between the firm and liquid phase, distribution defined in the factor (Kd). The second parametre - factor of concentrating (CF) which characterises biological level of regulation of this process. The increase in quantity of stable Sr in soil leads to an active desorption Sr-90 in a soil solution on all frequency. Kd of Cs-137 on the general background of which decrease in values some increase in factor in the range of 120-225 mg of Cs/kg of soil is observed. Received Kd of radionuclides will well be co-ordinated with the revealed functional dependences between concentration Cs and Sr in soil and specific activity Cs-137 and Sr-90 in a soil solution. Comparison CF of two radionuclides shows that plants absorb Sr-90 from a soil solution actively, than Cs-137. Thus values CF of Sr-90 in the investigated interval of concentration of a stable isotope are in inverse relationship from the element maintenance in a soil solution in all investigated interval of the maintenance of the isotope carrier whereas change similar the indicator for Cs-137 has more difficult dependence. The revealed laws of change of CF studied radionuclides prove to be true the received dependences of accumulation Sr-90 and Cs-137 in barley from specific activity of radionuclides in a soil solution. Values of TF of Sr-90 are in direct dependence on level of the maintenance stable Sr, below similar indicators for Cs-137 in all interval of change of concentration of stable isotopes. It finds reflection in the analysis of functional dependences between concentration of radionuclides in plants and soil. The received values of studied factors completely reflect change of specific activity of radionuclides in a soil solution and their biological availability depending on concentration of their stable isotopes that confirms use possibility in the prognostic purposes of these indicators.
Evidence of cryptic individual specialization in an opportunistic insectivorous bat
Cryan, Paul M.; Stricker, Craig A.; Wunder, Michael B.
2012-01-01
Habitat use and feeding behaviors of cryptic animals are often poorly understood. Analyses of stable isotope ratios in animal body tissues can help reveal an individual's location and resource use during tissue growth. We investigated variation in stable isotope ratios of 4 elements (H, C, N, and S) in the hair of a sedentary species of insectivorous bat (Eptesicus fuscus) inhabiting a chemically complex urban landscape. Our objective was to quantify population-level isotopic variation and test for evidence of resource specialization by individuals. Bats were sampled over 3 annual molt cycles at maternity roosts in buildings and variance components analysis was used to test whether intraindividual isotopic variation among molts differed from interindividual variation, after controlling for year and roost-group effects. Consistent with prior evidence that E. fuscus is opportunistic in its habitat use and foraging at the population level, we observed wide population-level variation for all isotopes. This variation likely reflects the chemical complexity of the urban landscape studied. However, isotopic variation among years within marked individuals was lower than variation among marked individuals within year for all isotopes, and carbon signatures indicated resource specialization by roost groups and individuals. This is the 1st study to examine variation in stable isotope ratios of individual wild bats over multiple years. Although our results suggest this population tends toward opportunistic habitat use or prey selection, or both, during molt periods, results also indicate that individuals and groups of bats composing the population might be habitat or dietary specialists—a novel finding for insectivorous bats.
NASA Astrophysics Data System (ADS)
Dierking, Jan; Morat, Fabien; Letourneur, Yves; Harmelin-Vivien, Mireille
2012-06-01
The commercially important marine flatfish common sole (Solea solea) facultatively uses NW Mediterranean lagoons as nurseries. To assess the imprint left by the lagoonal passage, muscle carbon (C) and nitrogen (N) isotope values of S. solea juveniles caught in Mauguio lagoon in spring (shortly after arrival from the sea) and in autumn (before the return to the sea) were compared with values of juveniles from adjacent coastal marine nurseries. In addition, in the lagoon, sole otolith stable isotope (C and oxygen (O)) and elemental (11 elements) composition in spring and autumn, and the stable isotope composition (C and N) of organic matter sources in autumn, were determined. Overall, our data indicate that a distinct lagoonal signature existed. Specifically, lagoon soles showed a strong enrichment in muscle tissue 15N (>6‰) compared to their coastal relatives, likely linked to sewage inputs (see below), and a depletion in 13C (1-2‰), indicative of higher importance of 13C depleted terrestrial POM in the lagoon compared to coastal nurseries. In addition, over the time spent in the lagoon, sole otolith δ13C and δ18O values and otolith elemental composition changed significantly. Analysis of the lagoon sole foodweb based on C and N isotopes placed sediment particulate organic matter (POM) at the base. Seagrasses, formerly common but in decline in Mauguio lagoon, played a minor role in the detritus cycle. The very strong 15N enrichment of the entire foodweb (+7 to +11‰) compared to little impacted lagoons and coastal areas testified of important human sewage inputs. Regarding the S. solea migration, the analysis of higher turnover and fast growth muscle tissue and metabolically inert and slower growth otoliths indicated that soles arrived at least several weeks prior to capture in spring, and that no migrations took place in summer. In the autumn, the high muscle δ15N value acquired in Mauguio lagoon would be a good marker of recent return to the sea, whereas altered otolith δ18O values and elemental ratios hold promise as long-term markers. The combination of several complementary tracers from muscle and otoliths may present the chance to distinguish between fish from specific lagoons and coastal nurseries in the future.
Distribution and Source Identification of Pb Contamination in industrial soil
NASA Astrophysics Data System (ADS)
Ko, M. S.
2017-12-01
INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb concentration at depth indicated elusive contamination event or contamination sources. In order to identify the contamination source clearly, isotope and Pb compound/mineralogy analysis are necessary.
Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement
Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.
2007-01-01
The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different abandoned mines within a single watershed. Hence, Cu, Fe, and Zn isotopic measurements may be a powerful tool for fingerprinting specific metal sources and/or examining biogeochemical reactions within fresh water systems.
Serra, Francesca; Guillou, Claude G; Reniero, Fabiano; Ballarin, Luciano; Cantagallo, Maria I; Wieser, Michael; Iyer, Sundaram S; Héberger, Károly; Vanhaecke, Frank
2005-01-01
In this study we show that the continental origin of coffee can be inferred on the basis of coupling the isotope ratios of several elements determined in green beans. The combination of the isotopic fingerprints of carbon, nitrogen and boron, used as integrated proxies for environmental conditions and agricultural practices, allows discrimination among the three continental areas producing coffee (Africa, Asia and America). In these continents there are countries producing 'specialty coffees', highly rated on the market that are sometimes mislabeled further on along the export-sale chain or mixed with cheaper coffees produced in other regions. By means of principal component analysis we were successful in identifying the continental origin of 88% of the samples analyzed. An intra-continent discrimination has not been possible at this stage of the study, but is planned in future work. Nonetheless, the approach using stable isotope ratios seems quite promising, and future development of this research is also discussed. (c) 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Pringle, Emily A.; Moynier, Frédéric; Beck, Pierre; Paniello, Randal; Hezel, Dominik C.
2017-06-01
Volatile lithophile elements are depleted in the different planetary materials to various degrees, but the origin of these depletions is still debated. Stable isotopes of moderately volatile elements such as Zn can be used to understand the origin of volatile element depletions. Samples with significant volatile element depletions, including the Moon and terrestrial tektites, display heavy Zn isotope compositions (i.e. enrichment of 66Zn vs. 64Zn), consistent with kinetic Zn isotope fractionation during evaporation. However, Luck et al. (2005) found a negative correlation between δ66Zn and 1/[Zn] between CI, CM, CO, and CV chondrites, opposite to what would be expected if evaporation caused the Zn abundance variations among chondrite groups. We have analyzed the Zn isotope composition of multiple samples of the major carbonaceous chondrite classes: CI (1), CM (4), CV (2), CO (4), CB (2), CH (2), CK (4), and CK/CR (1). The bulk chondrites define a negative correlation in a plot of δ66Zn vs 1/[Zn], confirming earlier results that Zn abundance variations among carbonaceous chondrites cannot be explained by evaporation. Exceptions are CB and CH chondrites, which display Zn systematics consistent with a collisional formation mechanism that created enrichment in heavy Zn isotopes relative to the trend defined by CI-CK. We further report Zn isotope analyses of chondrite components, including chondrules from Allende (CV3) and Mokoia (CV3), as well as an aliquot of Allende matrix. All chondrules are enriched in light Zn isotopes (∼500 ppm on 66Zn/64Zn) relative to the bulk, contrary to what would be expected if Zn were depleted during evaporation, on the other hand the matrix has a complementary heavy isotope composition. We report sequential leaching experiments in un-equilibrated ordinary chondrites, which show sulfides are isotopically heavy compared to silicates and the bulk meteorite by ca. +0.65 per mil on 66Zn/64Zn. We suggest isotopically heavy sulfides were removed from either chondrules or their precursors, thereby producing the light Zn isotope enrichments in chondrules.
von Holstein, Isabella C. C.; Walton Rogers, Penelope; Craig, Oliver E.; Penkman, Kirsty E. H.; Newton, Jason; Collins, Matthew J.
2016-01-01
We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700–1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples. PMID:27764106
Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J
2016-02-02
Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock or stock group for a subset of United States stocks resulted in cross-validation errors ranging from 0 to 5.3%.
RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, N.E.; Holden, N.; Holden,N.E.
2011-07-27
In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotopemore » as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.« less
Fischer, Anko; Manefield, Mike; Bombach, Petra
2016-10-01
Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Isotopic and noble gas geochemistry in geothermal research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, B.M.; DePaolo, D.J.
1997-12-31
The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb)more » are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.« less
Sulfide in the core and the composition of the silicate Earth
NASA Astrophysics Data System (ADS)
Burton, K. W.
2015-12-01
The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive 'chondritic' meteorites. It now appears, however, that the silicate Earth is not 'chondritic', but depleted in incompatible elements, including refractory lithophile and heat-producing elements. Either Earth lost material during planet-building due to collisional erosion or else internal differentiation processes produced a hidden reservoir deep in the early Earth. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [1]. Pioneering work using the short-lived 146Sm-142Nd system strongly suggests that Earth's silicate mantle is non-chondritic [e.g. 2]. The drawback of such radiogenic isotope systems is that it is not possible to distinguish the fractionation of Sm/Nd that occurs during silicate melting from that occurring during the segregation of a sulfide-melt to form the core. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavy values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd Stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Wohlers &Wood, Nature 520, 337 (2015) [2] Boyet & Carlson, Science 309, 576 (2005)
Stable Isotope Ratios as a Biomarker on Mars
NASA Astrophysics Data System (ADS)
van Zuilen, Mark
2008-03-01
As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237-244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189-214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.
Biological forcing controls the chemistry of the coral exoskeleton
NASA Astrophysics Data System (ADS)
Meibom, A.; Mostefaoui, S.; Cuif, J.; Yurimoto, H.; Dauphin, Y.; Houlbreque, F.; Dunbar, R.; Constantz, B.
2006-12-01
A multitude of marine organisms produce calcium carbonate skeletons that are used extensively to reconstruct water temperature variability of the tropical and subtropical oceans - a key parameter in global climate-change models. Such paleo-climate reconstructions are based on the notion that skeletal oxygen isotopic composition and certain trace-element abundances (e.g., Sr/Ca and Mg/Ca ratios) vary in response to changes in the water temperature. However, it is a fundamental problem that poorly understood biological processes introduce large compositional deviations from thermodynamic equilibrium and hinder precise calibrations of many paleo-climate proxies. Indeed, the role of water temperature in controlling the composition of the skeleton is far from understood. We have studied trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate and non-zooxanthellate corals at ultra-structural, i.e. micrometer to sub-micrometer length scales. From this body of work we draw the following, generalized conclusions: 1) Centers of calcification (COC) are not in equilibrium with seawater. Notably, the Sr/Ca ratio is higher than expected for aragonite equilibrium with seawater at the temperature at which the skeleton was formed. Furthermore, the COC are further away from equilibrium with seawater than fibrous skeleton in terms of stable isotope composition. 2) COC are dramatically different from the fibrous aragonite skeleton in terms of trace element composition. 3) Neither trace element nor stable isotope variations in the fibrous (bulk) part of the skeleton are directly related to changes in SST. In fact, changes in SST can have very little to do with the observed compositional variations. 4) Trace element variations in the fibrous (bulk) part of the skeleton are not related to the activity of zooxanthellae. These observations are directly relevant to the issue of biological versus non-biological control over skeleton composition and will be discussed.
Stable isotope fractionation of selenium by natural microbial consortia
Ellis, A.S.; Johnson, T.M.; Herbel, M.J.; Bullen, T.D.
2003-01-01
The mobility and bioavailability of Se depend on its redox state, and reduction of Se oxyanions to less mobile, reduced species controls transport of this potentially toxic element in the environment. Stable isotope fractionation of Se is currently being developed as an indicator of Se immobilization through reduction. In this study, Se isotope fractionation resulting from reduction of Se(VI) and Se(IV) oxyanions by natural microbial consortia was measured in sediment slurry experiments under nearly natural conditions, with no substrate added. Experiments were conducted with a wide range of initial Se concentrations and with sediment and water from three locations with contrasting environmental settings. The products of Se(VI) and Se(IV) reduction were enriched in the lighter isotopes relative to the reactants. Shifts of -2.60/00 to -3.10/00 and -5.50/00 to -5.70/00, respectively, were observed in the 80Se/76Se ratio. These isotopic fractionations did not depend significantly on initial Se concentrations, which were varied from 22 μg/l to 8 mg/l, or on geochemical differences among the sediments. These results provide estimates of Se isotope fractionation in organic-rich wetland environments but may not be appropriate for substrate-poor aquifers and marine sediments.
Kehrig, Helena A; Seixas, Tercia G; Malm, Olaf; Di Beneditto, Ana Paula M; Rezende, Carlos E
2013-10-15
Mercury (Hg), selenium (Se) and nitrogen (δ(15)N) stable isotope were assessed in a tropical food web of Rio de Janeiro's north coast. Isotopic data on muscle suggest a difference related to this parameter along the food web; where top-predators (cetacean and voracious fish) displayed heavier δ(15)N over the entire food web. Both top-predators presented similar δ(15)N values. Cetacean displayed higher Hg and lower Se than voracious fish. Five trophic positions (TP) were found in relation to primary consumer as baseline, ranging from 2.0 to 4.0. Positive relationships were found between trace-element and δ(15)N. The slope of regression equations (0.11 for Se and 0.21 for Hg) and food web magnification factors (2.4 for Se and 5.4 for Hg) showed that Hg presented higher rate of increase over the food web. Simultaneous measurements of trace-elements and ecological tracers emphasize the importance of TP into the trophic structure and distribution of Hg and Se throughout the food web. Copyright © 2013 Elsevier Ltd. All rights reserved.
Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance
NASA Technical Reports Server (NTRS)
Rau, G. H.; Desmarais, David J.
1985-01-01
Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.
Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle
2016-03-15
Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.
NASA Astrophysics Data System (ADS)
Koeniger, Paul; Himmelsbach, Thomas
2016-04-01
Long-term observations of stable isotopes (δ18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.
NASA Astrophysics Data System (ADS)
Peckover, Emily; Mason, Jennifer; Ozbek, Onur; Marca, Alina; Rowe, Peter; Andrews, Julian; Noble, Steve; Brindle, John; Baba, Alper; Kendall, Alan; Al-Omari, Sa'ad
2015-04-01
Palaeoclimatic and palaeoenvironmental reconstructions from two Holocene stalagmites (HY-8 and HY-9) from Sirtlanini Cave, southwest Turkey have been created using petrographic, stable isotope and trace element analyses where the stratigraphy of the stalagmites overlaps from ~6 ka. The cave elevation is 830 metres a.s.l., located 100 km northwest of Lake Golhisar, which has yielded a low resolution Holocene isotopic record (Eastwood et al. 2007), and 120 km northwest of Caltilar Höyük, the site of one of the earliest urban settlements in the region (Momigliano et al., 2011). Both stalagmites contain prominent dark grey-blue layers up to a few mm thick. Trace element analysis reveals that these layers contain elevated Fe, Mn and Zn concentrations suggesting enhanced mobilization of these elements, possibly adsorbed to organic matter on 100 nm to 1 μm soil particles (Hartland et al. 2012). Raman spectroscopy identifies the presence of soot within the layers and evidence for plant material has been identified by SEM along with detritus (clay, quartz). This suggests increased infiltration though the karst, probably due to decreased vegetation cover, a conclusion supported by positive δ13C excursions associated with some grey layers. It is likely that episodes of burning occurred above the cave either due to natural wild fires or anthropogenic activity. The δ18O record of HY-8 shows no long term trend but fluctuates about a mean of -6.3 oḢowever it is punctuated by several shorted lived excursions of 1 o - 2.5 o amplitude. δ13C decreases steadily (-6o to -10 ) through the Mid/Late Holocene with numerous short lived excursions, many >2o and some (not exclusively) associated with grey layers . Carbon and oxygen are poorly correlated, although sympathetic trends are seen during some excursions. δ18O values have probably responded to changes in winter rainfall amounts with δ13C likely reflecting fluctuating vegetation density above the cave, particularly when δ18O corresponds. Petrographic examination of HY-8 reveals a complex fabric. The majority of the stalagmite shows an open fabric of dendritic calcite. Calcite is believed to be primary based on continuous presence of spikey inclusions though dendritic fabric may indicate isotopic disequilibrium. Laminations are defined by compact dendrites but grey layers are defined and bound by dissolution layers. The fabric of the grey layers is mostly microcrystalline believed to be caused by the presence of organic material (Frisia and Borsato 2010). However one prominent layer is defined by equant calcite, implying a thicker film of water. Analysis of the transition between grey layer microcrystalline and dendritic calcite will further resolve the effects on calcite precipitation caused by the inclusion of organics and detritus. Generally petrography will allow investigation into the effects of using fabrics which may potentially alter the environmental signal for stable isotopic interpretation. Further study seeks to establish age models, examine petrography in more detail and to compare stable isotopic records from both stalagmites. We aim to clarify the links between climatic and environmental changes in the region and the temporal isotopic, trace element and petrographic changes observed in the speleothems. References Eastwood, W.J., et al. (2007) J. Quat. Sci., 22, 327-341. Hartland, A., et al. (2012) Chem. Geol. 304-305, 68-82. Momigliano, N., et al. (2011) Anatolian Studies, 6, 61-121. Frisia, S., & Borsato, A. (2010) Developments in Sedimentology, 61, 269-318.
Chung, Ill-Min; Kim, Jae-Kwang; Lee, Kyoung-Jin; Park, Sung-Kyu; Lee, Ji-Hee; Son, Na-Young; Jin, Yong-Ik; Kim, Seung-Hyun
2018-02-01
Rice (Oryza sativa L.) is the world's third largest food crop after wheat and corn. Geographic authentication of rice has recently emerged asan important issue for enhancing human health via food safety and quality assurance. Here, we aimed to discriminate rice of six Asian countries through geographic authentication using combinations of elemental/isotopic composition analysis and chemometric techniques. Principal components analysis could distinguish samples cultivated from most countries, except for those cultivated in the Philippines and Japan. Furthermore, orthogonal projection to latent structure-discriminant analysis provided clear discrimination between rice cultivated in Korea and other countries. The major common variables responsible for differentiation in these models were δ 34 S, Mn, and Mg. Our findings contribute to understanding the variations of elemental and isotopic compositions in rice depending on geographic origins, and offer valuable insight into the control of fraudulent labeling regarding the geographic origins of rice traded among Asian countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Loss of oxygen, silicon, sulfur, and potassium from the lunar regolith
NASA Technical Reports Server (NTRS)
Clayton, R. N.; Mayeda, T. K.; Hurd, J. M.
1974-01-01
The processes of formation and maturation of lunar soils lead to enrichments in the heavy stable isotopes of oxygen, silicon, sulfur, and potassium. The isotopic enrichment implies substantial losses of these elements from the moon. Vaporization by micrometeorite impact and by ion sputtering have removed at least 1% of the mass of the regolith. The losses of sulfur and potassium amount to at least 20-30% of their original abundance in the regolith.
Multi-proxies Approach of Climatic Records In Terrestrial Mollusks Shells
NASA Astrophysics Data System (ADS)
Labonne, M.; Rousseau, D. D.; Ben Othman, D.; Luck, J. M.; Metref, S.
Fossil land snails shells constitute a valuable source of information for the study of Quaternary deposits as they are commonly preserved in many regions and notably in loess sequences. The use of stable isotope composition of the carbonate in the shells was previously applied to reconstruct past climate or environnements but the technic was not widely exploited and compared with other proxies from the same sequence. In this study, we have analysed stables isotopes, trace elements and Sr isotopes from both shells of land snails Vertigo modesta and the sediment from the Eustis upper Pleistocene loess sequence (Nebraska, USA). This serie developed during the last glaciation and records the last deglaciation between 18,000 and 12,000 B.P. years. We compare the paleoclimatic information obtained by different proxies, such as mag- netic susceptibility, temperature and moisture estimated by land snails assemblage with geochemical data measured on land snails shells in order to validate the climatic information obtained with this proxy. Our study demonstrates that shell carbonate reflects environmental conditions estimated by other proxies. Carbon and oxygen iso- topes show cyclic variations (millenial cycles) along the profile which correlate with stratigraphic units and could be link with the retreat of the Laurentide ice sheet. Trace element and Sr isotopes in the shells indicate various origins for the eolian dusts in the two main loess units along the sequence.
NASA Astrophysics Data System (ADS)
Vollstaedt, Hauke; Mezger, Klaus; Leya, Ingo
2016-09-01
Solar nebula processes led to a depletion of volatile elements in different chondrite groups when compared to the bulk chemical composition of the solar system deduced from the Sun's photosphere. For moderately-volatile elements, this depletion primarily correlates with the element condensation temperature and is possibly caused by incomplete condensation from a hot solar nebula, evaporative loss from the precursor dust, and/or inherited from the interstellar medium. Element concentrations and interelement ratios of volatile elements do not provide a clear picture about responsible mechanisms. Here, the abundance and stable isotope composition of the moderately- to highly-volatile element Se are investigated in carbonaceous, ordinary, and enstatite chondrites to constrain the mechanism responsible for the depletion of volatile elements in planetary bodies of the inner solar system and to define a δ 82 / 78 Se value for the bulk solar system. The δ 82 / 78 Se of the studied chondrite falls are identical within their measurement uncertainties with a mean of - 0.20 ± 0.26 ‰ (2 s.d., n = 14, relative to NIST SRM 3149) despite Se abundance depletions of up to a factor of 2.5 with respect to the CI group. The absence of resolvable Se isotope fractionation rules out a kinetic Rayleigh-type incomplete condensation of Se from the hot solar nebula or partial kinetic evaporative loss on the precursor material and/or the parent bodies. The Se depletion, if acquired during partial condensation or evaporative loss, therefore must have occurred under near equilibrium conditions to prevent measurable isotope fractionation. Alternatively, the depletion and cooling of the nebula could have occurred simultaneously due to the continuous removal of gas and fine particles by the solar wind accompanied by the quantitative condensation of elements from the pre-depleted gas. In this scenario the condensation of elements does not require equilibrium conditions to avoid isotope fractionation. The results further suggest that the processes causing the high variability of Se concentrations and depletions in ordinary and enstatite chondrites did not involve any measurable isotope fractionation. Different degrees of element depletions and isotope fractionations of the moderately-volatile elements Zn, S, and Se in ordinary and enstatite chondrites indicate that their volatility is controlled by the thermal stabilities of their host phases and not by the condensation temperature under canonical nebular conditions.
Akamatsu, Fumikazu; Suzuki, Yaeko; Kato, Yoshikazu; Yoshimizu, Chikage; Tayasu, Ichiro
2016-01-15
Carbon stable isotope analysis of bulk samples and fatty acids is an established method for tracing carbon flow pathways and reconstructing trophic interactions, but there is no consensus on which sample drying method should be used for sample preparation. The aim of this study was to determine if freeze-drying and oven-drying treatments used to prepare samples of the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium for bulk and fatty-acid-specific carbon stable isotope analysis yield different isotopic ratio values. Five individuals each from two species were split in half; one half was freeze-dried and the other half was oven-dried. The samples were ground and the δ(13)C values of the bulk samples and eight fatty acids were measured following combustion using an isotope ratio mass spectrometer coupled to an elemental analyzer or gas chromatography system. The mean difference in the bulk and fatty acid δ(13)C values between freeze-dried and oven-dried samples was small (≤0.1‰ in both cases), although relatively large variations were observed in individual fatty-acid-specific δ(13)C values (maximum of ≤0.9 ‰). There were no significant differences in either bulk sample or fatty-acid-specific δ(13)C values between freeze-dried or oven-dried samples of the same species. Freeze-drying and oven-drying are equally acceptable methods for preparing freshly caught S. marmorata and E. latifolium samples for bulk and fatty-acid-specific carbon stable isotope analyses. Copyright © 2015 John Wiley & Sons, Ltd.
Le Croizier, Gaël; Schaal, Gauthier; Gallon, Régis; Fall, Massal; Le Grand, Fabienne; Munaron, Jean-Marie; Rouget, Marie-Laure; Machu, Eric; Le Loc'h, François; Laë, Raymond; De Morais, Luis Tito
2016-12-15
The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology. Copyright © 2016 Elsevier B.V. All rights reserved.
Tracking the weathering of basalts on Mars using lithium isotope fractionation models
Losa‐Adams, Elisabeth; Gil‐Lozano, Carolina; Gago‐Duport, Luis; Uceda, Esther R.; Squyres, Steven W.; Rodríguez, J. Alexis P.; Davila, Alfonso F.; McKay, Christopher P.
2015-01-01
Abstract Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt‐forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium—7Li and 6Li—have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals—the source of Li—and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history. PMID:27642264
Improved gas tagging and cover gas combination for nuclear reactor
Gross, K.C.; Laug, M.T.
1983-09-26
The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.
NASA Astrophysics Data System (ADS)
Cowie, G.; Mowbray, S.; Belyea, L.; Laing, C.; Allton, K.; Abbott, G.; Muhammad, A.
2010-12-01
Northern peatlands store around one third of global soil C and thus represent a key reservoir. To elucidate how these systems might respond to climate change, field- and laboratory-based experimental incubation studies are being conducted at sites across a natural peatland gradient in the boreonemoral zone of central Sweden (Ryggmossen). The site comprises four successional stages, from edge to centre; Swamp Forest (SF), Lagg Fen (LF), Bog Margin (BM) and Bog Plateau (BP). The well-preserved succession shows strong decreases in mineral cations and pH, and distinct changes in vegetation and water-table depth. As an underpinning to these experiments, comprehensive characterization of natural soil organic matter (SOM) alteration has been carried out through detailed analyses of vegetation and downcore profiles at contrasting topographic sites (hummock vs hollow) in each of the four locations. As illustrated in Figure 1, while some similarities occur in downcore trends, contrasts are observed in C and N elemental and stable isotopic compositions, between stages and, in some cases, between microtopographic settings. Downcore trends and intersite differences are also observed in biochemical yields and molecular composition (carbohydrates, amino acids, phenols, lipids and D/L amino acid ratios). These reflect SOM decay and alteration combined with the effects of contrasting hydrologic, redox and nutrient regimes and differing vegetation and microbial inputs at each of the study sites. Multivariate analysis is used to to elucidate compositional patterns that characterize and delineate progressive SOM decay, specific vegetation types, and the effects of contrasting environmental conditions at the different sites. Figure 1. A. Organic carbon content (wt %), B. Atomic ratio of organic C to total N, C. Stable C isotopic composition of organic C (d13Corg), and D. Stable N isotopic composition of total nitrogen (d15N), all for core profiles from contrasting settings (hummock and hollow) at locations spanning a peatland gradient. Site locations are defined in the text.
NASA Technical Reports Server (NTRS)
Schidlowski, M.
1983-01-01
Preferential metabolization of isotopically light carbon and sulfur has resulted in a fractionation of the stable isotopes of these elements on a global scale, with the light species (C-12, S-32) markedly concentrated in biogenic materials. Since the biological effects are basically retained when carbon and sulfur are incorporated in sediments, the respective fractionations are propagated into the rock section of the geochemical cycle, this having consequently caused a characteristic bipartition of both elements between 'light' and 'heavy' crustal reservoirs. Preservation of the biological isotope effects in sedimentary rocks makes it possible to trace the underlying biochemical processes back over most of the geological record. According to the available evidence, biological (autotrophic) carbon fixation arose prior to 3.5(if not 3.8) billion years ago, while the emergence of dissimilatory sulfate reduction antedates the appearance of the oldest presumably bacteriogenic sulfur isotope patterns in rocks between 2.7 and 2.8 billion years old. Hence, biological control of the terrestrial carbon and sulfur cycles has been established very early in the earth's history.
NASA Astrophysics Data System (ADS)
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Zemlys, Petras; Ertürk, Ali; Mėžinė, Jovita
2015-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Here we show how the SI analysis was used to validate the hydrodynamic model on the basis of residence time. The average residence time of the Nemunas waters is estimated through SI data and is then compared with the model data computed through standard algorithms. Seasonal changes of carbon content are taken care of through a preliminary application of a carbon kinetic model. The results are compared to literature data.
Münster-Müller, S; Scheid, N; Holdermann, T; Schneiders, S; Pütz, M
2018-05-21
In this paper results of a pilot study on the profiling of the synthetic cannabinoid receptor agonist 5F-PB-22 (5F-QUPIC, pentylfluoro-1H-indole-3-carboxylic acid-8-quinolinyl ester) via isotope ratio mass spectrometry are presented. It is focused on δ 13 C, δ 15 N and δ 2 H isotope ratios, which are determined using elemental analyser (EA) and high temperature elemental analyser (TC/EA) coupled to an isotope ratio mass spectrometer (IRMS). By means of a sample of pure material of 5F-PB-22 it is shown that the extraction of 5F-PB-22 from herbal material, a rapid clean-up procedure, or preparative column chromatography had no influences on the isotope ratios. Furthermore, 5F-PB-22 was extracted from fourteen different herbal blend samples ("Spice products" from police seizures) and analysed via IRMS, yielding three clusters containing seven, five and two samples, distinguishable through their isotopic composition, respectively. It is assumed that herbal blends in each cluster have been manufactured from individual batches of 5F-PB-22. This article is protected by copyright. All rights reserved.
Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants
2016-09-14
Concentration ppb 87 1000 Stable Isotopes 9 6 Odd Isotopes 2 1 Critical Pressure MPa 5.84 5.50 Critical Temperature K 290 209 Boiling Point (1 atm) K 161 120...The velocity profile in Fig. 6 shows the velocities slightly negative, nearest the anode (at approximately - 9 mm). This negative velocity near the...Krypton and Xenon Propellants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) William A. Hargus, Jr.; Gregory M. Azarnia; Michael R
NASA Astrophysics Data System (ADS)
Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.
2017-12-01
Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.
Integration of Stable Isotope and other Mass Spectral Data for Microbial Forensics
NASA Astrophysics Data System (ADS)
Kreuzer-Martin, H. W.; Jarman, K. H.
2008-12-01
The nascent field of microbial forensics requires the development of diverse signatures as indicators of various aspects of the production environment of microorganisms. We have characterized isotopic relationships between Bacillus subtilis ATCC 6051 spores and their growth environment, using as a database the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of a total of 247 separate cultures of spores produced on a total of 32 different culture media. We have analyzed variation within individual samples, between cultures produced in tandem, and between cultures produced in the same medium but at different times in the context of using stable isotope ratios as a signature for sample matching. We have correlated the stable isotope ratios of carbon, nitrogen, oxygen, and hydrogen of growth medium nutrients or water and spores and show examples of how these relationships can be used to exclude nutrient or water samples as possible growth substrates for specific cultures. The power of stable isotope ratio data can be greatly enhanced by combining it with orthogonal datasets that speak to different aspects of an organism's production environment. We developed a Bayesian network that follows the causal relationship from culture medium recipe to spore elemental content as measured by secondary ion mass spectrometry (SIMS), carbon and nitrogen stable isotope ratios, and to the presence of residual agar by electrospray ionization MS (ESI-MS). The network was developed and tested on data from three replicate cultures of B. subtilis ATCC 49760 in broth and agar-containing versions of four different nutrient media. To test the network, data from SIMS analyses of B. subtilis 49760 produced in a different medium, from approximately 200 ESI MS analyses of B. thuringensis ATCC 58890 and B. anthracis Sterne grown in five additional media, and the stable isotope data from the 247 cultures of B. subtilis 6051 spores were used. This network was able to characterize Bacillus spores grown under multiple culture conditions with an error rate of less than 0.07 in characterizing carbon and nitrogen source, addition of metals, and presence of agar, and an error rate of 0.19 in characterizing the culture medium recipe. The integration of multiple analytical techniques allowed us to maximize the amount of information obtained from unknown source microorganisms. The Bayesian network approach allowed us to combine scientific understanding with well established statistical methodologies to characterize a microbe's growth environment without the need for reference signatures. Similar approaches could be applied to data from other scientific disciplines, as well as to other problems of attribution.
HYDROLOGIC FLOWPATHS INFLUENCE INORGANIC AND ORGANIC NUTRIENT LEACHING IN A FOREST SOIL
Hydrologic pathways through soil affect element leaching by determining the relative importance of biogeochemical processes such as sorption and decomposition. We used stable hydrogen isotopes of water (δD) to examine the influence of flowpaths on soil solution chemistry in a mat...
Isotope effect of mercury diffusion in air
Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.
2014-01-01
Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380
Isotope effect of mercury diffusion in air.
Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R
2014-01-01
Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.
Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.
2009-01-01
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N values. Comparative ??13C and ??15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials.
Distinguishing sources of ground water recharge by using δ2H and δ18O
Blasch, Kyle W.; Bryson, Jeannie R.
2007-01-01
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.
Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary
NASA Astrophysics Data System (ADS)
Wu, Hongjie; He, Yongsheng; Teng, Fang-Zhen; Ke, Shan; Hou, Zhenhui; Li, Shuguang
2018-02-01
Significant magnesium and iron isotope fractionations were observed in an adjacent gabbro and granite profile from the Dabie Orogen, China. Chilled margin and granitic veins at the gabbro side and gabbro xenoliths in the granite indicate the two intrusions were emplaced simultaneously. The δ26Mg decreases from -0.28 ± 0.04‰ to -0.63 ± 0.08‰ and δ56Fe increases from -0.07 ± 0.03‰ to +0.25 ± 0.03‰ along a ∼16 cm traverse from the contact to the granite. Concentrations of major elements such as Al, Na, Ti and most trace elements also systematically change with distance to the contact. All the observations suggest that weathering, magma mixing, fluid exsolution, fractional crystallization and thermal diffusion are not the major processes responsible for the observed elemental and isotopic variations. Rather, the negatively correlated Mg and Fe isotopic compositions as well as co-variations of Mg and Fe isotopes with Mg# reflect Mg-Fe inter-diffusion driven isotope fractionation, with Mg diffusing from the chilled gabbro into the granitic melt and Fe oppositely. The diffusion modeling yields a characteristic diffusive transport distance of ∼6 cm. Consequently, the diffusion duration, during which the granite may have maintained a molten state, can be constrained to ∼2 My. The cooling rate of the granite is calculated to be 52-107 °C/My. Our study suggests diffusion profiles can be a powerful geospeedometry. The observed isotope fractionations also indicate that Mg-Fe inter-diffusion can produce large stable isotope fractionations at least on a decimeter scale, with implications for Mg and Fe isotope study of mantle xenoliths, mafic dikes, and inter-bedded lavas.
NASA Astrophysics Data System (ADS)
Bilenker, L.; Weis, D.; Scoates, J. S.
2017-12-01
We present stable Fe and radiogenic isotope and complementary trace element data for samples from Atlantis Massif. This oceanic core complex is located at 30°N where the Atlantis Transform Fault intersects the Mid-Atlantic Ridge (MAR) and is associated with the Lost City Hydrothermal Field (LCHF). It is a unique place to investigate the abiotic and biotic geochemical processes that play a role in the alteration of both crustal and mantle seafloor rocks. The samples analyzed represent a shallow (<15 m) survey of five drill sites (IODP Expedition 357) within Atlantis Massif, varying in distance from the LCHF and MAR. Analyses were performed on a sample set spanning a wide range in degree of alteration and lithology. Bulk measurements involved dissolving whole rock powders, whereas in situ analyses were performed on digested microdrilled samples or by laser ablation. Bulk rock Fe isotope values (n = 34) are correlated with loss-on-ignition (LOI) by sample lithology and location relative to LCHF. Using LOI as a proxy for degree of alteration, this observation indicates that the Fe isotope systematics of seafloor crustal and mantle rocks preserve indicators of fluid flow and source. The Hf and Nd isotope compositions for various lithologies form all analyzed sites are homogeneous, indicating minimal alteration of these isotopic systems. Bulk Sr values provide insight into elemental exchange between seawater and the surface of Atlantis Massif and bulk Pb isotopes allow for fingerprinting of the source of basalt breccias through comparison with published Pb isotope values of MAR basalts. The new results cluster around the Pb, Hf, Nd isotopic composition of mid-ocean ridge basalt from 30.68°N and do not match samples north or south of that location. In situ Fe isotope data within three altered samples reflect varying degrees of hydrothermal and seawater interaction, where the Fe isotope ratios within each sample are likely correlated with extent of exchange or redox. Laser trace element and Pb isotope data in progress will allow us to investigate this further. This study contributes to our understanding of element mobility and mass transfer during chemical reactions within the seafloor, provides insight into the source of the lithological units and fluid flow, and allows for quantification of alteration processes.
NASA Astrophysics Data System (ADS)
Raia, N. H.; Cooperdock, E. H. G.; Barnes, J.; Stockli, D. F.; Schwarzenbach, E. M.
2016-12-01
Serpentinized ultramafic rocks are commonly found in exhumed HP/LT subduction complexes, but their tectonic origins (i.e., setting of serpentinization) are difficult to decipher due to extensive alteration. Growing literature and geochemical datasets demonstrate that immobile elements (REE, HFSE) in serpentinites can retain magmatic signatures indicative of the tectonic setting of parent peridotite, while fluid-mobile elements and stable isotopic signatures shed light on the fluids causing serpentinization. This study combines whole-rock trace and major element geochemistry, stable isotope (δD and δO) analyses with petrographic observation to determine the tectonic origin of ultramafic rocks in the HP/LT Aegean subduction complex. The best-preserved HP rocks of the Cycladic Blueschist Unit (CBU) are found on Syros, Greece, where serpentinized ultramafic rocks within the CBU are closely associated with metamorphosed remnants of subducted oceanic crust. All samples are completely serpentinized, lacking relict pyroxene or spinel grains, with typical assemblages consisting of serpentine, talc, chlorite, magnetite, and minor carbonate. The serpentinizing fluid was characterized using stable isotopes. δD and δO values of bulk-rock serpentinite powders and chips, respectively, suggest seafloor serpentinites hydrated by seawater at low T, typical of alteration at mid-ocean ridges and hyper-extended margins (δD = -64 to -33‰ and δO = 5.2 to 9.0‰). To fingerprint a tectonic origin, whole rock serpentinite REE patterns are compared to a global database of whole rock serpentinite analyses from fore-arc mantle wedge, mid-ocean ridge, and hyper-extended margin tectonic settings. Whole rock major element, trace element, and REE analyses are consistent with limited melt extraction, flat REE patterns (LaN/SmN = 0.2-2.6, SmN/YbN = 0.3-3.5; N= C1 normalized), and do not show pronounced Eu anomalies. These data are consistent with abyssal peridotites derived from hyper-extended margin settings, although some overlap with mid-ocean ridge serpentinites makes it difficult to rule out. In any case, the geochemical signatures retained in these serpentinites indicate they are unlikely sourced from the mantle wedge, as has been historically speculated.
Future Opportunities at the Facility for Rare Isotope Beams
NASA Astrophysics Data System (ADS)
Sherrill, Bradley M.
2018-05-01
This paper overviews the Facility for Rare Isotope Beams, FRIB, its construction status at the time of the conference, and its scientific program. FRIB is based on a high-power, heavy-ion, superconducting linear accelerator that is designed to deliver at least 400kW at 200 MeV/u for all stable-ion beams and produce a large fraction of all possible isotopes of the elements. A three-stage fragment separator will separate rare isotope beams for use in experiments at high energy or stopped and reaccelerated to up to 10MeV/u. The facility is expected to have first beams in 2021. An overview of the planned scientific program, experimental capabilities, and equipment initiatives are presented.
Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)
NASA Astrophysics Data System (ADS)
Zambardi, T.; Sonke, J. E.; Toutain, J. P.; Sortino, F.; Shinohara, H.
2009-01-01
Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg (fum)T, plume gaseous elemental Hg (g)0 and plume particulate Hg (p)II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on Hg T/SO 2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y - 1 , in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1-3), 115-121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO 2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg (p)II increases with distance from the fumarole vent, at the expense of Hg (g)0 and indicates significant in-plume oxidation and condensation of fumarole Hg (fum)T. Relative to the NIST SRM 3133 Hg standard, the stable isotopic compositions of Hg are δ 202Hg (fum)T = - 0.74‰ ± 0.18 (2SD, n = 4) for condensed gaseous fumarole Hg (fum)T, δ 202Hg (g)0 = - 1.74‰ ± 0.36 (2SD, n = 1) for plume gaseous elemental Hg (g)0 at the F0 fumarole, and δ 202Hg (p)II = - 0.11‰ ± 0.18 (2SD, n = 4) for plume particulate Hg (p)II. The enrichment of Hg (p)II in the heavy isotopes and Hg (g)0 in the light isotopes relative to the total condensed fumarolic Hg (fum)T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion in ambient T° atmosphere. A first order Rayleigh equilibrium condensation isotope fractionation model yields a fractionation factor α cond-gas of 1.00135 ± 0.00058.
Stable sulfur isotope ratios and chemical compositions of fine aerosols (PM2.5) in Beijing, China.
Wei, Lianfang; Yue, Siyao; Zhao, Wanyu; Yang, Wenyi; Zhang, Yingjie; Ren, Lujie; Han, Xiaokun; Guo, Qingjun; Sun, Yele; Wang, Zifa; Fu, Pingqing
2018-08-15
Pervasive particulate pollution has been observed over large areas of the North China Plain. The high level of sulfate, a major component in fine particles, is pronounced during heavy pollution periods. Being different from source apportionments by atmospheric chemistry-transport model and receptor modeling methods, here we utilize sulfur isotopes to discern the potential emission sources. Sixty-five daily PM 2.5 samples were collected at an urban site in Beijing between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate were analyzed. The "fingerprint" characteristics of stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 (HYbrid Single-Particle Lagrangian Integrated Trajectory) and FLEXPART ("FLEXible PARTicle dispersion model"), was employed to identify potential aerosol sources in Beijing. Results exhibited a distinctive seasonality with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species of PM 2.5 . Elevated concentrations of chloride with high organic matter were found in autumn and winter as a result of enhanced fossil fuel (mainly coal) combustion. The δ 34 S values of the Beijing aerosols ranged from 2.8‰ to 9.9‰ with an average of 6.0 ± 1.8‰, further indicating that the major sulfur source was direct coal burning emission. Owing to the changing patterns between oxidation pathways of S(IV) in different seasons, δ 34 S values varied with a winter maximum (8.2 ± 1.1‰) and a summer minimum (4.9 ± 1.9‰). The results of trajectory clustering and FLEXPART demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios (4.6 ± 0.8‰) were associated with air masses from the south or east, whereas lower sulfate concentrations with heavier sulfur isotope ratios (6.7 ± 1.6‰) were observed when the air masses were mainly from the north or northwest. These results suggested that the fine aerosol pollution in Beijing, especially sulfate pollution, was mainly due to coal combustion sources from regional and local regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Tellurium Stable Isotope Fractionation in Chondritic Meteorites
NASA Astrophysics Data System (ADS)
Fehr, M. A.; Hammond, S. J.; Parkinson, I. J.
2014-09-01
New Te double spike procedures were set up to obtain high-precision accurate Te stable isotope data. Tellurium stable isotope data for 16 chondrite falls are presented, providing evidence for significant Te stable isotope fractionation.
Trace, Minor Elements, and Stable Isotopes in Montastraea faveolata as an Indicator of Stress
NASA Astrophysics Data System (ADS)
Holmes, C. W.; Buster, N. A.; Hudson, J. H.
2004-12-01
Coral cores were obtained along the fore reef from Looe Key Reef, Florida Keys, and analyzed for minor and trace elements by laser ablation ICP-MS and stable oxygen and carbon isotopes. Sample locations within the corals were chosen based on the location of annual bands as determined by x-radiographs. The LA-ICP-MS data were obtained along the corallite wall. Boron, magnesium, and phosphorous concentrations can be correlated among the corals analyzed. The highest elemental concentrations and the carbon and oxygen isotopic records in the Looe Key Montastraea faveolata were linked to times of reported bleaching. Boron, a common element in sea water, exists as two species, B(OH)3 below a pH of 8.0 and B(OH)4- above a pH of 8. Hemming and others (1998) determined that boron varied positively with 13C, both being coincident with high-density bands. They proposed that photosynthetic activity of zooxanthellae is the driving process, causing the shift in pH. During periods of stress, energy that would be used for normal coral activity (reproduction and growth) is diverted for tissue repair, food gathering, and waste removal. At extreme stress, these activities are reduced. As a result of decreased zooxanthellate activity, the chemistry at the organic-inorganic boundary may change as follows. 1. The pH rises, increasing the boron levels in the carbonate skeleton. 2. Phosphorous, expelled during normal growth activity, is retained, inhibiting the precipitation of "normal" aragonite. 3. The Mg/Ca ratio changes as calcium is being used preferentially. In the Looe Key Reef corals, boron, magnesium, and phosphorous all were elevated during times of reported bleaching. Within the same time intervals, the δ 13C, which displayed values of between -2 % and -3 % in the "normal" light-density portion of the skeleton, approached a δ 13C of 0 % in the stressed, high-density portion of the skeleton. Thus, the combination of high magnesium, boron, and phosphorous concentrations, coupled with the stable isotopic records of carbon and oxygen, correlate to stress events, such as bleaching in the Looe Key corals. These relations seem to confirm the model proposed by Hemming and others, and this chemistry may be useful in determining the record of stress events in other corals. Hemming, N.G., Guilderson, T.P. and Fairbanks, R.G., 1998, Seasonal variations in the boron isotopic composition of corals, a productivity signal?, Global Biogeochemical Cycles, v. 12, p.581-586.
Metzner, Ralf; Schneider, Heike Ursula; Breuer, Uwe; Thorpe, Michael Robert; Schurr, Ulrich; Schroeder, Walter Heinz
2010-01-01
Fluxes of mineral nutrients in the xylem are strongly influenced by interactions with the surrounding stem tissues and are probably regulated by them. Toward a mechanistic understanding of these interactions, we applied stable isotope tracers of magnesium, potassium, and calcium continuously to the transpiration stream of cut bean (Phaseolus vulgaris) shoots to study their radial exchange at the cell and tissue level with stem tissues between pith and phloem. For isotope localization, we combined sample preparation with secondary ion mass spectrometry in a completely cryogenic workflow. After 20 min of application, tracers were readily detectable to various degrees in all tissues. The xylem parenchyma near the vessels exchanged freely with the vessels, its nutrient elements reaching a steady state of strong exchange with elements in the vessels within 20 min, mainly via apoplastic pathways. A slow exchange between vessels and cambium and phloem suggested that they are separated from the xylem, parenchyma, and pith, possibly by an apoplastic barrier to diffusion for nutrients (as for carbohydrates). There was little difference in these distributions when tracers were applied directly to intact xylem via a microcapillary, suggesting that xylem tension had little effect on radial exchange of these nutrients and that their movement was mainly diffusive. PMID:19965970
Diet-to-female and female-to-pup isotopic discrimination in South American sea lions.
Drago, Massimiliano; Franco-Trecu, Valentina; Cardona, Luis; Inchausti, Pablo
2015-08-30
The use of accurate, species-specific diet-tissue discrimination factors is a critical requirement when applying stable isotope mixing models to predict consumer diet composition. Thus, diet-to-female and female-to-pup isotopic discrimination factors in several tissues for both captive and wild South American sea lions were estimated to provide appropriate values for quantifying feeding preferences at different timescales in the wild populations of this species. Stable carbon and nitrogen isotope ratios in the blood components of two female-pup pairs and females' prey muscle from captive individuals were determined by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) to calculate the respective isotopic discrimination factors. The same analysis was carried out in both blood components, and skin and hair tissues for eight female-pup pairs from wild individuals. Mean diet-to-female Δ(13) C and Δ(15) N values were higher than the female-to-pup ones. Pup tissues were more (15) N-enriched than their mothers but (13) C-depleted in serum and plasma tissues. In most of the tissue comparisons, we found differences in both Δ(15) N and Δ(13) C values, supporting tissue-specific discrimination. We found no differences between captive and wild female-to-pup discrimination factors either in Δ(13) C or Δ(15) N values of blood components. Only the stable isotope ratios in pup blood are good proxies of the individual lactating females. Thus, we suggest that blood components are more appropriate to quantify the feeding habits of wild individuals of this species. Furthermore, because female-to-pup discrimination factors for blood components did not differ between captive and wild individuals, we suggest that results for captive experiments can be extrapolated to wild South American sea lion populations. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Balter, Vincent; Nogueira da Costa, Andre; Paky Bondanese, Victor; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre
2015-01-01
The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.
Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca
2017-01-01
Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations.
Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca
2017-01-01
Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations. PMID:28046021
Sulfide in the core and the Nd isotopic composition of the silicate Earth
NASA Astrophysics Data System (ADS)
McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.
2016-12-01
The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Carlson et al. Science 316, 1175 (2007) [3] Campbell& O'Neill Nature 483, 553 (2012) [4] Burkhardt Goldschmidt Ab. 429 (2015) [5] Wohlers &Wood, Nature 520, 337 (2015)
Isotopic and Hydrogeochemical Assessment of Groundwater quality of Punjab and Haryana, India.
NASA Astrophysics Data System (ADS)
Jyoti, V.; Douglas, E. M.; Hannigan, R.; Schaaf, C.; Moore, J.
2016-12-01
Punjab and Haryana lie in the semi-arid region of northwestern India and are characterized by a limited access to freshwater resources and an increasing dependence on groundwater resources to meet human demand, resulting in overexploitation. The objectives of the present study was to characterize groundwater recharge sources using stable isotopes of (δ2H) and (δ18O) and to trace geochemical evolution of groundwater using rare earth elements (REEs). Samples were collected from 30 different locations including shallow domestic handpumps, deep irrigation wells, surface water and rainwater. Samples were analyzed for stable isotopes of (δ2H) and (δ18O) using Isotope Ratio Mass Spectrometry (IRMS) and trace elements using Inductively Coupled Plasma Mass Spectrometry (ICPMS) at University of Massachusetts Boston. Precipitation, surface water and irrigation return flow were identified as the primary sources of recharge to groundwater. Sustainability of recharge sources is highly dependent on the glacier-fed rivers from the Himalayas that are already experiencing impacts from climate change. Geochemistry of REEs revealed geochemically evolved groundwater system with carbonate subsurface weathering as major hydrological processes. Enhanced dissolution of carbonates in the future can be a serious issue with extremely hard groundwater leaving scaly deposits inside pipes and wells. This would not only worsen the groundwater quality but would impose financial implications on the groundwater users in the community. If irrigated culture is to survive as an economically viable and environmentally sustainable activity in the region, groundwater management activities have to be planned at the regional scale.
Chung, Ill-Min; Kim, Jae-Kwang; Prabakaran, Mayakrishnan; Yang, Jin-Hee; Kim, Seung-Hyun
2016-05-01
Although rice (Oryza sativa L.) is the third largest food crop, relatively fewer studies have been reported on rice geographical origin based on light element isotope ratios in comparison with other foods such as wine, beef, juice, oil and milk. Therefore this study tries to discriminate the geographical origin of the same rice cultivars grown in different Asian countries using the analysis of C, N, O and S stable isotope ratios and chemometrics. The δ(15) NAIR , δ(18) OVSMOW and δ(34) SVCDT values of brown rice were more markedly influenced by geographical origin than was the δ(13) CVPDB value. In particular, the combination of δ(18) OVSMOW and δ(34) SVCDT more efficiently discriminated rice geographical origin than did the remaining combinations. Principal component analysis (PCA) revealed a clear discrimination between different rice geographical origins but not between rice genotypes. In particular, the first components of PCA discriminated rice cultivated in the Philippines from rice cultivated in China and Korea. The present findings suggest that analysis of the light element isotope composition combined with chemometrics can be potentially applicable to discriminate rice geographical origin and also may provide a valuable insight into the control of improper or fraudulent labeling regarding the geographical origin of rice worldwide. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
de Winter, Niels J.; Vellekoop, Johan; Vorsselmans, Robin; Golreihan, Asefeh; Soete, Jeroen; Petersen, Sierra V.; Meyer, Kyle W.; Casadio, Silvio; Speijer, Robert P.; Claeys, Philippe
2018-06-01
In order to assess the potential of the honeycomb oyster Pycnodonte vesicularis for the reconstruction of palaeoseasonality, several specimens recovered from late Maastrichtian strata in the Neuquén Basin (Argentina) were subject to a multi-proxy investigation, involving scanning techniques and trace element and isotopic analysis. Combined CT scanning and light microscopy reveals two calcite microstructures in P. vesicularis shells (vesicular and foliated calcite). Micro-XRF analysis and cathodoluminescence microscopy show that reducing pore fluids were able to migrate through the vesicular portions of the shells (aided by bore holes) and cause recrystallization of the vesicular calcite. This renders the vesicular portions not suitable for palaeoenvironmental reconstruction. In contrast, stable isotope and trace element compositions show that the original chemical composition of the foliated calcite is well-preserved and can be used for the reconstruction of palaeoenvironmental conditions. Stable oxygen and clumped isotope thermometry on carbonate from the dense hinge of the shell yield sea water temperatures of 11°C, while previous TEX86H palaeothermometry yielded much higher temperatures. The difference is ascribed to seasonal bias in the growth of P. vesicularis, causing warm seasons to be underrepresented from the record, while TEX86H palaeothermometry seems to be biased towards warmer surface water temperatures. The multi-proxy approach employed here enables us to differentiate between well-preserved and diagenetically altered portions of the shells and provides an improved methodology for reconstructing palaeoenvironmental conditions in deep time. While establishing a chronology for these shells was complicated by growth cessations and diagenesis, cyclicity in trace elements and stable isotopes allowed for a tentative interpretation of the seasonal cycle in late Maastrichtian palaeoenvironment of the Neuquén Basin. Attempts to independently verify the seasonality in sea water temperature by Mg / Ca ratios of shell calcite are hampered by significant uncertainty due to the lack of proper transfer functions for pycnodontein oysters. Future studies of fossil ostreid bivalves should target dense, foliated calcite rather than sampling bulk or vesicular calcite. Successful application of clumped isotope thermometry on fossil bivalve calcite in this study indicates that temperature seasonality in fossil ostreid bivalves may be constrained by the sequential analysis of well-preserved foliated calcite samples using this method.
Auerswald, Karl; Rossmann, Andreas; Schäufele, Rudi; Schwertl, Michael; Monahan, Frank J; Schnyder, Hans
2011-12-30
Stable isotope analysis of hair has found applications in many fields of science because it provides a temporally resolved, fairly stable isotopic archive of mammalian individuals. We investigated whether this hair archive is modified by natural weathering while attached to a living animal. We analyzed the tail switch hairs of one suckler cow, sampled seven times over a period of four annual summer pasture-winter stall feeding cycles. We compared relative isotope ratios (δ²H, δ¹³C, δ¹⁵N, δ¹⁸O and δ³⁴S) of sections of hair that grew simultaneously but were exposed to natural weathering conditions over different periods of time. Natural wear caused a loss of mass of approx. 0.13% day⁻¹, with no apparent effect of environmental conditions. Changes in δ²H, δ¹³C, δ¹⁵N and δ¹⁸O were below the detection limit, indicating that hair is a reliable archive for the isotopes of these elements. In contrast, δ³⁴S values increased during the grazing period by about 1‰, with exposure to UV radiation appearing to have a major influence on this result. The δ³⁴S values decreased during the subsequent stall period, probably due to abrasion. Seasonal variation in δ³⁴S may indicate alternating environments that differ in their weathering conditions.
Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.
Day, James M D; Moynier, Frederic
2014-09-13
The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ((238)U/(204)Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Hette Tronquart, Nicolas; Mazeas, Laurent; Reuilly-Manenti, Liana; Zahm, Amandine; Belliard, Jérôme
2012-07-30
Dorsal white muscle is the standard tissue analysed in fish trophic studies using stable isotope analyses. However, sampling white muscle often implies the sacrifice of fish. Thus, we examined whether the non-lethal sampling of fin tissue can substitute muscle sampling in food web studies. Analysing muscle and fin δ(15)N and δ(13)C values of 466 European freshwater fish (14 species) with an elemental analyser coupled with an isotope ratio mass spectrometer, we compared the isotope values of the two tissues. Correlations between fin and muscle isotope ratios were examined for all fish together and specifically for 12 species. We further proposed four methods of assessing muscle from fin isotope ratios and estimated the errors made using these muscle surrogates. Despite significant differences between isotope values of the two tissues, fin and muscle isotopic signals are strongly correlated. Muscle values, estimated with raw fin isotope ratios (1st method), induce an error of ca. 1‰ for both isotopes. In comparison, specific (2nd method) or general (3rd method) correlations provide meaningful corrections of fin isotope ratios (errors <0.6‰). On the other hand, relationships, established for Australian tropical fish, only give poor muscle estimates (errors >0.8‰). There is little chance that a global model can be created. However, the 2nd and 3rd methods of estimating muscle values from fin isotope ratios should provide an acceptable level of error for the studies of European freshwater food web. We thus recommend that future studies use fin tissue as a non-lethal surrogate for muscle. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.
2013-12-01
At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann, M., Riggs, R.S., 1996. Nd isotope evidence for the evolution of the paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth Planet. Sci. Lett. 144, 9-19. Thomas, J.D., Bralower, T.J., Jones, E.C., 2003. Neodymium isotopic reconstruction of late Paleocene-early Eocene thermohaline circulation. Earth Planet. Sci. Lett. 209, 309-322.
Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox
NASA Astrophysics Data System (ADS)
Dixon, J. E.; Bindeman, I. N.; Kingsley, R. H.
2017-12-01
An outstanding puzzle in mantle geochemistry has been the origin and evolution of Earth's volatile components. The "dehydration paradox" refers to the following conundrum. Mantle compositions for some enriched mid-ocean ridge (MORB) and ocean island (OIB) basalts basalts require involvement of a mostly dehydrated slab component to explain the trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain the stable isotopic compositions. Volatile and stable isotopic data on enriched MORB show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the north Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. North Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than north Atlantic MORB. South Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to dDSMOW for Pacific MORB. North EPR EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). Boron and lithium isotopic ratios parallel the trends observed for dDSMOW. A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. The dehydration paradox is resolved by decoupling of volatiles from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration and re-equilibration by fluids derived from subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. The "expanded subduction factory" model includes melting at several key depths, including 1) 180 to 280 km, where EM-type mantle compositions are generated above slabs with average to hot thermal profiles by addition of <1% carbonated sediment-derived supercritical fluids/melts to depleted asthenospheric or subcontinental lithospheric mantle, and 2) 410 to 660 km, where PREMA-type mantle sources are generated, above slabs with average to cool thermal profiles, by addition of <1% carbonated eclogite ± sediment-derived supercritical fluids to depleted mantle.
NASA Astrophysics Data System (ADS)
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas
2013-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model that includes the kinetic model and uses the data in order to describe the overall circulation patterns in the Curonian lagoon. Project activities will be carried out as common co-ordinated effort of field an SI group and the modeling group that will have to calibrate the hydrodynamic model. In this way the expertise of different groups (physicists and oceanographers) will result in added value, providing the best available expertise along the eastern coast of the Baltic.
NASA Astrophysics Data System (ADS)
Yierpan, Aierken; König, Stephan; Labidi, Jabrane; Kurzawa, Timon; Babechuk, Michael G.; Schoenberg, Ronny
2018-02-01
The redox-sensitive, chalcophile, and volatile Se stable isotope system offers new perspectives to investigate the origin and evolution of terrestrial volatiles and the roles of magmatic and recycling processes in the development of the redox contrast between Earth's reservoirs. Selenium isotope systematics become more robust in a well-constrained petrogenetic context as can be inferred from Se-Te elemental signatures of sulfides and igneous rocks. In this study, we present a high-yield chemical sample processing method that allows the determination of Se-Te concentrations and Se isotope composition from the same sample digest of silicate rocks by hydride generation isotope dilution (ID) quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and double spike (DS) multicollector (MC)-ICP-MS, respectively. Our procedure yields ˜80% Se-Te recoveries with quantitative separation of relevant interfering elements such as Ge and HG-buffering metals. Replicate analyses of selected international reference materials yield uncertainties better than 0.11‰ (2 s.d.) on δ82/76Se and 3% (r.s.d.) on Se concentration for DS MC-ICP-MS determinations for as low as ˜10 ng sample Se. The precision of Se-Te concentration measurements by ID ICP-MS is better than 3% and 5% (r.s.d.) for total amounts of ˜0.5-1 ng Se and ˜0.2-0.5 ng Te, respectively. The basaltic reference materials have variable Se-Te contents, but their δ82/76Se values are rather uniform (on average 0.23 ± 0.14‰; 2 s.d.) and different from the chondritic value. This altogether provides the methodology and potential to extend the limited data set of coupled Se isotope and Se-Te elemental systematics of samples relevant to study the terrestrial igneous inventory.
NASA Astrophysics Data System (ADS)
Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci
The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.
NASA Astrophysics Data System (ADS)
Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Sheng, G.; Fu, J.
2014-11-01
Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~4.17 (Cl-) mg vehicle-1 km-1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was measured and it was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0-93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A snapshot of the 2013 characteristic emission of PM2.5 and its constituents from on-road vehicular fleet in the PRD region retrieved from our study was found to be useful for the assessment of past and future implementation of vehicle emission control policy.
NASA Astrophysics Data System (ADS)
Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Peng, P.; Sheng, G.; Fu, J.
2015-03-01
Vehicle emissions are a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce vehicle emissions. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emissions in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicle emissions, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang tunnel of Guangzhou, in the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC and WSOC were 92.4, 16.7, 16.4 and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~ 4.17 (Cl-) mg vehicle-1 km-1, contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, polycyclic aromatic hydrocarbons, hopanes and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared to a previous study in Zhujiang tunnel in 2004, emission factors of PM2.5mass, EC, OC, WSII except Cl- and organic compounds decreased by 16.0 ~ 93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle conditions. There are no mandatory national standards to limit metal content from vehicle emissions, which should be a concern of the government. A snapshot of the 2013 characteristic emissions of PM2.5 and its constituents from the on-road vehicular fleet in the PRD region retrieved from our study would be helpful for the assessment of past and future implementations of vehicle emission control policy.
NASA Astrophysics Data System (ADS)
Lutz, Stefanie; Van Breukelen, Boris
2014-05-01
Natural attenuation can represent a complementary or alternative approach to engineered remediation of polluted sites. In this context, compound specific stable isotope analysis (CSIA) has proven a useful tool, as it can provide evidence of natural attenuation and assess the extent of in-situ degradation based on changes in isotope ratios of pollutants. Moreover, CSIA can allow for source identification and apportionment, which might help to identify major emission sources in complex contamination scenarios. However, degradation and mixing processes in aquifers can lead to changes in isotopic compositions, such that their simultaneous occurrence might complicate combined source apportionment (SA) and assessment of the extent of degradation (ED). We developed a mathematical model (stable isotope sources and sinks model; SISS model) based on the linear stable isotope mixing model and the Rayleigh equation that allows for simultaneous SA and quantification of the ED in a scenario of two emission sources and degradation via one reaction pathway. It was shown that the SISS model with CSIA of at least two elements contained in the pollutant (e.g., C and H in benzene) allows for unequivocal SA even in the presence of degradation-induced isotope fractionation. In addition, the model enables precise quantification of the ED provided degradation follows instantaneous mixing of two sources. If mixing occurs after two sources have degraded separately, the model can still yield a conservative estimate of the overall extent of degradation. The SISS model was validated against virtual data from a two-dimensional reactive transport model. The model results for SA and ED were in good agreement with the simulation results. The application of the SISS model to field data of benzene contamination was, however, challenged by large uncertainties in measured isotope data. Nonetheless, the use of the SISS model provided a better insight into the interplay of mixing and degradation processes at the field site, as it revealed the prevailing contribution of one emission source and a low overall ED. The model can be extended to a larger number of sources and sinks. It may aid in forensics and natural attenuation assessment of soil, groundwater, surface water, or atmospheric pollution.
Data measured on water collected from eastern Mojave Desert, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Tim P.
In March of 2000 field collection of water from the Eastern Mojave Desert resulted in the measurement of stable isotope, radiocarbon, tritium, and limited dissolved noble gases. This work was follow-on to previous studies on similar systems in southern Nevada associated with the Nevada Test Site (Davisson et al., 1999; Rose and Davisson, 2003). The data for groundwater from wells and springs was never formally published and is therefore tabulated in Table 1 in order to be recorded in public record. In addition 4 years of remote precipitation data was collected for stable isotopes and is included in Table 2.more » These studies, along with many parallel and subsequent ones using isotopes and elemental concentrations, are all related to the general research area of tracing sources and quantifying transport times of natural and man-made materials in the environment. This type of research has direct relevance in characterizing environmental contamination, understanding resource development and protection, designing early detection in WMD related terrorism, and application in forensics analysis.« less
Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.
2011-01-01
We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).
NASA Astrophysics Data System (ADS)
Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.
2012-12-01
As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.
Diomande, Didier; Antheaume, Ingrid; Leroux, Maël; Lalande, Julie; Balayssac, Stéphane; Remaud, Gérald S; Tea, Illa
2015-12-01
Multi-element stable isotope ratios have been assessed as a means to distinguish between fermented cocoa beans from different geographical and varietal origins. Isotope ratios and percentage composition for C and N were measured in different tissues (cotyledons, shells) and extracts (pure theobromine, defatted cocoa solids, protein, lipids) obtained from fermented cocoa bean samples. Sixty-one samples from 24 different geographical origins covering all four continental areas producing cocoa were analyzed. Treatment of the data with unsupervised (Principal Component Analysis) and supervised (Partial Least Squares Discriminant Analysis) multiparametric statistical methods allowed the cocoa beans from different origins to be distinguished. The most discriminant variables identified as responsible for geographical and varietal differences were the δ(15)N and δ(13)C values of cocoa beans and some extracts and tissues. It can be shown that the isotope ratios are correlated with the altitude and precipitation conditions found in the different cocoa-growing regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Outflows from Compact Objects in Supernovae and Novae
NASA Astrophysics Data System (ADS)
Vlasov, Andrey Dmitrievich
Originally thought of as a constant and unchanging place, the Universe is full of dramas of stars emerging, dying, eating each other, colliding, etc. One of the first transient phenomena noticed were called novae (the name means "new" in Latin). Years later, supernovae were discovered. Despite their names, both novae and supernovae are events in relatively old stars, with supernovae marking the point of stellar death. Known for thousands of years, supernovae and novae remain among the most studied events in our Universe. Supernovae strongly influence the circumstellar medium, enriching it with heavy elements and shocking it, facilitating star formation. Cosmic rays are believed to be accelerated in shocks from supernovae, with small contribution possibly coming from novae. Even though the basic physics of novae is understood, many questions remain unanswered. These include the geometry of the ejecta, why some novae are luminous radio or gamma-ray sources and others are not, what is the ultimate fate of recurrent novae, etc. Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38 Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38.
NASA Astrophysics Data System (ADS)
Uhlig, David; Schuessler, Jan A.; Bouchez, Julien; Dixon, Jean L.; von Blanckenburg, Friedhelm
2017-04-01
Plants and soil microbiota play an active role in rock weathering and potentially couple weathering at depth with erosion at the soil surface. The nature of this coupling is still unresolved because we lacked means to quantify the passage of chemical elements from rock through higher plants. In a temperate forested landscape of the Southern Sierra Critical Zone Observatory (SSCZO), California, we measured magnesium (Mg) stable isotopes that are sensitive indicators of Mg utilisation by biota. We find that Mg is highly bio-utilised: 50-100 % of the Mg released by chemical weathering is taken up by forest trees. To estimate the tree uptake of other bio-utilised elements (K, Ca, P and Si) we compared the dissolved fluxes of these elements and Mg in rivers with their solubilisation fluxes from rock (rock dissolution flux minus secondary mineral formation flux). We find a deficit in the dissolved fluxes throughout, that we attribute to the nutrient uptake by forest trees. Therefore, both the Mg isotopes and the flux comparison suggests that a substantial part of the major element weathering flux is consumed by the tree biomass. This isotopic and elemental compartment separation is preserved only if the mineral nutrients contained in biomass are prevented from re-dissolution after litter fall, showing that these nutrients have been removed as "solid" biomass. The enrichment of 26Mg over 24Mg in tree trunks relative to leaf litter suggests that this removal occurs mainly in coarse woody debris (CWD). Today, CWD is exported from the ecosystem by tree logging. Over pre-anthropogenic weathering time scales, a similar removal flux might have been in operation in the form of natural erosion of CWD. Regardless of the removal mechanism, our data provides the first direct quantification of biogenic uptake following weathering. We find that Mg and other bio-elements are taken up by trees at up to 7 m depth, and surface recycling of all bio-elements but P is minimal. Thus, in the watersheds of the SSCZO in which weathering is fast and kinetically-limited, the coupling between erosion and weathering might be established by bio-elements that are taken up by trees, not recycled and missing in the dissolved river flux due to erosion as CWD and as leaf-derived bio-opal for Si. We suggest that the partitioning of a biogenic weathering flux into eroded plant debris might represent a significant global contribution to element export after weathering in eroding mountain catchments that are characterised by a continuous supply of fresh mineral nutrients.
Mapping the subcellular distribution of biomolecules at the ultrastructural level by ion microscopy.
Galle, P; Escaig, F; Dantin, F; Zhang, L
1996-05-01
Analytical ion microscopy, a method proposed and developed in 1960 by Casting and Slodzian at the Orsay University (France), makes it possible to obtain easily and rapidly analytical images representing the distribution in a tissue section of elements or isotopes (beginning from the three isotopes of hydrogen until to transuranic elements), even when these elements or isotopes are at a trace concentration of 1 ppm or less. This method has been applied to study the subcellular distribution of different varieties of biomolecules. The subcellular location of these molecules can be easily determined when the molecules contain in their structures a specific atom such as fluorine, iodine, bromine or platinum, what is the case of many pharmaceutical drugs. In this situation, the distribution of these specific atoms can be considered as representative of the distribution of the corresponding molecule. In other cases, the molecules must be labelled with an isotope which may be either radioactive or stable. Recent developments in ion microscopy allow the obtention of their chemical images at ultra structural level. In this paper we present the results obtained with the prototype of a new Scanning Ion Microscope used for the study of the intracellular distribution of different varieties of molecules: glucocorticoids, estrogens, pharmaceutical drugs and pyrimidine analogues.
NASA Astrophysics Data System (ADS)
Kanduč, Tjaša; Mechora, Špela; Stibilj, Vekoslava
2014-05-01
Polluted waters recharging from agriculture water systems into watersheds have influence on water quality and living habitat. Stable isotopes of carbon and nitrogen in combination with other minor and trace elements are often used to trace biogeochemical processes and contamination of water systems. The aim of the study was to assess state of environment with minor and trace elements and stable isotopes of C and N in selected Slovenian streams. Ten locations in Notranjska region, Slovenia, with different land use in the catchment (town, village, agricultural areas, farms, dairy farms), including reference point considered as non-polluted site, were sampled. Samples of water and aquatic moss F. antipyretica in Slovenian fresh waters were taken in all four seasons during years 2010 and 2012, but for stable isotope analyses of C and N only in three seasons during years 2010 and 2011. The water chemistry of investigated locations is dominated by hydrogen carbonate - calcium - magnesium, concentrations of nitrate seasonally range from 2.07 mg/l to 6.4 mg/l and at reference site does not exceed 1.3 mg/l. Total alkalinity of water at investigated locations ranges from 2.9 to 6.02 mM. The pH of investigated water range from 7.2 to 8.5, waters are saturated with oxygen (up to 134%) and conductivity ranges from 295 to 525 mikroS/cm, while at reference site conductivity is up to 180 mikroS/cm. The content of minor and trace elements in F. antipyretica ranged for Ni 4-38 mikrog/g, Zn 17-105 mikrog/g, Pb 2-28 mikrog/g, Cd 220-1953 ng/g, Cu 4-27 mikrog/g, Cr 4-49 mikrog/g, As 1-6 mikrog/g and Se 0.33-3.24 mikrog/g. The most polluted watershed was Pšata stream (agricultural areas, cattle farm) with highest values for Ni, Cr, Pb, Zn and As. The highest content of Se, was found in village (dairy farms) in Žerovniščica stream. The highest values were measured in February and October. Isotopic composition of dissolved inorganic carbon seasonally range from -13.3 to -8.1‰, and indicate waters dominated by degradation of organic matter and dissolution of carbonates. At the reference point average measured isotopic composition of dissolved inorganic carbon value is -2.7‰ which confirmed that this is a non-polluted site. Isotopic composition of carbon of F. antipyretica seasonally ranges from -45 to -32.9‰ and isotopic composition of nitrogen from -0.2‰ to 6.5‰, respectively. In comparison to C3 terrestrial plants F. antipyretica has more negative isotopic composition of carbon value, which is probably related with the difference in CO2 plant fixation and depends on isotopic composition of dissolved inorganic carbon in water, which is primarily controlled by geological composition and soil thickness in the watershed. Higher isotopic composition of nitrogen value found in F. antipyretica is related to agricultural activity in watershed, while at the reference site measured isotopic composition of nitrogen value is -4.1 ‰. From our study it is evident that isotopic composition of carbon and nitrogen is useful tracer of natural and anthropogenic inputs from terrestrial (fertilizing, sewage sludge) to water system.
Muhammad, Syahidah Akmal; Seow, Eng-Keng; Mohd Omar, A K; Rodhi, Ainolsyakira Mohd; Mat Hassan, Hasnuri; Lalung, Japareng; Lee, Sze-Chi; Ibrahim, Baharudin
2018-01-01
A total of 33 crude palm oil samples were randomly collected from different regions in Malaysia. Stable carbon isotopic composition (δ 13 C) was determined using Flash 2000 elemental analyzer while hydrogen and oxygen isotopic compositions (δ 2 H and δ 18 O) were analyzed by Thermo Finnigan TC/EA, wherein both instruments were coupled to an isotope ratio mass spectrometer. The bulk δ 2 H, δ 18 O and δ 13 C of the samples were analyzed by Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA) and Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA). Unsupervised HCA and PCA methods have demonstrated that crude palm oil samples were grouped into clusters according to respective state. A predictive model was constructed by supervised OPLS-DA with good predictive power of 52.60%. Robustness of the predictive model was validated with overall accuracy of 71.43%. Blind test samples were correctly assigned to their respective cluster except for samples from southern region. δ 18 O was proposed as the promising discriminatory marker for discerning crude palm oil samples obtained from different regions. Stable isotopes profile was proven to be useful for origin traceability of crude palm oil samples at a narrower geographical area, i.e. based on regions in Malaysia. Predictive power and accuracy of the predictive model was expected to improve with the increase in sample size. Conclusively, the results in this study has fulfilled the main objective of this work where the simple approach of combining stable isotope analysis with chemometrics can be used to discriminate crude palm oil samples obtained from different regions in Malaysia. Overall, this study shows the feasibility of this approach to be used as a traceability assessment of crude palm oils. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements
NASA Astrophysics Data System (ADS)
Xie, Xueshu; Zubarev, Roman A.
2015-03-01
Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.
Elucidating the nutritional dynamics of fungi using stable isotopes
Jordan R. Mayor; Edward A.G. Schuur; Terry W. Henkel
2009-01-01
Mycorrhizal and saprotrophic (SAP) fungi are essential to terrestrial element cycling due to their uptake of mineral nutrients and decomposition of detritus. Linking these ecological roles to specific fungi is necessary to improve our understanding of global nutrient cycling, fungal ecophysiology, and forest ecology. Using discriminant analyses of nitrogen and carbon...
NASA Astrophysics Data System (ADS)
Yoshida, Satoshi
Applications of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of long-lived radionuclides in environmental samples were summarized. In order to predict the long-term behavior of the radionuclides, related stable elements were also determined. Compared with radioactivity measurements, the ICP-MS method has advantages in terms of its simple analytical procedures, prompt measurement time, and capability of determining the isotope ratio such as240Pu/239Pu, which can not be separated by radiation. Concentration of U and Th in Japanese surface soils were determined in order to determine the background level of the natural radionuclides. The 235U/238U ratio was successfully used to detect the release of enriched U from reconversion facilities to the environment and to understand the source term. The 240Pu/239Pu ratios in environmental samples varied widely depending on the Pu sources. Applications of ICP-MS to the measurement of I and Tc isotopes were also described. The ratio between radiocesium and stable Cs is useful for judging the equilibrium of deposited radiocesium in a forest ecosystem.
Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander
Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...
NASA Astrophysics Data System (ADS)
Williams, H. M.; Prytulak, J.; Woodhead, J. D.; Kelley, K. A.; Brounce, M.; Plank, T.
2018-04-01
Subduction zone systems are central to a multitude of processes from the evolution of the continental crust to the concentration of metals into economically viable deposits. The interplay between oxygen fugacity, sulfur saturation, fluid exsolution and fractionating mineral assemblages that gives rise to typical arc magma chemical signatures is, however, still poorly understood and novel geochemical approaches are required to make further progress. Here we examine a well-characterized suite of arc lavas from the Marianas (W. Pacific) for their stable Fe isotope composition. In agreement with previous work and mass balance considerations, contributions from sediments and/or fluids are shown to have negligible effect on Fe isotopes. Instead, we focus on disentangling processes occurring during basalt through dacite differentiation using a sample suite from the island of Anatahan. Anatahan whole rock Fe isotope compositions (δ57Fe) range from -0.05 ± 0.05 to 0.17 ± 0.03 (2 S.D.)‰. A fractionation model is constructed, where three distinct stages of differentiation are required to satisfy the combined major and trace element and isotopic observations. In particular, the sequestration of isotopically heavy Fe into magnetite and isotopically light Fe into sulfide melts yields important constraints. The data require that lavas are first undersaturated with respect to crystalline or molten sulfide, followed by the crystallisation of magnetite, which then triggers late sulfide saturation. The model demonstrates that the final stage of removal of liquid or crystalline sulfide can effectively sequester Cu (and presumably other chalcophiles) and that late stage exsolution of magmatic fluids or brines may not be required to do this, although these processes are not mutually exclusive. Finally, the new Fe isotope data are combined with previous Tl-Mo-V stable isotope determinations on the same samples. Importantly, the multi-valent transition metal stable isotope systems of Fe and V are decoupled by sulfide saturation, thus providing a potential tool to constrain its somewhat intractable timing. The observed decoupling of notionally redox-sensitive tracers underlines the caution required in the application of transition metal isotopes as direct redox proxies.
Xu, Liqiang; Liu, Xiaodong; Nie, Yaguang
2016-05-01
Seabird subfossils were collected on three islands of the Xisha Archipelago, South China Sea. Via elemental analysis, we identified that bird guano was a significant source for heavy metals Cu, Zn, and Hg. Cu and Zn levels in these guano samples are comparable to their levels in wildbird feces, but guano Hg was lower than previously reported. Trophic positions significantly impacted transfer efficiency of heavy metals by seabirds. Despite of a common source, trace elements, as well as stable isotopes (i.e., guano δ(13)C and collagen δ(15)N), showed island-specific characteristics. Bird subfossils on larger island had relatively greater metal concentrations and revealed higher trophic positions. Partition of element and isotope levels among the islands suggested that transfer efficacy of seabirds on different islands was different, and bird species were probably unevenly distributed among the islets. Island area is possibly a driving factor for distributions of seabird species.
NASA Astrophysics Data System (ADS)
Zhao, Zhuzi; Cao, Junji; Zhang, Ting; Shen, Zhenxing; Ni, Haiyan; Tian, Jie; Wang, Qiyuan; Liu, Suixin; Zhou, Jiamao; Gu, Jian; Shen, Ganzhou
2018-07-01
Stable carbon isotopes provide information on aerosol sources, but no extensive long-term studies of these isotopes have been conducted in China, and they have mainly been used for qualitative rather than quantitative purposes. Here, 24 h PM2.5 samples (n = 58) were collected from July 2008 to June 2009 at Xi'an, China. The concentrations of organic and elemental carbon (OC and EC), water-soluble OC, and the stable carbon isotope abundances of OC and EC were determined. In spring, summer, autumn and winter, the mean stable carbon isotope in OC (δ13COC) were -26.4 ± 0.6, -25.8 ± 0.7, -25.0 ± 0.6 and -24.4 ± 0.8‰, respectively, and the corresponding δ13CEC values were -25.5 ± 0.4, -25.5 ± 0.8, -25.2 ± 0.7 and -23.7 ± 0.6‰. Large δ13CEC and δ13COC values in winter can be linked to the burning coal for residential heating. Less biomass is burned during spring and summer than winter or fall (manifested in the levels of levoglucosan, i.e., 178, 85, 370, 935 ng m-3 in spring, summer, autumn, and winter), and the more negative δ13COC in the warmer months can be explained by the formation of secondary organic aerosols. A levoglucosan tracer method combined with an isotope mass balance analysis indicated that biomass burning accounted for 1.6-29.0% of the EC, and the mean value in winter (14.9 ± 7.5%) was 7 times higher than summer (2.1 ± 0.4%), with intermediate values of 6.1 ± 5.6 and 4.5 ± 2.4% in autumn and spring. Coal combustion accounted for 45.9 ± 23.1% of the EC overall, and the percentages were 63.0, 37.2, 36.7, and 33.7% in winter, autumn, summer and spring respectively. Motor vehicles accounted for 46.6 ± 26.5% of the annual EC, and these contributed over half (56.7-61.8%) of the EC in all seasons except winter. Correlations between motor vehicle-EC and coal combustion-EC with established source indicators (B(ghi)P and As) support the source apportionment results. This paper describes a simple and accurate method for apportioning the sources of EC, and the results may be beneficial for developing model simulations as well as controlling strategies in future.
Chromium Isotopes in Marine Carbonates - an Indicator for Climatic Change?
NASA Astrophysics Data System (ADS)
Frei, R.; Gaucher, C.
2010-12-01
Chromium (Cr) stable isotopes experience an increased interest as a tracer of Cr (VI) reduction in groundwater and thus showed their potential as a monitor of remediation of anthropogenic and natural contamination in water (Berna et al., 2009; Izbicki et al., 2008). Chromium stable isotopes in Fe-rich chemical sediments (BIFs and Fe-cherts) have recently also been used as a tracer for Earth's atmospheric oxygenation through time (Frei et al., 2009). We have applied the Cr isotope system to organic-rich carbonates from a late Ediacaran succession in Uruguay (Polanco Formation), from which we have previously analyzed BIFs with extremely fractionated (δ53Cr up to 5.0 ‰) Cr isotope signatures that are part of an underlying deep water clastic sediment (shale-dominated) sequence (Yerbal Formation) deposited in a glacio-marine environment (Gaucher et al.,2004). δ53Cr values of organic rich carbonates correlate with positive and negative carbon isotope excursions (δ13C PDB between -3 and +3 ‰) and with systematic changes in strontium isotope compositions, commonly interpreted as to reflect fluctuations in organic (photosynthetic algae) production related to fluctuations in atmospheric oxygen and weathering intensities, respectively. Slightly positively fractioned δ53Cr values (up to +0.25‰), paralleling positive (δ13C PDB and 87Sr/86Sr ratio excursions would thereby trace elevated atmospheric oxygen levels/pulses possibly related to glacier retreat/melting stages that caused bioproductivity to increase. While the causal link between these multiple isotopic tracers and the mechanisms of Cr stripping into carbonates has to be further investigated in detail, the first indications from this study point to a potentially promising use of stable Cr isotopes in organic-rich carbonates to monitor fluctuations of atmospheric oxygen, particularly over the Neoproterozoic and Phanerozoic ice age periods. E.C. Berna et al. (2010) Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume. Environ. Sci. Technol., v. 44, p. 1043-1048. J.A. Izbicki et al. (2008) Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Applied Geochemistry, v.23, p. 1325-1352. R. Frei et al. (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, v. 461, p. 250-253. C. Gaucher et al. (2004) Chemostratigraphy of the Lower Arroyo del Soldado Group (Vendian, Uruguay) and palaeoclimatic implications. Gondwana Research, v.7, p. 715-730
D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity
Lis, G.P.; Schimmelmann, A.; Mastalerz, Maria
2006-01-01
Stable isotope ratios of non-exchangeable hydrogen (??Dn) and of carbon were measured in type-II kerogens from two suites of Late Devonian to Early Mississippian black shale, one from the New Albany Shale (Illinois Basin) and the other from the Exshaw Formation (Alberta Basin). The largely marine-derived organic matter had similar original stable isotope ratios, but today the suites of kerogens express gradients in thermal maturity that have altered their chemical and isotopic compositions. In both suites, ??D n values increase with maturation up to a vitrinite reflectance of Ro 1.5%, then level out. Increasing ??Dn values suggest isotopic exchange of organic hydrogen with water-derived deuterium and/or preferential loss of 1H-enriched chemical moieties from kerogen during maturation. The resulting changes in ??Dn values are altering the original hydrogen isotopic paleoenvironmental signal in kerogen, albeit in a systematic fashion. The specific D/H response of each kerogen suite through maturation correlates with H/C elemental ratio and can therefore be corrected to yield paleoenvironmentally relevant information for a calibrated system. With increasing thermal maturity, the abundance of hydrogen in the kerogen that is isotopically exchangeable with water hydrogen (expressed as Hex, in % of total hydrogen) first decreases to reach a minimum at Ro ??? 0.8-1.1%, followed by a substantial increase at higher thermal maturity. ?? 2005 Elsevier Ltd. All rights reserved.
Stable δ15N and δ13C isotope ratios in aquatic ecosystems
Wada, Eitaro
2009-01-01
In the past 20 years, rapid progress in stable isotope (SI) studies has allowed scientists to observe natural ecosystems from entirely new perspectives. This report addresses the fundamental concepts underlying the use of the SI ratio. The unique characteristics of the SI ratio make it an interdisciplinary parameter that acts as a chemical fingerprint of biogenic substances and provides a key to the world of isotopomers. Variations in SI ratios of biogenic substances depend on the isotopic compositions of reactants, the pathways and kinetic modes of reaction dynamics, and the physicochemical conditions. In fact, every biogenic material has its own isotopic composition, its “dynamic SI fingerprint”, which is governed by its function and position in the material flow. For example, the relative SI ratio in biota is determined by dietary lifestyle, e.g., the modes of drinking, eating, and excreting, and appears highly regular due to the physicochemical differences of isotopomers. Our primary goal here is to elucidate the general principals of isotope partitioning in major biophilic elements in molecules, biogenic materials, and ecosystems (Wada, E. et al., 1995). To this end, the nitrogen and carbon SI distribution ratios (δ15N and δ13C, respectively) are used to examine materials cycling, food web structures, and their variability in various kinds of watershed-including aquatic ecosystems to elucidate an “isotopically ordered world”. PMID:19282646
NASA Astrophysics Data System (ADS)
Bezard, Rachel; Fischer-Gödde, Mario; Hamelin, Cédric; Brennecka, Gregory A.; Kleine, Thorsten
2016-11-01
Molybdenum (Mo) stable isotopes hold great potential to investigate the processes involved in planetary formation and differentiation. However their use is currently hampered by the lack of understanding of the dominant controls driving mass-dependent fractionations at high temperature. Here we investigate the role of magmatic processes and mantle source heterogeneities on the Mo isotope composition of Mid-Ocean Ridges Basalts (MORBs) using samples from two contrasting ridge segments: (1) the extremely fast spreading Pacific-Antarctic (66-41°S) section devoid of plume influence and; (2) the slow spreading Mohns-Knipovich segment (77-71°N) intercepted by the Jan Mayen Plume (71°N). We show that significant variations in Mo stable isotope composition exist in MORBs with δ98/95Mo ranging from - 0.24 ‰ to + 0.15 ‰ (relative to NIST SRM3134). The absence of correlation between δ98/95Mo and indices of magma differentiation or partial melting suggests a negligible impact of these processes on the isotopic variations observed. On the other hand, the δ98/95Mo variations seem to be associated with changes in radiogenic isotope signatures and rare earth element ratios (e.g., (La/Sm)N), suggesting mantle source heterogeneities as a dominant factor for the δ98/95Mo variations amongst MORBs. The heaviest Mo isotope compositions correspond to the most enriched signatures, suggesting that recycled crustal components are isotopically heavy compared to the uncontaminated depleted mantle. The uncontaminated depleted mantle shows slightly sub-chondritic δ98/95Mo, which cannot be produced by core formation and, therefore, more likely result from extensive anterior partial melting of the mantle. Consequently, the primitive δ98/95Mo composition of the depleted mantle appears overprinted by the effects of both partial melting and crustal recycling.
Miller, Ana Z; De la Rosa, José M; Jiménez-Morillo, Nicasio T; Pereira, Manuel F C; González-Pérez, José A; Calaforra, José M; Saiz-Jimenez, Cesareo
2016-08-26
This study comprises an innovative approach based on the combination of chromatography (analytical pyrolysis and pyrolysis compound-specific isotope analysis (Py-CSIA)), light stable isotopes, microscopy and mineralogy analyses to characterize the internal layering of coralloid speleothems from the Ana Heva lava tube in Easter Island (Chile). This multidisciplinary proxy showed that the speleothems consist of banded siliceous materials of low crystallinity with different mineralogical compositions and a significant contribution of organic carbon. Opal-A constitutes the outermost grey layer of the coralloids, whereas calcite and amorphous Mg hydrate silicate are the major components of the inner whitish and honey-brown layers, respectively. The differences found in the mineralogical, elemental, molecular and isotopic composition of these distinct coloured layers are related to environmental changes during speleothem development. Stable isotopes and analytical pyrolysis suggested alterations in the water regime, pointing to wetter conditions during the formation of the Ca-rich layer and a possible increase in the amount of water dripping into the cave. The trend observed for δ(15)N values suggested an increase in the average temperature over time, which is consistent with the so-called climate warming during the Holocene. The pyrolysis compound-specific isotope analysis of each speleothem layer showed a similar trend with the bulk δ(13)C values pointing to the appropriateness of direct Py-CSIA in paleoenvironmental studies. The δ(13)C values for n-alkanes reinforced the occurrence of a drastic environmental change, indicating that the outermost Opal layer was developed under drier and more arid environmental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Magnesium stable isotope ecology using mammal tooth enamel
NASA Astrophysics Data System (ADS)
Martin, Jeremy E.; Vance, Derek; Balter, Vincent
2015-01-01
Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this 26Mg enrichment up the trophic chain is due to a 26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.
Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François
2009-11-01
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different delta15N values. Comparative delta13C and delta15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials. Copyright 2009 John Wiley & Sons, Ltd.
Wang, Wei; Liu, Wen-Qing; Zhang, Tian-Shu
2013-08-01
The development of spectroscopic techniques has offered continuous measurement of stable isotopes in the ambient air. The method of measuring environmental stable isotopes based on Fourier transform infrared spectrometry (FTIR) is described. In order to verify the feasibility of the method for continuous measurement of the stable isotopes, an open-path FTIR system was used to measure stable isotopes of CO2 and H2O in ambient air directly in a seven-day field experiment, including 12CO2, 3CO2, H2 16O and HD16 O. Also, the time course of carbon isotopic ratio delta13 C and deuterium isotope composition deltaD was calculated. The measurement precision is about 1.08 per thousand for delta13 C and 1.32 per thousand for deltaD. The measured stable isotopes of CO2 and H2O were analyzed on different time scales by Keeling plot methods, and the deuterium isotopic ratios of evapotranspiration were determined. The results of the field experiment demonstrate the potential of the open-path FTIR system for continuous measurement of stable isotopes in the air.
NASA Astrophysics Data System (ADS)
Ackerman, Lukáš; Magna, Tomáš; Rapprich, Vladislav; Upadhyay, Dewashish; Krátký, Ondřej; Čejková, Bohuslava; Erban, Vojtěch; Kochergina, Yulia V.; Hrstka, Tomáš
2017-07-01
Two Neoproterozoic carbonatite suites of spatially related carbonatites and associated silicate alkaline rocks from Sevattur and Samalpatti, south India, have been investigated in terms of petrography, chemistry and radiogenic-stable isotopic compositions in order to provide further constraints on their genesis. The cumulative evidence indicates that the Sevattur suite is derived from an enriched mantle source without significant post-emplacement modifications through crustal contamination and hydrothermal overprint. The stable (C, O) isotopic compositions confirm mantle origin of Sevattur carbonatites with only a modest difference to Paleoproterozoic Hogenakal carbonatite, emplaced in the same tectonic setting. On the contrary, multiple processes have shaped the petrography, chemistry and isotopic systematics of the Samalpatti suite. These include pre-emplacement interaction with the ambient crustal materials with more pronounced signatures of such a process in silicocarbonatites. Calc-silicate marbles present in the Samalpatti area could represent a possible evolved end member due to the inability of common silicate rocks (pyroxenites, granites, diorites) to comply with radiogenic isotopic constraints. In addition, Samalpatti carbonatites show a range of C-O isotopic compositions, and δ13CV-PDB values between + 1.8 and + 4.1‰ found for a sub-suite of Samalpatti carbonatites belong to the highest values ever reported for magmatic carbonates. These heavy C-O isotopic signatures in Samalpatti carbonatites could be indicative of massive hydrothermal interaction with carbonated fluids. Unusual high-Cr silicocarbonatites, discovered at Samalpatti, seek their origin in the reaction of pyroxenites with enriched mantle-derived alkali-CO2-rich melts, as also evidenced by mantle-like O isotopic compositions. Field and petrographic observations as well as isotopic constraints must, however, be combined with the complex chemistry of incompatible trace elements as indicated from their non-uniform systematics in carbonatites and their individual fractions. We emphasise that, beside common carriers of REE like apatite, other phases may be important for incompatible element budgets, such as mckelveyite-(Nd) and kosmochlor, found in these carbonatites. Future targeted studies, including in-situ techniques, could help further constrain temporal and petrologic conditions of formation of Sevattur and Samalpatti carbonatite bodies.
Halas, Stanislaw; Skrzypek, Grzegorz; Meier-Augenstein, Wolfram; Pelc, Andrzej; Kemp, Helen F
2011-03-15
Stable oxygen isotope compositions (δ(18)O values) of two commercial and one synthesized silver orthophosphate reagents have been determined on the VSMOW scale. The analyses were carried out in three different laboratories: lab (1) applying off-line oxygen extraction in the form of CO(2) which was analyzed on a dual inlet and triple collector isotope ratio mass spectrometer, while labs (2) and (3) employed an isotope ratio mass spectrometer coupled to a high-temperature conversion/elemental analyzer (TC/EA) where Ag(3)PO(4) samples were analyzed as CO in continuous flow mode. The δ(18)O values for the proposed new comparison materials were linked to the generally accepted δ(18)O values for Vennemann's TU-1 and TU-2 standards as well as for Ag(3)PO(4) extracted from NBS120c. The weighted average δ(18)O(VSMOW) values for the new comparison materials UMCS-1, UMCS-2 and AGPO-SCRI were determined to be + 32.60 (± 0.12), + 19.40 (± 0.12) and + 14.58 (± 0.13)‰, respectively. Copyright © 2011 John Wiley & Sons, Ltd.
Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples
NASA Astrophysics Data System (ADS)
Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.
2014-12-01
Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed for online separation of physically dissolved nitrogen. This novel HTC system, "iso TOC cube", provides an innovative tool with large potential in investigation of biogeochemical carbon and nitrogen cycles.
Elemental and isotopic imaging of biological samples using NanoSIMS.
Kilburn, Matt R; Clode, Peta L
2014-01-01
With its low detection limits and the ability to analyze most of the elements in the periodic table, secondary ion mass spectrometry (SIMS) represents one of the most versatile in situ analytical techniques available, and recent developments have resulted in significant advantages for the use of imaging mass spectrometry in biological and biomedical research. Increases in spatial resolution and sensitivity allow detailed interrogation of samples at relevant scales and chemical concentrations. Advances in dynamic SIMS, specifically with the advent of NanoSIMS, now allow the tracking of stable isotopes within biological systems at subcellular length scales, while static SIMS combines subcellular imaging with molecular identification. In this chapter, we present an introduction to the SIMS technique, with particular reference to NanoSIMS, and discuss its application in biological and biomedical research.
Tellurium Stable Isotopes as a Paleoredox Proxy
NASA Astrophysics Data System (ADS)
Wasserman, N.; Johnson, T. M.
2017-12-01
Despite arguments for variably-oxygenated shallow waters and anoxic deep marine waters, which delayed animal development until the Neoproterozoic Oxidation Event, the magnitude of atmospheric oxygen during the Proterozoic is still uncertain [1]. The evidence for low pO2 (<0.1-1% PAL) is based on geochemical and isotopic proxies, which track the mobilization of Fe and Mn on the continents. For example, large chromium isotope shifts occur at the Neoproterozoic Oxidation Event due to the initiation of Cr redox cycling, but this proxy is insensitive to fluctuations in the lower-pO2 conditions at other times during the Proterozoic. Tellurium, a metalloid with a lower threshold to oxidation, may be sensitive to pO2 shifts in a lower range. In the reduced forms, Te(-II) and Te(0), the element is insoluble and immobile. However, in the more oxidized phases, Te(IV) and Te(VI), Te can form soluble oxyanions (though it tends to adsorb to Fe-oxyhydroxides and clays) [2]. Te stable isotopes have been shown to fractionate during abiotic or biologic reduction of Te(VI) or Te(IV) to elemental Te(0) [3, 4]. Utilizing hydride generation MC-ICP-MS, we are able to obtain high precision (2σ 0.04‰) measurements of δ128Te/125Te for natural samples containing < 10 ng of Te. A suite of Phanerozoic and Proterozoic ironstones show significant variation in δ128Te/125Te (<0.5‰), suggesting that the Te redox cycle was active during the Proterozoic. Future directions will include Te isotope measurements of Precambrian paleosols to determine natural isotope variation before the Great Oxidation Event and experiments to determine fractionation during adsorption to Fe-oxyhydroxides. [1] Planavsky et al. (2014) Science 346 (6209), pp. 635-638 [2] Qin et al. (2017) Environmental Science and Technology 51 (11), pp 6027-6035 [3] Baesman et al. (2007) Applied Environmental Microbiology 73 (7), pp 2135-2143 [4] Smithers and Krause (1968) Canadian Journal of Chemistry 46(4): pp 583-591
NASA Astrophysics Data System (ADS)
Petelet-Giraud, E.; Widory, D.; Innocent, C.; Quetel, C.; Le Bihan, O.; Fraboulet, I.; Forti, L.; Joos, E.; Goupil, G.; Canard, E.
2008-12-01
Due to their relatively high concentration in urban environments (from 10 to more than 50 μg.m-3), atmospheric particles (PM10) have potential damaging effects on the Public Health. Hence, the development of measures dealing with fine particulate matter is considered a priority by the EU Clean Air For Europe (CAFE) Program. Still, the origin of these airborne particles is subject to debate, as classical chemical methods showed their limitations. Recent studies have shown that stable isotopes of elements such as carbon, nitrogen or lead could be of great help in the search of new particle air pollution tracking tools. We will present here preliminary results on the pioneer use of stable isotope compositions of cadmium, zinc and mercury to help decipher the different possible origins of PM10 pollution in the atmosphere of Paris (France). Main potential sources were characterized: (1) waste incineration, (2) road traffic, (3) central heating and (4) coal-fired power plants. Results show that the use of cadmium (d114Cd) and zinc (d66Zn) isotopes, and the combination of both provides a reliable and precise tool for discriminating the different families of particle vectors. The isotope systematic of mercury (d200Hg) is more difficult to apprehend due to the low levels encountered (mercury is mainly present under gaseous form, but is still observed at low concentrations in particles), but does show significant variations between the different sources. Daily cumulative air samples were taken on three different locations, covering different scenarios in Paris city: 1) background pollution in Paris, 2) under the plume of a major pollution source and 3) Paris vicinity. Corresponding chemical and isotope analyses help identify the main vectors for the three elements (Cd, Zn and Hg) considered as well as assess their respective contributions to the levels of pollution observed.
ICP-MS for isotope ratio measurement
USDA-ARS?s Scientific Manuscript database
The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...
NASA Astrophysics Data System (ADS)
Young, E. D.
2017-12-01
Recent advances in our ability to measure stable isotope ratios of light, rock-forming elements, including those for Zn, K, Fe, Si, and Mg, among others, has resulted in an emerging hypothesis that collisions among rocky planetesimals, planetary embryos, and/or proto-planets caused losses of moderately volatile elements (e.g., K) and "common" or moderately refractory elements (e.g., Mg and Si). The primary evidence is in the form of heavy isotope enrichments in rock-forming elements relative to the chondrite groups that are thought to be representative of planetary precursors. Equilibrium volatility-controlled isotope fractionation for planetesimal magma oceans might have occurred for bodies larger than 0.1% of an Earth mass (½ the mass of Pluto) as these bodies had sufficient gravity to overpower the escape velocities of hot gas at 2000K. Both Jean's escape and viscous drag hydrodynamic escape can obviate the escape velocity limit but will fractionate by mass, not by volatility. Equilibrium vapor/melt fractionation is qualitatively consistent with the greater disparity in 29Si/28Si between Earth and chondrites than in 25Mg/24Mg. However, losses of large masses of vapor are required to record the fractionation in the melts. We consider that if Earth was derived from E chondrite-like materials, the bulk composition of the Earth, assuming refractory Ca was retained, requires > 60% loss of Mg. This is a lot of vapor loss for a process relying on at least intermittent equilibrium, although it comports with the isotopic lever-rule requirements. Paradoxically, the alternative of evaporative loss of rock-forming elements requires less total mass loss. For example, the calculated Mg and Si isotopic compositions of residues resulting from evaporation of chondritic melts can fit the Mg and Si isotopic compositions of Earth, Mars, and angrites with varying background pressures and with total mass losses of near 5% or less. These mass losses are closer to, and even lower than, those suggested by Ca concentrations relative to CI chondrite. Equilibrium models achieve greater Si than Mg isotope fractionation by large mass losses while evaporation models produce this effect for small mass losses. Additional constraints involving other isotope systems as well as models for vapor loss can distinguish between the two scenarios.
Isotonic similarities in isotope shifts from Hg to Ra.
NASA Astrophysics Data System (ADS)
Stroke, H. H.
2003-04-01
Isotope shifts (IS) in atomic spectra of heavy elements reflect largely the variation in
NASA Astrophysics Data System (ADS)
Jarvis, Ian; Roest-Ellis, Sascha; Selby, David
2017-04-01
Cenomanian times (100.5-93.9 Ma) represent perhaps the best documented episode of eustatic rise in sea level in Earth history and the beginning of the Late Mesozoic thermal maximum, driving global expansion of epicontinental seas and the onset of widespread pelagic and hemipelagic carbonate (chalk) deposition. Significant changes occurred in global stable-isotope records, including two prominent perturbations of the carbon cycle -Mid-Cenomanian Event I (MCEI; 96.5-96.2 Ma) and Oceanic Anoxic Event 2 (OAE2; 94.5-93.8 Ma). OAE2 was marked by the widespread deposition of black shales in the deep ocean and epicontinental seas, and a global positive carbon stable-isotope excursion of 2.0 - 2.5‰ δ13C in marine carbonates. Osmium isotopes and other geochemical data indicate that OAE2 was associated with a major pulse of LIP-associated volcanism, with coincident changes in eustatic sea level, rising atmospheric pCO2 and warming climate, but including a transient phase of global cooling - the Plenus Cold Event. MCEI, by contrast, shows a <1‰ δ13Ccarb excursion, and has no associated black shales in most areas, yet it also displays evidence of two episodes of cooling, comparable to the Plenus Cold Event. MCEI marks a major breakpoint on long-term carbon-isotope profiles, from relatively constant to very slowly rising δ13C values through the Lower Cenomanian, to a trend of generally increasing δ13C values through the Middle and Upper Cenomanian. This represents a significant long-term change in the global carbon cycle starting with MCEI. Here, we present new high-resolution major- (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) and trace-element (Ba, Cr, Re, Os, Sr, Zr) data and 187Os/188Os isotope results for MCEI from an English Chalk reference section at Folkestone. Our results are compared to published δ13Ccarb, δ18Ocarb, δ13Corg stable isotope and neodymium isotope ɛNd(t) data from the same section. Elemental proxies (Mn, Ti/Al, Zr/Al, Si/Al) define key sequence stratigraphic surfaces, providing a basis for refining relative sea-level curves. Cyclical small-scale transgressive events within the mid-Cenomanian TST of depositional sequence Ce IV are accompanied by coupled increases in ɛNd(t) and decreases in 187Os/188Os ratios. Osi ratios of 0.8 - 0.9 prior to MCEI, peak at 1.2 in the lower peak of the isotope excursion, coincident an influx of boreal fauna and the lowest ɛNd(t) values in the section (<-10), and show a stepped fall thereafter. Highly unradiogenic Osi values of ≤ 0.2 occur immediately above MCEI, in an interval of high ɛNd(t). These geochemical data are interpreted to represent cyclical changes in water mass sources and distribution in the Chalk sea, driven by sea-level and climate change. The remarkably low Osi values recorded following MCEI indicate a dominance of hydrothermal/mantle-like sourced Os in southern England waters at that time.
Sediment Tracking Using Carbon and Nitrogen Stable Isotopes
NASA Astrophysics Data System (ADS)
Fox, J. F.; Papanicolaou, A.
2002-12-01
As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to the Finnigan MAT Delta Plus isotope ratio mass spectrometer. Results indicate distinct N isotopic signatures and C/N atomic ratios for forest and agriculture sediment sources. In addition, unique C and N isotopic signatures and C/N atomic ratios exist within floodplain and upland surfaces, and within the 10 centimeter profiles of erosion and deposition locations. Suspended sediment analyses are preliminary at this time. Conclusions indicate that sediment C and N isotopic signature and C/N atomic ratio are dependent upon land use and soil moisture conditions, and will serve as a useful technique in quantifying erosive source rates and understanding upland erosion processes.
Microbes: Agents of Isotopic Change
NASA Astrophysics Data System (ADS)
Fogel, M. L.
2012-12-01
Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.
Electrochemically controlled iron isotope fractionation
NASA Astrophysics Data System (ADS)
Black, Jay R.; Young, Edward D.; Kavner, Abby
2010-02-01
Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.
Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie
2013-04-01
Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.
Uses of stable isotopes in fish ecology
Analyses of fish tissues (other than otoliths) for stable isotope ratios can provide substantial information on fish ecology, including physiological ecology. Stable isotopes of nitrogen and carbon frequently are used to determine the mix of diet sources for consumers. Stable i...
Yang, Ye; Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M
2017-07-11
Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace the allocation of e.g. C and N atoms through the network. Such dual-label experiments however challenge the resolution of conventional mass spectrometers, which must distinguish the neutron mass differences among different elemental isotopes. This requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, very low mass polar metabolites such as amino acids can be difficult to analyze by current models of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause unacceptable ion suppression for sources such as nano-ESI. Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar range represented in microgram quantities of biological specimens, which results in extracts with total analyte abundances in the low to sub-femtomole range. We have applied this method to profile amino acids and their labeling patterns in 13 C and 2 H doubly labeled PC9 cell extracts, cancerous and non-cancerous tissue extracts from a lung cancer patient and their protein hydrolysates as well as plasma extracts from mice fed with a liquid diet containing 13 C 6 -glucose (Glc). The multi-element isotopologue distributions provided key insights into amino acid metabolism and intracellular pools in human lung cancer tissues in high detail. The 13 C labeling of Asp and Glu revealed de novo synthesis of these amino acids from 13 C 6 -Glc via the Krebs cycle, specifically the elevated level of 13 C 3 -labeled Asp and Glu in cancerous versus non-cancerous lung tissues was consistent with enhanced pyruvate carboxylation. In addition, tracking the fate of double tracers, ( 13 C 6 -Glc + 2 H 2 -Gly or 13 C 6 -Glc + 2 H 3 -Ser) in PC9 cells clearly resolved pools of Ser and Gly synthesized de novo from 13 C 6 -Glc ( 13 C 3 -Ser and 13 C 2 -Gly) versus Ser and Gly derived from external sources ( 2 H 3 -Ser, 2 H 2 -Gly). Moreover the complex 2 H labeling patterns of the latter were results of Ser and Gly exchange through active Ser-Gly one-carbon metabolic pathway in PC9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Uhlig, David; Schuessler, Jan A.; Bouchez, Julien; Dixon, Jean L.; von Blanckenburg, Friedhelm
2017-06-01
Plants and soil microbiota play an active role in rock weathering and potentially couple weathering at depth with erosion at the soil surface. The nature of this coupling is still unresolved because we lacked means to quantify the passage of chemical elements from rock through higher plants. In a temperate forested landscape characterised by relatively fast (˜ 220 t km-2 yr-1) denudation and a kinetically limited weathering regime of the Southern Sierra Critical Zone Observatory (SSCZO), California, we measured magnesium (Mg) stable isotopes that are sensitive indicators of Mg utilisation by biota. We find that Mg is highly bio-utilised: 50-100 % of the Mg released by chemical weathering is taken up by forest trees. To estimate the tree uptake of other bio-utilised elements (K, Ca, P and Si) we compared the dissolved fluxes of these elements and Mg in rivers with their solubilisation fluxes from rock (rock dissolution flux minus secondary mineral formation flux). We find a deficit in the dissolved fluxes throughout, which we attribute to the nutrient uptake by forest trees. Therefore both the Mg isotopes and the flux comparison suggest that a substantial part of the major element weathering flux is consumed by the tree biomass. The enrichment of 26Mg over 24Mg in tree trunks relative to leaves suggests that tree trunks account for a substantial fraction of the net uptake of Mg. This isotopic and elemental compartment separation is prevented from obliteration (which would occur by Mg redissolution) by two potential effects. Either the mineral nutrients accumulate today in regrowing forest biomass after clear cutting, or they are exported in litter and coarse woody debris (CWD) such that they remain in solid
biomass. Over pre-forest-management weathering timescales, this removal flux might have been in operation in the form of natural erosion of CWD. Regardless of the removal mechanism, our approach provides entirely novel means towards the direct quantification of biogenic uptake following weathering. We find that Mg and other nutrients and the plant-beneficial element Si (bio-elements
) are taken up by trees at up to 6 m depth, and surface recycling of all bio-elements but P is minimal. Thus, in the watersheds of the SSCZO, the coupling between erosion and weathering might be established by bio-elements that are taken up by trees, are not recycled and are missing in the dissolved river flux due to erosion as CWD and as leaf-derived bio-opal for Si. We suggest that the partitioning of a biogenic weathering flux into eroded plant debris might represent a significant global contribution to element export after weathering in eroding mountain catchments that are characterised by a continuous supply of fresh mineral nutrients.
Surkov, Alexander V; Böttcher, Michael E; Kuever, Jan
2012-01-01
Stable sulphur isotope fractionation was investigated during reduction of thiosulphate and elemental sulphur at 28°C by growing batch cultures of the sulphur- and thiosulphate-reducing bacteria Dethiosulfovibrio marinus (type strain DSM 12537) and Dethiosulfovibrio russensis (type strain DSM 12538), using citrate as carbon and energy source. The cell-specific thiosulphate reduction rate in the growth phase was 7.4±3.9 fmol cell(-1) d(-1). The hydrogen sulphide produced was enriched in (32)S by 10.3±1 ‰ compared with total thiosulphate sulphur, close to previous experimental results observed for other sulphate- and non-sulphate-reducing bacteria. Elemental sulphur reduction yields sulphur isotope enrichment factors between-1.3 and-5.2 ‰ for D. russensis and-1.7 and-5.1 ‰ for D. marinus. The smaller fractionation effects are observed in the exponential growth phase (cellular rates between 5 and 70 fmol S° cell(-1) d(-1)) and enhanced discrimination under conditions of citrate depletion and cell lysis (cellular rates between 0.3 and 3 fmol S° cell(-1) d(-1)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.
2011-08-01
The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate,more » we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.« less
Tatsch, Ana Carolina C; Secchi, Eduardo R; Botta, Silvina
2016-02-15
The analysis of stable isotopes in tissues such as teeth and bones has been used to study long-term trophic ecology and habitat use in marine mammals. However, carbon isotope ratios (δ(13) C values) can be altered by the presence of (12) C-rich lipids and carbonates. Lipid extraction and acidification are common treatments used to remove these compounds. The impact of lipids and carbonates on carbon and nitrogen isotope ratios (δ(15) N values), however, varies among tissues and/or species, requiring taxon-specific protocols to be developed. The effects of lipid extraction and acidification and their interaction on carbon and nitrogen isotope values were studied for beaked whale (Ziphiidae) bone samples. δ(13) C and δ(15) N values were determined in quadruplicate samples: control, lipid-extracted, acidified and lipid-extracted followed by acidification. Samples were analyzed by means of elemental analysis isotope ratio mass spectrometry. Furthermore, the efficiency of five mathematical models developed for estimating lipid-normalized δ(13) C values from untreated δ(13) C values was tested. Significant increases in δ(13) C values were observed after lipid extraction. No significant changes in δ(13) C values were found in acidified samples. An interaction between both treatments was demonstrated for δ(13) C but not for δ(15) N values. No change was observed in δ(15) N values for lipid-extracted and/or acidified samples. Although all tested models presented good predictive power to estimate lipid-free δ(13) C values, linear models performed best. Given the observed changes in δ(13) C values after lipid extraction, we recommend a priori lipid extraction or a posteriori lipid normalization, through simple linear models, for beaked whale bones. Furthermore, acidification seems to be an unnecessary step before stable isotope analysis, at least for bone samples of ziphiids. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben
2017-10-18
Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of Hg in terrestrial ecosystems using Hg isotope signatures.
Ripoche, N; Ferchaud-Roucher, V; Krempf, M; Ritz, P
2006-09-01
In doubly labelled water studies, biological sample enrichments are mainly measured using off-line techniques (equilibration followed by dual-inlet introduction) or high-temperature elemental analysis (HT-EA), coupled with an isotope-ratio mass spectrometer (IRMS). Here another continuous-flow method, (CF-EA/IRMS), initially dedicated to water, is tested for plasma and urine analyses. The elemental analyser configuration is adapted for each stable isotope: chromium tube for deuterium reduction and glassy carbon reactor for 18O pyrolysis. Before on-line conversion of water into gas, each matrix is submitted to a short and easy treatment, which is the same for the analysis of the two isotopes. Plasma is passed through centrifugal filters. Urine is cleaned with black carbon and filtered (0.45 microm diameter). Tested between 150 and 300 ppm in these fluids, the D/H ratio response is linear with good repeatability (SD<0.2 ppm) and reproducibility (SD<0.5 ppm). For 18O/16O ratios (from 2000 to 2200 ppm), the same repeatability is obtained with a between-day precision lower than 1.4 ppm. The accuracy on biological samples is validated by comparison to classical dual-inlet methods: 18O analyses give more accurate results. The data show that enriched physiological fluids can be successfully analysed in CF-EA/IRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.
Analysis of stable isotopes in fish to identify habitat use and switching
In our isotopic studies of fish in Oregon Coast Range streams we have found stable isotopes of carbon, oxygen and sulfur to be surprisingly useful in identifying and discriminating specific habitat or tributary use by a variety of fish species. Stable isotopes of carbon can be u...
Stable isotopes in fish as indicators of habitat use
In our isotopic studies of fish in Oregon Coast Range streams we have found stable isotopes of carbon, oxygen and sulfur to be surprisingly useful in identifying and discriminating specific habitat or tributary use by a variety of fish species. Stable isotopes of carbon can be u...
NASA Astrophysics Data System (ADS)
Marzouk, E. R.; Chenery, S. R.; Young, S. D.
2013-12-01
The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values. Quantify the isotopically exchangeable fractions of Zn, Cd and Pb (E-values), and assess their local and regional variability, using multi-element stable isotope dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop predictive algorithms for metal lability in the contaminated catchment based on simple soil properties (such as pH, organic matter (LOI), and total metal content). Examine the incidence of non-isotopically-exchangeable metal held within suspended colloidal particles (SCP-metal) in filtered soil solutions (<0.22 μm) by comparing E-values from isotopic abundance in solutions equilibrated with soil and in a resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.
Huang, Tao; Yang, Lianjiao; Chu, Zhuding; Sun, Liguang; Yin, Xijie
2016-09-15
Emperor penguins (Aptenodytes forsteri) are sensitive to the Antarctic climate change because they breed on the fast sea ice. Studies of paleohistory for the emperor penguin are rare, due to the lack of archives on land. In this study, we obtained an emperor penguin ornithogenic sediment profile (PI) and performed geochronological, geochemical and stable isotope analyses on the sediments and feather remains. Two radiocarbon dates of penguin feathers in PI indicate that emperor penguins colonized Amanda Bay as early as CE 1540. By using the bio-elements (P, Se, Hg, Zn and Cd) in sediments and stable isotope values (δ(15)N and δ(13)C) in feathers, we inferred relative population size and dietary change of emperor penguins during the period of CE 1540-2008, respectively. An increase in population size with depleted N isotope ratios for emperor penguins on N island at Amanda Bay during the Little Ice Age (CE 1540-1866) was observed, suggesting that cold climate affected the penguin's breeding habitat, prey availability and thus their population and dietary composition. Copyright © 2016 Elsevier B.V. All rights reserved.
Stable isotope views on ecosystem function: challenging or challenged?
Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando
2010-06-23
Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.
Stable isotope views on ecosystem function: challenging or challenged?
Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando
2010-01-01
Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858
Schmidt, Hanns-Ludwig; Robins, Richard J; Werner, Roland A
2015-01-01
Many physical and chemical processes in living systems are accompanied by isotope fractionation on H, C, N, O and S. Although kinetic or thermodynamic isotope effects are always the basis, their in vivo manifestation is often modulated by secondary influences. These include metabolic branching events or metabolite channeling, metabolite pool sizes, reaction mechanisms, anatomical properties and compartmentation of plants and animals, and climatological or environmental conditions. In the present contribution, the fundamentals of isotope effects and their manifestation under in vivo conditions are outlined. The knowledge about and the understanding of these interferences provide a potent tool for the reconstruction of physiological events in plants and animals, their geographical origin, the history of bulk biomass and the biosynthesis of defined representatives. It allows the use of isotope characteristics of biomass for the elucidation of biochemical pathways and reaction mechanisms and for the reconstruction of climatic, physiological, ecological and environmental conditions during biosynthesis. Thus, it can be used for the origin and authenticity control of food, the study of ecosystems and animal physiology, the reconstruction of present and prehistoric nutrition chains and paleaoclimatological conditions. This is demonstrated by the outline of fundamental and application-orientated examples for all bio-elements. The aim of the review is to inform (advanced) students from various disciplines about the whole potential and the scope of stable isotope characteristics and fractionations and to provide them with a comprehensive introduction to the literature on fundamental aspects and applications.
Badea, Silviu-Laurentiu; Vogt, Carsten; Gehre, Matthias; Fischer, Anko; Danet, Andrei-Florin; Richnow, Hans-Hermann
2011-05-30
α-Hexachlorocyclohexane (α-HCH) is the only chiral isomer of the eight 1,2,3,4,5,6-HCHs and we have developed an enantiomer-specific stable carbon isotope analysis (ESIA) method for the evaluation of its fate in the environment. The carbon isotope ratios of the α-HCH enantiomers were determined for a commercially available α-HCH sample using a gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) system equipped with a chiral column. The GC-C-IRMS measurements revealed δ-values of -32.5 ± 0.8‰ and -32.3 ± 0.5‰ for (-) α-HCH and (+) α-HCH, respectively. The isotope ratio of bulk α-HCH was estimated to be -32.4 ± 0.6‰ which was in accordance with the δ-values obtained by GC-C-IRMS (-32.7 ± 0.2‰) and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) of the bulk α-HCH (-32.1 ± 0.1‰). The similarity of the isotope ratio measurements of bulk α-HCH by EA-IRMS and GC-C-IRMS indicates the accuracy of the chiral GC-C-IRMS method. The linearity of the α-HCH ESIA method shows that carbon isotope ratios can be obtained for a signal size above 100 mV. The ESIA measurements exhibited standard deviations (2σ) that were mostly < ± 0.5‰. In order to test the chiral GC-C-IRMS method, the isotope compositions of individual enantiomers in biodegradation experiments of α-HCH with Clostridium pasteurianum and samples from a contaminated field site were determined. The isotopic compositions of the α-HCH enantiomers show a range of enantiomeric and isotope patterns, suggesting that enantiomeric and isotope fractionation can serve as an indicator for biodegradation and source characterization of α-HCH in the environment. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Frew, Russell; Cannavan, Andrew; Zandric, Zora; Maestroni, Britt; Abrahim, Aiman
2013-04-01
Traceability systems play a key role in assuring a safe and reliable food supply. Analytical techniques harnessing the spatial patterns in distribution of stable isotope and trace element ratios can be used for the determination of the provenance of food. Such techniques offer the potential to enhance global trade by providing an independent means of verifying "paper" traceability systems and can also help to prove authenticity, to combat fraudulent practices, and to control adulteration, which are important issues for economic, religious or cultural reasons. To address some of the challenges that developing countries face in attempting to implement effective food traceability systems, the IAEA, through its Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture, has initiated a 5-year coordinated research project involving institutes in 15 developing and developed countries (Austria, Botswana, Chile, China, France, India, Lebanon, Morocco, Portugal, Singapore, Sweden, Thailand, Uganda, UK, USA). The objective is to help in member state laboratories to establish robust analytical techniques and databases, validated to international standards, to determine the provenance of food. Nuclear techniques such as stable isotope and multi-element analysis, along with complementary methods, will be applied for the verification of food traceability systems and claims related to food origin, production, and authenticity. This integrated and multidisciplinary approach to strengthening capacity in food traceability will contribute to the effective implementation of holistic systems for food safety and control. The project focuses mainly on the development of techniques to confirm product authenticity, with several research partners also considering food safety issues. Research topics encompass determination of the geographical origin of a variety of commodities, including seed oils, rice, wine, olive oil, wheat, orange juice, fish, groundnuts, tea, pork, honey and coffee, the adulteration of milk with soy protein, chemical contamination of food products, and inhomogeneity in isotopic ratios in poultry and eggs as a means to determine production history. Analytical techniques include stable isotope ratio measurements (2H/1H, 13C/12C, 15N/14N, 18O/16O, 34S/32S, 87Sr/86Sr, 208Pb/207Pb/206Pb), elemental analysis, DNA fingerprinting, fatty acid and other biomolecule profiling, chromatography-mass spectrometry and near infra-red spectroscopy.
NASA Astrophysics Data System (ADS)
Fa, D.; Ferguson, J. E.; Atkinson, T. C.; Barton, R. N.; Ditchfield, P.; Finlayson, G.; Finlayson, J. C.; Henderson, G. M.
2007-12-01
Seasonal resolution climate records from mid and high latitudes would allow investigation of the role of seasonality in controlling mean climate on diverse timescales, and of the evolution of climate systems such as the North Atlantic Oscillation (NAO). But achieving such seasonal resolution is difficult for regions outside the growth range of surface corals. Marine mollusc shells provide a possible archive and contain growth increments varying in scale from tidal to annual. However, finding and dating sequences of marine mollusc shells spanning long periods of time is difficult due to sea-level change and the destructional nature of most coastal environments. In this study, we have made use of the habit of hominins on Gibraltar to collect molluscs for food over at least the last 120 kyr. In archaeological excavations of two caves (Gorham's and Vanguard Caves), mollusc shells were found, in habitation levels and in sediment blown into the caves. Existing 14C, OSL, and U-series chronologies provide a chronological framework for this suite of samples. The species found are predominantly Mytilus (mussels) or Patella (limpets). Gibraltar is an interesting location for paleoclimate reconstruction due to its proximity to the boundary of modern day climate belts but also due to its anthropological and archaeological importance. To gain a quantitative understanding of the local controls on stable isotopes and trace elements within Gibraltarian shells, we have initiated a water-sampling programme; emplaced a temperature and salinity logger near the sampling site; and marked live Patella and Mytilus with fluorescent dye to firmly establish growth rates and controls on chemical composition. We have also conducted stable-isotope and trace-element analysis of modern and fossil Patella and Mytilus shells by micromilling. Recent Patella and Mytilus shells show that the oxygen isotope composition of modern shells allow the accurate reconstruction of the full seasonal range in sea-surface temperature. Analysis of three fossil Mytilus samples contained within a Neanderthal occupation level from approximately 115 kyr show clear annual cycles in δ 18O but with different absolute values. Patella samples have also been analysed from the last glacial and from 800-300B.C. Results allow an assessment of past changes in seasonality and of the utility of this archeological shell material as an archive for past change.
Extending the Boundaries of Isotope Ratio MS - Latest Technological Improvements
NASA Astrophysics Data System (ADS)
Hilkert, A.
2016-12-01
Isotope ratio mass spectrometry has a long history, which started with the analysis of the isotopes of CO2. Over several decades a broad range of IRMS techniques has been derived like multi-collector high resolution ICP-MS, TIMS, noble gas static MS and gas IRMS. These different flavors of IRMS are now building a technology tool box, which allows to derive new applications build on new capabilities by combination of specific features of these sister technologies. In the 90's inductive coupled plasma ionization was added for the high precision analysis of rare elements. In 2000 extended multicollection opened the way into clumped isotopes. In 2008 the concept of a high resolution gas source IRMS was layed out to revolutionize stable gas IRMS recently followed by the combination of this static multicollection mode with fast mass scans of the single collector double focusing high resolution GCMS. Recently new technologies were created, like the mid infrared analyzers (IRIS) based on difference frequency generation lasers, the combination of a collision cell with HR MC ICPMS as well as the use of a high resolution electrostatic ion trap for extended stable isotope analysis on individual compounds. All these building blocks for IRMS address selected requirements of sample preparation, sample introduction, referencing, ionization, mass separation, ion detection or signal amplification. Along these lines new technological improvements and applications will be shown and discussed.
Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence
Bullen, Thomas D.; Chadwick, Oliver A.
2016-01-01
Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in surface soils, and indeed at all but the wettest site across the climosequence, to represent the complement of an isotopically light Ba fraction removed from these soils by plant roots consistent with the biolifting hypothesis. We further suggest that decreasing heaviness of depth-integrated exchangeable Ba in deeper soils with increasing median annual precipitation across the climosequence reflects greater reliance on shallow nutrient sources as site water balance increases. While the Ca, Sr and Ba isotopes considered together were useful in confirming an important role for nutrient biolifting across the climosequence, the Ba isotopes provided the most robust tracer of biolifting and have the greatest potential to find application as an isotopic proxy for P dynamics in soils.
USDA-ARS?s Scientific Manuscript database
Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...
Geochemistry and origin of regional dolomites. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.N.; Meyers, W.J.
1995-05-01
The main goal of our research on dolomites has been to better understand the composition of the fluids and processes of the fluid-rock interaction responsible for the formation of massive dolostones occurring over regional scales within sedimentary sequences. Understanding the timing of dolomitization, the fluids responsible for the dolomitization and the timing of the development of porosity has major economic ramifications in that dolomites are major oil reservoirs often having better reservoir properties than associated limestones. Our approach has been to apply trace element, major element, petrographic, crystallographic, stable isotope and radiogenic isotope systems to test models for the originsmore » of dolomites and to give information that may allow us to develop new models. Fluid compositions and processes are evaluated through the use of numerical models which we have developed showing the simultaneous evolution of the trace element and isotope systems during dolomitization. Our research has included the application of B, O, C, Sr, Nd and Pb isotope systematics and the trace elements Mn, Fe St, rare earth elements, Rb, Ba, U, Th, Pb, Zn, Na, Cl, F and SO{sub 4}{sup 2-}. Analyses are possible on individual cements or dolomite types using micro-sampling or microprobe techniques. The microprobe techniques used include synchrotron X-ray microprobe analysis at Brookhaven National Laboratory or electron microprobe at Stony Brook. Lack of a modern analogue for ancient massive dolostones has limited the application of the uniformitarian concept to developing models for the ancient regional dolostones. In addition it has not been possible to synthesize dolomite in the laboratory under conditions similar to the sedimentary or diagenetic possible environments in which the dolomites must have formed.« less
Nahon, Sarah; Séité, Sarah; Kolasinski, Joanna; Aguirre, Pierre; Geurden, Inge
2017-10-30
Carbon and nitrogen stable isotope analyses of fish tissues are now commonly used in ecological studies but mostly require the sacrifice of the animal. Ethical considerations recommend the use of anesthetics for tissue sampling. This study examines how anesthetics affect stable isotope ratios of fish compared with other euthanasia methods. Rainbow trout fry and juveniles were sacrificed using ice-freezing (as this common method used to kill fish does not affect natural isotopic ratios), electronarcosis or an overdose of chemical anesthetics (2-phenoxyethanol, benzocaine and clove oil). For fry, we sampled the whole animal whereas, for juveniles, white dorsal muscle, liver, red blood cells, plasma, external tegument and pectoral fin were sampled. Isotopic ratios and the elemental compositions of carbon and nitrogen were then measured. The δ 15 N values, and the C and N contents of all considered tissues as well as δ 13 C values of muscle, liver, red blood cells and plasma, were not affected by the use of chemical anesthetics. Clove oil and to a lesser extent 2-phenoxyethanol and benzocaine decreased δ 13 C values of whole fry and juvenile external tegument and pectoral fin. The use of electronarcosis drastically affects the δ 13 C and δ 15 N values of all fish tissues. Anesthetics should be avoided for δ 13 C analysis when tissues are in contact with the water containing the anesthetic. Ice-immersion has to be preferred when approved by guidelines. If not, benzocaine and 2-phenoxyethanol should be preferred over clove oil. Electronarcosis should not be used to kill fish until further investigations are performed. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Seibert, Stephan; Schubert, Florian; Schmiedinger, Iris; Böttcher, Michael E.; Massmann, Gudrun
2017-04-01
The formation of iron sulfides in sandy sediments and the associated development of stable isotope signatures is still mechanistically not understood. In dune sands under impact of both fresh and saline water several physico-chemical gradients may develop leading to distinctly different biogeochemical zones. In the present study, a 10 m long core from a dune base at the North Eastern part of Spiekeroog Island, southern North Sea, was investigated for the elemental and stable isotope composition. The pyrite (TRIS) content was quantitatively extracted via an acidic Cr(II) distillation procedure and the stable sulfur isotope composition was determined by means of C-irmMS. The pore waters display a downcore increase in salt contents and a mixing between fresh and salt water. The accumulation of metabolites at depth indicate an increasing superimposition of mixing by microbial decomposition of dissolved organic matter with only limited net sulfate reduction. This indicates an essential open system with respect to dissolved sulfate. The sands were found to be very low in TOC, TIC, and TRIS and dominated by quartz minerals. Under the assumption that North Sea water sulfate was the only substantial sulfate source (d34S = + 21per mil), the sedimentary sulfides indicate an overall sulfur isotope discrimination upon microbial sulfate reduction between 39 and 52 per mil, which is within the range of results from other fully marine sands from the Spiekeroog area and laboratory studies with pure cultures of sulfate-reducing bacteria under low cellular sulfate reduction rates. Further investigations are on the way to understand the processes leading to the iron sulfide formation in these organic-poor substrates.
NASA Astrophysics Data System (ADS)
Ayadi, Rahma; Trabelsi, Rim; Zouari, Kamel; Saibi, Hakim; Itoi, Ryuichi; Khanfir, Hafedh
2018-06-01
Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water-rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.
NASA Astrophysics Data System (ADS)
Ayadi, Rahma; Trabelsi, Rim; Zouari, Kamel; Saibi, Hakim; Itoi, Ryuichi; Khanfir, Hafedh
2017-12-01
Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water-rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.
Isotopic and Elemental Determination in Some Romanian Apple Fruit Juices
Magdas, Dana Alina; Dehelean, Adriana; Puscas, Romulus
2012-01-01
H, C, O stable isotope ratios and the content of some heavy elements of 31 Romanian single-strength organic apple juices collected from four Transylvanian areas are discussed in this study. The aim of this study was to measure the 2H/1H, 18O/16O, 13C/12C ratios of these juices and their elemental profile and to establish a database of authentic values to be used for adulteration and authenticity testing. Our results have shown mean values of δ 18O = −4.2‰ and δDδ−46.5‰, respectively, for apples from Transylvania and at the same time the mean value of δ 13C = −28.2‰. The content of Cd, Pb, U, Zn, As was below the acceptable limits stipulated in US-EPA standard for drinking water. Cu and Cr limits exceeded for one single juice; Ni content for some apple juices from Maramures, Alba, and Cluj was higher than the acceptable value. PMID:22666164
Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology
Jeffrey F. Kelly
2000-01-01
Differential fractionation of stable isotopes of carbon during photosynthesis causes C4 plants and C3 plants to have distinct carbon-isotope signatures. In addition, marine C3 plants have stable-isotope ratios of carbon that are intermediate between C4 and terrestrial C3 plants. The direct incorporation of the carbon-isotope ratio (13C/12C) of plants into consumers...
Nuclear astrophysics with radioactive ions at FAIR
NASA Astrophysics Data System (ADS)
Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.
2016-01-01
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...
A combined radio- and stable-isotopic study of a California coastal aquifer system
Swarzenski, Peter W.; Baskaran, Mark; Rosenbauer, Robert J.; Edwards, Brian D.; Land, Michael
2013-01-01
Stable and radioactive tracers were utilized in concert to characterize geochemical processes in a complex coastal groundwater system and to provide constraints on the kinetics of rock/water interactions. Groundwater samples from wells within the Dominguez Gap region of Los Angeles County, California were analyzed for a suite of major cations (Na+, K+, Mg2+, Ca2+) and anions (Cl−, SO42−), silica, alkalinity, select trace elements (Ba, B, Sr), dissolved oxygen, stable isotopes of hydrogen (δD), oxygen (δ18O), dissolved inorganic carbon (δ13CDIC), and radioactive isotopes (3H, 222Rn and 223,224,226,228Ra). In the study area, groundwater may consist of a complex mixture of native groundwater, intruded seawater, non-native injected water, and oil-field brine water. In some wells, Cl− concentrations attained seawater-like values and in conjunction with isotopically heavier δ18O values, these tracers provide information on the extent of seawater intrusion and/or mixing with oil-field brines. Groundwater 3H above 1 tritium unit (TU) was observed only in a few select wells close to the Dominguez Gap area and most other well groundwater was aged pre-1952. Based on an initial 14C value for the study site of 90 percent modern carbon (pmc), groundwater age estimates likely extend beyond 20 kyr before present and confirm deep circulation of some native groundwater through multiple aquifers. Enriched values of groundwater δ13CDIC in the absence of SO42− imply enhanced anaerobic microbial methanogenesis. While secular equilibrium was observed for 234U/238U (activity ratios ~1) in host matrices, strong isotopic fractionation in these groundwater samples can be used to obtain information of adsorption/desorption kinetics. Calculated Ra residence times are short, and the associated desorption rate constant is about three orders of magnitude slower than that of the adsorption rate constant. Combined stable- and radio-isotopic results provide unique insights into aquifer characteristics, such as geochemical cycling, rock/water interactions, and subsurface transport and mixing.
Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach
NASA Astrophysics Data System (ADS)
Perşoiu, A.; Bojar, A.-V.
2012-04-01
Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.
Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory
NASA Astrophysics Data System (ADS)
Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.
1997-02-01
The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.
Petzke, Klaus J; Fuller, Benjamin T; Metges, Cornelia C
2010-09-01
We review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Although the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. Stable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.
Brodie, Eoin L; DeSantis, Todd Z; Karaoz, Ulas; Andersen, Gary L
2014-12-09
Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).
Characterization of calcium isotopes in natural and synthetic barite
Griffith, E.M.; Schauble, E.A.; Bullen, T.D.; Paytan, A.
2008-01-01
The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (??44/40Ca = -2.01 ?? 0.15???) but are different from hydrothermal and cold seep barite samples (??44/40Ca = -4.13 to -2.72???). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, ??44/40Ca = -3.42 to -2.40???. Temperature, saturation state, a Ba2 + / a SO42 -, and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by -9??? at 0 ??C and -8??? at 25 ??C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower ??44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals. ?? 2008 Elsevier Ltd.
Titanium stable isotope investigation of magmatic processes on the Earth and Moon
NASA Astrophysics Data System (ADS)
Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.
2016-09-01
We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.
Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.
2013-01-01
We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.
Peng, Tsung-Ren; Liang, Wen-Jui; Liu, Tsang-Sen; Lin, Yu-Wen; Zhan, Wen-Jun
2015-01-01
This study combines stable isotopes and chemical elements with statistical principal component analysis (PCA) to assess the authenticity of bottled commercial drinking water desalinized from deep seawater in the Taiwan market. Isotopic results indicate that true bottled deep-sea drinking water (DSDW) exhibits about 0 ‰ for both δ(2)H and δ(18)O values, which are values similar to those of open seawater. By comparison, suspected counterfeit DSDW products display δ(2)H and δ(18)O values of around -51 ‰ and -8 ‰, respectively. These values are representative of terrestrial freshwater. In addition, suspected counterfeit DSDWs have δ and electrical conductivity values similar to a mixed water (MW) product that was manufactured by purifying terrestrial freshwater and adulterating this with small amounts of brine. Furthermore, PCA results indicate the chemical constitution of suspected DSDW products to be similar to the MW product which falls between purified terrestrial freshwater and desalinized open seawater. These similarities imply that suspected counterfeit DSDW products are manufactured in a similar manner to the declared MW product. This study demonstrates how combining knowledge of stable water isotopes and PCA can be used in assessing the authenticity of commercial DSDW products. The method should be of great interest to similar investigations elsewhere.
NASA Technical Reports Server (NTRS)
Wiedenbeck, M. E.
1977-01-01
An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.
Carbon isotopic evidence for photosynthesis in Early Cambrian oceans
NASA Astrophysics Data System (ADS)
Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.
1997-06-01
Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.
Neutral Mass Spectrometry for Venus Atmosphere and Surface
NASA Technical Reports Server (NTRS)
Mahaffy, Paul
2005-01-01
The assignment is to make precise (better than 1 %) measurements of isotope ratios and accurate (5-10%) measurements of abundances of noble gas and to obtain vertical profiles of trace chemically active gases from above the clouds all the way down to the surface. Science measurement objectives are as follows: 1) Determine the composition of Venus atmosphere, including trace gas species and light stable isotopes; 2) Accurately measure noble-gas isotopic abundance in the atmosphere; 3) Provide descent, surface, and ascent meteorological data; 4) Measure zonal cloud-level winds over several Earth days; 5) Obtain near-IR descent images of the surface from 10-km altitude to the surface; 6) Accurately measure elemental abundances & mineralogy of a core from the surface; and 7) Evaluate the texture of surface materials to constrain weathering environment.
Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R
2015-04-30
Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results warrant further exploration of dacryoconarid stable isotope proxy sensitivity, the isotopic contrast among dacryoconarids, other taxa, and bulk rock, as well as other potential dacryoconarid proxies (Mg/Ca, Sr/Ca, (87) Sr/(86) Sr, microlaser and ion microprobe isotope techniques, and clumped isotopes) for stratigraphic research. Copyright © 2015 John Wiley & Sons, Ltd.
Metal stable isotopes in weathering and hydrology: Chapter 10
Bullen, Thomas D.; Holland, Heinrich; Turekian, K.
2014-01-01
This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.
NASA Astrophysics Data System (ADS)
Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II
Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.
Shanks, Wayne C.; Böhlke, John Karl; Seal, Robert R.; Humphries, S.D.; Zierenberg, Robert A.; Mullineaux, Lauren S.; Thomson, Richard E.
1995-01-01
Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios (Nice, 1947]. Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro-analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.
NASA Astrophysics Data System (ADS)
Ryabenko, Evgenia; Elsner, Martin; Bakkour, Rani; Hofstetter, Thomas; Torrento, Clara; Hunkeler, Daniel
2015-04-01
The frequent detection of organic micropollutants such as pesticides, consumer care products or pharmaceuticals in water is an increasing concern for human and ecosystem health. Degradation analysis of these compounds can be challenging in complex systems due to the fact that metabolites are not always found and mass balances frequently cannot be closed. Many abiotic and biotic degradation pathways cause, however, distinct isotope fractionation, where light isotopes are transferred preferentially from the reactant to the product pool (normal isotope fractionation). Compound-specific isotope analysis (CSIA) of multiple elements is a particularly powerful method to evaluate organic micropollutant transformation, because it can even give pathway-specific isotope fractionation (1,2). Available CSIA field studies, however, have focused almost exclusively on volatile petroleum and chlorinated hydrocarbons, which are present in high concentrations in the environment and can be extracted easily from water for GC-IRMS analysis. In the case of micropollutants, such as pesticides, CSIA in more challenging since it needs to be conducted at lower concentrations and requires pre-concentration, purification and high chromatographic performance (3). In this study we used lysimeters experiments to analyze transformation of atrazine, acetochlor, metolachlor and chloridazone by studying associated isotope fractionation. The project combines a) analytical method development for CSIA, b) identification of pathways of micropollutant degradation and c) quantification of transformation processes under field condition. The pesticides were applied both, at the soil surface and below the top soil under field-relevant concentrations in May 2014. After typical irrigation of the lysimeters, seepage water was collected in 50L bottles and stored for further SPE and CSIA. Here we present the very first result of a) analytical method development, b) improvement of SPE methods for complex pesticide mixtures and c) transformation of pesticides in lysimeters during the year 2014. 1 Elsner, M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J. Environ. Monit. 12, 2005-2031 (2010). 2 Hofstetter, T. B. & Berg, M. Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends in Analytical Chemistry 30, 618-627 (2011). 3 Elsner, M. et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal. Bioanal. Chem. 403, 2471-2491, doi:10.1007/s00216-011-5683-y (2012).
Applications of stable isotope analysis in mammalian ecology.
Walter, W David; Kurle, Carolyn M; Hopkins, John B
2014-01-01
In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.
Ericksen, J.A.; Gustin, M.S.; Lindberg, S.E.; Olund, S.D.; Krabbenhoft, D.P.
2005-01-01
A solution containing 198Hg in the form of HgCl2 was added to a 4 m2 area of desert soils in Nevada, and soil Hg fluxes were measured using three dynamic flux chambers. There was an immediate release of 198Hg after it was applied, and then emissions decreased exponentially. Within the first 6 h after the isotope was added to the soil, ???12 ng m-2 of 198Hg was emitted to the atmosphere, followed by a relatively steady flux of the isotope at 0.2 ?? 0.2 ng m-2 h-1 for the remainder of the experiment (62 days). Over this time, -200 ng m-2 or 2% of the 198Hg isotope was emitted from the soil, and we estimate that ???6% of the isotope would be re-emitted in a year's time. During the experiment, dry deposition of elemental Hg from the atmosphere was measured with an average deposition rate of 0.2 ?? 0.1 ng m-2 h-1. Emission of ambient Hg from the soil was observed after soil wetting with the isotope solution and after a storm event. However, the added moisture from the storm event did not affect 198Hg flux. Results suggest that in this desert environment, where there is limited precipitation, Hg deposited by wet processes is not readily re-emitted and that dry deposition of elemental Hg may be an important process. ?? 2005 American Chemical Society.
Stable isotope methodology in the pharmacokinetic studies of androgenic steroids in humans.
Shinohara, Y; Baba, S
1990-04-01
The use of stable isotopically labeled steroids combined with gas chromatography/mass spectrometry (GC/MS) has found a broad application in pharmacologic studies. Initially, stable isotopically labeled steroids served as the ideal analytic internal standard for GC/MS analysis; however, their in vivo use has expanded and has proven to be a powerful pharmacokinetic tool. We have successfully used stable isotope methodology to study the pharmacokinetic/bioavailability of androgens. The primary advantage of the technique is that endogenous and exogenous steroids with the same basic structure can be differentiated by using stable isotopically labeled analogs. The method was used to examine the pharmacokinetics of testosterone and testosterone propionate, and to clarify the influence of endogenous testosterone. Another advantage of the isotope methods is that steroidal drugs can be administered concomitantly in two formulations (e.g., solution and solid dosage). A single set of blood samples serves to describe the time course of the formulations being compared. This stable isotope coadministration technique was used to estimate the relative bioavailability of 17 alpha-methyltestosterone.
NASA Astrophysics Data System (ADS)
Zuo, Fanfan; Heimhofer, Ulrich; Huck, Stefan; Erbacher, Jochen; Bodin, Stephane
2017-04-01
Stratigraphic uncertainties due to the lack of open marine marker fossils (e.g. ammonites) hamper the precise age assignment and stratigraphic correlation of Kimmeridgian strata found in the Lower Saxony Basin of Northern Germany. Correlation of these deposits with the Jurassic standard ammonite zonation is still difficult, since the existing ostracod biostratigraphy is facies-controlled and of only limited stratigraphic precision. In this study, a chemostratigraphic approach has been chosen and biogenic shell material produced by brachiopods, oysters and lithiotids is evaluated for its reliability to act as proxy of the original Jurassic seawater strontium isotope composition. Low-Mg calcite shells have been collected from three stratigraphic sections accessible in open-cast quarries located in the Lower Saxony Basin of Northern Germany. In order to identify diagenetically altered shell calcite, trace element and stable isotope analysis of 227 calcite samples (oysters=101; brachiopods=60; Trichites=52) has been carried out. The geochemical results reveal that (1) concentration of different trace elements varies between the different groups of shell-forming organisms, which may be related to vital effects and (2) high strontium contents, low Mn and Fe contents and the lack of correlation between these elements indicate near-pristine calcite shells, and therefore shells are supposed to record the ambient sea water composition during the Late Jurassic. Strontium-isotope (87Sr/86Sr) analysis of diagenetically screened samples indicates an Early Kimmeridgian age of the studied deposits, which is in accordance with ostracod biostratigraphic data. An increasing trend in 87Sr/86Sr with stratigraphic height fits well with the global strontium-isotope curve. Besides, similar 87Sr/86Sr ratios derived from different organisms from a single stratigraphic level highlight the suitability of the shells for strontium-isotope stratigraphy. Despite the shallow-marine character of the studied deposits, no evidence for significant riverine influence on the strontium-isotope signature is observed. The new chemostratigraphic data will provide a more precise age assignment for Kimmeridgian strata in the Lower Saxony Basin and thus enable the establishment of a solid integrated stratigraphic scheme that can be used for correlation on both regional and global scale.
Water-stable fac-{TcO₃}⁺ complexes - a new field of technetium chemistry.
Braband, Henrik
2011-01-01
The development of technetium chemistry has been lagging behind that of its heavier congener rhenium, primarily because the inherent radioactivity of all Tc isotopes has limited the number of laboratories that can study the chemistry of this fascinating element. Although technetium is an artificial element, it is not rare. Significant amounts of the isotope (99)Tc are produced every day as a fission byproduct in nuclear power plants. Therefore, a fundamental understanding of the chemistry of (99)Tc is essential to avoid its release into the environment. In this article the chemistry of technetium at its highest oxidation state (+VII) is reviewed with a special focus on recent developments which make water-stable complexes of the general type [TcO(3)(tacn-R)](+) (tacn-R = 1,4,7-triazacyclononane or derivatives) accessible. Complexes containing the fac-{TcO(3)}(+) core display a unique reactivity. In analogy to [OsO(4)] and [RuO(4)], complexes containing the fac-{TcO(3)}(+) core undergo with alkenes metal-mediated, vicinal cis-dihydroxylation reactions (alkene-glycol interconversion) in water via a (3+2)-cycloaddition reaction. Therefore, water-stable fac-{(99m)TcO(3)}(+) complexes pave the way for a new labeling strategy for radiopharmaceutical applications, based on (3+2)-cycloaddition reactions. This new concept for the labeling of biomolecules with small [(99m)TcO(3)(tacn-R)](+)-type complexes by way of a (3+2)-cycloaddition with alkenes is discussed in detail. The herein reported developments in high-valent technetium chemistry create a new field of research with this artificial element. This demonstrates the potential of fundamental research to provide new impetus of innovation for the development of new methods for radiopharmaceutical applications.
NASA Astrophysics Data System (ADS)
Cole, J. E.; Truebe, S. A.; Harrington, M. D.; Woodhead, J. D.; Overpeck, J. T.; Hlohowskyj, S.; Henderson, G. M.
2015-12-01
In dry environments, speleothems provide an outstanding archive of information on past climate change, particularly since lakes are typically absent or intermittent. Speleothem stable isotopes are widely used for climate reconstruction, but the isotope-climate relationship is complex in arid-region precipitation, and within-cave processes further complicate climate interpretations. Our isotope results from 3 southeastern Arizona caves, spanning the past 3.5-12 kyr, collectively indicate a weakening monsoon from 7kyr to present. These records exhibit substantial multidecadal-multicentury variability that is sometimes shared, and sometimes independent among caves. Strategies to overcome ambiguities in isotope records include long-term monitoring of cave dripwaters, multi-site comparisons, and multiproxy measurements. Monthly dripwater measurements from two caves spanning several years highlight substantial seasonal biases that create distinct differences in the climate sensitivity of individual cave records. These biases can lead to lack of correlation between records, but also creates opportunities for seasonally specific moisture reconstructions. New preliminary analyses suggest that elemental data can help to unravel the multivariate signal contained in speleothem oxygen isotope records.
β-decay spectroscopy of r-process nuclei with N = 126 at KISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, Y.; Watanabe, Y. X.; Imai, N.
2014-05-02
The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ∼ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and tomore » study their β-decay properties, which are also of interest for astrophysics. The isotopes of interest will be produced by multi-nucleon transfer reactions in heavy ion collisions (e.g. {sup 136}Xe projectile on {sup 198}Pt target). KISS will allow us to study unknown isotopes produced in weak reaction channels under low background conditions. We successfully extracted the stable {sup 56}Fe beam from KISS at the last commissioning on-line experiment with the extraction efficiency of 0.25% and beam purity of more than 98%. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.« less
NASA Astrophysics Data System (ADS)
Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus
2016-09-01
Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.
Ferreira, R.F.; Lambing, J.H.; Davis, R.E.
1989-01-01
Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)
Use of stable isotope analysis in determining aquatic food webs
Stable isotope analysis is a useful tool for describing resource-consumer dynamics in ecosystems. In general, organisms of a given trophic level or functional feeding group will have a stable isotope ratio identifiable different than their prey because of preferential use of one ...
Wu, Shubiao; Jeschke, Christina; Dong, Renjie; Paschke, Heidrun; Kuschk, Peter; Knöller, Kay
2011-12-15
Current understanding of the dynamics of sulfur compounds inside constructed wetlands is still insufficient to allow a full description of processes involved in sulfur cycling. Experiments in a pilot-scale horizontal subsurface flow constructed wetland treating high sulfate-containing contaminated groundwater were carried out. Application of stable isotope approach combined with hydro-chemical investigations was performed to evaluate the sulfur transformations. In general, under inflow concentration of about 283 mg/L sulfate sulfur, sulfate removal was found to be about 21% with a specific removal rate of 1.75 g/m(2)·d. The presence of sulfide and elemental sulfur in pore water about 17.3 mg/L and 8.5 mg/L, respectively, indicated simultaneously bacterial sulfate reduction and re-oxidation. 70% of the removed sulfate was calculated to be immobilized inside the wetland bed. The significant enrichment of (34)S and (18)O in dissolved sulfate (δ(34)S up to 16‰, compared to average of 5.9‰ in the inflow, and δ(18)O up to 13‰, compared to average of 6.9‰ in the inflow) was observed clearly correlated to the decrease of sulfate loads along the flow path through experimental wetland bed. This enrichment also demonstrated the occurrence of bacterial sulfate reduction as well as demonstrated by the presence of sulfide in the pore water. Moreover, the integral approach shows that bacterial sulfate reduction is not the sole process controlling the isotopic composition of dissolved sulfate in the pore water. The calculated apparent enrichment factor (ɛ = -22‰) for sulfur isotopes from the δ(34)S vs. sulfate mass loss was significantly smaller than required to produce the observed difference in δ(34)S between sulfate and sulfide. It indicated some potential processes superimposing bacterial sulfate reduction, such as direct re-oxidation of sulfide to sulfate by oxygen released from plant roots and/or bacterial disproportionation of elemental sulfur. Furthermore, 41% of residual sulfate was calculated to be from sulfide re-oxidation, which demonstrated that the application of stable isotope approach combined with the common hydro-chemical investigations is not only necessary for a general qualitative evaluation of sulfur transformations in constructed wetlands, but also leads to a quantitative description of intermediate processes. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiménez-Morillo, Nicasio T.; dos Anjos Leal, Otávio; Knicker, Heike; Pinheiro Dick, Deborah; González-Vila, Francisco J.; González-Pérez, José A.
2014-05-01
Isotopic ratio mass spectrometry (IRMS) has been proven as a promising tool for the monitoring of biogeochemical processes in soil. In this work, stable isotope signatures of light elements δ15N, δ13C, δ18O and δD were determined for two soils with contrasting characteristics in terms of climate, vegetation, land use and management. The studied soils were a Cambisol from a subtropical area (Paraná region, South Brazil) and an Arenosol from a Mediterranean climate (Andalusia, South Spain). A Flash 2000 HT (N, C, S, H and O) elemental analyzer (Thermo Scientific) coupled to a Delta V Advantage IRMS (Thermo Scientific) was used. Isotopic ratios are reported as parts per thousand (o ) deviations from appropriate standards recognized by the international atomic energy agency (IAEA). In a first approach we took advantage of the well-known different δ13C signature between plants using either the C4 or C3 carbon fixation pathway (O'Leary, 1981). The Arenosol (Spain) revealed a δ13C signature which is clearly in the range of C3 plants (-26 to -30 o ). Different plant canopies (tree, shrubs or ferns) caused only slight variations δ13C (STD= 0.98). In contrast, the Cambisol (Brazil) showed less depletion of the heavier carbon isotope corresponding to C4 predominant vegetation. In addition an increase from -19 o in the soil surface (0 - 5 cm) to -16 o in the subsoil (20 - 30 cm) was observed in line with a recent (2 years old) shift of the land use from the predominant C4 grassland to eucalypt (C3) cultivation. Crossplots of δ15N vs. δ18O may provide information about nitrate (NO3-) sources and N cycling (Kendall, 1998). In the Mediterranean Arenosol this signal (δ18O = 30o δ15N = 2o ) was found compatible with a predominant nitrate atmospheric deposition, whereas the signal in the Brazilian Cambisol pointed to the use of a mineral N fertilization with signs of denitrification processes (δ18O = 13o δ15N = 9o ). No conclusive results could be obtained from the δD isotopic signature probably due to overlapping of the δD signals from the organic and the mineral fractions. For a more detailed analysis steps allowing their separation are necessary (Ruppenthal et al. (2013) and references therein). Kendall, C. 1998. Tracing nitrogen sources and cycling in catchments. In Isotopes Tracers in Catchments Hydrology (C. Kendall and J. J. McDonnell, Eds). Elsevier Science B. V., Amsterdam, 519-576. O'Leary, M.H. 1981. Carbon isotope fraction in plants. Phytochemistry 20: 553-567. Ruppenthal, M., Oelmann, Y., Wilcke, W. 2013. Optimized demineralization technique for the measurement of stable isotope ratios of nonexchangeable H in soil organic matter. Environmental Science and Technology 47: 949-957.
Stable isotope paleoaltimetry and the evolution of landscapes and life
NASA Astrophysics Data System (ADS)
Mulch, Andreas
2016-01-01
Reconstructing topography of our planet not only advances our knowledge of the geodynamic processes that shape the Earth's surface; equally important it adds a key element towards understanding long-term continental moisture transport, atmospheric circulation and the distribution of biomes and biodiversity. Stable isotope paleoaltimetry exploits systematic decreases in the oxygen (δ18O) or hydrogen (δD) isotopic composition of precipitation along a mountain front when the interaction of topography and advected moist air masses induces orographic precipitation. These changes in δ18O or δD can be recovered from the geologic record and recent geochemical and modeling advances allow a broad range of proxy materials to be evaluated. Over the last 10 yr stable isotope paleoaltimetry has witnessed rapidly expanding research activities and has produced a broad array of fascinating tectonic and geomorphologic studies many of which have concentrated on determining the elevation history of continental plateau regions. These single-site studies have greatly expanded what used to be very sparse global paleoaltimetric data. The challenge now lies in disentangling the surface uplift component from the impact of climate change on δ18O and δD in precipitation. The robustness of stable isotope paleoaltimetry can be enhanced when high-elevation δ18O or δD data are referenced against low-elevation sites that track climate-modulated sea level δ18O or δD of precipitation through time (' δ- δ approach'). Analysis of central Andean paleosols documents that differences in δ18O of soil carbonate between the Subandean foreland and the Bolivian Altiplano are small between 11 and 7 Ma but rise rapidly to ca. 2.9‰ after 7 Ma, corroborating the magnitude of late Miocene change in δ18O on the Altiplano. Future advances in stable isotope paleoaltimetry will greatly benefit from addressing four key challenges: (1) Identifying topographically-induced changes in atmospheric circulation and associated teleconnections in the global climate system that affect δ18O or δD of precipitation; (2) Evaluating on a case-by-case basis if temporal and spatial changes in isotope lapse rates influence interpretations of paleoelevation; (3) Interfacing with phylogenetic techniques to evaluate competing hypotheses with respect to the timing of surface uplift and the diversification of lineages; (4) Characterizing feedbacks between changes in surface elevation and atmospheric circulation as these are likely to be equally important to the diversification of lineages than changes in surface elevation alone. Tackling these challenges will benefit from the accelerating pace of improved data-model comparisons and rapidly evolving geochemical techniques for reconstructing precipitation patterns. Most importantly, stable isotope paleoaltimetry has the potential to develop into a truly interdisciplinary field if innovative tectonic/paleoclimatic and evolutionary biology/phylogenetic approaches are integrated into a common research framework. It therefore, opens new avenues to study the long-term evolution of landscapes and life.
Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones.
Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen
2016-12-16
Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ 66 Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ 66 Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO 4 2- complexes preferentially incorporate heavy δ 66 Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.
USDA-ARS?s Scientific Manuscript database
Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...
NASA Astrophysics Data System (ADS)
Chen, S.; Gagnon, A. C.; Adkins, J. F.
2017-12-01
The stable isotope compositions of biogenic carbonates have been used for paleoceanographic and paleoclimatic reconstructions for decades, and produced some of the most iconic records in the field. However, we still lack a fully mechanistic understanding of the stable isotope proxies, especially the biological overprint on the environmental signals termed "vital effects". A ubiquitous feature of stable isotope vital effects in marine calcifying organisms is a strong correlation between δ18O and δ13C in a range of values that are depleted from equilibrium. Two mechanisms have been proposed to explain this correlation, one based on kinetic isotope effects during CO2(aq)-HCO3- inter-conversion, the other based on equilibrium isotope exchange during pH dependent speciation of the dissolved inorganic carbon pool. Neither mechanism explains all the stable isotope features observed in biogenic carbonates. Here we present a fully kinetic model of biomineralization and its isotope effects using deep sea corals as a test organism. A key component of our model is the consideration of the enzyme carbonic anhydrase in catalyzing the CO2(aq)-HCO3- inter-conversion reactions in the extracellular calcifying fluid (ECF). We find that the amount of carbonic anhydrase not only modulates the carbonate chemistry of the calcifying fluid, but also helps explain the slope of the δ18O-δ13C correlation. With this model, we are not only able to fit deep sea coral data, but also explain the stable isotope vital effects of other calcifying organisms. This fully kinetic model of stable isotope vital effects and the underlying calcification dynamics may also help us better understand mechanisms of other paleoceanographic tracers in biogenic carbonates, including boron isotopes and trace metal proxies.
Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric
2018-05-01
Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.
In Situ measurement of Kr and Xe in the atmosphere of Mars
NASA Astrophysics Data System (ADS)
Conrad, P. G.; Malespin, C.; Franz, H. B.; Trainer, M. G.; Pepin, R. O.; Schwenzer, S. P.; Manning, H. L.; Atreya, S. K.; Wong, M. H.; Jones, J. H.; Owen, T. C.; Mahaffy, P. R.
2015-12-01
Abstract: The Sample Analysis at Mars (SAM) investigation [1] on NASA's Mars Science Laboratory mission has measured the six stable isotopes of krypton and the nine stable isotopes of xenon from the surface of Mars. Using semi-static mass spectrometry (MS) to measure the Kr, and static MS experiments (first ever on another planet) to measure the xenon, we have obtained isotopic ratios of these heavy noble gas elements with greatly improved precision over the Viking Measurements. The Viking landers detected both Kr and Xe [2] with a reported precision of ±20%, insufficient for in situ isotope measurement. Using the Viking observation of high 129Xe relative to Earth or to solar wind, Bogard & Johnson [3] and Swindle et al. [4] recognized that Shergottite meteorites may hold trapped Martian atmosphere, from which Swindle's team later reported precise noble gas isotope ratios, solidifying the theory that these meteorites were of martian origin. Our data are in very good agreement with the Swindle et al. [4] analysis, and the isotopic distributions of Kr and Xe in present day Martian atmosphere support the Pepin [5] model of massive hydrodynamic escape of the martian atmosphere early after formation. References: [1] Mahaffy, Paul R., et al. Space Science Revs 170.1-4 (2012): 401-478. [2] Owen, T., et al. Science 194.4271 (1976): 1293-1295. [3] Bogard, D. D. & Johnson, P. (1983) Science, 221: 651-654. [4] Swindle, T. D., M. W. Caffee, and C. M. Hohenberg. Geochim et Cosmochim Acta 50.6 (1986): 1001-1015. [5] Pepin, Robert O. Icarus 111.2 (1994): 289-304.
Iyengar, Venkatesh
2002-03-01
Nuclear and isotopic techniques are valuable tools in human nutritional research studies. Isotopes, both radioactive and nonradioactive, enable detailed evaluations of nutrient intake, body composition, energy expenditure, status of micronutrients, and nutrient bioavailability. In recent times, isotopic methods have been widely used in a number of coordinated research projects and technical cooperation projects of the International Atomic Energy Agency's Nutrition Programme. The doubly labeled water technique combines the use of the stable isotopes oxygen-18 and hydrogen-2 (deuterium) to measure total energy expenditure in free-living human subjects, and to investigate the magnitude and causes of both undernutrition and the emergence of obesity in developing countries. The deuterium dilution technique is a reliable tool to measure breastmilk intake and thereby infant growth and development. In collaboration with the World Health Organization's Growth Monitoring Program, this technique is being used to generate new data on growth standards for children in developing countries. This technique is also used in the measurement of body composition by the estimation of lean body mass and fat mass in individuals. Stable isotopes of iron and zinc have been successfully used to assess the nutritional impact of several nationwide food supplementation-programs conducted on pregnant and lactating women and children in both industrialized and developing countries. Isotopic techniques are especially suitable for monitoring changes in body composition, energy metabolism, and mineral status (with particular reference to osteoporosis) in the elderly. Nuclear methods have also served to develop models for a physiological reference man in Asia in support of radiological health and safety issues, for establishing elemental composition of foods, and for measurement of pollutants in the environment.
Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.
Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G
2014-07-01
Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).
NASA Astrophysics Data System (ADS)
Nanne, J. A. M.; Millet, M. A.; Burton, K. W.; Dale, C. W.; Nowell, G. M.; Williams, H. M.
2016-12-01
Mass-dependent Os stable isotope fractionation is expected to occur during metal-silicate segregation as well as during crystallization of metal alloys due to the different bonding environment between silicate and metals. As such, Os stable isotopes have the potential to resolve questions pertaining to planetary accretion and differentiation. Here, we present stable Os isotope data for a set of chondrites and iron meteorites to examine the processes associated with core solidification. Carbonaceous, ordinary, and enstatite chondrites show no detectable stable isotope variation with a δ190Os weighted average of +0.12±0.04 (n=37). The uniform composition observed for chondrites implies Os stable isotope homogeneity of the bulk solar nebula. Contrary to chondrites, iron meteorites display a large range in Os stable isotope compositions from δ190Os of +0.05 up to +0.49‰. Variation is only observed in the IIAB and IIIAB irons. Type IVB irons display values similar to chondrites (+0.107±0.047 [n=3]) and IVA compositions are slightly different +0.187±0.004 (n=2). The type IIAB and IIIAB groups show values both within the chondritic range and up to heavier values extending up to +0.49‰. Since core formation in small planetary bodies is expected to quantitatively sequester Os in metal phases, bulk planetary cores are expected to display chondritic δ190Os values. Conversely, samples of the IIAB and IIIAB group display significant variation, possibly indicating that stable isotope fractionation occurred during solidification of the parent-body core. However, no covariation is observed between δ190Os and either Os abundance or radiogenic Os isotope ratios. Instead, liquid immiscibility during core crystallization, where the liquid metal splits into separate S- and P-rich liquids, may be a source of Os stable isotope fractionation.
Stable-isotope customer list and summary of shipments, FY 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W.C.
1983-04-01
This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The inforamtion is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.
Foraminiferal Stable Isotope Geochemistry At The Micrometer Scale: Is It A Dream Or Reality?
NASA Astrophysics Data System (ADS)
Misra, S.; Shuttleworth, S.; Lloyd, N. S.; Sadekov, A.; Elderfield, H.
2012-12-01
Over last few decades trace metals and stable isotope compositions of foraminiferal shells became one of the major tools to study past oceans and associated climate change. Empirical calibrations of δ11B, δ18O, Mg/Ca, Cd/Ca, Ba/Ca shells compositions have linked them to various environmental parameters such as seawater pH, temperature, salinity and productivity. Despite their common use as proxies, little is known about mechanisms of trace metals incorporation into foraminiferal calcite. Trace metals partition coefficients for foraminiferal calcite is significantly different from inorganic calcite precipitates underlining strong biological control on metal transport to the calcification sites and their incorporation into the calcite. Microscale distribution of light elements isotopes (e.g. Li, B, Mg) could potentially provide unique inside into these biomineralization processes improving our understanding of foraminiferal geochemistry. In this work we explore potentials of using recent advances in analytical geochemistry by employing laser ablation and multi-collector ICP-MS to study microscale distribution of Mg isotopes across individual foraminiferal shells and δ11B, and δ7Li analyses of individual shell chambers. The analytical setup includes an Analyte.G2 193nm excimer laser ablation system with two volume ablation cell connected to a Thermo Scientific NEPTUNE Plus MC-ICP-MS with Jet Interface option. We will discuss method limitations and advantages for foraminiferal geochemistry as well as our data on Mg isotopes distribution within shells of planktonic foraminifera.
Lipid Correction for Carbon Stable Isotope Analysis of Deep-sea Fishes
Lipid extraction is used prior to stable isotope analysis of fish tissues to remove variability in the carbon stable isotope ratio (d13C) caused by varying lipid content among samples. Our objective was to evaluate an application of a mass balance correction for the effect of lip...
IsoBank – Stable isotope ecology in the age of ‘Big Data’
USDA-ARS?s Scientific Manuscript database
Stable isotopes ratios provide valuable information to fish biologists working in a diverse range of fields: e.g. ecologists, population biologists and fishery managers. Ecologists take advantage of stable isotope ratios to provide information on the diet and migration history of consumers or when a...
Environmental and biomedical applications of natural metal stable isotope variations
Bullen, T.D.; Walczyk, T.
2009-01-01
etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.
Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes
2010-01-27
A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.
Can We Untangle the Weather? Stable Water Isotope Controls on the Juneau Icefield
NASA Astrophysics Data System (ADS)
Ihle, A. C.; Keenan, E.; Yong, C.; Bridgers, S. L.; Markle, B. R.; Hamel, J.; Klein, E. S.
2017-12-01
Stable water isotopes in snow and ice provide a reliable proxy for past weather and climate. However, untangling weather and climate signals from water isotopes on the Juneau Icefield, Alaska, has proven difficult due to consistent summer melt and rain. The Juneau Icefield is a large glaciated region consisting of complex terrain and sharp climatic gradients. Here we study how topographic steepness and elevation influence stable water isotope ratios on the Juneau Icefield using vertical snowpit profiles collected from water year 2017's snowpack. As terrain steepens, we expect gradients in isotope ratios to intensify. In addition, we aim to determine how post-depositional metamorphism, particularly precipitation, affects water isotope ratios. We anticipate rain events to increase the proportion of heavy water isotopes. Lastly, we compare model output and remote sensing observations of storm origin to vertical stratigraphy of stable isotope ratios in the snowpack in order to determine if it is possible to use isotopes to identify past storm tracks on the Juneau Icefield. Snowpack isotope stratigraphy ratios can likely be linked to seasonal trends of storm characteristics. Given this enhanced understanding of how stable water isotopes behave on the Juneau Icefield, we contribute to the understanding of past weather and climate, both here and elsewhere, and explore the possibility for future deep ice cores on the Juneau Icefield.
NASA Astrophysics Data System (ADS)
de Winter, Niels J.; Vellekoop, Johan; Vorsselmans, Robin; Golreihan, Asefeh; Petersen, Sierra V.; Meyer, Kyle W.; Speijer, Robert P.; Claeys, Philippe
2017-04-01
Pycnodonte or "honeycomb-oysters" (Bivalvia: Gryphaeidea) is an extinct genus of calcite-producing bivalves which is found in abundance in Cretaceous to Pleistocene fossil beds worldwide. As such, Pycnodonte shells could be ideal tracers of palaeoclimate through time, with the capability to reconstruct sea water conditions and palaeotemperatures in a range of palaeoenvironmental settings. Only few studies have attempted to reconstruct palaeoclimate based on Pycnodonte shells and with variable degrees of success (e.g. Videt, 2003; Huyge et al., 2015). Our study investigates the shell growth, structure and chemical characteristics of Maastrichtian Pycnodonte vesicularis from Bajada de Jaguel in Argentina and aims to rigorously test the application of multiple palaeoenvironmental proxies on the shells of several Maastrichtian Pycnodonte oysters for palaeoclimate reconstruction. The preservation state of four calcite shells was assessed by fluorescence microscopy, cathodoluminescence and micro X-Ray Fluorescence (XRF) mapping. Their shell structure was investigated using a combination of XRF mapping, high-resolution color scanning and microCT scanning. Long integration time point-by-point XRF line scanning yielded high-resolution trace element profiles through the hinge of all shells. Microdrilled samples from the same locations on the shell were analyzed for trace element composition by ICP-MS and for stable carbon and oxygen isotopes by IRMS. Preservation of the calcite microstructure was found to be of sufficient quality to allow discussion of original shell porosity, annual growth increments and pristine chemical signatures of the bivalves. The combination of fluorescence and cathodoluminescence microscopy with XRF mapping and microCT scanning sheds light on the characteristic internal "honeycomb" structure of these extinct bivalves and allows comparison with that of the related extant Neopycnodonte bivalves (Wisshak et al., 2009). Furthermore, high resolution trace element and stable isotope records allow discussion of the degree to which Pycnodonte shells record their palaeoenvironment and can be used to reconstruct past sea water conditions. Preliminary results indicate that stable isotope and trace element ratios in Pynodonte shells record different seasonally changing sea water conditions in the Maastrichtian and reconstructed temperatures are consistent with results from clumped isotope analysis on the same shells and TEX86 analysis on the surrounding rocks. This multi-proxy study sheds light on the shell structure of Pycnodonte oysters, their chemical signature and growth pattern and investigates the expression of palaeoenvironmental proxies in the pristine shell calcite of these bivalves. This investigation shows the potential of using fossil Pycnodonte bivalves as a new archive for palaeoclimate reconstruction on a seasonal scale over a wide range of palaeolatitudes from the Cretaceous until the Pleistocene. References Huyghe et al. (2015) J. Geol Soc 172.5: 576-587. Videt (2003) Diss. Université Rennes 1. Wisshak, et al. (2009) Deep-Sea Res Pt I 56.3: 374-407.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Ray
Y-12 separated isotopes to win the war, then during the 1950s separated isotopes to save lives. Y-12's calutrons were used for a peacetime mission in the stable isotope program. Y-12 provided stable isotopes for research in medicine, agriculture, industry and biology.
Smith, Ray
2018-06-04
Y-12 separated isotopes to win the war, then during the 1950s separated isotopes to save lives. Y-12's calutrons were used for a peacetime mission in the stable isotope program. Y-12 provided stable isotopes for research in medicine, agriculture, industry and biology.
Gong, Yi; Chen, Xin-jun; Li, Yun-kai; Han, Meng-jie
2015-09-01
As a pelagic cephalopod and one of the main target species of Chinese distant water fishery, jumbo squids (Dosidicus gigas) play a major role in the marine ecosystems of the eastern Pacific. Understanding the feeding ecology and migration patterns of jumbo squids is of importance for better utilizing the resources. The isotopic signatures of gladius, have been proved to be a powerful tool to reveal high resolution and ontogenic variations in individual foraging strategies of squids; which is an archival tissue with no elemental turnover after formation. In this study, the growth equation of gladius proostracum was established based on the age information determined by statolith. Gladius was cut successionally by the growth curve of gladius proostracum, the stable isotopic values of the gladius profiles were determined, and the feeding ecology and migration patterns of jumbo squids during its growth process were investigated. Results showed that the jumbo squids began to migrate after 180 days of postnatal, and their trophic levels tended to decrease throughout the life span. These results demonstrated the feasibility of using continuous sampling hard tissue to study the feeding ecology and habitat transfer of jumbo squids.
Temperature dependence of the isotope chemistry of the heavy elements.
Bigeleisen, J
1996-01-01
The temperature coefficient of equilibrium isotope fractionation in the heavy elements is shown to be larger at high temperatures than that expected from the well-studied vibrational isotope effects. The difference in the isotopic behavior of the heavy elements as compared with the light elements is due to the large nuclear isotope field shifts in the heavy elements. The field shifts introduce new mechanisms for maxima, minima, crossovers, and large mass-independent isotope effects in the isotope chemistry of the heavy elements. The generalizations are illustrated by the temperature dependence of the isotopic fractionation in the redox reaction between U(VI) and U(IV) ions. PMID:8790340
Inácio, Caio T; Chalk, Phillip M
2017-01-02
In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.
Sourcing Brazilian marijuana by applying IRMS analysis to seized samples.
Shibuya, Elisa K; Souza Sarkis, Jorge E; Neto, Osvaldo Negrini; Moreira, Marcelo Z; Victoria, Reynaldo L
2006-06-27
The stable carbon and nitrogen isotopic ratios were measured in marijuana samples (Cannabis sativa L.) seized by the law enforcement officers in the three Brazilian production sites: Pernambuco and Bahia (the country's Northeast known as Marijuana Polygon), Pará (North or Amazon region) and Mato Grosso do Sul (Midwest). These regions are regarded as different with respect to climate and water availability, factors which impact upon the isotope fractionations of these elements within plants. It was possible to differentiate samples from the dry regions (Marijuana Polygon) from those from Mato Grosso do Sul and Pará, that present heavier rainfall. The results were in agreement with the climatic conditions of the suspected regions of origin and this demonstrates that seized samples can be used to identify the isotopic signatures of marijuana from the main producing regions in Brazil.
NASA Astrophysics Data System (ADS)
Vrabec, Mirijam; Markič, Miloš; Vrabec, Marko; Jaćimović, Radojko; Kanduč, Tjaša
2014-05-01
Lignite (organic rich) and calcified lignite (inorganic rich) samples from excavation field -50c mining area Pesje, Velenje Basin, Slovenia were investigated. During geological and structural mapping lignite and calcified lignite samples were systematically taken for determination of their petrological, geochemical and isotopic characteristics. Lignite is composed of fine detritical gelified matrix. At least five different types of calcified lignite were recognized forming laminations, calcifications after wood, petrified wood and complete replacements of lignite with carbonate. All measured parameters so far indicate geochemical processes during sedimentation of the Velenej Basin. After macroscopic description samples were split to organic and inorganic component (Ward, 1984) and powdered in an agate mortar for geochemical and isotopic analyses. Major and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Sb, Se, Th, U, Zn) in these samples were determined by instrumental neutron activation analysis (INAA) using k-0 standardization method (Jaćimović et al, 2002). The isotopic composition of carbon and nitrogen was determined using a Europa 20-20 continuous flow IRMS ANCA-SL preparation module. A 1 mg amount of a sample was weighed in a tin capsule for carbon and 10 mg for nitrogen analysis. Samples for carbon analyses were pretreated with 1 M HCl to remove carbonates. Carbonate samples from carbonate-rich strata and calcified xylite were first roasted at 450 deg C (Krantz et al., 1987). Three miligrams of carbonate sample was transformed into CO2 by reaction with anhydrous H3PO4 at 55 deg C under vacuum (McCrea, 1950) and measured with GV 2003 isotope ratio mass spectrometer. Measured isotopic composition of oxygen as VPDB values was recalculated to the VSMOW reference standard to enable the comparison with data from other coal basins. SEM/EDXS of carbonate rich sediments was performed with JEOL JSM 5800 electron microanalyzer scanning electron microscope energy dispersive X-ray spectroscopy at the Department of Ceramics at the Jožef Stefan Institute. Geochemical characteristics of major and trace elements indicate that the values of major and trace elements are comparable to world average coal (Zhang et al., 2004). Isotopic composition of carbon and isotopic composition of nitrogen of investigated samples indicate values from to -29.4o to -23.7o and 1.8o to 5.9o respectively. Lower value of isotopic composition of carbon indicates higher gelification (values up to -29.4) and higher value of isotopic composition of nitrogen (values up to 5.9) indicate higher mineralization. The results of SEM/EDXS microscopy revealed that in calcified lignite chemical composition of calcite prevails. Traces of diagenetic pyrite were also found, indicating localized anoxic conditions during sedimentation. Values of isotopic composition of CCaCO3 range from -2 to +13 and indicate temperature of precipitation from 17.3 to 35 deg C, which is similar to results obtained in previous studies (Kanduč et al., 2012). References Krantz, D.E., Williams, D.F., Jones, D.S., 1987: Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeography, Palaeoclimatology, Palaeoecology 58, 249-266. Kanduč T., Markič M., Zavšek S., McIntosh J. 2012: carbon cycling in the Pliocene Velenje Coal Basin, Slovenia, inferred from stable carbon isotopes. International Journal of Coal Geology 89, 70-83. Jaćimović, R., Lazaru, A., Mihajlović, D., Ilić, R., Stafilov, T., 2002: Determination of major and trace elements in some minerals by k0-instrumental neutron activation analysis. Journal of Radioanalytical Nuclear Chemistry, 253, 427-434. McCrea, JM., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849. Ward C.R. (Ed.), 1984: Coal Geology and Coal Technology. Black-well, Oxford, 345 pp. Zhang J.Y., Zheng C.G., Ren D.Y., Chou C.L., Zheng R.S., Wang Z.P., Zhao F. H., Ge Y.T. 2004: Distribution of potentially hazardous trace elements in coals from Shoxi provinces, China. Fuel 83: 129-135.
Coplen, Tyler B.; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M.
2015-01-01
This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions.
Investigating differences in light stable isotopes between Thai jasmine rice and Sungyod rice
NASA Astrophysics Data System (ADS)
Kukusamude, C.; Kongsri, S.
2017-10-01
We report the differences in light stable isotopes between two kinds of Thai rice (Thai jasmine and Sungyod rice). Thai jasmine rice and Sungyod rice were cultivated in the northeast and the south of Thailand. Light isotopes including 13C, 15N and 18O of Thai jasmine rice and Sungyod rice samples were carried out using isotope ratio mass spectrometry (IRMS). Thai jasmine rice (Khao Dawk Mali 105) was cultivated from Thung Kula Rong Hai area, whereas Sungyod rice was cultivated from Phathalung province. Hypothesis testing of difference of each isotope between Thai jasmine rice and Sungyod rice was also studied. The study was the feasibility test whether the light stable isotopes can be the variables to identify Thai jasmine rice and Sungyod rice. The result shows that there was difference in the isotope patterns of Thai jasmine rice and Sungyod rice. Our results may provide the useful information in term of stable isotope profiles of Thai rice.
Stable Isotope Identification of Nitrogen Sources for United States (U.S.) Pacific Coast Estuaries
We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green m...
A free-air system for long-term stable carbon isotope labeling of adult forest trees
Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...
Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) d...
Stable Isotope Applications for Understanding Shark Ecology in the Northeast Pacific Ocean.
Reum, Jonathan C P; Williams, Gregory D; Harvey, Chris J
Stable isotopes are used to address a wide range of ecological questions and can help researchers and managers better understand the movement and trophic ecology of sharks. Here, we review how shark studies from the Northeast Pacific Ocean (NEP) have employed stable isotopes to estimate trophic level and diet composition and infer movement and habitat-use patterns. To date, the number of NEP shark studies that have used stable isotopes is limited, suggesting that the approach is underutilized. To aid shark researchers in understanding the strengths and limitations of the approach, we provide a brief overview of carbon and nitrogen stable isotope trophic discrimination properties (e.g., change in δ 15 N between predator and prey), tissue sample preparation methods specific to elasmobranchs, and methodological considerations for the estimation of trophic level and diet composition. We suggest that stable isotopes are a potentially powerful tool for addressing basic questions about shark ecology and are perhaps most valuable when combined and analysed with other data types (e.g., stomach contents, tagging data, or other intrinsic biogeochemical markers). © 2017 Elsevier Ltd. All rights reserved.
Øverjordet, Ida Beathe; Gabrielsen, Geir Wing; Berg, Torunn; Ruus, Anders; Evenset, Anita; Borgå, Katrine; Christensen, Guttorm; Lierhagen, Syverin; Jenssen, Bjørn Munro
2015-03-01
Hepatic concentrations of mercury (Hg), selenium (Se) and cadmium (Cd) were determined in black-legged kittiwakes (Rissa tridactyla) and little auks (Alle alle) from two fjords in Svalbard (Kongsfjorden; 78°57'N, 12°12'E and Liefdefjorden; 79°37'N, 13°20'E). The inflow of Arctic and Atlantic water differs between the two fjords, potentially affecting element accumulation. Trophic positions (TP) were derived from stable nitrogen isotope ratios (δ(15)N), and stable carbon isotope ratios (δ(13)C) were assessed to evaluate the terrestrial influence on element accumulation. Mercury, Cd, TP and δ(13)C varied significantly between locations and years in both species. Trophic position and feeding habits explained Hg and Cd accumulation in kittiwakes, but not in little auks. Biomagnification of Hg and Cd were found in the food webs of both the Atlantic and the Arctic fjord, and no inter-fjord differences were detected. The δ(13)C were higher in the seabirds from Kongsfjorden than in Liefdefjorden, but this did not explain variations in element accumulation. Selenium concentrations were not influenced by Hg accumulation in kittiwakes, indicating baseline levels of Se in this species. In contrast, correlations between Hg and Se and lower Se:Hg ratios in little auks from Kongsfjorden than in Liefdefjorden indicate a more pronounced influence of Se-Hg complex formation in little auks feeding in Atlantic waters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.
2002-05-01
Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.
Geochemical aspects of some Japanese lavas.
NASA Technical Reports Server (NTRS)
Philpotts, J. A.; Martin, W.; Schnetzler, C. C.
1971-01-01
K, Rb, Sr, Ba and rare-earth concentrations in some Japanese lavas have been determined by mass-spectrometric stable-isotope dilution. The samples fall into three rare-earth groups corresponding to tholeiitic, high alumina and alkali basalts. Japanese tholeiites have trace element characteristics similar to those of oceanic ridge tholeiites except for distinctly higher relative concentrations of Ba. Japanese lavas may result from various degrees of partial fusion of amphibole eclogite.
Ortea, Ignacio; Gallardo, José M
2015-03-01
Three factors defining the traceability of a food product are production method (wild or farmed), geographical origin and biological species, which have to be checked and guaranteed, not only in order to avoid mislabelling and commercial fraud, but also to address food safety issues and to comply with legal regulations. The aim of this study was to determine whether these three factors could be differentiated in shrimps using stable isotope ratio analysis of carbon and nitrogen and/or multi-element composition. Different multivariate statistics methods were applied to different data subsets in order to evaluate their performance in terms of classification or predictive ability. Although the success rates varied depending on the dataset used, the combination of both techniques allowed the correct classification of 100% of the samples according to their actual origin and method of production, and 93.5% according to biological species. Even though further studies including a larger number of samples in each group are needed in order to validate these findings, we can conclude that these methodologies should be considered for studies regarding seafood product authenticity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Basu, Sankha S; Mesaros, Clementina; Gelhaus, Stacy L; Blair, Ian A
2011-02-15
Stable isotope dilution mass spectrometry (MS) represents the gold standard for quantification of endogenously formed cellular metabolites. Although coenzyme A (CoA) and acyl-CoA thioester derivatives are central players in numerous metabolic pathways, the lack of a commercially available isotopically labeled CoA limits the development of rigorous MS-based methods. In this study, we adapted stable isotope labeling by amino acids in cell culture (SILAC) methodology to biosynthetically generate stable isotope labeled CoA and thioester analogues for use as internal standards in liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS) assays. This was accomplished by incubating murine hepatocytes (Hepa 1c1c7) in media in which pantothenate (a precursor of CoA) was replaced with [(13)C(3)(15)N(1)]-pantothenate. Efficient incorporation into various CoA species was optimized to >99% [(13)C(3)(15)N(1)]-pantothenate after three passages of the murine cells in culture. Charcoal-dextran-stripped fetal bovine serum (FBS) was found to be more efficient for serum supplementation than dialyzed or undialyzed FBS, due to lower contaminating unlabeled pantothenate content. Stable isotope labeled CoA species were extracted and utilized as internal standards for CoA thioester analysis in cell culture models. This methodology of stable isotope labeling by essential nutrients in cell culture (SILEC) can serve as a paradigm for using vitamins and other essential nutrients to generate stable isotope standards that cannot be readily synthesized.
The role of off-line mass spectrometry in nuclear fission.
De Laeter, J R
1996-01-01
The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of samples from the Oklo Natural Reactor have enabled the nuclear parameters of the various reactor zones to be calculated, and the mobility/retentivity of a number of elements to be established in the reactor zones and the surrounding rocks. These isotopic studies have given valuable information on the geochemical behavior of natural geological repositories for radioactive waste containment. © 1997 John Wiley & Sons, Inc. Copyright © 1997 John Wiley & Sons, Inc.
Applications of stable isotopes in clinical pharmacology
Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W
2011-01-01
This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the pharmacokinetic profile or mode of action of a drug substance. Secondly, stable isotopes may be used for the assessment of drug products or drug delivery systems by determination of parameters such as the bioavailability or the release profile. Thirdly, patients may be assessed in relation to patient-specific drug treatment; this concept is often called personalized medicine. In this article, the application of stable isotope technology in the aforementioned three areas is reviewed, with emphasis on developments over the past 25 years. The applications are illustrated with examples from clinical studies in humans. PMID:21801197
NASA Astrophysics Data System (ADS)
Ford, William I.; Fox, James F.; Pollock, Erik
2017-08-01
The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.
NASA Astrophysics Data System (ADS)
Fernández Fernández, Luz Eva; Westphal, Julia; Schmiedinger, Iris; Kreuzburg, Matthias; Bahlo, Reiner; Koebsch, Franziska; Böttcher, Michael E.
2017-04-01
Coastal wetlands are under dynamic impact both from fresh water and salt water sources, thereby experiencing temporarily sulfur-excess and -limiting conditions. In the present study, nine up to 10 meter long sediment cores from a recently rewetted fen (Hütelmoor, southern Baltic Sea) which has been under impact by episodic flooding with brackish waters were investigated (isotope) geochemically. The sites are positioned at different distances to the Baltic Sea coastline. The soils were analyzed for the elemental composition (CNS), reactive iron and sedimentary sulfur contents, iron sulfide micro-textures, as well as the stable sulfur isotope composition of inorganic and organic sulfur fractions to understand signal development for the biogeochemical carbon-sulfur cycles in such a dynamic ecosystem. We found evidence for the activity of dissimilatory sulfate-reducing microorganisms and the associated formation of pyrite with different textures (framboids, single euhedral crystals and clusters) and sulfurization of organic matter. Sedimentary sulfur fractions and their stable isotope signatures are controlled by the availability of dissolved organic matter or methane, reactive iron, and in particular dissolved sulfate and thereby from the relative position to the coast line and the given lithology. d34S values in the pyrite fraction vary in a wide range between -21 and +15 per mil versus VCDT, in agreement with spatial and temporal dynamics in the extend of sulfate-limiting conditions during the oxidation of reduced carbon.
NASA Astrophysics Data System (ADS)
Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.
2016-05-01
Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.
INCORPORATING CONCENTRATION DEPENDENCE IN STABLE ISOTOPE MIXING MODELS
Stable isotopes are frequently used to quantify the contributions of multiple sources to a mixture; e.g., C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model ass...
INCORPORATING CONCENTRATION DEPENDENCE IN STABLE ISOTOPE MIXING MODELS
Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source li...
Substitution of stable isotopes in Chlorella
NASA Technical Reports Server (NTRS)
Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.
1969-01-01
Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.
Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong
2016-05-17
The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area is the development and application of the mass cytometer, which fully exploited the multiplexing potential of metal stable isotope tagging. It realized the simultaneous detection of dozens of parameters in single cells, accurate immunophenotyping in cell populations, through modeling of intracellular signaling network and undoubted discrimination of function and connection of cell subsets. Metal stable isotope tagging has great potential applications in hematopoiesis, immunology, stem cells, cancer, and drug screening related research and opened a post-fluorescence era of cytometry. Herein, we review the development of biomolecule quantification using metal stable isotope tagging. Particularly, the power of multiplex and absolute quantification is demonstrated. We address the advantages, applicable situations, and limitations of metal stable isotope tagging strategies and propose suggestions for future developments. The transfer of enzymatic or fluorescent tagging to metal stable isotope tagging may occur in many aspects of biological and clinical practices in the near future, just as the revolution from radioactive isotope tagging to fluorescent tagging happened in the past.
NASA Astrophysics Data System (ADS)
Priewisch, A.; Crossey, L. J.; Karlstrom, K. E.; McPherson, B. J.; Mozley, P.
2013-12-01
Travertine-precipitating springs and travertine deposits of the Colorado Plateau serve as natural analogues for evaluating potential leakage associated with geologic sequestration of carbon dioxide (CO2). Extensive Quaternary and modern travertine deposits occur along the Jemez lineament and Rio Grande rift in New Mexico and Arizona, and in the Paradox Basin in Utah, along the Little Grand Wash Fault and the Salt Wash Graben. These groundwater discharge deposits are interpreted to be sites of persistent and significant CO2 degassing along faults and above magmatic systems. Analysis of the geochemical and isotopic composition of U-series dated travertine deposits and modern travertine-precipitating waters allows evaluation of the flow paths of CO2-charged waters. Initial results from New Mexico and Arizona travertine deposits show characteristic rare earth element (REE) signatures for individual travertine deposits and yet generally overlap in concentrations of other trace elements such as Al, As, B, Ba, K, and Si. We report stable oxygen and carbon isotopes of the travertines in New Mexico, Arizona, and Utah. Different travertine deposits have different carbon-oxygen isotope variation patterns suggesting that these stable isotopes are tracers that have the ability to identify distinctive groundwater sources within and between spring groups based on the travertine record. Stable isotope analyses of travertine deposits in New Mexico and Arizona overlap substantially between deposits and cluster around -10‰ to -6‰ for δ18O and around 3.5‰ to 6.5‰ for δ13C. Travertine deposits in Utah show a distinctly different range of stable isotope values: δ18O values cluster around -14‰ to -10.5‰ and δ13C around 4.5‰ to 6.5‰. U-series dating of travertine deposits shows episodic travertine formation in New Mexico and Arizona over the last 700,000 years, and travertine accumulation over the last 400,000 years in Utah. We use U-series dating and volumetric analysis of the travertine deposits to estimate the minimum CO2 flux that was necessary to form the deposits and compare it to modern flux measurements in order to assess the extent of former and modern CO2 leakage. In addition, the thickness of dated travertine sections provides information about the longevity of travertine mound or spring systems that may be controlled by, e. g., sealing of faults, alternating wet/ dry paleohydrologic conditions, and/or rates of magmatic CO2 supply to springs. Understanding travertine deposition is important for the assessment of the long-term performance of a potential CO2 sequestration site because travertine deposits give insight into the complexities of CO2 pathways and leakage rates over timescales necessary for CO2 sequestration.
The Means: Cytometry and Mass Spectrometry Converge in a Single Cell Deep Profiling Platform
Weis-Garcia, Frances; Bandura, Dmitry; Baranov, Vladimir; Ornatsky, Olga; Tanner, Scott
2013-01-01
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a distinct flavor of mass spectrometry that has had little association with cell biology: it remains the state of the art for the determination of the atomic composition of materials. Unrelatedly, flow cytometry is the superior method for distinguishing the heterogeneity of cells through the determination of antigen signatures using tagged antibodies. Simply replacing fluorophore tags with stable isotopes of the heavy metals, and measuring these cell-by-cell with ICP-MS, dramatically increases the number of probes that can be simultaneously measured in cytometry and enables a transformative increase in the resolution of rare cell populations in complex biological samples. While this can be thought of as a novel incarnation of single-cell targeted proteomics, the metal-labeling reagents, ICP-MS of single cells, and accompanying informatics comprise a new field of technology termed Mass Cytometry. While the conception of mass cytometry is simple the embodiment to address the issues of multi-parameter flow cytometry has been far more challenging. There are many elements, and many more stable isotopes of those elements, that might be used as distinct reporter tags. Still, there are many approaches to conjugating metals to antibodies (or other affinity reagents) and work in this area along with developing new applications is ongoing. The mass resolution and linear (quantitative) dynamic range of ICP-MS allows those many stable isotopes to be measured simultaneously and without the spectral overlap issues that limit fluorescence assay. However, the adaptation of ICP-MS to allow high-speed simultaneous measurement with single cell distinction at high throughput required innovation of the cell introduction system, ion optics (sampling, transmission and beam-shaping), mass analysis, and signal handling and processing. An overview of “the nuts and bolts” of Mass Cytometry is presented.
Volatile elements - water, carbon, nitrogen, noble gases - on Earth
NASA Astrophysics Data System (ADS)
Marty, B.
2017-12-01
Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the inner solar system.
NASA Astrophysics Data System (ADS)
Cole, J. E.; Hlohowskyj, S.; Vetter, L.; King, J.; Casavant, R. R.; Woodhead, J. D.; Drysdale, R.; Truebe, S.; Henderson, G. M.
2017-12-01
In the arid southwest, hydroclimatic variability is critical to natural and human systems. Cave records provide the chance to reconstruct past variations in moisture, including the seasonal hydroclimatic response to known forcings such as the seasonal distribution of insolation. At Kartchner Caverns State Park, AZ, a sample dating to 12,000 years before present reveals a continuous Holocene history of the Southwest monsoon in its stable isotope content. We interpret the large ( 4‰) changes in speleothem d18O in terms of seasonal precipitation balance, based on modern isotope studies. The Kartchner record confirms a shorter ( 6500 yr) reconstruction from the neighboring Cave of the Bells in describing a strong trend of declining monsoon moisture during the Holocene. The Kartchner sample reveals an early Holocene monsoon peak defined by a broad δ18O peak between 7000 and 9000 years ago, following a gradual strengthening from the start of the record. Between 7000-2000 years ago, the monsoon weakened, and the oxygen isotope values show no trend over the past 2000 years. Substantial multidecadal-multicentury variability is present throughout the record. This pattern is consistent with a sensitive response of the Southwest monsoon to orbital forcing of seasonal radiation. A new laser-ICPMS multi-element dataset spans the past 2400 years and adds information to our isotope-based reconstruction. In particular, Ba and Sr highlight intervals of overall wet and dry conditions, complementing the isotopic record of seasonal precipitation distribution. Dripwater monitoring since 2011 at 4 sites in the cave allows us to identify seasonal and interannual controls on the isotopic and elemental variations of dripwater. Drips differ in their isotopic behavior, with some dominated by relatively steady, low (winter) values and others exhibiting highly variable δ18O. This study provides one of the first cave-based reconstructions of the North American monsoon spanning the entire Holocene. The modern dripwater data shed light on how isotopic and elemental signals vary over space and time and create the multivariate climate record preserved in cave calcite.
NASA Astrophysics Data System (ADS)
Mansouri, F.; Crain, D.; Winfield, Z.; Trumble, S.; Usenko, S.
2017-12-01
Whale earplugs, historically used for aging, were used to reconstruct lifetime stable isotope profiles for carbon (δ13C) and nitrogen (δ15N) for individual whales by delaminating lamina within the earplug. These stable isotope profile, which provide Continuous lifetime records of feeding, foraging ecology, and migration, were determined for 20 individuals from 4 baleen species including fin, minke, humpback, and blue whales spanning more than a century (1869 - 2014) using stable isotope analysis. Approximately 1 mg tissue from each lamina (n=1200) was analyzed for carbon and nitrogen stable isotope using continuous flow isotope ratio mass spectrometer (CF-IRMS). This research using whale earplugs have combined age estimates with stable isotope measurements to reconstruct lifetime foraging profiles with a 6-month resolution, providing an unprecedented opportunity to assess periods and trends in dietary fluctuations as well as migration between different foraging area which have distinct isotope values. Trends with these profiles suggest long-term changing in migration, while annual variability highlights seasonal fasting and feeding. Isotopic ratios were also used to identify subpopulations of Atlantic fin whales, which enabled us to assign unidentified humpback and minke whales to the Atlantic or Pacific Oceans. This historical archive of data provides us an unprecedented tool to assess long term marine ecosystem and subsequently marine organism transition to alternate foraging area and shed light on the whale's population status in the Northern hemisphere.
NASA Astrophysics Data System (ADS)
Nowak-Lovato, K.
2014-12-01
Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.
Isotopic Compositions of the Elements, 2001
NASA Astrophysics Data System (ADS)
Böhlke, J. K.; de Laeter, J. R.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P.
2005-03-01
The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001.
NASA Astrophysics Data System (ADS)
Cronin, T. M.; Marzen, R.; O'Regan, M.; Dwyer, G. S.
2016-12-01
The stable isotope compositions of biogenic carbonates have been used for paleoceanographic and paleoclimatic reconstructions for decades, and produced some of the most iconic records in the field. However, we still lack a fully mechanistic understanding of the stable isotope proxies, especially the biological overprint on the environmental signals termed "vital effects". A ubiquitous feature of stable isotope vital effects in marine calcifying organisms is a strong correlation between δ18O and δ13C in a range of values that are depleted from equilibrium. Two mechanisms have been proposed to explain this correlation, one based on kinetic isotope effects during CO2(aq)-HCO3- inter-conversion, the other based on equilibrium isotope exchange during pH dependent speciation of the dissolved inorganic carbon pool. Neither mechanism explains all the stable isotope features observed in biogenic carbonates. Here we present a fully kinetic model of biomineralization and its isotope effects using deep sea corals as a test organism. A key component of our model is the consideration of the enzyme carbonic anhydrase in catalyzing the CO2(aq)-HCO3- inter-conversion reactions in the extracellular calcifying fluid (ECF). We find that the amount of carbonic anhydrase not only modulates the carbonate chemistry of the calcifying fluid, but also helps explain the slope of the δ18O-δ13C correlation. With this model, we are not only able to fit deep sea coral data, but also explain the stable isotope vital effects of other calcifying organisms. This fully kinetic model of stable isotope vital effects and the underlying calcification dynamics may also help us better understand mechanisms of other paleoceanographic tracers in biogenic carbonates, including boron isotopes and trace metal proxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matwiyoff, N.A.
1976-01-01
The prospects for the broad scale development of the utility of stable isotopes in science, medicine, agriculture, and environmental studies are considered with emphasis on the current status of isotope production, synthesis of isotopically labelled compounds, and analytical techniques.
MIXING MODELS IN ANALYSES OF DIET USING MULTIPLE STABLE ISOTOPES: A CRITIQUE
Stable isotopes have become widely used in ecology to quantify the importance of different sources based on their isotopic signature. One example of this has been the determination of food webs, where the isotopic signatures of a predator and various prey items can be used to de...
Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers
Dybowska, A.D.; Croteau, M.-N.; Misra, S.K.; Berhanu, D.; Luoma, S.N.; Christian, P.; O'Brien, P.; Valsami-Jones, E.
2011-01-01
Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn (67Zn) ZnO nanoparticles and measured the uptake of 67Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 ??g g-1). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 ??g g-1 which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions. ?? 2010 Elsevier Ltd. All rights reserved.
Hopple, J.A.; Hannon, J.E.; Coplen, T.B.
1998-01-01
A comparison of the new hydrogen isotope-ratio technique of Vaughn et al. ([Vaughn, B.H., White, J.W.C., Delmotte, M., Trolier, M., Cattani, O., Stievenard, M., 1998. An automated system for hydrogen isotope analysis of water. Chem. Geol. (Isot. Geosci. Sect.), 152, 309-319]; the article immediately preceding this article) for the analysis of water samples utilizing automated on-line reduction by elemental uranium showed that 94% of 165 samples of Antarctic snow, ice, and stream water agreed with the ??2H values determined by H2-H2O platinum equilibration, exhibiting a bias of +0.5??? and a 2 - ?? variation of 1.9???. The isotopic results of 10 reduction technique samples, however, gave ??2H values that differed by 3.5??? or more, and were too negative by as much as 5.4??? and too positive by as much as 4.9??? with respect to those determined using the platinum equilibration technique.
Insights into Wilson's Warbler migration from analyses of hydrogen stable-isotope ratios
Jeffrey F. Kelly; Viorel Atudorei; Zachary D. Sharp; Deborah M. Finch
2002-01-01
Our ability to link the breeding locations of individual passerines to migration stopover sites and wintering locations is limited. Stable isotopes of hydrogen contained in bird feathers have recently shown potential in this regard. We measured hydrogen stable-isotope ratios (deltaD) of feathers from breeding, migrating, and wintering Wilson's Warblers. Analyses...
Using Bayesian Stable Isotope Mixing Models to Enhance Marine Ecosystem Models
The use of stable isotopes in food web studies has proven to be a valuable tool for ecologists. We investigated the use of Bayesian stable isotope mixing models as constraints for an ecosystem model of a temperate seagrass system on the Atlantic coast of France. δ13C and δ15N i...
USDA-ARS?s Scientific Manuscript database
The use of nitrogen stable isotopes for estimation of animal trophic position has become an indispensable approach in food web ecology. Compound-specific isotope analysis of amino acids is a new approach for estimating trophic position that may overcome key issues associated with nitrogen stable iso...
Isotope Tales: Remaining Problems, Unsolvable Questions, and Gentle Successes
NASA Astrophysics Data System (ADS)
fogel, marilyn; bradley, christina; newsome, seth; filipp, fabian
2014-05-01
Earth's biomes function and adapt today as climate changes and ecosystems and the organisms within them adapt. Stable isotope biogeochemistry has had a major influence in understanding climate perturbations and continues to be an active area of research on many fronts. Banking on the success of compound specific stable isotope analyses of amino acids, nitrogen, carbon, and hydrogen isotopes continue to reveal subtle shifts in oceanic food webs and metabolic changes in microbes, plants, and animals. A biochemical understanding of exactly how organisms process and partition stable isotopes during metabolism remains unsolved, but is required if this field is to move beyond description to quantitation. Although the patterns of carbon and nitrogen isotopes are fairly well established in the common amino acids, we need to consider specifics: How do shifting metabolic pathways (metabolomics) influence the outcome of stable isotope partitioning? What influence does the gut microflora in animals have on isotopic labeling? What are the intramolecular isotope patterns of common amino acids and what do they tell us? What can be learned with other isotope systems, such as hydrogen? Results and ideas of how to move forward in this field will be presented starting at the molecular level and ending with ecosystems.
Ball, J.W.; Bassett, R.L.
2000-01-01
A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimmelmann, A.; DeNiro, M.J.
1993-03-15
Combustion of organic matter in sealed Pyrex, Vycor, and quartz ampules at temperatures between 520 and 900[degrees]C yields less than stoichiometric amounts of water. The loss of hydrogen to hydration reactions between water vapor and glass/quartz interferes with the determination of C/H and N/H elemental ratios in organic matter. The effect increases from quartz to Vycor to Pyrex, but the incomplete yield does not significantly affect the precision and accuracy of the determination of stable hydrogen isotope ratios. Reactions between water and Pyrex do not affect the conversion of water to hydrogen with zinc in Pyrex ampules at 500[degrees]C, whichmore » is quantitative, but even preoutgassed zinc contains a deuterium-depleted hydrogen blank. D/H ratios in hydrogen from the Zn method require a nonlinear correction to achieve compatibility with [delta]D values from the uranium method. 19 refs., 4 tabs.« less
Croteau, M.-N.; Luoma, S.N.; Pellet, B.
2007-01-01
We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53Cr, 65Cu and 106Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53Cr was recovered in the feces after 22.5 h of depuration (GRT). 53Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65Cu and 106Cd assimilation was detectable for most experimental snails, i.e., 65/63Cu and 106/114Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ?? 0.07 g g-1 d-1. IR was inferred from the amount of 53Cr egested in the feces during depuration and the concentration of 53Cr in the labelled lettuce. Assimilation efficiencies (??95% CI) determined using mass balance calculations were 84 ?? 4% for Cu and 85 ?? 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals. ?? 2007 Elsevier B.V. All rights reserved.
Using stable isotopes to associate migratory shorebirds with their wintering locations in Argentina
Farmer, A.H.; Abril, M.; Fernandez, M.; Torres, J.; Kester, C.; Bern, C.
2004-01-01
We are evaluating the use of stable isotopes to identify the wintering areas of Neotropical migratory shorebirds in Argentina. Our goal is to associate individual birds, captured on the breeding grounds or in migration with specific winter sites, thereby helping to identify distinct areas used by different subpopulations. In January and February 2002 and 2003, we collected flight feathers from shorebirds at 23 wintering sites distributed across seven province s in Argentina (n = 170). Feathers samples were pre- pared and analyzed for δ13C, δ15N, δ34S, δ18O and δD by continuous flow methods. A discriminant function based on deuterium alone was not an accurate predictor of a shorebird’s province of origin, ranging from 8% correct (Santiago del Estero) to 80% correct (San ta Cruz). When other isotopes were included, the prediction accuracy increased substantially (from 56% in Buenos Aires to 100% in Tucumán). The improvement in accuracy was due to C/N, which separated D-depleted sites in the Andes from those in the south, and the inclusion of S separated sites with respect to their distance from the Atlantic. We also were able to correctly discriminate shorebirds from among two closely spaced sites within the province of Tierra del Fuego. These results suggest the feasibility of identifying the origin of a shorebird at a provincial level of accuracy, as well as uniquely identifying birds from some closely spaced sites. There is a high degree of intra- and inter-bird variability, especially in the Pampas region, where there is wide variety of wetland/water conditions. In that important shorebird region, the variability itself may in fact be the “signature.” Future addition of trace elements to the analyses may improve predictions based solely on stable isotopes.
NASA Astrophysics Data System (ADS)
Lorente, Flávio Lima; Pessenda, Luiz Carlos Ruiz; Oboh-Ikuenobe, Francisca; Buso Junior, Antonio Alvaro; Rossetti, Dilce de Fátima; Giannini, Paulo César Fonseca; Cohen, Marcelo Cancela Lisboa; de Oliveira, Paulo Eduardo; Mayle, Francis Edward; Francisquini, Mariah Izar; França, Marlon Carlos; Bendassolli, José Albertino; Macario, Kita
2018-07-01
The aim of this paper is to reconstruct an 11,000-year history of depositional environmental change in southeastern Brazil, based upon the integration of particulate organic matter and stable isotope (C and N) data from a 136-cm sediment core from Lake Canto Grande. These proxies are used to explore the evolution of terrestrial and marine influence on the lake. Isotopic (δ13C: -27.87‰ to -31.9‰; δ15N: -0.07‰-4.9‰) and elemental (total organic carbon - TOC: 0.58%-37.19%; total nitrogen - TN: 0.08%-1.73%; C/N: 0.3 to 54.7) values recorded in Lake Canto Grande suggest that the sedimentary organic matter was derived from mostly C3 land plants and freshwater phytoplankton. Particulate organic matter and cluster analyses distinguished four associations characterized by the predominance of amorphous organic matter, followed by phytoclasts and palynomorphs. These results indicate two different phases of lake evolution. The first phase (136 - 65 cm; ∼10,943 cal yr. B.P. to ∼8529 cal yr. B.P.) is recorded by sand layers interbedded with mud, which contain amorphous organic matter (AOM, 45-59%) and phytoclasts (opaques - OP: 6-18%; non-opaques - NOP: 17-23%) which indicate a floodplain area. The second phase (65-0 cm; ∼8529 cal yr. B.P. to ∼662 cal yr. B.P.) comprises mud, AOM (68-86%) and palynomorphs (PAL, 8-16%) related to lake establishment comparable to modern conditions. Thus, characterizing particulate organic matter, in combination with stable isotopes, proved to be invaluable proxies for lacustrine paleoenvironmental change through the Holocene.
NASA Astrophysics Data System (ADS)
Jung, J.; Kawamura, K.
2011-11-01
In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E) in East Asia, total suspended particles (TSP) were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC), total nitrogen (TN), and stable carbon isotopic composition (δ13C) of TC. The stable carbon isotopic composition of TC (δ13CTC) was found to be lowest during pollen emission episodes (range: -26.2‰ to -23.5‰, avg. -25.2 ± 0.9‰), approaching those of the airborne pollen (-28.0‰) collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C). Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.
Xu, Xiao Wu; Yu, Xin Xiao; Jia, Guo Dong; Li, Han Zhi; Lu, Wei Wei; Liu, Zi Qiang
2017-07-18
Soil-vegetation-atmosphere continuum (SPAC) is one of the important research objects in the field of terrestrial hydrology, ecology and global change. The process of water and carbon cycling, and their coupling mechanism are frontier issues. With characteristics of tracing, integration and indication, stable isotope techniques contribute to the estimation of the relationship between carbon sequestration and water consumption in ecosystems. In this review, based on a brief introduction of stable isotope principles and techniques, the applications of stable isotope techniques to water and carbon exchange in SPAC using optical stable isotope techniques were mainly explained, including: partitioning of net carbon exchange into photosynthesis and respiration; partitioning of evapotranspiration into transpiration and evaporation; coupling of water and carbon cycle at the ecosystem scale. Advanced techniques and methods provided long-term and high frequency measurements for isotope signals at the ecosystem scale, but the issues about the precision and accuracy for measurements, partitioning of ecosystem respiration, adaptability for models under non-steady state, scaling up, coupling mechanism of water and carbon cycles, were challenging. The main existing research findings, limitations and future research prospects were discussed, which might help new research and technology development in the field of stable isotope ecology.
NASA Astrophysics Data System (ADS)
Fox, J. F.; Papanicolaou, A. T.
2003-12-01
Unwarranted soil erosion creates detrimental problems for watershed users and for habitats and human infrastructure that experience increased suspended sediment in surface water. Identification and mitigation of erosion prone uplands relies on the realization that land uses (i.e. agriculture, forest, industrial, pasture, etc.) "produce sediment differently" at the watershed scale. Quantification of sediment production from various land uses is deemed feasible by using sediment-particle fingerprinting. This technique utilizes vegetative derived carbon (C) and nitrogen (N) stable isotopes and the carbon/nitrogen (C/N) atomic ratio of sediments to identify sediment producing land uses. Past research has established differences between C and N isotopic signatures and C/N ratios for soils under forest vs. agriculture (i.e. grasses and wheat) land cover. The current research rigorously examines these distinct signatures through isotopic analysis of field soils from the Palouse River Watershed of Northwestern Idaho preceded with statistical analyses to establish soil uniqueness. In addition, stream sediments are preliminarily analyzed to identify their origin with the goal of establishing a blueprint methodology for estimating sediment source and erosion rates within the watershed. Prior to field sampling of source soils, a statistical-experimental design was established with the intent to capture spatial and temporal variations and random errors of C and N isotopic signatures and C/N ratios within the forest and agriculture land uses. Factors including, elevation, slope topography, and season, were assessed by excavating over 300 samples during 4 seasons (i.e. May 2002, August 2002, November 2002, and March 2003) and at numerous locations throughout the watershed. Atomic analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to the Finnigan MAT Delta Plus isotope ratio mass spectrometer. The statistical analysis of variance (ANOVA) with C and N isotopic signatures and C/N ratios as three independent response variables was administered to identify the agriculture and forested uniqueness, and discriminant analysis was used to create an organic fingerprint parameter which weights the contribution of C and N isotopic signatures and C/N ratios to the land cover separation. Results indicate uniqueness of the N isotope C/N ratio for the forest and agriculture sediment sources and little distinction possible for the C isotope signature. The organic fingerprint parameter was then calculated and coupled with in-stream sediment isotopic data using a simple end-member model. Preliminary results indicate that C and N isotopic signatures and C/N ratios will serve as a useful technique in quantifying erosive source rates and understanding upland erosion processes.
Stable isotope deltas: Tiny, yet robust signatures in nature
Brand, Willi A.; Coplen, Tyler B.
2012-01-01
Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg can be written as+15 μUr.
Isotopic compositions of the elements, 2001
Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.
2005-01-01
The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the “best measurement” of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E)">Ar(E)Ar(E) and its uncertainty U[Ar(E)]">U[Ar(E)]U[Ar(E)] recommended by CAWIA in 2001.
NASA Astrophysics Data System (ADS)
Lin, Zhiyong; Sun, Xiaoming; Strauss, Harald; Lu, Yang; Xu, Li; Lu, Hongfeng; Teichert, Barbara M. A.; Peckmann, Jörn
2017-04-01
Elemental sulfur is a common intermediate in the sulfur cycle and contributes significantly to the fractionation of stable sulfur isotopes in different reservoirs in shelfal marine sediments (e.g., Canfield and Thamdrup, 1994). However, no study dedicated to the isotopic composition of elemental sulfur in seep environments has been conducted to the best of our knowledge, thus limiting further insight into the biochemical pathways involving elemental sulfur in such environments. In this study, elemental sulfur and pyrite were extracted from the sediment of a 200-m long gas hydrate-bearing core, which was obtained from the gas hydrate drilling expedition to the northern South China Sea in 2013 (Zhang et al., 2015). The sulfur isotopic composition of elemental sulfur was found to vary from -16 to +23 per mill, and pyrite yielded values ranging from -34 to +18 per mill. Interestingly, elemental sulfur revealed higher 34S contents (up to 30 per mill) than the associated pyrite in most sediment layers. Since elemental sulfur is only produced during oxidative pathways in the sulfur cycle, the studied elemental sulfur apparently represents the oxidation product of hydrogen sulfide by various electron acceptors such as Mn(IV) oxides or Fe(III) oxides (e.g., Thamdrup et al., 1993; Yao and Millero, 1996). Since there is little sulfur isotope fractionation for oxidative processes (Fry et al., 1986), the enrichment of elemental sulfur in 34S points to a pool of hydrogen sulfide depleted in 32S, which is best interpreted to result from sulfate-driven anaerobic oxidation of methane. References: Canfield D.E. and Thamdrup B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266, 1973. Fry B., Cox J., Gest H. and Hayer J.M. (1986) Discrimination between 34S and32S during bacterial metabolism of inorganic sulfur compounds. J. Bacteriol. 165, 328-330. Thamdrup B., Finster K., Hansen W. and Bak F. (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Appl. Env. Microbiol. 59, 101-108. Yao W. and Millero F.J. (1996) Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Mar. Chem. 52, 1-16. Zhang G., Liang J., Lu J.A., Yang S., Zhang M., Holland M., Schultheiss P., Su X., Sha Z., Xu H., Gong Y., Fu S., Wang L. and Kuang Z. (2015) Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 67, 356-367.
Fractionation of metal stable isotopes by higher plants
Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.
2009-01-01
Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.
Godin, Jean-Philippe; McCullagh, James S O
2011-10-30
High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bumsted, M.P.
1984-10-01
Analysis of the stable isotopes of carbon (/sup 13/C and /sup 12/C in the standard ratio delta/sup 13/C) can distinguish the relative contributions of meat, cereals, and other plant foods to the diets of prehistoric people. This dissertation has examined an isochronous (non-cemetery) population of prehistoric Americans to ascertain the natural variation in isotopic composition amongst a group of maize-eaters. The seventeen adult females and fifteen adult males represent the largest human data set of prehistoric or contemporary samples for study of natural isotopic enrichment in which genetic, economic, disease, and temporal variables were controlled. Procedures for purifying remnant bonemore » protein from archaeological samples were developed or modified specifically to determine isotopic measurement. Cryogenic milling, cold acid demineralizing, gelatinizing, and an XAD-2 resin column were used to remove soil contaminants while preserving the chemical integrity of the bone protein. Measurements of total elemental carbon, hydrogen, and nitrogen of the unprocessed bone; amino acid analysis of selected gelatin samples; and stable carbon isotopic analysis were used to assess sample quality. Isotope values were lognormally distributed in this population (anti X = -1.15%) with the distribution and the means amongst males (anti X = -1.18%) significantly different from that of females (anti X = -1.13%). The isotopic diet model can be graphed with equilateral triangular coordinates to represent the relative contributions of meat, maize, and other plant foods. The graph can predict the maximum food contributions to the delta/sup 13/C of the prehistoric individuals measured. Isotopic variation in human bone protein is only partly due to the variable amount of enriched foods in the diet. Tissue enrichment which occurs at various metabolic levels must also be considered. 316 references, 20 figures, 10 tables.« less
Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes
NASA Astrophysics Data System (ADS)
Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto
2016-04-01
Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer within each water body, as well as for the modelling of expected changes in nutrient content associated to changes in isotopic composition of sediments. Key words: nitrogen; carbon, sediment; biogeochemical cycle; climate change; hydro-ecology; isotopic niche; Svalbard
[Research progress on food sources and food web structure of wetlands based on stable isotopes].
Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo
2017-07-18
The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.
NASA Astrophysics Data System (ADS)
Laceby, J. Patrick; Huon Huon, Sylvain; Onda, Yuichi; Evrard, Olivier
2016-04-01
The Fukushima Dai-ichi Nuclear Power Plant accidental release of radioactive contaminants resulted in the significant fallout of radiocesium over several coastal catchments in the Fukushima Prefecture. Radiocesium, considered to be the greatest risk to the short and long term health of the local community, is rapidly bound to fine soil particles and thus is mobilized and transported during soil erosion and runoff processes. As there has been a broad-scale decontamination of rice paddy fields and rural residential areas in the contaminated region, one important long term question is whether there is, or may be, a downstream transfer of radiocesium from forests that covered over 65% of the most contaminated region. Accordingly, carbon and nitrogen elemental concentrations and stable isotope ratios are used to determine the relative contributions of forests and rice paddies to transported sediment in three contaminated coastal catchments. Samples were taken from the three main identified sources: cultivated soils (rice paddies and fields, n=30), forest soils (n=45), and subsoils (channel bank and decontaminated soils, n = 25). Lag deposit sediment samples were obtained from five sampling campaigns that targeted the main hydrological events from October 2011 to October 2014. In total, 86 samples of deposited sediment were analyzed for particulate organic matter elemental concentrations and isotope ratios, 24 from the Mano catchment, 44 from the Niida catchment, and 18 from the Ota catchment. Mann-Whitney U-tests were used to examine the source discrimination potential of this tracing suite and select the appropriate tracers for modelling. The discriminant tracers were modelled with a concentration-dependent distribution mixing model. Preliminary results indicate that cultivated sources (predominantly rice paddies) contribute disproportionately more sediment per unit area than forested regions in these contaminated catchments. Future research will examine if there are areas in particular where forest sources have elevated concentrations and may require some attention in the decontamination and monitoring of potential radiocesium downstream transfers.
Palaeoclimate determination from cave calcite deposits
NASA Astrophysics Data System (ADS)
Gascoyne, M.
Calcite deposits formed in limestone caves have been found to be an excellent repository of palaeoclimatic data for terrestrial environments. The very presence of a relict deposit indicates non-glacial conditions at the time of formation, and both 14C and uranium-series methods can be used to date the deposit and, hence, the age of these climatic conditions. Variations in 13C and 18O content of the calcite, in 2H and 18O content of fluid inclusions, in trace element concentrations and, more recently, in pollen assemblages trapped in the calcite, are all potentially available as synchronous palaeoclimatic indicators. Previous work has tended to concentrate mainly on abundance of deposits as a palaeoclimatic indicator for the last 300,000 years. This literature is briefly reviewed here, together with the theory and methods of analysis of the U-series and stable isotopic techniques. The combined use of U-series ages and 13C and 18O variations in cave calcites illustrates the potential for palaeoclimate determination. Previously unpublished results of stable isotopic variations in dated calcites from caves in northern England indicate the level of detail of stable isotopic variations and time resolution that can be obtained, and the complexity of interpretation that may arise. Tentative palaeoclimatic signals for the periods 90-125 ka and 170-300 ka are presented. More comprehensive studies are needed in future work, especially in view of the difficulty in obtaining suitable deposits and the ethics of cave deposits conservation.
Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is crit...
Stable isotope ratios and reforestation potential in Acacia koa populations on Hawai'i
Shaneka Lawson; Carrie Pike
2017-01-01
Stable carbon and nitrogen isotopes can be influenced by a multitude of factors including elevation, precipitation rate, season, and temperature. This work examined variability in foliar stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of koa (Acacia koa) across 17 sites on Hawai'i Island, delineated by elevation and precipitation...
Understanding the Marine Chromium Isotope Record from Modern and Ancient Carbonates
NASA Astrophysics Data System (ADS)
Parkinson, I. J.; Bonnand, P.; James, R. H.; Fairchild, I. J.; Dixon, S.
2011-12-01
Chromium isotopes may provide a powerful tool for reconstructing the redox state of ancient seawater because Cr isotope fractionation is large (up to 7% in δ53Cr) during the reduction of Cr(VI) to Cr(III) in natural waters [1]. Recent studies have demonstrated that although Cr(VI) is predicted to be the thermodynamically stable form in seawater (as CrO42-), significant amounts (5-20%) of Cr(III) may also be present in surface waters [2]. Therefore the δ53Cr of seawater could vary by up to 2%. Marine carbonates potentially provide a means to extracting information about the Cr isotopic composition of seawater in the geological past and we have developed a high-precision double-spike technique for analysing Cr isotopes in carbonates [3]. The δ53Cr of modern Bahamas Bank carbonates (+0.76%) is broadly consistent with these carbonates recording a seawater Cr signature. Moreover, these pure carbonates contain significant amounts of Cr (1-4 ppm), which indicates that Cr is strongly partitioned into calcium carbonate. Therefore carbonates are likely to provide a faithful record of the δ53Cr composition of seawater. Shallow marine carbonates from the Phanerozoic range in δ53Cr from +0.76 to +1.8%, and some Neoproterozoic carbonates also have heavy Cr isotopic compositions of +0.5 to +1.0 %. Such compositions may reflect changes in the inputs of Cr to the oceans and/or changes in the redox state of the oceans. However, to interpret Cr isotopic compositions in ancient carbonates additionally requires a careful assessment of their trace element contents. This study aims to demonstrate how a combination of redox sensitive trace elements, such as Ce, and Cr isotopes allow an assessment of the marine chromium isotope record. [1] Ellis et al., 2002, Science, 295, 2060-2062. [2] Connolly et al., 2006, Deep Sea Res. Part I, 2006 53, 1975-1988. [3] P. Bonnand, et al., 2011, J. Anal. At. Spectr., 26, 528-535.
Warner, Daniel; Dijkstra, Jan; Hendriks, Wouter H; Pellikaan, Wilbert F
2014-03-30
Knowledge of digesta passage kinetics in ruminants is essential to predict nutrient supply to the animal in relation to optimal animal performance, environmental pollution and animal health. Fractional passage rates (FPR) of feed are widely used in modern feed evaluation systems and mechanistic rumen models, but data on nutrient-specific FPR are scarce. Such models generally rely on conventional external marker techniques, which do not always describe digesta passage kinetics in a satisfactory manner. Here the use of stable isotope-labelled dietary nutrients as a promising novel tool to assess nutrient-specific passage kinetics is discussed. Some major limitations of this technique include a potential marker migration, a poor isotope distribution in the labelled feed and a differential disappearance rate of isotopes upon microbial fermentation in non-steady state conditions. Such limitations can often be circumvented by using intrinsically stable isotope-labelled plant material. Data are limited but indicate that external particulate markers overestimate rumen FPR of plant fibre compared with the internal stable isotope markers. Stable isotopes undergo the same digestive mechanism as the labelled feed components and are thus of particular interest to specifically measure passage kinetics of digestible dietary nutrients. © 2013 Society of Chemical Industry.
Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces
2017-01-01
Stable isotope analysis of feces can provide a non-invasive method for tracking the dietary habits of nearly any mammalian species. While fecal samples are often collected for macroscopic and genetic study, stable isotope analysis can also be applied to expand the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion changes the isotope ratios of animals’ diets, so more controlled diet studies are needed. To date, most diet-to-feces controlled stable isotope experiments have been performed on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in the diet and feces of the meerkat (Suricata suricatta), a small omnivorous mammal. The carbon trophic discrimination factor between diet and feces (Δ13Cfeces) is calculated to be 0.1 ± 1.5‰, which is not significantly different from zero, and in turn, not different than the dietary input. On the other hand, the nitrogen trophic discrimination factor (Δ15Nfeces) is 1.5 ± 1.1‰, which is significantly different from zero, meaning it is different than the average dietary input. Based on data generated in this experiment and a review of the published literature, carbon isotopes of feces characterize diet, while nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a discrimination factor needs to be taken into account. The carbon and nitrogen stable isotope values of feces are an excellent snapshot of diet that can be used in concert with other analytical methods to better understand ecology, diets, and habitat use of mammals. PMID:28626611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreuzer, Helen W.; West, Jason B.; Ehleringer, James
Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of thesemore » methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.« less
Rice, Steven E.; Crilley, Dianna M.
2014-01-01
Stable isotope data from springs and snowpacks sampled in the East Mountain area were compared with local, regional, and global meteoric water lines and were analyzed along with values representing the stable isotope composition of winter precipitation and summer monsoonal rains. Results of the stable isotope analysis from springs in this study suggested that winter precipitation is the primary source of groundwater recharge to the aquifers supplying the springs, but there is a component of more isotopically enriched precipitation being recharged as well, likely from summer monsoonal rains. Specific conductance, groundwater-level hydrographs, snowpack chemistry, and snow-water equivalent data were used to inform the analyses and corroborate the findings of the CMB and stable isotope results.
NASA Astrophysics Data System (ADS)
Wilske, Cornelia; Siebert, Christian; Geyer, Stefan; Rödiger, Tino; Merkel, Broder
2013-04-01
One of the ecologic and touristic hot spots along the western Dead Sea shore is the spring system of Ein Feshkha (Enot Zukim), which suffers from a changing environment. Its feeding Cretaceous aquifers are hosted in the western Graben flank of the Jordan-Dead Sea Rift. However, the origin of water and the ratio of influence of the unconsolidated Quaternary Graben fill is a controversial issue. The aim of the study is to combine hydrogeochemical information of the spring waters and the potential source aquifers to characterize and differentiate the groundwater origins, groundwater flow paths and eventually groundwater mixtures. Within this case study, which is embedded in the SMART II project (Sustainable Management of Available Water Resources of the Lower Jordan Valley), the investigation area extends in the Judean Mountains from the vicinity of Ramallah down to Hebron and ends along the north-western shoreline of the Dead Sea. The Cretaceous limestone aquifers of Turonian/Upper Cenomanian and Albian age are widely separated by a clayey aquiclude. That so called Judea Group is underlaid by the Kurnub sandstone aquifer. Mainly due to the development of the Rift, the entire area is intensely folded and crossed by faults. Groundwater recharge takes place in the uplands and the groundwater flow gradient is oriented towards the Valley, where it transgresses into the Quaternary Graben fill. Our hypothesis is that Ein Feshkha springs are fed by groundwater originating in general in the mountain range, which also takes a detour through the Graben fill in the north of the Dead Sea. Groundwater from these aquifers emerges along the coast of the Dead Sea through springs. The methodological approach is to use geogenic and anthropogenic hydrochemical parameters like major- and trace elements, stable isotopes like δ2H, δ18O or δ87Sr and heavy metals. Sampling campaigns were and will be carried out quarterly within one hydrological year to uncover possible seasonal variations. Samples are taken from the different aquifers over the whole investigation area. The first results represent the variability of the groundwater chemistry in terms of their TDS contents and their stable isotope signatures. The measured stable isotope ratios of Strontium, which refer to the geological background, show a differentiation between the groundwater of the main Judean aquifers. In combination with stable isotopes the composition of major- and trace elements including heavy metals improve the aquifer differentiation against the background of changes in geological formations.
NASA Astrophysics Data System (ADS)
Wiederhold, J. G.; Jew, A. D.; Brown, G. E.; Bourdon, B.; Kretzschmar, R.
2010-12-01
The seven stable isotopes of Hg are fractionated in the environment as a result of mass-dependent (MDF) and mass-independent (MIF) fractionation processes that can be studied in parallel by analyzing the ratios of even and odd mass Hg isotopes. MDF and MIF Hg isotope signatures of natural samples may provide a new tool to trace sources and transformations in environmental Hg cycling. However, the mechanisms controlling the extent of kinetic and equilibrium Hg isotope fractionations are still only partially understood. Thus, development of this promising tracer requires experimental calibration of relevant fractionation factors as well as assessment of natural variations of Hg isotope ratios under different environmental conditions. The inoperative Hg mine in New Idria (California, USA) represents an ideal case study to explore Hg isotope fractionation during Hg transformation and transport processes. More than a century of Hg mining and on-site thermal refining to obtain elemental Hg until 1972 produced large volumes of contaminated mine wastes which now represent sources of Hg pollution for the surrounding ecosystems. Here, we present Hg isotope data from various materials collected at New Idria using Cold-Vapor-MC-ICPMS with a long-term δ202Hg reproducibility of ±0.1‰ (2SD). Uncalcined mine waste samples were isotopically similar to NIST-3133 and did not exhibit any MIF signatures. In contrast, calcine samples, which represent the residue of the thermal ore processing at 700°C, had significantly heavier δ202Hg values of up to +1.5‰. In addition, we observed small negative MIF anomalies of the odd-mass Hg isotopes in the calcine samples, which could be caused either by nuclear volume fractionation or a magnetic isotope effect during or after the roasting process. The mass-dependent enrichment of heavy Hg isotopes in the calcine materials indicates that light Hg isotopes were preferentially removed during the roasting process, in agreement with a previous study by Stetson et al. (ES&T, 2009, 43:7331-7336). In order to further elucidate the Hg isotope signatures of the New Idria samples, we performed a three-step sequential extraction procedure to separate different Hg pools. The calcine samples exhibited a higher proportion of leachable Hg phases compared with the unrefined ore waste samples. The most soluble Hg pool (HAc/HCl, pH 2) had a significantly heavier MDF and more negative MIF signature than the bulk calcine samples, suggesting that the dissolution of more soluble Hg phases from calcine materials results in an enhanced flux of leached Hg which is isotopically distinct from the original ore. Moreover, this finding demonstrates that the Hg isotope fractionation during the ore roasting cannot be solely explained by a kinetic Rayleigh-type process which removes light Hg isotopes, but must additionally involve the formation of isotopically heavy secondary Hg phases in the calcine. The analysis of additional samples will enable us to test this hypothesis and to gain further insights into the applicability of stable Hg isotope ratios as source and process tracers in Hg-contaminated environments.
NASA Astrophysics Data System (ADS)
Bojar, Ana-Voica; Lécuyer, Christophe; Bojar, Hans-Peter; Fourel, François; Vasile, Ştefan
2018-03-01
Deep-sea vent communities live on a limited area characterized by sharp physico-chemical (temperature, salinity, pH) gradients. Around the vent, the fauna is distributed accordingly, showing characteristic niche partitioning for different groups of animals. In this study we investigate shell microstructure, minor elements and stable isotope compositions of two groups of organisms such as a snail, Ifremeria nautilei, and a crustacean, Eochionelasmus ohtai manusensis. Both organisms occupy distinct niches within the same hydrothermal vent field of the Manus Basin, Western Pacific. Powder XRD and electron microbeam analysis of a polished cross-section indicate that the shells are composed of microcrystalline calcite, with distinct Na, Mg, Sr, and S element contents. For both specimens 20-30 μm large weddellite crystals were found. The δ18O profiles were obtained perpendicular to the growth increments of I. nautilei and E. o. manusensis calcitic shells. Those profiles reveal isotopic variations of 0.5 and 0.6‰, respectively for both intra- and inter-shell measurements. For E. o. manusensis, the Mg content suggests continuous shell growth during the year, both δ18O and Mg data supporting cyclical variation of temperature at vent site. The calculated temperatures at sites with I. nautilei and E. o. manusensis range from 17° to 21.5°C and from 2.1° to 7.2°C, respectively, showing a similar variability of 5-6 °C. The δ13C values of the Ifremeria calcitic shell range from 3‰ to 4.6‰ (V-PDB), the isotopic composition being 13C-enriched relative to the surrounding inorganic pool. The δ13C values of the chitine layer covering the shell range from - 33 to - 31.1‰. The δ13C values of Eochionelasmus vary between 0‰ and 1‰, reflecting the surrounding inorganic DIC pool.
Faye, Serigne; Maloszewski, Piotr; Stichler, Willibald; Trimborn, Peter; Cissé Faye, Seynabou; Bécaye Gaye, Cheikh
2005-05-01
The hydrochemistry of minor elements bromide (Br), boron (B), strontium (Sr), environmental stable isotopes (18O and 2H) together with major-ion chemistry (chloride, sodium, calcium) has been used to constrain the source(s), relative age, and processes of salinization in the Continental Terminal (CT) aquifer in the Saloum (mid-west Senegal) region. Seventy-one groundwater wells which include 24 wells contaminated by saltwater and three sites along the hypersaline Saloum River were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies. Use of Br against Cl confirms the Saloum River saline water intrusion up to a contribution of 7% into the aquifer. In addition to this recent intrusion, a relatively ancient intrusion of the Saloum River water which had reached at least as far as 20 km south from the source was evidenced. The high molar ratio values of Sr/Cl and Sr/Ca indicate an additional input of strontium presumably derived from carbonate precipitation/dissolution reactions and also via adsorption reactions. The variable B concentrations (7-650 microg/L) found in the groundwater samples were tested against the binary mixing model to evaluate the processes of salinization which are responsible for the investigated system. Sorption of B and depletion of Na occur as the Saloum river water intrudes the aquifer (salinization) in the northern part of the region, whereas B desorption and Na enrichment occur as the fresh groundwater flushing displaces the saline waters in the coastal strip (refreshening). In the central zone where ancient intrusion prevailed, the process of freshening of the saline groundwater is indicated by the changes in major-ion chemistry as well as B desorption and Na enrichment. In addition to these processes, stable isotopes reveal that mixing with recently infiltrating waters and evaporation contribute to the changes in isotopic signature.
[Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].
Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang
2015-10-01
In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.
Theoretical prediction of probable isotopes of superheavy nuclei of Z = 122
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2016-11-01
We have studied the α-decay half-life and spontaneous fission half-lives of isotopes of superheavy element Z = 122 in the range 275 ≤ A ≥ 326. A comparison of calculated alpha half-lives with the literature [D. N. Poenaru, R. A. Gherghescu and W. Greiner, Phys. Rev. C 83 (2011) 014601, D. N. Poenaru, R. A. Gherghescu and W. Greiner, Phys. Rev. C 85 (2012) 034615] and the analytical formulas of Royer [G. Royer, J. Phys. G; Nucl. Part. Phys. 26 (2000) 1149] shows good agreement with each other. To identify the mode of decay of these isotopes, the spontaneous-fission half-lives were also evaluated using the semiempirical relation given by [C. Xu, Z. Ren and Y. Guo, Phys. Rev. C 78 (2008) 044329]. A comparative study on the competition of alpha decay versus spontaneous fission of superheavy nuclei (SHN) reveals that around eight isotopes (307-314122) survive fission and have alpha decay channel as the prominent mode of decay and hold the possibility to be synthesized in the laboratory. The alpha decay half-lives and spontaneous fission half-lives of SHN with Z = 122, A = 299-306, with Z = 120, A = 294-300, and with Z = 119, A = 292-297 are also studied. The present study will be useful in the synthesis of superheavy elements Z > 118 by using the actinide based reactions with stable projectiles heavier than 48Ca.
Stable isotopes in sporocarps have proven useful for inferring ectomycorrhizal or saprotrophic status and understanding carbon (C) and nitrogen (N) utilization. However, greater understanding of processes producing isotopic concentrations is needed. We measured natural abundanc...
STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS
Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...
Why we need a centralized repository for isotopic data
USDA-ARS?s Scientific Manuscript database
Stable isotopes encode the origin and integrate the history of matter; thus, their analysis offers tremendous potential to address questions across diverse scientific disciplines. Indeed, the broad applicability of stable isotopes, coupled with advancements in high-throughput analysis, have created ...
COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION
Changes in the stable isotopic composition of organic contaminants (isotopic fractionation) are a useful indicator of biotransformation, and have been reported in literature for several volatile organic compounds. The technique offers an interesting alternative to time-consuming ...
NASA Astrophysics Data System (ADS)
Druhan, Jennifer L.; Steefel, Carl I.; Conrad, Mark E.; DePaolo, Donald J.
2014-01-01
This study demonstrates a mechanistic incorporation of the stable isotopes of sulfur within the CrunchFlow reactive transport code to model the range of microbially-mediated redox processes affecting kinetic isotope fractionation. Previous numerical models of microbially mediated sulfate reduction using Monod-type rate expressions have lacked rigorous coupling of individual sulfur isotopologue rates, with the result that they cannot accurately simulate sulfur isotope fractionation over a wide range of substrate concentrations using a constant fractionation factor. Here, we derive a modified version of the dual-Monod or Michaelis-Menten formulation (Maggi and Riley, 2009, 2010) that successfully captures the behavior of the 32S and 34S isotopes over a broad range from high sulfate and organic carbon availability to substrate limitation using a constant fractionation factor. The new model developments are used to simulate a large-scale column study designed to replicate field scale conditions of an organic carbon (acetate) amended biostimulation experiment at the Old Rifle site in western Colorado. Results demonstrate an initial period of iron reduction that transitions to sulfate reduction, in agreement with field-scale behavior observed at the Old Rifle site. At the height of sulfate reduction, effluent sulfate concentrations decreased to 0.5 mM from an influent value of 8.8 mM over the 100 cm flow path, and thus were enriched in sulfate δ34S from 6.3‰ to 39.5‰. The reactive transport model accurately reproduced the measured enrichment in δ34S of both the reactant (sulfate) and product (sulfide) species of the reduction reaction using a single fractionation factor of 0.987 obtained independently from field-scale measurements. The model also accurately simulated the accumulation and δ34S signature of solid phase elemental sulfur over the duration of the experiment, providing a new tool to predict the isotopic signatures associated with reduced mineral pools. To our knowledge, this is the first rigorous treatment of sulfur isotope fractionation subject to Monod kinetics in a mechanistic reactive transport model that considers the isotopic spatial distribution of both dissolved and solid phase sulfur species during microbially-mediated sulfate reduction. describe the design and results of the large-scale column experiment; demonstrate incorporation of the stable isotopes of sulfur in a dual-Monod kinetic expression such that fractionation is accurately modeled at both high and low substrate availability; verify accurate simulation of the chemical and isotopic gradients in reactant and product sulfur species using a kinetic fractionation factor obtained from field-scale analysis (Druhan et al., 2012); utilize the model to predict the final δ34S values of secondary sulfur minerals accumulated in the sediment over the course of the experiment. The development of rigorous isotope-specific Monod-type rate expressions are presented here in application to sulfur cycling during amended biostimulation, but are readily applicable to a variety of stable isotope systems associated with both steady state and transient biogenic redox environments. In other words, the association of this model with a uranium remediation experiment does not limit its applicability to more general redox systems. Furthermore, the ability of this model treatment to predict the isotopic composition of secondary minerals accumulated as a result of fractionating processes (item 4) offers an important means of interpreting solid phase isotopic compositions and tracking long-term stability of precipitates.
Particular geoscientific perspectives on stable isotope analysis in the arboreal system
NASA Astrophysics Data System (ADS)
Helle, Gerhard; Balting, Daniel; Pauly, Maren; Slotta, Franziska
2017-04-01
In geosciences stable isotopes of carbon, oxygen and hydrogen from the tree ring archive have been used for several decades to trace the course of past environmental and climatological fluctuations. In contrast to ice cores, the tree ring archive is of biological nature (like many other terrestrial archives), but provides the opportunity to establish site networks with very high resolution in space and time. Many of the basic physical mechanisms of isotope shifts are known, but biologically mediated processes may lead to isotope effects that are poorly understood. This implies that the many processes within the arboreal system leading to archived isotope ratios in wood material are governed by a multitude of environmental variables that are not only tied to the isotopic composition of atmospheric source values (precipitation, CO2), but also to seasonally changing metabolic flux rates and pool sizes of photosynthates within the trees. Consequently, the extraction of climate and environmental information is particularly challenging and reconstructions are still of rather qualitative nature. Over the last 10 years or so, monitoring studies have been implemented to investigate stable isotope, climate and environmental signal transfer within the arboreal system to develop transfer or response functions that can translate the relevant isotope values extracted from tree rings into climate or other environmental variables. To what extent have these efforts lead to a better understanding that helps improving the meaningfulness of tree ring isotope signals? For example, do monitoring studies help deciphering the causes for age-related trends in tree ring stable isotope sequences that are published in a growing number of papers. Are existing monitoring studies going into detail enough or is it already too much effort for the outcome? Based on what we know already particularly in mesic habitats, tree ring stable isotopes are much better climate proxies than other tree ring parameters. However, millennial or multi-millennial high quality reconstructions from tree ring isotopes are still rare. This is because of i) methodological constraints related to mass spectrometric analyses and ii) the nature of tree-ring chronologies that are put together by many trees of various individual ages. In view of this: What is the state-of-the-art in high throughput tree ring stable isotope analyses? Is it necessary to advance existing methodologies further to conserve the annual time resolution provided by the tree-ring archive? Other terrestrial archives, like lake sediments and speleothems rarely provide annually resolved stable isotope data. Furthermore, certain tree species from tropical or sub-tropical regions cannot be dated properly by dendrochronology and hence demand specific stable isotope measuring strategies, etc.. Although the points raised here do specifically apply for the tree ring archive, some of them are important for all proxy archives of organic origin.
Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones
Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen
2016-01-01
Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42− complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge. PMID:27982033
2017-01-01
In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4–5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies. PMID:28405367
ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES
Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...
STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (URUGUAY)
Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...
STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (BRAZIL)
Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...
COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION
Change of stable isotope composition of organic contaminants (isotopic fractionation) is a useful indicator of biotransformation. Most of applications to date are in the area of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (biotic- and abiotic transfor...
Fincel, Mark J.; James, Daniel A.; Chipps, Steven R.; Davis, Blake A.
2014-01-01
Diet studies have traditionally been used to determine prey use and food web dynamics, while stable isotope analysis provides for a time-integrated approach to evaluate food web dynamics and characterize energy flow in aquatic systems. Direct comparison of the two techniques is rare and difficult to conduct in large, species rich systems. We compared changes in walleye Sander vitreus trophic position (TP) derived from paired diet content and stable isotope analysis. Individual diet-derived TP estimates were dissimilar to stable isotope-derived TP estimates. However, cumulative diet-derived TP estimates integrated from May 2001 to May 2002 corresponded to May 2002 isotope-derived estimates of TP. Average walleye TP estimates from the spring season appear representative of feeding throughout the entire previous year.
NASA Astrophysics Data System (ADS)
Rajput, Mayank; Vala, Sudhirsinh; Srinivasan, R.; Abhangi, M.; Subhash, P. V.; Pandey, B.; Rao, C. V. S.; Bora, D.
2018-01-01
Chromium is an important alloying element of stainless steel (SS) and SS is the main constituent of structural material proposed for fusion reactors. Energy and double differential cross section data will be required to estimate nuclear responses in the materials used in fusion reactors. There are no experimental data of energy and double differential cross section, available for neutron induced reactions on natural chromium at 14 MeV neutron energy. In this study, energy and double differential cross section data of (n,p) and (n,α) reactions for all the stable isotopes of chromium have been estimated, using appropriate nuclear models in TALYS code. The cross section data of stable isotopes are later converted into the energy and double differential cross section data of natural Cr using the isotopic abundance. The contribution from compound, pre-equilibrium and direct nuclear reaction to total reaction have also been calculated for 52,50Cr(n,p) and 52Cr(n,α). The calculation of energy differential cross section shows that most of emitted protons and alpha particles are of 3 and 8 MeV respectively. The calculated data is compared with the data from EXFOR data library and is found to be in good agreement.
NASA Astrophysics Data System (ADS)
Leakey, Chris D. B.; Attrill, Martin J.; Jennings, Simon; Fitzsimons, Mark F.
2008-04-01
Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. Stable isotope analysis may be used to assess relative resource use from isotopically distinct sources. This study comprised two major components: (1) development of a spatial map and discriminant function model of stable isotope variation in selected invertebrate groups inhabiting the Thames Estuary and adjacent coastal regions; and (2) analysis of stable isotope signatures of juvenile bass ( Dicentrarchus labrax), sole ( Solea solea) and whiting ( Merlangius merlangus) for assessment of resource use and feeding strategies. The data were also used to consider anthropogenic enrichment of the estuary and potential energetic benefits of feeding in estuarine nursery habitat. Analysis of carbon (δ 13C), nitrogen (δ 15N) and sulphur (δ 34S) isotope data identified significant differences in the 'baseline' isotopic signatures between estuarine and coastal invertebrates, and discriminant function analysis allowed samples to be re-classified to estuarine and coastal regions with 98.8% accuracy. Using invertebrate signatures as source indicators, stable isotope data classified juvenile fishes to the region in which they fed. Feeding signals appear to reflect physiological (freshwater tolerance) and functional (mobility) differences between species. Juvenile sole were found to exist as two isotopically-discrete sub-populations, with no evidence of mixing between the two. An apparent energetic benefit of estuarine feeding was only found for sole.
Fantle, M.S.; Bullen, T.D.
2009-01-01
The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a specific isotope system, it should be noted that the same methods can be used to evaluate any isotope system of interest. ?? 2008 Elsevier B.V.
Stable isotope fractionation of tungsten during adsorption on Fe and Mn (oxyhydr)oxides
NASA Astrophysics Data System (ADS)
Kashiwabara, Teruhiko; Kubo, Sayuri; Tanaka, Masato; Senda, Ryoko; Iizuka, Tsuyoshi; Tanimizu, Masaharu; Takahashi, Yoshio
2017-05-01
The similar, but not identical chemical properties of W compared with Mo suggest that the stable isotope system of W could be a novel proxy to explore the modern and ancient ocean as is the case in the well-established utility of Mo isotopes. We experimentally investigated the isotopic fractionation of W during adsorption on Fe and Mn (oxyhydr)oxides (ferrihydrite and δ-MnO2), a key process in the global ocean budget of this element. Our adsorption experiments confirmed that W isotopes fractionate substantially on both ferrihydrite and δ-MnO2: lighter W isotopes are preferentially adsorbed on both oxides as a result of equilibrium isotopic exchange between dissolved and adsorbed species, and the obtained values of Δ186/183Wliquid-solid (= δ186Wdissolved - δ186Wadsorbed) are 0.76 ± 0.09‰ for ferrihydrite and 0.88 ± 0.21‰ for δ-MnO2 (2σ, n = 6). Compared with the case of Mo isotopes, fractionation of W isotopes is (i) of comparable magnitude between ferrihydrite and δ-MnO2, and (ii) much smaller than that of Mo on δ-MnO2. Our previous XAFS observations and newly-performed DFT calculations both indicate that the observed W isotopic fractionations are caused by the symmetry change from Td (tetrahedral) WO42- to distorted Oh (octahedral) monomeric W species via formation of inner-sphere complexes on both ferrihydrite and δ-MnO2. The similar isotopic fractionations between the two oxides relate to the strong tendency for W to form inner-sphere complexes, which causes the symmetry change, in contrast to the outer-sphere complex of Mo on ferrihydrite. The smaller isotopic fractionation of W compared with Mo on δ-MnO2 despite their similar molecular symmetry seems to be due to their different degrees of distortion of Oh species. Our findings imply that the isotopic composition of W in modern oxic seawater is likely to become heavier relative to the input by removal of lighter W isotopes via adsorption on ferromanganese oxides in analogy with the Mo isotope budget. In contrast, the isotopic composition of W in ancient seawater should have evolved in response to the extent of deposition of both Fe and Mn oxides; this is likely to be different compared with that of the Mo isotopes, which is strongly associated with the occurrence of Mn oxides relative to Fe oxides.
Gadolinium for neutron detection in current nuclear instrumentation research: A review
NASA Astrophysics Data System (ADS)
Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G. H. V.; Hamel, M.
2018-02-01
Natural gadolinium displays a number of remarkable physical properties: it is a rare earth element, composed of seven stable or quasi-stable isotopes, with an exceptionally high magnetization and a Curie point near room temperature. Its use in the field of nuclear instrumentation historically relates to its efficiency as a neutron poison in power reactors. Gadolinium is indeed the naturally occurring element with the highest interaction probability with neutrons at thermal energy, shared between Gd-157 (15.65%, 254000 b cross section) and Gd-155 (14.8%, 60900 b) isotopes. Considering that neutron capture results in an isotopic change, followed by a radiative rearrangement of nuclear and atomic structures, Gd may be embodied not merely as a neutron poison but as a neutron converter into a prompt photon and an electron source term. Depending on the nature and energy of the reaction products (from a few-keV Auger electrons up to 8 MeV gamma rays) that the detector aims at isolating as an indirect neutron signature, a variety of sensor media and counting methods have been introduced during the last decades. This review first draws a theoretical description of the radiative cascade following Gd(n , γ) capture. The cascade may be subdivided into regions of interest, each corresponding to dedicated detection designs and optimizations whose current status is detailed. This inventory has allowed the authors to extract and benchmark key figures of merit for the definition of a detection scheme: neutron attenuation, neutron sensitivity (cps/nv), gamma rejection, neutron detection limit in a mixed field, intrinsic or extrinsic moderation, and transportability. On this basis, the authors have identified promising paths for Gd-based neutron detection in contemporary instrumentation.
CAMECA IMS 1300-HR3: The New Generation Ion Microprobe
NASA Astrophysics Data System (ADS)
Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.
2016-12-01
The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.
Elemental and isotopic imaging to study biogeochemical functioning of intact soil micro-environments
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.
2017-04-01
The complexity of soils extends from the ecosystem-scale to individual micro-aggregates, where nano-scale interactions between biota, organic matter (OM) and mineral particles are thought to control the long-term fate of soil carbon and nitrogen. It is known that such biogeochemical processes show disproportionally high reaction rates within nano- to micro-meter sized isolated zones ('hot spots') in comparison to surrounding areas. However, the majority of soil research is conducted on large bulk (> 1 g) samples, which are often significantly altered prior to analysis and analysed destructively. Thus it has previously been impossible to study elemental flows (e.g. C and N) between plants, microbes and soil in complex environments at the necessary spatial resolution within an intact soil system. By using nano-scale secondary ion mass spectrometry (NanoSIMS) in concert with other imaging techniques (e.g. scanning electron microscopy (SEM) and micro computed tomography (µCT)), classic analyses (isotopic and elemental analysis) and biochemical methods (e.g. GC-MS) it is possible to exhibit a more complete picture of soil processes at the micro-scale. I will present exemplarily results about the fate and distribution of organic C and N in complex micro-scale soil structures for a range of intact soil systems. Elemental imaging was used to study initial soil formation as an increase in the structural connectivity of micro-aggregates. Element distribution will be presented as a key to detect functional spatial patterns and biogeochemical hot spots in macro-aggregate functioning and development. In addition isotopic imaging will be demonstrated as a key to trace the fate of plant derived OM in the intact rhizosphere from the root to microbiota and mineral soil particles. Especially the use of stable isotope enrichment (e.g. 13CO2, 15NH4+) in conjunction with NanoSIMS allows to directly trace the fate of OM or nutrients in soils at the relevant scale (e.g. assimilate C / inorganic N in the rhizosphere). However, especially the elemental mapping requires more sophisticated computational approaches to evaluate (and quantify) the spatial heterogeneities of biogeochemical properties in intact soil systems.
NASA Astrophysics Data System (ADS)
de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe
2017-04-01
Understanding the Late Cretaceous greenhouse climate is of vital importance for understanding present and future climate change. While a lot of good work has been done to reconstruct climate in this interesting period, most paleoclimatic studies have focused on long-term climate change[1]. Alternatively, multi-proxy records from marine bivalves provide us with a unique opportunity to study past climate on a seasonal scale. However, previous fossil bivalve studies have reported ambiguous results with regard to the interpretation of trace element and stable isotope proxies in marine bivalve shells[2]. One major problem in the interpretation of such records is the bivalve's vital effect and the occurrence of disequilibrium fractionation during bivalve growth. Both these problems are linked to the annual growth cycle of marine bivalves, which introduces internal effects on the incorporation of isotopes and trace elements into the shell[3]. Understanding this growth cycle in extinct bivalves is therefore of great importance for the interpretation of seasonal proxy records in their shells. In this study, three different species of extinct Late Campanian bivalves (two rudist species and one oyster species) that were found in the same stratigraphic interval are studied. Micro-X-Ray Fluorescence line scanning and mapping of trace elements such as Mg, Sr, S and Zn, calibrated by LA-ICP-MS measurements, is combined with microdrilled stable carbon and oxygen isotope analysis on the well-preserved part of the shells. Data of this multi-proxy study is compared with results from a numerical growth model written in the open-source statistics package R[4] and based on annual growth increments observed in the shells and shell thickness. This growth model is used together with proxy data to reconstruct rates of trace element incorporation into the shell and to calculate the mass balance of stable oxygen and carbon isotopes. In order to achieve this goal, 2D mapping of bivalve shell surfaces is combined with high-precision point measurements and linescans to characterize different carbonate facies within the shell and to model changes in proxy data in three dimensions. Comparison of sub-annual variations in growth rate and shell geometry with proxy data sheds light on the degree to which observed seasonal variations in geochemical proxies are dependent on internal mechanisms of shell growth as opposed to external mechanisms such as climatic and environmental change. The use of three different species of bivalve from the same paleoenvironment allows the examination of species-specific responses to environmental change. This study attempts to determine which proxies in which species of bivalve are suitable for paleoenvironmental reconstruction and will aid future paleoseasonality studies in interpreting seasonally resolved multi-proxy records. References 1 DeConto R.M., et al. Cambridge University Press; 2000. 2 Elliot M, et al., PPP 2009. 3 Steuber T. Geology. 1996. 4 R core team, 2004, www.R-project.org
The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part II: The Instrumentation
Bluck, Les; Volmer, Dietrich A.
2013-01-01
In the second instalment of this tutorial, the authors explain the instrumentation for measuring naturally occurring stable isotopes, specifically the magnetic sector mass spectrometer. This type of instrument remains unrivalled in its performance for isotope ratio mass spectrometry (IRMS) and the reader is reminded of its operation and its technical advantages for isotope measurements. PMID:23772101
Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.
1987-01-01
A method has been developed using stable sulphur isotope analyses to monitor the behaviour of sulphur forms in a coal during thermal desulphurization. In this method, the natural stable isotopic composition of the pyritic and organic sulphur in coal is used as a tracer to follow their mobility during the desulphurization process. This tracer method is based on the fact that the isotopic compositions of pyritic and organic sulphur are significantly different in some coals. Isotopic results of pyrolysis experiments at temperatures ranging from 350 to 750 ??C indicate that the sulphur released with the volatiles is predominantly organic sulphur. The pyritic sulphur is evolved in significant quantities only when pyrolysis temperatures exceed 500 ??C. The presence of pyrite seems to have no effect on the amount of organic sulphur evolved during pyrolysis. The chemical and isotopic mass balances achieved from three different samples of the Herrin (No. 6) coal of the Illinois Basin demonstrate that this stable isotope tracer method is quantitative. The main disadvantage of this tracing technique is that not all coals contain isotopically distinct organic and pyritic sulphur. ?? 1987.
Snyder, Nathaniel W.; Tombline, Gregory; Worth, Andrew J.; Parry, Robert C.; Silvers, Jacob A.; Gillespie, Kevin P.; Basu, Sankha S.; Millen, Jonathan; Goldfarb, David S.; Blair, Ian A.
2015-01-01
Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and β-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the gold standard for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope labeled metabolites such as acyl-coenzyme A thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell media with commercially available [13C3 15N1]-pantothenic acid, mammalian cells exclusively incorporated [13C3 15N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope labeled CoA and acyl-CoAs from [13C3 15N1]-pantothenate using Stable Isotope Labeling by Essential nutrients in Cell culture (SILEC) in Pan6 deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof-of-concept for generating other labeled metabolites in yeast mutants. PMID:25572876
Sedimentary silicon isotope indicates the Kuroshio subsurface upwelling in the East China Sea
NASA Astrophysics Data System (ADS)
Zhao, Y.; Yang, S.; Su, N.
2017-12-01
The Kuroshio as the western boundary current of the North Pacific subtropical circulation, originates from east of the Philippine Islands, and flows northeastward along the eastern coast of Taiwan. It's subsurface water intrudes the East China Sea (ECS) and forms a typical upwelling on the inner shelf, which may play an important role in the material and heat transport, biogeochemical process and marine ecosystem of the ECS.To date, most previous studies on the Kuroshio subsurface upwelling focuse on the seasonal and interannual variations, and few researches touch on the upwelling evolution in the geologic past. In this study, eight short sediment cores were taken along the ECS inner shelf (upwelling area), which allow us to reconstruct the upwelling history over the last several hundred years. Although conventional indexes of oceanographic changes, such as salinity, temperature and hydrogen and oxygen isotope, provide valuable constraints on the modern oceanic circulation and water mass movements, how to reconstruct them from geologic records is always a challenging work. In this contribution, we present the data of stable silicon isotope, biogenic opal, diatom assemblages, element geochemistry and stable carbon and nitrogen isotopes of these core sediments, and aim to decipher the Kuroshio subsurface upwelling history on the ECS shelf. We will also illustrate the difference in δ30Si signals between small (<30 um) and large (>150 um) diatom fractions, and test whether it is an effective indicator for paleo-upwelling intensity.
Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T
2015-01-01
Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products.
Characteristics and sources of carbonaceous aerosols from Shanghai, China
NASA Astrophysics Data System (ADS)
Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.
2013-01-01
An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.
Carbon Stable Isotopes as Indicators of Coastal Eutrophication
Coastal ecologists and managers have frequently used nitrogen stable isotopes (δ15N) to trace and monitor anthropogenic nitrogen (N) in coastal ecosystems. However, the interpretation of δ15N data can often be challenging, if not confounding, as the isotope values fractionate su...
Stable Isotope Tracers of Process in Great Lakes Food Webs
Stable isotope analyses of biota are now commonly used to discern trophic pathways between consumers and their foods. However, those same isotope data also hold information about processes that influence the physicochemical setting of food webs as well as biological processes ope...
SOURCE PARTITIONING USING STABLE ISOTOPES: COPING WITH TOO MANY SOURCES
Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste st...
USE OF STABLE ISOTOPES IN ENVIRONMENTAL AND FORENSIC GEOCHEMISTRY STUDIES
Stable carbon and hydrogen isotopes have been used for many decades in the petroleum industry, but the development of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS) has led to a virtual explosion in application of this technique not only in petroleum explora...
NASA Astrophysics Data System (ADS)
Roussel, Sabine; Huchette, Sylvain; Clavier, Jacques; Chauvaud, Laurent
2011-02-01
The ormer, Haliotis tuberculata is the only European abalone species commercially exploited. The determination of growth and age in the wild is an important tool for fisheries and aquaculture management. However, the ageing technique used in the past in the field is unreliable. The stable oxygen isotope composition ( 18O/ 16O) of the shell depends on the temperature and oxygen isotope composition of the ambient sea water. The stable oxygen isotope technique, developed to study paleoclimatological changes in shellfish, was applied to three H. tuberculata specimens collected in north-west Brittany. For the specimens collected, the oxygen isotope ratios of the shell reflected the seasonal cycle in the temperature. From winter-to-winter cycles, estimates of the age and the annual growth increment, ranging from 13 to 55 mm per year were obtained. This study shows that stable oxygen isotopes can be a reliable tool for ageing and growth studies of this abalone species in the wild, and for validating other estimates.
Studying Nuclear Structure at the extremes with S3
NASA Astrophysics Data System (ADS)
Piot, Julien
2018-05-01
The in-depth study of the regions of Superheavy elements and the proton drip line around 100Sn are two major challenges of today's Nuclear Physics. Performing detailed spectroscopic studies on these nuclei requires a significant improvement of our detection capabilities. The Super-Separator-Spectrometer S3 is part of the SPIRAL2 facility at GANIL. Its aim is to use the high stable beam currents provided by the new LINAC to reach rare isotopes by fusion-evaporation.
Busst, Georgina M A; Bašić, Tea; Britton, J Robert
2015-08-30
Dorsal white muscle is the standard tissue analysed in fish trophic studies using stable isotope analyses. As muscle is usually collected destructively, fin tissues and scales are often used as non-lethal surrogates; we examined the utility of scales and fin tissue as muscle surrogates. The muscle, fin and scale δ(15) N and δ(13) C values from 10 cyprinid fish species determined with an elemental analyser coupled with an isotope ratio mass spectrometer were compared. The fish comprised (1) samples from the wild, and (2) samples from tank aquaria, using six species held for 120 days and fed a single food resource. Relationships between muscle, fin and scale isotope ratios were examined for each species and for the entire dataset, with the efficacy of four methods of predicting muscle isotope ratios from fin and scale values being tested. The fractionation factors between the three tissues of the laboratory fishes and their food resource were then calculated and applied to Bayesian mixing models to assess their effect on fish diet predictions. The isotopic data of the three tissues per species were distinct, but were significantly related, enabling estimations of muscle values from the two surrogates. Species-specific equations provided the least erroneous corrections of scale and fin isotope ratios (errors < 0.6‰). The fractionation factors for δ(15) N values were in the range obtained for other species, but were often higher for δ(13) C values. Their application to data from two fish populations in the mixing models resulted in significant alterations in diet predictions. Scales and fin tissue are strong surrogates of dorsal muscle in food web studies as they can provide estimates of muscle values within an acceptable level of error when species-specific methods are used. Their derived fractionation factors can also be applied to models predicting fish diet composition from δ(15) N and δ(13) C values. Copyright © 2015 John Wiley & Sons, Ltd.
Lösch, Sandra; Moghaddam, Negahnaz; Grossschmidt, Karl; Risser, Daniele U.; Kanz, Fabian
2014-01-01
The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts. PMID:25333366
NASA Astrophysics Data System (ADS)
Laiginhas, Fernando; Pearson, D. Graham; McNeill, John; Gurney, John; Nowell, Geoff; Ottley, Chris
2010-05-01
While there is increasing understanding of the age of formation and nature of "gem" diamonds, significant debate revolves around the nature of the fluids/melts from which they form. Stable C and N isotopes have been shown to be highly variable and yet the role of subduction-related fluids remains strongly debated. Recent studies on fibrous diamonds have yielded new trace and major element data (e.g., Weiss et al., 2009) that, together with new radiogenic isotope data (Klein BenDavid et al., 2010) indicate such diamonds grow from fluids that comprise mixtures of hydrous silicic, hydrous saline and carbonatitic fluids, derived from different source components of asthenospheric and lithospheric origin. However, until now such data has been lacking from gem diamonds. Using a new laser-based technique (McNeill et al., 2009), we have analysed a suite of diamonds plus co-existing host silicates from several diamondiferous xenoliths (6 harzburgites, 1 eclogite) from the Finsch and Newlands kimberlites in order to try to understand the fluid compositions that produce gem diamonds and better understand their effects of their mantle wall rocks. Diamonds from the xenoliths show a wide variety of trace element enrichment levels. While the eclogitic diamond shows similar trace element systematics to some of the harzburgitic diamonds there are significant differences within the harzburgitic diamonds from different xenoliths, with those from Finsch being significantly enriched in Ba, Sr and Pb relative to other elements. Nd isotope data on the host silicates is variable and dominantly unradiogenic, indicative of long-term enrichment typically associated with the source of some diamond-forming fluids. We will present Sr isotopic data on host silicates and diamond fluids to constrain whether the "gem" diamonds require the complex sources of fluids that characterise the growth of fibrous diamonds. 1) Y. Weiss, R. Kessel, W.L. Griffin, I. Kiflawi, O. Klein-BenDavid, D.R. Bell, J.W. Harris and O. Navon (2009). A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112, Supp. 2: 660-674. 2) O. Klein-BenDavid, D.G. Pearson, G.M. Nowell, C. Ottley, J.C.R. McNeill, P. Cartigny (2010). Mixed fluid sources involved in diamond growth constrained by Sr-Nd-Pb-C-N isotopes and trace elements. EPSL 289, 1-2: 123-133. 3) J. McNeill, D.G. Pearson, O. Klein-BenDavid, G.M. Nowell, C.J. Ottley and I. Chinn (2009). Quantitative analysis of trace element concentrations in some gem-quality diamonds. J. Phys.: Condens. Matter 21: 364207 (13pp).
NASA Astrophysics Data System (ADS)
Urrutia-Fucugauchi, J.; Perez-Cruz, L.; Zhao, X.; Rebolledo-Vieyra, M.; Rodriguez, A.
2012-04-01
We present the preliminary results of geochemical, stable isotopes and rock magnetic studies of a stalagmite from a cave in eastern Quintana Roo, northern Yucatan peninsula. In the past years, there has been increased interest in understanding the paleoclimatic and paleoenvironmental evolution of the Yucatan peninsula and northern Central America, investigating the relationships between climate variations and the development of the Maya civilization. In particular, the variations in regional precipitation and occurrence of several drought periods, which might have been related to the collapse of the Classic Maya period. Stable isotope data on speleothems from different sites in Yucatan and Central America have provided evidence on changes in precipitation, which have affected the Maya region. The stalagmite is ~47 cm long and about 4-5 cm wide at its base. It was collected from the Hilariós Well cave in Tulum, Quintana Roo. Magnetic susceptibility and geochemical analyses have been completed as part of the initial characterization of the stalagmite, with measurements taken every centimeter. Geochemical analyses have been carried out for x-ray fluorescence, with a Niton XRF analyzer. Magnetic susceptibility was determined with a Bartington MS2 instrument using the high resolution surface probe. Additional rock magnetic analyses include magnetic hysteresis loops and isothermal remanent magnetization (IRM) acquisition, and saturation IRM demagnetization, which have been measured with a MicroMag instrument. Hysteresis loops are diamagnetic, with small varying low-coercivity ferromagnetic components. The elemental compositions of major oxides and trace elements vary with depth. Calcium is the major element and displays a pattern of small amplitude fluctuations with a trend to lower values at the bottom, which are also shown in other elements such as barium. Silica and elements such as titanium and strontium are positively correlated and show an apparent cyclic pattern, with a trend to higher values towards the bottom.
More than who eats who: Discerning ecological processes from stable isotopes data
Stable isotope analyses of biota are now commonly used to discern trophic pathways between consumers and their foods. However, those same isotope data also hold information about processes that influence the physicochemical setting of food webs as well as biological processes ope...
NASA Technical Reports Server (NTRS)
Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.
2016-01-01
The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates the quantitative interpretation of ice core signals but also makes the stable ice isotope signal a more robust regional indicator of climate, speakers noted. Meeting participants agreed that to further our understanding of these relationships, we need more process-focused field and laboratory campaigns.
Examination of an Oligocene Lacustrine Ecosystem Using C and N Stable Isotopes
NASA Astrophysics Data System (ADS)
Schweizer, M. K.; Wooller, M. J.; Toporski, J.; Fogel, M.; Steele, A.
2003-12-01
Stable isotopes of C and N are used to reconstruct the fossil Oligocene (25.8Ma) ecosystem at Lake Enspel, Westerwald, Germany. Enspel was a steep-sided, deep maar lake with anoxic bottom waters. Upon dying, terrestrial and aquatic organisms sank into the sediment where they were colonized by bacteria. These bacteria quickly became fossilized, preserving morphological detail and large amounts of organic matter from the original macroorganism. Carbon and nitrogen are sufficiently preserved in these fossils to permit stable isotope analysis. Stable isotopic signatures identify several trophic levels, including primary producers (terrigenous and aquatic plants, diatoms), primary consumers (tadpoles, some insects), and secondary consumers (carnivores such as fish). Primary producers are associated with depleted d13C and d15N values, primary consumers such as flies are one trophic shift higher, and fish are another shift higher. Signatures for the fish species show heavy-isotope enrichment correlated with increasing length, indicating an increasingly carnivorous diet. This study marks the first attempt to reconstruct a complete fossil ecosystem using stable isotope analysis, and confirms that techniques used to study modern food webs can be applied to extinct webs as well.
Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite
NASA Technical Reports Server (NTRS)
Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to light isotopes of hydrogen (D/H), carbon (C-13/C-12), and nitrogen (N-15/N-14), are anomalous relative to bulk terrestrial and meteoritic values. In some cases, the D/H ratios approach those observed for molecules in interstellar clouds.
NASA Astrophysics Data System (ADS)
Stevenson, Ross; Poirier, André; Véron, Alain; Carignan, Jean; Hillaire-Marcel, Claude
2015-09-01
New geochemical and isotopic (Sr, Nd, Pb) data are presented for a composite sedimentary record encompassing the past 50 Ma of history of sedimentation on the Lomonosov Ridge in the Arctic Ocean. The sampled sediments encompass the transition of the Arctic basin from an enclosed anoxic basin to an open and ventilated oxidized ocean basin. The transition from anoxic basin to open ventilated ocean is accompanied by at least three geochemical and isotopic shifts and an increase in elements (e.g., K/Al) controlled by detrital minerals highlighting significant changes in sediment types and sources. The isotopic compositions of the sediments prior to ventilation are more variable but indicate a predominance of older crustal contributions consistent with sources from the Canadian Shield. Following ventilation, the isotopic compositions are more stable and indicate an increased contribution from younger material consistent with Eurasian and Pan-African crustal sources. The waxing and waning of these sources in conjunction with the passage of water through Fram Strait underlines the importance of the exchange of water mass between the Arctic and North Atlantic Oceans.
Stable isotopic variation in tropical forest plants for applications in primatology.
Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E
2016-10-01
Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Barbante, Carlo; Polo, Fabio; Cozzi, Giulio; Ogrinc, Nives; Turetta, Clara
2016-04-01
Climate change is having an increasing influence on vine phenology and grape composition, affecting vinifications, wine chemistry and the quality of productions. Wine grape cultivation provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Moreover, on a regional level and on a shorter time scale, the seasonal weather conditions modify the quality of yields determining the final properties of wine. In the present research, we studied wines from Italy and Slovenia with the purpose of differentiating them by the different vintages (from 2009 to 2012), which are supposed to be influenced by temperature and rain during each year's growing season. Specific chemical techniques were used, in particular mass spectrometry (ICP-MS) and isotopic mass spectrometry (IRMS), both of which are usually employed to detect wine adulterations and to establish the geographical provenance of wines. In particular, we investigated the relationship between macro- and micro-elements, Rare Earth Elements and stable isotopes [δ13C, δ18O, (D/H)I, (D/H)II]. The datasets were examined via statistical techniques to show their relation to weather conditions as well as their mutual connection. Italian and Slovenian wines were distinguished, with the exception of few samples, by both TEs and REEs results. This separation, due to different elemental compositions, may be justified as being part of two distinct environmental and geographical belongings (terroir) but also to the processes of wine production, from the harvest to the bottling, which have certainly interfered and characterized the products. In the case of Italian wines the weather conditions were evidenced with an important separation of stable isotopes which they confirmed to be very sensitive Regarding Slovenian wines, the studied regions were characterized of three very different environments, and the elemental measurements resulted very useful. However, it was not possible to separate the different wine regions using elemental composition while the vintages were clearly evidenced. The results of this work were not able to confirm the mass spectrometry and the isotopic mass spectrometry to be useful to distinguish a wine for a specific region while they were able to separate vintages growth in different weather conditions. In conclusion of the work we can furthermore suggest from our data that weather conditions showed to have more influence in the chemical composition of wines than the environmental contribution. Moreover, the more is different a year in terms of weather conditions, the more the techniques of analysis can show the separation of the wines made in that year. However, has been not possible distinguish vintages produced in years of similar weather conditions.
Method for laser induced isotope enrichment
Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu
2004-09-07
Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.
Inferring the source of evaporated waters using stable H and O isotopes
Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...
A Multi-Proxy Paradigm in the Pursuit of Ocean Paleoredox
NASA Astrophysics Data System (ADS)
Anbar, A. D.; Duan, Y.; Kendall, B.; Reinhard, C.; Severmann, S.; Lyons, T. W.
2011-12-01
The geologic record provides abundant evidence for variations in ocean oxygenation throughout Earth history. Expansion of ocean anoxic zones is expected in the future as a consequence of global climate change, with attendant effects on global nutrient inventories, carbon cycling and fluxes of trace greenhouse gases to the atmosphere. Therefore, studying ancient ocean redox variations not only teaches us about the history of the Earth system, but also provides insights into how the system may respond to analogous human perturbations. However, the extent, duration, causes, and consequences of most past variations are poorly understood. This problem motivates the development of paleoredox proxies, including novel stable isotope systems such as Mo, Fe, U and Tl. Experience with these emerging isotope systems demonstrates great promise but also many challenges. The Mo isotope system is illustrative. To first order, the geochemical cycling and isotope systematics of this element are straightforward, making it a useful proxy. However, critical unresolved issues include: (a) uncertainties in the ocean inputs through time; (b) ambiguities about fractionation mechanisms; (c) inadequate understanding of how modern analogs map to ancient systems. Similar challenges confront all the novel isotope systems. The way forward requires integration of multiple isotopic proxies, as well as information gleaned from careful analyses of element concentrations. For example, an episode of Mo enrichment in the 2.5 Ga Mt. McRae Shale is generally interpreted as resulting from buildup of Mo in seawater due to oxidative weathering. This enrichment is therefore thought to indicate a "whiff" of O2 in the environment prior to the Great Oxidation Event that began at 2.4 Ga. Molybdenum isotopes are consistent with this interpretation. However, Mo enrichment due to enhanced input from low-T hydrothermal sources in an anoxic regime cannot be completely excluded given the current state of knowledge of Mo isotope systematics from such sources. By considering sedimentary Fe enrichments together with Fe isotopes, we find that the Mo enrichment correlates with the telltale signature of a shelf-to-basin Fe redox "shuttle". Uranium isotopes also exhibit variations indicative of redox transformations. This multi-proxy dataset therefore paints a robust picture of trace metal redox cycling consistent with the "whiff" interpretation.
Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude
2009-06-01
Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.
NASA Astrophysics Data System (ADS)
Böttcher, Michael E.; Lapham, Laura; Gussone, Nikolaus; Struck, Ulrich; Buhl, Dieter; Immenhauser, Adrian; Moeller, Kirsten; Pretet, Chloé; Nägler, Thomas F.; Dellwig, Olaf; Schnetger, Bernhard; Huckriede, Hermann; Halas, Stan; Samankassou, Elias
2013-04-01
The Holocene Baltic Sea has been switched several times between fresh water and brackish water modes. Modern linear sedimentation rates, based on 210-Pb, 137-Cs, and Hg dating of surface sediments, are between 0.1 and 0.2 mm per year. The change in paleo-environmental conditions caused downcore gradients in the concentrations of dissolved species from modern brackish waters towards fresh paleo-pore waters, interrupted by the brief brackish Yoldia stage. These strong physico-chemical changes had consequences for e.g., microbial activity and further physical and chemical water-solid interactions associated with multiple stable isotope fractionation processes, and, in turn, have strong implications for isotope and trace element partitioning upon early diagenetic mineral (trans)formations. In this communication, we present the results from the first integrated multi-isotope and trace element investigation conducted in this type of salinity-gradient system. It is found that concentrations of conservative elements (e.g., Na, Cl) decrease with depth due to diffusion of ions from brackish waters into underlying fresh waters. This is associated with pronounced depletions in H-2 and O-18 of pore water with depth. Covariations of both isotope systems are close to the meteoric water line as defined by modern Baltic Sea surface waters. A downward increase and decrease of Ca and Mg concentrations, respectively, is associated with decreasing Ca-44 and Mg-26 isotope values. B-11 isotope values decrease in the limnic part of the sediments, too. On the other hand, an increase in Ba concentrations with depth is associated with an increase in Ba-137/134 isotope values. Microbial sulfate reduction and organic matter oxidation lead to an increase in DIC, but a decrease in sulfate concentrations and in C-13 contents of DIC with depth. Suess (1981) was probably the first to propose, that desorption of Ca and Ba from glacial sediments due to downward diffusing ions may be responsible for a downcore increase in pore water concentrations of earth alkaline ions and the formation of authigenic barites. Coupled S-34 and O-18 isotope signals in authigenic barites suggest that they were formed in pre-Yoldia sediments from pore waters strongly depleted in O-18 (as low as -20 per mil vs. VSMOW). In the present communication, we will discuss possible impacts of diagenetic processes on multi-isotope signals in pore waters and authigenic phases. A combination of mixing between brackish and fresh water, ion exchange, precipitation/dissolution, and transport reactions is considered to explain most of the observed isotope variations along the vertical pore water profile. This work was supported by the Leibniz IOW, BONUS+ program, the Universities of Bern, Geneva, Bochum, Münster, and Oldenburg, and the Natural Museum of History, Berlin.
NASA Astrophysics Data System (ADS)
Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew
2013-04-01
Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.
Larson, James H.; Richardson, William B.; Vallazza, Jon; Bartsch, Lynn; Bartsch, Michelle
2017-01-01
Inferences about ecological structure and function are often made using elemental or macromolecular tracers of food web structure. For example, inferences about food chain length are often made using stable isotope ratios of top predators and consumer food sources are often inferred from both stable isotopes and fatty acid (FA) content in consumer tissues. The use of FAs as tracers implies some degree of macromolecular conservation across trophic interactions, but many FAs are subject to physiological alteration and animals may produce those FAs from precursors in response to food deficiencies. We measured 41 individual FAs and several aggregate FA metrics in two filter-feeding taxa to (1) assess ecological variation in food availability and (2) identify potential drivers of among-site variation in FA content. These taxa were filter feeding caddisflies (Family Hydropyschidae) and dreissenid mussels (Genus Dreissena), which both consume seston. Stable isotopic composition (C and N) in these taxa co-varied across 13 sites in the Great Lakes region of North America, indicating they fed on very similar food resources. However, co-variation in FA content was very limited, with only one common FA co-varying across this gradient (α-linolenic acid; ALA), suggesting these taxa accumulate FAs very differently even when exposed to the same foods. Based on these results, among-site variation in ALA content in both consumers does appear to be driven by food resources, along with several other FAs in dreissenid mussels. We conclude that single-taxa measurements of FA content cannot be used to infer FA availability in food resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bock, Lindsey R.; Whitledge, Gregory W.; Pracheil, Brenda M.
The objectives of this study were to characterize relationships between water and paddlefish Polyodon spathula dentary Sr:Ca, δ 18O and stable hydrogen isotope ratio (δD) to determine the accuracy with which individual P. spathula could be assigned to their collection locations using dentary-edge Sr:Ca, δD and δ 18O. A laboratory experiment was also conducted to determine whether dentary Sr:Ca in age 0 year P. spathula would reflect shifts in water Sr:Ca to which fish were exposed. Significant linear relationships between water and dentary Sr:Ca, δD and δ 18O were observed, although the relationship between water and dentary δ 18O wasmore » weaker than those for Sr:Ca and δD. Classification success for individual fish to collection locations that differed in water Sr:Ca, δD and δ 18O ranged from 86 to 100% based on dentary-edge Sr:Ca, δD and δ18O. Dentary Sr:Ca increased significantly in laboratory-reared age 0 year P. spathula following 4 weeks of exposure to elevated water Sr:Ca; dentary Sr:Ca of fish held in water with elevated Sr:Ca was also significantly higher than that of control fish reared in ambient laboratory water. Results indicated that P. spathula dentaries reflect water signatures for commonly-applied natural chemical markers and strongly suggest that dentary microchemistry and stable-isotopic compositions will be applicable for reconstructing P. spathula environmental history in locations where sufficient spatial differences in water chemistry occur.« less
NASA Astrophysics Data System (ADS)
Kim, Jong-Hyeob; Kim, Seung Hyeon; Kim, Young Kyun; Lee, Kun-Seop
2016-12-01
Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.
Bock, Lindsey R.; Whitledge, Gregory W.; Pracheil, Brenda M.; ...
2016-07-26
The objectives of this study were to characterize relationships between water and paddlefish Polyodon spathula dentary Sr:Ca, δ 18O and stable hydrogen isotope ratio (δD) to determine the accuracy with which individual P. spathula could be assigned to their collection locations using dentary-edge Sr:Ca, δD and δ 18O. A laboratory experiment was also conducted to determine whether dentary Sr:Ca in age 0 year P. spathula would reflect shifts in water Sr:Ca to which fish were exposed. Significant linear relationships between water and dentary Sr:Ca, δD and δ 18O were observed, although the relationship between water and dentary δ 18O wasmore » weaker than those for Sr:Ca and δD. Classification success for individual fish to collection locations that differed in water Sr:Ca, δD and δ 18O ranged from 86 to 100% based on dentary-edge Sr:Ca, δD and δ18O. Dentary Sr:Ca increased significantly in laboratory-reared age 0 year P. spathula following 4 weeks of exposure to elevated water Sr:Ca; dentary Sr:Ca of fish held in water with elevated Sr:Ca was also significantly higher than that of control fish reared in ambient laboratory water. Results indicated that P. spathula dentaries reflect water signatures for commonly-applied natural chemical markers and strongly suggest that dentary microchemistry and stable-isotopic compositions will be applicable for reconstructing P. spathula environmental history in locations where sufficient spatial differences in water chemistry occur.« less
Hanousek, Ondrej; Santner, Jakob; Mason, Sean; Berger, Torsten W; Wenzel, Walter W; Prohaska, Thomas
2016-11-01
A diffusive gradient in thin films (DGT) technique, based on a strongly basic anion exchange resin (Amberlite IRA-400), was successfully tested for 34 S/ 32 S analysis in labile soil sulfate. Separation of matrix elements (Na, K, and Ca) that potentially cause non-spectral interferences in 34 S/ 32 S analysis by MC ICP-MS (multi-collector inductively coupled plasma-mass spectrometry) during sampling of sulfate was demonstrated. No isotopic fractionation caused by diffusion or elution of sulfate was observed below a resin gel disc loading of ≤79 μg S. Above this threshold, fractionation towards 34 S was observed. The method was applied to 11 different topsoils and one mineral soil profile (0-100 cm depth) and compared with soil sulfate extraction by water. The S amount and isotopic ratio in DGT-S and water-extractable sulfate correlated significantly (r 2 = 0.89 and r 2 = 0.74 for the 11 topsoils, respectively). The systematically lower 34 S/ 32 S isotope ratios of the DGT-S were ascribed to mineralization of organic S.
Uranium Stable Isotopes: A Proxy For Productivity Or Ocean Oxygenation?
NASA Astrophysics Data System (ADS)
Severmann, S.
2015-12-01
Uranium elemental abundances in sediments have traditionally been used to reconstruct primary productivity and carbon flux in the ocean. 238U/235U isotope compositions, in contrast, are currently understood to reflect the extent of bottom water anoxia in the ocean. A review of our current understanding of authigenic U enrichment mechanism into reducing sediments suggests that a revision of this interpretation is warranted. Specifically, the current interpretation of U isotope effects in suboxic vs. anoxic deposits has not taken into account the well-documented linear relationship with organic C burial rates. Although organic C rain rates (i.e., surface productivity) and bottom water oxygenation are clearly related, distinction between these two environmental controls is conceptually important as it relates to the mechanism of enhanced C burial and ultimately the strength of the biological pump. Here we will review new and existing data to test the hypothesis that the isotope composition of authigenic U in reducing sediments are best described by their relationship with parameters related to organic carbon delivery and burial, rather than bottom water oxygen concentration.
Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes
NASA Astrophysics Data System (ADS)
Kreutz, K. J.; Osterberg, E. C.; Gross, B.; Handley, M.; Wake, C. P.; Yalcin, K.
2009-12-01
Trends and sources of lead aerosol pollution in the North Pacific boundary layer from 1970-2001 are investigated using a high-resolution ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Average Pb concentrations in the ice core are enriched 31.8 times above crustal values based on ratios with five crustal reference elements (La, Ce, Pr, Al and Ti), indicating that >90% of the Pb deposited is anthropogenic. Isotopic analyses (208Pb/207Pb and 206Pb/207Pb) confirm that the Pb deposited at Eclipse Icefield is predominantly anthropogenic. Annually averaged Pb concentrations range from 25.6 ng/l to 96.7 ng/l (67.6 ng/l mean) and show no long term trend for the 1970-2001 period, contrary to other ice core records from the North Atlantic and the North Pacific. The stable Pb isotope ratio (208Pb/207Pb and 206Pb/207Pb) field indicates that recent Eclipse Icefield Pb pollution represents a variable mixture of North American, Central Eurasian and Asian (Chinese and Japanese) emissions transported across the Pacific basin, with Chinese coal combustion likely being the primary source. Increasing 208Pb/207Pb and 206Pb/207Pb ratios from the 1970’s through 2001 reflect the progressive East Asian industrialization concurrent with a decrease in Eurasian Pb emissions. We compare Pb isotope results from the Eclipse Icefield to data recently acquired from Denali National Park, where snowpit samples were collected from the Kahiltna Pass region (3048 masl). Pb isotope data from both sites are used to evaluate the relative importance of Asian emissions at similar altitudes yet different latitudes.
Cravotta, C.A.
1995-01-01
Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.
Variation in the terrestrial isotopic composition and atomic weight of argon
Böhlke, John Karl
2014-01-01
The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.
Hynson, Nicole A.; Schiebold, Julienne M.-I.; Gebauer, Gerhard
2016-01-01
Background and Aims Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species’ dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. Methods Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ13C and δ15N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, 13C and 15N enrichment among plant families and trophic strategies. Key Results We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. Conclusions We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments. PMID:27451987
Bender, Richard L; Dufour, Darna L; Valenzuela, Luciano O; Cerling, Thure E; Sponheimer, Matt; Reina, Julio C; Ehleringer, James R
2015-01-01
We conducted stable isotope and dietary analyses of women from higher and lower socioeconomic status (SES) groups in Cali, Colombia. The objectives were to test between-group differences in stable isotope, dietary, and anthropometric characteristics, and to evaluate relationships between diet and stable isotope values. Hair samples from 38 women (mean age 33.4) from higher and lower SES groups were analyzed for δ(13) C, δ(15) N, and δ(34) S values. Dietary intake was assessed via 24-h recalls. Anthropometric variables measured were body mass index, five body circumferences, and six skinfold thicknesses. Mean δ(13) C and δ(15) N values of the higher SES group (-16.4 and 10.3‰) were significantly greater than those of the lower SES group (-17.2 and 9.6‰; P < 0.01), but mean δ(34) S values did not differ significantly between groups (higher SES: 4.6‰; lower SES: 5.1‰). The higher SES group consumed a greater percentage of protein than the lower SES group (14% vs. 12% of energy; P = 0.03), but the groups did not differ in other dietary characteristics or in anthropometric characteristics. δ(13) C, δ(15) N, and δ(34) S values were not correlated with intake of the dietary items predicted (sugars, animal-source protein, and marine foods, respectively). The lower SES group was more variable in all three stable isotope values (P < 0.05), mirroring a trend toward greater dietary variability in this group. Stable isotope values revealed a difference between SES groups that was not explained by the dietary data. The relationship between diet and stable isotope composition is complex. © 2014 Wiley Periodicals, Inc.
Stable isotope tracers and exercise physiology: past, present and future.
Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J
2017-05-01
Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
2H Stable Isotope Analysis of Tooth Enamel: A Pilot Study
NASA Astrophysics Data System (ADS)
Holobinko, Anastasia; Kemp, Helen; Meier-Augenstein, Wolfram; Prowse, Tracy; Ford, Susan
2010-05-01
Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well recognized and increasingly important method for determining provenance of human remains, and has been used successfully in bioarchaeological studies as well as forensic investigations (Lee-Thorp, 2008; Meier-Augenstein and Fraser, 2008). Particularly, 18O and 2H stable isotopes are well established proxies as environmental indicators of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans (Hobson et al., 2004; Schwarcz and Walker, 2006). While methodology for 2H analysis of human hair, fingernails, and bone collagen is currently used to determine geographic origin and identify possible migration patterns, studies involving the analysis of 2H in tooth enamel appear to be nonexistent in the scientific literature. The apparent lack of research in this area is believed to have two main reasons. (1) Compared to the mineral calcium hydroxylapatite Ca10(PO4)6(OH)2, in tooth enamel forming bio-apatite carbonate ions replace some of the hydroxyl ions at a rate of one CO32 replacing two OH, yet published figures for the degree of substitution vary (Wopenka and Pasteris, 2005). (2) Most probably due to the aforementioned no published protocols exist for sample preparation and analytical method to obtain δ2H-values from the hydroxyl fraction of tooth enamel. This dilemma has been addressed through a pilot study to establish feasibility of 2H stable isotope analysis of ground tooth enamel by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyzer (TC/EA). An array of archaeological and modern teeth has been analyzed under different experimental conditions, and results from this pilot study are being presented. References: Lee-Thorp, J.A. (2008) Archaeometry, 50, 925-950 Meier-Augenstein, W. and Fraser, I. (2008) Science & Justice, 48, 153-159 Hobson, K.A., Bowen, G.J., Wassenaar, L.I., Ferrand, Y. and Lormee, H. (2004) Oecologia, 141, 477-488 Schwarcz, H.P. and Walker, P.L. (2006) American Journal of Physical Anthropology, 129, 160 Wopenka, B. and Pasteris, J.D. (2005) Materials Science and Engineering C, 25, 131-143
NASA Astrophysics Data System (ADS)
Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias
2013-04-01
Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation. The method was developed for the multi-element isotope analysis (carbon and hydrogen) of priority volatile organic groundwater pollutants (methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene and o-xylene (BTEX)), and for carbon isotope analysis of chlorinated benzenes and ethenes. The extraction and injection conditions were optimized in terms of maximum sensitivity and minimum isotope effects. During the injection of the headspace sample, the liner is maintained at a low temperature, such that the compounds are retained in a hydrophobic insert packing while the water vapor is eliminated through the split line. With the optimized conditions, it was possible to inject up to 5mL headspace sample with no significant carbon or hydrogen isotopic effects except for the most hydrophobic substance (MTBE), which was subject to a small and reproducible isotope fractionation for hydrogen. The increment on method sensitivity was at least 20 fold in comparison with conventional static headspace analysis. The environmental applicability of the HS-PTV-GC-IRMS method was evaluated by the analysis of groundwater samples from different contaminated field sites, containing BTEX and chlorinated volatile organic contaminants in the low µg/L range. The results obtained demonstrate that this pre-concentration technique is highly promising to enhance the limits of detection of current CSIA methods and broaden its possibilities.
Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis
NASA Astrophysics Data System (ADS)
Horváth, Anikó; Futó, István; Palcsu, László
2014-05-01
Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.
Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry
Coplen, Tyler B.; Qi, Haiping
2010-01-01
An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen
Melting point of high-purity germanium stable isotopes
NASA Astrophysics Data System (ADS)
Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.
2018-05-01
The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.
A manual for a laboratory information management system (LIMS) for light stable isotopes
Coplen, Tyler B.
1997-01-01
The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program is presented herein. Major benefits of this system include (i) an increase in laboratory efficiency, (ii) reduction in the use of paper, (iii) reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) decreased errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for stable isotope laboratories. Since the original publication of the manual for LIMS for Light Stable Isotopes, the isotopes 3 H, 3 He, and 14 C, and the chlorofluorocarbons (CFCs), CFC-11, CFC-12, and CFC-113, have been added to this program.
A manual for a Laboratory Information Management System (LIMS) for light stable isotopes
Coplen, Tyler B.
1998-01-01
The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program is presented herein. Major benefits of this system include (i) an increase in laboratory efficiency, (ii) reduction in the use of paper, (iii) reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) decreased errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for stable isotope laboratories. Since the original publication of the manual for LIMS for Light Stable Isotopes, the isotopes 3 H, 3 He, and 14 C, and the chlorofluorocarbons (CFCs), CFC-11, CFC-12, and CFC-113, have been added to this program.
Cryan, P.M.; Bogan, M.A.; Rye, R.O.; Landis, G.P.; Kester, C.L.
2004-01-01
Although hoary bats (Lasiurus cinereus) are presumed to be migratory and capable of long-distance dispersal, traditional marking techniques have failed to provide direct evidence of migratory movements by individuals. We measured the stable hydrogen isotope ratios of bat hair (δDh) and determined how these values relate to stable hydrogen isotope ratios of precipitation (δDp). Our results indicate that the major assumptions of stable isotope migration studies hold true for hoary bats and that the methodology provides a viable means of determining their migratory movements. We present evidence that a single annual molt occurs in L. cinereus prior to migration and that there is a strong relationship between δDh and δDp during the molt period. This presumably reflects the incorporation of local δDp into newly grown hair. Furthermore, we present evidence that individual hoary bats are capable of traveling distances in excess of 2,000 km and that hair is grown at a wide range of latitudes and elevations. Stable hydrogen isotope analysis offers a promising new tool for the study of bat migration.
Bueschl, Christoph; Kluger, Bernhard; Berthiller, Franz; Lirk, Gerald; Winkler, Stephan; Krska, Rudolf; Schuhmacher, Rainer
2012-03-01
Liquid chromatography-mass spectrometry (LC/MS) is a key technique in metabolomics. Since the efficient assignment of MS signals to true biological metabolites becomes feasible in combination with in vivo stable isotopic labelling, our aim was to provide a new software tool for this purpose. An algorithm and a program (MetExtract) have been developed to search for metabolites in in vivo labelled biological samples. The algorithm makes use of the chromatographic characteristics of the LC/MS data and detects MS peaks fulfilling the criteria of stable isotopic labelling. As a result of all calculations, the algorithm specifies a list of m/z values, the corresponding number of atoms of the labelling element (e.g. carbon) together with retention time and extracted adduct-, fragment- and polymer ions. Its function was evaluated using native (12)C- and uniformly (13)C-labelled standard substances. MetExtract is available free of charge and warranty at http://code.google.com/p/metextract/. Precompiled executables are available for Windows operating systems. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Branson, O.; Vetter, L.; Fehrenbacher, J. S.; Spero, H. J.
2016-12-01
The geochemical variability between individual foraminifera within single core intervals records both palaeo-oecanographic conditions and ecology. Within the biological context of foraminiferal species, this population variability may be interpreted to provide unparalleled paleoenvironmental information. For example, coupled trace element and stable isotope analyses of single O. universa offer a powerful tool for reconstructing the δ18O of Laurentide Ice Sheet (LIS) meltwater, by calculating the intercept between temperature-corrected δ18O water and Ba/Ca salinity estimates (Vetter et al., in review). This offers valuable insights into the dynamics of ice sheet melting at the end of the last glacial maximum. Here we apply similar coupled single-shell laser ablation (LA-ICP-MS) and isotope ratio mass spectrometry (IRMS) techniques to explore the δ18O of Laurentide meltwater during H4 and bracketing intervals. The application of these methods to down-core samples requires the development of robust LA-ICP-MS data processing techniques to identify primary signals within Ba contaminated samples, and careful consideration of palaeo Ba/Ca-salinity relationships. Our analyses offer a significant advance in systematic LA-ICP-MS data processing methods, offer constraints on the variability of riverine Ba fluxes, and ultimately provide δ18O estimates of LIS meltwater during H4.
NASA Astrophysics Data System (ADS)
Rad, S.; Rive, K.; Assayag, N.; Dictor, M.; Garcin, M.
2012-12-01
Water-rock interactions produced in river catchment are accompanied by fractionation or changes in stable isotopes such as H, Li, C and O during chemical weathering processes. Li is a fluid-mobile element that tends to preferentially partition into the fluid phase during water-rock interaction. The relative mass difference between the two isotopes is considerable, generating large mass dependent fractionation during chemical weathering processes. The CO2 dissolves into the water providing the main acid that attack the rock during chemical weathering. Carbon stable isotopes and concentration of Dissolved Inorganic Carbon (DIC) in the river catchment can be used to determine the origin and consumption rates of CO2. In the present work, stable isotopes were analyzed in Allier River, one of the major river basins of France. The lithology is dominated by granite rocks within current upstream, while it is mainly basaltic and Oligocene sediments in the downstream with hydrothermal manifestations. We propose a new isotopic approach by combining δ7Li and δ13CDIC analyses in river catchment waters. A first method has been applied to volcanic tropical environments with Li concentrations correlated to δ13CDIC (Rad et al., 2011). Here, we have completed this approach by lithium isotopes. Water samples were collected during several field trips. Our results show a large variation in Li isotopes and C isotopes within the catchment from 3.3 ‰ to 30.3 ‰ and from -17.9‰ to -3.5‰, respectively. Chemical weathering rates linearly increase from upstream to downstream over 400km distance, whereas Li isotope signatures decrease and global C signature increases. This is due to low water-rock interaction dominated in upstream, whereas the downstream is punctually impacted by hydrothermalism. From Li and C isotopes, our results show 4 groups reflecting different chemical weathering processes: the first group with high fractionation of Li and C, for Li, the heavy lithium partitioned into surface waters, leaving lighter lithium behind in the weathered products, the signature of C is mainly due to organic matter or partially due to biochemical interaction with assimilation of CO2 by microorganism. The second group involves atmospheric equilibrium with CO2 degassing with organic origin or "cold" CO2 degassing with important fraction of Li. The third group present high fractionation of C, reflecting presence of superficial C with organic origin, with low fractionation of Li underling the hydrothermalism impact. Finally a fourth group with low fractionation mainly due to high temperature water-rock interaction. Therefore, the combination of the two tracers, Li and C isotopes, offers a powerful tool to discriminate chemical weathering processes from sources of alteration during water-rock interactions under multi-lithology terrains. Reference: Rad, S., Rivé, K., Allègre, C.J., 2011. Weathering regime associated with subsurface circulation on volcanic islands. Aquat. Geochem. 17, 3, 221-241.
NASA Astrophysics Data System (ADS)
Kampouroglou, Evdokia E.; Tsikos, Harilaos; Economou-Eliopoulos, Maria
2017-11-01
We presented new C and O isotope data of rockforming calcite in terrestrial carbonate deposits from Neogene basins of Attica (Greece), coupled with standard mineralogical and bulk geochemical results. Whereas both isotope datasets [δ18O from -8.99 to -3.20‰(VPDB); δ13C from -8.17 to +1.40‰(VPDB)] could be interpreted in principle as indicative of a meteoric origin, the clear lack of a statistical correlation between them suggests diverse sources for the isotopic variation of the two elements. On the basis of broad correlations between lower carbon isotope data with increasing Fe and bulk organic carbon, we interpreted the light carbon isotope signatures and As enrichments as both derived mainly from a depositional process involving increased supply of metals and organic carbon to the original basins. Periodically augmented biological production and aerobic cycling of organic matter in the ambient lake waters, would have led to the precipitation of isotopically light calcite in concert with elevated fluxes of As-bearing iron oxy-hydroxide and organic matter to the initial terrestrial carbonate sediment. The terrestrial carbonate deposits of Attica therefore represented effective secondary storage reservoirs of elevated As from the adjacent mineralized hinterland; hence these and similar deposits in the region ought to be regarded as key geological candidates for anomalous supply of As to local soils, groundwater and related human activities.
A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...
When organic contaminants are degraded in the environment, the ratio of stable isotopes will often change, and the extent of degradation can be recognized and predicted from the change in the ratio of stable isotopes. Recent advances in analytical chemistry make it possible to p...
Highly enriched multiply-labeled stable isotopic compounds as atmospheric tracers
Goldblatt, M.; McInteer, B.B.
1974-01-29
Compounds multiply-labeled with stable isotopes and highly enriched in these isotopes are readily capable of detection in tracer experiments involving high dilutions. Thus, for example, /sup 13/C/sup 18/O/sub 2/ provides a useful tracer for following atmospheric pol lution produced as a result of fossil fuel burning. (Official Gazette)